]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/e1000e/netdev.c
e1000e: cleanup ops function pointers
[mirror_ubuntu-artful-kernel.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
111b9dc5 47#include <linux/aer.h>
bc7f75fa
AK
48
49#include "e1000.h"
50
3be8c940 51#define DRV_VERSION "1.0.2-k2"
bc7f75fa
AK
52char e1000e_driver_name[] = "e1000e";
53const char e1000e_driver_version[] = DRV_VERSION;
54
55static const struct e1000_info *e1000_info_tbl[] = {
56 [board_82571] = &e1000_82571_info,
57 [board_82572] = &e1000_82572_info,
58 [board_82573] = &e1000_82573_info,
4662e82b 59 [board_82574] = &e1000_82574_info,
8c81c9c3 60 [board_82583] = &e1000_82583_info,
bc7f75fa
AK
61 [board_80003es2lan] = &e1000_es2_info,
62 [board_ich8lan] = &e1000_ich8_info,
63 [board_ich9lan] = &e1000_ich9_info,
f4187b56 64 [board_ich10lan] = &e1000_ich10_info,
a4f58f54 65 [board_pchlan] = &e1000_pch_info,
bc7f75fa
AK
66};
67
bc7f75fa
AK
68/**
69 * e1000_desc_unused - calculate if we have unused descriptors
70 **/
71static int e1000_desc_unused(struct e1000_ring *ring)
72{
73 if (ring->next_to_clean > ring->next_to_use)
74 return ring->next_to_clean - ring->next_to_use - 1;
75
76 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
77}
78
79/**
ad68076e 80 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
81 * @adapter: board private structure
82 * @status: descriptor status field as written by hardware
83 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84 * @skb: pointer to sk_buff to be indicated to stack
85 **/
86static void e1000_receive_skb(struct e1000_adapter *adapter,
87 struct net_device *netdev,
88 struct sk_buff *skb,
a39fe742 89 u8 status, __le16 vlan)
bc7f75fa
AK
90{
91 skb->protocol = eth_type_trans(skb, netdev);
92
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
c405b828
HX
94 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
95 le16_to_cpu(vlan), skb);
bc7f75fa 96 else
89c88b16 97 napi_gro_receive(&adapter->napi, skb);
bc7f75fa
AK
98}
99
100/**
101 * e1000_rx_checksum - Receive Checksum Offload for 82543
102 * @adapter: board private structure
103 * @status_err: receive descriptor status and error fields
104 * @csum: receive descriptor csum field
105 * @sk_buff: socket buffer with received data
106 **/
107static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
108 u32 csum, struct sk_buff *skb)
109{
110 u16 status = (u16)status_err;
111 u8 errors = (u8)(status_err >> 24);
112 skb->ip_summed = CHECKSUM_NONE;
113
114 /* Ignore Checksum bit is set */
115 if (status & E1000_RXD_STAT_IXSM)
116 return;
117 /* TCP/UDP checksum error bit is set */
118 if (errors & E1000_RXD_ERR_TCPE) {
119 /* let the stack verify checksum errors */
120 adapter->hw_csum_err++;
121 return;
122 }
123
124 /* TCP/UDP Checksum has not been calculated */
125 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
126 return;
127
128 /* It must be a TCP or UDP packet with a valid checksum */
129 if (status & E1000_RXD_STAT_TCPCS) {
130 /* TCP checksum is good */
131 skb->ip_summed = CHECKSUM_UNNECESSARY;
132 } else {
ad68076e
BA
133 /*
134 * IP fragment with UDP payload
135 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
136 * and then put the value in host order for further stack use.
137 */
a39fe742
AV
138 __sum16 sum = (__force __sum16)htons(csum);
139 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
140 skb->ip_summed = CHECKSUM_COMPLETE;
141 }
142 adapter->hw_csum_good++;
143}
144
145/**
146 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
147 * @adapter: address of board private structure
148 **/
149static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
150 int cleaned_count)
151{
152 struct net_device *netdev = adapter->netdev;
153 struct pci_dev *pdev = adapter->pdev;
154 struct e1000_ring *rx_ring = adapter->rx_ring;
155 struct e1000_rx_desc *rx_desc;
156 struct e1000_buffer *buffer_info;
157 struct sk_buff *skb;
158 unsigned int i;
89d71a66 159 unsigned int bufsz = adapter->rx_buffer_len;
bc7f75fa
AK
160
161 i = rx_ring->next_to_use;
162 buffer_info = &rx_ring->buffer_info[i];
163
164 while (cleaned_count--) {
165 skb = buffer_info->skb;
166 if (skb) {
167 skb_trim(skb, 0);
168 goto map_skb;
169 }
170
89d71a66 171 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
bc7f75fa
AK
172 if (!skb) {
173 /* Better luck next round */
174 adapter->alloc_rx_buff_failed++;
175 break;
176 }
177
bc7f75fa
AK
178 buffer_info->skb = skb;
179map_skb:
180 buffer_info->dma = pci_map_single(pdev, skb->data,
181 adapter->rx_buffer_len,
182 PCI_DMA_FROMDEVICE);
8d8bb39b 183 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
184 dev_err(&pdev->dev, "RX DMA map failed\n");
185 adapter->rx_dma_failed++;
186 break;
187 }
188
189 rx_desc = E1000_RX_DESC(*rx_ring, i);
190 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
191
192 i++;
193 if (i == rx_ring->count)
194 i = 0;
195 buffer_info = &rx_ring->buffer_info[i];
196 }
197
198 if (rx_ring->next_to_use != i) {
199 rx_ring->next_to_use = i;
200 if (i-- == 0)
201 i = (rx_ring->count - 1);
202
ad68076e
BA
203 /*
204 * Force memory writes to complete before letting h/w
bc7f75fa
AK
205 * know there are new descriptors to fetch. (Only
206 * applicable for weak-ordered memory model archs,
ad68076e
BA
207 * such as IA-64).
208 */
bc7f75fa
AK
209 wmb();
210 writel(i, adapter->hw.hw_addr + rx_ring->tail);
211 }
212}
213
214/**
215 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
216 * @adapter: address of board private structure
217 **/
218static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
219 int cleaned_count)
220{
221 struct net_device *netdev = adapter->netdev;
222 struct pci_dev *pdev = adapter->pdev;
223 union e1000_rx_desc_packet_split *rx_desc;
224 struct e1000_ring *rx_ring = adapter->rx_ring;
225 struct e1000_buffer *buffer_info;
226 struct e1000_ps_page *ps_page;
227 struct sk_buff *skb;
228 unsigned int i, j;
229
230 i = rx_ring->next_to_use;
231 buffer_info = &rx_ring->buffer_info[i];
232
233 while (cleaned_count--) {
234 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
235
236 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
237 ps_page = &buffer_info->ps_pages[j];
238 if (j >= adapter->rx_ps_pages) {
239 /* all unused desc entries get hw null ptr */
a39fe742 240 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
241 continue;
242 }
243 if (!ps_page->page) {
244 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 245 if (!ps_page->page) {
47f44e40
AK
246 adapter->alloc_rx_buff_failed++;
247 goto no_buffers;
248 }
249 ps_page->dma = pci_map_page(pdev,
250 ps_page->page,
251 0, PAGE_SIZE,
252 PCI_DMA_FROMDEVICE);
8d8bb39b 253 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
47f44e40
AK
254 dev_err(&adapter->pdev->dev,
255 "RX DMA page map failed\n");
256 adapter->rx_dma_failed++;
257 goto no_buffers;
bc7f75fa 258 }
bc7f75fa 259 }
47f44e40
AK
260 /*
261 * Refresh the desc even if buffer_addrs
262 * didn't change because each write-back
263 * erases this info.
264 */
265 rx_desc->read.buffer_addr[j+1] =
266 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
267 }
268
89d71a66
ED
269 skb = netdev_alloc_skb_ip_align(netdev,
270 adapter->rx_ps_bsize0);
bc7f75fa
AK
271
272 if (!skb) {
273 adapter->alloc_rx_buff_failed++;
274 break;
275 }
276
bc7f75fa
AK
277 buffer_info->skb = skb;
278 buffer_info->dma = pci_map_single(pdev, skb->data,
279 adapter->rx_ps_bsize0,
280 PCI_DMA_FROMDEVICE);
8d8bb39b 281 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
282 dev_err(&pdev->dev, "RX DMA map failed\n");
283 adapter->rx_dma_failed++;
284 /* cleanup skb */
285 dev_kfree_skb_any(skb);
286 buffer_info->skb = NULL;
287 break;
288 }
289
290 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
291
292 i++;
293 if (i == rx_ring->count)
294 i = 0;
295 buffer_info = &rx_ring->buffer_info[i];
296 }
297
298no_buffers:
299 if (rx_ring->next_to_use != i) {
300 rx_ring->next_to_use = i;
301
302 if (!(i--))
303 i = (rx_ring->count - 1);
304
ad68076e
BA
305 /*
306 * Force memory writes to complete before letting h/w
bc7f75fa
AK
307 * know there are new descriptors to fetch. (Only
308 * applicable for weak-ordered memory model archs,
ad68076e
BA
309 * such as IA-64).
310 */
bc7f75fa 311 wmb();
ad68076e
BA
312 /*
313 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
314 * descriptors are 32 bytes...so we increment tail
315 * twice as much.
316 */
317 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
318 }
319}
320
97ac8cae
BA
321/**
322 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
323 * @adapter: address of board private structure
97ac8cae
BA
324 * @cleaned_count: number of buffers to allocate this pass
325 **/
326
327static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
328 int cleaned_count)
329{
330 struct net_device *netdev = adapter->netdev;
331 struct pci_dev *pdev = adapter->pdev;
332 struct e1000_rx_desc *rx_desc;
333 struct e1000_ring *rx_ring = adapter->rx_ring;
334 struct e1000_buffer *buffer_info;
335 struct sk_buff *skb;
336 unsigned int i;
89d71a66 337 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
97ac8cae
BA
338
339 i = rx_ring->next_to_use;
340 buffer_info = &rx_ring->buffer_info[i];
341
342 while (cleaned_count--) {
343 skb = buffer_info->skb;
344 if (skb) {
345 skb_trim(skb, 0);
346 goto check_page;
347 }
348
89d71a66 349 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
97ac8cae
BA
350 if (unlikely(!skb)) {
351 /* Better luck next round */
352 adapter->alloc_rx_buff_failed++;
353 break;
354 }
355
97ac8cae
BA
356 buffer_info->skb = skb;
357check_page:
358 /* allocate a new page if necessary */
359 if (!buffer_info->page) {
360 buffer_info->page = alloc_page(GFP_ATOMIC);
361 if (unlikely(!buffer_info->page)) {
362 adapter->alloc_rx_buff_failed++;
363 break;
364 }
365 }
366
367 if (!buffer_info->dma)
368 buffer_info->dma = pci_map_page(pdev,
369 buffer_info->page, 0,
370 PAGE_SIZE,
371 PCI_DMA_FROMDEVICE);
372
373 rx_desc = E1000_RX_DESC(*rx_ring, i);
374 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
375
376 if (unlikely(++i == rx_ring->count))
377 i = 0;
378 buffer_info = &rx_ring->buffer_info[i];
379 }
380
381 if (likely(rx_ring->next_to_use != i)) {
382 rx_ring->next_to_use = i;
383 if (unlikely(i-- == 0))
384 i = (rx_ring->count - 1);
385
386 /* Force memory writes to complete before letting h/w
387 * know there are new descriptors to fetch. (Only
388 * applicable for weak-ordered memory model archs,
389 * such as IA-64). */
390 wmb();
391 writel(i, adapter->hw.hw_addr + rx_ring->tail);
392 }
393}
394
bc7f75fa
AK
395/**
396 * e1000_clean_rx_irq - Send received data up the network stack; legacy
397 * @adapter: board private structure
398 *
399 * the return value indicates whether actual cleaning was done, there
400 * is no guarantee that everything was cleaned
401 **/
402static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
403 int *work_done, int work_to_do)
404{
405 struct net_device *netdev = adapter->netdev;
406 struct pci_dev *pdev = adapter->pdev;
3bb99fe2 407 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
408 struct e1000_ring *rx_ring = adapter->rx_ring;
409 struct e1000_rx_desc *rx_desc, *next_rxd;
410 struct e1000_buffer *buffer_info, *next_buffer;
411 u32 length;
412 unsigned int i;
413 int cleaned_count = 0;
414 bool cleaned = 0;
415 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
416
417 i = rx_ring->next_to_clean;
418 rx_desc = E1000_RX_DESC(*rx_ring, i);
419 buffer_info = &rx_ring->buffer_info[i];
420
421 while (rx_desc->status & E1000_RXD_STAT_DD) {
422 struct sk_buff *skb;
423 u8 status;
424
425 if (*work_done >= work_to_do)
426 break;
427 (*work_done)++;
428
429 status = rx_desc->status;
430 skb = buffer_info->skb;
431 buffer_info->skb = NULL;
432
433 prefetch(skb->data - NET_IP_ALIGN);
434
435 i++;
436 if (i == rx_ring->count)
437 i = 0;
438 next_rxd = E1000_RX_DESC(*rx_ring, i);
439 prefetch(next_rxd);
440
441 next_buffer = &rx_ring->buffer_info[i];
442
443 cleaned = 1;
444 cleaned_count++;
445 pci_unmap_single(pdev,
446 buffer_info->dma,
447 adapter->rx_buffer_len,
448 PCI_DMA_FROMDEVICE);
449 buffer_info->dma = 0;
450
451 length = le16_to_cpu(rx_desc->length);
452
453 /* !EOP means multiple descriptors were used to store a single
454 * packet, also make sure the frame isn't just CRC only */
455 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
456 /* All receives must fit into a single buffer */
3bb99fe2 457 e_dbg("Receive packet consumed multiple buffers\n");
bc7f75fa
AK
458 /* recycle */
459 buffer_info->skb = skb;
460 goto next_desc;
461 }
462
463 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
464 /* recycle */
465 buffer_info->skb = skb;
466 goto next_desc;
467 }
468
eb7c3adb
JK
469 /* adjust length to remove Ethernet CRC */
470 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
471 length -= 4;
472
bc7f75fa
AK
473 total_rx_bytes += length;
474 total_rx_packets++;
475
ad68076e
BA
476 /*
477 * code added for copybreak, this should improve
bc7f75fa 478 * performance for small packets with large amounts
ad68076e
BA
479 * of reassembly being done in the stack
480 */
bc7f75fa
AK
481 if (length < copybreak) {
482 struct sk_buff *new_skb =
89d71a66 483 netdev_alloc_skb_ip_align(netdev, length);
bc7f75fa 484 if (new_skb) {
808ff676
BA
485 skb_copy_to_linear_data_offset(new_skb,
486 -NET_IP_ALIGN,
487 (skb->data -
488 NET_IP_ALIGN),
489 (length +
490 NET_IP_ALIGN));
bc7f75fa
AK
491 /* save the skb in buffer_info as good */
492 buffer_info->skb = skb;
493 skb = new_skb;
494 }
495 /* else just continue with the old one */
496 }
497 /* end copybreak code */
498 skb_put(skb, length);
499
500 /* Receive Checksum Offload */
501 e1000_rx_checksum(adapter,
502 (u32)(status) |
503 ((u32)(rx_desc->errors) << 24),
504 le16_to_cpu(rx_desc->csum), skb);
505
506 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
507
508next_desc:
509 rx_desc->status = 0;
510
511 /* return some buffers to hardware, one at a time is too slow */
512 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
513 adapter->alloc_rx_buf(adapter, cleaned_count);
514 cleaned_count = 0;
515 }
516
517 /* use prefetched values */
518 rx_desc = next_rxd;
519 buffer_info = next_buffer;
520 }
521 rx_ring->next_to_clean = i;
522
523 cleaned_count = e1000_desc_unused(rx_ring);
524 if (cleaned_count)
525 adapter->alloc_rx_buf(adapter, cleaned_count);
526
bc7f75fa 527 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 528 adapter->total_rx_packets += total_rx_packets;
7274c20f
AK
529 netdev->stats.rx_bytes += total_rx_bytes;
530 netdev->stats.rx_packets += total_rx_packets;
bc7f75fa
AK
531 return cleaned;
532}
533
bc7f75fa
AK
534static void e1000_put_txbuf(struct e1000_adapter *adapter,
535 struct e1000_buffer *buffer_info)
536{
8ddc951c 537 buffer_info->dma = 0;
bc7f75fa 538 if (buffer_info->skb) {
8ddc951c
JB
539 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
540 DMA_TO_DEVICE);
bc7f75fa
AK
541 dev_kfree_skb_any(buffer_info->skb);
542 buffer_info->skb = NULL;
543 }
1b7719c4 544 buffer_info->time_stamp = 0;
bc7f75fa
AK
545}
546
547static void e1000_print_tx_hang(struct e1000_adapter *adapter)
548{
549 struct e1000_ring *tx_ring = adapter->tx_ring;
550 unsigned int i = tx_ring->next_to_clean;
551 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
552 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
553
554 /* detected Tx unit hang */
44defeb3
JK
555 e_err("Detected Tx Unit Hang:\n"
556 " TDH <%x>\n"
557 " TDT <%x>\n"
558 " next_to_use <%x>\n"
559 " next_to_clean <%x>\n"
560 "buffer_info[next_to_clean]:\n"
561 " time_stamp <%lx>\n"
562 " next_to_watch <%x>\n"
563 " jiffies <%lx>\n"
564 " next_to_watch.status <%x>\n",
565 readl(adapter->hw.hw_addr + tx_ring->head),
566 readl(adapter->hw.hw_addr + tx_ring->tail),
567 tx_ring->next_to_use,
568 tx_ring->next_to_clean,
569 tx_ring->buffer_info[eop].time_stamp,
570 eop,
571 jiffies,
572 eop_desc->upper.fields.status);
bc7f75fa
AK
573}
574
575/**
576 * e1000_clean_tx_irq - Reclaim resources after transmit completes
577 * @adapter: board private structure
578 *
579 * the return value indicates whether actual cleaning was done, there
580 * is no guarantee that everything was cleaned
581 **/
582static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
583{
584 struct net_device *netdev = adapter->netdev;
585 struct e1000_hw *hw = &adapter->hw;
586 struct e1000_ring *tx_ring = adapter->tx_ring;
587 struct e1000_tx_desc *tx_desc, *eop_desc;
588 struct e1000_buffer *buffer_info;
589 unsigned int i, eop;
590 unsigned int count = 0;
bc7f75fa
AK
591 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
592
593 i = tx_ring->next_to_clean;
594 eop = tx_ring->buffer_info[i].next_to_watch;
595 eop_desc = E1000_TX_DESC(*tx_ring, eop);
596
12d04a3c
AD
597 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
598 (count < tx_ring->count)) {
a86043c2
JB
599 bool cleaned = false;
600 for (; !cleaned; count++) {
bc7f75fa
AK
601 tx_desc = E1000_TX_DESC(*tx_ring, i);
602 buffer_info = &tx_ring->buffer_info[i];
603 cleaned = (i == eop);
604
605 if (cleaned) {
606 struct sk_buff *skb = buffer_info->skb;
607 unsigned int segs, bytecount;
608 segs = skb_shinfo(skb)->gso_segs ?: 1;
609 /* multiply data chunks by size of headers */
610 bytecount = ((segs - 1) * skb_headlen(skb)) +
611 skb->len;
612 total_tx_packets += segs;
613 total_tx_bytes += bytecount;
614 }
615
616 e1000_put_txbuf(adapter, buffer_info);
617 tx_desc->upper.data = 0;
618
619 i++;
620 if (i == tx_ring->count)
621 i = 0;
622 }
623
624 eop = tx_ring->buffer_info[i].next_to_watch;
625 eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
626 }
627
628 tx_ring->next_to_clean = i;
629
630#define TX_WAKE_THRESHOLD 32
a86043c2
JB
631 if (count && netif_carrier_ok(netdev) &&
632 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
bc7f75fa
AK
633 /* Make sure that anybody stopping the queue after this
634 * sees the new next_to_clean.
635 */
636 smp_mb();
637
638 if (netif_queue_stopped(netdev) &&
639 !(test_bit(__E1000_DOWN, &adapter->state))) {
640 netif_wake_queue(netdev);
641 ++adapter->restart_queue;
642 }
643 }
644
645 if (adapter->detect_tx_hung) {
1b7719c4
AD
646 /* Detect a transmit hang in hardware, this serializes the
647 * check with the clearing of time_stamp and movement of i */
bc7f75fa 648 adapter->detect_tx_hung = 0;
12d04a3c
AD
649 if (tx_ring->buffer_info[i].time_stamp &&
650 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
bc7f75fa 651 + (adapter->tx_timeout_factor * HZ))
ad68076e 652 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
653 e1000_print_tx_hang(adapter);
654 netif_stop_queue(netdev);
655 }
656 }
657 adapter->total_tx_bytes += total_tx_bytes;
658 adapter->total_tx_packets += total_tx_packets;
7274c20f
AK
659 netdev->stats.tx_bytes += total_tx_bytes;
660 netdev->stats.tx_packets += total_tx_packets;
12d04a3c 661 return (count < tx_ring->count);
bc7f75fa
AK
662}
663
bc7f75fa
AK
664/**
665 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
666 * @adapter: board private structure
667 *
668 * the return value indicates whether actual cleaning was done, there
669 * is no guarantee that everything was cleaned
670 **/
671static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
672 int *work_done, int work_to_do)
673{
3bb99fe2 674 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
675 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
676 struct net_device *netdev = adapter->netdev;
677 struct pci_dev *pdev = adapter->pdev;
678 struct e1000_ring *rx_ring = adapter->rx_ring;
679 struct e1000_buffer *buffer_info, *next_buffer;
680 struct e1000_ps_page *ps_page;
681 struct sk_buff *skb;
682 unsigned int i, j;
683 u32 length, staterr;
684 int cleaned_count = 0;
685 bool cleaned = 0;
686 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
687
688 i = rx_ring->next_to_clean;
689 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
690 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
691 buffer_info = &rx_ring->buffer_info[i];
692
693 while (staterr & E1000_RXD_STAT_DD) {
694 if (*work_done >= work_to_do)
695 break;
696 (*work_done)++;
697 skb = buffer_info->skb;
698
699 /* in the packet split case this is header only */
700 prefetch(skb->data - NET_IP_ALIGN);
701
702 i++;
703 if (i == rx_ring->count)
704 i = 0;
705 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
706 prefetch(next_rxd);
707
708 next_buffer = &rx_ring->buffer_info[i];
709
710 cleaned = 1;
711 cleaned_count++;
712 pci_unmap_single(pdev, buffer_info->dma,
713 adapter->rx_ps_bsize0,
714 PCI_DMA_FROMDEVICE);
715 buffer_info->dma = 0;
716
717 if (!(staterr & E1000_RXD_STAT_EOP)) {
3bb99fe2
BA
718 e_dbg("Packet Split buffers didn't pick up the full "
719 "packet\n");
bc7f75fa
AK
720 dev_kfree_skb_irq(skb);
721 goto next_desc;
722 }
723
724 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
725 dev_kfree_skb_irq(skb);
726 goto next_desc;
727 }
728
729 length = le16_to_cpu(rx_desc->wb.middle.length0);
730
731 if (!length) {
3bb99fe2
BA
732 e_dbg("Last part of the packet spanning multiple "
733 "descriptors\n");
bc7f75fa
AK
734 dev_kfree_skb_irq(skb);
735 goto next_desc;
736 }
737
738 /* Good Receive */
739 skb_put(skb, length);
740
741 {
ad68076e
BA
742 /*
743 * this looks ugly, but it seems compiler issues make it
744 * more efficient than reusing j
745 */
bc7f75fa
AK
746 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
747
ad68076e
BA
748 /*
749 * page alloc/put takes too long and effects small packet
750 * throughput, so unsplit small packets and save the alloc/put
751 * only valid in softirq (napi) context to call kmap_*
752 */
bc7f75fa
AK
753 if (l1 && (l1 <= copybreak) &&
754 ((length + l1) <= adapter->rx_ps_bsize0)) {
755 u8 *vaddr;
756
47f44e40 757 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 758
ad68076e
BA
759 /*
760 * there is no documentation about how to call
bc7f75fa 761 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
762 * very long
763 */
bc7f75fa
AK
764 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
765 PAGE_SIZE, PCI_DMA_FROMDEVICE);
766 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
767 memcpy(skb_tail_pointer(skb), vaddr, l1);
768 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
769 pci_dma_sync_single_for_device(pdev, ps_page->dma,
770 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 771
eb7c3adb
JK
772 /* remove the CRC */
773 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
774 l1 -= 4;
775
bc7f75fa
AK
776 skb_put(skb, l1);
777 goto copydone;
778 } /* if */
779 }
780
781 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
782 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
783 if (!length)
784 break;
785
47f44e40 786 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
787 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
788 PCI_DMA_FROMDEVICE);
789 ps_page->dma = 0;
790 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
791 ps_page->page = NULL;
792 skb->len += length;
793 skb->data_len += length;
794 skb->truesize += length;
795 }
796
eb7c3adb
JK
797 /* strip the ethernet crc, problem is we're using pages now so
798 * this whole operation can get a little cpu intensive
799 */
800 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
801 pskb_trim(skb, skb->len - 4);
802
bc7f75fa
AK
803copydone:
804 total_rx_bytes += skb->len;
805 total_rx_packets++;
806
807 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
808 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
809
810 if (rx_desc->wb.upper.header_status &
811 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
812 adapter->rx_hdr_split++;
813
814 e1000_receive_skb(adapter, netdev, skb,
815 staterr, rx_desc->wb.middle.vlan);
816
817next_desc:
818 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
819 buffer_info->skb = NULL;
820
821 /* return some buffers to hardware, one at a time is too slow */
822 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
823 adapter->alloc_rx_buf(adapter, cleaned_count);
824 cleaned_count = 0;
825 }
826
827 /* use prefetched values */
828 rx_desc = next_rxd;
829 buffer_info = next_buffer;
830
831 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
832 }
833 rx_ring->next_to_clean = i;
834
835 cleaned_count = e1000_desc_unused(rx_ring);
836 if (cleaned_count)
837 adapter->alloc_rx_buf(adapter, cleaned_count);
838
bc7f75fa 839 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 840 adapter->total_rx_packets += total_rx_packets;
7274c20f
AK
841 netdev->stats.rx_bytes += total_rx_bytes;
842 netdev->stats.rx_packets += total_rx_packets;
bc7f75fa
AK
843 return cleaned;
844}
845
97ac8cae
BA
846/**
847 * e1000_consume_page - helper function
848 **/
849static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
850 u16 length)
851{
852 bi->page = NULL;
853 skb->len += length;
854 skb->data_len += length;
855 skb->truesize += length;
856}
857
858/**
859 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
860 * @adapter: board private structure
861 *
862 * the return value indicates whether actual cleaning was done, there
863 * is no guarantee that everything was cleaned
864 **/
865
866static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
867 int *work_done, int work_to_do)
868{
869 struct net_device *netdev = adapter->netdev;
870 struct pci_dev *pdev = adapter->pdev;
871 struct e1000_ring *rx_ring = adapter->rx_ring;
872 struct e1000_rx_desc *rx_desc, *next_rxd;
873 struct e1000_buffer *buffer_info, *next_buffer;
874 u32 length;
875 unsigned int i;
876 int cleaned_count = 0;
877 bool cleaned = false;
878 unsigned int total_rx_bytes=0, total_rx_packets=0;
879
880 i = rx_ring->next_to_clean;
881 rx_desc = E1000_RX_DESC(*rx_ring, i);
882 buffer_info = &rx_ring->buffer_info[i];
883
884 while (rx_desc->status & E1000_RXD_STAT_DD) {
885 struct sk_buff *skb;
886 u8 status;
887
888 if (*work_done >= work_to_do)
889 break;
890 (*work_done)++;
891
892 status = rx_desc->status;
893 skb = buffer_info->skb;
894 buffer_info->skb = NULL;
895
896 ++i;
897 if (i == rx_ring->count)
898 i = 0;
899 next_rxd = E1000_RX_DESC(*rx_ring, i);
900 prefetch(next_rxd);
901
902 next_buffer = &rx_ring->buffer_info[i];
903
904 cleaned = true;
905 cleaned_count++;
906 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
907 PCI_DMA_FROMDEVICE);
908 buffer_info->dma = 0;
909
910 length = le16_to_cpu(rx_desc->length);
911
912 /* errors is only valid for DD + EOP descriptors */
913 if (unlikely((status & E1000_RXD_STAT_EOP) &&
914 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
915 /* recycle both page and skb */
916 buffer_info->skb = skb;
917 /* an error means any chain goes out the window
918 * too */
919 if (rx_ring->rx_skb_top)
920 dev_kfree_skb(rx_ring->rx_skb_top);
921 rx_ring->rx_skb_top = NULL;
922 goto next_desc;
923 }
924
925#define rxtop rx_ring->rx_skb_top
926 if (!(status & E1000_RXD_STAT_EOP)) {
927 /* this descriptor is only the beginning (or middle) */
928 if (!rxtop) {
929 /* this is the beginning of a chain */
930 rxtop = skb;
931 skb_fill_page_desc(rxtop, 0, buffer_info->page,
932 0, length);
933 } else {
934 /* this is the middle of a chain */
935 skb_fill_page_desc(rxtop,
936 skb_shinfo(rxtop)->nr_frags,
937 buffer_info->page, 0, length);
938 /* re-use the skb, only consumed the page */
939 buffer_info->skb = skb;
940 }
941 e1000_consume_page(buffer_info, rxtop, length);
942 goto next_desc;
943 } else {
944 if (rxtop) {
945 /* end of the chain */
946 skb_fill_page_desc(rxtop,
947 skb_shinfo(rxtop)->nr_frags,
948 buffer_info->page, 0, length);
949 /* re-use the current skb, we only consumed the
950 * page */
951 buffer_info->skb = skb;
952 skb = rxtop;
953 rxtop = NULL;
954 e1000_consume_page(buffer_info, skb, length);
955 } else {
956 /* no chain, got EOP, this buf is the packet
957 * copybreak to save the put_page/alloc_page */
958 if (length <= copybreak &&
959 skb_tailroom(skb) >= length) {
960 u8 *vaddr;
961 vaddr = kmap_atomic(buffer_info->page,
962 KM_SKB_DATA_SOFTIRQ);
963 memcpy(skb_tail_pointer(skb), vaddr,
964 length);
965 kunmap_atomic(vaddr,
966 KM_SKB_DATA_SOFTIRQ);
967 /* re-use the page, so don't erase
968 * buffer_info->page */
969 skb_put(skb, length);
970 } else {
971 skb_fill_page_desc(skb, 0,
972 buffer_info->page, 0,
973 length);
974 e1000_consume_page(buffer_info, skb,
975 length);
976 }
977 }
978 }
979
980 /* Receive Checksum Offload XXX recompute due to CRC strip? */
981 e1000_rx_checksum(adapter,
982 (u32)(status) |
983 ((u32)(rx_desc->errors) << 24),
984 le16_to_cpu(rx_desc->csum), skb);
985
986 /* probably a little skewed due to removing CRC */
987 total_rx_bytes += skb->len;
988 total_rx_packets++;
989
990 /* eth type trans needs skb->data to point to something */
991 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 992 e_err("pskb_may_pull failed.\n");
97ac8cae
BA
993 dev_kfree_skb(skb);
994 goto next_desc;
995 }
996
997 e1000_receive_skb(adapter, netdev, skb, status,
998 rx_desc->special);
999
1000next_desc:
1001 rx_desc->status = 0;
1002
1003 /* return some buffers to hardware, one at a time is too slow */
1004 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1005 adapter->alloc_rx_buf(adapter, cleaned_count);
1006 cleaned_count = 0;
1007 }
1008
1009 /* use prefetched values */
1010 rx_desc = next_rxd;
1011 buffer_info = next_buffer;
1012 }
1013 rx_ring->next_to_clean = i;
1014
1015 cleaned_count = e1000_desc_unused(rx_ring);
1016 if (cleaned_count)
1017 adapter->alloc_rx_buf(adapter, cleaned_count);
1018
1019 adapter->total_rx_bytes += total_rx_bytes;
1020 adapter->total_rx_packets += total_rx_packets;
7274c20f
AK
1021 netdev->stats.rx_bytes += total_rx_bytes;
1022 netdev->stats.rx_packets += total_rx_packets;
97ac8cae
BA
1023 return cleaned;
1024}
1025
bc7f75fa
AK
1026/**
1027 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1028 * @adapter: board private structure
1029 **/
1030static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1031{
1032 struct e1000_ring *rx_ring = adapter->rx_ring;
1033 struct e1000_buffer *buffer_info;
1034 struct e1000_ps_page *ps_page;
1035 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1036 unsigned int i, j;
1037
1038 /* Free all the Rx ring sk_buffs */
1039 for (i = 0; i < rx_ring->count; i++) {
1040 buffer_info = &rx_ring->buffer_info[i];
1041 if (buffer_info->dma) {
1042 if (adapter->clean_rx == e1000_clean_rx_irq)
1043 pci_unmap_single(pdev, buffer_info->dma,
1044 adapter->rx_buffer_len,
1045 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1046 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1047 pci_unmap_page(pdev, buffer_info->dma,
1048 PAGE_SIZE,
1049 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1050 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1051 pci_unmap_single(pdev, buffer_info->dma,
1052 adapter->rx_ps_bsize0,
1053 PCI_DMA_FROMDEVICE);
1054 buffer_info->dma = 0;
1055 }
1056
97ac8cae
BA
1057 if (buffer_info->page) {
1058 put_page(buffer_info->page);
1059 buffer_info->page = NULL;
1060 }
1061
bc7f75fa
AK
1062 if (buffer_info->skb) {
1063 dev_kfree_skb(buffer_info->skb);
1064 buffer_info->skb = NULL;
1065 }
1066
1067 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1068 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1069 if (!ps_page->page)
1070 break;
1071 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1072 PCI_DMA_FROMDEVICE);
1073 ps_page->dma = 0;
1074 put_page(ps_page->page);
1075 ps_page->page = NULL;
1076 }
1077 }
1078
1079 /* there also may be some cached data from a chained receive */
1080 if (rx_ring->rx_skb_top) {
1081 dev_kfree_skb(rx_ring->rx_skb_top);
1082 rx_ring->rx_skb_top = NULL;
1083 }
1084
bc7f75fa
AK
1085 /* Zero out the descriptor ring */
1086 memset(rx_ring->desc, 0, rx_ring->size);
1087
1088 rx_ring->next_to_clean = 0;
1089 rx_ring->next_to_use = 0;
1090
1091 writel(0, adapter->hw.hw_addr + rx_ring->head);
1092 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1093}
1094
a8f88ff5
JB
1095static void e1000e_downshift_workaround(struct work_struct *work)
1096{
1097 struct e1000_adapter *adapter = container_of(work,
1098 struct e1000_adapter, downshift_task);
1099
1100 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1101}
1102
bc7f75fa
AK
1103/**
1104 * e1000_intr_msi - Interrupt Handler
1105 * @irq: interrupt number
1106 * @data: pointer to a network interface device structure
1107 **/
1108static irqreturn_t e1000_intr_msi(int irq, void *data)
1109{
1110 struct net_device *netdev = data;
1111 struct e1000_adapter *adapter = netdev_priv(netdev);
1112 struct e1000_hw *hw = &adapter->hw;
1113 u32 icr = er32(ICR);
1114
ad68076e
BA
1115 /*
1116 * read ICR disables interrupts using IAM
1117 */
bc7f75fa 1118
573cca8c 1119 if (icr & E1000_ICR_LSC) {
bc7f75fa 1120 hw->mac.get_link_status = 1;
ad68076e
BA
1121 /*
1122 * ICH8 workaround-- Call gig speed drop workaround on cable
1123 * disconnect (LSC) before accessing any PHY registers
1124 */
bc7f75fa
AK
1125 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1126 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1127 schedule_work(&adapter->downshift_task);
bc7f75fa 1128
ad68076e
BA
1129 /*
1130 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1131 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1132 * adapter in watchdog
1133 */
bc7f75fa
AK
1134 if (netif_carrier_ok(netdev) &&
1135 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1136 /* disable receives */
1137 u32 rctl = er32(RCTL);
1138 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1139 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1140 }
1141 /* guard against interrupt when we're going down */
1142 if (!test_bit(__E1000_DOWN, &adapter->state))
1143 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1144 }
1145
288379f0 1146 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1147 adapter->total_tx_bytes = 0;
1148 adapter->total_tx_packets = 0;
1149 adapter->total_rx_bytes = 0;
1150 adapter->total_rx_packets = 0;
288379f0 1151 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1152 }
1153
1154 return IRQ_HANDLED;
1155}
1156
1157/**
1158 * e1000_intr - Interrupt Handler
1159 * @irq: interrupt number
1160 * @data: pointer to a network interface device structure
1161 **/
1162static irqreturn_t e1000_intr(int irq, void *data)
1163{
1164 struct net_device *netdev = data;
1165 struct e1000_adapter *adapter = netdev_priv(netdev);
1166 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1167 u32 rctl, icr = er32(ICR);
4662e82b 1168
a68ea775 1169 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
bc7f75fa
AK
1170 return IRQ_NONE; /* Not our interrupt */
1171
ad68076e
BA
1172 /*
1173 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1174 * not set, then the adapter didn't send an interrupt
1175 */
bc7f75fa
AK
1176 if (!(icr & E1000_ICR_INT_ASSERTED))
1177 return IRQ_NONE;
1178
ad68076e
BA
1179 /*
1180 * Interrupt Auto-Mask...upon reading ICR,
1181 * interrupts are masked. No need for the
1182 * IMC write
1183 */
bc7f75fa 1184
573cca8c 1185 if (icr & E1000_ICR_LSC) {
bc7f75fa 1186 hw->mac.get_link_status = 1;
ad68076e
BA
1187 /*
1188 * ICH8 workaround-- Call gig speed drop workaround on cable
1189 * disconnect (LSC) before accessing any PHY registers
1190 */
bc7f75fa
AK
1191 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1192 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1193 schedule_work(&adapter->downshift_task);
bc7f75fa 1194
ad68076e
BA
1195 /*
1196 * 80003ES2LAN workaround--
bc7f75fa
AK
1197 * For packet buffer work-around on link down event;
1198 * disable receives here in the ISR and
1199 * reset adapter in watchdog
1200 */
1201 if (netif_carrier_ok(netdev) &&
1202 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1203 /* disable receives */
1204 rctl = er32(RCTL);
1205 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1206 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1207 }
1208 /* guard against interrupt when we're going down */
1209 if (!test_bit(__E1000_DOWN, &adapter->state))
1210 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1211 }
1212
288379f0 1213 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1214 adapter->total_tx_bytes = 0;
1215 adapter->total_tx_packets = 0;
1216 adapter->total_rx_bytes = 0;
1217 adapter->total_rx_packets = 0;
288379f0 1218 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1219 }
1220
1221 return IRQ_HANDLED;
1222}
1223
4662e82b
BA
1224static irqreturn_t e1000_msix_other(int irq, void *data)
1225{
1226 struct net_device *netdev = data;
1227 struct e1000_adapter *adapter = netdev_priv(netdev);
1228 struct e1000_hw *hw = &adapter->hw;
1229 u32 icr = er32(ICR);
1230
1231 if (!(icr & E1000_ICR_INT_ASSERTED)) {
a3c69fef
JB
1232 if (!test_bit(__E1000_DOWN, &adapter->state))
1233 ew32(IMS, E1000_IMS_OTHER);
4662e82b
BA
1234 return IRQ_NONE;
1235 }
1236
1237 if (icr & adapter->eiac_mask)
1238 ew32(ICS, (icr & adapter->eiac_mask));
1239
1240 if (icr & E1000_ICR_OTHER) {
1241 if (!(icr & E1000_ICR_LSC))
1242 goto no_link_interrupt;
1243 hw->mac.get_link_status = 1;
1244 /* guard against interrupt when we're going down */
1245 if (!test_bit(__E1000_DOWN, &adapter->state))
1246 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1247 }
1248
1249no_link_interrupt:
a3c69fef
JB
1250 if (!test_bit(__E1000_DOWN, &adapter->state))
1251 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
4662e82b
BA
1252
1253 return IRQ_HANDLED;
1254}
1255
1256
1257static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1258{
1259 struct net_device *netdev = data;
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 struct e1000_ring *tx_ring = adapter->tx_ring;
1263
1264
1265 adapter->total_tx_bytes = 0;
1266 adapter->total_tx_packets = 0;
1267
1268 if (!e1000_clean_tx_irq(adapter))
1269 /* Ring was not completely cleaned, so fire another interrupt */
1270 ew32(ICS, tx_ring->ims_val);
1271
1272 return IRQ_HANDLED;
1273}
1274
1275static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1276{
1277 struct net_device *netdev = data;
1278 struct e1000_adapter *adapter = netdev_priv(netdev);
1279
1280 /* Write the ITR value calculated at the end of the
1281 * previous interrupt.
1282 */
1283 if (adapter->rx_ring->set_itr) {
1284 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1285 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1286 adapter->rx_ring->set_itr = 0;
1287 }
1288
288379f0 1289 if (napi_schedule_prep(&adapter->napi)) {
4662e82b
BA
1290 adapter->total_rx_bytes = 0;
1291 adapter->total_rx_packets = 0;
288379f0 1292 __napi_schedule(&adapter->napi);
4662e82b
BA
1293 }
1294 return IRQ_HANDLED;
1295}
1296
1297/**
1298 * e1000_configure_msix - Configure MSI-X hardware
1299 *
1300 * e1000_configure_msix sets up the hardware to properly
1301 * generate MSI-X interrupts.
1302 **/
1303static void e1000_configure_msix(struct e1000_adapter *adapter)
1304{
1305 struct e1000_hw *hw = &adapter->hw;
1306 struct e1000_ring *rx_ring = adapter->rx_ring;
1307 struct e1000_ring *tx_ring = adapter->tx_ring;
1308 int vector = 0;
1309 u32 ctrl_ext, ivar = 0;
1310
1311 adapter->eiac_mask = 0;
1312
1313 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1314 if (hw->mac.type == e1000_82574) {
1315 u32 rfctl = er32(RFCTL);
1316 rfctl |= E1000_RFCTL_ACK_DIS;
1317 ew32(RFCTL, rfctl);
1318 }
1319
1320#define E1000_IVAR_INT_ALLOC_VALID 0x8
1321 /* Configure Rx vector */
1322 rx_ring->ims_val = E1000_IMS_RXQ0;
1323 adapter->eiac_mask |= rx_ring->ims_val;
1324 if (rx_ring->itr_val)
1325 writel(1000000000 / (rx_ring->itr_val * 256),
1326 hw->hw_addr + rx_ring->itr_register);
1327 else
1328 writel(1, hw->hw_addr + rx_ring->itr_register);
1329 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1330
1331 /* Configure Tx vector */
1332 tx_ring->ims_val = E1000_IMS_TXQ0;
1333 vector++;
1334 if (tx_ring->itr_val)
1335 writel(1000000000 / (tx_ring->itr_val * 256),
1336 hw->hw_addr + tx_ring->itr_register);
1337 else
1338 writel(1, hw->hw_addr + tx_ring->itr_register);
1339 adapter->eiac_mask |= tx_ring->ims_val;
1340 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1341
1342 /* set vector for Other Causes, e.g. link changes */
1343 vector++;
1344 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1345 if (rx_ring->itr_val)
1346 writel(1000000000 / (rx_ring->itr_val * 256),
1347 hw->hw_addr + E1000_EITR_82574(vector));
1348 else
1349 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1350
1351 /* Cause Tx interrupts on every write back */
1352 ivar |= (1 << 31);
1353
1354 ew32(IVAR, ivar);
1355
1356 /* enable MSI-X PBA support */
1357 ctrl_ext = er32(CTRL_EXT);
1358 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1359
1360 /* Auto-Mask Other interrupts upon ICR read */
1361#define E1000_EIAC_MASK_82574 0x01F00000
1362 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1363 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1364 ew32(CTRL_EXT, ctrl_ext);
1365 e1e_flush();
1366}
1367
1368void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1369{
1370 if (adapter->msix_entries) {
1371 pci_disable_msix(adapter->pdev);
1372 kfree(adapter->msix_entries);
1373 adapter->msix_entries = NULL;
1374 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1375 pci_disable_msi(adapter->pdev);
1376 adapter->flags &= ~FLAG_MSI_ENABLED;
1377 }
1378
1379 return;
1380}
1381
1382/**
1383 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1384 *
1385 * Attempt to configure interrupts using the best available
1386 * capabilities of the hardware and kernel.
1387 **/
1388void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1389{
1390 int err;
1391 int numvecs, i;
1392
1393
1394 switch (adapter->int_mode) {
1395 case E1000E_INT_MODE_MSIX:
1396 if (adapter->flags & FLAG_HAS_MSIX) {
1397 numvecs = 3; /* RxQ0, TxQ0 and other */
1398 adapter->msix_entries = kcalloc(numvecs,
1399 sizeof(struct msix_entry),
1400 GFP_KERNEL);
1401 if (adapter->msix_entries) {
1402 for (i = 0; i < numvecs; i++)
1403 adapter->msix_entries[i].entry = i;
1404
1405 err = pci_enable_msix(adapter->pdev,
1406 adapter->msix_entries,
1407 numvecs);
1408 if (err == 0)
1409 return;
1410 }
1411 /* MSI-X failed, so fall through and try MSI */
1412 e_err("Failed to initialize MSI-X interrupts. "
1413 "Falling back to MSI interrupts.\n");
1414 e1000e_reset_interrupt_capability(adapter);
1415 }
1416 adapter->int_mode = E1000E_INT_MODE_MSI;
1417 /* Fall through */
1418 case E1000E_INT_MODE_MSI:
1419 if (!pci_enable_msi(adapter->pdev)) {
1420 adapter->flags |= FLAG_MSI_ENABLED;
1421 } else {
1422 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1423 e_err("Failed to initialize MSI interrupts. Falling "
1424 "back to legacy interrupts.\n");
1425 }
1426 /* Fall through */
1427 case E1000E_INT_MODE_LEGACY:
1428 /* Don't do anything; this is the system default */
1429 break;
1430 }
1431
1432 return;
1433}
1434
1435/**
1436 * e1000_request_msix - Initialize MSI-X interrupts
1437 *
1438 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1439 * kernel.
1440 **/
1441static int e1000_request_msix(struct e1000_adapter *adapter)
1442{
1443 struct net_device *netdev = adapter->netdev;
1444 int err = 0, vector = 0;
1445
1446 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1447 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
4662e82b
BA
1448 else
1449 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1450 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1451 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
4662e82b
BA
1452 netdev);
1453 if (err)
1454 goto out;
1455 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1456 adapter->rx_ring->itr_val = adapter->itr;
1457 vector++;
1458
1459 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 1460 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
4662e82b
BA
1461 else
1462 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1463 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1464 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
4662e82b
BA
1465 netdev);
1466 if (err)
1467 goto out;
1468 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1469 adapter->tx_ring->itr_val = adapter->itr;
1470 vector++;
1471
1472 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1473 e1000_msix_other, 0, netdev->name, netdev);
4662e82b
BA
1474 if (err)
1475 goto out;
1476
1477 e1000_configure_msix(adapter);
1478 return 0;
1479out:
1480 return err;
1481}
1482
f8d59f78
BA
1483/**
1484 * e1000_request_irq - initialize interrupts
1485 *
1486 * Attempts to configure interrupts using the best available
1487 * capabilities of the hardware and kernel.
1488 **/
bc7f75fa
AK
1489static int e1000_request_irq(struct e1000_adapter *adapter)
1490{
1491 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1492 int err;
1493
4662e82b
BA
1494 if (adapter->msix_entries) {
1495 err = e1000_request_msix(adapter);
1496 if (!err)
1497 return err;
1498 /* fall back to MSI */
1499 e1000e_reset_interrupt_capability(adapter);
1500 adapter->int_mode = E1000E_INT_MODE_MSI;
1501 e1000e_set_interrupt_capability(adapter);
bc7f75fa 1502 }
4662e82b 1503 if (adapter->flags & FLAG_MSI_ENABLED) {
a0607fd3 1504 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
4662e82b
BA
1505 netdev->name, netdev);
1506 if (!err)
1507 return err;
bc7f75fa 1508
4662e82b
BA
1509 /* fall back to legacy interrupt */
1510 e1000e_reset_interrupt_capability(adapter);
1511 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
1512 }
1513
a0607fd3 1514 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
4662e82b
BA
1515 netdev->name, netdev);
1516 if (err)
1517 e_err("Unable to allocate interrupt, Error: %d\n", err);
1518
bc7f75fa
AK
1519 return err;
1520}
1521
1522static void e1000_free_irq(struct e1000_adapter *adapter)
1523{
1524 struct net_device *netdev = adapter->netdev;
1525
4662e82b
BA
1526 if (adapter->msix_entries) {
1527 int vector = 0;
1528
1529 free_irq(adapter->msix_entries[vector].vector, netdev);
1530 vector++;
1531
1532 free_irq(adapter->msix_entries[vector].vector, netdev);
1533 vector++;
1534
1535 /* Other Causes interrupt vector */
1536 free_irq(adapter->msix_entries[vector].vector, netdev);
1537 return;
bc7f75fa 1538 }
4662e82b
BA
1539
1540 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
1541}
1542
1543/**
1544 * e1000_irq_disable - Mask off interrupt generation on the NIC
1545 **/
1546static void e1000_irq_disable(struct e1000_adapter *adapter)
1547{
1548 struct e1000_hw *hw = &adapter->hw;
1549
bc7f75fa 1550 ew32(IMC, ~0);
4662e82b
BA
1551 if (adapter->msix_entries)
1552 ew32(EIAC_82574, 0);
bc7f75fa
AK
1553 e1e_flush();
1554 synchronize_irq(adapter->pdev->irq);
1555}
1556
1557/**
1558 * e1000_irq_enable - Enable default interrupt generation settings
1559 **/
1560static void e1000_irq_enable(struct e1000_adapter *adapter)
1561{
1562 struct e1000_hw *hw = &adapter->hw;
1563
4662e82b
BA
1564 if (adapter->msix_entries) {
1565 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1566 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1567 } else {
1568 ew32(IMS, IMS_ENABLE_MASK);
1569 }
74ef9c39 1570 e1e_flush();
bc7f75fa
AK
1571}
1572
1573/**
1574 * e1000_get_hw_control - get control of the h/w from f/w
1575 * @adapter: address of board private structure
1576 *
489815ce 1577 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1578 * For ASF and Pass Through versions of f/w this means that
1579 * the driver is loaded. For AMT version (only with 82573)
1580 * of the f/w this means that the network i/f is open.
1581 **/
1582static void e1000_get_hw_control(struct e1000_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 ctrl_ext;
1586 u32 swsm;
1587
1588 /* Let firmware know the driver has taken over */
1589 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1590 swsm = er32(SWSM);
1591 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1592 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1593 ctrl_ext = er32(CTRL_EXT);
ad68076e 1594 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1595 }
1596}
1597
1598/**
1599 * e1000_release_hw_control - release control of the h/w to f/w
1600 * @adapter: address of board private structure
1601 *
489815ce 1602 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1603 * For ASF and Pass Through versions of f/w this means that the
1604 * driver is no longer loaded. For AMT version (only with 82573) i
1605 * of the f/w this means that the network i/f is closed.
1606 *
1607 **/
1608static void e1000_release_hw_control(struct e1000_adapter *adapter)
1609{
1610 struct e1000_hw *hw = &adapter->hw;
1611 u32 ctrl_ext;
1612 u32 swsm;
1613
1614 /* Let firmware taken over control of h/w */
1615 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1616 swsm = er32(SWSM);
1617 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1618 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1619 ctrl_ext = er32(CTRL_EXT);
ad68076e 1620 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1621 }
1622}
1623
bc7f75fa
AK
1624/**
1625 * @e1000_alloc_ring - allocate memory for a ring structure
1626 **/
1627static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1628 struct e1000_ring *ring)
1629{
1630 struct pci_dev *pdev = adapter->pdev;
1631
1632 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1633 GFP_KERNEL);
1634 if (!ring->desc)
1635 return -ENOMEM;
1636
1637 return 0;
1638}
1639
1640/**
1641 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1642 * @adapter: board private structure
1643 *
1644 * Return 0 on success, negative on failure
1645 **/
1646int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1647{
1648 struct e1000_ring *tx_ring = adapter->tx_ring;
1649 int err = -ENOMEM, size;
1650
1651 size = sizeof(struct e1000_buffer) * tx_ring->count;
1652 tx_ring->buffer_info = vmalloc(size);
1653 if (!tx_ring->buffer_info)
1654 goto err;
1655 memset(tx_ring->buffer_info, 0, size);
1656
1657 /* round up to nearest 4K */
1658 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1659 tx_ring->size = ALIGN(tx_ring->size, 4096);
1660
1661 err = e1000_alloc_ring_dma(adapter, tx_ring);
1662 if (err)
1663 goto err;
1664
1665 tx_ring->next_to_use = 0;
1666 tx_ring->next_to_clean = 0;
bc7f75fa
AK
1667
1668 return 0;
1669err:
1670 vfree(tx_ring->buffer_info);
44defeb3 1671 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1672 return err;
1673}
1674
1675/**
1676 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1677 * @adapter: board private structure
1678 *
1679 * Returns 0 on success, negative on failure
1680 **/
1681int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1682{
1683 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1684 struct e1000_buffer *buffer_info;
1685 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1686
1687 size = sizeof(struct e1000_buffer) * rx_ring->count;
1688 rx_ring->buffer_info = vmalloc(size);
1689 if (!rx_ring->buffer_info)
1690 goto err;
1691 memset(rx_ring->buffer_info, 0, size);
1692
47f44e40
AK
1693 for (i = 0; i < rx_ring->count; i++) {
1694 buffer_info = &rx_ring->buffer_info[i];
1695 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1696 sizeof(struct e1000_ps_page),
1697 GFP_KERNEL);
1698 if (!buffer_info->ps_pages)
1699 goto err_pages;
1700 }
bc7f75fa
AK
1701
1702 desc_len = sizeof(union e1000_rx_desc_packet_split);
1703
1704 /* Round up to nearest 4K */
1705 rx_ring->size = rx_ring->count * desc_len;
1706 rx_ring->size = ALIGN(rx_ring->size, 4096);
1707
1708 err = e1000_alloc_ring_dma(adapter, rx_ring);
1709 if (err)
47f44e40 1710 goto err_pages;
bc7f75fa
AK
1711
1712 rx_ring->next_to_clean = 0;
1713 rx_ring->next_to_use = 0;
1714 rx_ring->rx_skb_top = NULL;
1715
1716 return 0;
47f44e40
AK
1717
1718err_pages:
1719 for (i = 0; i < rx_ring->count; i++) {
1720 buffer_info = &rx_ring->buffer_info[i];
1721 kfree(buffer_info->ps_pages);
1722 }
bc7f75fa
AK
1723err:
1724 vfree(rx_ring->buffer_info);
44defeb3 1725 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1726 return err;
1727}
1728
1729/**
1730 * e1000_clean_tx_ring - Free Tx Buffers
1731 * @adapter: board private structure
1732 **/
1733static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1734{
1735 struct e1000_ring *tx_ring = adapter->tx_ring;
1736 struct e1000_buffer *buffer_info;
1737 unsigned long size;
1738 unsigned int i;
1739
1740 for (i = 0; i < tx_ring->count; i++) {
1741 buffer_info = &tx_ring->buffer_info[i];
1742 e1000_put_txbuf(adapter, buffer_info);
1743 }
1744
1745 size = sizeof(struct e1000_buffer) * tx_ring->count;
1746 memset(tx_ring->buffer_info, 0, size);
1747
1748 memset(tx_ring->desc, 0, tx_ring->size);
1749
1750 tx_ring->next_to_use = 0;
1751 tx_ring->next_to_clean = 0;
1752
1753 writel(0, adapter->hw.hw_addr + tx_ring->head);
1754 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1755}
1756
1757/**
1758 * e1000e_free_tx_resources - Free Tx Resources per Queue
1759 * @adapter: board private structure
1760 *
1761 * Free all transmit software resources
1762 **/
1763void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1764{
1765 struct pci_dev *pdev = adapter->pdev;
1766 struct e1000_ring *tx_ring = adapter->tx_ring;
1767
1768 e1000_clean_tx_ring(adapter);
1769
1770 vfree(tx_ring->buffer_info);
1771 tx_ring->buffer_info = NULL;
1772
1773 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1774 tx_ring->dma);
1775 tx_ring->desc = NULL;
1776}
1777
1778/**
1779 * e1000e_free_rx_resources - Free Rx Resources
1780 * @adapter: board private structure
1781 *
1782 * Free all receive software resources
1783 **/
1784
1785void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1786{
1787 struct pci_dev *pdev = adapter->pdev;
1788 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1789 int i;
bc7f75fa
AK
1790
1791 e1000_clean_rx_ring(adapter);
1792
47f44e40
AK
1793 for (i = 0; i < rx_ring->count; i++) {
1794 kfree(rx_ring->buffer_info[i].ps_pages);
1795 }
1796
bc7f75fa
AK
1797 vfree(rx_ring->buffer_info);
1798 rx_ring->buffer_info = NULL;
1799
bc7f75fa
AK
1800 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1801 rx_ring->dma);
1802 rx_ring->desc = NULL;
1803}
1804
1805/**
1806 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1807 * @adapter: pointer to adapter
1808 * @itr_setting: current adapter->itr
1809 * @packets: the number of packets during this measurement interval
1810 * @bytes: the number of bytes during this measurement interval
1811 *
bc7f75fa
AK
1812 * Stores a new ITR value based on packets and byte
1813 * counts during the last interrupt. The advantage of per interrupt
1814 * computation is faster updates and more accurate ITR for the current
1815 * traffic pattern. Constants in this function were computed
1816 * based on theoretical maximum wire speed and thresholds were set based
1817 * on testing data as well as attempting to minimize response time
4662e82b
BA
1818 * while increasing bulk throughput. This functionality is controlled
1819 * by the InterruptThrottleRate module parameter.
bc7f75fa
AK
1820 **/
1821static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1822 u16 itr_setting, int packets,
1823 int bytes)
1824{
1825 unsigned int retval = itr_setting;
1826
1827 if (packets == 0)
1828 goto update_itr_done;
1829
1830 switch (itr_setting) {
1831 case lowest_latency:
1832 /* handle TSO and jumbo frames */
1833 if (bytes/packets > 8000)
1834 retval = bulk_latency;
1835 else if ((packets < 5) && (bytes > 512)) {
1836 retval = low_latency;
1837 }
1838 break;
1839 case low_latency: /* 50 usec aka 20000 ints/s */
1840 if (bytes > 10000) {
1841 /* this if handles the TSO accounting */
1842 if (bytes/packets > 8000) {
1843 retval = bulk_latency;
1844 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1845 retval = bulk_latency;
1846 } else if ((packets > 35)) {
1847 retval = lowest_latency;
1848 }
1849 } else if (bytes/packets > 2000) {
1850 retval = bulk_latency;
1851 } else if (packets <= 2 && bytes < 512) {
1852 retval = lowest_latency;
1853 }
1854 break;
1855 case bulk_latency: /* 250 usec aka 4000 ints/s */
1856 if (bytes > 25000) {
1857 if (packets > 35) {
1858 retval = low_latency;
1859 }
1860 } else if (bytes < 6000) {
1861 retval = low_latency;
1862 }
1863 break;
1864 }
1865
1866update_itr_done:
1867 return retval;
1868}
1869
1870static void e1000_set_itr(struct e1000_adapter *adapter)
1871{
1872 struct e1000_hw *hw = &adapter->hw;
1873 u16 current_itr;
1874 u32 new_itr = adapter->itr;
1875
1876 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1877 if (adapter->link_speed != SPEED_1000) {
1878 current_itr = 0;
1879 new_itr = 4000;
1880 goto set_itr_now;
1881 }
1882
1883 adapter->tx_itr = e1000_update_itr(adapter,
1884 adapter->tx_itr,
1885 adapter->total_tx_packets,
1886 adapter->total_tx_bytes);
1887 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1888 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1889 adapter->tx_itr = low_latency;
1890
1891 adapter->rx_itr = e1000_update_itr(adapter,
1892 adapter->rx_itr,
1893 adapter->total_rx_packets,
1894 adapter->total_rx_bytes);
1895 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1896 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1897 adapter->rx_itr = low_latency;
1898
1899 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1900
1901 switch (current_itr) {
1902 /* counts and packets in update_itr are dependent on these numbers */
1903 case lowest_latency:
1904 new_itr = 70000;
1905 break;
1906 case low_latency:
1907 new_itr = 20000; /* aka hwitr = ~200 */
1908 break;
1909 case bulk_latency:
1910 new_itr = 4000;
1911 break;
1912 default:
1913 break;
1914 }
1915
1916set_itr_now:
1917 if (new_itr != adapter->itr) {
ad68076e
BA
1918 /*
1919 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1920 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1921 * increasing
1922 */
bc7f75fa
AK
1923 new_itr = new_itr > adapter->itr ?
1924 min(adapter->itr + (new_itr >> 2), new_itr) :
1925 new_itr;
1926 adapter->itr = new_itr;
4662e82b
BA
1927 adapter->rx_ring->itr_val = new_itr;
1928 if (adapter->msix_entries)
1929 adapter->rx_ring->set_itr = 1;
1930 else
1931 ew32(ITR, 1000000000 / (new_itr * 256));
bc7f75fa
AK
1932 }
1933}
1934
4662e82b
BA
1935/**
1936 * e1000_alloc_queues - Allocate memory for all rings
1937 * @adapter: board private structure to initialize
1938 **/
1939static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1940{
1941 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1942 if (!adapter->tx_ring)
1943 goto err;
1944
1945 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1946 if (!adapter->rx_ring)
1947 goto err;
1948
1949 return 0;
1950err:
1951 e_err("Unable to allocate memory for queues\n");
1952 kfree(adapter->rx_ring);
1953 kfree(adapter->tx_ring);
1954 return -ENOMEM;
1955}
1956
bc7f75fa
AK
1957/**
1958 * e1000_clean - NAPI Rx polling callback
ad68076e 1959 * @napi: struct associated with this polling callback
489815ce 1960 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
1961 **/
1962static int e1000_clean(struct napi_struct *napi, int budget)
1963{
1964 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4662e82b 1965 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1966 struct net_device *poll_dev = adapter->netdev;
679e8a0f 1967 int tx_cleaned = 1, work_done = 0;
bc7f75fa 1968
4cf1653a 1969 adapter = netdev_priv(poll_dev);
bc7f75fa 1970
4662e82b
BA
1971 if (adapter->msix_entries &&
1972 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
1973 goto clean_rx;
1974
92af3e95 1975 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa 1976
4662e82b 1977clean_rx:
bc7f75fa 1978 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6 1979
12d04a3c 1980 if (!tx_cleaned)
d2c7ddd6 1981 work_done = budget;
bc7f75fa 1982
53e52c72
DM
1983 /* If budget not fully consumed, exit the polling mode */
1984 if (work_done < budget) {
bc7f75fa
AK
1985 if (adapter->itr_setting & 3)
1986 e1000_set_itr(adapter);
288379f0 1987 napi_complete(napi);
a3c69fef
JB
1988 if (!test_bit(__E1000_DOWN, &adapter->state)) {
1989 if (adapter->msix_entries)
1990 ew32(IMS, adapter->rx_ring->ims_val);
1991 else
1992 e1000_irq_enable(adapter);
1993 }
bc7f75fa
AK
1994 }
1995
1996 return work_done;
1997}
1998
1999static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2000{
2001 struct e1000_adapter *adapter = netdev_priv(netdev);
2002 struct e1000_hw *hw = &adapter->hw;
2003 u32 vfta, index;
2004
2005 /* don't update vlan cookie if already programmed */
2006 if ((adapter->hw.mng_cookie.status &
2007 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2008 (vid == adapter->mng_vlan_id))
2009 return;
2010 /* add VID to filter table */
2011 index = (vid >> 5) & 0x7F;
2012 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2013 vfta |= (1 << (vid & 0x1F));
2014 e1000e_write_vfta(hw, index, vfta);
2015}
2016
2017static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2018{
2019 struct e1000_adapter *adapter = netdev_priv(netdev);
2020 struct e1000_hw *hw = &adapter->hw;
2021 u32 vfta, index;
2022
74ef9c39
JB
2023 if (!test_bit(__E1000_DOWN, &adapter->state))
2024 e1000_irq_disable(adapter);
bc7f75fa 2025 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
2026
2027 if (!test_bit(__E1000_DOWN, &adapter->state))
2028 e1000_irq_enable(adapter);
bc7f75fa
AK
2029
2030 if ((adapter->hw.mng_cookie.status &
2031 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2032 (vid == adapter->mng_vlan_id)) {
2033 /* release control to f/w */
2034 e1000_release_hw_control(adapter);
2035 return;
2036 }
2037
2038 /* remove VID from filter table */
2039 index = (vid >> 5) & 0x7F;
2040 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2041 vfta &= ~(1 << (vid & 0x1F));
2042 e1000e_write_vfta(hw, index, vfta);
2043}
2044
2045static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2046{
2047 struct net_device *netdev = adapter->netdev;
2048 u16 vid = adapter->hw.mng_cookie.vlan_id;
2049 u16 old_vid = adapter->mng_vlan_id;
2050
2051 if (!adapter->vlgrp)
2052 return;
2053
2054 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2055 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2056 if (adapter->hw.mng_cookie.status &
2057 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2058 e1000_vlan_rx_add_vid(netdev, vid);
2059 adapter->mng_vlan_id = vid;
2060 }
2061
2062 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2063 (vid != old_vid) &&
2064 !vlan_group_get_device(adapter->vlgrp, old_vid))
2065 e1000_vlan_rx_kill_vid(netdev, old_vid);
2066 } else {
2067 adapter->mng_vlan_id = vid;
2068 }
2069}
2070
2071
2072static void e1000_vlan_rx_register(struct net_device *netdev,
2073 struct vlan_group *grp)
2074{
2075 struct e1000_adapter *adapter = netdev_priv(netdev);
2076 struct e1000_hw *hw = &adapter->hw;
2077 u32 ctrl, rctl;
2078
74ef9c39
JB
2079 if (!test_bit(__E1000_DOWN, &adapter->state))
2080 e1000_irq_disable(adapter);
bc7f75fa
AK
2081 adapter->vlgrp = grp;
2082
2083 if (grp) {
2084 /* enable VLAN tag insert/strip */
2085 ctrl = er32(CTRL);
2086 ctrl |= E1000_CTRL_VME;
2087 ew32(CTRL, ctrl);
2088
2089 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2090 /* enable VLAN receive filtering */
2091 rctl = er32(RCTL);
bc7f75fa
AK
2092 rctl &= ~E1000_RCTL_CFIEN;
2093 ew32(RCTL, rctl);
2094 e1000_update_mng_vlan(adapter);
2095 }
2096 } else {
2097 /* disable VLAN tag insert/strip */
2098 ctrl = er32(CTRL);
2099 ctrl &= ~E1000_CTRL_VME;
2100 ew32(CTRL, ctrl);
2101
2102 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
bc7f75fa
AK
2103 if (adapter->mng_vlan_id !=
2104 (u16)E1000_MNG_VLAN_NONE) {
2105 e1000_vlan_rx_kill_vid(netdev,
2106 adapter->mng_vlan_id);
2107 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2108 }
2109 }
2110 }
2111
74ef9c39
JB
2112 if (!test_bit(__E1000_DOWN, &adapter->state))
2113 e1000_irq_enable(adapter);
bc7f75fa
AK
2114}
2115
2116static void e1000_restore_vlan(struct e1000_adapter *adapter)
2117{
2118 u16 vid;
2119
2120 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2121
2122 if (!adapter->vlgrp)
2123 return;
2124
2125 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2126 if (!vlan_group_get_device(adapter->vlgrp, vid))
2127 continue;
2128 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2129 }
2130}
2131
2132static void e1000_init_manageability(struct e1000_adapter *adapter)
2133{
2134 struct e1000_hw *hw = &adapter->hw;
2135 u32 manc, manc2h;
2136
2137 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2138 return;
2139
2140 manc = er32(MANC);
2141
ad68076e
BA
2142 /*
2143 * enable receiving management packets to the host. this will probably
bc7f75fa 2144 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2145 * the packets will be handled on SMBUS
2146 */
bc7f75fa
AK
2147 manc |= E1000_MANC_EN_MNG2HOST;
2148 manc2h = er32(MANC2H);
2149#define E1000_MNG2HOST_PORT_623 (1 << 5)
2150#define E1000_MNG2HOST_PORT_664 (1 << 6)
2151 manc2h |= E1000_MNG2HOST_PORT_623;
2152 manc2h |= E1000_MNG2HOST_PORT_664;
2153 ew32(MANC2H, manc2h);
2154 ew32(MANC, manc);
2155}
2156
2157/**
2158 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2159 * @adapter: board private structure
2160 *
2161 * Configure the Tx unit of the MAC after a reset.
2162 **/
2163static void e1000_configure_tx(struct e1000_adapter *adapter)
2164{
2165 struct e1000_hw *hw = &adapter->hw;
2166 struct e1000_ring *tx_ring = adapter->tx_ring;
2167 u64 tdba;
2168 u32 tdlen, tctl, tipg, tarc;
2169 u32 ipgr1, ipgr2;
2170
2171 /* Setup the HW Tx Head and Tail descriptor pointers */
2172 tdba = tx_ring->dma;
2173 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
284901a9 2174 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
bc7f75fa
AK
2175 ew32(TDBAH, (tdba >> 32));
2176 ew32(TDLEN, tdlen);
2177 ew32(TDH, 0);
2178 ew32(TDT, 0);
2179 tx_ring->head = E1000_TDH;
2180 tx_ring->tail = E1000_TDT;
2181
2182 /* Set the default values for the Tx Inter Packet Gap timer */
2183 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2184 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2185 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2186
2187 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2188 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2189
2190 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2191 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2192 ew32(TIPG, tipg);
2193
2194 /* Set the Tx Interrupt Delay register */
2195 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2196 /* Tx irq moderation */
bc7f75fa
AK
2197 ew32(TADV, adapter->tx_abs_int_delay);
2198
2199 /* Program the Transmit Control Register */
2200 tctl = er32(TCTL);
2201 tctl &= ~E1000_TCTL_CT;
2202 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2203 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2204
2205 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2206 tarc = er32(TARC(0));
ad68076e
BA
2207 /*
2208 * set the speed mode bit, we'll clear it if we're not at
2209 * gigabit link later
2210 */
bc7f75fa
AK
2211#define SPEED_MODE_BIT (1 << 21)
2212 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2213 ew32(TARC(0), tarc);
bc7f75fa
AK
2214 }
2215
2216 /* errata: program both queues to unweighted RR */
2217 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2218 tarc = er32(TARC(0));
bc7f75fa 2219 tarc |= 1;
e9ec2c0f
JK
2220 ew32(TARC(0), tarc);
2221 tarc = er32(TARC(1));
bc7f75fa 2222 tarc |= 1;
e9ec2c0f 2223 ew32(TARC(1), tarc);
bc7f75fa
AK
2224 }
2225
bc7f75fa
AK
2226 /* Setup Transmit Descriptor Settings for eop descriptor */
2227 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2228
2229 /* only set IDE if we are delaying interrupts using the timers */
2230 if (adapter->tx_int_delay)
2231 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2232
2233 /* enable Report Status bit */
2234 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2235
2236 ew32(TCTL, tctl);
2237
edfea6e6
SH
2238 e1000e_config_collision_dist(hw);
2239
bc7f75fa
AK
2240 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2241}
2242
2243/**
2244 * e1000_setup_rctl - configure the receive control registers
2245 * @adapter: Board private structure
2246 **/
2247#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2248 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2249static void e1000_setup_rctl(struct e1000_adapter *adapter)
2250{
2251 struct e1000_hw *hw = &adapter->hw;
2252 u32 rctl, rfctl;
2253 u32 psrctl = 0;
2254 u32 pages = 0;
2255
2256 /* Program MC offset vector base */
2257 rctl = er32(RCTL);
2258 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2259 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2260 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2261 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2262
2263 /* Do not Store bad packets */
2264 rctl &= ~E1000_RCTL_SBP;
2265
2266 /* Enable Long Packet receive */
2267 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2268 rctl &= ~E1000_RCTL_LPE;
2269 else
2270 rctl |= E1000_RCTL_LPE;
2271
eb7c3adb
JK
2272 /* Some systems expect that the CRC is included in SMBUS traffic. The
2273 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2274 * host memory when this is enabled
2275 */
2276 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2277 rctl |= E1000_RCTL_SECRC;
5918bd88 2278
a4f58f54
BA
2279 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2280 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2281 u16 phy_data;
2282
2283 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2284 phy_data &= 0xfff8;
2285 phy_data |= (1 << 2);
2286 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2287
2288 e1e_rphy(hw, 22, &phy_data);
2289 phy_data &= 0x0fff;
2290 phy_data |= (1 << 14);
2291 e1e_wphy(hw, 0x10, 0x2823);
2292 e1e_wphy(hw, 0x11, 0x0003);
2293 e1e_wphy(hw, 22, phy_data);
2294 }
2295
bc7f75fa
AK
2296 /* Setup buffer sizes */
2297 rctl &= ~E1000_RCTL_SZ_4096;
2298 rctl |= E1000_RCTL_BSEX;
2299 switch (adapter->rx_buffer_len) {
2300 case 256:
2301 rctl |= E1000_RCTL_SZ_256;
2302 rctl &= ~E1000_RCTL_BSEX;
2303 break;
2304 case 512:
2305 rctl |= E1000_RCTL_SZ_512;
2306 rctl &= ~E1000_RCTL_BSEX;
2307 break;
2308 case 1024:
2309 rctl |= E1000_RCTL_SZ_1024;
2310 rctl &= ~E1000_RCTL_BSEX;
2311 break;
2312 case 2048:
2313 default:
2314 rctl |= E1000_RCTL_SZ_2048;
2315 rctl &= ~E1000_RCTL_BSEX;
2316 break;
2317 case 4096:
2318 rctl |= E1000_RCTL_SZ_4096;
2319 break;
2320 case 8192:
2321 rctl |= E1000_RCTL_SZ_8192;
2322 break;
2323 case 16384:
2324 rctl |= E1000_RCTL_SZ_16384;
2325 break;
2326 }
2327
2328 /*
2329 * 82571 and greater support packet-split where the protocol
2330 * header is placed in skb->data and the packet data is
2331 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2332 * In the case of a non-split, skb->data is linearly filled,
2333 * followed by the page buffers. Therefore, skb->data is
2334 * sized to hold the largest protocol header.
2335 *
2336 * allocations using alloc_page take too long for regular MTU
2337 * so only enable packet split for jumbo frames
2338 *
2339 * Using pages when the page size is greater than 16k wastes
2340 * a lot of memory, since we allocate 3 pages at all times
2341 * per packet.
2342 */
bc7f75fa 2343 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2344 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2345 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2346 adapter->rx_ps_pages = pages;
97ac8cae
BA
2347 else
2348 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2349
2350 if (adapter->rx_ps_pages) {
2351 /* Configure extra packet-split registers */
2352 rfctl = er32(RFCTL);
2353 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2354 /*
2355 * disable packet split support for IPv6 extension headers,
2356 * because some malformed IPv6 headers can hang the Rx
2357 */
bc7f75fa
AK
2358 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2359 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2360
2361 ew32(RFCTL, rfctl);
2362
140a7480
AK
2363 /* Enable Packet split descriptors */
2364 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2365
2366 psrctl |= adapter->rx_ps_bsize0 >>
2367 E1000_PSRCTL_BSIZE0_SHIFT;
2368
2369 switch (adapter->rx_ps_pages) {
2370 case 3:
2371 psrctl |= PAGE_SIZE <<
2372 E1000_PSRCTL_BSIZE3_SHIFT;
2373 case 2:
2374 psrctl |= PAGE_SIZE <<
2375 E1000_PSRCTL_BSIZE2_SHIFT;
2376 case 1:
2377 psrctl |= PAGE_SIZE >>
2378 E1000_PSRCTL_BSIZE1_SHIFT;
2379 break;
2380 }
2381
2382 ew32(PSRCTL, psrctl);
2383 }
2384
2385 ew32(RCTL, rctl);
318a94d6
JK
2386 /* just started the receive unit, no need to restart */
2387 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2388}
2389
2390/**
2391 * e1000_configure_rx - Configure Receive Unit after Reset
2392 * @adapter: board private structure
2393 *
2394 * Configure the Rx unit of the MAC after a reset.
2395 **/
2396static void e1000_configure_rx(struct e1000_adapter *adapter)
2397{
2398 struct e1000_hw *hw = &adapter->hw;
2399 struct e1000_ring *rx_ring = adapter->rx_ring;
2400 u64 rdba;
2401 u32 rdlen, rctl, rxcsum, ctrl_ext;
2402
2403 if (adapter->rx_ps_pages) {
2404 /* this is a 32 byte descriptor */
2405 rdlen = rx_ring->count *
2406 sizeof(union e1000_rx_desc_packet_split);
2407 adapter->clean_rx = e1000_clean_rx_irq_ps;
2408 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2409 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2410 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2411 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2412 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2413 } else {
97ac8cae 2414 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2415 adapter->clean_rx = e1000_clean_rx_irq;
2416 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2417 }
2418
2419 /* disable receives while setting up the descriptors */
2420 rctl = er32(RCTL);
2421 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2422 e1e_flush();
2423 msleep(10);
2424
2425 /* set the Receive Delay Timer Register */
2426 ew32(RDTR, adapter->rx_int_delay);
2427
2428 /* irq moderation */
2429 ew32(RADV, adapter->rx_abs_int_delay);
2430 if (adapter->itr_setting != 0)
ad68076e 2431 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2432
2433 ctrl_ext = er32(CTRL_EXT);
bc7f75fa
AK
2434 /* Auto-Mask interrupts upon ICR access */
2435 ctrl_ext |= E1000_CTRL_EXT_IAME;
2436 ew32(IAM, 0xffffffff);
2437 ew32(CTRL_EXT, ctrl_ext);
2438 e1e_flush();
2439
ad68076e
BA
2440 /*
2441 * Setup the HW Rx Head and Tail Descriptor Pointers and
2442 * the Base and Length of the Rx Descriptor Ring
2443 */
bc7f75fa 2444 rdba = rx_ring->dma;
284901a9 2445 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
bc7f75fa
AK
2446 ew32(RDBAH, (rdba >> 32));
2447 ew32(RDLEN, rdlen);
2448 ew32(RDH, 0);
2449 ew32(RDT, 0);
2450 rx_ring->head = E1000_RDH;
2451 rx_ring->tail = E1000_RDT;
2452
2453 /* Enable Receive Checksum Offload for TCP and UDP */
2454 rxcsum = er32(RXCSUM);
2455 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2456 rxcsum |= E1000_RXCSUM_TUOFL;
2457
ad68076e
BA
2458 /*
2459 * IPv4 payload checksum for UDP fragments must be
2460 * used in conjunction with packet-split.
2461 */
bc7f75fa
AK
2462 if (adapter->rx_ps_pages)
2463 rxcsum |= E1000_RXCSUM_IPPCSE;
2464 } else {
2465 rxcsum &= ~E1000_RXCSUM_TUOFL;
2466 /* no need to clear IPPCSE as it defaults to 0 */
2467 }
2468 ew32(RXCSUM, rxcsum);
2469
ad68076e
BA
2470 /*
2471 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2472 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2473 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2474 */
bc7f75fa 2475 if ((adapter->flags & FLAG_HAS_ERT) &&
97ac8cae
BA
2476 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2477 u32 rxdctl = er32(RXDCTL(0));
2478 ew32(RXDCTL(0), rxdctl | 0x3);
2479 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2480 /*
2481 * With jumbo frames and early-receive enabled, excessive
2482 * C4->C2 latencies result in dropped transactions.
2483 */
2484 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2485 e1000e_driver_name, 55);
2486 } else {
2487 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2488 e1000e_driver_name,
2489 PM_QOS_DEFAULT_VALUE);
2490 }
bc7f75fa
AK
2491
2492 /* Enable Receives */
2493 ew32(RCTL, rctl);
2494}
2495
2496/**
e2de3eb6 2497 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2498 * @hw: pointer to the HW structure
2499 * @mc_addr_list: array of multicast addresses to program
2500 * @mc_addr_count: number of multicast addresses to program
2501 * @rar_used_count: the first RAR register free to program
2502 * @rar_count: total number of supported Receive Address Registers
2503 *
2504 * Updates the Receive Address Registers and Multicast Table Array.
2505 * The caller must have a packed mc_addr_list of multicast addresses.
2506 * The parameter rar_count will usually be hw->mac.rar_entry_count
2507 * unless there are workarounds that change this. Currently no func pointer
2508 * exists and all implementations are handled in the generic version of this
2509 * function.
2510 **/
e2de3eb6
JK
2511static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2512 u32 mc_addr_count, u32 rar_used_count,
2513 u32 rar_count)
bc7f75fa 2514{
e2de3eb6 2515 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
2516 rar_used_count, rar_count);
2517}
2518
2519/**
2520 * e1000_set_multi - Multicast and Promiscuous mode set
2521 * @netdev: network interface device structure
2522 *
2523 * The set_multi entry point is called whenever the multicast address
2524 * list or the network interface flags are updated. This routine is
2525 * responsible for configuring the hardware for proper multicast,
2526 * promiscuous mode, and all-multi behavior.
2527 **/
2528static void e1000_set_multi(struct net_device *netdev)
2529{
2530 struct e1000_adapter *adapter = netdev_priv(netdev);
2531 struct e1000_hw *hw = &adapter->hw;
2532 struct e1000_mac_info *mac = &hw->mac;
2533 struct dev_mc_list *mc_ptr;
2534 u8 *mta_list;
2535 u32 rctl;
2536 int i;
2537
2538 /* Check for Promiscuous and All Multicast modes */
2539
2540 rctl = er32(RCTL);
2541
2542 if (netdev->flags & IFF_PROMISC) {
2543 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2544 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2545 } else {
746b9f02
PM
2546 if (netdev->flags & IFF_ALLMULTI) {
2547 rctl |= E1000_RCTL_MPE;
2548 rctl &= ~E1000_RCTL_UPE;
2549 } else {
2550 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2551 }
78ed11a5 2552 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
746b9f02 2553 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2554 }
2555
2556 ew32(RCTL, rctl);
2557
2558 if (netdev->mc_count) {
2559 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2560 if (!mta_list)
2561 return;
2562
2563 /* prepare a packed array of only addresses. */
2564 mc_ptr = netdev->mc_list;
2565
2566 for (i = 0; i < netdev->mc_count; i++) {
2567 if (!mc_ptr)
2568 break;
2569 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2570 ETH_ALEN);
2571 mc_ptr = mc_ptr->next;
2572 }
2573
e2de3eb6 2574 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
2575 mac->rar_entry_count);
2576 kfree(mta_list);
2577 } else {
2578 /*
2579 * if we're called from probe, we might not have
2580 * anything to do here, so clear out the list
2581 */
e2de3eb6 2582 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
2583 }
2584}
2585
2586/**
ad68076e 2587 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2588 * @adapter: private board structure
2589 **/
2590static void e1000_configure(struct e1000_adapter *adapter)
2591{
2592 e1000_set_multi(adapter->netdev);
2593
2594 e1000_restore_vlan(adapter);
2595 e1000_init_manageability(adapter);
2596
2597 e1000_configure_tx(adapter);
2598 e1000_setup_rctl(adapter);
2599 e1000_configure_rx(adapter);
ad68076e 2600 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2601}
2602
2603/**
2604 * e1000e_power_up_phy - restore link in case the phy was powered down
2605 * @adapter: address of board private structure
2606 *
2607 * The phy may be powered down to save power and turn off link when the
2608 * driver is unloaded and wake on lan is not enabled (among others)
2609 * *** this routine MUST be followed by a call to e1000e_reset ***
2610 **/
2611void e1000e_power_up_phy(struct e1000_adapter *adapter)
2612{
2613 u16 mii_reg = 0;
2614
2615 /* Just clear the power down bit to wake the phy back up */
318a94d6 2616 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2617 /*
2618 * According to the manual, the phy will retain its
2619 * settings across a power-down/up cycle
2620 */
bc7f75fa
AK
2621 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2622 mii_reg &= ~MII_CR_POWER_DOWN;
2623 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2624 }
2625
2626 adapter->hw.mac.ops.setup_link(&adapter->hw);
2627}
2628
2629/**
2630 * e1000_power_down_phy - Power down the PHY
2631 *
2632 * Power down the PHY so no link is implied when interface is down
2633 * The PHY cannot be powered down is management or WoL is active
2634 */
2635static void e1000_power_down_phy(struct e1000_adapter *adapter)
2636{
2637 struct e1000_hw *hw = &adapter->hw;
2638 u16 mii_reg;
2639
2640 /* WoL is enabled */
23b66e2b 2641 if (adapter->wol)
bc7f75fa
AK
2642 return;
2643
2644 /* non-copper PHY? */
318a94d6 2645 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2646 return;
2647
2648 /* reset is blocked because of a SoL/IDER session */
ad68076e 2649 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2650 return;
2651
489815ce 2652 /* manageability (AMT) is enabled */
bc7f75fa
AK
2653 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2654 return;
2655
2656 /* power down the PHY */
2657 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2658 mii_reg |= MII_CR_POWER_DOWN;
2659 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2660 mdelay(1);
2661}
2662
2663/**
2664 * e1000e_reset - bring the hardware into a known good state
2665 *
2666 * This function boots the hardware and enables some settings that
2667 * require a configuration cycle of the hardware - those cannot be
2668 * set/changed during runtime. After reset the device needs to be
ad68076e 2669 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2670 */
2671void e1000e_reset(struct e1000_adapter *adapter)
2672{
2673 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2674 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2675 struct e1000_hw *hw = &adapter->hw;
2676 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2677 u32 pba = adapter->pba;
bc7f75fa
AK
2678 u16 hwm;
2679
ad68076e 2680 /* reset Packet Buffer Allocation to default */
318a94d6 2681 ew32(PBA, pba);
df762464 2682
318a94d6 2683 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2684 /*
2685 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2686 * large enough to accommodate two full transmit packets,
2687 * rounded up to the next 1KB and expressed in KB. Likewise,
2688 * the Rx FIFO should be large enough to accommodate at least
2689 * one full receive packet and is similarly rounded up and
ad68076e
BA
2690 * expressed in KB.
2691 */
df762464 2692 pba = er32(PBA);
bc7f75fa 2693 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2694 tx_space = pba >> 16;
bc7f75fa 2695 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2696 pba &= 0xffff;
ad68076e
BA
2697 /*
2698 * the Tx fifo also stores 16 bytes of information about the tx
2699 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2700 */
2701 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2702 sizeof(struct e1000_tx_desc) -
2703 ETH_FCS_LEN) * 2;
2704 min_tx_space = ALIGN(min_tx_space, 1024);
2705 min_tx_space >>= 10;
2706 /* software strips receive CRC, so leave room for it */
318a94d6 2707 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2708 min_rx_space = ALIGN(min_rx_space, 1024);
2709 min_rx_space >>= 10;
2710
ad68076e
BA
2711 /*
2712 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2713 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2714 * allocation, take space away from current Rx allocation
2715 */
df762464
AK
2716 if ((tx_space < min_tx_space) &&
2717 ((min_tx_space - tx_space) < pba)) {
2718 pba -= min_tx_space - tx_space;
bc7f75fa 2719
ad68076e
BA
2720 /*
2721 * if short on Rx space, Rx wins and must trump tx
2722 * adjustment or use Early Receive if available
2723 */
df762464 2724 if ((pba < min_rx_space) &&
bc7f75fa
AK
2725 (!(adapter->flags & FLAG_HAS_ERT)))
2726 /* ERT enabled in e1000_configure_rx */
df762464 2727 pba = min_rx_space;
bc7f75fa 2728 }
df762464
AK
2729
2730 ew32(PBA, pba);
bc7f75fa
AK
2731 }
2732
bc7f75fa 2733
ad68076e
BA
2734 /*
2735 * flow control settings
2736 *
3ec2a2b8 2737 * The high water mark must be low enough to fit two full frame
bc7f75fa
AK
2738 * (or the size used for early receive) above it in the Rx FIFO.
2739 * Set it to the lower of:
2740 * - 90% of the Rx FIFO size, and
2741 * - the full Rx FIFO size minus the early receive size (for parts
2742 * with ERT support assuming ERT set to E1000_ERT_2048), or
3ec2a2b8 2743 * - the full Rx FIFO size minus two full frames
ad68076e 2744 */
3ec2a2b8
BA
2745 if ((adapter->flags & FLAG_HAS_ERT) &&
2746 (adapter->netdev->mtu > ETH_DATA_LEN))
318a94d6
JK
2747 hwm = min(((pba << 10) * 9 / 10),
2748 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2749 else
318a94d6 2750 hwm = min(((pba << 10) * 9 / 10),
3ec2a2b8 2751 ((pba << 10) - (2 * adapter->max_frame_size)));
bc7f75fa 2752
3ec2a2b8
BA
2753 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2754 fc->low_water = (fc->high_water - (2 * adapter->max_frame_size));
2755 fc->low_water &= E1000_FCRTL_RTL; /* 8-byte granularity */
bc7f75fa
AK
2756
2757 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2758 fc->pause_time = 0xFFFF;
bc7f75fa 2759 else
318a94d6
JK
2760 fc->pause_time = E1000_FC_PAUSE_TIME;
2761 fc->send_xon = 1;
5c48ef3e 2762 fc->current_mode = fc->requested_mode;
bc7f75fa
AK
2763
2764 /* Allow time for pending master requests to run */
2765 mac->ops.reset_hw(hw);
97ac8cae
BA
2766
2767 /*
2768 * For parts with AMT enabled, let the firmware know
2769 * that the network interface is in control
2770 */
c43bc57e 2771 if (adapter->flags & FLAG_HAS_AMT)
97ac8cae
BA
2772 e1000_get_hw_control(adapter);
2773
bc7f75fa 2774 ew32(WUC, 0);
a4f58f54
BA
2775 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2776 e1e_wphy(&adapter->hw, BM_WUC, 0);
bc7f75fa
AK
2777
2778 if (mac->ops.init_hw(hw))
44defeb3 2779 e_err("Hardware Error\n");
bc7f75fa
AK
2780
2781 e1000_update_mng_vlan(adapter);
2782
2783 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2784 ew32(VET, ETH_P_8021Q);
2785
2786 e1000e_reset_adaptive(hw);
2787 e1000_get_phy_info(hw);
2788
918d7197
BA
2789 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2790 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
bc7f75fa 2791 u16 phy_data = 0;
ad68076e
BA
2792 /*
2793 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2794 * the return value of this function because there is nothing
ad68076e
BA
2795 * different we would do if it failed
2796 */
bc7f75fa
AK
2797 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2798 phy_data &= ~IGP02E1000_PM_SPD;
2799 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2800 }
bc7f75fa
AK
2801}
2802
2803int e1000e_up(struct e1000_adapter *adapter)
2804{
2805 struct e1000_hw *hw = &adapter->hw;
2806
2807 /* hardware has been reset, we need to reload some things */
2808 e1000_configure(adapter);
2809
2810 clear_bit(__E1000_DOWN, &adapter->state);
2811
2812 napi_enable(&adapter->napi);
4662e82b
BA
2813 if (adapter->msix_entries)
2814 e1000_configure_msix(adapter);
bc7f75fa
AK
2815 e1000_irq_enable(adapter);
2816
4cb9be7a
JB
2817 netif_wake_queue(adapter->netdev);
2818
bc7f75fa
AK
2819 /* fire a link change interrupt to start the watchdog */
2820 ew32(ICS, E1000_ICS_LSC);
2821 return 0;
2822}
2823
2824void e1000e_down(struct e1000_adapter *adapter)
2825{
2826 struct net_device *netdev = adapter->netdev;
2827 struct e1000_hw *hw = &adapter->hw;
2828 u32 tctl, rctl;
2829
ad68076e
BA
2830 /*
2831 * signal that we're down so the interrupt handler does not
2832 * reschedule our watchdog timer
2833 */
bc7f75fa
AK
2834 set_bit(__E1000_DOWN, &adapter->state);
2835
2836 /* disable receives in the hardware */
2837 rctl = er32(RCTL);
2838 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2839 /* flush and sleep below */
2840
4cb9be7a 2841 netif_stop_queue(netdev);
bc7f75fa
AK
2842
2843 /* disable transmits in the hardware */
2844 tctl = er32(TCTL);
2845 tctl &= ~E1000_TCTL_EN;
2846 ew32(TCTL, tctl);
2847 /* flush both disables and wait for them to finish */
2848 e1e_flush();
2849 msleep(10);
2850
2851 napi_disable(&adapter->napi);
2852 e1000_irq_disable(adapter);
2853
2854 del_timer_sync(&adapter->watchdog_timer);
2855 del_timer_sync(&adapter->phy_info_timer);
2856
2857 netdev->tx_queue_len = adapter->tx_queue_len;
2858 netif_carrier_off(netdev);
2859 adapter->link_speed = 0;
2860 adapter->link_duplex = 0;
2861
52cc3086
JK
2862 if (!pci_channel_offline(adapter->pdev))
2863 e1000e_reset(adapter);
bc7f75fa
AK
2864 e1000_clean_tx_ring(adapter);
2865 e1000_clean_rx_ring(adapter);
2866
2867 /*
2868 * TODO: for power management, we could drop the link and
2869 * pci_disable_device here.
2870 */
2871}
2872
2873void e1000e_reinit_locked(struct e1000_adapter *adapter)
2874{
2875 might_sleep();
2876 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2877 msleep(1);
2878 e1000e_down(adapter);
2879 e1000e_up(adapter);
2880 clear_bit(__E1000_RESETTING, &adapter->state);
2881}
2882
2883/**
2884 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2885 * @adapter: board private structure to initialize
2886 *
2887 * e1000_sw_init initializes the Adapter private data structure.
2888 * Fields are initialized based on PCI device information and
2889 * OS network device settings (MTU size).
2890 **/
2891static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2892{
bc7f75fa
AK
2893 struct net_device *netdev = adapter->netdev;
2894
2895 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2896 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2897 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2898 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa 2899
4662e82b 2900 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2901
4662e82b
BA
2902 if (e1000_alloc_queues(adapter))
2903 return -ENOMEM;
bc7f75fa 2904
bc7f75fa 2905 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2906 e1000_irq_disable(adapter);
2907
bc7f75fa
AK
2908 set_bit(__E1000_DOWN, &adapter->state);
2909 return 0;
bc7f75fa
AK
2910}
2911
f8d59f78
BA
2912/**
2913 * e1000_intr_msi_test - Interrupt Handler
2914 * @irq: interrupt number
2915 * @data: pointer to a network interface device structure
2916 **/
2917static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2918{
2919 struct net_device *netdev = data;
2920 struct e1000_adapter *adapter = netdev_priv(netdev);
2921 struct e1000_hw *hw = &adapter->hw;
2922 u32 icr = er32(ICR);
2923
3bb99fe2 2924 e_dbg("icr is %08X\n", icr);
f8d59f78
BA
2925 if (icr & E1000_ICR_RXSEQ) {
2926 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2927 wmb();
2928 }
2929
2930 return IRQ_HANDLED;
2931}
2932
2933/**
2934 * e1000_test_msi_interrupt - Returns 0 for successful test
2935 * @adapter: board private struct
2936 *
2937 * code flow taken from tg3.c
2938 **/
2939static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2940{
2941 struct net_device *netdev = adapter->netdev;
2942 struct e1000_hw *hw = &adapter->hw;
2943 int err;
2944
2945 /* poll_enable hasn't been called yet, so don't need disable */
2946 /* clear any pending events */
2947 er32(ICR);
2948
2949 /* free the real vector and request a test handler */
2950 e1000_free_irq(adapter);
4662e82b 2951 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
2952
2953 /* Assume that the test fails, if it succeeds then the test
2954 * MSI irq handler will unset this flag */
2955 adapter->flags |= FLAG_MSI_TEST_FAILED;
2956
2957 err = pci_enable_msi(adapter->pdev);
2958 if (err)
2959 goto msi_test_failed;
2960
a0607fd3 2961 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
f8d59f78
BA
2962 netdev->name, netdev);
2963 if (err) {
2964 pci_disable_msi(adapter->pdev);
2965 goto msi_test_failed;
2966 }
2967
2968 wmb();
2969
2970 e1000_irq_enable(adapter);
2971
2972 /* fire an unusual interrupt on the test handler */
2973 ew32(ICS, E1000_ICS_RXSEQ);
2974 e1e_flush();
2975 msleep(50);
2976
2977 e1000_irq_disable(adapter);
2978
2979 rmb();
2980
2981 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 2982 adapter->int_mode = E1000E_INT_MODE_LEGACY;
f8d59f78
BA
2983 err = -EIO;
2984 e_info("MSI interrupt test failed!\n");
2985 }
2986
2987 free_irq(adapter->pdev->irq, netdev);
2988 pci_disable_msi(adapter->pdev);
2989
2990 if (err == -EIO)
2991 goto msi_test_failed;
2992
2993 /* okay so the test worked, restore settings */
3bb99fe2 2994 e_dbg("MSI interrupt test succeeded!\n");
f8d59f78 2995msi_test_failed:
4662e82b 2996 e1000e_set_interrupt_capability(adapter);
f8d59f78
BA
2997 e1000_request_irq(adapter);
2998 return err;
2999}
3000
3001/**
3002 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3003 * @adapter: board private struct
3004 *
3005 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3006 **/
3007static int e1000_test_msi(struct e1000_adapter *adapter)
3008{
3009 int err;
3010 u16 pci_cmd;
3011
3012 if (!(adapter->flags & FLAG_MSI_ENABLED))
3013 return 0;
3014
3015 /* disable SERR in case the MSI write causes a master abort */
3016 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3017 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3018 pci_cmd & ~PCI_COMMAND_SERR);
3019
3020 err = e1000_test_msi_interrupt(adapter);
3021
3022 /* restore previous setting of command word */
3023 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3024
3025 /* success ! */
3026 if (!err)
3027 return 0;
3028
3029 /* EIO means MSI test failed */
3030 if (err != -EIO)
3031 return err;
3032
3033 /* back to INTx mode */
3034 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3035
3036 e1000_free_irq(adapter);
3037
3038 err = e1000_request_irq(adapter);
3039
3040 return err;
3041}
3042
bc7f75fa
AK
3043/**
3044 * e1000_open - Called when a network interface is made active
3045 * @netdev: network interface device structure
3046 *
3047 * Returns 0 on success, negative value on failure
3048 *
3049 * The open entry point is called when a network interface is made
3050 * active by the system (IFF_UP). At this point all resources needed
3051 * for transmit and receive operations are allocated, the interrupt
3052 * handler is registered with the OS, the watchdog timer is started,
3053 * and the stack is notified that the interface is ready.
3054 **/
3055static int e1000_open(struct net_device *netdev)
3056{
3057 struct e1000_adapter *adapter = netdev_priv(netdev);
3058 struct e1000_hw *hw = &adapter->hw;
3059 int err;
3060
3061 /* disallow open during test */
3062 if (test_bit(__E1000_TESTING, &adapter->state))
3063 return -EBUSY;
3064
9c563d20
JB
3065 netif_carrier_off(netdev);
3066
bc7f75fa
AK
3067 /* allocate transmit descriptors */
3068 err = e1000e_setup_tx_resources(adapter);
3069 if (err)
3070 goto err_setup_tx;
3071
3072 /* allocate receive descriptors */
3073 err = e1000e_setup_rx_resources(adapter);
3074 if (err)
3075 goto err_setup_rx;
3076
3077 e1000e_power_up_phy(adapter);
3078
3079 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3080 if ((adapter->hw.mng_cookie.status &
3081 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3082 e1000_update_mng_vlan(adapter);
3083
ad68076e
BA
3084 /*
3085 * If AMT is enabled, let the firmware know that the network
3086 * interface is now open
3087 */
c43bc57e 3088 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3089 e1000_get_hw_control(adapter);
3090
ad68076e
BA
3091 /*
3092 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
3093 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3094 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
3095 * clean_rx handler before we do so.
3096 */
bc7f75fa
AK
3097 e1000_configure(adapter);
3098
3099 err = e1000_request_irq(adapter);
3100 if (err)
3101 goto err_req_irq;
3102
f8d59f78
BA
3103 /*
3104 * Work around PCIe errata with MSI interrupts causing some chipsets to
3105 * ignore e1000e MSI messages, which means we need to test our MSI
3106 * interrupt now
3107 */
4662e82b 3108 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
3109 err = e1000_test_msi(adapter);
3110 if (err) {
3111 e_err("Interrupt allocation failed\n");
3112 goto err_req_irq;
3113 }
3114 }
3115
bc7f75fa
AK
3116 /* From here on the code is the same as e1000e_up() */
3117 clear_bit(__E1000_DOWN, &adapter->state);
3118
3119 napi_enable(&adapter->napi);
3120
3121 e1000_irq_enable(adapter);
3122
4cb9be7a 3123 netif_start_queue(netdev);
d55b53ff 3124
bc7f75fa
AK
3125 /* fire a link status change interrupt to start the watchdog */
3126 ew32(ICS, E1000_ICS_LSC);
3127
3128 return 0;
3129
3130err_req_irq:
3131 e1000_release_hw_control(adapter);
3132 e1000_power_down_phy(adapter);
3133 e1000e_free_rx_resources(adapter);
3134err_setup_rx:
3135 e1000e_free_tx_resources(adapter);
3136err_setup_tx:
3137 e1000e_reset(adapter);
3138
3139 return err;
3140}
3141
3142/**
3143 * e1000_close - Disables a network interface
3144 * @netdev: network interface device structure
3145 *
3146 * Returns 0, this is not allowed to fail
3147 *
3148 * The close entry point is called when an interface is de-activated
3149 * by the OS. The hardware is still under the drivers control, but
3150 * needs to be disabled. A global MAC reset is issued to stop the
3151 * hardware, and all transmit and receive resources are freed.
3152 **/
3153static int e1000_close(struct net_device *netdev)
3154{
3155 struct e1000_adapter *adapter = netdev_priv(netdev);
3156
3157 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3158 e1000e_down(adapter);
3159 e1000_power_down_phy(adapter);
3160 e1000_free_irq(adapter);
3161
3162 e1000e_free_tx_resources(adapter);
3163 e1000e_free_rx_resources(adapter);
3164
ad68076e
BA
3165 /*
3166 * kill manageability vlan ID if supported, but not if a vlan with
3167 * the same ID is registered on the host OS (let 8021q kill it)
3168 */
bc7f75fa
AK
3169 if ((adapter->hw.mng_cookie.status &
3170 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3171 !(adapter->vlgrp &&
3172 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3173 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3174
ad68076e
BA
3175 /*
3176 * If AMT is enabled, let the firmware know that the network
3177 * interface is now closed
3178 */
c43bc57e 3179 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3180 e1000_release_hw_control(adapter);
3181
3182 return 0;
3183}
3184/**
3185 * e1000_set_mac - Change the Ethernet Address of the NIC
3186 * @netdev: network interface device structure
3187 * @p: pointer to an address structure
3188 *
3189 * Returns 0 on success, negative on failure
3190 **/
3191static int e1000_set_mac(struct net_device *netdev, void *p)
3192{
3193 struct e1000_adapter *adapter = netdev_priv(netdev);
3194 struct sockaddr *addr = p;
3195
3196 if (!is_valid_ether_addr(addr->sa_data))
3197 return -EADDRNOTAVAIL;
3198
3199 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3200 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3201
3202 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3203
3204 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3205 /* activate the work around */
3206 e1000e_set_laa_state_82571(&adapter->hw, 1);
3207
ad68076e
BA
3208 /*
3209 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
3210 * between the time RAR[0] gets clobbered and the time it
3211 * gets fixed (in e1000_watchdog), the actual LAA is in one
3212 * of the RARs and no incoming packets directed to this port
3213 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
3214 * RAR[14]
3215 */
bc7f75fa
AK
3216 e1000e_rar_set(&adapter->hw,
3217 adapter->hw.mac.addr,
3218 adapter->hw.mac.rar_entry_count - 1);
3219 }
3220
3221 return 0;
3222}
3223
a8f88ff5
JB
3224/**
3225 * e1000e_update_phy_task - work thread to update phy
3226 * @work: pointer to our work struct
3227 *
3228 * this worker thread exists because we must acquire a
3229 * semaphore to read the phy, which we could msleep while
3230 * waiting for it, and we can't msleep in a timer.
3231 **/
3232static void e1000e_update_phy_task(struct work_struct *work)
3233{
3234 struct e1000_adapter *adapter = container_of(work,
3235 struct e1000_adapter, update_phy_task);
3236 e1000_get_phy_info(&adapter->hw);
3237}
3238
ad68076e
BA
3239/*
3240 * Need to wait a few seconds after link up to get diagnostic information from
3241 * the phy
3242 */
bc7f75fa
AK
3243static void e1000_update_phy_info(unsigned long data)
3244{
3245 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
a8f88ff5 3246 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
3247}
3248
3249/**
3250 * e1000e_update_stats - Update the board statistics counters
3251 * @adapter: board private structure
3252 **/
3253void e1000e_update_stats(struct e1000_adapter *adapter)
3254{
7274c20f 3255 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
3256 struct e1000_hw *hw = &adapter->hw;
3257 struct pci_dev *pdev = adapter->pdev;
a4f58f54 3258 u16 phy_data;
bc7f75fa
AK
3259
3260 /*
3261 * Prevent stats update while adapter is being reset, or if the pci
3262 * connection is down.
3263 */
3264 if (adapter->link_speed == 0)
3265 return;
3266 if (pci_channel_offline(pdev))
3267 return;
3268
bc7f75fa
AK
3269 adapter->stats.crcerrs += er32(CRCERRS);
3270 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
3271 adapter->stats.gorc += er32(GORCL);
3272 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
3273 adapter->stats.bprc += er32(BPRC);
3274 adapter->stats.mprc += er32(MPRC);
3275 adapter->stats.roc += er32(ROC);
3276
bc7f75fa 3277 adapter->stats.mpc += er32(MPC);
a4f58f54
BA
3278 if ((hw->phy.type == e1000_phy_82578) ||
3279 (hw->phy.type == e1000_phy_82577)) {
3280 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3281 e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
3282 adapter->stats.scc += phy_data;
3283
3284 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3285 e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
3286 adapter->stats.ecol += phy_data;
3287
3288 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3289 e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
3290 adapter->stats.mcc += phy_data;
3291
3292 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3293 e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
3294 adapter->stats.latecol += phy_data;
3295
3296 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3297 e1e_rphy(hw, HV_DC_LOWER, &phy_data);
3298 adapter->stats.dc += phy_data;
3299 } else {
3300 adapter->stats.scc += er32(SCC);
3301 adapter->stats.ecol += er32(ECOL);
3302 adapter->stats.mcc += er32(MCC);
3303 adapter->stats.latecol += er32(LATECOL);
3304 adapter->stats.dc += er32(DC);
3305 }
bc7f75fa
AK
3306 adapter->stats.xonrxc += er32(XONRXC);
3307 adapter->stats.xontxc += er32(XONTXC);
3308 adapter->stats.xoffrxc += er32(XOFFRXC);
3309 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 3310 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
3311 adapter->stats.gotc += er32(GOTCL);
3312 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
3313 adapter->stats.rnbc += er32(RNBC);
3314 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
3315
3316 adapter->stats.mptc += er32(MPTC);
3317 adapter->stats.bptc += er32(BPTC);
3318
3319 /* used for adaptive IFS */
3320
3321 hw->mac.tx_packet_delta = er32(TPT);
3322 adapter->stats.tpt += hw->mac.tx_packet_delta;
a4f58f54
BA
3323 if ((hw->phy.type == e1000_phy_82578) ||
3324 (hw->phy.type == e1000_phy_82577)) {
3325 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3326 e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
3327 hw->mac.collision_delta = phy_data;
3328 } else {
3329 hw->mac.collision_delta = er32(COLC);
3330 }
bc7f75fa
AK
3331 adapter->stats.colc += hw->mac.collision_delta;
3332
3333 adapter->stats.algnerrc += er32(ALGNERRC);
3334 adapter->stats.rxerrc += er32(RXERRC);
a4f58f54
BA
3335 if ((hw->phy.type == e1000_phy_82578) ||
3336 (hw->phy.type == e1000_phy_82577)) {
3337 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3338 e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
3339 adapter->stats.tncrs += phy_data;
3340 } else {
3341 if ((hw->mac.type != e1000_82574) &&
3342 (hw->mac.type != e1000_82583))
3343 adapter->stats.tncrs += er32(TNCRS);
3344 }
bc7f75fa
AK
3345 adapter->stats.cexterr += er32(CEXTERR);
3346 adapter->stats.tsctc += er32(TSCTC);
3347 adapter->stats.tsctfc += er32(TSCTFC);
3348
bc7f75fa 3349 /* Fill out the OS statistics structure */
7274c20f
AK
3350 netdev->stats.multicast = adapter->stats.mprc;
3351 netdev->stats.collisions = adapter->stats.colc;
bc7f75fa
AK
3352
3353 /* Rx Errors */
3354
ad68076e
BA
3355 /*
3356 * RLEC on some newer hardware can be incorrect so build
3357 * our own version based on RUC and ROC
3358 */
7274c20f 3359 netdev->stats.rx_errors = adapter->stats.rxerrc +
bc7f75fa
AK
3360 adapter->stats.crcerrs + adapter->stats.algnerrc +
3361 adapter->stats.ruc + adapter->stats.roc +
3362 adapter->stats.cexterr;
7274c20f 3363 netdev->stats.rx_length_errors = adapter->stats.ruc +
bc7f75fa 3364 adapter->stats.roc;
7274c20f
AK
3365 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3366 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3367 netdev->stats.rx_missed_errors = adapter->stats.mpc;
bc7f75fa
AK
3368
3369 /* Tx Errors */
7274c20f 3370 netdev->stats.tx_errors = adapter->stats.ecol +
bc7f75fa 3371 adapter->stats.latecol;
7274c20f
AK
3372 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3373 netdev->stats.tx_window_errors = adapter->stats.latecol;
3374 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
bc7f75fa
AK
3375
3376 /* Tx Dropped needs to be maintained elsewhere */
3377
bc7f75fa
AK
3378 /* Management Stats */
3379 adapter->stats.mgptc += er32(MGTPTC);
3380 adapter->stats.mgprc += er32(MGTPRC);
3381 adapter->stats.mgpdc += er32(MGTPDC);
bc7f75fa
AK
3382}
3383
7c25769f
BA
3384/**
3385 * e1000_phy_read_status - Update the PHY register status snapshot
3386 * @adapter: board private structure
3387 **/
3388static void e1000_phy_read_status(struct e1000_adapter *adapter)
3389{
3390 struct e1000_hw *hw = &adapter->hw;
3391 struct e1000_phy_regs *phy = &adapter->phy_regs;
3392 int ret_val;
7c25769f
BA
3393
3394 if ((er32(STATUS) & E1000_STATUS_LU) &&
3395 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3396 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3397 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3398 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3399 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3400 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3401 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3402 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3403 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3404 if (ret_val)
44defeb3 3405 e_warn("Error reading PHY register\n");
7c25769f
BA
3406 } else {
3407 /*
3408 * Do not read PHY registers if link is not up
3409 * Set values to typical power-on defaults
3410 */
3411 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3412 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3413 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3414 BMSR_ERCAP);
3415 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3416 ADVERTISE_ALL | ADVERTISE_CSMA);
3417 phy->lpa = 0;
3418 phy->expansion = EXPANSION_ENABLENPAGE;
3419 phy->ctrl1000 = ADVERTISE_1000FULL;
3420 phy->stat1000 = 0;
3421 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3422 }
7c25769f
BA
3423}
3424
bc7f75fa
AK
3425static void e1000_print_link_info(struct e1000_adapter *adapter)
3426{
bc7f75fa
AK
3427 struct e1000_hw *hw = &adapter->hw;
3428 u32 ctrl = er32(CTRL);
3429
8f12fe86
BA
3430 /* Link status message must follow this format for user tools */
3431 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3432 "Flow Control: %s\n",
3433 adapter->netdev->name,
44defeb3
JK
3434 adapter->link_speed,
3435 (adapter->link_duplex == FULL_DUPLEX) ?
3436 "Full Duplex" : "Half Duplex",
3437 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3438 "RX/TX" :
3439 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3440 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
bc7f75fa
AK
3441}
3442
a20e4cf9 3443bool e1000_has_link(struct e1000_adapter *adapter)
318a94d6
JK
3444{
3445 struct e1000_hw *hw = &adapter->hw;
3446 bool link_active = 0;
3447 s32 ret_val = 0;
3448
3449 /*
3450 * get_link_status is set on LSC (link status) interrupt or
3451 * Rx sequence error interrupt. get_link_status will stay
3452 * false until the check_for_link establishes link
3453 * for copper adapters ONLY
3454 */
3455 switch (hw->phy.media_type) {
3456 case e1000_media_type_copper:
3457 if (hw->mac.get_link_status) {
3458 ret_val = hw->mac.ops.check_for_link(hw);
3459 link_active = !hw->mac.get_link_status;
3460 } else {
3461 link_active = 1;
3462 }
3463 break;
3464 case e1000_media_type_fiber:
3465 ret_val = hw->mac.ops.check_for_link(hw);
3466 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3467 break;
3468 case e1000_media_type_internal_serdes:
3469 ret_val = hw->mac.ops.check_for_link(hw);
3470 link_active = adapter->hw.mac.serdes_has_link;
3471 break;
3472 default:
3473 case e1000_media_type_unknown:
3474 break;
3475 }
3476
3477 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3478 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3479 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 3480 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
3481 }
3482
3483 return link_active;
3484}
3485
3486static void e1000e_enable_receives(struct e1000_adapter *adapter)
3487{
3488 /* make sure the receive unit is started */
3489 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3490 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3491 struct e1000_hw *hw = &adapter->hw;
3492 u32 rctl = er32(RCTL);
3493 ew32(RCTL, rctl | E1000_RCTL_EN);
3494 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3495 }
3496}
3497
bc7f75fa
AK
3498/**
3499 * e1000_watchdog - Timer Call-back
3500 * @data: pointer to adapter cast into an unsigned long
3501 **/
3502static void e1000_watchdog(unsigned long data)
3503{
3504 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3505
3506 /* Do the rest outside of interrupt context */
3507 schedule_work(&adapter->watchdog_task);
3508
3509 /* TODO: make this use queue_delayed_work() */
3510}
3511
3512static void e1000_watchdog_task(struct work_struct *work)
3513{
3514 struct e1000_adapter *adapter = container_of(work,
3515 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3516 struct net_device *netdev = adapter->netdev;
3517 struct e1000_mac_info *mac = &adapter->hw.mac;
75eb0fad 3518 struct e1000_phy_info *phy = &adapter->hw.phy;
bc7f75fa
AK
3519 struct e1000_ring *tx_ring = adapter->tx_ring;
3520 struct e1000_hw *hw = &adapter->hw;
3521 u32 link, tctl;
bc7f75fa
AK
3522 int tx_pending = 0;
3523
318a94d6
JK
3524 link = e1000_has_link(adapter);
3525 if ((netif_carrier_ok(netdev)) && link) {
3526 e1000e_enable_receives(adapter);
bc7f75fa 3527 goto link_up;
bc7f75fa
AK
3528 }
3529
3530 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3531 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3532 e1000_update_mng_vlan(adapter);
3533
bc7f75fa
AK
3534 if (link) {
3535 if (!netif_carrier_ok(netdev)) {
3536 bool txb2b = 1;
318a94d6 3537 /* update snapshot of PHY registers on LSC */
7c25769f 3538 e1000_phy_read_status(adapter);
bc7f75fa
AK
3539 mac->ops.get_link_up_info(&adapter->hw,
3540 &adapter->link_speed,
3541 &adapter->link_duplex);
3542 e1000_print_link_info(adapter);
f4187b56
BA
3543 /*
3544 * On supported PHYs, check for duplex mismatch only
3545 * if link has autonegotiated at 10/100 half
3546 */
3547 if ((hw->phy.type == e1000_phy_igp_3 ||
3548 hw->phy.type == e1000_phy_bm) &&
3549 (hw->mac.autoneg == true) &&
3550 (adapter->link_speed == SPEED_10 ||
3551 adapter->link_speed == SPEED_100) &&
3552 (adapter->link_duplex == HALF_DUPLEX)) {
3553 u16 autoneg_exp;
3554
3555 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3556
3557 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3558 e_info("Autonegotiated half duplex but"
3559 " link partner cannot autoneg. "
3560 " Try forcing full duplex if "
3561 "link gets many collisions.\n");
3562 }
3563
ad68076e
BA
3564 /*
3565 * tweak tx_queue_len according to speed/duplex
3566 * and adjust the timeout factor
3567 */
bc7f75fa
AK
3568 netdev->tx_queue_len = adapter->tx_queue_len;
3569 adapter->tx_timeout_factor = 1;
3570 switch (adapter->link_speed) {
3571 case SPEED_10:
3572 txb2b = 0;
3573 netdev->tx_queue_len = 10;
10f1b492 3574 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
3575 break;
3576 case SPEED_100:
3577 txb2b = 0;
3578 netdev->tx_queue_len = 100;
3579 /* maybe add some timeout factor ? */
3580 break;
3581 }
3582
ad68076e
BA
3583 /*
3584 * workaround: re-program speed mode bit after
3585 * link-up event
3586 */
bc7f75fa
AK
3587 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3588 !txb2b) {
3589 u32 tarc0;
e9ec2c0f 3590 tarc0 = er32(TARC(0));
bc7f75fa 3591 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3592 ew32(TARC(0), tarc0);
bc7f75fa
AK
3593 }
3594
ad68076e
BA
3595 /*
3596 * disable TSO for pcie and 10/100 speeds, to avoid
3597 * some hardware issues
3598 */
bc7f75fa
AK
3599 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3600 switch (adapter->link_speed) {
3601 case SPEED_10:
3602 case SPEED_100:
44defeb3 3603 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
3604 netdev->features &= ~NETIF_F_TSO;
3605 netdev->features &= ~NETIF_F_TSO6;
3606 break;
3607 case SPEED_1000:
3608 netdev->features |= NETIF_F_TSO;
3609 netdev->features |= NETIF_F_TSO6;
3610 break;
3611 default:
3612 /* oops */
3613 break;
3614 }
3615 }
3616
ad68076e
BA
3617 /*
3618 * enable transmits in the hardware, need to do this
3619 * after setting TARC(0)
3620 */
bc7f75fa
AK
3621 tctl = er32(TCTL);
3622 tctl |= E1000_TCTL_EN;
3623 ew32(TCTL, tctl);
3624
75eb0fad
BA
3625 /*
3626 * Perform any post-link-up configuration before
3627 * reporting link up.
3628 */
3629 if (phy->ops.cfg_on_link_up)
3630 phy->ops.cfg_on_link_up(hw);
3631
bc7f75fa 3632 netif_carrier_on(netdev);
bc7f75fa
AK
3633
3634 if (!test_bit(__E1000_DOWN, &adapter->state))
3635 mod_timer(&adapter->phy_info_timer,
3636 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3637 }
3638 } else {
3639 if (netif_carrier_ok(netdev)) {
3640 adapter->link_speed = 0;
3641 adapter->link_duplex = 0;
8f12fe86
BA
3642 /* Link status message must follow this format */
3643 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3644 adapter->netdev->name);
bc7f75fa 3645 netif_carrier_off(netdev);
bc7f75fa
AK
3646 if (!test_bit(__E1000_DOWN, &adapter->state))
3647 mod_timer(&adapter->phy_info_timer,
3648 round_jiffies(jiffies + 2 * HZ));
3649
3650 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3651 schedule_work(&adapter->reset_task);
3652 }
3653 }
3654
3655link_up:
3656 e1000e_update_stats(adapter);
3657
3658 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3659 adapter->tpt_old = adapter->stats.tpt;
3660 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3661 adapter->colc_old = adapter->stats.colc;
3662
7c25769f
BA
3663 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3664 adapter->gorc_old = adapter->stats.gorc;
3665 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3666 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3667
3668 e1000e_update_adaptive(&adapter->hw);
3669
3670 if (!netif_carrier_ok(netdev)) {
3671 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3672 tx_ring->count);
3673 if (tx_pending) {
ad68076e
BA
3674 /*
3675 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3676 * but we've got queued Tx work that's never going
3677 * to get done, so reset controller to flush Tx.
ad68076e
BA
3678 * (Do the reset outside of interrupt context).
3679 */
bc7f75fa
AK
3680 adapter->tx_timeout_count++;
3681 schedule_work(&adapter->reset_task);
c2d5ab49
JB
3682 /* return immediately since reset is imminent */
3683 return;
bc7f75fa
AK
3684 }
3685 }
3686
ad68076e 3687 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
3688 if (adapter->msix_entries)
3689 ew32(ICS, adapter->rx_ring->ims_val);
3690 else
3691 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa
AK
3692
3693 /* Force detection of hung controller every watchdog period */
3694 adapter->detect_tx_hung = 1;
3695
ad68076e
BA
3696 /*
3697 * With 82571 controllers, LAA may be overwritten due to controller
3698 * reset from the other port. Set the appropriate LAA in RAR[0]
3699 */
bc7f75fa
AK
3700 if (e1000e_get_laa_state_82571(hw))
3701 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3702
3703 /* Reset the timer */
3704 if (!test_bit(__E1000_DOWN, &adapter->state))
3705 mod_timer(&adapter->watchdog_timer,
3706 round_jiffies(jiffies + 2 * HZ));
3707}
3708
3709#define E1000_TX_FLAGS_CSUM 0x00000001
3710#define E1000_TX_FLAGS_VLAN 0x00000002
3711#define E1000_TX_FLAGS_TSO 0x00000004
3712#define E1000_TX_FLAGS_IPV4 0x00000008
3713#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3714#define E1000_TX_FLAGS_VLAN_SHIFT 16
3715
3716static int e1000_tso(struct e1000_adapter *adapter,
3717 struct sk_buff *skb)
3718{
3719 struct e1000_ring *tx_ring = adapter->tx_ring;
3720 struct e1000_context_desc *context_desc;
3721 struct e1000_buffer *buffer_info;
3722 unsigned int i;
3723 u32 cmd_length = 0;
3724 u16 ipcse = 0, tucse, mss;
3725 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3726 int err;
3727
3728 if (skb_is_gso(skb)) {
3729 if (skb_header_cloned(skb)) {
3730 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3731 if (err)
3732 return err;
3733 }
3734
3735 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3736 mss = skb_shinfo(skb)->gso_size;
3737 if (skb->protocol == htons(ETH_P_IP)) {
3738 struct iphdr *iph = ip_hdr(skb);
3739 iph->tot_len = 0;
3740 iph->check = 0;
3741 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3742 iph->daddr, 0,
3743 IPPROTO_TCP,
3744 0);
3745 cmd_length = E1000_TXD_CMD_IP;
3746 ipcse = skb_transport_offset(skb) - 1;
3747 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3748 ipv6_hdr(skb)->payload_len = 0;
3749 tcp_hdr(skb)->check =
3750 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3751 &ipv6_hdr(skb)->daddr,
3752 0, IPPROTO_TCP, 0);
3753 ipcse = 0;
3754 }
3755 ipcss = skb_network_offset(skb);
3756 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3757 tucss = skb_transport_offset(skb);
3758 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3759 tucse = 0;
3760
3761 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3762 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3763
3764 i = tx_ring->next_to_use;
3765 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3766 buffer_info = &tx_ring->buffer_info[i];
3767
3768 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3769 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3770 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3771 context_desc->upper_setup.tcp_fields.tucss = tucss;
3772 context_desc->upper_setup.tcp_fields.tucso = tucso;
3773 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3774 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3775 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3776 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3777
3778 buffer_info->time_stamp = jiffies;
3779 buffer_info->next_to_watch = i;
3780
3781 i++;
3782 if (i == tx_ring->count)
3783 i = 0;
3784 tx_ring->next_to_use = i;
3785
3786 return 1;
3787 }
3788
3789 return 0;
3790}
3791
3792static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3793{
3794 struct e1000_ring *tx_ring = adapter->tx_ring;
3795 struct e1000_context_desc *context_desc;
3796 struct e1000_buffer *buffer_info;
3797 unsigned int i;
3798 u8 css;
af807c82 3799 u32 cmd_len = E1000_TXD_CMD_DEXT;
5f66f208 3800 __be16 protocol;
bc7f75fa 3801
af807c82
DG
3802 if (skb->ip_summed != CHECKSUM_PARTIAL)
3803 return 0;
bc7f75fa 3804
5f66f208
AJ
3805 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3806 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3807 else
3808 protocol = skb->protocol;
3809
3f518390 3810 switch (protocol) {
09640e63 3811 case cpu_to_be16(ETH_P_IP):
af807c82
DG
3812 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3813 cmd_len |= E1000_TXD_CMD_TCP;
3814 break;
09640e63 3815 case cpu_to_be16(ETH_P_IPV6):
af807c82
DG
3816 /* XXX not handling all IPV6 headers */
3817 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3818 cmd_len |= E1000_TXD_CMD_TCP;
3819 break;
3820 default:
3821 if (unlikely(net_ratelimit()))
5f66f208
AJ
3822 e_warn("checksum_partial proto=%x!\n",
3823 be16_to_cpu(protocol));
af807c82 3824 break;
bc7f75fa
AK
3825 }
3826
af807c82
DG
3827 css = skb_transport_offset(skb);
3828
3829 i = tx_ring->next_to_use;
3830 buffer_info = &tx_ring->buffer_info[i];
3831 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3832
3833 context_desc->lower_setup.ip_config = 0;
3834 context_desc->upper_setup.tcp_fields.tucss = css;
3835 context_desc->upper_setup.tcp_fields.tucso =
3836 css + skb->csum_offset;
3837 context_desc->upper_setup.tcp_fields.tucse = 0;
3838 context_desc->tcp_seg_setup.data = 0;
3839 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3840
3841 buffer_info->time_stamp = jiffies;
3842 buffer_info->next_to_watch = i;
3843
3844 i++;
3845 if (i == tx_ring->count)
3846 i = 0;
3847 tx_ring->next_to_use = i;
3848
3849 return 1;
bc7f75fa
AK
3850}
3851
3852#define E1000_MAX_PER_TXD 8192
3853#define E1000_MAX_TXD_PWR 12
3854
3855static int e1000_tx_map(struct e1000_adapter *adapter,
3856 struct sk_buff *skb, unsigned int first,
3857 unsigned int max_per_txd, unsigned int nr_frags,
3858 unsigned int mss)
3859{
3860 struct e1000_ring *tx_ring = adapter->tx_ring;
1b7719c4 3861 struct e1000_buffer *buffer_info;
8ddc951c
JB
3862 unsigned int len = skb_headlen(skb);
3863 unsigned int offset, size, count = 0, i;
bc7f75fa 3864 unsigned int f;
1b7719c4 3865 dma_addr_t *map;
bc7f75fa
AK
3866
3867 i = tx_ring->next_to_use;
3868
8ddc951c
JB
3869 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3870 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3871 adapter->tx_dma_failed++;
1b7719c4 3872 return 0;
8ddc951c
JB
3873 }
3874
1b7719c4 3875 map = skb_shinfo(skb)->dma_maps;
8ddc951c
JB
3876 offset = 0;
3877
bc7f75fa 3878 while (len) {
1b7719c4 3879 buffer_info = &tx_ring->buffer_info[i];
bc7f75fa
AK
3880 size = min(len, max_per_txd);
3881
bc7f75fa 3882 buffer_info->length = size;
bc7f75fa 3883 buffer_info->time_stamp = jiffies;
bc7f75fa 3884 buffer_info->next_to_watch = i;
042a53a9 3885 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
1b7719c4 3886 count++;
bc7f75fa
AK
3887
3888 len -= size;
3889 offset += size;
1b7719c4
AD
3890
3891 if (len) {
3892 i++;
3893 if (i == tx_ring->count)
3894 i = 0;
3895 }
bc7f75fa
AK
3896 }
3897
3898 for (f = 0; f < nr_frags; f++) {
3899 struct skb_frag_struct *frag;
3900
3901 frag = &skb_shinfo(skb)->frags[f];
3902 len = frag->size;
8ddc951c 3903 offset = 0;
bc7f75fa
AK
3904
3905 while (len) {
1b7719c4
AD
3906 i++;
3907 if (i == tx_ring->count)
3908 i = 0;
3909
bc7f75fa
AK
3910 buffer_info = &tx_ring->buffer_info[i];
3911 size = min(len, max_per_txd);
bc7f75fa
AK
3912
3913 buffer_info->length = size;
3914 buffer_info->time_stamp = jiffies;
bc7f75fa 3915 buffer_info->next_to_watch = i;
042a53a9 3916 buffer_info->dma = map[f] + offset;
bc7f75fa
AK
3917
3918 len -= size;
3919 offset += size;
3920 count++;
bc7f75fa
AK
3921 }
3922 }
3923
bc7f75fa
AK
3924 tx_ring->buffer_info[i].skb = skb;
3925 tx_ring->buffer_info[first].next_to_watch = i;
3926
3927 return count;
3928}
3929
3930static void e1000_tx_queue(struct e1000_adapter *adapter,
3931 int tx_flags, int count)
3932{
3933 struct e1000_ring *tx_ring = adapter->tx_ring;
3934 struct e1000_tx_desc *tx_desc = NULL;
3935 struct e1000_buffer *buffer_info;
3936 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3937 unsigned int i;
3938
3939 if (tx_flags & E1000_TX_FLAGS_TSO) {
3940 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3941 E1000_TXD_CMD_TSE;
3942 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3943
3944 if (tx_flags & E1000_TX_FLAGS_IPV4)
3945 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3946 }
3947
3948 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3949 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3950 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3951 }
3952
3953 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3954 txd_lower |= E1000_TXD_CMD_VLE;
3955 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3956 }
3957
3958 i = tx_ring->next_to_use;
3959
3960 while (count--) {
3961 buffer_info = &tx_ring->buffer_info[i];
3962 tx_desc = E1000_TX_DESC(*tx_ring, i);
3963 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3964 tx_desc->lower.data =
3965 cpu_to_le32(txd_lower | buffer_info->length);
3966 tx_desc->upper.data = cpu_to_le32(txd_upper);
3967
3968 i++;
3969 if (i == tx_ring->count)
3970 i = 0;
3971 }
3972
3973 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3974
ad68076e
BA
3975 /*
3976 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3977 * know there are new descriptors to fetch. (Only
3978 * applicable for weak-ordered memory model archs,
ad68076e
BA
3979 * such as IA-64).
3980 */
bc7f75fa
AK
3981 wmb();
3982
3983 tx_ring->next_to_use = i;
3984 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3985 /*
3986 * we need this if more than one processor can write to our tail
3987 * at a time, it synchronizes IO on IA64/Altix systems
3988 */
bc7f75fa
AK
3989 mmiowb();
3990}
3991
3992#define MINIMUM_DHCP_PACKET_SIZE 282
3993static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3994 struct sk_buff *skb)
3995{
3996 struct e1000_hw *hw = &adapter->hw;
3997 u16 length, offset;
3998
3999 if (vlan_tx_tag_present(skb)) {
4000 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
4001 && (adapter->hw.mng_cookie.status &
4002 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4003 return 0;
4004 }
4005
4006 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4007 return 0;
4008
4009 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4010 return 0;
4011
4012 {
4013 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4014 struct udphdr *udp;
4015
4016 if (ip->protocol != IPPROTO_UDP)
4017 return 0;
4018
4019 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4020 if (ntohs(udp->dest) != 67)
4021 return 0;
4022
4023 offset = (u8 *)udp + 8 - skb->data;
4024 length = skb->len - offset;
4025 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4026 }
4027
4028 return 0;
4029}
4030
4031static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4032{
4033 struct e1000_adapter *adapter = netdev_priv(netdev);
4034
4035 netif_stop_queue(netdev);
ad68076e
BA
4036 /*
4037 * Herbert's original patch had:
bc7f75fa 4038 * smp_mb__after_netif_stop_queue();
ad68076e
BA
4039 * but since that doesn't exist yet, just open code it.
4040 */
bc7f75fa
AK
4041 smp_mb();
4042
ad68076e
BA
4043 /*
4044 * We need to check again in a case another CPU has just
4045 * made room available.
4046 */
bc7f75fa
AK
4047 if (e1000_desc_unused(adapter->tx_ring) < size)
4048 return -EBUSY;
4049
4050 /* A reprieve! */
4051 netif_start_queue(netdev);
4052 ++adapter->restart_queue;
4053 return 0;
4054}
4055
4056static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4057{
4058 struct e1000_adapter *adapter = netdev_priv(netdev);
4059
4060 if (e1000_desc_unused(adapter->tx_ring) >= size)
4061 return 0;
4062 return __e1000_maybe_stop_tx(netdev, size);
4063}
4064
4065#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3b29a56d
SH
4066static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4067 struct net_device *netdev)
bc7f75fa
AK
4068{
4069 struct e1000_adapter *adapter = netdev_priv(netdev);
4070 struct e1000_ring *tx_ring = adapter->tx_ring;
4071 unsigned int first;
4072 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4073 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4074 unsigned int tx_flags = 0;
4e6c709c 4075 unsigned int len = skb->len - skb->data_len;
4e6c709c
AK
4076 unsigned int nr_frags;
4077 unsigned int mss;
bc7f75fa
AK
4078 int count = 0;
4079 int tso;
4080 unsigned int f;
bc7f75fa
AK
4081
4082 if (test_bit(__E1000_DOWN, &adapter->state)) {
4083 dev_kfree_skb_any(skb);
4084 return NETDEV_TX_OK;
4085 }
4086
4087 if (skb->len <= 0) {
4088 dev_kfree_skb_any(skb);
4089 return NETDEV_TX_OK;
4090 }
4091
4092 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
4093 /*
4094 * The controller does a simple calculation to
bc7f75fa
AK
4095 * make sure there is enough room in the FIFO before
4096 * initiating the DMA for each buffer. The calc is:
4097 * 4 = ceil(buffer len/mss). To make sure we don't
4098 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
4099 * drops.
4100 */
bc7f75fa
AK
4101 if (mss) {
4102 u8 hdr_len;
4103 max_per_txd = min(mss << 2, max_per_txd);
4104 max_txd_pwr = fls(max_per_txd) - 1;
4105
ad68076e
BA
4106 /*
4107 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4108 * points to just header, pull a few bytes of payload from
4109 * frags into skb->data
4110 */
bc7f75fa 4111 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
4112 /*
4113 * we do this workaround for ES2LAN, but it is un-necessary,
4114 * avoiding it could save a lot of cycles
4115 */
4e6c709c 4116 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
4117 unsigned int pull_size;
4118
4119 pull_size = min((unsigned int)4, skb->data_len);
4120 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 4121 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
4122 dev_kfree_skb_any(skb);
4123 return NETDEV_TX_OK;
4124 }
4125 len = skb->len - skb->data_len;
4126 }
4127 }
4128
4129 /* reserve a descriptor for the offload context */
4130 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4131 count++;
4132 count++;
4133
4134 count += TXD_USE_COUNT(len, max_txd_pwr);
4135
4136 nr_frags = skb_shinfo(skb)->nr_frags;
4137 for (f = 0; f < nr_frags; f++)
4138 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4139 max_txd_pwr);
4140
4141 if (adapter->hw.mac.tx_pkt_filtering)
4142 e1000_transfer_dhcp_info(adapter, skb);
4143
ad68076e
BA
4144 /*
4145 * need: count + 2 desc gap to keep tail from touching
4146 * head, otherwise try next time
4147 */
92af3e95 4148 if (e1000_maybe_stop_tx(netdev, count + 2))
bc7f75fa 4149 return NETDEV_TX_BUSY;
bc7f75fa
AK
4150
4151 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4152 tx_flags |= E1000_TX_FLAGS_VLAN;
4153 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4154 }
4155
4156 first = tx_ring->next_to_use;
4157
4158 tso = e1000_tso(adapter, skb);
4159 if (tso < 0) {
4160 dev_kfree_skb_any(skb);
bc7f75fa
AK
4161 return NETDEV_TX_OK;
4162 }
4163
4164 if (tso)
4165 tx_flags |= E1000_TX_FLAGS_TSO;
4166 else if (e1000_tx_csum(adapter, skb))
4167 tx_flags |= E1000_TX_FLAGS_CSUM;
4168
ad68076e
BA
4169 /*
4170 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 4171 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
4172 * no longer assume, we must.
4173 */
bc7f75fa
AK
4174 if (skb->protocol == htons(ETH_P_IP))
4175 tx_flags |= E1000_TX_FLAGS_IPV4;
4176
1b7719c4 4177 /* if count is 0 then mapping error has occured */
bc7f75fa 4178 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
1b7719c4
AD
4179 if (count) {
4180 e1000_tx_queue(adapter, tx_flags, count);
1b7719c4
AD
4181 /* Make sure there is space in the ring for the next send. */
4182 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4183
4184 } else {
bc7f75fa 4185 dev_kfree_skb_any(skb);
1b7719c4
AD
4186 tx_ring->buffer_info[first].time_stamp = 0;
4187 tx_ring->next_to_use = first;
bc7f75fa
AK
4188 }
4189
bc7f75fa
AK
4190 return NETDEV_TX_OK;
4191}
4192
4193/**
4194 * e1000_tx_timeout - Respond to a Tx Hang
4195 * @netdev: network interface device structure
4196 **/
4197static void e1000_tx_timeout(struct net_device *netdev)
4198{
4199 struct e1000_adapter *adapter = netdev_priv(netdev);
4200
4201 /* Do the reset outside of interrupt context */
4202 adapter->tx_timeout_count++;
4203 schedule_work(&adapter->reset_task);
4204}
4205
4206static void e1000_reset_task(struct work_struct *work)
4207{
4208 struct e1000_adapter *adapter;
4209 adapter = container_of(work, struct e1000_adapter, reset_task);
4210
4211 e1000e_reinit_locked(adapter);
4212}
4213
4214/**
4215 * e1000_get_stats - Get System Network Statistics
4216 * @netdev: network interface device structure
4217 *
4218 * Returns the address of the device statistics structure.
4219 * The statistics are actually updated from the timer callback.
4220 **/
4221static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4222{
bc7f75fa 4223 /* only return the current stats */
7274c20f 4224 return &netdev->stats;
bc7f75fa
AK
4225}
4226
4227/**
4228 * e1000_change_mtu - Change the Maximum Transfer Unit
4229 * @netdev: network interface device structure
4230 * @new_mtu: new value for maximum frame size
4231 *
4232 * Returns 0 on success, negative on failure
4233 **/
4234static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4235{
4236 struct e1000_adapter *adapter = netdev_priv(netdev);
4237 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4238
2adc55c9
BA
4239 /* Jumbo frame support */
4240 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4241 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4242 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4243 return -EINVAL;
4244 }
4245
2adc55c9
BA
4246 /* Supported frame sizes */
4247 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4248 (max_frame > adapter->max_hw_frame_size)) {
4249 e_err("Unsupported MTU setting\n");
bc7f75fa
AK
4250 return -EINVAL;
4251 }
4252
4253 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4254 msleep(1);
4255 /* e1000e_down has a dependency on max_frame_size */
318a94d6 4256 adapter->max_frame_size = max_frame;
bc7f75fa
AK
4257 if (netif_running(netdev))
4258 e1000e_down(adapter);
4259
ad68076e
BA
4260 /*
4261 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
4262 * means we reserve 2 more, this pushes us to allocate from the next
4263 * larger slab size.
ad68076e 4264 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
4265 * However with the new *_jumbo_rx* routines, jumbo receives will use
4266 * fragmented skbs
ad68076e 4267 */
bc7f75fa
AK
4268
4269 if (max_frame <= 256)
4270 adapter->rx_buffer_len = 256;
4271 else if (max_frame <= 512)
4272 adapter->rx_buffer_len = 512;
4273 else if (max_frame <= 1024)
4274 adapter->rx_buffer_len = 1024;
4275 else if (max_frame <= 2048)
4276 adapter->rx_buffer_len = 2048;
4277 else
4278 adapter->rx_buffer_len = 4096;
4279
4280 /* adjust allocation if LPE protects us, and we aren't using SBP */
4281 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4282 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4283 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 4284 + ETH_FCS_LEN;
bc7f75fa 4285
44defeb3 4286 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
bc7f75fa
AK
4287 netdev->mtu = new_mtu;
4288
4289 if (netif_running(netdev))
4290 e1000e_up(adapter);
4291 else
4292 e1000e_reset(adapter);
4293
4294 clear_bit(__E1000_RESETTING, &adapter->state);
4295
4296 return 0;
4297}
4298
4299static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4300 int cmd)
4301{
4302 struct e1000_adapter *adapter = netdev_priv(netdev);
4303 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 4304
318a94d6 4305 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
4306 return -EOPNOTSUPP;
4307
4308 switch (cmd) {
4309 case SIOCGMIIPHY:
4310 data->phy_id = adapter->hw.phy.addr;
4311 break;
4312 case SIOCGMIIREG:
b16a002e
BA
4313 e1000_phy_read_status(adapter);
4314
7c25769f
BA
4315 switch (data->reg_num & 0x1F) {
4316 case MII_BMCR:
4317 data->val_out = adapter->phy_regs.bmcr;
4318 break;
4319 case MII_BMSR:
4320 data->val_out = adapter->phy_regs.bmsr;
4321 break;
4322 case MII_PHYSID1:
4323 data->val_out = (adapter->hw.phy.id >> 16);
4324 break;
4325 case MII_PHYSID2:
4326 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4327 break;
4328 case MII_ADVERTISE:
4329 data->val_out = adapter->phy_regs.advertise;
4330 break;
4331 case MII_LPA:
4332 data->val_out = adapter->phy_regs.lpa;
4333 break;
4334 case MII_EXPANSION:
4335 data->val_out = adapter->phy_regs.expansion;
4336 break;
4337 case MII_CTRL1000:
4338 data->val_out = adapter->phy_regs.ctrl1000;
4339 break;
4340 case MII_STAT1000:
4341 data->val_out = adapter->phy_regs.stat1000;
4342 break;
4343 case MII_ESTATUS:
4344 data->val_out = adapter->phy_regs.estatus;
4345 break;
4346 default:
bc7f75fa
AK
4347 return -EIO;
4348 }
bc7f75fa
AK
4349 break;
4350 case SIOCSMIIREG:
4351 default:
4352 return -EOPNOTSUPP;
4353 }
4354 return 0;
4355}
4356
4357static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4358{
4359 switch (cmd) {
4360 case SIOCGMIIPHY:
4361 case SIOCGMIIREG:
4362 case SIOCSMIIREG:
4363 return e1000_mii_ioctl(netdev, ifr, cmd);
4364 default:
4365 return -EOPNOTSUPP;
4366 }
4367}
4368
a4f58f54
BA
4369static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4370{
4371 struct e1000_hw *hw = &adapter->hw;
4372 u32 i, mac_reg;
4373 u16 phy_reg;
4374 int retval = 0;
4375
4376 /* copy MAC RARs to PHY RARs */
4377 for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4378 mac_reg = er32(RAL(i));
4379 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4380 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4381 mac_reg = er32(RAH(i));
4382 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4383 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4384 }
4385
4386 /* copy MAC MTA to PHY MTA */
4387 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4388 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4389 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4390 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4391 }
4392
4393 /* configure PHY Rx Control register */
4394 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4395 mac_reg = er32(RCTL);
4396 if (mac_reg & E1000_RCTL_UPE)
4397 phy_reg |= BM_RCTL_UPE;
4398 if (mac_reg & E1000_RCTL_MPE)
4399 phy_reg |= BM_RCTL_MPE;
4400 phy_reg &= ~(BM_RCTL_MO_MASK);
4401 if (mac_reg & E1000_RCTL_MO_3)
4402 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4403 << BM_RCTL_MO_SHIFT);
4404 if (mac_reg & E1000_RCTL_BAM)
4405 phy_reg |= BM_RCTL_BAM;
4406 if (mac_reg & E1000_RCTL_PMCF)
4407 phy_reg |= BM_RCTL_PMCF;
4408 mac_reg = er32(CTRL);
4409 if (mac_reg & E1000_CTRL_RFCE)
4410 phy_reg |= BM_RCTL_RFCE;
4411 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4412
4413 /* enable PHY wakeup in MAC register */
4414 ew32(WUFC, wufc);
4415 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4416
4417 /* configure and enable PHY wakeup in PHY registers */
4418 e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4419 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4420
4421 /* activate PHY wakeup */
94d8186a 4422 retval = hw->phy.ops.acquire(hw);
a4f58f54
BA
4423 if (retval) {
4424 e_err("Could not acquire PHY\n");
4425 return retval;
4426 }
4427 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4428 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4429 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4430 if (retval) {
4431 e_err("Could not read PHY page 769\n");
4432 goto out;
4433 }
4434 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4435 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4436 if (retval)
4437 e_err("Could not set PHY Host Wakeup bit\n");
4438out:
94d8186a 4439 hw->phy.ops.release(hw);
a4f58f54
BA
4440
4441 return retval;
4442}
4443
4f9de721 4444static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
bc7f75fa
AK
4445{
4446 struct net_device *netdev = pci_get_drvdata(pdev);
4447 struct e1000_adapter *adapter = netdev_priv(netdev);
4448 struct e1000_hw *hw = &adapter->hw;
4449 u32 ctrl, ctrl_ext, rctl, status;
4450 u32 wufc = adapter->wol;
4451 int retval = 0;
4452
4453 netif_device_detach(netdev);
4454
4455 if (netif_running(netdev)) {
4456 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4457 e1000e_down(adapter);
4458 e1000_free_irq(adapter);
4459 }
4662e82b 4460 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
4461
4462 retval = pci_save_state(pdev);
4463 if (retval)
4464 return retval;
4465
4466 status = er32(STATUS);
4467 if (status & E1000_STATUS_LU)
4468 wufc &= ~E1000_WUFC_LNKC;
4469
4470 if (wufc) {
4471 e1000_setup_rctl(adapter);
4472 e1000_set_multi(netdev);
4473
4474 /* turn on all-multi mode if wake on multicast is enabled */
4475 if (wufc & E1000_WUFC_MC) {
4476 rctl = er32(RCTL);
4477 rctl |= E1000_RCTL_MPE;
4478 ew32(RCTL, rctl);
4479 }
4480
4481 ctrl = er32(CTRL);
4482 /* advertise wake from D3Cold */
4483 #define E1000_CTRL_ADVD3WUC 0x00100000
4484 /* phy power management enable */
4485 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
a4f58f54
BA
4486 ctrl |= E1000_CTRL_ADVD3WUC;
4487 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4488 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
bc7f75fa
AK
4489 ew32(CTRL, ctrl);
4490
318a94d6
JK
4491 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4492 adapter->hw.phy.media_type ==
4493 e1000_media_type_internal_serdes) {
bc7f75fa
AK
4494 /* keep the laser running in D3 */
4495 ctrl_ext = er32(CTRL_EXT);
4496 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4497 ew32(CTRL_EXT, ctrl_ext);
4498 }
4499
97ac8cae
BA
4500 if (adapter->flags & FLAG_IS_ICH)
4501 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4502
bc7f75fa
AK
4503 /* Allow time for pending master requests to run */
4504 e1000e_disable_pcie_master(&adapter->hw);
4505
82776a4b 4506 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
a4f58f54
BA
4507 /* enable wakeup by the PHY */
4508 retval = e1000_init_phy_wakeup(adapter, wufc);
4509 if (retval)
4510 return retval;
4511 } else {
4512 /* enable wakeup by the MAC */
4513 ew32(WUFC, wufc);
4514 ew32(WUC, E1000_WUC_PME_EN);
4515 }
bc7f75fa
AK
4516 } else {
4517 ew32(WUC, 0);
4518 ew32(WUFC, 0);
bc7f75fa
AK
4519 }
4520
4f9de721
RW
4521 *enable_wake = !!wufc;
4522
bc7f75fa 4523 /* make sure adapter isn't asleep if manageability is enabled */
82776a4b
BA
4524 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4525 (hw->mac.ops.check_mng_mode(hw)))
4f9de721 4526 *enable_wake = true;
bc7f75fa
AK
4527
4528 if (adapter->hw.phy.type == e1000_phy_igp_3)
4529 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4530
ad68076e
BA
4531 /*
4532 * Release control of h/w to f/w. If f/w is AMT enabled, this
4533 * would have already happened in close and is redundant.
4534 */
bc7f75fa
AK
4535 e1000_release_hw_control(adapter);
4536
4537 pci_disable_device(pdev);
4538
4f9de721
RW
4539 return 0;
4540}
4541
4542static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4543{
4544 if (sleep && wake) {
4545 pci_prepare_to_sleep(pdev);
4546 return;
4547 }
4548
4549 pci_wake_from_d3(pdev, wake);
4550 pci_set_power_state(pdev, PCI_D3hot);
4551}
4552
4553static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4554 bool wake)
4555{
4556 struct net_device *netdev = pci_get_drvdata(pdev);
4557 struct e1000_adapter *adapter = netdev_priv(netdev);
4558
005cbdfc
AD
4559 /*
4560 * The pci-e switch on some quad port adapters will report a
4561 * correctable error when the MAC transitions from D0 to D3. To
4562 * prevent this we need to mask off the correctable errors on the
4563 * downstream port of the pci-e switch.
4564 */
4565 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4566 struct pci_dev *us_dev = pdev->bus->self;
4567 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4568 u16 devctl;
4569
4570 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4571 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4572 (devctl & ~PCI_EXP_DEVCTL_CERE));
4573
4f9de721 4574 e1000_power_off(pdev, sleep, wake);
005cbdfc
AD
4575
4576 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4577 } else {
4f9de721 4578 e1000_power_off(pdev, sleep, wake);
005cbdfc 4579 }
bc7f75fa
AK
4580}
4581
1eae4eb2
AK
4582static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4583{
4584 int pos;
1eae4eb2
AK
4585 u16 val;
4586
4587 /*
4588 * 82573 workaround - disable L1 ASPM on mobile chipsets
4589 *
4590 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4591 * resulting in lost data or garbage information on the pci-e link
4592 * level. This could result in (false) bad EEPROM checksum errors,
4593 * long ping times (up to 2s) or even a system freeze/hang.
4594 *
4595 * Unfortunately this feature saves about 1W power consumption when
4596 * active.
4597 */
4598 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
4599 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4600 if (val & 0x2) {
4601 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4602 val &= ~0x2;
4603 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4604 }
4605}
4606
bc7f75fa 4607#ifdef CONFIG_PM
4f9de721
RW
4608static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4609{
4610 int retval;
4611 bool wake;
4612
4613 retval = __e1000_shutdown(pdev, &wake);
4614 if (!retval)
4615 e1000_complete_shutdown(pdev, true, wake);
4616
4617 return retval;
4618}
4619
bc7f75fa
AK
4620static int e1000_resume(struct pci_dev *pdev)
4621{
4622 struct net_device *netdev = pci_get_drvdata(pdev);
4623 struct e1000_adapter *adapter = netdev_priv(netdev);
4624 struct e1000_hw *hw = &adapter->hw;
4625 u32 err;
4626
4627 pci_set_power_state(pdev, PCI_D0);
4628 pci_restore_state(pdev);
1eae4eb2 4629 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4630
f0f422e5 4631 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4632 if (err) {
4633 dev_err(&pdev->dev,
4634 "Cannot enable PCI device from suspend\n");
4635 return err;
4636 }
4637
4638 pci_set_master(pdev);
4639
4640 pci_enable_wake(pdev, PCI_D3hot, 0);
4641 pci_enable_wake(pdev, PCI_D3cold, 0);
4642
4662e82b 4643 e1000e_set_interrupt_capability(adapter);
bc7f75fa
AK
4644 if (netif_running(netdev)) {
4645 err = e1000_request_irq(adapter);
4646 if (err)
4647 return err;
4648 }
4649
4650 e1000e_power_up_phy(adapter);
a4f58f54
BA
4651
4652 /* report the system wakeup cause from S3/S4 */
4653 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4654 u16 phy_data;
4655
4656 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4657 if (phy_data) {
4658 e_info("PHY Wakeup cause - %s\n",
4659 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4660 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4661 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4662 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4663 phy_data & E1000_WUS_LNKC ? "Link Status "
4664 " Change" : "other");
4665 }
4666 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4667 } else {
4668 u32 wus = er32(WUS);
4669 if (wus) {
4670 e_info("MAC Wakeup cause - %s\n",
4671 wus & E1000_WUS_EX ? "Unicast Packet" :
4672 wus & E1000_WUS_MC ? "Multicast Packet" :
4673 wus & E1000_WUS_BC ? "Broadcast Packet" :
4674 wus & E1000_WUS_MAG ? "Magic Packet" :
4675 wus & E1000_WUS_LNKC ? "Link Status Change" :
4676 "other");
4677 }
4678 ew32(WUS, ~0);
4679 }
4680
bc7f75fa 4681 e1000e_reset(adapter);
bc7f75fa
AK
4682
4683 e1000_init_manageability(adapter);
4684
4685 if (netif_running(netdev))
4686 e1000e_up(adapter);
4687
4688 netif_device_attach(netdev);
4689
ad68076e
BA
4690 /*
4691 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4692 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4693 * under the control of the driver.
4694 */
c43bc57e 4695 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4696 e1000_get_hw_control(adapter);
4697
4698 return 0;
4699}
4700#endif
4701
4702static void e1000_shutdown(struct pci_dev *pdev)
4703{
4f9de721
RW
4704 bool wake = false;
4705
4706 __e1000_shutdown(pdev, &wake);
4707
4708 if (system_state == SYSTEM_POWER_OFF)
4709 e1000_complete_shutdown(pdev, false, wake);
bc7f75fa
AK
4710}
4711
4712#ifdef CONFIG_NET_POLL_CONTROLLER
4713/*
4714 * Polling 'interrupt' - used by things like netconsole to send skbs
4715 * without having to re-enable interrupts. It's not called while
4716 * the interrupt routine is executing.
4717 */
4718static void e1000_netpoll(struct net_device *netdev)
4719{
4720 struct e1000_adapter *adapter = netdev_priv(netdev);
4721
4722 disable_irq(adapter->pdev->irq);
4723 e1000_intr(adapter->pdev->irq, netdev);
4724
bc7f75fa
AK
4725 enable_irq(adapter->pdev->irq);
4726}
4727#endif
4728
4729/**
4730 * e1000_io_error_detected - called when PCI error is detected
4731 * @pdev: Pointer to PCI device
4732 * @state: The current pci connection state
4733 *
4734 * This function is called after a PCI bus error affecting
4735 * this device has been detected.
4736 */
4737static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4738 pci_channel_state_t state)
4739{
4740 struct net_device *netdev = pci_get_drvdata(pdev);
4741 struct e1000_adapter *adapter = netdev_priv(netdev);
4742
4743 netif_device_detach(netdev);
4744
c93b5a76
MM
4745 if (state == pci_channel_io_perm_failure)
4746 return PCI_ERS_RESULT_DISCONNECT;
4747
bc7f75fa
AK
4748 if (netif_running(netdev))
4749 e1000e_down(adapter);
4750 pci_disable_device(pdev);
4751
4752 /* Request a slot slot reset. */
4753 return PCI_ERS_RESULT_NEED_RESET;
4754}
4755
4756/**
4757 * e1000_io_slot_reset - called after the pci bus has been reset.
4758 * @pdev: Pointer to PCI device
4759 *
4760 * Restart the card from scratch, as if from a cold-boot. Implementation
4761 * resembles the first-half of the e1000_resume routine.
4762 */
4763static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4764{
4765 struct net_device *netdev = pci_get_drvdata(pdev);
4766 struct e1000_adapter *adapter = netdev_priv(netdev);
4767 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4768 int err;
111b9dc5 4769 pci_ers_result_t result;
bc7f75fa 4770
1eae4eb2 4771 e1000e_disable_l1aspm(pdev);
f0f422e5 4772 err = pci_enable_device_mem(pdev);
6e4f6f6b 4773 if (err) {
bc7f75fa
AK
4774 dev_err(&pdev->dev,
4775 "Cannot re-enable PCI device after reset.\n");
111b9dc5
JB
4776 result = PCI_ERS_RESULT_DISCONNECT;
4777 } else {
4778 pci_set_master(pdev);
4779 pci_restore_state(pdev);
bc7f75fa 4780
111b9dc5
JB
4781 pci_enable_wake(pdev, PCI_D3hot, 0);
4782 pci_enable_wake(pdev, PCI_D3cold, 0);
bc7f75fa 4783
111b9dc5
JB
4784 e1000e_reset(adapter);
4785 ew32(WUS, ~0);
4786 result = PCI_ERS_RESULT_RECOVERED;
4787 }
bc7f75fa 4788
111b9dc5
JB
4789 pci_cleanup_aer_uncorrect_error_status(pdev);
4790
4791 return result;
bc7f75fa
AK
4792}
4793
4794/**
4795 * e1000_io_resume - called when traffic can start flowing again.
4796 * @pdev: Pointer to PCI device
4797 *
4798 * This callback is called when the error recovery driver tells us that
4799 * its OK to resume normal operation. Implementation resembles the
4800 * second-half of the e1000_resume routine.
4801 */
4802static void e1000_io_resume(struct pci_dev *pdev)
4803{
4804 struct net_device *netdev = pci_get_drvdata(pdev);
4805 struct e1000_adapter *adapter = netdev_priv(netdev);
4806
4807 e1000_init_manageability(adapter);
4808
4809 if (netif_running(netdev)) {
4810 if (e1000e_up(adapter)) {
4811 dev_err(&pdev->dev,
4812 "can't bring device back up after reset\n");
4813 return;
4814 }
4815 }
4816
4817 netif_device_attach(netdev);
4818
ad68076e
BA
4819 /*
4820 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4821 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4822 * under the control of the driver.
4823 */
c43bc57e 4824 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4825 e1000_get_hw_control(adapter);
4826
4827}
4828
4829static void e1000_print_device_info(struct e1000_adapter *adapter)
4830{
4831 struct e1000_hw *hw = &adapter->hw;
4832 struct net_device *netdev = adapter->netdev;
69e3fd8c 4833 u32 pba_num;
bc7f75fa
AK
4834
4835 /* print bus type/speed/width info */
7c510e4b 4836 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
44defeb3
JK
4837 /* bus width */
4838 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4839 "Width x1"),
4840 /* MAC address */
7c510e4b 4841 netdev->dev_addr);
44defeb3
JK
4842 e_info("Intel(R) PRO/%s Network Connection\n",
4843 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
69e3fd8c 4844 e1000e_read_pba_num(hw, &pba_num);
44defeb3
JK
4845 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4846 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4847}
4848
10aa4c04
AK
4849static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4850{
4851 struct e1000_hw *hw = &adapter->hw;
4852 int ret_val;
4853 u16 buf = 0;
4854
4855 if (hw->mac.type != e1000_82573)
4856 return;
4857
4858 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
e243455d 4859 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
10aa4c04 4860 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
4861 dev_warn(&adapter->pdev->dev,
4862 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04
AK
4863 }
4864
4865 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
e243455d 4866 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
10aa4c04 4867 /* ASPM enable */
6c2a9efa
FP
4868 dev_warn(&adapter->pdev->dev,
4869 "Warning: detected ASPM enabled in EEPROM\n");
10aa4c04
AK
4870 }
4871}
4872
651c2466
SH
4873static const struct net_device_ops e1000e_netdev_ops = {
4874 .ndo_open = e1000_open,
4875 .ndo_stop = e1000_close,
00829823 4876 .ndo_start_xmit = e1000_xmit_frame,
651c2466
SH
4877 .ndo_get_stats = e1000_get_stats,
4878 .ndo_set_multicast_list = e1000_set_multi,
4879 .ndo_set_mac_address = e1000_set_mac,
4880 .ndo_change_mtu = e1000_change_mtu,
4881 .ndo_do_ioctl = e1000_ioctl,
4882 .ndo_tx_timeout = e1000_tx_timeout,
4883 .ndo_validate_addr = eth_validate_addr,
4884
4885 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4886 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4887 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4888#ifdef CONFIG_NET_POLL_CONTROLLER
4889 .ndo_poll_controller = e1000_netpoll,
4890#endif
4891};
4892
bc7f75fa
AK
4893/**
4894 * e1000_probe - Device Initialization Routine
4895 * @pdev: PCI device information struct
4896 * @ent: entry in e1000_pci_tbl
4897 *
4898 * Returns 0 on success, negative on failure
4899 *
4900 * e1000_probe initializes an adapter identified by a pci_dev structure.
4901 * The OS initialization, configuring of the adapter private structure,
4902 * and a hardware reset occur.
4903 **/
4904static int __devinit e1000_probe(struct pci_dev *pdev,
4905 const struct pci_device_id *ent)
4906{
4907 struct net_device *netdev;
4908 struct e1000_adapter *adapter;
4909 struct e1000_hw *hw;
4910 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4911 resource_size_t mmio_start, mmio_len;
4912 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4913
4914 static int cards_found;
4915 int i, err, pci_using_dac;
4916 u16 eeprom_data = 0;
4917 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4918
1eae4eb2 4919 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4920
f0f422e5 4921 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4922 if (err)
4923 return err;
4924
4925 pci_using_dac = 0;
6a35528a 4926 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
bc7f75fa 4927 if (!err) {
6a35528a 4928 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
bc7f75fa
AK
4929 if (!err)
4930 pci_using_dac = 1;
4931 } else {
284901a9 4932 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
bc7f75fa
AK
4933 if (err) {
4934 err = pci_set_consistent_dma_mask(pdev,
284901a9 4935 DMA_BIT_MASK(32));
bc7f75fa
AK
4936 if (err) {
4937 dev_err(&pdev->dev, "No usable DMA "
4938 "configuration, aborting\n");
4939 goto err_dma;
4940 }
4941 }
4942 }
4943
e8de1481 4944 err = pci_request_selected_regions_exclusive(pdev,
f0f422e5
BA
4945 pci_select_bars(pdev, IORESOURCE_MEM),
4946 e1000e_driver_name);
bc7f75fa
AK
4947 if (err)
4948 goto err_pci_reg;
4949
68eac460 4950 /* AER (Advanced Error Reporting) hooks */
19d5afd4 4951 pci_enable_pcie_error_reporting(pdev);
68eac460 4952
bc7f75fa 4953 pci_set_master(pdev);
438b365a
BA
4954 /* PCI config space info */
4955 err = pci_save_state(pdev);
4956 if (err)
4957 goto err_alloc_etherdev;
bc7f75fa
AK
4958
4959 err = -ENOMEM;
4960 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4961 if (!netdev)
4962 goto err_alloc_etherdev;
4963
bc7f75fa
AK
4964 SET_NETDEV_DEV(netdev, &pdev->dev);
4965
4966 pci_set_drvdata(pdev, netdev);
4967 adapter = netdev_priv(netdev);
4968 hw = &adapter->hw;
4969 adapter->netdev = netdev;
4970 adapter->pdev = pdev;
4971 adapter->ei = ei;
4972 adapter->pba = ei->pba;
4973 adapter->flags = ei->flags;
eb7c3adb 4974 adapter->flags2 = ei->flags2;
bc7f75fa
AK
4975 adapter->hw.adapter = adapter;
4976 adapter->hw.mac.type = ei->mac;
2adc55c9 4977 adapter->max_hw_frame_size = ei->max_hw_frame_size;
bc7f75fa
AK
4978 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4979
4980 mmio_start = pci_resource_start(pdev, 0);
4981 mmio_len = pci_resource_len(pdev, 0);
4982
4983 err = -EIO;
4984 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4985 if (!adapter->hw.hw_addr)
4986 goto err_ioremap;
4987
4988 if ((adapter->flags & FLAG_HAS_FLASH) &&
4989 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4990 flash_start = pci_resource_start(pdev, 1);
4991 flash_len = pci_resource_len(pdev, 1);
4992 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4993 if (!adapter->hw.flash_address)
4994 goto err_flashmap;
4995 }
4996
4997 /* construct the net_device struct */
651c2466 4998 netdev->netdev_ops = &e1000e_netdev_ops;
bc7f75fa 4999 e1000e_set_ethtool_ops(netdev);
bc7f75fa
AK
5000 netdev->watchdog_timeo = 5 * HZ;
5001 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
bc7f75fa
AK
5002 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5003
5004 netdev->mem_start = mmio_start;
5005 netdev->mem_end = mmio_start + mmio_len;
5006
5007 adapter->bd_number = cards_found++;
5008
4662e82b
BA
5009 e1000e_check_options(adapter);
5010
bc7f75fa
AK
5011 /* setup adapter struct */
5012 err = e1000_sw_init(adapter);
5013 if (err)
5014 goto err_sw_init;
5015
5016 err = -EIO;
5017
5018 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5019 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5020 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5021
69e3fd8c 5022 err = ei->get_variants(adapter);
bc7f75fa
AK
5023 if (err)
5024 goto err_hw_init;
5025
4a770358
BA
5026 if ((adapter->flags & FLAG_IS_ICH) &&
5027 (adapter->flags & FLAG_READ_ONLY_NVM))
5028 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5029
bc7f75fa
AK
5030 hw->mac.ops.get_bus_info(&adapter->hw);
5031
318a94d6 5032 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
5033
5034 /* Copper options */
318a94d6 5035 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
5036 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5037 adapter->hw.phy.disable_polarity_correction = 0;
5038 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5039 }
5040
5041 if (e1000_check_reset_block(&adapter->hw))
44defeb3 5042 e_info("PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa
AK
5043
5044 netdev->features = NETIF_F_SG |
5045 NETIF_F_HW_CSUM |
5046 NETIF_F_HW_VLAN_TX |
5047 NETIF_F_HW_VLAN_RX;
5048
5049 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5050 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5051
5052 netdev->features |= NETIF_F_TSO;
5053 netdev->features |= NETIF_F_TSO6;
5054
a5136e23
JK
5055 netdev->vlan_features |= NETIF_F_TSO;
5056 netdev->vlan_features |= NETIF_F_TSO6;
5057 netdev->vlan_features |= NETIF_F_HW_CSUM;
5058 netdev->vlan_features |= NETIF_F_SG;
5059
bc7f75fa
AK
5060 if (pci_using_dac)
5061 netdev->features |= NETIF_F_HIGHDMA;
5062
bc7f75fa
AK
5063 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5064 adapter->flags |= FLAG_MNG_PT_ENABLED;
5065
ad68076e
BA
5066 /*
5067 * before reading the NVM, reset the controller to
5068 * put the device in a known good starting state
5069 */
bc7f75fa
AK
5070 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5071
5072 /*
5073 * systems with ASPM and others may see the checksum fail on the first
5074 * attempt. Let's give it a few tries
5075 */
5076 for (i = 0;; i++) {
5077 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5078 break;
5079 if (i == 2) {
44defeb3 5080 e_err("The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
5081 err = -EIO;
5082 goto err_eeprom;
5083 }
5084 }
5085
10aa4c04
AK
5086 e1000_eeprom_checks(adapter);
5087
bc7f75fa
AK
5088 /* copy the MAC address out of the NVM */
5089 if (e1000e_read_mac_addr(&adapter->hw))
44defeb3 5090 e_err("NVM Read Error while reading MAC address\n");
bc7f75fa
AK
5091
5092 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5093 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5094
5095 if (!is_valid_ether_addr(netdev->perm_addr)) {
7c510e4b 5096 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
bc7f75fa
AK
5097 err = -EIO;
5098 goto err_eeprom;
5099 }
5100
5101 init_timer(&adapter->watchdog_timer);
5102 adapter->watchdog_timer.function = &e1000_watchdog;
5103 adapter->watchdog_timer.data = (unsigned long) adapter;
5104
5105 init_timer(&adapter->phy_info_timer);
5106 adapter->phy_info_timer.function = &e1000_update_phy_info;
5107 adapter->phy_info_timer.data = (unsigned long) adapter;
5108
5109 INIT_WORK(&adapter->reset_task, e1000_reset_task);
5110 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
5111 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5112 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
bc7f75fa 5113
bc7f75fa
AK
5114 /* Initialize link parameters. User can change them with ethtool */
5115 adapter->hw.mac.autoneg = 1;
309af40b 5116 adapter->fc_autoneg = 1;
5c48ef3e
BA
5117 adapter->hw.fc.requested_mode = e1000_fc_default;
5118 adapter->hw.fc.current_mode = e1000_fc_default;
bc7f75fa
AK
5119 adapter->hw.phy.autoneg_advertised = 0x2f;
5120
5121 /* ring size defaults */
5122 adapter->rx_ring->count = 256;
5123 adapter->tx_ring->count = 256;
5124
5125 /*
5126 * Initial Wake on LAN setting - If APM wake is enabled in
5127 * the EEPROM, enable the ACPI Magic Packet filter
5128 */
5129 if (adapter->flags & FLAG_APME_IN_WUC) {
5130 /* APME bit in EEPROM is mapped to WUC.APME */
5131 eeprom_data = er32(WUC);
5132 eeprom_apme_mask = E1000_WUC_APME;
a4f58f54
BA
5133 if (eeprom_data & E1000_WUC_PHY_WAKE)
5134 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
bc7f75fa
AK
5135 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5136 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5137 (adapter->hw.bus.func == 1))
5138 e1000_read_nvm(&adapter->hw,
5139 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5140 else
5141 e1000_read_nvm(&adapter->hw,
5142 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5143 }
5144
5145 /* fetch WoL from EEPROM */
5146 if (eeprom_data & eeprom_apme_mask)
5147 adapter->eeprom_wol |= E1000_WUFC_MAG;
5148
5149 /*
5150 * now that we have the eeprom settings, apply the special cases
5151 * where the eeprom may be wrong or the board simply won't support
5152 * wake on lan on a particular port
5153 */
5154 if (!(adapter->flags & FLAG_HAS_WOL))
5155 adapter->eeprom_wol = 0;
5156
5157 /* initialize the wol settings based on the eeprom settings */
5158 adapter->wol = adapter->eeprom_wol;
6ff68026 5159 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
bc7f75fa 5160
84527590
BA
5161 /* save off EEPROM version number */
5162 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5163
bc7f75fa
AK
5164 /* reset the hardware with the new settings */
5165 e1000e_reset(adapter);
5166
ad68076e
BA
5167 /*
5168 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 5169 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
5170 * under the control of the driver.
5171 */
c43bc57e 5172 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
5173 e1000_get_hw_control(adapter);
5174
bc7f75fa
AK
5175 strcpy(netdev->name, "eth%d");
5176 err = register_netdev(netdev);
5177 if (err)
5178 goto err_register;
5179
9c563d20
JB
5180 /* carrier off reporting is important to ethtool even BEFORE open */
5181 netif_carrier_off(netdev);
5182
bc7f75fa
AK
5183 e1000_print_device_info(adapter);
5184
5185 return 0;
5186
5187err_register:
c43bc57e
JB
5188 if (!(adapter->flags & FLAG_HAS_AMT))
5189 e1000_release_hw_control(adapter);
bc7f75fa
AK
5190err_eeprom:
5191 if (!e1000_check_reset_block(&adapter->hw))
5192 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 5193err_hw_init:
bc7f75fa 5194
bc7f75fa
AK
5195 kfree(adapter->tx_ring);
5196 kfree(adapter->rx_ring);
5197err_sw_init:
c43bc57e
JB
5198 if (adapter->hw.flash_address)
5199 iounmap(adapter->hw.flash_address);
e82f54ba 5200 e1000e_reset_interrupt_capability(adapter);
c43bc57e 5201err_flashmap:
bc7f75fa
AK
5202 iounmap(adapter->hw.hw_addr);
5203err_ioremap:
5204 free_netdev(netdev);
5205err_alloc_etherdev:
f0f422e5
BA
5206 pci_release_selected_regions(pdev,
5207 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5208err_pci_reg:
5209err_dma:
5210 pci_disable_device(pdev);
5211 return err;
5212}
5213
5214/**
5215 * e1000_remove - Device Removal Routine
5216 * @pdev: PCI device information struct
5217 *
5218 * e1000_remove is called by the PCI subsystem to alert the driver
5219 * that it should release a PCI device. The could be caused by a
5220 * Hot-Plug event, or because the driver is going to be removed from
5221 * memory.
5222 **/
5223static void __devexit e1000_remove(struct pci_dev *pdev)
5224{
5225 struct net_device *netdev = pci_get_drvdata(pdev);
5226 struct e1000_adapter *adapter = netdev_priv(netdev);
5227
ad68076e
BA
5228 /*
5229 * flush_scheduled work may reschedule our watchdog task, so
5230 * explicitly disable watchdog tasks from being rescheduled
5231 */
bc7f75fa
AK
5232 set_bit(__E1000_DOWN, &adapter->state);
5233 del_timer_sync(&adapter->watchdog_timer);
5234 del_timer_sync(&adapter->phy_info_timer);
5235
5236 flush_scheduled_work();
5237
ad68076e
BA
5238 /*
5239 * Release control of h/w to f/w. If f/w is AMT enabled, this
5240 * would have already happened in close and is redundant.
5241 */
bc7f75fa
AK
5242 e1000_release_hw_control(adapter);
5243
5244 unregister_netdev(netdev);
5245
5246 if (!e1000_check_reset_block(&adapter->hw))
5247 e1000_phy_hw_reset(&adapter->hw);
5248
4662e82b 5249 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
5250 kfree(adapter->tx_ring);
5251 kfree(adapter->rx_ring);
5252
5253 iounmap(adapter->hw.hw_addr);
5254 if (adapter->hw.flash_address)
5255 iounmap(adapter->hw.flash_address);
f0f422e5
BA
5256 pci_release_selected_regions(pdev,
5257 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5258
5259 free_netdev(netdev);
5260
111b9dc5 5261 /* AER disable */
19d5afd4 5262 pci_disable_pcie_error_reporting(pdev);
111b9dc5 5263
bc7f75fa
AK
5264 pci_disable_device(pdev);
5265}
5266
5267/* PCI Error Recovery (ERS) */
5268static struct pci_error_handlers e1000_err_handler = {
5269 .error_detected = e1000_io_error_detected,
5270 .slot_reset = e1000_io_slot_reset,
5271 .resume = e1000_io_resume,
5272};
5273
5274static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
5275 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5276 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5277 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5278 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5279 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5280 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
5281 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5282 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5283 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 5284
bc7f75fa
AK
5285 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5286 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5287 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5288 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 5289
bc7f75fa
AK
5290 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5291 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5292 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 5293
4662e82b 5294 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
bef28b11 5295 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
8c81c9c3 5296 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
4662e82b 5297
bc7f75fa
AK
5298 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5299 board_80003es2lan },
5300 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5301 board_80003es2lan },
5302 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5303 board_80003es2lan },
5304 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5305 board_80003es2lan },
ad68076e 5306
bc7f75fa
AK
5307 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5308 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5309 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5310 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5311 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5312 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5313 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 5314
bc7f75fa
AK
5315 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5316 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5317 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5318 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5319 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 5320 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
5321 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5322 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5323 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5324
5325 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5326 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5327 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 5328
f4187b56
BA
5329 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5330 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5331
a4f58f54
BA
5332 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5333 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5334 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5335 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5336
bc7f75fa
AK
5337 { } /* terminate list */
5338};
5339MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5340
5341/* PCI Device API Driver */
5342static struct pci_driver e1000_driver = {
5343 .name = e1000e_driver_name,
5344 .id_table = e1000_pci_tbl,
5345 .probe = e1000_probe,
5346 .remove = __devexit_p(e1000_remove),
5347#ifdef CONFIG_PM
ad68076e 5348 /* Power Management Hooks */
bc7f75fa
AK
5349 .suspend = e1000_suspend,
5350 .resume = e1000_resume,
5351#endif
5352 .shutdown = e1000_shutdown,
5353 .err_handler = &e1000_err_handler
5354};
5355
5356/**
5357 * e1000_init_module - Driver Registration Routine
5358 *
5359 * e1000_init_module is the first routine called when the driver is
5360 * loaded. All it does is register with the PCI subsystem.
5361 **/
5362static int __init e1000_init_module(void)
5363{
5364 int ret;
5365 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5366 e1000e_driver_name, e1000e_driver_version);
ad68076e 5367 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
5368 e1000e_driver_name);
5369 ret = pci_register_driver(&e1000_driver);
97ac8cae
BA
5370 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5371 PM_QOS_DEFAULT_VALUE);
5372
bc7f75fa
AK
5373 return ret;
5374}
5375module_init(e1000_init_module);
5376
5377/**
5378 * e1000_exit_module - Driver Exit Cleanup Routine
5379 *
5380 * e1000_exit_module is called just before the driver is removed
5381 * from memory.
5382 **/
5383static void __exit e1000_exit_module(void)
5384{
5385 pci_unregister_driver(&e1000_driver);
97ac8cae 5386 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
bc7f75fa
AK
5387}
5388module_exit(e1000_exit_module);
5389
5390
5391MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5392MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5393MODULE_LICENSE("GPL");
5394MODULE_VERSION(DRV_VERSION);
5395
5396/* e1000_main.c */