]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/e1000e/phy.c
tree-wide: fix comment/printk typos
[mirror_ubuntu-artful-kernel.git] / drivers / net / e1000e / phy.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
451152d9 4 Copyright(c) 1999 - 2010 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/delay.h>
30
31#include "e1000.h"
32
33static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36static s32 e1000_wait_autoneg(struct e1000_hw *hw);
97ac8cae
BA
37static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read);
a4f58f54
BA
40static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
bc7f75fa
AK
43
44/* Cable length tables */
45static const u16 e1000_m88_cable_length_table[] =
46 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
eb656d45
BA
47#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
bc7f75fa
AK
49
50static const u16 e1000_igp_2_cable_length_table[] =
51 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58 124};
59#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
c00acf46 60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
bc7f75fa 61
a4f58f54
BA
62#define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64#define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
68
69#define HV_INTC_FC_PAGE_START 768
70#define I82578_ADDR_REG 29
71#define I82577_ADDR_REG 16
72#define I82577_CFG_REG 22
73#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75#define I82577_CTRL_REG 23
a4f58f54
BA
76
77/* 82577 specific PHY registers */
78#define I82577_PHY_CTRL_2 18
79#define I82577_PHY_STATUS_2 26
80#define I82577_PHY_DIAG_STATUS 31
81
82/* I82577 PHY Status 2 */
83#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84#define I82577_PHY_STATUS2_MDIX 0x0800
85#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
87
88/* I82577 PHY Control 2 */
89#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
91
92/* I82577 PHY Diagnostics Status */
93#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
95
96/* BM PHY Copper Specific Control 1 */
97#define BM_CS_CTRL1 16
98
a4f58f54
BA
99#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
102
bc7f75fa
AK
103/**
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
106 *
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
110 **/
111s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
112{
113 u32 manc;
114
115 manc = er32(MANC);
116
117 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118 E1000_BLK_PHY_RESET : 0;
119}
120
121/**
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
124 *
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
127 **/
128s32 e1000e_get_phy_id(struct e1000_hw *hw)
129{
130 struct e1000_phy_info *phy = &hw->phy;
a4f58f54 131 s32 ret_val = 0;
bc7f75fa 132 u16 phy_id;
a4f58f54 133 u16 retry_count = 0;
bc7f75fa 134
94d8186a 135 if (!(phy->ops.read_reg))
a4f58f54 136 goto out;
bc7f75fa 137
a4f58f54
BA
138 while (retry_count < 2) {
139 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140 if (ret_val)
141 goto out;
bc7f75fa 142
a4f58f54
BA
143 phy->id = (u32)(phy_id << 16);
144 udelay(20);
145 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146 if (ret_val)
147 goto out;
bc7f75fa 148
a4f58f54
BA
149 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
151
152 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153 goto out;
154
a4f58f54
BA
155 retry_count++;
156 }
157out:
a4f58f54 158 return ret_val;
bc7f75fa
AK
159}
160
161/**
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
164 *
165 * Reset the digital signal processor.
166 **/
167s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
168{
169 s32 ret_val;
170
171 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
172 if (ret_val)
173 return ret_val;
174
175 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
176}
177
178/**
2d9498f3 179 * e1000e_read_phy_reg_mdic - Read MDI control register
bc7f75fa
AK
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
183 *
489815ce 184 * Reads the MDI control register in the PHY at offset and stores the
bc7f75fa
AK
185 * information read to data.
186 **/
2d9498f3 187s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
bc7f75fa
AK
188{
189 struct e1000_phy_info *phy = &hw->phy;
190 u32 i, mdic = 0;
191
192 if (offset > MAX_PHY_REG_ADDRESS) {
3bb99fe2 193 e_dbg("PHY Address %d is out of range\n", offset);
bc7f75fa
AK
194 return -E1000_ERR_PARAM;
195 }
196
ad68076e
BA
197 /*
198 * Set up Op-code, Phy Address, and register offset in the MDI
bc7f75fa
AK
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
201 */
202 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
203 (phy->addr << E1000_MDIC_PHY_SHIFT) |
204 (E1000_MDIC_OP_READ));
205
206 ew32(MDIC, mdic);
207
ad68076e
BA
208 /*
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
211 * the lower time out
212 */
2d9498f3 213 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
bc7f75fa
AK
214 udelay(50);
215 mdic = er32(MDIC);
216 if (mdic & E1000_MDIC_READY)
217 break;
218 }
219 if (!(mdic & E1000_MDIC_READY)) {
3bb99fe2 220 e_dbg("MDI Read did not complete\n");
bc7f75fa
AK
221 return -E1000_ERR_PHY;
222 }
223 if (mdic & E1000_MDIC_ERROR) {
3bb99fe2 224 e_dbg("MDI Error\n");
bc7f75fa
AK
225 return -E1000_ERR_PHY;
226 }
227 *data = (u16) mdic;
228
229 return 0;
230}
231
232/**
2d9498f3 233 * e1000e_write_phy_reg_mdic - Write MDI control register
bc7f75fa
AK
234 * @hw: pointer to the HW structure
235 * @offset: register offset to write to
236 * @data: data to write to register at offset
237 *
238 * Writes data to MDI control register in the PHY at offset.
239 **/
2d9498f3 240s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
bc7f75fa
AK
241{
242 struct e1000_phy_info *phy = &hw->phy;
243 u32 i, mdic = 0;
244
245 if (offset > MAX_PHY_REG_ADDRESS) {
3bb99fe2 246 e_dbg("PHY Address %d is out of range\n", offset);
bc7f75fa
AK
247 return -E1000_ERR_PARAM;
248 }
249
ad68076e
BA
250 /*
251 * Set up Op-code, Phy Address, and register offset in the MDI
bc7f75fa
AK
252 * Control register. The MAC will take care of interfacing with the
253 * PHY to retrieve the desired data.
254 */
255 mdic = (((u32)data) |
256 (offset << E1000_MDIC_REG_SHIFT) |
257 (phy->addr << E1000_MDIC_PHY_SHIFT) |
258 (E1000_MDIC_OP_WRITE));
259
260 ew32(MDIC, mdic);
261
2d9498f3
DG
262 /*
263 * Poll the ready bit to see if the MDI read completed
264 * Increasing the time out as testing showed failures with
265 * the lower time out
266 */
267 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
268 udelay(50);
bc7f75fa
AK
269 mdic = er32(MDIC);
270 if (mdic & E1000_MDIC_READY)
271 break;
272 }
273 if (!(mdic & E1000_MDIC_READY)) {
3bb99fe2 274 e_dbg("MDI Write did not complete\n");
bc7f75fa
AK
275 return -E1000_ERR_PHY;
276 }
2d9498f3 277 if (mdic & E1000_MDIC_ERROR) {
3bb99fe2 278 e_dbg("MDI Error\n");
2d9498f3
DG
279 return -E1000_ERR_PHY;
280 }
bc7f75fa
AK
281
282 return 0;
283}
284
285/**
286 * e1000e_read_phy_reg_m88 - Read m88 PHY register
287 * @hw: pointer to the HW structure
288 * @offset: register offset to be read
289 * @data: pointer to the read data
290 *
291 * Acquires semaphore, if necessary, then reads the PHY register at offset
292 * and storing the retrieved information in data. Release any acquired
293 * semaphores before exiting.
294 **/
295s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
296{
297 s32 ret_val;
298
94d8186a 299 ret_val = hw->phy.ops.acquire(hw);
bc7f75fa
AK
300 if (ret_val)
301 return ret_val;
302
2d9498f3
DG
303 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
304 data);
bc7f75fa 305
94d8186a 306 hw->phy.ops.release(hw);
bc7f75fa
AK
307
308 return ret_val;
309}
310
311/**
312 * e1000e_write_phy_reg_m88 - Write m88 PHY register
313 * @hw: pointer to the HW structure
314 * @offset: register offset to write to
315 * @data: data to write at register offset
316 *
317 * Acquires semaphore, if necessary, then writes the data to PHY register
318 * at the offset. Release any acquired semaphores before exiting.
319 **/
320s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
321{
322 s32 ret_val;
323
94d8186a 324 ret_val = hw->phy.ops.acquire(hw);
bc7f75fa
AK
325 if (ret_val)
326 return ret_val;
327
2d9498f3
DG
328 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
329 data);
bc7f75fa 330
94d8186a 331 hw->phy.ops.release(hw);
bc7f75fa
AK
332
333 return ret_val;
334}
335
336/**
5ccdcecb 337 * __e1000e_read_phy_reg_igp - Read igp PHY register
bc7f75fa
AK
338 * @hw: pointer to the HW structure
339 * @offset: register offset to be read
340 * @data: pointer to the read data
5ccdcecb 341 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
342 *
343 * Acquires semaphore, if necessary, then reads the PHY register at offset
5ccdcecb 344 * and stores the retrieved information in data. Release any acquired
bc7f75fa
AK
345 * semaphores before exiting.
346 **/
5ccdcecb
BA
347static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
348 bool locked)
bc7f75fa 349{
5ccdcecb 350 s32 ret_val = 0;
bc7f75fa 351
5ccdcecb 352 if (!locked) {
94d8186a 353 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
354 goto out;
355
94d8186a 356 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
357 if (ret_val)
358 goto out;
359 }
bc7f75fa
AK
360
361 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2d9498f3
DG
362 ret_val = e1000e_write_phy_reg_mdic(hw,
363 IGP01E1000_PHY_PAGE_SELECT,
364 (u16)offset);
5ccdcecb
BA
365 if (ret_val)
366 goto release;
bc7f75fa
AK
367 }
368
2d9498f3 369 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
5ccdcecb 370 data);
bc7f75fa 371
5ccdcecb
BA
372release:
373 if (!locked)
94d8186a 374 hw->phy.ops.release(hw);
5ccdcecb 375out:
bc7f75fa
AK
376 return ret_val;
377}
378
5ccdcecb
BA
379/**
380 * e1000e_read_phy_reg_igp - Read igp PHY register
381 * @hw: pointer to the HW structure
382 * @offset: register offset to be read
383 * @data: pointer to the read data
384 *
385 * Acquires semaphore then reads the PHY register at offset and stores the
386 * retrieved information in data.
387 * Release the acquired semaphore before exiting.
388 **/
389s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
390{
391 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
392}
393
394/**
395 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
396 * @hw: pointer to the HW structure
397 * @offset: register offset to be read
398 * @data: pointer to the read data
399 *
400 * Reads the PHY register at offset and stores the retrieved information
401 * in data. Assumes semaphore already acquired.
402 **/
403s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
404{
405 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
406}
407
bc7f75fa
AK
408/**
409 * e1000e_write_phy_reg_igp - Write igp PHY register
410 * @hw: pointer to the HW structure
411 * @offset: register offset to write to
412 * @data: data to write at register offset
5ccdcecb 413 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
414 *
415 * Acquires semaphore, if necessary, then writes the data to PHY register
416 * at the offset. Release any acquired semaphores before exiting.
417 **/
5ccdcecb
BA
418static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
419 bool locked)
bc7f75fa 420{
5ccdcecb 421 s32 ret_val = 0;
bc7f75fa 422
5ccdcecb 423 if (!locked) {
94d8186a 424 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
425 goto out;
426
94d8186a 427 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
428 if (ret_val)
429 goto out;
430 }
bc7f75fa
AK
431
432 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2d9498f3
DG
433 ret_val = e1000e_write_phy_reg_mdic(hw,
434 IGP01E1000_PHY_PAGE_SELECT,
435 (u16)offset);
5ccdcecb
BA
436 if (ret_val)
437 goto release;
bc7f75fa
AK
438 }
439
2d9498f3
DG
440 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441 data);
bc7f75fa 442
5ccdcecb
BA
443release:
444 if (!locked)
94d8186a 445 hw->phy.ops.release(hw);
bc7f75fa 446
5ccdcecb 447out:
bc7f75fa
AK
448 return ret_val;
449}
450
451/**
5ccdcecb
BA
452 * e1000e_write_phy_reg_igp - Write igp PHY register
453 * @hw: pointer to the HW structure
454 * @offset: register offset to write to
455 * @data: data to write at register offset
456 *
457 * Acquires semaphore then writes the data to PHY register
458 * at the offset. Release any acquired semaphores before exiting.
459 **/
460s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
461{
462 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
463}
464
465/**
466 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
467 * @hw: pointer to the HW structure
468 * @offset: register offset to write to
469 * @data: data to write at register offset
470 *
471 * Writes the data to PHY register at the offset.
472 * Assumes semaphore already acquired.
473 **/
474s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
475{
476 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
477}
478
479/**
480 * __e1000_read_kmrn_reg - Read kumeran register
bc7f75fa
AK
481 * @hw: pointer to the HW structure
482 * @offset: register offset to be read
483 * @data: pointer to the read data
5ccdcecb 484 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
485 *
486 * Acquires semaphore, if necessary. Then reads the PHY register at offset
487 * using the kumeran interface. The information retrieved is stored in data.
488 * Release any acquired semaphores before exiting.
489 **/
5ccdcecb
BA
490static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
491 bool locked)
bc7f75fa
AK
492{
493 u32 kmrnctrlsta;
5ccdcecb 494 s32 ret_val = 0;
bc7f75fa 495
5ccdcecb 496 if (!locked) {
94d8186a 497 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
498 goto out;
499
94d8186a 500 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
501 if (ret_val)
502 goto out;
503 }
bc7f75fa
AK
504
505 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
506 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
507 ew32(KMRNCTRLSTA, kmrnctrlsta);
508
509 udelay(2);
510
511 kmrnctrlsta = er32(KMRNCTRLSTA);
512 *data = (u16)kmrnctrlsta;
513
5ccdcecb 514 if (!locked)
94d8186a 515 hw->phy.ops.release(hw);
bc7f75fa 516
5ccdcecb 517out:
bc7f75fa
AK
518 return ret_val;
519}
520
521/**
5ccdcecb
BA
522 * e1000e_read_kmrn_reg - Read kumeran register
523 * @hw: pointer to the HW structure
524 * @offset: register offset to be read
525 * @data: pointer to the read data
526 *
527 * Acquires semaphore then reads the PHY register at offset using the
528 * kumeran interface. The information retrieved is stored in data.
529 * Release the acquired semaphore before exiting.
530 **/
531s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
532{
533 return __e1000_read_kmrn_reg(hw, offset, data, false);
534}
535
536/**
1d5846b9 537 * e1000e_read_kmrn_reg_locked - Read kumeran register
5ccdcecb
BA
538 * @hw: pointer to the HW structure
539 * @offset: register offset to be read
540 * @data: pointer to the read data
541 *
542 * Reads the PHY register at offset using the kumeran interface. The
543 * information retrieved is stored in data.
544 * Assumes semaphore already acquired.
545 **/
1d5846b9 546s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
5ccdcecb
BA
547{
548 return __e1000_read_kmrn_reg(hw, offset, data, true);
549}
550
551/**
552 * __e1000_write_kmrn_reg - Write kumeran register
bc7f75fa
AK
553 * @hw: pointer to the HW structure
554 * @offset: register offset to write to
555 * @data: data to write at register offset
5ccdcecb 556 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
557 *
558 * Acquires semaphore, if necessary. Then write the data to PHY register
559 * at the offset using the kumeran interface. Release any acquired semaphores
560 * before exiting.
561 **/
5ccdcecb
BA
562static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
563 bool locked)
bc7f75fa
AK
564{
565 u32 kmrnctrlsta;
5ccdcecb 566 s32 ret_val = 0;
bc7f75fa 567
5ccdcecb 568 if (!locked) {
94d8186a 569 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
570 goto out;
571
94d8186a 572 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
573 if (ret_val)
574 goto out;
575 }
bc7f75fa
AK
576
577 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
578 E1000_KMRNCTRLSTA_OFFSET) | data;
579 ew32(KMRNCTRLSTA, kmrnctrlsta);
580
581 udelay(2);
bc7f75fa 582
5ccdcecb 583 if (!locked)
94d8186a 584 hw->phy.ops.release(hw);
5ccdcecb
BA
585
586out:
bc7f75fa
AK
587 return ret_val;
588}
589
5ccdcecb
BA
590/**
591 * e1000e_write_kmrn_reg - Write kumeran register
592 * @hw: pointer to the HW structure
593 * @offset: register offset to write to
594 * @data: data to write at register offset
595 *
596 * Acquires semaphore then writes the data to the PHY register at the offset
597 * using the kumeran interface. Release the acquired semaphore before exiting.
598 **/
599s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
600{
601 return __e1000_write_kmrn_reg(hw, offset, data, false);
602}
603
604/**
1d5846b9 605 * e1000e_write_kmrn_reg_locked - Write kumeran register
5ccdcecb
BA
606 * @hw: pointer to the HW structure
607 * @offset: register offset to write to
608 * @data: data to write at register offset
609 *
610 * Write the data to PHY register at the offset using the kumeran interface.
611 * Assumes semaphore already acquired.
612 **/
1d5846b9 613s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
5ccdcecb
BA
614{
615 return __e1000_write_kmrn_reg(hw, offset, data, true);
616}
617
a4f58f54
BA
618/**
619 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
620 * @hw: pointer to the HW structure
621 *
622 * Sets up Carrier-sense on Transmit and downshift values.
623 **/
624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
625{
626 struct e1000_phy_info *phy = &hw->phy;
627 s32 ret_val;
628 u16 phy_data;
629
630 /* Enable CRS on TX. This must be set for half-duplex operation. */
94d8186a 631 ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
a4f58f54
BA
632 if (ret_val)
633 goto out;
634
635 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
636
637 /* Enable downshift */
638 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
639
94d8186a 640 ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
a4f58f54
BA
641
642out:
643 return ret_val;
644}
645
bc7f75fa
AK
646/**
647 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
648 * @hw: pointer to the HW structure
649 *
650 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
651 * and downshift values are set also.
652 **/
653s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
654{
655 struct e1000_phy_info *phy = &hw->phy;
656 s32 ret_val;
657 u16 phy_data;
658
ad68076e 659 /* Enable CRS on Tx. This must be set for half-duplex operation. */
bc7f75fa
AK
660 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
661 if (ret_val)
662 return ret_val;
663
a4f58f54
BA
664 /* For BM PHY this bit is downshift enable */
665 if (phy->type != e1000_phy_bm)
2d9498f3 666 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
bc7f75fa 667
ad68076e
BA
668 /*
669 * Options:
bc7f75fa
AK
670 * MDI/MDI-X = 0 (default)
671 * 0 - Auto for all speeds
672 * 1 - MDI mode
673 * 2 - MDI-X mode
674 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
675 */
676 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
677
678 switch (phy->mdix) {
679 case 1:
680 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
681 break;
682 case 2:
683 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
684 break;
685 case 3:
686 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
687 break;
688 case 0:
689 default:
690 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
691 break;
692 }
693
ad68076e
BA
694 /*
695 * Options:
bc7f75fa
AK
696 * disable_polarity_correction = 0 (default)
697 * Automatic Correction for Reversed Cable Polarity
698 * 0 - Disabled
699 * 1 - Enabled
700 */
701 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
702 if (phy->disable_polarity_correction == 1)
703 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
704
97ac8cae
BA
705 /* Enable downshift on BM (disabled by default) */
706 if (phy->type == e1000_phy_bm)
707 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
708
bc7f75fa
AK
709 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
710 if (ret_val)
711 return ret_val;
712
4662e82b
BA
713 if ((phy->type == e1000_phy_m88) &&
714 (phy->revision < E1000_REVISION_4) &&
715 (phy->id != BME1000_E_PHY_ID_R2)) {
ad68076e
BA
716 /*
717 * Force TX_CLK in the Extended PHY Specific Control Register
bc7f75fa
AK
718 * to 25MHz clock.
719 */
720 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
721 if (ret_val)
722 return ret_val;
723
724 phy_data |= M88E1000_EPSCR_TX_CLK_25;
725
726 if ((phy->revision == 2) &&
727 (phy->id == M88E1111_I_PHY_ID)) {
728 /* 82573L PHY - set the downshift counter to 5x. */
729 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
730 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
731 } else {
732 /* Configure Master and Slave downshift values */
733 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
734 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
735 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
736 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
737 }
738 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
739 if (ret_val)
740 return ret_val;
741 }
742
4662e82b
BA
743 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
744 /* Set PHY page 0, register 29 to 0x0003 */
745 ret_val = e1e_wphy(hw, 29, 0x0003);
746 if (ret_val)
747 return ret_val;
748
749 /* Set PHY page 0, register 30 to 0x0000 */
750 ret_val = e1e_wphy(hw, 30, 0x0000);
751 if (ret_val)
752 return ret_val;
753 }
754
bc7f75fa
AK
755 /* Commit the changes. */
756 ret_val = e1000e_commit_phy(hw);
a4f58f54 757 if (ret_val) {
3bb99fe2 758 e_dbg("Error committing the PHY changes\n");
a4f58f54
BA
759 return ret_val;
760 }
bc7f75fa 761
a4f58f54 762 if (phy->type == e1000_phy_82578) {
94d8186a 763 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
a4f58f54
BA
764 &phy_data);
765 if (ret_val)
766 return ret_val;
767
768 /* 82578 PHY - set the downshift count to 1x. */
769 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
770 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
94d8186a 771 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
a4f58f54
BA
772 phy_data);
773 if (ret_val)
774 return ret_val;
775 }
776
777 return 0;
bc7f75fa
AK
778}
779
780/**
781 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
782 * @hw: pointer to the HW structure
783 *
784 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
785 * igp PHY's.
786 **/
787s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
788{
789 struct e1000_phy_info *phy = &hw->phy;
790 s32 ret_val;
791 u16 data;
792
793 ret_val = e1000_phy_hw_reset(hw);
794 if (ret_val) {
3bb99fe2 795 e_dbg("Error resetting the PHY.\n");
bc7f75fa
AK
796 return ret_val;
797 }
798
2d9498f3
DG
799 /*
800 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
801 * timeout issues when LFS is enabled.
802 */
803 msleep(100);
bc7f75fa
AK
804
805 /* disable lplu d0 during driver init */
564ea9bb 806 ret_val = e1000_set_d0_lplu_state(hw, false);
bc7f75fa 807 if (ret_val) {
3bb99fe2 808 e_dbg("Error Disabling LPLU D0\n");
bc7f75fa
AK
809 return ret_val;
810 }
811 /* Configure mdi-mdix settings */
812 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
813 if (ret_val)
814 return ret_val;
815
816 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
817
818 switch (phy->mdix) {
819 case 1:
820 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
821 break;
822 case 2:
823 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
824 break;
825 case 0:
826 default:
827 data |= IGP01E1000_PSCR_AUTO_MDIX;
828 break;
829 }
830 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
831 if (ret_val)
832 return ret_val;
833
834 /* set auto-master slave resolution settings */
835 if (hw->mac.autoneg) {
ad68076e
BA
836 /*
837 * when autonegotiation advertisement is only 1000Mbps then we
bc7f75fa 838 * should disable SmartSpeed and enable Auto MasterSlave
ad68076e
BA
839 * resolution as hardware default.
840 */
bc7f75fa
AK
841 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
842 /* Disable SmartSpeed */
843 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 844 &data);
bc7f75fa
AK
845 if (ret_val)
846 return ret_val;
847
848 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
849 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 850 data);
bc7f75fa
AK
851 if (ret_val)
852 return ret_val;
853
854 /* Set auto Master/Slave resolution process */
855 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
856 if (ret_val)
857 return ret_val;
858
859 data &= ~CR_1000T_MS_ENABLE;
860 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
861 if (ret_val)
862 return ret_val;
863 }
864
865 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
866 if (ret_val)
867 return ret_val;
868
869 /* load defaults for future use */
870 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
871 ((data & CR_1000T_MS_VALUE) ?
872 e1000_ms_force_master :
873 e1000_ms_force_slave) :
874 e1000_ms_auto;
875
876 switch (phy->ms_type) {
877 case e1000_ms_force_master:
878 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
879 break;
880 case e1000_ms_force_slave:
881 data |= CR_1000T_MS_ENABLE;
882 data &= ~(CR_1000T_MS_VALUE);
883 break;
884 case e1000_ms_auto:
885 data &= ~CR_1000T_MS_ENABLE;
886 default:
887 break;
888 }
889 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
890 }
891
892 return ret_val;
893}
894
895/**
896 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
897 * @hw: pointer to the HW structure
898 *
899 * Reads the MII auto-neg advertisement register and/or the 1000T control
900 * register and if the PHY is already setup for auto-negotiation, then
901 * return successful. Otherwise, setup advertisement and flow control to
902 * the appropriate values for the wanted auto-negotiation.
903 **/
904static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
905{
906 struct e1000_phy_info *phy = &hw->phy;
907 s32 ret_val;
908 u16 mii_autoneg_adv_reg;
909 u16 mii_1000t_ctrl_reg = 0;
910
911 phy->autoneg_advertised &= phy->autoneg_mask;
912
913 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
914 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
915 if (ret_val)
916 return ret_val;
917
918 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
919 /* Read the MII 1000Base-T Control Register (Address 9). */
920 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
921 if (ret_val)
922 return ret_val;
923 }
924
ad68076e
BA
925 /*
926 * Need to parse both autoneg_advertised and fc and set up
bc7f75fa
AK
927 * the appropriate PHY registers. First we will parse for
928 * autoneg_advertised software override. Since we can advertise
929 * a plethora of combinations, we need to check each bit
930 * individually.
931 */
932
ad68076e
BA
933 /*
934 * First we clear all the 10/100 mb speed bits in the Auto-Neg
bc7f75fa
AK
935 * Advertisement Register (Address 4) and the 1000 mb speed bits in
936 * the 1000Base-T Control Register (Address 9).
937 */
938 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
939 NWAY_AR_100TX_HD_CAPS |
940 NWAY_AR_10T_FD_CAPS |
941 NWAY_AR_10T_HD_CAPS);
942 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
943
3bb99fe2 944 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
bc7f75fa
AK
945
946 /* Do we want to advertise 10 Mb Half Duplex? */
947 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
3bb99fe2 948 e_dbg("Advertise 10mb Half duplex\n");
bc7f75fa
AK
949 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
950 }
951
952 /* Do we want to advertise 10 Mb Full Duplex? */
953 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
3bb99fe2 954 e_dbg("Advertise 10mb Full duplex\n");
bc7f75fa
AK
955 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
956 }
957
958 /* Do we want to advertise 100 Mb Half Duplex? */
959 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
3bb99fe2 960 e_dbg("Advertise 100mb Half duplex\n");
bc7f75fa
AK
961 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
962 }
963
964 /* Do we want to advertise 100 Mb Full Duplex? */
965 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
3bb99fe2 966 e_dbg("Advertise 100mb Full duplex\n");
bc7f75fa
AK
967 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
968 }
969
970 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
971 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
3bb99fe2 972 e_dbg("Advertise 1000mb Half duplex request denied!\n");
bc7f75fa
AK
973
974 /* Do we want to advertise 1000 Mb Full Duplex? */
975 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
3bb99fe2 976 e_dbg("Advertise 1000mb Full duplex\n");
bc7f75fa
AK
977 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
978 }
979
ad68076e
BA
980 /*
981 * Check for a software override of the flow control settings, and
bc7f75fa
AK
982 * setup the PHY advertisement registers accordingly. If
983 * auto-negotiation is enabled, then software will have to set the
984 * "PAUSE" bits to the correct value in the Auto-Negotiation
985 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
986 * negotiation.
987 *
988 * The possible values of the "fc" parameter are:
989 * 0: Flow control is completely disabled
990 * 1: Rx flow control is enabled (we can receive pause frames
991 * but not send pause frames).
992 * 2: Tx flow control is enabled (we can send pause frames
993 * but we do not support receiving pause frames).
ad68076e 994 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bc7f75fa
AK
995 * other: No software override. The flow control configuration
996 * in the EEPROM is used.
997 */
5c48ef3e 998 switch (hw->fc.current_mode) {
bc7f75fa 999 case e1000_fc_none:
ad68076e
BA
1000 /*
1001 * Flow control (Rx & Tx) is completely disabled by a
bc7f75fa
AK
1002 * software over-ride.
1003 */
1004 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1005 break;
1006 case e1000_fc_rx_pause:
ad68076e
BA
1007 /*
1008 * Rx Flow control is enabled, and Tx Flow control is
bc7f75fa 1009 * disabled, by a software over-ride.
ad68076e
BA
1010 *
1011 * Since there really isn't a way to advertise that we are
1012 * capable of Rx Pause ONLY, we will advertise that we
1013 * support both symmetric and asymmetric Rx PAUSE. Later
bc7f75fa
AK
1014 * (in e1000e_config_fc_after_link_up) we will disable the
1015 * hw's ability to send PAUSE frames.
1016 */
1017 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1018 break;
1019 case e1000_fc_tx_pause:
ad68076e
BA
1020 /*
1021 * Tx Flow control is enabled, and Rx Flow control is
bc7f75fa
AK
1022 * disabled, by a software over-ride.
1023 */
1024 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1025 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1026 break;
1027 case e1000_fc_full:
ad68076e
BA
1028 /*
1029 * Flow control (both Rx and Tx) is enabled by a software
bc7f75fa
AK
1030 * over-ride.
1031 */
1032 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1033 break;
1034 default:
3bb99fe2 1035 e_dbg("Flow control param set incorrectly\n");
bc7f75fa
AK
1036 ret_val = -E1000_ERR_CONFIG;
1037 return ret_val;
1038 }
1039
1040 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1041 if (ret_val)
1042 return ret_val;
1043
3bb99fe2 1044 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
bc7f75fa
AK
1045
1046 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1047 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1048 }
1049
1050 return ret_val;
1051}
1052
1053/**
1054 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1055 * @hw: pointer to the HW structure
1056 *
1057 * Performs initial bounds checking on autoneg advertisement parameter, then
1058 * configure to advertise the full capability. Setup the PHY to autoneg
1059 * and restart the negotiation process between the link partner. If
ad68076e 1060 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
bc7f75fa
AK
1061 **/
1062static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1063{
1064 struct e1000_phy_info *phy = &hw->phy;
1065 s32 ret_val;
1066 u16 phy_ctrl;
1067
ad68076e
BA
1068 /*
1069 * Perform some bounds checking on the autoneg advertisement
bc7f75fa
AK
1070 * parameter.
1071 */
1072 phy->autoneg_advertised &= phy->autoneg_mask;
1073
ad68076e
BA
1074 /*
1075 * If autoneg_advertised is zero, we assume it was not defaulted
bc7f75fa
AK
1076 * by the calling code so we set to advertise full capability.
1077 */
1078 if (phy->autoneg_advertised == 0)
1079 phy->autoneg_advertised = phy->autoneg_mask;
1080
3bb99fe2 1081 e_dbg("Reconfiguring auto-neg advertisement params\n");
bc7f75fa
AK
1082 ret_val = e1000_phy_setup_autoneg(hw);
1083 if (ret_val) {
3bb99fe2 1084 e_dbg("Error Setting up Auto-Negotiation\n");
bc7f75fa
AK
1085 return ret_val;
1086 }
3bb99fe2 1087 e_dbg("Restarting Auto-Neg\n");
bc7f75fa 1088
ad68076e
BA
1089 /*
1090 * Restart auto-negotiation by setting the Auto Neg Enable bit and
bc7f75fa
AK
1091 * the Auto Neg Restart bit in the PHY control register.
1092 */
1093 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1094 if (ret_val)
1095 return ret_val;
1096
1097 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1098 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1099 if (ret_val)
1100 return ret_val;
1101
ad68076e
BA
1102 /*
1103 * Does the user want to wait for Auto-Neg to complete here, or
bc7f75fa
AK
1104 * check at a later time (for example, callback routine).
1105 */
318a94d6 1106 if (phy->autoneg_wait_to_complete) {
bc7f75fa
AK
1107 ret_val = e1000_wait_autoneg(hw);
1108 if (ret_val) {
3bb99fe2 1109 e_dbg("Error while waiting for "
bc7f75fa
AK
1110 "autoneg to complete\n");
1111 return ret_val;
1112 }
1113 }
1114
1115 hw->mac.get_link_status = 1;
1116
1117 return ret_val;
1118}
1119
1120/**
1121 * e1000e_setup_copper_link - Configure copper link settings
1122 * @hw: pointer to the HW structure
1123 *
1124 * Calls the appropriate function to configure the link for auto-neg or forced
1125 * speed and duplex. Then we check for link, once link is established calls
1126 * to configure collision distance and flow control are called. If link is
1127 * not established, we return -E1000_ERR_PHY (-2).
1128 **/
1129s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1130{
1131 s32 ret_val;
1132 bool link;
1133
1134 if (hw->mac.autoneg) {
ad68076e
BA
1135 /*
1136 * Setup autoneg and flow control advertisement and perform
1137 * autonegotiation.
1138 */
bc7f75fa
AK
1139 ret_val = e1000_copper_link_autoneg(hw);
1140 if (ret_val)
1141 return ret_val;
1142 } else {
ad68076e
BA
1143 /*
1144 * PHY will be set to 10H, 10F, 100H or 100F
1145 * depending on user settings.
1146 */
3bb99fe2 1147 e_dbg("Forcing Speed and Duplex\n");
bc7f75fa
AK
1148 ret_val = e1000_phy_force_speed_duplex(hw);
1149 if (ret_val) {
3bb99fe2 1150 e_dbg("Error Forcing Speed and Duplex\n");
bc7f75fa
AK
1151 return ret_val;
1152 }
1153 }
1154
ad68076e
BA
1155 /*
1156 * Check link status. Wait up to 100 microseconds for link to become
bc7f75fa
AK
1157 * valid.
1158 */
1159 ret_val = e1000e_phy_has_link_generic(hw,
1160 COPPER_LINK_UP_LIMIT,
1161 10,
1162 &link);
1163 if (ret_val)
1164 return ret_val;
1165
1166 if (link) {
3bb99fe2 1167 e_dbg("Valid link established!!!\n");
bc7f75fa
AK
1168 e1000e_config_collision_dist(hw);
1169 ret_val = e1000e_config_fc_after_link_up(hw);
1170 } else {
3bb99fe2 1171 e_dbg("Unable to establish link!!!\n");
bc7f75fa
AK
1172 }
1173
1174 return ret_val;
1175}
1176
1177/**
1178 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1179 * @hw: pointer to the HW structure
1180 *
1181 * Calls the PHY setup function to force speed and duplex. Clears the
1182 * auto-crossover to force MDI manually. Waits for link and returns
1183 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1184 **/
1185s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1186{
1187 struct e1000_phy_info *phy = &hw->phy;
1188 s32 ret_val;
1189 u16 phy_data;
1190 bool link;
1191
1192 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1193 if (ret_val)
1194 return ret_val;
1195
1196 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1197
1198 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1199 if (ret_val)
1200 return ret_val;
1201
ad68076e
BA
1202 /*
1203 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
bc7f75fa
AK
1204 * forced whenever speed and duplex are forced.
1205 */
1206 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1207 if (ret_val)
1208 return ret_val;
1209
1210 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1211 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1212
1213 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1214 if (ret_val)
1215 return ret_val;
1216
3bb99fe2 1217 e_dbg("IGP PSCR: %X\n", phy_data);
bc7f75fa
AK
1218
1219 udelay(1);
1220
318a94d6 1221 if (phy->autoneg_wait_to_complete) {
3bb99fe2 1222 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
bc7f75fa
AK
1223
1224 ret_val = e1000e_phy_has_link_generic(hw,
1225 PHY_FORCE_LIMIT,
1226 100000,
1227 &link);
1228 if (ret_val)
1229 return ret_val;
1230
1231 if (!link)
3bb99fe2 1232 e_dbg("Link taking longer than expected.\n");
bc7f75fa
AK
1233
1234 /* Try once more */
1235 ret_val = e1000e_phy_has_link_generic(hw,
1236 PHY_FORCE_LIMIT,
1237 100000,
1238 &link);
1239 if (ret_val)
1240 return ret_val;
1241 }
1242
1243 return ret_val;
1244}
1245
1246/**
1247 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1248 * @hw: pointer to the HW structure
1249 *
1250 * Calls the PHY setup function to force speed and duplex. Clears the
1251 * auto-crossover to force MDI manually. Resets the PHY to commit the
1252 * changes. If time expires while waiting for link up, we reset the DSP.
ad68076e 1253 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
bc7f75fa
AK
1254 * successful completion, else return corresponding error code.
1255 **/
1256s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1257{
1258 struct e1000_phy_info *phy = &hw->phy;
1259 s32 ret_val;
1260 u16 phy_data;
1261 bool link;
1262
ad68076e
BA
1263 /*
1264 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
bc7f75fa
AK
1265 * forced whenever speed and duplex are forced.
1266 */
1267 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1268 if (ret_val)
1269 return ret_val;
1270
1271 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1272 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1273 if (ret_val)
1274 return ret_val;
1275
3bb99fe2 1276 e_dbg("M88E1000 PSCR: %X\n", phy_data);
bc7f75fa
AK
1277
1278 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1279 if (ret_val)
1280 return ret_val;
1281
1282 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1283
bc7f75fa
AK
1284 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1285 if (ret_val)
1286 return ret_val;
1287
5aa49c82
BA
1288 /* Reset the phy to commit changes. */
1289 ret_val = e1000e_commit_phy(hw);
1290 if (ret_val)
1291 return ret_val;
bc7f75fa 1292
318a94d6 1293 if (phy->autoneg_wait_to_complete) {
3bb99fe2 1294 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
bc7f75fa
AK
1295
1296 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1297 100000, &link);
1298 if (ret_val)
1299 return ret_val;
1300
1301 if (!link) {
0be84010
BA
1302 if (hw->phy.type != e1000_phy_m88) {
1303 e_dbg("Link taking longer than expected.\n");
1304 } else {
1305 /*
1306 * We didn't get link.
1307 * Reset the DSP and cross our fingers.
1308 */
1309 ret_val = e1e_wphy(hw,
1310 M88E1000_PHY_PAGE_SELECT,
1311 0x001d);
1312 if (ret_val)
1313 return ret_val;
1314 ret_val = e1000e_phy_reset_dsp(hw);
1315 if (ret_val)
1316 return ret_val;
1317 }
bc7f75fa
AK
1318 }
1319
1320 /* Try once more */
1321 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1322 100000, &link);
1323 if (ret_val)
1324 return ret_val;
1325 }
1326
0be84010
BA
1327 if (hw->phy.type != e1000_phy_m88)
1328 return 0;
1329
bc7f75fa
AK
1330 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1331 if (ret_val)
1332 return ret_val;
1333
ad68076e
BA
1334 /*
1335 * Resetting the phy means we need to re-force TX_CLK in the
bc7f75fa
AK
1336 * Extended PHY Specific Control Register to 25MHz clock from
1337 * the reset value of 2.5MHz.
1338 */
1339 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1340 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1341 if (ret_val)
1342 return ret_val;
1343
ad68076e
BA
1344 /*
1345 * In addition, we must re-enable CRS on Tx for both half and full
bc7f75fa
AK
1346 * duplex.
1347 */
1348 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1349 if (ret_val)
1350 return ret_val;
1351
1352 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1353 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1354
1355 return ret_val;
1356}
1357
0be84010
BA
1358/**
1359 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1360 * @hw: pointer to the HW structure
1361 *
1362 * Forces the speed and duplex settings of the PHY.
1363 * This is a function pointer entry point only called by
1364 * PHY setup routines.
1365 **/
1366s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1367{
1368 struct e1000_phy_info *phy = &hw->phy;
1369 s32 ret_val;
1370 u16 data;
1371 bool link;
1372
1373 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1374 if (ret_val)
1375 goto out;
1376
1377 e1000e_phy_force_speed_duplex_setup(hw, &data);
1378
1379 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1380 if (ret_val)
1381 goto out;
1382
1383 /* Disable MDI-X support for 10/100 */
1384 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1385 if (ret_val)
1386 goto out;
1387
1388 data &= ~IFE_PMC_AUTO_MDIX;
1389 data &= ~IFE_PMC_FORCE_MDIX;
1390
1391 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1392 if (ret_val)
1393 goto out;
1394
1395 e_dbg("IFE PMC: %X\n", data);
1396
1397 udelay(1);
1398
1399 if (phy->autoneg_wait_to_complete) {
1400 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1401
1402 ret_val = e1000e_phy_has_link_generic(hw,
1403 PHY_FORCE_LIMIT,
1404 100000,
1405 &link);
1406 if (ret_val)
1407 goto out;
1408
1409 if (!link)
1410 e_dbg("Link taking longer than expected.\n");
1411
1412 /* Try once more */
1413 ret_val = e1000e_phy_has_link_generic(hw,
1414 PHY_FORCE_LIMIT,
1415 100000,
1416 &link);
1417 if (ret_val)
1418 goto out;
1419 }
1420
1421out:
1422 return ret_val;
1423}
1424
bc7f75fa
AK
1425/**
1426 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 * @hw: pointer to the HW structure
1428 * @phy_ctrl: pointer to current value of PHY_CONTROL
1429 *
1430 * Forces speed and duplex on the PHY by doing the following: disable flow
1431 * control, force speed/duplex on the MAC, disable auto speed detection,
1432 * disable auto-negotiation, configure duplex, configure speed, configure
1433 * the collision distance, write configuration to CTRL register. The
1434 * caller must write to the PHY_CONTROL register for these settings to
1435 * take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439 struct e1000_mac_info *mac = &hw->mac;
1440 u32 ctrl;
1441
1442 /* Turn off flow control when forcing speed/duplex */
5c48ef3e 1443 hw->fc.current_mode = e1000_fc_none;
bc7f75fa
AK
1444
1445 /* Force speed/duplex on the mac */
1446 ctrl = er32(CTRL);
1447 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448 ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450 /* Disable Auto Speed Detection */
1451 ctrl &= ~E1000_CTRL_ASDE;
1452
1453 /* Disable autoneg on the phy */
1454 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1455
1456 /* Forcing Full or Half Duplex? */
1457 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458 ctrl &= ~E1000_CTRL_FD;
1459 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
3bb99fe2 1460 e_dbg("Half Duplex\n");
bc7f75fa
AK
1461 } else {
1462 ctrl |= E1000_CTRL_FD;
1463 *phy_ctrl |= MII_CR_FULL_DUPLEX;
3bb99fe2 1464 e_dbg("Full Duplex\n");
bc7f75fa
AK
1465 }
1466
1467 /* Forcing 10mb or 100mb? */
1468 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469 ctrl |= E1000_CTRL_SPD_100;
1470 *phy_ctrl |= MII_CR_SPEED_100;
1471 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
3bb99fe2 1472 e_dbg("Forcing 100mb\n");
bc7f75fa
AK
1473 } else {
1474 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475 *phy_ctrl |= MII_CR_SPEED_10;
1476 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
3bb99fe2 1477 e_dbg("Forcing 10mb\n");
bc7f75fa
AK
1478 }
1479
1480 e1000e_config_collision_dist(hw);
1481
1482 ew32(CTRL, ctrl);
1483}
1484
1485/**
1486 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1487 * @hw: pointer to the HW structure
1488 * @active: boolean used to enable/disable lplu
1489 *
1490 * Success returns 0, Failure returns 1
1491 *
1492 * The low power link up (lplu) state is set to the power management level D3
1493 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1494 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1495 * is used during Dx states where the power conservation is most important.
1496 * During driver activity, SmartSpeed should be enabled so performance is
1497 * maintained.
1498 **/
1499s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1500{
1501 struct e1000_phy_info *phy = &hw->phy;
1502 s32 ret_val;
1503 u16 data;
1504
1505 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1506 if (ret_val)
1507 return ret_val;
1508
1509 if (!active) {
1510 data &= ~IGP02E1000_PM_D3_LPLU;
2d9498f3 1511 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
bc7f75fa
AK
1512 if (ret_val)
1513 return ret_val;
ad68076e
BA
1514 /*
1515 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1516 * during Dx states where the power conservation is most
1517 * important. During driver activity we should enable
ad68076e
BA
1518 * SmartSpeed, so performance is maintained.
1519 */
bc7f75fa
AK
1520 if (phy->smart_speed == e1000_smart_speed_on) {
1521 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1522 &data);
bc7f75fa
AK
1523 if (ret_val)
1524 return ret_val;
1525
1526 data |= IGP01E1000_PSCFR_SMART_SPEED;
1527 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1528 data);
bc7f75fa
AK
1529 if (ret_val)
1530 return ret_val;
1531 } else if (phy->smart_speed == e1000_smart_speed_off) {
1532 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1533 &data);
bc7f75fa
AK
1534 if (ret_val)
1535 return ret_val;
1536
1537 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1538 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1539 data);
bc7f75fa
AK
1540 if (ret_val)
1541 return ret_val;
1542 }
1543 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1544 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1545 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1546 data |= IGP02E1000_PM_D3_LPLU;
1547 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1548 if (ret_val)
1549 return ret_val;
1550
1551 /* When LPLU is enabled, we should disable SmartSpeed */
1552 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1553 if (ret_val)
1554 return ret_val;
1555
1556 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1557 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1558 }
1559
1560 return ret_val;
1561}
1562
1563/**
489815ce 1564 * e1000e_check_downshift - Checks whether a downshift in speed occurred
bc7f75fa
AK
1565 * @hw: pointer to the HW structure
1566 *
1567 * Success returns 0, Failure returns 1
1568 *
1569 * A downshift is detected by querying the PHY link health.
1570 **/
1571s32 e1000e_check_downshift(struct e1000_hw *hw)
1572{
1573 struct e1000_phy_info *phy = &hw->phy;
1574 s32 ret_val;
1575 u16 phy_data, offset, mask;
1576
1577 switch (phy->type) {
1578 case e1000_phy_m88:
1579 case e1000_phy_gg82563:
07f025e6 1580 case e1000_phy_bm:
a4f58f54 1581 case e1000_phy_82578:
bc7f75fa
AK
1582 offset = M88E1000_PHY_SPEC_STATUS;
1583 mask = M88E1000_PSSR_DOWNSHIFT;
1584 break;
1585 case e1000_phy_igp_2:
1586 case e1000_phy_igp_3:
1587 offset = IGP01E1000_PHY_LINK_HEALTH;
1588 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1589 break;
1590 default:
1591 /* speed downshift not supported */
564ea9bb 1592 phy->speed_downgraded = false;
bc7f75fa
AK
1593 return 0;
1594 }
1595
1596 ret_val = e1e_rphy(hw, offset, &phy_data);
1597
1598 if (!ret_val)
1599 phy->speed_downgraded = (phy_data & mask);
1600
1601 return ret_val;
1602}
1603
1604/**
1605 * e1000_check_polarity_m88 - Checks the polarity.
1606 * @hw: pointer to the HW structure
1607 *
1608 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1609 *
1610 * Polarity is determined based on the PHY specific status register.
1611 **/
0be84010 1612s32 e1000_check_polarity_m88(struct e1000_hw *hw)
bc7f75fa
AK
1613{
1614 struct e1000_phy_info *phy = &hw->phy;
1615 s32 ret_val;
1616 u16 data;
1617
1618 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1619
1620 if (!ret_val)
1621 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1622 ? e1000_rev_polarity_reversed
1623 : e1000_rev_polarity_normal;
1624
1625 return ret_val;
1626}
1627
1628/**
1629 * e1000_check_polarity_igp - Checks the polarity.
1630 * @hw: pointer to the HW structure
1631 *
1632 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1633 *
1634 * Polarity is determined based on the PHY port status register, and the
1635 * current speed (since there is no polarity at 100Mbps).
1636 **/
0be84010 1637s32 e1000_check_polarity_igp(struct e1000_hw *hw)
bc7f75fa
AK
1638{
1639 struct e1000_phy_info *phy = &hw->phy;
1640 s32 ret_val;
1641 u16 data, offset, mask;
1642
ad68076e
BA
1643 /*
1644 * Polarity is determined based on the speed of
1645 * our connection.
1646 */
bc7f75fa
AK
1647 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1648 if (ret_val)
1649 return ret_val;
1650
1651 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1652 IGP01E1000_PSSR_SPEED_1000MBPS) {
1653 offset = IGP01E1000_PHY_PCS_INIT_REG;
1654 mask = IGP01E1000_PHY_POLARITY_MASK;
1655 } else {
ad68076e
BA
1656 /*
1657 * This really only applies to 10Mbps since
bc7f75fa
AK
1658 * there is no polarity for 100Mbps (always 0).
1659 */
1660 offset = IGP01E1000_PHY_PORT_STATUS;
1661 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1662 }
1663
1664 ret_val = e1e_rphy(hw, offset, &data);
1665
1666 if (!ret_val)
1667 phy->cable_polarity = (data & mask)
1668 ? e1000_rev_polarity_reversed
1669 : e1000_rev_polarity_normal;
1670
1671 return ret_val;
1672}
1673
0be84010
BA
1674/**
1675 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1676 * @hw: pointer to the HW structure
1677 *
1678 * Polarity is determined on the polarity reversal feature being enabled.
1679 **/
1680s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1681{
1682 struct e1000_phy_info *phy = &hw->phy;
1683 s32 ret_val;
1684 u16 phy_data, offset, mask;
1685
1686 /*
1687 * Polarity is determined based on the reversal feature being enabled.
1688 */
1689 if (phy->polarity_correction) {
1690 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1691 mask = IFE_PESC_POLARITY_REVERSED;
1692 } else {
1693 offset = IFE_PHY_SPECIAL_CONTROL;
1694 mask = IFE_PSC_FORCE_POLARITY;
1695 }
1696
1697 ret_val = e1e_rphy(hw, offset, &phy_data);
1698
1699 if (!ret_val)
1700 phy->cable_polarity = (phy_data & mask)
1701 ? e1000_rev_polarity_reversed
1702 : e1000_rev_polarity_normal;
1703
1704 return ret_val;
1705}
1706
bc7f75fa 1707/**
ad68076e 1708 * e1000_wait_autoneg - Wait for auto-neg completion
bc7f75fa
AK
1709 * @hw: pointer to the HW structure
1710 *
1711 * Waits for auto-negotiation to complete or for the auto-negotiation time
1712 * limit to expire, which ever happens first.
1713 **/
1714static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1715{
1716 s32 ret_val = 0;
1717 u16 i, phy_status;
1718
1719 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1720 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1721 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1722 if (ret_val)
1723 break;
1724 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1725 if (ret_val)
1726 break;
1727 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1728 break;
1729 msleep(100);
1730 }
1731
ad68076e
BA
1732 /*
1733 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
bc7f75fa
AK
1734 * has completed.
1735 */
1736 return ret_val;
1737}
1738
1739/**
1740 * e1000e_phy_has_link_generic - Polls PHY for link
1741 * @hw: pointer to the HW structure
1742 * @iterations: number of times to poll for link
1743 * @usec_interval: delay between polling attempts
1744 * @success: pointer to whether polling was successful or not
1745 *
1746 * Polls the PHY status register for link, 'iterations' number of times.
1747 **/
1748s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1749 u32 usec_interval, bool *success)
1750{
1751 s32 ret_val = 0;
1752 u16 i, phy_status;
1753
1754 for (i = 0; i < iterations; i++) {
ad68076e
BA
1755 /*
1756 * Some PHYs require the PHY_STATUS register to be read
bc7f75fa
AK
1757 * twice due to the link bit being sticky. No harm doing
1758 * it across the board.
1759 */
1760 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1761 if (ret_val)
906e8d97
BA
1762 /*
1763 * If the first read fails, another entity may have
1764 * ownership of the resources, wait and try again to
1765 * see if they have relinquished the resources yet.
1766 */
1767 udelay(usec_interval);
bc7f75fa
AK
1768 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1769 if (ret_val)
1770 break;
1771 if (phy_status & MII_SR_LINK_STATUS)
1772 break;
1773 if (usec_interval >= 1000)
1774 mdelay(usec_interval/1000);
1775 else
1776 udelay(usec_interval);
1777 }
1778
1779 *success = (i < iterations);
1780
1781 return ret_val;
1782}
1783
1784/**
1785 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1786 * @hw: pointer to the HW structure
1787 *
1788 * Reads the PHY specific status register to retrieve the cable length
1789 * information. The cable length is determined by averaging the minimum and
1790 * maximum values to get the "average" cable length. The m88 PHY has four
1791 * possible cable length values, which are:
1792 * Register Value Cable Length
1793 * 0 < 50 meters
1794 * 1 50 - 80 meters
1795 * 2 80 - 110 meters
1796 * 3 110 - 140 meters
1797 * 4 > 140 meters
1798 **/
1799s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1800{
1801 struct e1000_phy_info *phy = &hw->phy;
1802 s32 ret_val;
1803 u16 phy_data, index;
1804
1805 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1806 if (ret_val)
eb656d45 1807 goto out;
bc7f75fa
AK
1808
1809 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
eb656d45
BA
1810 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1811 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1812 ret_val = -E1000_ERR_PHY;
1813 goto out;
1814 }
1815
bc7f75fa 1816 phy->min_cable_length = e1000_m88_cable_length_table[index];
eb656d45 1817 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
bc7f75fa
AK
1818
1819 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1820
eb656d45 1821out:
bc7f75fa
AK
1822 return ret_val;
1823}
1824
1825/**
1826 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1827 * @hw: pointer to the HW structure
1828 *
1829 * The automatic gain control (agc) normalizes the amplitude of the
1830 * received signal, adjusting for the attenuation produced by the
489815ce 1831 * cable. By reading the AGC registers, which represent the
5ff5b664 1832 * combination of coarse and fine gain value, the value can be put
bc7f75fa
AK
1833 * into a lookup table to obtain the approximate cable length
1834 * for each channel.
1835 **/
1836s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1837{
1838 struct e1000_phy_info *phy = &hw->phy;
1839 s32 ret_val;
1840 u16 phy_data, i, agc_value = 0;
1841 u16 cur_agc_index, max_agc_index = 0;
1842 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1843 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1844 {IGP02E1000_PHY_AGC_A,
1845 IGP02E1000_PHY_AGC_B,
1846 IGP02E1000_PHY_AGC_C,
1847 IGP02E1000_PHY_AGC_D};
1848
1849 /* Read the AGC registers for all channels */
1850 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1851 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1852 if (ret_val)
1853 return ret_val;
1854
ad68076e
BA
1855 /*
1856 * Getting bits 15:9, which represent the combination of
5ff5b664 1857 * coarse and fine gain values. The result is a number
bc7f75fa 1858 * that can be put into the lookup table to obtain the
ad68076e
BA
1859 * approximate cable length.
1860 */
bc7f75fa
AK
1861 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1862 IGP02E1000_AGC_LENGTH_MASK;
1863
1864 /* Array index bound check. */
1865 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1866 (cur_agc_index == 0))
1867 return -E1000_ERR_PHY;
1868
1869 /* Remove min & max AGC values from calculation. */
1870 if (e1000_igp_2_cable_length_table[min_agc_index] >
1871 e1000_igp_2_cable_length_table[cur_agc_index])
1872 min_agc_index = cur_agc_index;
1873 if (e1000_igp_2_cable_length_table[max_agc_index] <
1874 e1000_igp_2_cable_length_table[cur_agc_index])
1875 max_agc_index = cur_agc_index;
1876
1877 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1878 }
1879
1880 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1881 e1000_igp_2_cable_length_table[max_agc_index]);
1882 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1883
1884 /* Calculate cable length with the error range of +/- 10 meters. */
1885 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1886 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1887 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1888
1889 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1890
1891 return ret_val;
1892}
1893
1894/**
1895 * e1000e_get_phy_info_m88 - Retrieve PHY information
1896 * @hw: pointer to the HW structure
1897 *
1898 * Valid for only copper links. Read the PHY status register (sticky read)
1899 * to verify that link is up. Read the PHY special control register to
1900 * determine the polarity and 10base-T extended distance. Read the PHY
1901 * special status register to determine MDI/MDIx and current speed. If
1902 * speed is 1000, then determine cable length, local and remote receiver.
1903 **/
1904s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1905{
1906 struct e1000_phy_info *phy = &hw->phy;
1907 s32 ret_val;
1908 u16 phy_data;
1909 bool link;
1910
0be84010 1911 if (phy->media_type != e1000_media_type_copper) {
3bb99fe2 1912 e_dbg("Phy info is only valid for copper media\n");
bc7f75fa
AK
1913 return -E1000_ERR_CONFIG;
1914 }
1915
1916 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1917 if (ret_val)
1918 return ret_val;
1919
1920 if (!link) {
3bb99fe2 1921 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
1922 return -E1000_ERR_CONFIG;
1923 }
1924
1925 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1926 if (ret_val)
1927 return ret_val;
1928
1929 phy->polarity_correction = (phy_data &
1930 M88E1000_PSCR_POLARITY_REVERSAL);
1931
1932 ret_val = e1000_check_polarity_m88(hw);
1933 if (ret_val)
1934 return ret_val;
1935
1936 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1937 if (ret_val)
1938 return ret_val;
1939
1940 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1941
1942 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1943 ret_val = e1000_get_cable_length(hw);
1944 if (ret_val)
1945 return ret_val;
1946
1947 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1948 if (ret_val)
1949 return ret_val;
1950
1951 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1952 ? e1000_1000t_rx_status_ok
1953 : e1000_1000t_rx_status_not_ok;
1954
1955 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1956 ? e1000_1000t_rx_status_ok
1957 : e1000_1000t_rx_status_not_ok;
1958 } else {
1959 /* Set values to "undefined" */
1960 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1961 phy->local_rx = e1000_1000t_rx_status_undefined;
1962 phy->remote_rx = e1000_1000t_rx_status_undefined;
1963 }
1964
1965 return ret_val;
1966}
1967
1968/**
1969 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1970 * @hw: pointer to the HW structure
1971 *
1972 * Read PHY status to determine if link is up. If link is up, then
1973 * set/determine 10base-T extended distance and polarity correction. Read
1974 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1975 * determine on the cable length, local and remote receiver.
1976 **/
1977s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1978{
1979 struct e1000_phy_info *phy = &hw->phy;
1980 s32 ret_val;
1981 u16 data;
1982 bool link;
1983
1984 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1985 if (ret_val)
1986 return ret_val;
1987
1988 if (!link) {
3bb99fe2 1989 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
1990 return -E1000_ERR_CONFIG;
1991 }
1992
564ea9bb 1993 phy->polarity_correction = true;
bc7f75fa
AK
1994
1995 ret_val = e1000_check_polarity_igp(hw);
1996 if (ret_val)
1997 return ret_val;
1998
1999 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2000 if (ret_val)
2001 return ret_val;
2002
2003 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2004
2005 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2006 IGP01E1000_PSSR_SPEED_1000MBPS) {
2007 ret_val = e1000_get_cable_length(hw);
2008 if (ret_val)
2009 return ret_val;
2010
2011 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2012 if (ret_val)
2013 return ret_val;
2014
2015 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2016 ? e1000_1000t_rx_status_ok
2017 : e1000_1000t_rx_status_not_ok;
2018
2019 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2020 ? e1000_1000t_rx_status_ok
2021 : e1000_1000t_rx_status_not_ok;
2022 } else {
2023 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2024 phy->local_rx = e1000_1000t_rx_status_undefined;
2025 phy->remote_rx = e1000_1000t_rx_status_undefined;
2026 }
2027
2028 return ret_val;
2029}
2030
0be84010
BA
2031/**
2032 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2033 * @hw: pointer to the HW structure
2034 *
2035 * Populates "phy" structure with various feature states.
2036 **/
2037s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2038{
2039 struct e1000_phy_info *phy = &hw->phy;
2040 s32 ret_val;
2041 u16 data;
2042 bool link;
2043
2044 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2045 if (ret_val)
2046 goto out;
2047
2048 if (!link) {
2049 e_dbg("Phy info is only valid if link is up\n");
2050 ret_val = -E1000_ERR_CONFIG;
2051 goto out;
2052 }
2053
2054 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2055 if (ret_val)
2056 goto out;
2057 phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2058 ? false : true;
2059
2060 if (phy->polarity_correction) {
2061 ret_val = e1000_check_polarity_ife(hw);
2062 if (ret_val)
2063 goto out;
2064 } else {
2065 /* Polarity is forced */
2066 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2067 ? e1000_rev_polarity_reversed
2068 : e1000_rev_polarity_normal;
2069 }
2070
2071 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2072 if (ret_val)
2073 goto out;
2074
2075 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2076
2077 /* The following parameters are undefined for 10/100 operation. */
2078 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2079 phy->local_rx = e1000_1000t_rx_status_undefined;
2080 phy->remote_rx = e1000_1000t_rx_status_undefined;
2081
2082out:
2083 return ret_val;
2084}
2085
bc7f75fa
AK
2086/**
2087 * e1000e_phy_sw_reset - PHY software reset
2088 * @hw: pointer to the HW structure
2089 *
2090 * Does a software reset of the PHY by reading the PHY control register and
2091 * setting/write the control register reset bit to the PHY.
2092 **/
2093s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2094{
2095 s32 ret_val;
2096 u16 phy_ctrl;
2097
2098 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2099 if (ret_val)
2100 return ret_val;
2101
2102 phy_ctrl |= MII_CR_RESET;
2103 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2104 if (ret_val)
2105 return ret_val;
2106
2107 udelay(1);
2108
2109 return ret_val;
2110}
2111
2112/**
2113 * e1000e_phy_hw_reset_generic - PHY hardware reset
2114 * @hw: pointer to the HW structure
2115 *
2116 * Verify the reset block is not blocking us from resetting. Acquire
2117 * semaphore (if necessary) and read/set/write the device control reset
2118 * bit in the PHY. Wait the appropriate delay time for the device to
489815ce 2119 * reset and release the semaphore (if necessary).
bc7f75fa
AK
2120 **/
2121s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2122{
2123 struct e1000_phy_info *phy = &hw->phy;
2124 s32 ret_val;
2125 u32 ctrl;
2126
2127 ret_val = e1000_check_reset_block(hw);
2128 if (ret_val)
2129 return 0;
2130
94d8186a 2131 ret_val = phy->ops.acquire(hw);
bc7f75fa
AK
2132 if (ret_val)
2133 return ret_val;
2134
2135 ctrl = er32(CTRL);
2136 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2137 e1e_flush();
2138
2139 udelay(phy->reset_delay_us);
2140
2141 ew32(CTRL, ctrl);
2142 e1e_flush();
2143
2144 udelay(150);
2145
94d8186a 2146 phy->ops.release(hw);
bc7f75fa
AK
2147
2148 return e1000_get_phy_cfg_done(hw);
2149}
2150
2151/**
2152 * e1000e_get_cfg_done - Generic configuration done
2153 * @hw: pointer to the HW structure
2154 *
2155 * Generic function to wait 10 milli-seconds for configuration to complete
2156 * and return success.
2157 **/
2158s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2159{
2160 mdelay(10);
2161 return 0;
2162}
2163
f4187b56
BA
2164/**
2165 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2166 * @hw: pointer to the HW structure
2167 *
2168 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2169 **/
2170s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2171{
3bb99fe2 2172 e_dbg("Running IGP 3 PHY init script\n");
f4187b56
BA
2173
2174 /* PHY init IGP 3 */
2175 /* Enable rise/fall, 10-mode work in class-A */
2176 e1e_wphy(hw, 0x2F5B, 0x9018);
2177 /* Remove all caps from Replica path filter */
2178 e1e_wphy(hw, 0x2F52, 0x0000);
2179 /* Bias trimming for ADC, AFE and Driver (Default) */
2180 e1e_wphy(hw, 0x2FB1, 0x8B24);
2181 /* Increase Hybrid poly bias */
2182 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2183 /* Add 4% to Tx amplitude in Gig mode */
2184 e1e_wphy(hw, 0x2010, 0x10B0);
2185 /* Disable trimming (TTT) */
2186 e1e_wphy(hw, 0x2011, 0x0000);
2187 /* Poly DC correction to 94.6% + 2% for all channels */
2188 e1e_wphy(hw, 0x20DD, 0x249A);
2189 /* ABS DC correction to 95.9% */
2190 e1e_wphy(hw, 0x20DE, 0x00D3);
2191 /* BG temp curve trim */
2192 e1e_wphy(hw, 0x28B4, 0x04CE);
2193 /* Increasing ADC OPAMP stage 1 currents to max */
2194 e1e_wphy(hw, 0x2F70, 0x29E4);
2195 /* Force 1000 ( required for enabling PHY regs configuration) */
2196 e1e_wphy(hw, 0x0000, 0x0140);
2197 /* Set upd_freq to 6 */
2198 e1e_wphy(hw, 0x1F30, 0x1606);
2199 /* Disable NPDFE */
2200 e1e_wphy(hw, 0x1F31, 0xB814);
2201 /* Disable adaptive fixed FFE (Default) */
2202 e1e_wphy(hw, 0x1F35, 0x002A);
2203 /* Enable FFE hysteresis */
2204 e1e_wphy(hw, 0x1F3E, 0x0067);
2205 /* Fixed FFE for short cable lengths */
2206 e1e_wphy(hw, 0x1F54, 0x0065);
2207 /* Fixed FFE for medium cable lengths */
2208 e1e_wphy(hw, 0x1F55, 0x002A);
2209 /* Fixed FFE for long cable lengths */
2210 e1e_wphy(hw, 0x1F56, 0x002A);
2211 /* Enable Adaptive Clip Threshold */
2212 e1e_wphy(hw, 0x1F72, 0x3FB0);
2213 /* AHT reset limit to 1 */
2214 e1e_wphy(hw, 0x1F76, 0xC0FF);
2215 /* Set AHT master delay to 127 msec */
2216 e1e_wphy(hw, 0x1F77, 0x1DEC);
2217 /* Set scan bits for AHT */
2218 e1e_wphy(hw, 0x1F78, 0xF9EF);
2219 /* Set AHT Preset bits */
2220 e1e_wphy(hw, 0x1F79, 0x0210);
2221 /* Change integ_factor of channel A to 3 */
2222 e1e_wphy(hw, 0x1895, 0x0003);
2223 /* Change prop_factor of channels BCD to 8 */
2224 e1e_wphy(hw, 0x1796, 0x0008);
2225 /* Change cg_icount + enable integbp for channels BCD */
2226 e1e_wphy(hw, 0x1798, 0xD008);
2227 /*
2228 * Change cg_icount + enable integbp + change prop_factor_master
2229 * to 8 for channel A
2230 */
2231 e1e_wphy(hw, 0x1898, 0xD918);
2232 /* Disable AHT in Slave mode on channel A */
2233 e1e_wphy(hw, 0x187A, 0x0800);
2234 /*
2235 * Enable LPLU and disable AN to 1000 in non-D0a states,
2236 * Enable SPD+B2B
2237 */
2238 e1e_wphy(hw, 0x0019, 0x008D);
2239 /* Enable restart AN on an1000_dis change */
2240 e1e_wphy(hw, 0x001B, 0x2080);
2241 /* Enable wh_fifo read clock in 10/100 modes */
2242 e1e_wphy(hw, 0x0014, 0x0045);
2243 /* Restart AN, Speed selection is 1000 */
2244 e1e_wphy(hw, 0x0000, 0x1340);
2245
2246 return 0;
2247}
2248
bc7f75fa
AK
2249/* Internal function pointers */
2250
2251/**
2252 * e1000_get_phy_cfg_done - Generic PHY configuration done
2253 * @hw: pointer to the HW structure
2254 *
2255 * Return success if silicon family did not implement a family specific
2256 * get_cfg_done function.
2257 **/
2258static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2259{
2260 if (hw->phy.ops.get_cfg_done)
2261 return hw->phy.ops.get_cfg_done(hw);
2262
2263 return 0;
2264}
2265
2266/**
2267 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2268 * @hw: pointer to the HW structure
2269 *
2270 * When the silicon family has not implemented a forced speed/duplex
2271 * function for the PHY, simply return 0.
2272 **/
2273static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2274{
2275 if (hw->phy.ops.force_speed_duplex)
2276 return hw->phy.ops.force_speed_duplex(hw);
2277
2278 return 0;
2279}
2280
2281/**
2282 * e1000e_get_phy_type_from_id - Get PHY type from id
2283 * @phy_id: phy_id read from the phy
2284 *
2285 * Returns the phy type from the id.
2286 **/
2287enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2288{
2289 enum e1000_phy_type phy_type = e1000_phy_unknown;
2290
2291 switch (phy_id) {
2292 case M88E1000_I_PHY_ID:
2293 case M88E1000_E_PHY_ID:
2294 case M88E1111_I_PHY_ID:
2295 case M88E1011_I_PHY_ID:
2296 phy_type = e1000_phy_m88;
2297 break;
2298 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2299 phy_type = e1000_phy_igp_2;
2300 break;
2301 case GG82563_E_PHY_ID:
2302 phy_type = e1000_phy_gg82563;
2303 break;
2304 case IGP03E1000_E_PHY_ID:
2305 phy_type = e1000_phy_igp_3;
2306 break;
2307 case IFE_E_PHY_ID:
2308 case IFE_PLUS_E_PHY_ID:
2309 case IFE_C_E_PHY_ID:
2310 phy_type = e1000_phy_ife;
2311 break;
97ac8cae
BA
2312 case BME1000_E_PHY_ID:
2313 case BME1000_E_PHY_ID_R2:
2314 phy_type = e1000_phy_bm;
2315 break;
a4f58f54
BA
2316 case I82578_E_PHY_ID:
2317 phy_type = e1000_phy_82578;
2318 break;
2319 case I82577_E_PHY_ID:
2320 phy_type = e1000_phy_82577;
2321 break;
d3738bb8
BA
2322 case I82579_E_PHY_ID:
2323 phy_type = e1000_phy_82579;
2324 break;
bc7f75fa
AK
2325 default:
2326 phy_type = e1000_phy_unknown;
2327 break;
2328 }
2329 return phy_type;
2330}
2331
97ac8cae
BA
2332/**
2333 * e1000e_determine_phy_address - Determines PHY address.
2334 * @hw: pointer to the HW structure
2335 *
2336 * This uses a trial and error method to loop through possible PHY
2337 * addresses. It tests each by reading the PHY ID registers and
2338 * checking for a match.
2339 **/
2340s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2341{
2342 s32 ret_val = -E1000_ERR_PHY_TYPE;
5eb6f3c7
BA
2343 u32 phy_addr = 0;
2344 u32 i;
97ac8cae
BA
2345 enum e1000_phy_type phy_type = e1000_phy_unknown;
2346
5eb6f3c7
BA
2347 hw->phy.id = phy_type;
2348
2349 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2350 hw->phy.addr = phy_addr;
2351 i = 0;
2352
2353 do {
97ac8cae
BA
2354 e1000e_get_phy_id(hw);
2355 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2356
5eb6f3c7 2357 /*
97ac8cae
BA
2358 * If phy_type is valid, break - we found our
2359 * PHY address
2360 */
2361 if (phy_type != e1000_phy_unknown) {
2362 ret_val = 0;
5eb6f3c7 2363 goto out;
97ac8cae 2364 }
5eb6f3c7
BA
2365 msleep(1);
2366 i++;
2367 } while (i < 10);
2368 }
97ac8cae 2369
5eb6f3c7 2370out:
97ac8cae
BA
2371 return ret_val;
2372}
2373
2374/**
2375 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2376 * @page: page to access
2377 *
2378 * Returns the phy address for the page requested.
2379 **/
2380static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2381{
2382 u32 phy_addr = 2;
2383
2384 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2385 phy_addr = 1;
2386
2387 return phy_addr;
2388}
2389
2390/**
2391 * e1000e_write_phy_reg_bm - Write BM PHY register
2392 * @hw: pointer to the HW structure
2393 * @offset: register offset to write to
2394 * @data: data to write at register offset
2395 *
2396 * Acquires semaphore, if necessary, then writes the data to PHY register
2397 * at the offset. Release any acquired semaphores before exiting.
2398 **/
2399s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2400{
2401 s32 ret_val;
2402 u32 page_select = 0;
2403 u32 page = offset >> IGP_PAGE_SHIFT;
2404 u32 page_shift = 0;
2405
94d8186a 2406 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2407 if (ret_val)
2408 return ret_val;
2409
97ac8cae
BA
2410 /* Page 800 works differently than the rest so it has its own func */
2411 if (page == BM_WUC_PAGE) {
2412 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2413 false);
2414 goto out;
2415 }
2416
97ac8cae
BA
2417 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2418
2419 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2420 /*
2421 * Page select is register 31 for phy address 1 and 22 for
2422 * phy address 2 and 3. Page select is shifted only for
2423 * phy address 1.
2424 */
2425 if (hw->phy.addr == 1) {
2426 page_shift = IGP_PAGE_SHIFT;
2427 page_select = IGP01E1000_PHY_PAGE_SELECT;
2428 } else {
2429 page_shift = 0;
2430 page_select = BM_PHY_PAGE_SELECT;
2431 }
2432
2433 /* Page is shifted left, PHY expects (page x 32) */
2434 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2435 (page << page_shift));
5ccdcecb 2436 if (ret_val)
97ac8cae 2437 goto out;
97ac8cae
BA
2438 }
2439
2440 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2441 data);
2442
97ac8cae 2443out:
94d8186a 2444 hw->phy.ops.release(hw);
97ac8cae
BA
2445 return ret_val;
2446}
2447
2448/**
2449 * e1000e_read_phy_reg_bm - Read BM PHY register
2450 * @hw: pointer to the HW structure
2451 * @offset: register offset to be read
2452 * @data: pointer to the read data
2453 *
2454 * Acquires semaphore, if necessary, then reads the PHY register at offset
2455 * and storing the retrieved information in data. Release any acquired
2456 * semaphores before exiting.
2457 **/
2458s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2459{
2460 s32 ret_val;
2461 u32 page_select = 0;
2462 u32 page = offset >> IGP_PAGE_SHIFT;
2463 u32 page_shift = 0;
2464
94d8186a 2465 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2466 if (ret_val)
2467 return ret_val;
2468
97ac8cae
BA
2469 /* Page 800 works differently than the rest so it has its own func */
2470 if (page == BM_WUC_PAGE) {
2471 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2472 true);
2473 goto out;
2474 }
2475
97ac8cae
BA
2476 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2477
2478 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2479 /*
2480 * Page select is register 31 for phy address 1 and 22 for
2481 * phy address 2 and 3. Page select is shifted only for
2482 * phy address 1.
2483 */
2484 if (hw->phy.addr == 1) {
2485 page_shift = IGP_PAGE_SHIFT;
2486 page_select = IGP01E1000_PHY_PAGE_SELECT;
2487 } else {
2488 page_shift = 0;
2489 page_select = BM_PHY_PAGE_SELECT;
2490 }
2491
2492 /* Page is shifted left, PHY expects (page x 32) */
2493 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2494 (page << page_shift));
5ccdcecb 2495 if (ret_val)
97ac8cae 2496 goto out;
97ac8cae
BA
2497 }
2498
2499 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2500 data);
97ac8cae 2501out:
94d8186a 2502 hw->phy.ops.release(hw);
97ac8cae
BA
2503 return ret_val;
2504}
2505
4662e82b
BA
2506/**
2507 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2508 * @hw: pointer to the HW structure
2509 * @offset: register offset to be read
2510 * @data: pointer to the read data
2511 *
2512 * Acquires semaphore, if necessary, then reads the PHY register at offset
2513 * and storing the retrieved information in data. Release any acquired
2514 * semaphores before exiting.
2515 **/
2516s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2517{
2518 s32 ret_val;
2519 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2520
94d8186a 2521 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2522 if (ret_val)
2523 return ret_val;
2524
4662e82b
BA
2525 /* Page 800 works differently than the rest so it has its own func */
2526 if (page == BM_WUC_PAGE) {
2527 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2528 true);
5ccdcecb 2529 goto out;
4662e82b
BA
2530 }
2531
4662e82b
BA
2532 hw->phy.addr = 1;
2533
2534 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2535
2536 /* Page is shifted left, PHY expects (page x 32) */
2537 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2538 page);
2539
5ccdcecb
BA
2540 if (ret_val)
2541 goto out;
4662e82b
BA
2542 }
2543
2544 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2545 data);
5ccdcecb 2546out:
94d8186a 2547 hw->phy.ops.release(hw);
4662e82b
BA
2548 return ret_val;
2549}
2550
2551/**
2552 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2553 * @hw: pointer to the HW structure
2554 * @offset: register offset to write to
2555 * @data: data to write at register offset
2556 *
2557 * Acquires semaphore, if necessary, then writes the data to PHY register
2558 * at the offset. Release any acquired semaphores before exiting.
2559 **/
2560s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2561{
2562 s32 ret_val;
2563 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2564
94d8186a 2565 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2566 if (ret_val)
2567 return ret_val;
2568
4662e82b
BA
2569 /* Page 800 works differently than the rest so it has its own func */
2570 if (page == BM_WUC_PAGE) {
2571 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2572 false);
5ccdcecb 2573 goto out;
4662e82b
BA
2574 }
2575
4662e82b
BA
2576 hw->phy.addr = 1;
2577
2578 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2579 /* Page is shifted left, PHY expects (page x 32) */
2580 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2581 page);
2582
5ccdcecb
BA
2583 if (ret_val)
2584 goto out;
4662e82b
BA
2585 }
2586
2587 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2588 data);
2589
5ccdcecb 2590out:
94d8186a 2591 hw->phy.ops.release(hw);
4662e82b
BA
2592 return ret_val;
2593}
2594
97ac8cae
BA
2595/**
2596 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2597 * @hw: pointer to the HW structure
2598 * @offset: register offset to be read or written
2599 * @data: pointer to the data to read or write
2600 * @read: determines if operation is read or write
2601 *
2602 * Acquires semaphore, if necessary, then reads the PHY register at offset
2603 * and storing the retrieved information in data. Release any acquired
2604 * semaphores before exiting. Note that procedure to read the wakeup
2605 * registers are different. It works as such:
2606 * 1) Set page 769, register 17, bit 2 = 1
2607 * 2) Set page to 800 for host (801 if we were manageability)
2608 * 3) Write the address using the address opcode (0x11)
2609 * 4) Read or write the data using the data opcode (0x12)
2610 * 5) Restore 769_17.2 to its original value
5ccdcecb
BA
2611 *
2612 * Assumes semaphore already acquired.
97ac8cae
BA
2613 **/
2614static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2615 u16 *data, bool read)
2616{
2617 s32 ret_val;
a4f58f54 2618 u16 reg = BM_PHY_REG_NUM(offset);
97ac8cae 2619 u16 phy_reg = 0;
97ac8cae 2620
a4f58f54
BA
2621 /* Gig must be disabled for MDIO accesses to page 800 */
2622 if ((hw->mac.type == e1000_pchlan) &&
2623 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
9b71b419 2624 e_dbg("Attempting to access page 800 while gig enabled.\n");
a4f58f54 2625
97ac8cae
BA
2626 /* All operations in this function are phy address 1 */
2627 hw->phy.addr = 1;
2628
2629 /* Set page 769 */
2630 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2631 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2632
2633 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
9b71b419
BA
2634 if (ret_val) {
2635 e_dbg("Could not read PHY page 769\n");
97ac8cae 2636 goto out;
9b71b419 2637 }
97ac8cae
BA
2638
2639 /* First clear bit 4 to avoid a power state change */
2640 phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2641 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
9b71b419
BA
2642 if (ret_val) {
2643 e_dbg("Could not clear PHY page 769 bit 4\n");
97ac8cae 2644 goto out;
9b71b419 2645 }
97ac8cae
BA
2646
2647 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2648 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2649 phy_reg | BM_WUC_ENABLE_BIT);
9b71b419
BA
2650 if (ret_val) {
2651 e_dbg("Could not write PHY page 769 bit 2\n");
97ac8cae 2652 goto out;
9b71b419 2653 }
97ac8cae
BA
2654
2655 /* Select page 800 */
2656 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2657 (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2658
2659 /* Write the page 800 offset value using opcode 0x11 */
2660 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
9b71b419
BA
2661 if (ret_val) {
2662 e_dbg("Could not write address opcode to page 800\n");
97ac8cae 2663 goto out;
9b71b419 2664 }
97ac8cae
BA
2665
2666 if (read) {
2667 /* Read the page 800 value using opcode 0x12 */
2668 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2669 data);
2670 } else {
5ff5b664 2671 /* Write the page 800 value using opcode 0x12 */
97ac8cae
BA
2672 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2673 *data);
2674 }
2675
9b71b419
BA
2676 if (ret_val) {
2677 e_dbg("Could not access data value from page 800\n");
97ac8cae 2678 goto out;
9b71b419 2679 }
97ac8cae
BA
2680
2681 /*
2682 * Restore 769_17.2 to its original value
2683 * Set page 769
2684 */
2685 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2686 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2687
2688 /* Clear 769_17.2 */
2689 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
9b71b419
BA
2690 if (ret_val) {
2691 e_dbg("Could not clear PHY page 769 bit 2\n");
2692 goto out;
2693 }
97ac8cae
BA
2694
2695out:
97ac8cae
BA
2696 return ret_val;
2697}
2698
17f208de
BA
2699/**
2700 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2701 * @hw: pointer to the HW structure
2702 *
2703 * In the case of a PHY power down to save power, or to turn off link during a
2704 * driver unload, or wake on lan is not enabled, restore the link to previous
2705 * settings.
2706 **/
2707void e1000_power_up_phy_copper(struct e1000_hw *hw)
2708{
2709 u16 mii_reg = 0;
2710
2711 /* The PHY will retain its settings across a power down/up cycle */
2712 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2713 mii_reg &= ~MII_CR_POWER_DOWN;
2714 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2715}
2716
2717/**
2718 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2719 * @hw: pointer to the HW structure
2720 *
2721 * In the case of a PHY power down to save power, or to turn off link during a
2722 * driver unload, or wake on lan is not enabled, restore the link to previous
2723 * settings.
2724 **/
2725void e1000_power_down_phy_copper(struct e1000_hw *hw)
2726{
2727 u16 mii_reg = 0;
2728
2729 /* The PHY will retain its settings across a power down/up cycle */
2730 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2731 mii_reg |= MII_CR_POWER_DOWN;
2732 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2733 msleep(1);
2734}
2735
bc7f75fa
AK
2736/**
2737 * e1000e_commit_phy - Soft PHY reset
2738 * @hw: pointer to the HW structure
2739 *
2740 * Performs a soft PHY reset on those that apply. This is a function pointer
2741 * entry point called by drivers.
2742 **/
2743s32 e1000e_commit_phy(struct e1000_hw *hw)
2744{
94d8186a
BA
2745 if (hw->phy.ops.commit)
2746 return hw->phy.ops.commit(hw);
bc7f75fa
AK
2747
2748 return 0;
2749}
2750
2751/**
2752 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2753 * @hw: pointer to the HW structure
2754 * @active: boolean used to enable/disable lplu
2755 *
2756 * Success returns 0, Failure returns 1
2757 *
2758 * The low power link up (lplu) state is set to the power management level D0
2759 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2760 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2761 * is used during Dx states where the power conservation is most important.
2762 * During driver activity, SmartSpeed should be enabled so performance is
2763 * maintained. This is a function pointer entry point called by drivers.
2764 **/
2765static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2766{
2767 if (hw->phy.ops.set_d0_lplu_state)
2768 return hw->phy.ops.set_d0_lplu_state(hw, active);
2769
2770 return 0;
2771}
a4f58f54 2772
a4f58f54 2773/**
5ccdcecb 2774 * __e1000_read_phy_reg_hv - Read HV PHY register
a4f58f54
BA
2775 * @hw: pointer to the HW structure
2776 * @offset: register offset to be read
2777 * @data: pointer to the read data
5ccdcecb 2778 * @locked: semaphore has already been acquired or not
a4f58f54
BA
2779 *
2780 * Acquires semaphore, if necessary, then reads the PHY register at offset
5ccdcecb 2781 * and stores the retrieved information in data. Release any acquired
a4f58f54
BA
2782 * semaphore before exiting.
2783 **/
5ccdcecb
BA
2784static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2785 bool locked)
a4f58f54
BA
2786{
2787 s32 ret_val;
2788 u16 page = BM_PHY_REG_PAGE(offset);
2789 u16 reg = BM_PHY_REG_NUM(offset);
a4f58f54 2790
5ccdcecb 2791 if (!locked) {
94d8186a 2792 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2793 if (ret_val)
2794 return ret_val;
2795 }
2796
a4f58f54
BA
2797 /* Page 800 works differently than the rest so it has its own func */
2798 if (page == BM_WUC_PAGE) {
2799 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2800 data, true);
2801 goto out;
2802 }
2803
2804 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2805 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2806 data, true);
2807 goto out;
2808 }
2809
a4f58f54
BA
2810 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2811
2812 if (page == HV_INTC_FC_PAGE_START)
2813 page = 0;
2814
2815 if (reg > MAX_PHY_MULTI_PAGE_REG) {
842ec8b6 2816 u32 phy_addr = hw->phy.addr;
a4f58f54 2817
842ec8b6 2818 hw->phy.addr = 1;
a4f58f54 2819
842ec8b6
BA
2820 /* Page is shifted left, PHY expects (page x 32) */
2821 ret_val = e1000e_write_phy_reg_mdic(hw,
2822 IGP01E1000_PHY_PAGE_SELECT,
2823 (page << IGP_PAGE_SHIFT));
2824 hw->phy.addr = phy_addr;
2825
2826 if (ret_val)
2827 goto out;
a4f58f54
BA
2828 }
2829
2830 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2831 data);
a4f58f54 2832out:
5ccdcecb 2833 if (!locked)
94d8186a 2834 hw->phy.ops.release(hw);
5ccdcecb 2835
a4f58f54
BA
2836 return ret_val;
2837}
2838
2839/**
5ccdcecb
BA
2840 * e1000_read_phy_reg_hv - Read HV PHY register
2841 * @hw: pointer to the HW structure
2842 * @offset: register offset to be read
2843 * @data: pointer to the read data
2844 *
2845 * Acquires semaphore then reads the PHY register at offset and stores
2846 * the retrieved information in data. Release the acquired semaphore
2847 * before exiting.
2848 **/
2849s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2850{
2851 return __e1000_read_phy_reg_hv(hw, offset, data, false);
2852}
2853
2854/**
2855 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2856 * @hw: pointer to the HW structure
2857 * @offset: register offset to be read
2858 * @data: pointer to the read data
2859 *
2860 * Reads the PHY register at offset and stores the retrieved information
2861 * in data. Assumes semaphore already acquired.
2862 **/
2863s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2864{
2865 return __e1000_read_phy_reg_hv(hw, offset, data, true);
2866}
2867
2868/**
2869 * __e1000_write_phy_reg_hv - Write HV PHY register
a4f58f54
BA
2870 * @hw: pointer to the HW structure
2871 * @offset: register offset to write to
2872 * @data: data to write at register offset
5ccdcecb 2873 * @locked: semaphore has already been acquired or not
a4f58f54
BA
2874 *
2875 * Acquires semaphore, if necessary, then writes the data to PHY register
2876 * at the offset. Release any acquired semaphores before exiting.
2877 **/
5ccdcecb
BA
2878static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2879 bool locked)
a4f58f54
BA
2880{
2881 s32 ret_val;
2882 u16 page = BM_PHY_REG_PAGE(offset);
2883 u16 reg = BM_PHY_REG_NUM(offset);
a4f58f54 2884
5ccdcecb 2885 if (!locked) {
94d8186a 2886 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2887 if (ret_val)
2888 return ret_val;
2889 }
2890
a4f58f54
BA
2891 /* Page 800 works differently than the rest so it has its own func */
2892 if (page == BM_WUC_PAGE) {
2893 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2894 &data, false);
2895 goto out;
2896 }
2897
2898 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2899 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2900 &data, false);
2901 goto out;
2902 }
2903
a4f58f54
BA
2904 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2905
2906 if (page == HV_INTC_FC_PAGE_START)
2907 page = 0;
2908
2909 /*
2910 * Workaround MDIO accesses being disabled after entering IEEE Power
2911 * Down (whenever bit 11 of the PHY Control register is set)
2912 */
2913 if ((hw->phy.type == e1000_phy_82578) &&
2914 (hw->phy.revision >= 1) &&
2915 (hw->phy.addr == 2) &&
2916 ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
2917 (data & (1 << 11))) {
2918 u16 data2 = 0x7EFF;
a4f58f54
BA
2919 ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
2920 &data2, false);
2921 if (ret_val)
2922 goto out;
a4f58f54
BA
2923 }
2924
2925 if (reg > MAX_PHY_MULTI_PAGE_REG) {
842ec8b6 2926 u32 phy_addr = hw->phy.addr;
a4f58f54 2927
842ec8b6 2928 hw->phy.addr = 1;
a4f58f54 2929
842ec8b6
BA
2930 /* Page is shifted left, PHY expects (page x 32) */
2931 ret_val = e1000e_write_phy_reg_mdic(hw,
2932 IGP01E1000_PHY_PAGE_SELECT,
2933 (page << IGP_PAGE_SHIFT));
2934 hw->phy.addr = phy_addr;
2935
2936 if (ret_val)
2937 goto out;
a4f58f54
BA
2938 }
2939
2940 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2941 data);
a4f58f54
BA
2942
2943out:
5ccdcecb 2944 if (!locked)
94d8186a 2945 hw->phy.ops.release(hw);
5ccdcecb 2946
a4f58f54
BA
2947 return ret_val;
2948}
2949
5ccdcecb
BA
2950/**
2951 * e1000_write_phy_reg_hv - Write HV PHY register
2952 * @hw: pointer to the HW structure
2953 * @offset: register offset to write to
2954 * @data: data to write at register offset
2955 *
2956 * Acquires semaphore then writes the data to PHY register at the offset.
2957 * Release the acquired semaphores before exiting.
2958 **/
2959s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2960{
2961 return __e1000_write_phy_reg_hv(hw, offset, data, false);
2962}
2963
2964/**
2965 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2966 * @hw: pointer to the HW structure
2967 * @offset: register offset to write to
2968 * @data: data to write at register offset
2969 *
2970 * Writes the data to PHY register at the offset. Assumes semaphore
2971 * already acquired.
2972 **/
2973s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2974{
2975 return __e1000_write_phy_reg_hv(hw, offset, data, true);
2976}
2977
a4f58f54 2978/**
b595076a 2979 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
a4f58f54
BA
2980 * @page: page to be accessed
2981 **/
2982static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2983{
2984 u32 phy_addr = 2;
2985
2986 if (page >= HV_INTC_FC_PAGE_START)
2987 phy_addr = 1;
2988
2989 return phy_addr;
2990}
2991
2992/**
2993 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2994 * @hw: pointer to the HW structure
2995 * @offset: register offset to be read or written
2996 * @data: pointer to the data to be read or written
2997 * @read: determines if operation is read or written
2998 *
5ccdcecb
BA
2999 * Reads the PHY register at offset and stores the retreived information
3000 * in data. Assumes semaphore already acquired. Note that the procedure
3001 * to read these regs uses the address port and data port to read/write.
a4f58f54
BA
3002 **/
3003static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3004 u16 *data, bool read)
3005{
3006 s32 ret_val;
3007 u32 addr_reg = 0;
3008 u32 data_reg = 0;
a4f58f54
BA
3009
3010 /* This takes care of the difference with desktop vs mobile phy */
3011 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3012 I82578_ADDR_REG : I82577_ADDR_REG;
3013 data_reg = addr_reg + 1;
3014
a4f58f54
BA
3015 /* All operations in this function are phy address 2 */
3016 hw->phy.addr = 2;
3017
3018 /* masking with 0x3F to remove the page from offset */
3019 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3020 if (ret_val) {
3bb99fe2 3021 e_dbg("Could not write PHY the HV address register\n");
a4f58f54
BA
3022 goto out;
3023 }
3024
3025 /* Read or write the data value next */
3026 if (read)
3027 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3028 else
3029 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3030
3031 if (ret_val) {
3bb99fe2 3032 e_dbg("Could not read data value from HV data register\n");
a4f58f54
BA
3033 goto out;
3034 }
3035
3036out:
a4f58f54
BA
3037 return ret_val;
3038}
3039
3040/**
3041 * e1000_link_stall_workaround_hv - Si workaround
3042 * @hw: pointer to the HW structure
3043 *
3044 * This function works around a Si bug where the link partner can get
3045 * a link up indication before the PHY does. If small packets are sent
3046 * by the link partner they can be placed in the packet buffer without
3047 * being properly accounted for by the PHY and will stall preventing
3048 * further packets from being received. The workaround is to clear the
3049 * packet buffer after the PHY detects link up.
3050 **/
3051s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3052{
3053 s32 ret_val = 0;
3054 u16 data;
3055
3056 if (hw->phy.type != e1000_phy_82578)
3057 goto out;
3058
e65fa87c 3059 /* Do not apply workaround if in PHY loopback bit 14 set */
94d8186a 3060 hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
e65fa87c
BA
3061 if (data & PHY_CONTROL_LB)
3062 goto out;
3063
a4f58f54 3064 /* check if link is up and at 1Gbps */
94d8186a 3065 ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
a4f58f54
BA
3066 if (ret_val)
3067 goto out;
3068
3069 data &= BM_CS_STATUS_LINK_UP |
3070 BM_CS_STATUS_RESOLVED |
3071 BM_CS_STATUS_SPEED_MASK;
3072
3073 if (data != (BM_CS_STATUS_LINK_UP |
3074 BM_CS_STATUS_RESOLVED |
3075 BM_CS_STATUS_SPEED_1000))
3076 goto out;
3077
3078 mdelay(200);
3079
3080 /* flush the packets in the fifo buffer */
94d8186a 3081 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
a4f58f54
BA
3082 HV_MUX_DATA_CTRL_GEN_TO_MAC |
3083 HV_MUX_DATA_CTRL_FORCE_SPEED);
3084 if (ret_val)
3085 goto out;
3086
94d8186a 3087 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
a4f58f54
BA
3088 HV_MUX_DATA_CTRL_GEN_TO_MAC);
3089
3090out:
3091 return ret_val;
3092}
3093
3094/**
3095 * e1000_check_polarity_82577 - Checks the polarity.
3096 * @hw: pointer to the HW structure
3097 *
3098 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3099 *
3100 * Polarity is determined based on the PHY specific status register.
3101 **/
3102s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3103{
3104 struct e1000_phy_info *phy = &hw->phy;
3105 s32 ret_val;
3106 u16 data;
3107
94d8186a 3108 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
a4f58f54
BA
3109
3110 if (!ret_val)
3111 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3112 ? e1000_rev_polarity_reversed
3113 : e1000_rev_polarity_normal;
3114
3115 return ret_val;
3116}
3117
3118/**
3119 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3120 * @hw: pointer to the HW structure
3121 *
eab50ffb 3122 * Calls the PHY setup function to force speed and duplex.
a4f58f54
BA
3123 **/
3124s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3125{
3126 struct e1000_phy_info *phy = &hw->phy;
3127 s32 ret_val;
3128 u16 phy_data;
3129 bool link;
3130
94d8186a 3131 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
a4f58f54
BA
3132 if (ret_val)
3133 goto out;
3134
3135 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3136
94d8186a 3137 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
a4f58f54
BA
3138 if (ret_val)
3139 goto out;
3140
a4f58f54
BA
3141 udelay(1);
3142
3143 if (phy->autoneg_wait_to_complete) {
3bb99fe2 3144 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
a4f58f54
BA
3145
3146 ret_val = e1000e_phy_has_link_generic(hw,
3147 PHY_FORCE_LIMIT,
3148 100000,
3149 &link);
3150 if (ret_val)
3151 goto out;
3152
3153 if (!link)
3bb99fe2 3154 e_dbg("Link taking longer than expected.\n");
a4f58f54
BA
3155
3156 /* Try once more */
3157 ret_val = e1000e_phy_has_link_generic(hw,
3158 PHY_FORCE_LIMIT,
3159 100000,
3160 &link);
3161 if (ret_val)
3162 goto out;
3163 }
3164
3165out:
3166 return ret_val;
3167}
3168
3169/**
3170 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3171 * @hw: pointer to the HW structure
3172 *
3173 * Read PHY status to determine if link is up. If link is up, then
3174 * set/determine 10base-T extended distance and polarity correction. Read
3175 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3176 * determine on the cable length, local and remote receiver.
3177 **/
3178s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3179{
3180 struct e1000_phy_info *phy = &hw->phy;
3181 s32 ret_val;
3182 u16 data;
3183 bool link;
3184
3185 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3186 if (ret_val)
3187 goto out;
3188
3189 if (!link) {
3bb99fe2 3190 e_dbg("Phy info is only valid if link is up\n");
a4f58f54
BA
3191 ret_val = -E1000_ERR_CONFIG;
3192 goto out;
3193 }
3194
3195 phy->polarity_correction = true;
3196
3197 ret_val = e1000_check_polarity_82577(hw);
3198 if (ret_val)
3199 goto out;
3200
94d8186a 3201 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
a4f58f54
BA
3202 if (ret_val)
3203 goto out;
3204
3205 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3206
3207 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3208 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3209 ret_val = hw->phy.ops.get_cable_length(hw);
3210 if (ret_val)
3211 goto out;
3212
94d8186a 3213 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
a4f58f54
BA
3214 if (ret_val)
3215 goto out;
3216
3217 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3218 ? e1000_1000t_rx_status_ok
3219 : e1000_1000t_rx_status_not_ok;
3220
3221 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3222 ? e1000_1000t_rx_status_ok
3223 : e1000_1000t_rx_status_not_ok;
3224 } else {
3225 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3226 phy->local_rx = e1000_1000t_rx_status_undefined;
3227 phy->remote_rx = e1000_1000t_rx_status_undefined;
3228 }
3229
3230out:
3231 return ret_val;
3232}
3233
3234/**
3235 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3236 * @hw: pointer to the HW structure
3237 *
3238 * Reads the diagnostic status register and verifies result is valid before
3239 * placing it in the phy_cable_length field.
3240 **/
3241s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3242{
3243 struct e1000_phy_info *phy = &hw->phy;
3244 s32 ret_val;
3245 u16 phy_data, length;
3246
94d8186a 3247 ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
a4f58f54
BA
3248 if (ret_val)
3249 goto out;
3250
3251 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3252 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3253
3254 if (length == E1000_CABLE_LENGTH_UNDEFINED)
98086a95 3255 ret_val = -E1000_ERR_PHY;
a4f58f54
BA
3256
3257 phy->cable_length = length;
3258
3259out:
3260 return ret_val;
3261}