]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/e1000e/netdev.c
netdrv intel: disable VLAN filtering in promiscous mode
[mirror_ubuntu-artful-kernel.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
bc7f75fa
AK
47
48#include "e1000.h"
49
97ac8cae 50#define DRV_VERSION "0.3.3.3-k2"
bc7f75fa
AK
51char e1000e_driver_name[] = "e1000e";
52const char e1000e_driver_version[] = DRV_VERSION;
53
54static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_80003es2lan] = &e1000_es2_info,
59 [board_ich8lan] = &e1000_ich8_info,
60 [board_ich9lan] = &e1000_ich9_info,
61};
62
63#ifdef DEBUG
64/**
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
67 **/
68char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
69{
589c085f 70 return hw->adapter->netdev->name;
bc7f75fa
AK
71}
72#endif
73
74/**
75 * e1000_desc_unused - calculate if we have unused descriptors
76 **/
77static int e1000_desc_unused(struct e1000_ring *ring)
78{
79 if (ring->next_to_clean > ring->next_to_use)
80 return ring->next_to_clean - ring->next_to_use - 1;
81
82 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
83}
84
85/**
ad68076e 86 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
91 **/
92static void e1000_receive_skb(struct e1000_adapter *adapter,
93 struct net_device *netdev,
94 struct sk_buff *skb,
a39fe742 95 u8 status, __le16 vlan)
bc7f75fa
AK
96{
97 skb->protocol = eth_type_trans(skb, netdev);
98
99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
38b22195 101 le16_to_cpu(vlan));
bc7f75fa
AK
102 else
103 netif_receive_skb(skb);
104
105 netdev->last_rx = jiffies;
106}
107
108/**
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
114 **/
115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
117{
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
121
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
130 }
131
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
ad68076e
BA
141 /*
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
144 * and then put the value in host order for further stack use.
145 */
a39fe742
AV
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
148 skb->ip_summed = CHECKSUM_COMPLETE;
149 }
150 adapter->hw_csum_good++;
151}
152
153/**
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
156 **/
157static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158 int cleaned_count)
159{
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
168
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
171
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
174 if (skb) {
175 skb_trim(skb, 0);
176 goto map_skb;
177 }
178
179 skb = netdev_alloc_skb(netdev, bufsz);
180 if (!skb) {
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
183 break;
184 }
185
ad68076e
BA
186 /*
187 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
190 */
191 skb_reserve(skb, NET_IP_ALIGN);
192
193 buffer_info->skb = skb;
194map_skb:
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
197 PCI_DMA_FROMDEVICE);
198 if (pci_dma_mapping_error(buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
201 break;
202 }
203
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
206
207 i++;
208 if (i == rx_ring->count)
209 i = 0;
210 buffer_info = &rx_ring->buffer_info[i];
211 }
212
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i-- == 0)
216 i = (rx_ring->count - 1);
217
ad68076e
BA
218 /*
219 * Force memory writes to complete before letting h/w
bc7f75fa
AK
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
ad68076e
BA
222 * such as IA-64).
223 */
bc7f75fa
AK
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226 }
227}
228
229/**
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
232 **/
233static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234 int cleaned_count)
235{
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
242 struct sk_buff *skb;
243 unsigned int i, j;
244
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
247
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
250
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
a39fe742 255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
256 continue;
257 }
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 260 if (!ps_page->page) {
47f44e40
AK
261 adapter->alloc_rx_buff_failed++;
262 goto no_buffers;
263 }
264 ps_page->dma = pci_map_page(pdev,
265 ps_page->page,
266 0, PAGE_SIZE,
267 PCI_DMA_FROMDEVICE);
268 if (pci_dma_mapping_error(ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
272 goto no_buffers;
bc7f75fa 273 }
bc7f75fa 274 }
47f44e40
AK
275 /*
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
278 * erases this info.
279 */
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
282 }
283
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
286
287 if (!skb) {
288 adapter->alloc_rx_buff_failed++;
289 break;
290 }
291
ad68076e
BA
292 /*
293 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
296 */
297 skb_reserve(skb, NET_IP_ALIGN);
298
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
302 PCI_DMA_FROMDEVICE);
303 if (pci_dma_mapping_error(buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
306 /* cleanup skb */
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
309 break;
310 }
311
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
313
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 buffer_info = &rx_ring->buffer_info[i];
318 }
319
320no_buffers:
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
323
324 if (!(i--))
325 i = (rx_ring->count - 1);
326
ad68076e
BA
327 /*
328 * Force memory writes to complete before letting h/w
bc7f75fa
AK
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
ad68076e
BA
331 * such as IA-64).
332 */
bc7f75fa 333 wmb();
ad68076e
BA
334 /*
335 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
336 * descriptors are 32 bytes...so we increment tail
337 * twice as much.
338 */
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
340 }
341}
342
97ac8cae
BA
343/**
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
348 **/
349
350static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
351 int cleaned_count)
352{
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_rx_desc *rx_desc;
356 struct e1000_ring *rx_ring = adapter->rx_ring;
357 struct e1000_buffer *buffer_info;
358 struct sk_buff *skb;
359 unsigned int i;
360 unsigned int bufsz = 256 -
361 16 /* for skb_reserve */ -
362 NET_IP_ALIGN;
363
364 i = rx_ring->next_to_use;
365 buffer_info = &rx_ring->buffer_info[i];
366
367 while (cleaned_count--) {
368 skb = buffer_info->skb;
369 if (skb) {
370 skb_trim(skb, 0);
371 goto check_page;
372 }
373
374 skb = netdev_alloc_skb(netdev, bufsz);
375 if (unlikely(!skb)) {
376 /* Better luck next round */
377 adapter->alloc_rx_buff_failed++;
378 break;
379 }
380
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
384 */
385 skb_reserve(skb, NET_IP_ALIGN);
386
387 buffer_info->skb = skb;
388check_page:
389 /* allocate a new page if necessary */
390 if (!buffer_info->page) {
391 buffer_info->page = alloc_page(GFP_ATOMIC);
392 if (unlikely(!buffer_info->page)) {
393 adapter->alloc_rx_buff_failed++;
394 break;
395 }
396 }
397
398 if (!buffer_info->dma)
399 buffer_info->dma = pci_map_page(pdev,
400 buffer_info->page, 0,
401 PAGE_SIZE,
402 PCI_DMA_FROMDEVICE);
403
404 rx_desc = E1000_RX_DESC(*rx_ring, i);
405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
406
407 if (unlikely(++i == rx_ring->count))
408 i = 0;
409 buffer_info = &rx_ring->buffer_info[i];
410 }
411
412 if (likely(rx_ring->next_to_use != i)) {
413 rx_ring->next_to_use = i;
414 if (unlikely(i-- == 0))
415 i = (rx_ring->count - 1);
416
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
420 * such as IA-64). */
421 wmb();
422 writel(i, adapter->hw.hw_addr + rx_ring->tail);
423 }
424}
425
bc7f75fa
AK
426/**
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
429 *
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
432 **/
433static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434 int *work_done, int work_to_do)
435{
436 struct net_device *netdev = adapter->netdev;
437 struct pci_dev *pdev = adapter->pdev;
438 struct e1000_ring *rx_ring = adapter->rx_ring;
439 struct e1000_rx_desc *rx_desc, *next_rxd;
440 struct e1000_buffer *buffer_info, *next_buffer;
441 u32 length;
442 unsigned int i;
443 int cleaned_count = 0;
444 bool cleaned = 0;
445 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
446
447 i = rx_ring->next_to_clean;
448 rx_desc = E1000_RX_DESC(*rx_ring, i);
449 buffer_info = &rx_ring->buffer_info[i];
450
451 while (rx_desc->status & E1000_RXD_STAT_DD) {
452 struct sk_buff *skb;
453 u8 status;
454
455 if (*work_done >= work_to_do)
456 break;
457 (*work_done)++;
458
459 status = rx_desc->status;
460 skb = buffer_info->skb;
461 buffer_info->skb = NULL;
462
463 prefetch(skb->data - NET_IP_ALIGN);
464
465 i++;
466 if (i == rx_ring->count)
467 i = 0;
468 next_rxd = E1000_RX_DESC(*rx_ring, i);
469 prefetch(next_rxd);
470
471 next_buffer = &rx_ring->buffer_info[i];
472
473 cleaned = 1;
474 cleaned_count++;
475 pci_unmap_single(pdev,
476 buffer_info->dma,
477 adapter->rx_buffer_len,
478 PCI_DMA_FROMDEVICE);
479 buffer_info->dma = 0;
480
481 length = le16_to_cpu(rx_desc->length);
482
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486 /* All receives must fit into a single buffer */
487 ndev_dbg(netdev, "%s: Receive packet consumed "
488 "multiple buffers\n", netdev->name);
489 /* recycle */
490 buffer_info->skb = skb;
491 goto next_desc;
492 }
493
494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
495 /* recycle */
496 buffer_info->skb = skb;
497 goto next_desc;
498 }
499
bc7f75fa
AK
500 total_rx_bytes += length;
501 total_rx_packets++;
502
ad68076e
BA
503 /*
504 * code added for copybreak, this should improve
bc7f75fa 505 * performance for small packets with large amounts
ad68076e
BA
506 * of reassembly being done in the stack
507 */
bc7f75fa
AK
508 if (length < copybreak) {
509 struct sk_buff *new_skb =
510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
511 if (new_skb) {
512 skb_reserve(new_skb, NET_IP_ALIGN);
513 memcpy(new_skb->data - NET_IP_ALIGN,
514 skb->data - NET_IP_ALIGN,
515 length + NET_IP_ALIGN);
516 /* save the skb in buffer_info as good */
517 buffer_info->skb = skb;
518 skb = new_skb;
519 }
520 /* else just continue with the old one */
521 }
522 /* end copybreak code */
523 skb_put(skb, length);
524
525 /* Receive Checksum Offload */
526 e1000_rx_checksum(adapter,
527 (u32)(status) |
528 ((u32)(rx_desc->errors) << 24),
529 le16_to_cpu(rx_desc->csum), skb);
530
531 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
532
533next_desc:
534 rx_desc->status = 0;
535
536 /* return some buffers to hardware, one at a time is too slow */
537 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
538 adapter->alloc_rx_buf(adapter, cleaned_count);
539 cleaned_count = 0;
540 }
541
542 /* use prefetched values */
543 rx_desc = next_rxd;
544 buffer_info = next_buffer;
545 }
546 rx_ring->next_to_clean = i;
547
548 cleaned_count = e1000_desc_unused(rx_ring);
549 if (cleaned_count)
550 adapter->alloc_rx_buf(adapter, cleaned_count);
551
bc7f75fa 552 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 553 adapter->total_rx_packets += total_rx_packets;
41988692 554 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 555 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
556 return cleaned;
557}
558
bc7f75fa
AK
559static void e1000_put_txbuf(struct e1000_adapter *adapter,
560 struct e1000_buffer *buffer_info)
561{
562 if (buffer_info->dma) {
563 pci_unmap_page(adapter->pdev, buffer_info->dma,
564 buffer_info->length, PCI_DMA_TODEVICE);
565 buffer_info->dma = 0;
566 }
567 if (buffer_info->skb) {
568 dev_kfree_skb_any(buffer_info->skb);
569 buffer_info->skb = NULL;
570 }
571}
572
573static void e1000_print_tx_hang(struct e1000_adapter *adapter)
574{
575 struct e1000_ring *tx_ring = adapter->tx_ring;
576 unsigned int i = tx_ring->next_to_clean;
577 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
578 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
579 struct net_device *netdev = adapter->netdev;
580
581 /* detected Tx unit hang */
582 ndev_err(netdev,
583 "Detected Tx Unit Hang:\n"
584 " TDH <%x>\n"
585 " TDT <%x>\n"
586 " next_to_use <%x>\n"
587 " next_to_clean <%x>\n"
588 "buffer_info[next_to_clean]:\n"
589 " time_stamp <%lx>\n"
590 " next_to_watch <%x>\n"
591 " jiffies <%lx>\n"
592 " next_to_watch.status <%x>\n",
593 readl(adapter->hw.hw_addr + tx_ring->head),
594 readl(adapter->hw.hw_addr + tx_ring->tail),
595 tx_ring->next_to_use,
596 tx_ring->next_to_clean,
597 tx_ring->buffer_info[eop].time_stamp,
598 eop,
599 jiffies,
600 eop_desc->upper.fields.status);
601}
602
603/**
604 * e1000_clean_tx_irq - Reclaim resources after transmit completes
605 * @adapter: board private structure
606 *
607 * the return value indicates whether actual cleaning was done, there
608 * is no guarantee that everything was cleaned
609 **/
610static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
611{
612 struct net_device *netdev = adapter->netdev;
613 struct e1000_hw *hw = &adapter->hw;
614 struct e1000_ring *tx_ring = adapter->tx_ring;
615 struct e1000_tx_desc *tx_desc, *eop_desc;
616 struct e1000_buffer *buffer_info;
617 unsigned int i, eop;
618 unsigned int count = 0;
619 bool cleaned = 0;
620 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
621
622 i = tx_ring->next_to_clean;
623 eop = tx_ring->buffer_info[i].next_to_watch;
624 eop_desc = E1000_TX_DESC(*tx_ring, eop);
625
626 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
627 for (cleaned = 0; !cleaned; ) {
628 tx_desc = E1000_TX_DESC(*tx_ring, i);
629 buffer_info = &tx_ring->buffer_info[i];
630 cleaned = (i == eop);
631
632 if (cleaned) {
633 struct sk_buff *skb = buffer_info->skb;
634 unsigned int segs, bytecount;
635 segs = skb_shinfo(skb)->gso_segs ?: 1;
636 /* multiply data chunks by size of headers */
637 bytecount = ((segs - 1) * skb_headlen(skb)) +
638 skb->len;
639 total_tx_packets += segs;
640 total_tx_bytes += bytecount;
641 }
642
643 e1000_put_txbuf(adapter, buffer_info);
644 tx_desc->upper.data = 0;
645
646 i++;
647 if (i == tx_ring->count)
648 i = 0;
649 }
650
651 eop = tx_ring->buffer_info[i].next_to_watch;
652 eop_desc = E1000_TX_DESC(*tx_ring, eop);
653#define E1000_TX_WEIGHT 64
654 /* weight of a sort for tx, to avoid endless transmit cleanup */
655 if (count++ == E1000_TX_WEIGHT)
656 break;
657 }
658
659 tx_ring->next_to_clean = i;
660
661#define TX_WAKE_THRESHOLD 32
662 if (cleaned && netif_carrier_ok(netdev) &&
663 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
664 /* Make sure that anybody stopping the queue after this
665 * sees the new next_to_clean.
666 */
667 smp_mb();
668
669 if (netif_queue_stopped(netdev) &&
670 !(test_bit(__E1000_DOWN, &adapter->state))) {
671 netif_wake_queue(netdev);
672 ++adapter->restart_queue;
673 }
674 }
675
676 if (adapter->detect_tx_hung) {
ad68076e
BA
677 /*
678 * Detect a transmit hang in hardware, this serializes the
679 * check with the clearing of time_stamp and movement of i
680 */
bc7f75fa
AK
681 adapter->detect_tx_hung = 0;
682 if (tx_ring->buffer_info[eop].dma &&
683 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
684 + (adapter->tx_timeout_factor * HZ))
ad68076e 685 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
686 e1000_print_tx_hang(adapter);
687 netif_stop_queue(netdev);
688 }
689 }
690 adapter->total_tx_bytes += total_tx_bytes;
691 adapter->total_tx_packets += total_tx_packets;
41988692 692 adapter->net_stats.tx_bytes += total_tx_bytes;
7c25769f 693 adapter->net_stats.tx_packets += total_tx_packets;
bc7f75fa
AK
694 return cleaned;
695}
696
bc7f75fa
AK
697/**
698 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
699 * @adapter: board private structure
700 *
701 * the return value indicates whether actual cleaning was done, there
702 * is no guarantee that everything was cleaned
703 **/
704static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
705 int *work_done, int work_to_do)
706{
707 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
708 struct net_device *netdev = adapter->netdev;
709 struct pci_dev *pdev = adapter->pdev;
710 struct e1000_ring *rx_ring = adapter->rx_ring;
711 struct e1000_buffer *buffer_info, *next_buffer;
712 struct e1000_ps_page *ps_page;
713 struct sk_buff *skb;
714 unsigned int i, j;
715 u32 length, staterr;
716 int cleaned_count = 0;
717 bool cleaned = 0;
718 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
719
720 i = rx_ring->next_to_clean;
721 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
722 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
723 buffer_info = &rx_ring->buffer_info[i];
724
725 while (staterr & E1000_RXD_STAT_DD) {
726 if (*work_done >= work_to_do)
727 break;
728 (*work_done)++;
729 skb = buffer_info->skb;
730
731 /* in the packet split case this is header only */
732 prefetch(skb->data - NET_IP_ALIGN);
733
734 i++;
735 if (i == rx_ring->count)
736 i = 0;
737 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
738 prefetch(next_rxd);
739
740 next_buffer = &rx_ring->buffer_info[i];
741
742 cleaned = 1;
743 cleaned_count++;
744 pci_unmap_single(pdev, buffer_info->dma,
745 adapter->rx_ps_bsize0,
746 PCI_DMA_FROMDEVICE);
747 buffer_info->dma = 0;
748
749 if (!(staterr & E1000_RXD_STAT_EOP)) {
750 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
751 "up the full packet\n", netdev->name);
752 dev_kfree_skb_irq(skb);
753 goto next_desc;
754 }
755
756 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
757 dev_kfree_skb_irq(skb);
758 goto next_desc;
759 }
760
761 length = le16_to_cpu(rx_desc->wb.middle.length0);
762
763 if (!length) {
764 ndev_dbg(netdev, "%s: Last part of the packet spanning"
765 " multiple descriptors\n", netdev->name);
766 dev_kfree_skb_irq(skb);
767 goto next_desc;
768 }
769
770 /* Good Receive */
771 skb_put(skb, length);
772
773 {
ad68076e
BA
774 /*
775 * this looks ugly, but it seems compiler issues make it
776 * more efficient than reusing j
777 */
bc7f75fa
AK
778 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
779
ad68076e
BA
780 /*
781 * page alloc/put takes too long and effects small packet
782 * throughput, so unsplit small packets and save the alloc/put
783 * only valid in softirq (napi) context to call kmap_*
784 */
bc7f75fa
AK
785 if (l1 && (l1 <= copybreak) &&
786 ((length + l1) <= adapter->rx_ps_bsize0)) {
787 u8 *vaddr;
788
47f44e40 789 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 790
ad68076e
BA
791 /*
792 * there is no documentation about how to call
bc7f75fa 793 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
794 * very long
795 */
bc7f75fa
AK
796 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
797 PAGE_SIZE, PCI_DMA_FROMDEVICE);
798 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
799 memcpy(skb_tail_pointer(skb), vaddr, l1);
800 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
801 pci_dma_sync_single_for_device(pdev, ps_page->dma,
802 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 803
bc7f75fa
AK
804 skb_put(skb, l1);
805 goto copydone;
806 } /* if */
807 }
808
809 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
810 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
811 if (!length)
812 break;
813
47f44e40 814 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
815 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
816 PCI_DMA_FROMDEVICE);
817 ps_page->dma = 0;
818 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
819 ps_page->page = NULL;
820 skb->len += length;
821 skb->data_len += length;
822 skb->truesize += length;
823 }
824
bc7f75fa
AK
825copydone:
826 total_rx_bytes += skb->len;
827 total_rx_packets++;
828
829 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
830 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
831
832 if (rx_desc->wb.upper.header_status &
833 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
834 adapter->rx_hdr_split++;
835
836 e1000_receive_skb(adapter, netdev, skb,
837 staterr, rx_desc->wb.middle.vlan);
838
839next_desc:
840 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
841 buffer_info->skb = NULL;
842
843 /* return some buffers to hardware, one at a time is too slow */
844 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
845 adapter->alloc_rx_buf(adapter, cleaned_count);
846 cleaned_count = 0;
847 }
848
849 /* use prefetched values */
850 rx_desc = next_rxd;
851 buffer_info = next_buffer;
852
853 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
854 }
855 rx_ring->next_to_clean = i;
856
857 cleaned_count = e1000_desc_unused(rx_ring);
858 if (cleaned_count)
859 adapter->alloc_rx_buf(adapter, cleaned_count);
860
bc7f75fa 861 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 862 adapter->total_rx_packets += total_rx_packets;
41988692 863 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 864 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
865 return cleaned;
866}
867
97ac8cae
BA
868/**
869 * e1000_consume_page - helper function
870 **/
871static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
872 u16 length)
873{
874 bi->page = NULL;
875 skb->len += length;
876 skb->data_len += length;
877 skb->truesize += length;
878}
879
880/**
881 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
882 * @adapter: board private structure
883 *
884 * the return value indicates whether actual cleaning was done, there
885 * is no guarantee that everything was cleaned
886 **/
887
888static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
889 int *work_done, int work_to_do)
890{
891 struct net_device *netdev = adapter->netdev;
892 struct pci_dev *pdev = adapter->pdev;
893 struct e1000_ring *rx_ring = adapter->rx_ring;
894 struct e1000_rx_desc *rx_desc, *next_rxd;
895 struct e1000_buffer *buffer_info, *next_buffer;
896 u32 length;
897 unsigned int i;
898 int cleaned_count = 0;
899 bool cleaned = false;
900 unsigned int total_rx_bytes=0, total_rx_packets=0;
901
902 i = rx_ring->next_to_clean;
903 rx_desc = E1000_RX_DESC(*rx_ring, i);
904 buffer_info = &rx_ring->buffer_info[i];
905
906 while (rx_desc->status & E1000_RXD_STAT_DD) {
907 struct sk_buff *skb;
908 u8 status;
909
910 if (*work_done >= work_to_do)
911 break;
912 (*work_done)++;
913
914 status = rx_desc->status;
915 skb = buffer_info->skb;
916 buffer_info->skb = NULL;
917
918 ++i;
919 if (i == rx_ring->count)
920 i = 0;
921 next_rxd = E1000_RX_DESC(*rx_ring, i);
922 prefetch(next_rxd);
923
924 next_buffer = &rx_ring->buffer_info[i];
925
926 cleaned = true;
927 cleaned_count++;
928 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
929 PCI_DMA_FROMDEVICE);
930 buffer_info->dma = 0;
931
932 length = le16_to_cpu(rx_desc->length);
933
934 /* errors is only valid for DD + EOP descriptors */
935 if (unlikely((status & E1000_RXD_STAT_EOP) &&
936 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
937 /* recycle both page and skb */
938 buffer_info->skb = skb;
939 /* an error means any chain goes out the window
940 * too */
941 if (rx_ring->rx_skb_top)
942 dev_kfree_skb(rx_ring->rx_skb_top);
943 rx_ring->rx_skb_top = NULL;
944 goto next_desc;
945 }
946
947#define rxtop rx_ring->rx_skb_top
948 if (!(status & E1000_RXD_STAT_EOP)) {
949 /* this descriptor is only the beginning (or middle) */
950 if (!rxtop) {
951 /* this is the beginning of a chain */
952 rxtop = skb;
953 skb_fill_page_desc(rxtop, 0, buffer_info->page,
954 0, length);
955 } else {
956 /* this is the middle of a chain */
957 skb_fill_page_desc(rxtop,
958 skb_shinfo(rxtop)->nr_frags,
959 buffer_info->page, 0, length);
960 /* re-use the skb, only consumed the page */
961 buffer_info->skb = skb;
962 }
963 e1000_consume_page(buffer_info, rxtop, length);
964 goto next_desc;
965 } else {
966 if (rxtop) {
967 /* end of the chain */
968 skb_fill_page_desc(rxtop,
969 skb_shinfo(rxtop)->nr_frags,
970 buffer_info->page, 0, length);
971 /* re-use the current skb, we only consumed the
972 * page */
973 buffer_info->skb = skb;
974 skb = rxtop;
975 rxtop = NULL;
976 e1000_consume_page(buffer_info, skb, length);
977 } else {
978 /* no chain, got EOP, this buf is the packet
979 * copybreak to save the put_page/alloc_page */
980 if (length <= copybreak &&
981 skb_tailroom(skb) >= length) {
982 u8 *vaddr;
983 vaddr = kmap_atomic(buffer_info->page,
984 KM_SKB_DATA_SOFTIRQ);
985 memcpy(skb_tail_pointer(skb), vaddr,
986 length);
987 kunmap_atomic(vaddr,
988 KM_SKB_DATA_SOFTIRQ);
989 /* re-use the page, so don't erase
990 * buffer_info->page */
991 skb_put(skb, length);
992 } else {
993 skb_fill_page_desc(skb, 0,
994 buffer_info->page, 0,
995 length);
996 e1000_consume_page(buffer_info, skb,
997 length);
998 }
999 }
1000 }
1001
1002 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1003 e1000_rx_checksum(adapter,
1004 (u32)(status) |
1005 ((u32)(rx_desc->errors) << 24),
1006 le16_to_cpu(rx_desc->csum), skb);
1007
1008 /* probably a little skewed due to removing CRC */
1009 total_rx_bytes += skb->len;
1010 total_rx_packets++;
1011
1012 /* eth type trans needs skb->data to point to something */
1013 if (!pskb_may_pull(skb, ETH_HLEN)) {
1014 ndev_err(netdev, "pskb_may_pull failed.\n");
1015 dev_kfree_skb(skb);
1016 goto next_desc;
1017 }
1018
1019 e1000_receive_skb(adapter, netdev, skb, status,
1020 rx_desc->special);
1021
1022next_desc:
1023 rx_desc->status = 0;
1024
1025 /* return some buffers to hardware, one at a time is too slow */
1026 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1027 adapter->alloc_rx_buf(adapter, cleaned_count);
1028 cleaned_count = 0;
1029 }
1030
1031 /* use prefetched values */
1032 rx_desc = next_rxd;
1033 buffer_info = next_buffer;
1034 }
1035 rx_ring->next_to_clean = i;
1036
1037 cleaned_count = e1000_desc_unused(rx_ring);
1038 if (cleaned_count)
1039 adapter->alloc_rx_buf(adapter, cleaned_count);
1040
1041 adapter->total_rx_bytes += total_rx_bytes;
1042 adapter->total_rx_packets += total_rx_packets;
1043 adapter->net_stats.rx_bytes += total_rx_bytes;
1044 adapter->net_stats.rx_packets += total_rx_packets;
1045 return cleaned;
1046}
1047
bc7f75fa
AK
1048/**
1049 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1050 * @adapter: board private structure
1051 **/
1052static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1053{
1054 struct e1000_ring *rx_ring = adapter->rx_ring;
1055 struct e1000_buffer *buffer_info;
1056 struct e1000_ps_page *ps_page;
1057 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1058 unsigned int i, j;
1059
1060 /* Free all the Rx ring sk_buffs */
1061 for (i = 0; i < rx_ring->count; i++) {
1062 buffer_info = &rx_ring->buffer_info[i];
1063 if (buffer_info->dma) {
1064 if (adapter->clean_rx == e1000_clean_rx_irq)
1065 pci_unmap_single(pdev, buffer_info->dma,
1066 adapter->rx_buffer_len,
1067 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1068 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1069 pci_unmap_page(pdev, buffer_info->dma,
1070 PAGE_SIZE,
1071 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1072 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1073 pci_unmap_single(pdev, buffer_info->dma,
1074 adapter->rx_ps_bsize0,
1075 PCI_DMA_FROMDEVICE);
1076 buffer_info->dma = 0;
1077 }
1078
97ac8cae
BA
1079 if (buffer_info->page) {
1080 put_page(buffer_info->page);
1081 buffer_info->page = NULL;
1082 }
1083
bc7f75fa
AK
1084 if (buffer_info->skb) {
1085 dev_kfree_skb(buffer_info->skb);
1086 buffer_info->skb = NULL;
1087 }
1088
1089 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1090 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1091 if (!ps_page->page)
1092 break;
1093 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1094 PCI_DMA_FROMDEVICE);
1095 ps_page->dma = 0;
1096 put_page(ps_page->page);
1097 ps_page->page = NULL;
1098 }
1099 }
1100
1101 /* there also may be some cached data from a chained receive */
1102 if (rx_ring->rx_skb_top) {
1103 dev_kfree_skb(rx_ring->rx_skb_top);
1104 rx_ring->rx_skb_top = NULL;
1105 }
1106
bc7f75fa
AK
1107 /* Zero out the descriptor ring */
1108 memset(rx_ring->desc, 0, rx_ring->size);
1109
1110 rx_ring->next_to_clean = 0;
1111 rx_ring->next_to_use = 0;
1112
1113 writel(0, adapter->hw.hw_addr + rx_ring->head);
1114 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1115}
1116
1117/**
1118 * e1000_intr_msi - Interrupt Handler
1119 * @irq: interrupt number
1120 * @data: pointer to a network interface device structure
1121 **/
1122static irqreturn_t e1000_intr_msi(int irq, void *data)
1123{
1124 struct net_device *netdev = data;
1125 struct e1000_adapter *adapter = netdev_priv(netdev);
1126 struct e1000_hw *hw = &adapter->hw;
1127 u32 icr = er32(ICR);
1128
ad68076e
BA
1129 /*
1130 * read ICR disables interrupts using IAM
1131 */
bc7f75fa
AK
1132
1133 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1134 hw->mac.get_link_status = 1;
ad68076e
BA
1135 /*
1136 * ICH8 workaround-- Call gig speed drop workaround on cable
1137 * disconnect (LSC) before accessing any PHY registers
1138 */
bc7f75fa
AK
1139 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1140 (!(er32(STATUS) & E1000_STATUS_LU)))
1141 e1000e_gig_downshift_workaround_ich8lan(hw);
1142
ad68076e
BA
1143 /*
1144 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1145 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1146 * adapter in watchdog
1147 */
bc7f75fa
AK
1148 if (netif_carrier_ok(netdev) &&
1149 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1150 /* disable receives */
1151 u32 rctl = er32(RCTL);
1152 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1153 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1154 }
1155 /* guard against interrupt when we're going down */
1156 if (!test_bit(__E1000_DOWN, &adapter->state))
1157 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1158 }
1159
1160 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1161 adapter->total_tx_bytes = 0;
1162 adapter->total_tx_packets = 0;
1163 adapter->total_rx_bytes = 0;
1164 adapter->total_rx_packets = 0;
1165 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1166 }
1167
1168 return IRQ_HANDLED;
1169}
1170
1171/**
1172 * e1000_intr - Interrupt Handler
1173 * @irq: interrupt number
1174 * @data: pointer to a network interface device structure
1175 **/
1176static irqreturn_t e1000_intr(int irq, void *data)
1177{
1178 struct net_device *netdev = data;
1179 struct e1000_adapter *adapter = netdev_priv(netdev);
1180 struct e1000_hw *hw = &adapter->hw;
1181
1182 u32 rctl, icr = er32(ICR);
1183 if (!icr)
1184 return IRQ_NONE; /* Not our interrupt */
1185
ad68076e
BA
1186 /*
1187 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1188 * not set, then the adapter didn't send an interrupt
1189 */
bc7f75fa
AK
1190 if (!(icr & E1000_ICR_INT_ASSERTED))
1191 return IRQ_NONE;
1192
ad68076e
BA
1193 /*
1194 * Interrupt Auto-Mask...upon reading ICR,
1195 * interrupts are masked. No need for the
1196 * IMC write
1197 */
bc7f75fa
AK
1198
1199 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1200 hw->mac.get_link_status = 1;
ad68076e
BA
1201 /*
1202 * ICH8 workaround-- Call gig speed drop workaround on cable
1203 * disconnect (LSC) before accessing any PHY registers
1204 */
bc7f75fa
AK
1205 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1206 (!(er32(STATUS) & E1000_STATUS_LU)))
1207 e1000e_gig_downshift_workaround_ich8lan(hw);
1208
ad68076e
BA
1209 /*
1210 * 80003ES2LAN workaround--
bc7f75fa
AK
1211 * For packet buffer work-around on link down event;
1212 * disable receives here in the ISR and
1213 * reset adapter in watchdog
1214 */
1215 if (netif_carrier_ok(netdev) &&
1216 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1217 /* disable receives */
1218 rctl = er32(RCTL);
1219 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1220 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1221 }
1222 /* guard against interrupt when we're going down */
1223 if (!test_bit(__E1000_DOWN, &adapter->state))
1224 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1225 }
1226
1227 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1228 adapter->total_tx_bytes = 0;
1229 adapter->total_tx_packets = 0;
1230 adapter->total_rx_bytes = 0;
1231 adapter->total_rx_packets = 0;
1232 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1233 }
1234
1235 return IRQ_HANDLED;
1236}
1237
1238static int e1000_request_irq(struct e1000_adapter *adapter)
1239{
1240 struct net_device *netdev = adapter->netdev;
a39fe742 1241 irq_handler_t handler = e1000_intr;
bc7f75fa
AK
1242 int irq_flags = IRQF_SHARED;
1243 int err;
1244
9b71c5e0 1245 if (!pci_enable_msi(adapter->pdev)) {
bc7f75fa 1246 adapter->flags |= FLAG_MSI_ENABLED;
a39fe742 1247 handler = e1000_intr_msi;
bc7f75fa
AK
1248 irq_flags = 0;
1249 }
1250
1251 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
1252 netdev);
1253 if (err) {
9b71c5e0
AG
1254 ndev_err(netdev,
1255 "Unable to allocate %s interrupt (return: %d)\n",
1256 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
1257 err);
bc7f75fa
AK
1258 if (adapter->flags & FLAG_MSI_ENABLED)
1259 pci_disable_msi(adapter->pdev);
bc7f75fa
AK
1260 }
1261
1262 return err;
1263}
1264
1265static void e1000_free_irq(struct e1000_adapter *adapter)
1266{
1267 struct net_device *netdev = adapter->netdev;
1268
1269 free_irq(adapter->pdev->irq, netdev);
1270 if (adapter->flags & FLAG_MSI_ENABLED) {
1271 pci_disable_msi(adapter->pdev);
1272 adapter->flags &= ~FLAG_MSI_ENABLED;
1273 }
1274}
1275
1276/**
1277 * e1000_irq_disable - Mask off interrupt generation on the NIC
1278 **/
1279static void e1000_irq_disable(struct e1000_adapter *adapter)
1280{
1281 struct e1000_hw *hw = &adapter->hw;
1282
bc7f75fa
AK
1283 ew32(IMC, ~0);
1284 e1e_flush();
1285 synchronize_irq(adapter->pdev->irq);
1286}
1287
1288/**
1289 * e1000_irq_enable - Enable default interrupt generation settings
1290 **/
1291static void e1000_irq_enable(struct e1000_adapter *adapter)
1292{
1293 struct e1000_hw *hw = &adapter->hw;
1294
74ef9c39
JB
1295 ew32(IMS, IMS_ENABLE_MASK);
1296 e1e_flush();
bc7f75fa
AK
1297}
1298
1299/**
1300 * e1000_get_hw_control - get control of the h/w from f/w
1301 * @adapter: address of board private structure
1302 *
489815ce 1303 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1304 * For ASF and Pass Through versions of f/w this means that
1305 * the driver is loaded. For AMT version (only with 82573)
1306 * of the f/w this means that the network i/f is open.
1307 **/
1308static void e1000_get_hw_control(struct e1000_adapter *adapter)
1309{
1310 struct e1000_hw *hw = &adapter->hw;
1311 u32 ctrl_ext;
1312 u32 swsm;
1313
1314 /* Let firmware know the driver has taken over */
1315 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1316 swsm = er32(SWSM);
1317 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1318 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1319 ctrl_ext = er32(CTRL_EXT);
ad68076e 1320 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1321 }
1322}
1323
1324/**
1325 * e1000_release_hw_control - release control of the h/w to f/w
1326 * @adapter: address of board private structure
1327 *
489815ce 1328 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1329 * For ASF and Pass Through versions of f/w this means that the
1330 * driver is no longer loaded. For AMT version (only with 82573) i
1331 * of the f/w this means that the network i/f is closed.
1332 *
1333 **/
1334static void e1000_release_hw_control(struct e1000_adapter *adapter)
1335{
1336 struct e1000_hw *hw = &adapter->hw;
1337 u32 ctrl_ext;
1338 u32 swsm;
1339
1340 /* Let firmware taken over control of h/w */
1341 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1342 swsm = er32(SWSM);
1343 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1344 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1345 ctrl_ext = er32(CTRL_EXT);
ad68076e 1346 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1347 }
1348}
1349
bc7f75fa
AK
1350/**
1351 * @e1000_alloc_ring - allocate memory for a ring structure
1352 **/
1353static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1354 struct e1000_ring *ring)
1355{
1356 struct pci_dev *pdev = adapter->pdev;
1357
1358 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1359 GFP_KERNEL);
1360 if (!ring->desc)
1361 return -ENOMEM;
1362
1363 return 0;
1364}
1365
1366/**
1367 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1368 * @adapter: board private structure
1369 *
1370 * Return 0 on success, negative on failure
1371 **/
1372int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1373{
1374 struct e1000_ring *tx_ring = adapter->tx_ring;
1375 int err = -ENOMEM, size;
1376
1377 size = sizeof(struct e1000_buffer) * tx_ring->count;
1378 tx_ring->buffer_info = vmalloc(size);
1379 if (!tx_ring->buffer_info)
1380 goto err;
1381 memset(tx_ring->buffer_info, 0, size);
1382
1383 /* round up to nearest 4K */
1384 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1385 tx_ring->size = ALIGN(tx_ring->size, 4096);
1386
1387 err = e1000_alloc_ring_dma(adapter, tx_ring);
1388 if (err)
1389 goto err;
1390
1391 tx_ring->next_to_use = 0;
1392 tx_ring->next_to_clean = 0;
1393 spin_lock_init(&adapter->tx_queue_lock);
1394
1395 return 0;
1396err:
1397 vfree(tx_ring->buffer_info);
1398 ndev_err(adapter->netdev,
1399 "Unable to allocate memory for the transmit descriptor ring\n");
1400 return err;
1401}
1402
1403/**
1404 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1405 * @adapter: board private structure
1406 *
1407 * Returns 0 on success, negative on failure
1408 **/
1409int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1410{
1411 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1412 struct e1000_buffer *buffer_info;
1413 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1414
1415 size = sizeof(struct e1000_buffer) * rx_ring->count;
1416 rx_ring->buffer_info = vmalloc(size);
1417 if (!rx_ring->buffer_info)
1418 goto err;
1419 memset(rx_ring->buffer_info, 0, size);
1420
47f44e40
AK
1421 for (i = 0; i < rx_ring->count; i++) {
1422 buffer_info = &rx_ring->buffer_info[i];
1423 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1424 sizeof(struct e1000_ps_page),
1425 GFP_KERNEL);
1426 if (!buffer_info->ps_pages)
1427 goto err_pages;
1428 }
bc7f75fa
AK
1429
1430 desc_len = sizeof(union e1000_rx_desc_packet_split);
1431
1432 /* Round up to nearest 4K */
1433 rx_ring->size = rx_ring->count * desc_len;
1434 rx_ring->size = ALIGN(rx_ring->size, 4096);
1435
1436 err = e1000_alloc_ring_dma(adapter, rx_ring);
1437 if (err)
47f44e40 1438 goto err_pages;
bc7f75fa
AK
1439
1440 rx_ring->next_to_clean = 0;
1441 rx_ring->next_to_use = 0;
1442 rx_ring->rx_skb_top = NULL;
1443
1444 return 0;
47f44e40
AK
1445
1446err_pages:
1447 for (i = 0; i < rx_ring->count; i++) {
1448 buffer_info = &rx_ring->buffer_info[i];
1449 kfree(buffer_info->ps_pages);
1450 }
bc7f75fa
AK
1451err:
1452 vfree(rx_ring->buffer_info);
bc7f75fa
AK
1453 ndev_err(adapter->netdev,
1454 "Unable to allocate memory for the transmit descriptor ring\n");
1455 return err;
1456}
1457
1458/**
1459 * e1000_clean_tx_ring - Free Tx Buffers
1460 * @adapter: board private structure
1461 **/
1462static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1463{
1464 struct e1000_ring *tx_ring = adapter->tx_ring;
1465 struct e1000_buffer *buffer_info;
1466 unsigned long size;
1467 unsigned int i;
1468
1469 for (i = 0; i < tx_ring->count; i++) {
1470 buffer_info = &tx_ring->buffer_info[i];
1471 e1000_put_txbuf(adapter, buffer_info);
1472 }
1473
1474 size = sizeof(struct e1000_buffer) * tx_ring->count;
1475 memset(tx_ring->buffer_info, 0, size);
1476
1477 memset(tx_ring->desc, 0, tx_ring->size);
1478
1479 tx_ring->next_to_use = 0;
1480 tx_ring->next_to_clean = 0;
1481
1482 writel(0, adapter->hw.hw_addr + tx_ring->head);
1483 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1484}
1485
1486/**
1487 * e1000e_free_tx_resources - Free Tx Resources per Queue
1488 * @adapter: board private structure
1489 *
1490 * Free all transmit software resources
1491 **/
1492void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1493{
1494 struct pci_dev *pdev = adapter->pdev;
1495 struct e1000_ring *tx_ring = adapter->tx_ring;
1496
1497 e1000_clean_tx_ring(adapter);
1498
1499 vfree(tx_ring->buffer_info);
1500 tx_ring->buffer_info = NULL;
1501
1502 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1503 tx_ring->dma);
1504 tx_ring->desc = NULL;
1505}
1506
1507/**
1508 * e1000e_free_rx_resources - Free Rx Resources
1509 * @adapter: board private structure
1510 *
1511 * Free all receive software resources
1512 **/
1513
1514void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1515{
1516 struct pci_dev *pdev = adapter->pdev;
1517 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1518 int i;
bc7f75fa
AK
1519
1520 e1000_clean_rx_ring(adapter);
1521
47f44e40
AK
1522 for (i = 0; i < rx_ring->count; i++) {
1523 kfree(rx_ring->buffer_info[i].ps_pages);
1524 }
1525
bc7f75fa
AK
1526 vfree(rx_ring->buffer_info);
1527 rx_ring->buffer_info = NULL;
1528
bc7f75fa
AK
1529 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1530 rx_ring->dma);
1531 rx_ring->desc = NULL;
1532}
1533
1534/**
1535 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1536 * @adapter: pointer to adapter
1537 * @itr_setting: current adapter->itr
1538 * @packets: the number of packets during this measurement interval
1539 * @bytes: the number of bytes during this measurement interval
1540 *
bc7f75fa
AK
1541 * Stores a new ITR value based on packets and byte
1542 * counts during the last interrupt. The advantage of per interrupt
1543 * computation is faster updates and more accurate ITR for the current
1544 * traffic pattern. Constants in this function were computed
1545 * based on theoretical maximum wire speed and thresholds were set based
1546 * on testing data as well as attempting to minimize response time
1547 * while increasing bulk throughput.
1548 * this functionality is controlled by the InterruptThrottleRate module
1549 * parameter (see e1000_param.c)
bc7f75fa
AK
1550 **/
1551static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1552 u16 itr_setting, int packets,
1553 int bytes)
1554{
1555 unsigned int retval = itr_setting;
1556
1557 if (packets == 0)
1558 goto update_itr_done;
1559
1560 switch (itr_setting) {
1561 case lowest_latency:
1562 /* handle TSO and jumbo frames */
1563 if (bytes/packets > 8000)
1564 retval = bulk_latency;
1565 else if ((packets < 5) && (bytes > 512)) {
1566 retval = low_latency;
1567 }
1568 break;
1569 case low_latency: /* 50 usec aka 20000 ints/s */
1570 if (bytes > 10000) {
1571 /* this if handles the TSO accounting */
1572 if (bytes/packets > 8000) {
1573 retval = bulk_latency;
1574 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1575 retval = bulk_latency;
1576 } else if ((packets > 35)) {
1577 retval = lowest_latency;
1578 }
1579 } else if (bytes/packets > 2000) {
1580 retval = bulk_latency;
1581 } else if (packets <= 2 && bytes < 512) {
1582 retval = lowest_latency;
1583 }
1584 break;
1585 case bulk_latency: /* 250 usec aka 4000 ints/s */
1586 if (bytes > 25000) {
1587 if (packets > 35) {
1588 retval = low_latency;
1589 }
1590 } else if (bytes < 6000) {
1591 retval = low_latency;
1592 }
1593 break;
1594 }
1595
1596update_itr_done:
1597 return retval;
1598}
1599
1600static void e1000_set_itr(struct e1000_adapter *adapter)
1601{
1602 struct e1000_hw *hw = &adapter->hw;
1603 u16 current_itr;
1604 u32 new_itr = adapter->itr;
1605
1606 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1607 if (adapter->link_speed != SPEED_1000) {
1608 current_itr = 0;
1609 new_itr = 4000;
1610 goto set_itr_now;
1611 }
1612
1613 adapter->tx_itr = e1000_update_itr(adapter,
1614 adapter->tx_itr,
1615 adapter->total_tx_packets,
1616 adapter->total_tx_bytes);
1617 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1618 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1619 adapter->tx_itr = low_latency;
1620
1621 adapter->rx_itr = e1000_update_itr(adapter,
1622 adapter->rx_itr,
1623 adapter->total_rx_packets,
1624 adapter->total_rx_bytes);
1625 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1626 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1627 adapter->rx_itr = low_latency;
1628
1629 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1630
1631 switch (current_itr) {
1632 /* counts and packets in update_itr are dependent on these numbers */
1633 case lowest_latency:
1634 new_itr = 70000;
1635 break;
1636 case low_latency:
1637 new_itr = 20000; /* aka hwitr = ~200 */
1638 break;
1639 case bulk_latency:
1640 new_itr = 4000;
1641 break;
1642 default:
1643 break;
1644 }
1645
1646set_itr_now:
1647 if (new_itr != adapter->itr) {
ad68076e
BA
1648 /*
1649 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1650 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1651 * increasing
1652 */
bc7f75fa
AK
1653 new_itr = new_itr > adapter->itr ?
1654 min(adapter->itr + (new_itr >> 2), new_itr) :
1655 new_itr;
1656 adapter->itr = new_itr;
1657 ew32(ITR, 1000000000 / (new_itr * 256));
1658 }
1659}
1660
1661/**
1662 * e1000_clean - NAPI Rx polling callback
ad68076e 1663 * @napi: struct associated with this polling callback
489815ce 1664 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
1665 **/
1666static int e1000_clean(struct napi_struct *napi, int budget)
1667{
1668 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1669 struct net_device *poll_dev = adapter->netdev;
d2c7ddd6 1670 int tx_cleaned = 0, work_done = 0;
bc7f75fa
AK
1671
1672 /* Must NOT use netdev_priv macro here. */
1673 adapter = poll_dev->priv;
1674
ad68076e
BA
1675 /*
1676 * e1000_clean is called per-cpu. This lock protects
bc7f75fa
AK
1677 * tx_ring from being cleaned by multiple cpus
1678 * simultaneously. A failure obtaining the lock means
ad68076e
BA
1679 * tx_ring is currently being cleaned anyway.
1680 */
bc7f75fa 1681 if (spin_trylock(&adapter->tx_queue_lock)) {
d2c7ddd6 1682 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa
AK
1683 spin_unlock(&adapter->tx_queue_lock);
1684 }
1685
1686 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6
DM
1687
1688 if (tx_cleaned)
1689 work_done = budget;
bc7f75fa 1690
53e52c72
DM
1691 /* If budget not fully consumed, exit the polling mode */
1692 if (work_done < budget) {
bc7f75fa
AK
1693 if (adapter->itr_setting & 3)
1694 e1000_set_itr(adapter);
1695 netif_rx_complete(poll_dev, napi);
1696 e1000_irq_enable(adapter);
1697 }
1698
1699 return work_done;
1700}
1701
1702static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1703{
1704 struct e1000_adapter *adapter = netdev_priv(netdev);
1705 struct e1000_hw *hw = &adapter->hw;
1706 u32 vfta, index;
1707
1708 /* don't update vlan cookie if already programmed */
1709 if ((adapter->hw.mng_cookie.status &
1710 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1711 (vid == adapter->mng_vlan_id))
1712 return;
1713 /* add VID to filter table */
1714 index = (vid >> 5) & 0x7F;
1715 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1716 vfta |= (1 << (vid & 0x1F));
1717 e1000e_write_vfta(hw, index, vfta);
1718}
1719
1720static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1721{
1722 struct e1000_adapter *adapter = netdev_priv(netdev);
1723 struct e1000_hw *hw = &adapter->hw;
1724 u32 vfta, index;
1725
74ef9c39
JB
1726 if (!test_bit(__E1000_DOWN, &adapter->state))
1727 e1000_irq_disable(adapter);
bc7f75fa 1728 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
1729
1730 if (!test_bit(__E1000_DOWN, &adapter->state))
1731 e1000_irq_enable(adapter);
bc7f75fa
AK
1732
1733 if ((adapter->hw.mng_cookie.status &
1734 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1735 (vid == adapter->mng_vlan_id)) {
1736 /* release control to f/w */
1737 e1000_release_hw_control(adapter);
1738 return;
1739 }
1740
1741 /* remove VID from filter table */
1742 index = (vid >> 5) & 0x7F;
1743 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1744 vfta &= ~(1 << (vid & 0x1F));
1745 e1000e_write_vfta(hw, index, vfta);
1746}
1747
1748static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1749{
1750 struct net_device *netdev = adapter->netdev;
1751 u16 vid = adapter->hw.mng_cookie.vlan_id;
1752 u16 old_vid = adapter->mng_vlan_id;
1753
1754 if (!adapter->vlgrp)
1755 return;
1756
1757 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1758 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1759 if (adapter->hw.mng_cookie.status &
1760 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1761 e1000_vlan_rx_add_vid(netdev, vid);
1762 adapter->mng_vlan_id = vid;
1763 }
1764
1765 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1766 (vid != old_vid) &&
1767 !vlan_group_get_device(adapter->vlgrp, old_vid))
1768 e1000_vlan_rx_kill_vid(netdev, old_vid);
1769 } else {
1770 adapter->mng_vlan_id = vid;
1771 }
1772}
1773
1774
1775static void e1000_vlan_rx_register(struct net_device *netdev,
1776 struct vlan_group *grp)
1777{
1778 struct e1000_adapter *adapter = netdev_priv(netdev);
1779 struct e1000_hw *hw = &adapter->hw;
1780 u32 ctrl, rctl;
1781
74ef9c39
JB
1782 if (!test_bit(__E1000_DOWN, &adapter->state))
1783 e1000_irq_disable(adapter);
bc7f75fa
AK
1784 adapter->vlgrp = grp;
1785
1786 if (grp) {
1787 /* enable VLAN tag insert/strip */
1788 ctrl = er32(CTRL);
1789 ctrl |= E1000_CTRL_VME;
1790 ew32(CTRL, ctrl);
1791
1792 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1793 /* enable VLAN receive filtering */
1794 rctl = er32(RCTL);
746b9f02
PM
1795 if (!(netdev->flags & IFF_PROMISC))
1796 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
1797 rctl &= ~E1000_RCTL_CFIEN;
1798 ew32(RCTL, rctl);
1799 e1000_update_mng_vlan(adapter);
1800 }
1801 } else {
1802 /* disable VLAN tag insert/strip */
1803 ctrl = er32(CTRL);
1804 ctrl &= ~E1000_CTRL_VME;
1805 ew32(CTRL, ctrl);
1806
1807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1808 /* disable VLAN filtering */
1809 rctl = er32(RCTL);
1810 rctl &= ~E1000_RCTL_VFE;
1811 ew32(RCTL, rctl);
1812 if (adapter->mng_vlan_id !=
1813 (u16)E1000_MNG_VLAN_NONE) {
1814 e1000_vlan_rx_kill_vid(netdev,
1815 adapter->mng_vlan_id);
1816 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1817 }
1818 }
1819 }
1820
74ef9c39
JB
1821 if (!test_bit(__E1000_DOWN, &adapter->state))
1822 e1000_irq_enable(adapter);
bc7f75fa
AK
1823}
1824
1825static void e1000_restore_vlan(struct e1000_adapter *adapter)
1826{
1827 u16 vid;
1828
1829 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1830
1831 if (!adapter->vlgrp)
1832 return;
1833
1834 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1835 if (!vlan_group_get_device(adapter->vlgrp, vid))
1836 continue;
1837 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1838 }
1839}
1840
1841static void e1000_init_manageability(struct e1000_adapter *adapter)
1842{
1843 struct e1000_hw *hw = &adapter->hw;
1844 u32 manc, manc2h;
1845
1846 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1847 return;
1848
1849 manc = er32(MANC);
1850
ad68076e
BA
1851 /*
1852 * enable receiving management packets to the host. this will probably
bc7f75fa 1853 * generate destination unreachable messages from the host OS, but
ad68076e
BA
1854 * the packets will be handled on SMBUS
1855 */
bc7f75fa
AK
1856 manc |= E1000_MANC_EN_MNG2HOST;
1857 manc2h = er32(MANC2H);
1858#define E1000_MNG2HOST_PORT_623 (1 << 5)
1859#define E1000_MNG2HOST_PORT_664 (1 << 6)
1860 manc2h |= E1000_MNG2HOST_PORT_623;
1861 manc2h |= E1000_MNG2HOST_PORT_664;
1862 ew32(MANC2H, manc2h);
1863 ew32(MANC, manc);
1864}
1865
1866/**
1867 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1868 * @adapter: board private structure
1869 *
1870 * Configure the Tx unit of the MAC after a reset.
1871 **/
1872static void e1000_configure_tx(struct e1000_adapter *adapter)
1873{
1874 struct e1000_hw *hw = &adapter->hw;
1875 struct e1000_ring *tx_ring = adapter->tx_ring;
1876 u64 tdba;
1877 u32 tdlen, tctl, tipg, tarc;
1878 u32 ipgr1, ipgr2;
1879
1880 /* Setup the HW Tx Head and Tail descriptor pointers */
1881 tdba = tx_ring->dma;
1882 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1883 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1884 ew32(TDBAH, (tdba >> 32));
1885 ew32(TDLEN, tdlen);
1886 ew32(TDH, 0);
1887 ew32(TDT, 0);
1888 tx_ring->head = E1000_TDH;
1889 tx_ring->tail = E1000_TDT;
1890
1891 /* Set the default values for the Tx Inter Packet Gap timer */
1892 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1893 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1894 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1895
1896 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1897 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1898
1899 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1900 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1901 ew32(TIPG, tipg);
1902
1903 /* Set the Tx Interrupt Delay register */
1904 ew32(TIDV, adapter->tx_int_delay);
ad68076e 1905 /* Tx irq moderation */
bc7f75fa
AK
1906 ew32(TADV, adapter->tx_abs_int_delay);
1907
1908 /* Program the Transmit Control Register */
1909 tctl = er32(TCTL);
1910 tctl &= ~E1000_TCTL_CT;
1911 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1912 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1913
1914 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 1915 tarc = er32(TARC(0));
ad68076e
BA
1916 /*
1917 * set the speed mode bit, we'll clear it if we're not at
1918 * gigabit link later
1919 */
bc7f75fa
AK
1920#define SPEED_MODE_BIT (1 << 21)
1921 tarc |= SPEED_MODE_BIT;
e9ec2c0f 1922 ew32(TARC(0), tarc);
bc7f75fa
AK
1923 }
1924
1925 /* errata: program both queues to unweighted RR */
1926 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 1927 tarc = er32(TARC(0));
bc7f75fa 1928 tarc |= 1;
e9ec2c0f
JK
1929 ew32(TARC(0), tarc);
1930 tarc = er32(TARC(1));
bc7f75fa 1931 tarc |= 1;
e9ec2c0f 1932 ew32(TARC(1), tarc);
bc7f75fa
AK
1933 }
1934
1935 e1000e_config_collision_dist(hw);
1936
1937 /* Setup Transmit Descriptor Settings for eop descriptor */
1938 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1939
1940 /* only set IDE if we are delaying interrupts using the timers */
1941 if (adapter->tx_int_delay)
1942 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1943
1944 /* enable Report Status bit */
1945 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1946
1947 ew32(TCTL, tctl);
1948
1949 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1950}
1951
1952/**
1953 * e1000_setup_rctl - configure the receive control registers
1954 * @adapter: Board private structure
1955 **/
1956#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1957 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1958static void e1000_setup_rctl(struct e1000_adapter *adapter)
1959{
1960 struct e1000_hw *hw = &adapter->hw;
1961 u32 rctl, rfctl;
1962 u32 psrctl = 0;
1963 u32 pages = 0;
1964
1965 /* Program MC offset vector base */
1966 rctl = er32(RCTL);
1967 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1968 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1969 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1970 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1971
1972 /* Do not Store bad packets */
1973 rctl &= ~E1000_RCTL_SBP;
1974
1975 /* Enable Long Packet receive */
1976 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1977 rctl &= ~E1000_RCTL_LPE;
1978 else
1979 rctl |= E1000_RCTL_LPE;
1980
5918bd88
AK
1981 /* Enable hardware CRC frame stripping */
1982 rctl |= E1000_RCTL_SECRC;
1983
bc7f75fa
AK
1984 /* Setup buffer sizes */
1985 rctl &= ~E1000_RCTL_SZ_4096;
1986 rctl |= E1000_RCTL_BSEX;
1987 switch (adapter->rx_buffer_len) {
1988 case 256:
1989 rctl |= E1000_RCTL_SZ_256;
1990 rctl &= ~E1000_RCTL_BSEX;
1991 break;
1992 case 512:
1993 rctl |= E1000_RCTL_SZ_512;
1994 rctl &= ~E1000_RCTL_BSEX;
1995 break;
1996 case 1024:
1997 rctl |= E1000_RCTL_SZ_1024;
1998 rctl &= ~E1000_RCTL_BSEX;
1999 break;
2000 case 2048:
2001 default:
2002 rctl |= E1000_RCTL_SZ_2048;
2003 rctl &= ~E1000_RCTL_BSEX;
2004 break;
2005 case 4096:
2006 rctl |= E1000_RCTL_SZ_4096;
2007 break;
2008 case 8192:
2009 rctl |= E1000_RCTL_SZ_8192;
2010 break;
2011 case 16384:
2012 rctl |= E1000_RCTL_SZ_16384;
2013 break;
2014 }
2015
2016 /*
2017 * 82571 and greater support packet-split where the protocol
2018 * header is placed in skb->data and the packet data is
2019 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2020 * In the case of a non-split, skb->data is linearly filled,
2021 * followed by the page buffers. Therefore, skb->data is
2022 * sized to hold the largest protocol header.
2023 *
2024 * allocations using alloc_page take too long for regular MTU
2025 * so only enable packet split for jumbo frames
2026 *
2027 * Using pages when the page size is greater than 16k wastes
2028 * a lot of memory, since we allocate 3 pages at all times
2029 * per packet.
2030 */
bc7f75fa 2031 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2032 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2033 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2034 adapter->rx_ps_pages = pages;
97ac8cae
BA
2035 else
2036 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2037
2038 if (adapter->rx_ps_pages) {
2039 /* Configure extra packet-split registers */
2040 rfctl = er32(RFCTL);
2041 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2042 /*
2043 * disable packet split support for IPv6 extension headers,
2044 * because some malformed IPv6 headers can hang the Rx
2045 */
bc7f75fa
AK
2046 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2047 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2048
2049 ew32(RFCTL, rfctl);
2050
140a7480
AK
2051 /* Enable Packet split descriptors */
2052 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2053
2054 psrctl |= adapter->rx_ps_bsize0 >>
2055 E1000_PSRCTL_BSIZE0_SHIFT;
2056
2057 switch (adapter->rx_ps_pages) {
2058 case 3:
2059 psrctl |= PAGE_SIZE <<
2060 E1000_PSRCTL_BSIZE3_SHIFT;
2061 case 2:
2062 psrctl |= PAGE_SIZE <<
2063 E1000_PSRCTL_BSIZE2_SHIFT;
2064 case 1:
2065 psrctl |= PAGE_SIZE >>
2066 E1000_PSRCTL_BSIZE1_SHIFT;
2067 break;
2068 }
2069
2070 ew32(PSRCTL, psrctl);
2071 }
2072
2073 ew32(RCTL, rctl);
318a94d6
JK
2074 /* just started the receive unit, no need to restart */
2075 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2076}
2077
2078/**
2079 * e1000_configure_rx - Configure Receive Unit after Reset
2080 * @adapter: board private structure
2081 *
2082 * Configure the Rx unit of the MAC after a reset.
2083 **/
2084static void e1000_configure_rx(struct e1000_adapter *adapter)
2085{
2086 struct e1000_hw *hw = &adapter->hw;
2087 struct e1000_ring *rx_ring = adapter->rx_ring;
2088 u64 rdba;
2089 u32 rdlen, rctl, rxcsum, ctrl_ext;
2090
2091 if (adapter->rx_ps_pages) {
2092 /* this is a 32 byte descriptor */
2093 rdlen = rx_ring->count *
2094 sizeof(union e1000_rx_desc_packet_split);
2095 adapter->clean_rx = e1000_clean_rx_irq_ps;
2096 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2097 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2098 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2099 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2100 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2101 } else {
97ac8cae 2102 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2103 adapter->clean_rx = e1000_clean_rx_irq;
2104 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2105 }
2106
2107 /* disable receives while setting up the descriptors */
2108 rctl = er32(RCTL);
2109 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2110 e1e_flush();
2111 msleep(10);
2112
2113 /* set the Receive Delay Timer Register */
2114 ew32(RDTR, adapter->rx_int_delay);
2115
2116 /* irq moderation */
2117 ew32(RADV, adapter->rx_abs_int_delay);
2118 if (adapter->itr_setting != 0)
ad68076e 2119 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2120
2121 ctrl_ext = er32(CTRL_EXT);
2122 /* Reset delay timers after every interrupt */
2123 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2124 /* Auto-Mask interrupts upon ICR access */
2125 ctrl_ext |= E1000_CTRL_EXT_IAME;
2126 ew32(IAM, 0xffffffff);
2127 ew32(CTRL_EXT, ctrl_ext);
2128 e1e_flush();
2129
ad68076e
BA
2130 /*
2131 * Setup the HW Rx Head and Tail Descriptor Pointers and
2132 * the Base and Length of the Rx Descriptor Ring
2133 */
bc7f75fa
AK
2134 rdba = rx_ring->dma;
2135 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2136 ew32(RDBAH, (rdba >> 32));
2137 ew32(RDLEN, rdlen);
2138 ew32(RDH, 0);
2139 ew32(RDT, 0);
2140 rx_ring->head = E1000_RDH;
2141 rx_ring->tail = E1000_RDT;
2142
2143 /* Enable Receive Checksum Offload for TCP and UDP */
2144 rxcsum = er32(RXCSUM);
2145 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2146 rxcsum |= E1000_RXCSUM_TUOFL;
2147
ad68076e
BA
2148 /*
2149 * IPv4 payload checksum for UDP fragments must be
2150 * used in conjunction with packet-split.
2151 */
bc7f75fa
AK
2152 if (adapter->rx_ps_pages)
2153 rxcsum |= E1000_RXCSUM_IPPCSE;
2154 } else {
2155 rxcsum &= ~E1000_RXCSUM_TUOFL;
2156 /* no need to clear IPPCSE as it defaults to 0 */
2157 }
2158 ew32(RXCSUM, rxcsum);
2159
ad68076e
BA
2160 /*
2161 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2162 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2163 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2164 */
bc7f75fa 2165 if ((adapter->flags & FLAG_HAS_ERT) &&
97ac8cae
BA
2166 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2167 u32 rxdctl = er32(RXDCTL(0));
2168 ew32(RXDCTL(0), rxdctl | 0x3);
2169 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2170 /*
2171 * With jumbo frames and early-receive enabled, excessive
2172 * C4->C2 latencies result in dropped transactions.
2173 */
2174 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2175 e1000e_driver_name, 55);
2176 } else {
2177 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2178 e1000e_driver_name,
2179 PM_QOS_DEFAULT_VALUE);
2180 }
bc7f75fa
AK
2181
2182 /* Enable Receives */
2183 ew32(RCTL, rctl);
2184}
2185
2186/**
e2de3eb6 2187 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2188 * @hw: pointer to the HW structure
2189 * @mc_addr_list: array of multicast addresses to program
2190 * @mc_addr_count: number of multicast addresses to program
2191 * @rar_used_count: the first RAR register free to program
2192 * @rar_count: total number of supported Receive Address Registers
2193 *
2194 * Updates the Receive Address Registers and Multicast Table Array.
2195 * The caller must have a packed mc_addr_list of multicast addresses.
2196 * The parameter rar_count will usually be hw->mac.rar_entry_count
2197 * unless there are workarounds that change this. Currently no func pointer
2198 * exists and all implementations are handled in the generic version of this
2199 * function.
2200 **/
e2de3eb6
JK
2201static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2202 u32 mc_addr_count, u32 rar_used_count,
2203 u32 rar_count)
bc7f75fa 2204{
e2de3eb6 2205 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
2206 rar_used_count, rar_count);
2207}
2208
2209/**
2210 * e1000_set_multi - Multicast and Promiscuous mode set
2211 * @netdev: network interface device structure
2212 *
2213 * The set_multi entry point is called whenever the multicast address
2214 * list or the network interface flags are updated. This routine is
2215 * responsible for configuring the hardware for proper multicast,
2216 * promiscuous mode, and all-multi behavior.
2217 **/
2218static void e1000_set_multi(struct net_device *netdev)
2219{
2220 struct e1000_adapter *adapter = netdev_priv(netdev);
2221 struct e1000_hw *hw = &adapter->hw;
2222 struct e1000_mac_info *mac = &hw->mac;
2223 struct dev_mc_list *mc_ptr;
2224 u8 *mta_list;
2225 u32 rctl;
2226 int i;
2227
2228 /* Check for Promiscuous and All Multicast modes */
2229
2230 rctl = er32(RCTL);
2231
2232 if (netdev->flags & IFF_PROMISC) {
2233 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2234 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2235 } else {
746b9f02
PM
2236 if (netdev->flags & IFF_ALLMULTI) {
2237 rctl |= E1000_RCTL_MPE;
2238 rctl &= ~E1000_RCTL_UPE;
2239 } else {
2240 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2241 }
2242 if (adapter->vlgrp && adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2243 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2244 }
2245
2246 ew32(RCTL, rctl);
2247
2248 if (netdev->mc_count) {
2249 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2250 if (!mta_list)
2251 return;
2252
2253 /* prepare a packed array of only addresses. */
2254 mc_ptr = netdev->mc_list;
2255
2256 for (i = 0; i < netdev->mc_count; i++) {
2257 if (!mc_ptr)
2258 break;
2259 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2260 ETH_ALEN);
2261 mc_ptr = mc_ptr->next;
2262 }
2263
e2de3eb6 2264 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
2265 mac->rar_entry_count);
2266 kfree(mta_list);
2267 } else {
2268 /*
2269 * if we're called from probe, we might not have
2270 * anything to do here, so clear out the list
2271 */
e2de3eb6 2272 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
2273 }
2274}
2275
2276/**
ad68076e 2277 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2278 * @adapter: private board structure
2279 **/
2280static void e1000_configure(struct e1000_adapter *adapter)
2281{
2282 e1000_set_multi(adapter->netdev);
2283
2284 e1000_restore_vlan(adapter);
2285 e1000_init_manageability(adapter);
2286
2287 e1000_configure_tx(adapter);
2288 e1000_setup_rctl(adapter);
2289 e1000_configure_rx(adapter);
ad68076e 2290 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2291}
2292
2293/**
2294 * e1000e_power_up_phy - restore link in case the phy was powered down
2295 * @adapter: address of board private structure
2296 *
2297 * The phy may be powered down to save power and turn off link when the
2298 * driver is unloaded and wake on lan is not enabled (among others)
2299 * *** this routine MUST be followed by a call to e1000e_reset ***
2300 **/
2301void e1000e_power_up_phy(struct e1000_adapter *adapter)
2302{
2303 u16 mii_reg = 0;
2304
2305 /* Just clear the power down bit to wake the phy back up */
318a94d6 2306 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2307 /*
2308 * According to the manual, the phy will retain its
2309 * settings across a power-down/up cycle
2310 */
bc7f75fa
AK
2311 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2312 mii_reg &= ~MII_CR_POWER_DOWN;
2313 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2314 }
2315
2316 adapter->hw.mac.ops.setup_link(&adapter->hw);
2317}
2318
2319/**
2320 * e1000_power_down_phy - Power down the PHY
2321 *
2322 * Power down the PHY so no link is implied when interface is down
2323 * The PHY cannot be powered down is management or WoL is active
2324 */
2325static void e1000_power_down_phy(struct e1000_adapter *adapter)
2326{
2327 struct e1000_hw *hw = &adapter->hw;
2328 u16 mii_reg;
2329
2330 /* WoL is enabled */
23b66e2b 2331 if (adapter->wol)
bc7f75fa
AK
2332 return;
2333
2334 /* non-copper PHY? */
318a94d6 2335 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2336 return;
2337
2338 /* reset is blocked because of a SoL/IDER session */
ad68076e 2339 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2340 return;
2341
489815ce 2342 /* manageability (AMT) is enabled */
bc7f75fa
AK
2343 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2344 return;
2345
2346 /* power down the PHY */
2347 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2348 mii_reg |= MII_CR_POWER_DOWN;
2349 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2350 mdelay(1);
2351}
2352
2353/**
2354 * e1000e_reset - bring the hardware into a known good state
2355 *
2356 * This function boots the hardware and enables some settings that
2357 * require a configuration cycle of the hardware - those cannot be
2358 * set/changed during runtime. After reset the device needs to be
ad68076e 2359 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2360 */
2361void e1000e_reset(struct e1000_adapter *adapter)
2362{
2363 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2364 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2365 struct e1000_hw *hw = &adapter->hw;
2366 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2367 u32 pba = adapter->pba;
bc7f75fa
AK
2368 u16 hwm;
2369
ad68076e 2370 /* reset Packet Buffer Allocation to default */
318a94d6 2371 ew32(PBA, pba);
df762464 2372
318a94d6 2373 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2374 /*
2375 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2376 * large enough to accommodate two full transmit packets,
2377 * rounded up to the next 1KB and expressed in KB. Likewise,
2378 * the Rx FIFO should be large enough to accommodate at least
2379 * one full receive packet and is similarly rounded up and
ad68076e
BA
2380 * expressed in KB.
2381 */
df762464 2382 pba = er32(PBA);
bc7f75fa 2383 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2384 tx_space = pba >> 16;
bc7f75fa 2385 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2386 pba &= 0xffff;
ad68076e
BA
2387 /*
2388 * the Tx fifo also stores 16 bytes of information about the tx
2389 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2390 */
2391 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2392 sizeof(struct e1000_tx_desc) -
2393 ETH_FCS_LEN) * 2;
2394 min_tx_space = ALIGN(min_tx_space, 1024);
2395 min_tx_space >>= 10;
2396 /* software strips receive CRC, so leave room for it */
318a94d6 2397 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2398 min_rx_space = ALIGN(min_rx_space, 1024);
2399 min_rx_space >>= 10;
2400
ad68076e
BA
2401 /*
2402 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2403 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2404 * allocation, take space away from current Rx allocation
2405 */
df762464
AK
2406 if ((tx_space < min_tx_space) &&
2407 ((min_tx_space - tx_space) < pba)) {
2408 pba -= min_tx_space - tx_space;
bc7f75fa 2409
ad68076e
BA
2410 /*
2411 * if short on Rx space, Rx wins and must trump tx
2412 * adjustment or use Early Receive if available
2413 */
df762464 2414 if ((pba < min_rx_space) &&
bc7f75fa
AK
2415 (!(adapter->flags & FLAG_HAS_ERT)))
2416 /* ERT enabled in e1000_configure_rx */
df762464 2417 pba = min_rx_space;
bc7f75fa 2418 }
df762464
AK
2419
2420 ew32(PBA, pba);
bc7f75fa
AK
2421 }
2422
bc7f75fa 2423
ad68076e
BA
2424 /*
2425 * flow control settings
2426 *
2427 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2428 * (or the size used for early receive) above it in the Rx FIFO.
2429 * Set it to the lower of:
2430 * - 90% of the Rx FIFO size, and
2431 * - the full Rx FIFO size minus the early receive size (for parts
2432 * with ERT support assuming ERT set to E1000_ERT_2048), or
ad68076e
BA
2433 * - the full Rx FIFO size minus one full frame
2434 */
bc7f75fa 2435 if (adapter->flags & FLAG_HAS_ERT)
318a94d6
JK
2436 hwm = min(((pba << 10) * 9 / 10),
2437 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2438 else
318a94d6
JK
2439 hwm = min(((pba << 10) * 9 / 10),
2440 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2441
318a94d6
JK
2442 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2443 fc->low_water = fc->high_water - 8;
bc7f75fa
AK
2444
2445 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2446 fc->pause_time = 0xFFFF;
bc7f75fa 2447 else
318a94d6
JK
2448 fc->pause_time = E1000_FC_PAUSE_TIME;
2449 fc->send_xon = 1;
2450 fc->type = fc->original_type;
bc7f75fa
AK
2451
2452 /* Allow time for pending master requests to run */
2453 mac->ops.reset_hw(hw);
97ac8cae
BA
2454
2455 /*
2456 * For parts with AMT enabled, let the firmware know
2457 * that the network interface is in control
2458 */
2459 if ((adapter->flags & FLAG_HAS_AMT) && e1000e_check_mng_mode(hw))
2460 e1000_get_hw_control(adapter);
2461
bc7f75fa
AK
2462 ew32(WUC, 0);
2463
2464 if (mac->ops.init_hw(hw))
2465 ndev_err(adapter->netdev, "Hardware Error\n");
2466
2467 e1000_update_mng_vlan(adapter);
2468
2469 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2470 ew32(VET, ETH_P_8021Q);
2471
2472 e1000e_reset_adaptive(hw);
2473 e1000_get_phy_info(hw);
2474
2475 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2476 u16 phy_data = 0;
ad68076e
BA
2477 /*
2478 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2479 * the return value of this function because there is nothing
ad68076e
BA
2480 * different we would do if it failed
2481 */
bc7f75fa
AK
2482 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2483 phy_data &= ~IGP02E1000_PM_SPD;
2484 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2485 }
bc7f75fa
AK
2486}
2487
2488int e1000e_up(struct e1000_adapter *adapter)
2489{
2490 struct e1000_hw *hw = &adapter->hw;
2491
2492 /* hardware has been reset, we need to reload some things */
2493 e1000_configure(adapter);
2494
2495 clear_bit(__E1000_DOWN, &adapter->state);
2496
2497 napi_enable(&adapter->napi);
2498 e1000_irq_enable(adapter);
2499
2500 /* fire a link change interrupt to start the watchdog */
2501 ew32(ICS, E1000_ICS_LSC);
2502 return 0;
2503}
2504
2505void e1000e_down(struct e1000_adapter *adapter)
2506{
2507 struct net_device *netdev = adapter->netdev;
2508 struct e1000_hw *hw = &adapter->hw;
2509 u32 tctl, rctl;
2510
ad68076e
BA
2511 /*
2512 * signal that we're down so the interrupt handler does not
2513 * reschedule our watchdog timer
2514 */
bc7f75fa
AK
2515 set_bit(__E1000_DOWN, &adapter->state);
2516
2517 /* disable receives in the hardware */
2518 rctl = er32(RCTL);
2519 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2520 /* flush and sleep below */
2521
2522 netif_stop_queue(netdev);
2523
2524 /* disable transmits in the hardware */
2525 tctl = er32(TCTL);
2526 tctl &= ~E1000_TCTL_EN;
2527 ew32(TCTL, tctl);
2528 /* flush both disables and wait for them to finish */
2529 e1e_flush();
2530 msleep(10);
2531
2532 napi_disable(&adapter->napi);
2533 e1000_irq_disable(adapter);
2534
2535 del_timer_sync(&adapter->watchdog_timer);
2536 del_timer_sync(&adapter->phy_info_timer);
2537
2538 netdev->tx_queue_len = adapter->tx_queue_len;
2539 netif_carrier_off(netdev);
2540 adapter->link_speed = 0;
2541 adapter->link_duplex = 0;
2542
52cc3086
JK
2543 if (!pci_channel_offline(adapter->pdev))
2544 e1000e_reset(adapter);
bc7f75fa
AK
2545 e1000_clean_tx_ring(adapter);
2546 e1000_clean_rx_ring(adapter);
2547
2548 /*
2549 * TODO: for power management, we could drop the link and
2550 * pci_disable_device here.
2551 */
2552}
2553
2554void e1000e_reinit_locked(struct e1000_adapter *adapter)
2555{
2556 might_sleep();
2557 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2558 msleep(1);
2559 e1000e_down(adapter);
2560 e1000e_up(adapter);
2561 clear_bit(__E1000_RESETTING, &adapter->state);
2562}
2563
2564/**
2565 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2566 * @adapter: board private structure to initialize
2567 *
2568 * e1000_sw_init initializes the Adapter private data structure.
2569 * Fields are initialized based on PCI device information and
2570 * OS network device settings (MTU size).
2571 **/
2572static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2573{
bc7f75fa
AK
2574 struct net_device *netdev = adapter->netdev;
2575
2576 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2577 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2578 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2579 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa
AK
2580
2581 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2582 if (!adapter->tx_ring)
2583 goto err;
2584
2585 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2586 if (!adapter->rx_ring)
2587 goto err;
2588
2589 spin_lock_init(&adapter->tx_queue_lock);
2590
2591 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2592 e1000_irq_disable(adapter);
2593
2594 spin_lock_init(&adapter->stats_lock);
2595
2596 set_bit(__E1000_DOWN, &adapter->state);
2597 return 0;
2598
2599err:
2600 ndev_err(netdev, "Unable to allocate memory for queues\n");
2601 kfree(adapter->rx_ring);
2602 kfree(adapter->tx_ring);
2603 return -ENOMEM;
2604}
2605
2606/**
2607 * e1000_open - Called when a network interface is made active
2608 * @netdev: network interface device structure
2609 *
2610 * Returns 0 on success, negative value on failure
2611 *
2612 * The open entry point is called when a network interface is made
2613 * active by the system (IFF_UP). At this point all resources needed
2614 * for transmit and receive operations are allocated, the interrupt
2615 * handler is registered with the OS, the watchdog timer is started,
2616 * and the stack is notified that the interface is ready.
2617 **/
2618static int e1000_open(struct net_device *netdev)
2619{
2620 struct e1000_adapter *adapter = netdev_priv(netdev);
2621 struct e1000_hw *hw = &adapter->hw;
2622 int err;
2623
2624 /* disallow open during test */
2625 if (test_bit(__E1000_TESTING, &adapter->state))
2626 return -EBUSY;
2627
2628 /* allocate transmit descriptors */
2629 err = e1000e_setup_tx_resources(adapter);
2630 if (err)
2631 goto err_setup_tx;
2632
2633 /* allocate receive descriptors */
2634 err = e1000e_setup_rx_resources(adapter);
2635 if (err)
2636 goto err_setup_rx;
2637
2638 e1000e_power_up_phy(adapter);
2639
2640 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2641 if ((adapter->hw.mng_cookie.status &
2642 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2643 e1000_update_mng_vlan(adapter);
2644
ad68076e
BA
2645 /*
2646 * If AMT is enabled, let the firmware know that the network
2647 * interface is now open
2648 */
bc7f75fa
AK
2649 if ((adapter->flags & FLAG_HAS_AMT) &&
2650 e1000e_check_mng_mode(&adapter->hw))
2651 e1000_get_hw_control(adapter);
2652
ad68076e
BA
2653 /*
2654 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
2655 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2656 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
2657 * clean_rx handler before we do so.
2658 */
bc7f75fa
AK
2659 e1000_configure(adapter);
2660
2661 err = e1000_request_irq(adapter);
2662 if (err)
2663 goto err_req_irq;
2664
2665 /* From here on the code is the same as e1000e_up() */
2666 clear_bit(__E1000_DOWN, &adapter->state);
2667
2668 napi_enable(&adapter->napi);
2669
2670 e1000_irq_enable(adapter);
2671
2672 /* fire a link status change interrupt to start the watchdog */
2673 ew32(ICS, E1000_ICS_LSC);
2674
2675 return 0;
2676
2677err_req_irq:
2678 e1000_release_hw_control(adapter);
2679 e1000_power_down_phy(adapter);
2680 e1000e_free_rx_resources(adapter);
2681err_setup_rx:
2682 e1000e_free_tx_resources(adapter);
2683err_setup_tx:
2684 e1000e_reset(adapter);
2685
2686 return err;
2687}
2688
2689/**
2690 * e1000_close - Disables a network interface
2691 * @netdev: network interface device structure
2692 *
2693 * Returns 0, this is not allowed to fail
2694 *
2695 * The close entry point is called when an interface is de-activated
2696 * by the OS. The hardware is still under the drivers control, but
2697 * needs to be disabled. A global MAC reset is issued to stop the
2698 * hardware, and all transmit and receive resources are freed.
2699 **/
2700static int e1000_close(struct net_device *netdev)
2701{
2702 struct e1000_adapter *adapter = netdev_priv(netdev);
2703
2704 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2705 e1000e_down(adapter);
2706 e1000_power_down_phy(adapter);
2707 e1000_free_irq(adapter);
2708
2709 e1000e_free_tx_resources(adapter);
2710 e1000e_free_rx_resources(adapter);
2711
ad68076e
BA
2712 /*
2713 * kill manageability vlan ID if supported, but not if a vlan with
2714 * the same ID is registered on the host OS (let 8021q kill it)
2715 */
bc7f75fa
AK
2716 if ((adapter->hw.mng_cookie.status &
2717 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2718 !(adapter->vlgrp &&
2719 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2720 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2721
ad68076e
BA
2722 /*
2723 * If AMT is enabled, let the firmware know that the network
2724 * interface is now closed
2725 */
bc7f75fa
AK
2726 if ((adapter->flags & FLAG_HAS_AMT) &&
2727 e1000e_check_mng_mode(&adapter->hw))
2728 e1000_release_hw_control(adapter);
2729
2730 return 0;
2731}
2732/**
2733 * e1000_set_mac - Change the Ethernet Address of the NIC
2734 * @netdev: network interface device structure
2735 * @p: pointer to an address structure
2736 *
2737 * Returns 0 on success, negative on failure
2738 **/
2739static int e1000_set_mac(struct net_device *netdev, void *p)
2740{
2741 struct e1000_adapter *adapter = netdev_priv(netdev);
2742 struct sockaddr *addr = p;
2743
2744 if (!is_valid_ether_addr(addr->sa_data))
2745 return -EADDRNOTAVAIL;
2746
2747 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2748 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2749
2750 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2751
2752 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2753 /* activate the work around */
2754 e1000e_set_laa_state_82571(&adapter->hw, 1);
2755
ad68076e
BA
2756 /*
2757 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
2758 * between the time RAR[0] gets clobbered and the time it
2759 * gets fixed (in e1000_watchdog), the actual LAA is in one
2760 * of the RARs and no incoming packets directed to this port
2761 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
2762 * RAR[14]
2763 */
bc7f75fa
AK
2764 e1000e_rar_set(&adapter->hw,
2765 adapter->hw.mac.addr,
2766 adapter->hw.mac.rar_entry_count - 1);
2767 }
2768
2769 return 0;
2770}
2771
ad68076e
BA
2772/*
2773 * Need to wait a few seconds after link up to get diagnostic information from
2774 * the phy
2775 */
bc7f75fa
AK
2776static void e1000_update_phy_info(unsigned long data)
2777{
2778 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2779 e1000_get_phy_info(&adapter->hw);
2780}
2781
2782/**
2783 * e1000e_update_stats - Update the board statistics counters
2784 * @adapter: board private structure
2785 **/
2786void e1000e_update_stats(struct e1000_adapter *adapter)
2787{
2788 struct e1000_hw *hw = &adapter->hw;
2789 struct pci_dev *pdev = adapter->pdev;
2790 unsigned long irq_flags;
2791 u16 phy_tmp;
2792
2793#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2794
2795 /*
2796 * Prevent stats update while adapter is being reset, or if the pci
2797 * connection is down.
2798 */
2799 if (adapter->link_speed == 0)
2800 return;
2801 if (pci_channel_offline(pdev))
2802 return;
2803
2804 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2805
ad68076e
BA
2806 /*
2807 * these counters are modified from e1000_adjust_tbi_stats,
bc7f75fa
AK
2808 * called from the interrupt context, so they must only
2809 * be written while holding adapter->stats_lock
2810 */
2811
2812 adapter->stats.crcerrs += er32(CRCERRS);
2813 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
2814 adapter->stats.gorc += er32(GORCL);
2815 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
2816 adapter->stats.bprc += er32(BPRC);
2817 adapter->stats.mprc += er32(MPRC);
2818 adapter->stats.roc += er32(ROC);
2819
bc7f75fa
AK
2820 adapter->stats.mpc += er32(MPC);
2821 adapter->stats.scc += er32(SCC);
2822 adapter->stats.ecol += er32(ECOL);
2823 adapter->stats.mcc += er32(MCC);
2824 adapter->stats.latecol += er32(LATECOL);
2825 adapter->stats.dc += er32(DC);
bc7f75fa
AK
2826 adapter->stats.xonrxc += er32(XONRXC);
2827 adapter->stats.xontxc += er32(XONTXC);
2828 adapter->stats.xoffrxc += er32(XOFFRXC);
2829 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 2830 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
2831 adapter->stats.gotc += er32(GOTCL);
2832 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
2833 adapter->stats.rnbc += er32(RNBC);
2834 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
2835
2836 adapter->stats.mptc += er32(MPTC);
2837 adapter->stats.bptc += er32(BPTC);
2838
2839 /* used for adaptive IFS */
2840
2841 hw->mac.tx_packet_delta = er32(TPT);
2842 adapter->stats.tpt += hw->mac.tx_packet_delta;
2843 hw->mac.collision_delta = er32(COLC);
2844 adapter->stats.colc += hw->mac.collision_delta;
2845
2846 adapter->stats.algnerrc += er32(ALGNERRC);
2847 adapter->stats.rxerrc += er32(RXERRC);
2848 adapter->stats.tncrs += er32(TNCRS);
2849 adapter->stats.cexterr += er32(CEXTERR);
2850 adapter->stats.tsctc += er32(TSCTC);
2851 adapter->stats.tsctfc += er32(TSCTFC);
2852
bc7f75fa 2853 /* Fill out the OS statistics structure */
bc7f75fa
AK
2854 adapter->net_stats.multicast = adapter->stats.mprc;
2855 adapter->net_stats.collisions = adapter->stats.colc;
2856
2857 /* Rx Errors */
2858
ad68076e
BA
2859 /*
2860 * RLEC on some newer hardware can be incorrect so build
2861 * our own version based on RUC and ROC
2862 */
bc7f75fa
AK
2863 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2864 adapter->stats.crcerrs + adapter->stats.algnerrc +
2865 adapter->stats.ruc + adapter->stats.roc +
2866 adapter->stats.cexterr;
2867 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2868 adapter->stats.roc;
2869 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2870 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2871 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2872
2873 /* Tx Errors */
2874 adapter->net_stats.tx_errors = adapter->stats.ecol +
2875 adapter->stats.latecol;
2876 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2877 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2878 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2879
2880 /* Tx Dropped needs to be maintained elsewhere */
2881
2882 /* Phy Stats */
318a94d6 2883 if (hw->phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
2884 if ((adapter->link_speed == SPEED_1000) &&
2885 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2886 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2887 adapter->phy_stats.idle_errors += phy_tmp;
2888 }
2889 }
2890
2891 /* Management Stats */
2892 adapter->stats.mgptc += er32(MGTPTC);
2893 adapter->stats.mgprc += er32(MGTPRC);
2894 adapter->stats.mgpdc += er32(MGTPDC);
2895
2896 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2897}
2898
7c25769f
BA
2899/**
2900 * e1000_phy_read_status - Update the PHY register status snapshot
2901 * @adapter: board private structure
2902 **/
2903static void e1000_phy_read_status(struct e1000_adapter *adapter)
2904{
2905 struct e1000_hw *hw = &adapter->hw;
2906 struct e1000_phy_regs *phy = &adapter->phy_regs;
2907 int ret_val;
2908 unsigned long irq_flags;
2909
2910
2911 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2912
2913 if ((er32(STATUS) & E1000_STATUS_LU) &&
2914 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
2915 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
2916 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
2917 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
2918 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
2919 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
2920 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
2921 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
2922 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
2923 if (ret_val)
2924 ndev_warn(adapter->netdev,
2925 "Error reading PHY register\n");
2926 } else {
2927 /*
2928 * Do not read PHY registers if link is not up
2929 * Set values to typical power-on defaults
2930 */
2931 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
2932 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
2933 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
2934 BMSR_ERCAP);
2935 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
2936 ADVERTISE_ALL | ADVERTISE_CSMA);
2937 phy->lpa = 0;
2938 phy->expansion = EXPANSION_ENABLENPAGE;
2939 phy->ctrl1000 = ADVERTISE_1000FULL;
2940 phy->stat1000 = 0;
2941 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
2942 }
2943
2944 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2945}
2946
bc7f75fa
AK
2947static void e1000_print_link_info(struct e1000_adapter *adapter)
2948{
bc7f75fa 2949 struct e1000_hw *hw = &adapter->hw;
318a94d6 2950 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
2951 u32 ctrl = er32(CTRL);
2952
2953 ndev_info(netdev,
2954 "Link is Up %d Mbps %s, Flow Control: %s\n",
2955 adapter->link_speed,
2956 (adapter->link_duplex == FULL_DUPLEX) ?
2957 "Full Duplex" : "Half Duplex",
2958 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2959 "RX/TX" :
2960 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2961 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2962}
2963
318a94d6
JK
2964static bool e1000_has_link(struct e1000_adapter *adapter)
2965{
2966 struct e1000_hw *hw = &adapter->hw;
2967 bool link_active = 0;
2968 s32 ret_val = 0;
2969
2970 /*
2971 * get_link_status is set on LSC (link status) interrupt or
2972 * Rx sequence error interrupt. get_link_status will stay
2973 * false until the check_for_link establishes link
2974 * for copper adapters ONLY
2975 */
2976 switch (hw->phy.media_type) {
2977 case e1000_media_type_copper:
2978 if (hw->mac.get_link_status) {
2979 ret_val = hw->mac.ops.check_for_link(hw);
2980 link_active = !hw->mac.get_link_status;
2981 } else {
2982 link_active = 1;
2983 }
2984 break;
2985 case e1000_media_type_fiber:
2986 ret_val = hw->mac.ops.check_for_link(hw);
2987 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2988 break;
2989 case e1000_media_type_internal_serdes:
2990 ret_val = hw->mac.ops.check_for_link(hw);
2991 link_active = adapter->hw.mac.serdes_has_link;
2992 break;
2993 default:
2994 case e1000_media_type_unknown:
2995 break;
2996 }
2997
2998 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2999 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3000 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3001 ndev_info(adapter->netdev,
3002 "Gigabit has been disabled, downgrading speed\n");
3003 }
3004
3005 return link_active;
3006}
3007
3008static void e1000e_enable_receives(struct e1000_adapter *adapter)
3009{
3010 /* make sure the receive unit is started */
3011 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3012 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3013 struct e1000_hw *hw = &adapter->hw;
3014 u32 rctl = er32(RCTL);
3015 ew32(RCTL, rctl | E1000_RCTL_EN);
3016 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3017 }
3018}
3019
bc7f75fa
AK
3020/**
3021 * e1000_watchdog - Timer Call-back
3022 * @data: pointer to adapter cast into an unsigned long
3023 **/
3024static void e1000_watchdog(unsigned long data)
3025{
3026 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3027
3028 /* Do the rest outside of interrupt context */
3029 schedule_work(&adapter->watchdog_task);
3030
3031 /* TODO: make this use queue_delayed_work() */
3032}
3033
3034static void e1000_watchdog_task(struct work_struct *work)
3035{
3036 struct e1000_adapter *adapter = container_of(work,
3037 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3038 struct net_device *netdev = adapter->netdev;
3039 struct e1000_mac_info *mac = &adapter->hw.mac;
3040 struct e1000_ring *tx_ring = adapter->tx_ring;
3041 struct e1000_hw *hw = &adapter->hw;
3042 u32 link, tctl;
bc7f75fa
AK
3043 int tx_pending = 0;
3044
318a94d6
JK
3045 link = e1000_has_link(adapter);
3046 if ((netif_carrier_ok(netdev)) && link) {
3047 e1000e_enable_receives(adapter);
bc7f75fa 3048 goto link_up;
bc7f75fa
AK
3049 }
3050
3051 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3052 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3053 e1000_update_mng_vlan(adapter);
3054
bc7f75fa
AK
3055 if (link) {
3056 if (!netif_carrier_ok(netdev)) {
3057 bool txb2b = 1;
318a94d6 3058 /* update snapshot of PHY registers on LSC */
7c25769f 3059 e1000_phy_read_status(adapter);
bc7f75fa
AK
3060 mac->ops.get_link_up_info(&adapter->hw,
3061 &adapter->link_speed,
3062 &adapter->link_duplex);
3063 e1000_print_link_info(adapter);
ad68076e
BA
3064 /*
3065 * tweak tx_queue_len according to speed/duplex
3066 * and adjust the timeout factor
3067 */
bc7f75fa
AK
3068 netdev->tx_queue_len = adapter->tx_queue_len;
3069 adapter->tx_timeout_factor = 1;
3070 switch (adapter->link_speed) {
3071 case SPEED_10:
3072 txb2b = 0;
3073 netdev->tx_queue_len = 10;
3074 adapter->tx_timeout_factor = 14;
3075 break;
3076 case SPEED_100:
3077 txb2b = 0;
3078 netdev->tx_queue_len = 100;
3079 /* maybe add some timeout factor ? */
3080 break;
3081 }
3082
ad68076e
BA
3083 /*
3084 * workaround: re-program speed mode bit after
3085 * link-up event
3086 */
bc7f75fa
AK
3087 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3088 !txb2b) {
3089 u32 tarc0;
e9ec2c0f 3090 tarc0 = er32(TARC(0));
bc7f75fa 3091 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3092 ew32(TARC(0), tarc0);
bc7f75fa
AK
3093 }
3094
ad68076e
BA
3095 /*
3096 * disable TSO for pcie and 10/100 speeds, to avoid
3097 * some hardware issues
3098 */
bc7f75fa
AK
3099 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3100 switch (adapter->link_speed) {
3101 case SPEED_10:
3102 case SPEED_100:
3103 ndev_info(netdev,
3104 "10/100 speed: disabling TSO\n");
3105 netdev->features &= ~NETIF_F_TSO;
3106 netdev->features &= ~NETIF_F_TSO6;
3107 break;
3108 case SPEED_1000:
3109 netdev->features |= NETIF_F_TSO;
3110 netdev->features |= NETIF_F_TSO6;
3111 break;
3112 default:
3113 /* oops */
3114 break;
3115 }
3116 }
3117
ad68076e
BA
3118 /*
3119 * enable transmits in the hardware, need to do this
3120 * after setting TARC(0)
3121 */
bc7f75fa
AK
3122 tctl = er32(TCTL);
3123 tctl |= E1000_TCTL_EN;
3124 ew32(TCTL, tctl);
3125
3126 netif_carrier_on(netdev);
3127 netif_wake_queue(netdev);
3128
3129 if (!test_bit(__E1000_DOWN, &adapter->state))
3130 mod_timer(&adapter->phy_info_timer,
3131 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3132 }
3133 } else {
3134 if (netif_carrier_ok(netdev)) {
3135 adapter->link_speed = 0;
3136 adapter->link_duplex = 0;
3137 ndev_info(netdev, "Link is Down\n");
3138 netif_carrier_off(netdev);
3139 netif_stop_queue(netdev);
3140 if (!test_bit(__E1000_DOWN, &adapter->state))
3141 mod_timer(&adapter->phy_info_timer,
3142 round_jiffies(jiffies + 2 * HZ));
3143
3144 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3145 schedule_work(&adapter->reset_task);
3146 }
3147 }
3148
3149link_up:
3150 e1000e_update_stats(adapter);
3151
3152 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3153 adapter->tpt_old = adapter->stats.tpt;
3154 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3155 adapter->colc_old = adapter->stats.colc;
3156
7c25769f
BA
3157 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3158 adapter->gorc_old = adapter->stats.gorc;
3159 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3160 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3161
3162 e1000e_update_adaptive(&adapter->hw);
3163
3164 if (!netif_carrier_ok(netdev)) {
3165 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3166 tx_ring->count);
3167 if (tx_pending) {
ad68076e
BA
3168 /*
3169 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3170 * but we've got queued Tx work that's never going
3171 * to get done, so reset controller to flush Tx.
ad68076e
BA
3172 * (Do the reset outside of interrupt context).
3173 */
bc7f75fa
AK
3174 adapter->tx_timeout_count++;
3175 schedule_work(&adapter->reset_task);
3176 }
3177 }
3178
ad68076e 3179 /* Cause software interrupt to ensure Rx ring is cleaned */
bc7f75fa
AK
3180 ew32(ICS, E1000_ICS_RXDMT0);
3181
3182 /* Force detection of hung controller every watchdog period */
3183 adapter->detect_tx_hung = 1;
3184
ad68076e
BA
3185 /*
3186 * With 82571 controllers, LAA may be overwritten due to controller
3187 * reset from the other port. Set the appropriate LAA in RAR[0]
3188 */
bc7f75fa
AK
3189 if (e1000e_get_laa_state_82571(hw))
3190 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3191
3192 /* Reset the timer */
3193 if (!test_bit(__E1000_DOWN, &adapter->state))
3194 mod_timer(&adapter->watchdog_timer,
3195 round_jiffies(jiffies + 2 * HZ));
3196}
3197
3198#define E1000_TX_FLAGS_CSUM 0x00000001
3199#define E1000_TX_FLAGS_VLAN 0x00000002
3200#define E1000_TX_FLAGS_TSO 0x00000004
3201#define E1000_TX_FLAGS_IPV4 0x00000008
3202#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3203#define E1000_TX_FLAGS_VLAN_SHIFT 16
3204
3205static int e1000_tso(struct e1000_adapter *adapter,
3206 struct sk_buff *skb)
3207{
3208 struct e1000_ring *tx_ring = adapter->tx_ring;
3209 struct e1000_context_desc *context_desc;
3210 struct e1000_buffer *buffer_info;
3211 unsigned int i;
3212 u32 cmd_length = 0;
3213 u16 ipcse = 0, tucse, mss;
3214 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3215 int err;
3216
3217 if (skb_is_gso(skb)) {
3218 if (skb_header_cloned(skb)) {
3219 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3220 if (err)
3221 return err;
3222 }
3223
3224 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3225 mss = skb_shinfo(skb)->gso_size;
3226 if (skb->protocol == htons(ETH_P_IP)) {
3227 struct iphdr *iph = ip_hdr(skb);
3228 iph->tot_len = 0;
3229 iph->check = 0;
3230 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3231 iph->daddr, 0,
3232 IPPROTO_TCP,
3233 0);
3234 cmd_length = E1000_TXD_CMD_IP;
3235 ipcse = skb_transport_offset(skb) - 1;
3236 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3237 ipv6_hdr(skb)->payload_len = 0;
3238 tcp_hdr(skb)->check =
3239 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3240 &ipv6_hdr(skb)->daddr,
3241 0, IPPROTO_TCP, 0);
3242 ipcse = 0;
3243 }
3244 ipcss = skb_network_offset(skb);
3245 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3246 tucss = skb_transport_offset(skb);
3247 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3248 tucse = 0;
3249
3250 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3251 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3252
3253 i = tx_ring->next_to_use;
3254 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3255 buffer_info = &tx_ring->buffer_info[i];
3256
3257 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3258 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3259 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3260 context_desc->upper_setup.tcp_fields.tucss = tucss;
3261 context_desc->upper_setup.tcp_fields.tucso = tucso;
3262 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3263 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3264 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3265 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3266
3267 buffer_info->time_stamp = jiffies;
3268 buffer_info->next_to_watch = i;
3269
3270 i++;
3271 if (i == tx_ring->count)
3272 i = 0;
3273 tx_ring->next_to_use = i;
3274
3275 return 1;
3276 }
3277
3278 return 0;
3279}
3280
3281static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3282{
3283 struct e1000_ring *tx_ring = adapter->tx_ring;
3284 struct e1000_context_desc *context_desc;
3285 struct e1000_buffer *buffer_info;
3286 unsigned int i;
3287 u8 css;
3288
3289 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3290 css = skb_transport_offset(skb);
3291
3292 i = tx_ring->next_to_use;
3293 buffer_info = &tx_ring->buffer_info[i];
3294 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3295
3296 context_desc->lower_setup.ip_config = 0;
3297 context_desc->upper_setup.tcp_fields.tucss = css;
3298 context_desc->upper_setup.tcp_fields.tucso =
3299 css + skb->csum_offset;
3300 context_desc->upper_setup.tcp_fields.tucse = 0;
3301 context_desc->tcp_seg_setup.data = 0;
3302 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3303
3304 buffer_info->time_stamp = jiffies;
3305 buffer_info->next_to_watch = i;
3306
3307 i++;
3308 if (i == tx_ring->count)
3309 i = 0;
3310 tx_ring->next_to_use = i;
3311
3312 return 1;
3313 }
3314
3315 return 0;
3316}
3317
3318#define E1000_MAX_PER_TXD 8192
3319#define E1000_MAX_TXD_PWR 12
3320
3321static int e1000_tx_map(struct e1000_adapter *adapter,
3322 struct sk_buff *skb, unsigned int first,
3323 unsigned int max_per_txd, unsigned int nr_frags,
3324 unsigned int mss)
3325{
3326 struct e1000_ring *tx_ring = adapter->tx_ring;
3327 struct e1000_buffer *buffer_info;
3328 unsigned int len = skb->len - skb->data_len;
3329 unsigned int offset = 0, size, count = 0, i;
3330 unsigned int f;
3331
3332 i = tx_ring->next_to_use;
3333
3334 while (len) {
3335 buffer_info = &tx_ring->buffer_info[i];
3336 size = min(len, max_per_txd);
3337
3338 /* Workaround for premature desc write-backs
3339 * in TSO mode. Append 4-byte sentinel desc */
3340 if (mss && !nr_frags && size == len && size > 8)
3341 size -= 4;
3342
3343 buffer_info->length = size;
3344 /* set time_stamp *before* dma to help avoid a possible race */
3345 buffer_info->time_stamp = jiffies;
3346 buffer_info->dma =
3347 pci_map_single(adapter->pdev,
3348 skb->data + offset,
3349 size,
3350 PCI_DMA_TODEVICE);
3351 if (pci_dma_mapping_error(buffer_info->dma)) {
3352 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3353 adapter->tx_dma_failed++;
3354 return -1;
3355 }
3356 buffer_info->next_to_watch = i;
3357
3358 len -= size;
3359 offset += size;
3360 count++;
3361 i++;
3362 if (i == tx_ring->count)
3363 i = 0;
3364 }
3365
3366 for (f = 0; f < nr_frags; f++) {
3367 struct skb_frag_struct *frag;
3368
3369 frag = &skb_shinfo(skb)->frags[f];
3370 len = frag->size;
3371 offset = frag->page_offset;
3372
3373 while (len) {
3374 buffer_info = &tx_ring->buffer_info[i];
3375 size = min(len, max_per_txd);
3376 /* Workaround for premature desc write-backs
3377 * in TSO mode. Append 4-byte sentinel desc */
3378 if (mss && f == (nr_frags-1) && size == len && size > 8)
3379 size -= 4;
3380
3381 buffer_info->length = size;
3382 buffer_info->time_stamp = jiffies;
3383 buffer_info->dma =
3384 pci_map_page(adapter->pdev,
3385 frag->page,
3386 offset,
3387 size,
3388 PCI_DMA_TODEVICE);
3389 if (pci_dma_mapping_error(buffer_info->dma)) {
3390 dev_err(&adapter->pdev->dev,
3391 "TX DMA page map failed\n");
3392 adapter->tx_dma_failed++;
3393 return -1;
3394 }
3395
3396 buffer_info->next_to_watch = i;
3397
3398 len -= size;
3399 offset += size;
3400 count++;
3401
3402 i++;
3403 if (i == tx_ring->count)
3404 i = 0;
3405 }
3406 }
3407
3408 if (i == 0)
3409 i = tx_ring->count - 1;
3410 else
3411 i--;
3412
3413 tx_ring->buffer_info[i].skb = skb;
3414 tx_ring->buffer_info[first].next_to_watch = i;
3415
3416 return count;
3417}
3418
3419static void e1000_tx_queue(struct e1000_adapter *adapter,
3420 int tx_flags, int count)
3421{
3422 struct e1000_ring *tx_ring = adapter->tx_ring;
3423 struct e1000_tx_desc *tx_desc = NULL;
3424 struct e1000_buffer *buffer_info;
3425 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3426 unsigned int i;
3427
3428 if (tx_flags & E1000_TX_FLAGS_TSO) {
3429 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3430 E1000_TXD_CMD_TSE;
3431 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3432
3433 if (tx_flags & E1000_TX_FLAGS_IPV4)
3434 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3435 }
3436
3437 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3438 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3439 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3440 }
3441
3442 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3443 txd_lower |= E1000_TXD_CMD_VLE;
3444 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3445 }
3446
3447 i = tx_ring->next_to_use;
3448
3449 while (count--) {
3450 buffer_info = &tx_ring->buffer_info[i];
3451 tx_desc = E1000_TX_DESC(*tx_ring, i);
3452 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3453 tx_desc->lower.data =
3454 cpu_to_le32(txd_lower | buffer_info->length);
3455 tx_desc->upper.data = cpu_to_le32(txd_upper);
3456
3457 i++;
3458 if (i == tx_ring->count)
3459 i = 0;
3460 }
3461
3462 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3463
ad68076e
BA
3464 /*
3465 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3466 * know there are new descriptors to fetch. (Only
3467 * applicable for weak-ordered memory model archs,
ad68076e
BA
3468 * such as IA-64).
3469 */
bc7f75fa
AK
3470 wmb();
3471
3472 tx_ring->next_to_use = i;
3473 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3474 /*
3475 * we need this if more than one processor can write to our tail
3476 * at a time, it synchronizes IO on IA64/Altix systems
3477 */
bc7f75fa
AK
3478 mmiowb();
3479}
3480
3481#define MINIMUM_DHCP_PACKET_SIZE 282
3482static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3483 struct sk_buff *skb)
3484{
3485 struct e1000_hw *hw = &adapter->hw;
3486 u16 length, offset;
3487
3488 if (vlan_tx_tag_present(skb)) {
3489 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3490 && (adapter->hw.mng_cookie.status &
3491 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3492 return 0;
3493 }
3494
3495 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3496 return 0;
3497
3498 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3499 return 0;
3500
3501 {
3502 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3503 struct udphdr *udp;
3504
3505 if (ip->protocol != IPPROTO_UDP)
3506 return 0;
3507
3508 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3509 if (ntohs(udp->dest) != 67)
3510 return 0;
3511
3512 offset = (u8 *)udp + 8 - skb->data;
3513 length = skb->len - offset;
3514 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3515 }
3516
3517 return 0;
3518}
3519
3520static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3521{
3522 struct e1000_adapter *adapter = netdev_priv(netdev);
3523
3524 netif_stop_queue(netdev);
ad68076e
BA
3525 /*
3526 * Herbert's original patch had:
bc7f75fa 3527 * smp_mb__after_netif_stop_queue();
ad68076e
BA
3528 * but since that doesn't exist yet, just open code it.
3529 */
bc7f75fa
AK
3530 smp_mb();
3531
ad68076e
BA
3532 /*
3533 * We need to check again in a case another CPU has just
3534 * made room available.
3535 */
bc7f75fa
AK
3536 if (e1000_desc_unused(adapter->tx_ring) < size)
3537 return -EBUSY;
3538
3539 /* A reprieve! */
3540 netif_start_queue(netdev);
3541 ++adapter->restart_queue;
3542 return 0;
3543}
3544
3545static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3546{
3547 struct e1000_adapter *adapter = netdev_priv(netdev);
3548
3549 if (e1000_desc_unused(adapter->tx_ring) >= size)
3550 return 0;
3551 return __e1000_maybe_stop_tx(netdev, size);
3552}
3553
3554#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3555static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3556{
3557 struct e1000_adapter *adapter = netdev_priv(netdev);
3558 struct e1000_ring *tx_ring = adapter->tx_ring;
3559 unsigned int first;
3560 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3561 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3562 unsigned int tx_flags = 0;
4e6c709c 3563 unsigned int len = skb->len - skb->data_len;
bc7f75fa 3564 unsigned long irq_flags;
4e6c709c
AK
3565 unsigned int nr_frags;
3566 unsigned int mss;
bc7f75fa
AK
3567 int count = 0;
3568 int tso;
3569 unsigned int f;
bc7f75fa
AK
3570
3571 if (test_bit(__E1000_DOWN, &adapter->state)) {
3572 dev_kfree_skb_any(skb);
3573 return NETDEV_TX_OK;
3574 }
3575
3576 if (skb->len <= 0) {
3577 dev_kfree_skb_any(skb);
3578 return NETDEV_TX_OK;
3579 }
3580
3581 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
3582 /*
3583 * The controller does a simple calculation to
bc7f75fa
AK
3584 * make sure there is enough room in the FIFO before
3585 * initiating the DMA for each buffer. The calc is:
3586 * 4 = ceil(buffer len/mss). To make sure we don't
3587 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
3588 * drops.
3589 */
bc7f75fa
AK
3590 if (mss) {
3591 u8 hdr_len;
3592 max_per_txd = min(mss << 2, max_per_txd);
3593 max_txd_pwr = fls(max_per_txd) - 1;
3594
ad68076e
BA
3595 /*
3596 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3597 * points to just header, pull a few bytes of payload from
3598 * frags into skb->data
3599 */
bc7f75fa 3600 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
3601 /*
3602 * we do this workaround for ES2LAN, but it is un-necessary,
3603 * avoiding it could save a lot of cycles
3604 */
4e6c709c 3605 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
3606 unsigned int pull_size;
3607
3608 pull_size = min((unsigned int)4, skb->data_len);
3609 if (!__pskb_pull_tail(skb, pull_size)) {
3610 ndev_err(netdev,
3611 "__pskb_pull_tail failed.\n");
3612 dev_kfree_skb_any(skb);
3613 return NETDEV_TX_OK;
3614 }
3615 len = skb->len - skb->data_len;
3616 }
3617 }
3618
3619 /* reserve a descriptor for the offload context */
3620 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3621 count++;
3622 count++;
3623
3624 count += TXD_USE_COUNT(len, max_txd_pwr);
3625
3626 nr_frags = skb_shinfo(skb)->nr_frags;
3627 for (f = 0; f < nr_frags; f++)
3628 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3629 max_txd_pwr);
3630
3631 if (adapter->hw.mac.tx_pkt_filtering)
3632 e1000_transfer_dhcp_info(adapter, skb);
3633
3634 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3635 /* Collision - tell upper layer to requeue */
3636 return NETDEV_TX_LOCKED;
3637
ad68076e
BA
3638 /*
3639 * need: count + 2 desc gap to keep tail from touching
3640 * head, otherwise try next time
3641 */
bc7f75fa
AK
3642 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3643 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3644 return NETDEV_TX_BUSY;
3645 }
3646
3647 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3648 tx_flags |= E1000_TX_FLAGS_VLAN;
3649 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3650 }
3651
3652 first = tx_ring->next_to_use;
3653
3654 tso = e1000_tso(adapter, skb);
3655 if (tso < 0) {
3656 dev_kfree_skb_any(skb);
3657 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3658 return NETDEV_TX_OK;
3659 }
3660
3661 if (tso)
3662 tx_flags |= E1000_TX_FLAGS_TSO;
3663 else if (e1000_tx_csum(adapter, skb))
3664 tx_flags |= E1000_TX_FLAGS_CSUM;
3665
ad68076e
BA
3666 /*
3667 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 3668 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
3669 * no longer assume, we must.
3670 */
bc7f75fa
AK
3671 if (skb->protocol == htons(ETH_P_IP))
3672 tx_flags |= E1000_TX_FLAGS_IPV4;
3673
3674 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3675 if (count < 0) {
3676 /* handle pci_map_single() error in e1000_tx_map */
3677 dev_kfree_skb_any(skb);
3678 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
7b5dfe1a 3679 return NETDEV_TX_OK;
bc7f75fa
AK
3680 }
3681
3682 e1000_tx_queue(adapter, tx_flags, count);
3683
3684 netdev->trans_start = jiffies;
3685
3686 /* Make sure there is space in the ring for the next send. */
3687 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3688
3689 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3690 return NETDEV_TX_OK;
3691}
3692
3693/**
3694 * e1000_tx_timeout - Respond to a Tx Hang
3695 * @netdev: network interface device structure
3696 **/
3697static void e1000_tx_timeout(struct net_device *netdev)
3698{
3699 struct e1000_adapter *adapter = netdev_priv(netdev);
3700
3701 /* Do the reset outside of interrupt context */
3702 adapter->tx_timeout_count++;
3703 schedule_work(&adapter->reset_task);
3704}
3705
3706static void e1000_reset_task(struct work_struct *work)
3707{
3708 struct e1000_adapter *adapter;
3709 adapter = container_of(work, struct e1000_adapter, reset_task);
3710
3711 e1000e_reinit_locked(adapter);
3712}
3713
3714/**
3715 * e1000_get_stats - Get System Network Statistics
3716 * @netdev: network interface device structure
3717 *
3718 * Returns the address of the device statistics structure.
3719 * The statistics are actually updated from the timer callback.
3720 **/
3721static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3722{
3723 struct e1000_adapter *adapter = netdev_priv(netdev);
3724
3725 /* only return the current stats */
3726 return &adapter->net_stats;
3727}
3728
3729/**
3730 * e1000_change_mtu - Change the Maximum Transfer Unit
3731 * @netdev: network interface device structure
3732 * @new_mtu: new value for maximum frame size
3733 *
3734 * Returns 0 on success, negative on failure
3735 **/
3736static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3737{
3738 struct e1000_adapter *adapter = netdev_priv(netdev);
3739 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3740
3741 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3742 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3743 ndev_err(netdev, "Invalid MTU setting\n");
3744 return -EINVAL;
3745 }
3746
3747 /* Jumbo frame size limits */
3748 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3749 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3750 ndev_err(netdev, "Jumbo Frames not supported.\n");
3751 return -EINVAL;
3752 }
3753 if (adapter->hw.phy.type == e1000_phy_ife) {
3754 ndev_err(netdev, "Jumbo Frames not supported.\n");
3755 return -EINVAL;
3756 }
3757 }
3758
3759#define MAX_STD_JUMBO_FRAME_SIZE 9234
3760 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3761 ndev_err(netdev, "MTU > 9216 not supported.\n");
3762 return -EINVAL;
3763 }
3764
3765 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3766 msleep(1);
3767 /* e1000e_down has a dependency on max_frame_size */
318a94d6 3768 adapter->max_frame_size = max_frame;
bc7f75fa
AK
3769 if (netif_running(netdev))
3770 e1000e_down(adapter);
3771
ad68076e
BA
3772 /*
3773 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
3774 * means we reserve 2 more, this pushes us to allocate from the next
3775 * larger slab size.
ad68076e 3776 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
3777 * However with the new *_jumbo_rx* routines, jumbo receives will use
3778 * fragmented skbs
ad68076e 3779 */
bc7f75fa
AK
3780
3781 if (max_frame <= 256)
3782 adapter->rx_buffer_len = 256;
3783 else if (max_frame <= 512)
3784 adapter->rx_buffer_len = 512;
3785 else if (max_frame <= 1024)
3786 adapter->rx_buffer_len = 1024;
3787 else if (max_frame <= 2048)
3788 adapter->rx_buffer_len = 2048;
3789 else
3790 adapter->rx_buffer_len = 4096;
3791
3792 /* adjust allocation if LPE protects us, and we aren't using SBP */
3793 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3794 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3795 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 3796 + ETH_FCS_LEN;
bc7f75fa
AK
3797
3798 ndev_info(netdev, "changing MTU from %d to %d\n",
3799 netdev->mtu, new_mtu);
3800 netdev->mtu = new_mtu;
3801
3802 if (netif_running(netdev))
3803 e1000e_up(adapter);
3804 else
3805 e1000e_reset(adapter);
3806
3807 clear_bit(__E1000_RESETTING, &adapter->state);
3808
3809 return 0;
3810}
3811
3812static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3813 int cmd)
3814{
3815 struct e1000_adapter *adapter = netdev_priv(netdev);
3816 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 3817
318a94d6 3818 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
3819 return -EOPNOTSUPP;
3820
3821 switch (cmd) {
3822 case SIOCGMIIPHY:
3823 data->phy_id = adapter->hw.phy.addr;
3824 break;
3825 case SIOCGMIIREG:
3826 if (!capable(CAP_NET_ADMIN))
3827 return -EPERM;
7c25769f
BA
3828 switch (data->reg_num & 0x1F) {
3829 case MII_BMCR:
3830 data->val_out = adapter->phy_regs.bmcr;
3831 break;
3832 case MII_BMSR:
3833 data->val_out = adapter->phy_regs.bmsr;
3834 break;
3835 case MII_PHYSID1:
3836 data->val_out = (adapter->hw.phy.id >> 16);
3837 break;
3838 case MII_PHYSID2:
3839 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3840 break;
3841 case MII_ADVERTISE:
3842 data->val_out = adapter->phy_regs.advertise;
3843 break;
3844 case MII_LPA:
3845 data->val_out = adapter->phy_regs.lpa;
3846 break;
3847 case MII_EXPANSION:
3848 data->val_out = adapter->phy_regs.expansion;
3849 break;
3850 case MII_CTRL1000:
3851 data->val_out = adapter->phy_regs.ctrl1000;
3852 break;
3853 case MII_STAT1000:
3854 data->val_out = adapter->phy_regs.stat1000;
3855 break;
3856 case MII_ESTATUS:
3857 data->val_out = adapter->phy_regs.estatus;
3858 break;
3859 default:
bc7f75fa
AK
3860 return -EIO;
3861 }
bc7f75fa
AK
3862 break;
3863 case SIOCSMIIREG:
3864 default:
3865 return -EOPNOTSUPP;
3866 }
3867 return 0;
3868}
3869
3870static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3871{
3872 switch (cmd) {
3873 case SIOCGMIIPHY:
3874 case SIOCGMIIREG:
3875 case SIOCSMIIREG:
3876 return e1000_mii_ioctl(netdev, ifr, cmd);
3877 default:
3878 return -EOPNOTSUPP;
3879 }
3880}
3881
3882static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3883{
3884 struct net_device *netdev = pci_get_drvdata(pdev);
3885 struct e1000_adapter *adapter = netdev_priv(netdev);
3886 struct e1000_hw *hw = &adapter->hw;
3887 u32 ctrl, ctrl_ext, rctl, status;
3888 u32 wufc = adapter->wol;
3889 int retval = 0;
3890
3891 netif_device_detach(netdev);
3892
3893 if (netif_running(netdev)) {
3894 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3895 e1000e_down(adapter);
3896 e1000_free_irq(adapter);
3897 }
3898
3899 retval = pci_save_state(pdev);
3900 if (retval)
3901 return retval;
3902
3903 status = er32(STATUS);
3904 if (status & E1000_STATUS_LU)
3905 wufc &= ~E1000_WUFC_LNKC;
3906
3907 if (wufc) {
3908 e1000_setup_rctl(adapter);
3909 e1000_set_multi(netdev);
3910
3911 /* turn on all-multi mode if wake on multicast is enabled */
3912 if (wufc & E1000_WUFC_MC) {
3913 rctl = er32(RCTL);
3914 rctl |= E1000_RCTL_MPE;
3915 ew32(RCTL, rctl);
3916 }
3917
3918 ctrl = er32(CTRL);
3919 /* advertise wake from D3Cold */
3920 #define E1000_CTRL_ADVD3WUC 0x00100000
3921 /* phy power management enable */
3922 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3923 ctrl |= E1000_CTRL_ADVD3WUC |
3924 E1000_CTRL_EN_PHY_PWR_MGMT;
3925 ew32(CTRL, ctrl);
3926
318a94d6
JK
3927 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3928 adapter->hw.phy.media_type ==
3929 e1000_media_type_internal_serdes) {
bc7f75fa
AK
3930 /* keep the laser running in D3 */
3931 ctrl_ext = er32(CTRL_EXT);
3932 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3933 ew32(CTRL_EXT, ctrl_ext);
3934 }
3935
97ac8cae
BA
3936 if (adapter->flags & FLAG_IS_ICH)
3937 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
3938
bc7f75fa
AK
3939 /* Allow time for pending master requests to run */
3940 e1000e_disable_pcie_master(&adapter->hw);
3941
3942 ew32(WUC, E1000_WUC_PME_EN);
3943 ew32(WUFC, wufc);
3944 pci_enable_wake(pdev, PCI_D3hot, 1);
3945 pci_enable_wake(pdev, PCI_D3cold, 1);
3946 } else {
3947 ew32(WUC, 0);
3948 ew32(WUFC, 0);
3949 pci_enable_wake(pdev, PCI_D3hot, 0);
3950 pci_enable_wake(pdev, PCI_D3cold, 0);
3951 }
3952
bc7f75fa
AK
3953 /* make sure adapter isn't asleep if manageability is enabled */
3954 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3955 pci_enable_wake(pdev, PCI_D3hot, 1);
3956 pci_enable_wake(pdev, PCI_D3cold, 1);
3957 }
3958
3959 if (adapter->hw.phy.type == e1000_phy_igp_3)
3960 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3961
ad68076e
BA
3962 /*
3963 * Release control of h/w to f/w. If f/w is AMT enabled, this
3964 * would have already happened in close and is redundant.
3965 */
bc7f75fa
AK
3966 e1000_release_hw_control(adapter);
3967
3968 pci_disable_device(pdev);
3969
3970 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3971
3972 return 0;
3973}
3974
1eae4eb2
AK
3975static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3976{
3977 int pos;
1eae4eb2
AK
3978 u16 val;
3979
3980 /*
3981 * 82573 workaround - disable L1 ASPM on mobile chipsets
3982 *
3983 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3984 * resulting in lost data or garbage information on the pci-e link
3985 * level. This could result in (false) bad EEPROM checksum errors,
3986 * long ping times (up to 2s) or even a system freeze/hang.
3987 *
3988 * Unfortunately this feature saves about 1W power consumption when
3989 * active.
3990 */
3991 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
3992 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3993 if (val & 0x2) {
3994 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3995 val &= ~0x2;
3996 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3997 }
3998}
3999
bc7f75fa
AK
4000#ifdef CONFIG_PM
4001static int e1000_resume(struct pci_dev *pdev)
4002{
4003 struct net_device *netdev = pci_get_drvdata(pdev);
4004 struct e1000_adapter *adapter = netdev_priv(netdev);
4005 struct e1000_hw *hw = &adapter->hw;
4006 u32 err;
4007
4008 pci_set_power_state(pdev, PCI_D0);
4009 pci_restore_state(pdev);
1eae4eb2 4010 e1000e_disable_l1aspm(pdev);
6e4f6f6b
TI
4011
4012 if (adapter->need_ioport)
4013 err = pci_enable_device(pdev);
4014 else
4015 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4016 if (err) {
4017 dev_err(&pdev->dev,
4018 "Cannot enable PCI device from suspend\n");
4019 return err;
4020 }
4021
4022 pci_set_master(pdev);
4023
4024 pci_enable_wake(pdev, PCI_D3hot, 0);
4025 pci_enable_wake(pdev, PCI_D3cold, 0);
4026
4027 if (netif_running(netdev)) {
4028 err = e1000_request_irq(adapter);
4029 if (err)
4030 return err;
4031 }
4032
4033 e1000e_power_up_phy(adapter);
4034 e1000e_reset(adapter);
4035 ew32(WUS, ~0);
4036
4037 e1000_init_manageability(adapter);
4038
4039 if (netif_running(netdev))
4040 e1000e_up(adapter);
4041
4042 netif_device_attach(netdev);
4043
ad68076e
BA
4044 /*
4045 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4046 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4047 * under the control of the driver.
4048 */
bc7f75fa
AK
4049 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
4050 e1000_get_hw_control(adapter);
4051
4052 return 0;
4053}
4054#endif
4055
4056static void e1000_shutdown(struct pci_dev *pdev)
4057{
4058 e1000_suspend(pdev, PMSG_SUSPEND);
4059}
4060
4061#ifdef CONFIG_NET_POLL_CONTROLLER
4062/*
4063 * Polling 'interrupt' - used by things like netconsole to send skbs
4064 * without having to re-enable interrupts. It's not called while
4065 * the interrupt routine is executing.
4066 */
4067static void e1000_netpoll(struct net_device *netdev)
4068{
4069 struct e1000_adapter *adapter = netdev_priv(netdev);
4070
4071 disable_irq(adapter->pdev->irq);
4072 e1000_intr(adapter->pdev->irq, netdev);
4073
4074 e1000_clean_tx_irq(adapter);
4075
4076 enable_irq(adapter->pdev->irq);
4077}
4078#endif
4079
4080/**
4081 * e1000_io_error_detected - called when PCI error is detected
4082 * @pdev: Pointer to PCI device
4083 * @state: The current pci connection state
4084 *
4085 * This function is called after a PCI bus error affecting
4086 * this device has been detected.
4087 */
4088static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4089 pci_channel_state_t state)
4090{
4091 struct net_device *netdev = pci_get_drvdata(pdev);
4092 struct e1000_adapter *adapter = netdev_priv(netdev);
4093
4094 netif_device_detach(netdev);
4095
4096 if (netif_running(netdev))
4097 e1000e_down(adapter);
4098 pci_disable_device(pdev);
4099
4100 /* Request a slot slot reset. */
4101 return PCI_ERS_RESULT_NEED_RESET;
4102}
4103
4104/**
4105 * e1000_io_slot_reset - called after the pci bus has been reset.
4106 * @pdev: Pointer to PCI device
4107 *
4108 * Restart the card from scratch, as if from a cold-boot. Implementation
4109 * resembles the first-half of the e1000_resume routine.
4110 */
4111static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4112{
4113 struct net_device *netdev = pci_get_drvdata(pdev);
4114 struct e1000_adapter *adapter = netdev_priv(netdev);
4115 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4116 int err;
bc7f75fa 4117
1eae4eb2 4118 e1000e_disable_l1aspm(pdev);
6e4f6f6b
TI
4119 if (adapter->need_ioport)
4120 err = pci_enable_device(pdev);
4121 else
4122 err = pci_enable_device_mem(pdev);
4123 if (err) {
bc7f75fa
AK
4124 dev_err(&pdev->dev,
4125 "Cannot re-enable PCI device after reset.\n");
4126 return PCI_ERS_RESULT_DISCONNECT;
4127 }
4128 pci_set_master(pdev);
aad32739 4129 pci_restore_state(pdev);
bc7f75fa
AK
4130
4131 pci_enable_wake(pdev, PCI_D3hot, 0);
4132 pci_enable_wake(pdev, PCI_D3cold, 0);
4133
4134 e1000e_reset(adapter);
4135 ew32(WUS, ~0);
4136
4137 return PCI_ERS_RESULT_RECOVERED;
4138}
4139
4140/**
4141 * e1000_io_resume - called when traffic can start flowing again.
4142 * @pdev: Pointer to PCI device
4143 *
4144 * This callback is called when the error recovery driver tells us that
4145 * its OK to resume normal operation. Implementation resembles the
4146 * second-half of the e1000_resume routine.
4147 */
4148static void e1000_io_resume(struct pci_dev *pdev)
4149{
4150 struct net_device *netdev = pci_get_drvdata(pdev);
4151 struct e1000_adapter *adapter = netdev_priv(netdev);
4152
4153 e1000_init_manageability(adapter);
4154
4155 if (netif_running(netdev)) {
4156 if (e1000e_up(adapter)) {
4157 dev_err(&pdev->dev,
4158 "can't bring device back up after reset\n");
4159 return;
4160 }
4161 }
4162
4163 netif_device_attach(netdev);
4164
ad68076e
BA
4165 /*
4166 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4167 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4168 * under the control of the driver.
4169 */
bc7f75fa
AK
4170 if (!(adapter->flags & FLAG_HAS_AMT) ||
4171 !e1000e_check_mng_mode(&adapter->hw))
4172 e1000_get_hw_control(adapter);
4173
4174}
4175
4176static void e1000_print_device_info(struct e1000_adapter *adapter)
4177{
4178 struct e1000_hw *hw = &adapter->hw;
4179 struct net_device *netdev = adapter->netdev;
69e3fd8c 4180 u32 pba_num;
bc7f75fa
AK
4181
4182 /* print bus type/speed/width info */
4183 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
4184 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4185 /* bus width */
4186 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4187 "Width x1"),
4188 /* MAC address */
4189 netdev->dev_addr[0], netdev->dev_addr[1],
4190 netdev->dev_addr[2], netdev->dev_addr[3],
4191 netdev->dev_addr[4], netdev->dev_addr[5]);
4192 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
4193 (hw->phy.type == e1000_phy_ife)
4194 ? "10/100" : "1000");
69e3fd8c 4195 e1000e_read_pba_num(hw, &pba_num);
bc7f75fa
AK
4196 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4197 hw->mac.type, hw->phy.type,
69e3fd8c 4198 (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4199}
4200
6e4f6f6b
TI
4201/**
4202 * e1000e_is_need_ioport - determine if an adapter needs ioport resources or not
4203 * @pdev: PCI device information struct
4204 *
4205 * Returns true if an adapters needs ioport resources
4206 **/
4207static int e1000e_is_need_ioport(struct pci_dev *pdev)
4208{
4209 switch (pdev->device) {
4210 /* Currently there are no adapters that need ioport resources */
4211 default:
4212 return false;
4213 }
4214}
4215
bc7f75fa
AK
4216/**
4217 * e1000_probe - Device Initialization Routine
4218 * @pdev: PCI device information struct
4219 * @ent: entry in e1000_pci_tbl
4220 *
4221 * Returns 0 on success, negative on failure
4222 *
4223 * e1000_probe initializes an adapter identified by a pci_dev structure.
4224 * The OS initialization, configuring of the adapter private structure,
4225 * and a hardware reset occur.
4226 **/
4227static int __devinit e1000_probe(struct pci_dev *pdev,
4228 const struct pci_device_id *ent)
4229{
4230 struct net_device *netdev;
4231 struct e1000_adapter *adapter;
4232 struct e1000_hw *hw;
4233 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4234 resource_size_t mmio_start, mmio_len;
4235 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4236
4237 static int cards_found;
4238 int i, err, pci_using_dac;
4239 u16 eeprom_data = 0;
4240 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6e4f6f6b 4241 int bars, need_ioport;
bc7f75fa 4242
1eae4eb2 4243 e1000e_disable_l1aspm(pdev);
6e4f6f6b
TI
4244
4245 /* do not allocate ioport bars when not needed */
4246 need_ioport = e1000e_is_need_ioport(pdev);
4247 if (need_ioport) {
4248 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
4249 err = pci_enable_device(pdev);
4250 } else {
4251 bars = pci_select_bars(pdev, IORESOURCE_MEM);
4252 err = pci_enable_device_mem(pdev);
4253 }
bc7f75fa
AK
4254 if (err)
4255 return err;
4256
4257 pci_using_dac = 0;
4258 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4259 if (!err) {
4260 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4261 if (!err)
4262 pci_using_dac = 1;
4263 } else {
4264 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4265 if (err) {
4266 err = pci_set_consistent_dma_mask(pdev,
4267 DMA_32BIT_MASK);
4268 if (err) {
4269 dev_err(&pdev->dev, "No usable DMA "
4270 "configuration, aborting\n");
4271 goto err_dma;
4272 }
4273 }
4274 }
4275
6e4f6f6b 4276 err = pci_request_selected_regions(pdev, bars, e1000e_driver_name);
bc7f75fa
AK
4277 if (err)
4278 goto err_pci_reg;
4279
4280 pci_set_master(pdev);
aad32739 4281 pci_save_state(pdev);
bc7f75fa
AK
4282
4283 err = -ENOMEM;
4284 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4285 if (!netdev)
4286 goto err_alloc_etherdev;
4287
bc7f75fa
AK
4288 SET_NETDEV_DEV(netdev, &pdev->dev);
4289
4290 pci_set_drvdata(pdev, netdev);
4291 adapter = netdev_priv(netdev);
4292 hw = &adapter->hw;
4293 adapter->netdev = netdev;
4294 adapter->pdev = pdev;
4295 adapter->ei = ei;
4296 adapter->pba = ei->pba;
4297 adapter->flags = ei->flags;
4298 adapter->hw.adapter = adapter;
4299 adapter->hw.mac.type = ei->mac;
4300 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
6e4f6f6b
TI
4301 adapter->bars = bars;
4302 adapter->need_ioport = need_ioport;
bc7f75fa
AK
4303
4304 mmio_start = pci_resource_start(pdev, 0);
4305 mmio_len = pci_resource_len(pdev, 0);
4306
4307 err = -EIO;
4308 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4309 if (!adapter->hw.hw_addr)
4310 goto err_ioremap;
4311
4312 if ((adapter->flags & FLAG_HAS_FLASH) &&
4313 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4314 flash_start = pci_resource_start(pdev, 1);
4315 flash_len = pci_resource_len(pdev, 1);
4316 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4317 if (!adapter->hw.flash_address)
4318 goto err_flashmap;
4319 }
4320
4321 /* construct the net_device struct */
4322 netdev->open = &e1000_open;
4323 netdev->stop = &e1000_close;
4324 netdev->hard_start_xmit = &e1000_xmit_frame;
4325 netdev->get_stats = &e1000_get_stats;
4326 netdev->set_multicast_list = &e1000_set_multi;
4327 netdev->set_mac_address = &e1000_set_mac;
4328 netdev->change_mtu = &e1000_change_mtu;
4329 netdev->do_ioctl = &e1000_ioctl;
4330 e1000e_set_ethtool_ops(netdev);
4331 netdev->tx_timeout = &e1000_tx_timeout;
4332 netdev->watchdog_timeo = 5 * HZ;
4333 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4334 netdev->vlan_rx_register = e1000_vlan_rx_register;
4335 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4336 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4337#ifdef CONFIG_NET_POLL_CONTROLLER
4338 netdev->poll_controller = e1000_netpoll;
4339#endif
4340 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4341
4342 netdev->mem_start = mmio_start;
4343 netdev->mem_end = mmio_start + mmio_len;
4344
4345 adapter->bd_number = cards_found++;
4346
4347 /* setup adapter struct */
4348 err = e1000_sw_init(adapter);
4349 if (err)
4350 goto err_sw_init;
4351
4352 err = -EIO;
4353
4354 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4355 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4356 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4357
69e3fd8c 4358 err = ei->get_variants(adapter);
bc7f75fa
AK
4359 if (err)
4360 goto err_hw_init;
4361
4362 hw->mac.ops.get_bus_info(&adapter->hw);
4363
318a94d6 4364 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
4365
4366 /* Copper options */
318a94d6 4367 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
4368 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4369 adapter->hw.phy.disable_polarity_correction = 0;
4370 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4371 }
4372
4373 if (e1000_check_reset_block(&adapter->hw))
4374 ndev_info(netdev,
4375 "PHY reset is blocked due to SOL/IDER session.\n");
4376
4377 netdev->features = NETIF_F_SG |
4378 NETIF_F_HW_CSUM |
4379 NETIF_F_HW_VLAN_TX |
4380 NETIF_F_HW_VLAN_RX;
4381
4382 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4383 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4384
4385 netdev->features |= NETIF_F_TSO;
4386 netdev->features |= NETIF_F_TSO6;
4387
a5136e23
JK
4388 netdev->vlan_features |= NETIF_F_TSO;
4389 netdev->vlan_features |= NETIF_F_TSO6;
4390 netdev->vlan_features |= NETIF_F_HW_CSUM;
4391 netdev->vlan_features |= NETIF_F_SG;
4392
bc7f75fa
AK
4393 if (pci_using_dac)
4394 netdev->features |= NETIF_F_HIGHDMA;
4395
ad68076e
BA
4396 /*
4397 * We should not be using LLTX anymore, but we are still Tx faster with
4398 * it.
4399 */
bc7f75fa
AK
4400 netdev->features |= NETIF_F_LLTX;
4401
4402 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4403 adapter->flags |= FLAG_MNG_PT_ENABLED;
4404
ad68076e
BA
4405 /*
4406 * before reading the NVM, reset the controller to
4407 * put the device in a known good starting state
4408 */
bc7f75fa
AK
4409 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4410
4411 /*
4412 * systems with ASPM and others may see the checksum fail on the first
4413 * attempt. Let's give it a few tries
4414 */
4415 for (i = 0;; i++) {
4416 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4417 break;
4418 if (i == 2) {
4419 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
4420 err = -EIO;
4421 goto err_eeprom;
4422 }
4423 }
4424
4425 /* copy the MAC address out of the NVM */
4426 if (e1000e_read_mac_addr(&adapter->hw))
4427 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
4428
4429 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4430 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4431
4432 if (!is_valid_ether_addr(netdev->perm_addr)) {
4433 ndev_err(netdev, "Invalid MAC Address: "
4434 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4435 netdev->perm_addr[0], netdev->perm_addr[1],
4436 netdev->perm_addr[2], netdev->perm_addr[3],
4437 netdev->perm_addr[4], netdev->perm_addr[5]);
4438 err = -EIO;
4439 goto err_eeprom;
4440 }
4441
4442 init_timer(&adapter->watchdog_timer);
4443 adapter->watchdog_timer.function = &e1000_watchdog;
4444 adapter->watchdog_timer.data = (unsigned long) adapter;
4445
4446 init_timer(&adapter->phy_info_timer);
4447 adapter->phy_info_timer.function = &e1000_update_phy_info;
4448 adapter->phy_info_timer.data = (unsigned long) adapter;
4449
4450 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4451 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4452
4453 e1000e_check_options(adapter);
4454
4455 /* Initialize link parameters. User can change them with ethtool */
4456 adapter->hw.mac.autoneg = 1;
309af40b 4457 adapter->fc_autoneg = 1;
318a94d6
JK
4458 adapter->hw.fc.original_type = e1000_fc_default;
4459 adapter->hw.fc.type = e1000_fc_default;
bc7f75fa
AK
4460 adapter->hw.phy.autoneg_advertised = 0x2f;
4461
4462 /* ring size defaults */
4463 adapter->rx_ring->count = 256;
4464 adapter->tx_ring->count = 256;
4465
4466 /*
4467 * Initial Wake on LAN setting - If APM wake is enabled in
4468 * the EEPROM, enable the ACPI Magic Packet filter
4469 */
4470 if (adapter->flags & FLAG_APME_IN_WUC) {
4471 /* APME bit in EEPROM is mapped to WUC.APME */
4472 eeprom_data = er32(WUC);
4473 eeprom_apme_mask = E1000_WUC_APME;
4474 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4475 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4476 (adapter->hw.bus.func == 1))
4477 e1000_read_nvm(&adapter->hw,
4478 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4479 else
4480 e1000_read_nvm(&adapter->hw,
4481 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4482 }
4483
4484 /* fetch WoL from EEPROM */
4485 if (eeprom_data & eeprom_apme_mask)
4486 adapter->eeprom_wol |= E1000_WUFC_MAG;
4487
4488 /*
4489 * now that we have the eeprom settings, apply the special cases
4490 * where the eeprom may be wrong or the board simply won't support
4491 * wake on lan on a particular port
4492 */
4493 if (!(adapter->flags & FLAG_HAS_WOL))
4494 adapter->eeprom_wol = 0;
4495
4496 /* initialize the wol settings based on the eeprom settings */
4497 adapter->wol = adapter->eeprom_wol;
4498
4499 /* reset the hardware with the new settings */
4500 e1000e_reset(adapter);
4501
ad68076e
BA
4502 /*
4503 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4504 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4505 * under the control of the driver.
4506 */
bc7f75fa
AK
4507 if (!(adapter->flags & FLAG_HAS_AMT) ||
4508 !e1000e_check_mng_mode(&adapter->hw))
4509 e1000_get_hw_control(adapter);
4510
4511 /* tell the stack to leave us alone until e1000_open() is called */
4512 netif_carrier_off(netdev);
4513 netif_stop_queue(netdev);
4514
4515 strcpy(netdev->name, "eth%d");
4516 err = register_netdev(netdev);
4517 if (err)
4518 goto err_register;
4519
4520 e1000_print_device_info(adapter);
4521
4522 return 0;
4523
4524err_register:
4525err_hw_init:
4526 e1000_release_hw_control(adapter);
4527err_eeprom:
4528 if (!e1000_check_reset_block(&adapter->hw))
4529 e1000_phy_hw_reset(&adapter->hw);
4530
4531 if (adapter->hw.flash_address)
4532 iounmap(adapter->hw.flash_address);
4533
4534err_flashmap:
4535 kfree(adapter->tx_ring);
4536 kfree(adapter->rx_ring);
4537err_sw_init:
4538 iounmap(adapter->hw.hw_addr);
4539err_ioremap:
4540 free_netdev(netdev);
4541err_alloc_etherdev:
6e4f6f6b 4542 pci_release_selected_regions(pdev, bars);
bc7f75fa
AK
4543err_pci_reg:
4544err_dma:
4545 pci_disable_device(pdev);
4546 return err;
4547}
4548
4549/**
4550 * e1000_remove - Device Removal Routine
4551 * @pdev: PCI device information struct
4552 *
4553 * e1000_remove is called by the PCI subsystem to alert the driver
4554 * that it should release a PCI device. The could be caused by a
4555 * Hot-Plug event, or because the driver is going to be removed from
4556 * memory.
4557 **/
4558static void __devexit e1000_remove(struct pci_dev *pdev)
4559{
4560 struct net_device *netdev = pci_get_drvdata(pdev);
4561 struct e1000_adapter *adapter = netdev_priv(netdev);
4562
ad68076e
BA
4563 /*
4564 * flush_scheduled work may reschedule our watchdog task, so
4565 * explicitly disable watchdog tasks from being rescheduled
4566 */
bc7f75fa
AK
4567 set_bit(__E1000_DOWN, &adapter->state);
4568 del_timer_sync(&adapter->watchdog_timer);
4569 del_timer_sync(&adapter->phy_info_timer);
4570
4571 flush_scheduled_work();
4572
ad68076e
BA
4573 /*
4574 * Release control of h/w to f/w. If f/w is AMT enabled, this
4575 * would have already happened in close and is redundant.
4576 */
bc7f75fa
AK
4577 e1000_release_hw_control(adapter);
4578
4579 unregister_netdev(netdev);
4580
4581 if (!e1000_check_reset_block(&adapter->hw))
4582 e1000_phy_hw_reset(&adapter->hw);
4583
4584 kfree(adapter->tx_ring);
4585 kfree(adapter->rx_ring);
4586
4587 iounmap(adapter->hw.hw_addr);
4588 if (adapter->hw.flash_address)
4589 iounmap(adapter->hw.flash_address);
6e4f6f6b 4590 pci_release_selected_regions(pdev, adapter->bars);
bc7f75fa
AK
4591
4592 free_netdev(netdev);
4593
4594 pci_disable_device(pdev);
4595}
4596
4597/* PCI Error Recovery (ERS) */
4598static struct pci_error_handlers e1000_err_handler = {
4599 .error_detected = e1000_io_error_detected,
4600 .slot_reset = e1000_io_slot_reset,
4601 .resume = e1000_io_resume,
4602};
4603
4604static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4606 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4607 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4608 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4609 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4610 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
4611 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4612 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4613 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 4614
bc7f75fa
AK
4615 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4616 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4617 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4618 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 4619
bc7f75fa
AK
4620 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4621 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4622 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 4623
bc7f75fa
AK
4624 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4625 board_80003es2lan },
4626 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4627 board_80003es2lan },
4628 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4629 board_80003es2lan },
4630 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4631 board_80003es2lan },
ad68076e 4632
bc7f75fa
AK
4633 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4634 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4635 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4636 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4637 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4638 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4639 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 4640
bc7f75fa
AK
4641 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4642 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4643 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4644 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4645 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
97ac8cae
BA
4646 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4647 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4648 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4649
4650 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4651 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4652 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa
AK
4653
4654 { } /* terminate list */
4655};
4656MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4657
4658/* PCI Device API Driver */
4659static struct pci_driver e1000_driver = {
4660 .name = e1000e_driver_name,
4661 .id_table = e1000_pci_tbl,
4662 .probe = e1000_probe,
4663 .remove = __devexit_p(e1000_remove),
4664#ifdef CONFIG_PM
ad68076e 4665 /* Power Management Hooks */
bc7f75fa
AK
4666 .suspend = e1000_suspend,
4667 .resume = e1000_resume,
4668#endif
4669 .shutdown = e1000_shutdown,
4670 .err_handler = &e1000_err_handler
4671};
4672
4673/**
4674 * e1000_init_module - Driver Registration Routine
4675 *
4676 * e1000_init_module is the first routine called when the driver is
4677 * loaded. All it does is register with the PCI subsystem.
4678 **/
4679static int __init e1000_init_module(void)
4680{
4681 int ret;
4682 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4683 e1000e_driver_name, e1000e_driver_version);
ad68076e 4684 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
4685 e1000e_driver_name);
4686 ret = pci_register_driver(&e1000_driver);
97ac8cae
BA
4687 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4688 PM_QOS_DEFAULT_VALUE);
4689
bc7f75fa
AK
4690 return ret;
4691}
4692module_init(e1000_init_module);
4693
4694/**
4695 * e1000_exit_module - Driver Exit Cleanup Routine
4696 *
4697 * e1000_exit_module is called just before the driver is removed
4698 * from memory.
4699 **/
4700static void __exit e1000_exit_module(void)
4701{
4702 pci_unregister_driver(&e1000_driver);
97ac8cae 4703 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
bc7f75fa
AK
4704}
4705module_exit(e1000_exit_module);
4706
4707
4708MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4709MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4710MODULE_LICENSE("GPL");
4711MODULE_VERSION(DRV_VERSION);
4712
4713/* e1000_main.c */