]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/adaptec/starfire.c
net: get rid of SET_ETHTOOL_OPS
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / adaptec / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
a6b7a407 33#include <linux/interrupt.h>
1da177e4
LT
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
fdecea66
JG
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
d7fe0f24 45#include <linux/mm.h>
cfc3a44c 46#include <linux/firmware.h>
1da177e4
LT
47#include <asm/processor.h> /* Processor type for cache alignment. */
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
1da177e4
LT
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
67974231
IB
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
1da177e4
LT
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
1da177e4 67#define ZEROCOPY
1da177e4
LT
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
1da177e4
LT
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 85static const int multicast_filter_limit = 512;
1da177e4 86/* Whether to do TCP/UDP checksums in hardware */
1da177e4 87static int enable_hw_cksum = 1;
1da177e4
LT
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
1da177e4
LT
117/* Operational parameters that are set at compile time. */
118
119/* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
121*/
122#define RX_RING_SIZE 256
123#define TX_RING_SIZE 32
124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125#define DONE_Q_SIZE 1024
126/* All queues must be aligned on a 256-byte boundary */
127#define QUEUE_ALIGN 256
128
129#if RX_RING_SIZE > 256
130#define RX_Q_ENTRIES Rx2048QEntries
131#else
132#define RX_Q_ENTRIES Rx256QEntries
133#endif
134
135/* Operational parameters that usually are not changed. */
136/* Time in jiffies before concluding the transmitter is hung. */
137#define TX_TIMEOUT (2 * HZ)
138
1591cb60 139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1da177e4
LT
140/* 64-bit dma_addr_t */
141#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 142#define netdrv_addr_t __le64
1da177e4
LT
143#define cpu_to_dma(x) cpu_to_le64(x)
144#define dma_to_cpu(x) le64_to_cpu(x)
145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
150#else /* 32-bit dma_addr_t */
88b1943b 151#define netdrv_addr_t __le32
1da177e4
LT
152#define cpu_to_dma(x) cpu_to_le32(x)
153#define dma_to_cpu(x) le32_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
159#endif
160
1da177e4
LT
161#define skb_first_frag_len(skb) skb_headlen(skb)
162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 163
cfc3a44c
JSR
164/* Firmware names */
165#define FIRMWARE_RX "adaptec/starfire_rx.bin"
166#define FIRMWARE_TX "adaptec/starfire_tx.bin"
167
1da177e4 168/* These identify the driver base version and may not be removed. */
d3ace588 169static const char version[] =
1da177e4 170KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
ad361c98 171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
1da177e4
LT
172
173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175MODULE_LICENSE("GPL");
fdecea66 176MODULE_VERSION(DRV_VERSION);
cfc3a44c
JSR
177MODULE_FIRMWARE(FIRMWARE_RX);
178MODULE_FIRMWARE(FIRMWARE_TX);
1da177e4
LT
179
180module_param(max_interrupt_work, int, 0);
181module_param(mtu, int, 0);
182module_param(debug, int, 0);
183module_param(rx_copybreak, int, 0);
184module_param(intr_latency, int, 0);
185module_param(small_frames, int, 0);
1da177e4
LT
186module_param(enable_hw_cksum, int, 0);
187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188MODULE_PARM_DESC(mtu, "MTU (all boards)");
189MODULE_PARM_DESC(debug, "Debug level (0-6)");
190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
1da177e4
LT
193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195/*
196 Theory of Operation
197
198I. Board Compatibility
199
200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201
202II. Board-specific settings
203
204III. Driver operation
205
206IIIa. Ring buffers
207
208The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209ring sizes are set fixed by the hardware, but may optionally be wrapped
210earlier by the END bit in the descriptor.
211This driver uses that hardware queue size for the Rx ring, where a large
212number of entries has no ill effect beyond increases the potential backlog.
213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214disables the queue layer priority ordering and we have no mechanism to
215utilize the hardware two-level priority queue. When modifying the
216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217levels.
218
219IIIb/c. Transmit/Receive Structure
220
221See the Adaptec manual for the many possible structures, and options for
222each structure. There are far too many to document all of them here.
223
224For transmit this driver uses type 0/1 transmit descriptors (depending
225on the 32/64 bitness of the architecture), and relies on automatic
226minimum-length padding. It does not use the completion queue
227consumer index, but instead checks for non-zero status entries.
228
fdecea66 229For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
230allocates full frame size skbuffs for the Rx ring buffers, so all frames
231should fit in a single descriptor. The driver does not use the completion
232queue consumer index, but instead checks for non-zero status entries.
233
234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235is allocated and the frame is copied to the new skbuff. When the incoming
236frame is larger, the skbuff is passed directly up the protocol stack.
237Buffers consumed this way are replaced by newly allocated skbuffs in a later
238phase of receive.
239
240A notable aspect of operation is that unaligned buffers are not permitted by
241the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242isn't longword aligned, which may cause problems on some machine
243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244the frame into a new skbuff unconditionally. Copied frames are put into the
245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246
247IIId. Synchronization
248
249The driver runs as two independent, single-threaded flows of control. One
250is the send-packet routine, which enforces single-threaded use by the
251dev->tbusy flag. The other thread is the interrupt handler, which is single
252threaded by the hardware and interrupt handling software.
253
254The send packet thread has partial control over the Tx ring and the netif_queue
255status. If the number of free Tx slots in the ring falls below a certain number
256(currently hardcoded to 4), it signals the upper layer to stop the queue.
257
258The interrupt handler has exclusive control over the Rx ring and records stats
259from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261number of free Tx slow is above the threshold, it signals the upper layer to
262restart the queue.
263
264IV. Notes
265
266IVb. References
267
268The Adaptec Starfire manuals, available only from Adaptec.
269http://www.scyld.com/expert/100mbps.html
270http://www.scyld.com/expert/NWay.html
271
272IVc. Errata
273
274- StopOnPerr is broken, don't enable
275- Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
277
278*/
279
fdecea66 280
1da177e4
LT
281
282enum chip_capability_flags {CanHaveMII=1, };
283
284enum chipset {
285 CH_6915 = 0,
286};
287
a3aa1884 288static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
d08336e9 289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
1da177e4
LT
290 { 0, }
291};
292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 295static const struct chip_info {
1da177e4
LT
296 const char *name;
297 int drv_flags;
d3ace588 298} netdrv_tbl[] = {
1da177e4
LT
299 { "Adaptec Starfire 6915", CanHaveMII },
300};
301
302
303/* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
310*/
311enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
328};
329
330/*
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
334 */
335enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350 /* not quite bits */
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354};
355
356/* Bits in the RxFilterMode register. */
357enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
362};
363
364/* Bits in the TxMode register */
365enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369};
370
371/* Bits in the TxDescCtrl register. */
372enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
381};
382
383/* Bits in the RxDescQCtrl register. */
384enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
394};
395
396/* Bits in the RxDMACtrl register. */
397enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
410};
411
412/* Bits in the RxCompletionAddr register */
413enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
419};
420
421/* Bits in the TxCompletionAddr register */
422enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
428};
429
430/* Bits in the GenCtrl register */
431enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
434};
435
436/* Bits in the IntrTimerCtrl register */
437enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
441};
442
443/* The Rx and Tx buffer descriptors. */
444struct starfire_rx_desc {
88b1943b 445 netdrv_addr_t rxaddr;
1da177e4
LT
446};
447enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
449};
450
451/* Completion queue entry. */
452struct short_rx_done_desc {
88b1943b 453 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
454};
455struct basic_rx_done_desc {
88b1943b
AV
456 __le32 status; /* Low 16 bits is length. */
457 __le16 vlanid;
458 __le16 status2;
1da177e4
LT
459};
460struct csum_rx_done_desc {
88b1943b
AV
461 __le32 status; /* Low 16 bits is length. */
462 __le16 csum; /* Partial checksum */
463 __le16 status2;
1da177e4
LT
464};
465struct full_rx_done_desc {
88b1943b
AV
466 __le32 status; /* Low 16 bits is length. */
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum; /* partial checksum */
471 __le32 timestamp;
1da177e4
LT
472};
473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
474#ifdef VLAN_SUPPORT
475typedef struct full_rx_done_desc rx_done_desc;
476#define RxComplType RxComplType3
477#else /* not VLAN_SUPPORT */
478typedef struct csum_rx_done_desc rx_done_desc;
479#define RxComplType RxComplType2
480#endif /* not VLAN_SUPPORT */
1da177e4
LT
481
482enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484};
485
486/* Type 1 Tx descriptor. */
487struct starfire_tx_desc_1 {
88b1943b
AV
488 __le32 status; /* Upper bits are status, lower 16 length. */
489 __le32 addr;
1da177e4
LT
490};
491
492/* Type 2 Tx descriptor. */
493struct starfire_tx_desc_2 {
88b1943b
AV
494 __le32 status; /* Upper bits are status, lower 16 length. */
495 __le32 reserved;
496 __le64 addr;
1da177e4
LT
497};
498
499#ifdef ADDR_64BITS
500typedef struct starfire_tx_desc_2 starfire_tx_desc;
501#define TX_DESC_TYPE TxDescType2
502#else /* not ADDR_64BITS */
503typedef struct starfire_tx_desc_1 starfire_tx_desc;
504#define TX_DESC_TYPE TxDescType1
505#endif /* not ADDR_64BITS */
506#define TX_DESC_SPACING TxDescSpaceUnlim
507
508enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512};
513struct tx_done_desc {
88b1943b 514 __le32 status; /* timestamp, index. */
1da177e4 515#if 0
88b1943b 516 __le32 intrstatus; /* interrupt status */
1da177e4
LT
517#endif
518};
519
520struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
523};
524struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
528};
529
530#define PHY_CNT 2
531struct netdev_private {
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
bea3348e
SH
547 struct napi_struct napi;
548 struct net_device *dev;
1da177e4
LT
549 struct pci_dev *pci_dev;
550#ifdef VLAN_SUPPORT
5da96be5 551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
1da177e4
LT
552#endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
556
557 /* Frequently used values: keep some adjacent for cache effect. */
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100; /* Set if speed == 100MBit. */
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567 /* MII transceiver section. */
568 struct mii_if_info mii_if; /* MII lib hooks/info */
569 int phy_cnt; /* MII device addresses. */
570 unsigned char phys[PHY_CNT]; /* MII device addresses. */
571 void __iomem *base;
572};
573
574
575static int mdio_read(struct net_device *dev, int phy_id, int location);
576static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577static int netdev_open(struct net_device *dev);
578static void check_duplex(struct net_device *dev);
579static void tx_timeout(struct net_device *dev);
580static void init_ring(struct net_device *dev);
61357325 581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 582static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
583static void netdev_error(struct net_device *dev, int intr_status);
584static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 585static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
586static void refill_rx_ring(struct net_device *dev);
587static void netdev_error(struct net_device *dev, int intr_status);
588static void set_rx_mode(struct net_device *dev);
589static struct net_device_stats *get_stats(struct net_device *dev);
590static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591static int netdev_close(struct net_device *dev);
592static void netdev_media_change(struct net_device *dev);
7282d491 593static const struct ethtool_ops ethtool_ops;
1da177e4
LT
594
595
596#ifdef VLAN_SUPPORT
80d5c368
PM
597static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 __be16 proto, u16 vid)
1da177e4
LT
599{
600 struct netdev_private *np = netdev_priv(dev);
601
602 spin_lock(&np->lock);
603 if (debug > 1)
604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
5da96be5 605 set_bit(vid, np->active_vlans);
1da177e4
LT
606 set_rx_mode(dev);
607 spin_unlock(&np->lock);
8e586137
JP
608
609 return 0;
1da177e4
LT
610}
611
80d5c368
PM
612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 __be16 proto, u16 vid)
1da177e4
LT
614{
615 struct netdev_private *np = netdev_priv(dev);
616
617 spin_lock(&np->lock);
618 if (debug > 1)
619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5da96be5 620 clear_bit(vid, np->active_vlans);
1da177e4
LT
621 set_rx_mode(dev);
622 spin_unlock(&np->lock);
8e586137
JP
623
624 return 0;
1da177e4
LT
625}
626#endif /* VLAN_SUPPORT */
627
628
4fc8006e
SH
629static const struct net_device_ops netdev_ops = {
630 .ndo_open = netdev_open,
631 .ndo_stop = netdev_close,
632 .ndo_start_xmit = start_tx,
5da96be5
JP
633 .ndo_tx_timeout = tx_timeout,
634 .ndo_get_stats = get_stats,
afc4b13d 635 .ndo_set_rx_mode = set_rx_mode,
5da96be5 636 .ndo_do_ioctl = netdev_ioctl,
4fc8006e 637 .ndo_change_mtu = eth_change_mtu,
5da96be5 638 .ndo_set_mac_address = eth_mac_addr,
4fc8006e
SH
639 .ndo_validate_addr = eth_validate_addr,
640#ifdef VLAN_SUPPORT
4fc8006e
SH
641 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
642 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
643#endif
644};
645
d3ace588 646static int starfire_init_one(struct pci_dev *pdev,
1dd06ae8 647 const struct pci_device_id *ent)
1da177e4 648{
2d5fb628 649 struct device *d = &pdev->dev;
1da177e4 650 struct netdev_private *np;
2d5fb628 651 int i, irq, chip_idx = ent->driver_data;
1da177e4 652 struct net_device *dev;
1da177e4
LT
653 long ioaddr;
654 void __iomem *base;
655 int drv_flags, io_size;
656 int boguscnt;
657
658/* when built into the kernel, we only print version if device is found */
659#ifndef MODULE
660 static int printed_version;
661 if (!printed_version++)
662 printk(version);
663#endif
664
1da177e4
LT
665 if (pci_enable_device (pdev))
666 return -EIO;
667
668 ioaddr = pci_resource_start(pdev, 0);
669 io_size = pci_resource_len(pdev, 0);
670 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
2d5fb628 671 dev_err(d, "no PCI MEM resources, aborting\n");
1da177e4
LT
672 return -ENODEV;
673 }
674
675 dev = alloc_etherdev(sizeof(*np));
41de8d4c 676 if (!dev)
1da177e4 677 return -ENOMEM;
41de8d4c 678
1da177e4
LT
679 SET_NETDEV_DEV(dev, &pdev->dev);
680
681 irq = pdev->irq;
682
683 if (pci_request_regions (pdev, DRV_NAME)) {
2d5fb628 684 dev_err(d, "cannot reserve PCI resources, aborting\n");
1da177e4
LT
685 goto err_out_free_netdev;
686 }
687
1da177e4
LT
688 base = ioremap(ioaddr, io_size);
689 if (!base) {
2d5fb628
FR
690 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
691 io_size, ioaddr);
1da177e4
LT
692 goto err_out_free_res;
693 }
694
695 pci_set_master(pdev);
696
697 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 698 pci_try_set_mwi(pdev);
1da177e4 699
1da177e4
LT
700#ifdef ZEROCOPY
701 /* Starfire can do TCP/UDP checksumming */
702 if (enable_hw_cksum)
fdecea66 703 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4 704#endif /* ZEROCOPY */
4fc8006e 705
1da177e4 706#ifdef VLAN_SUPPORT
f646968f 707 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
1da177e4
LT
708#endif /* VLAN_RX_KILL_VID */
709#ifdef ADDR_64BITS
710 dev->features |= NETIF_F_HIGHDMA;
711#endif /* ADDR_64BITS */
712
713 /* Serial EEPROM reads are hidden by the hardware. */
714 for (i = 0; i < 6; i++)
715 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
716
717#if ! defined(final_version) /* Dump the EEPROM contents during development. */
718 if (debug > 4)
719 for (i = 0; i < 0x20; i++)
720 printk("%2.2x%s",
721 (unsigned int)readb(base + EEPROMCtrl + i),
722 i % 16 != 15 ? " " : "\n");
723#endif
724
725 /* Issue soft reset */
726 writel(MiiSoftReset, base + TxMode);
727 udelay(1000);
728 writel(0, base + TxMode);
729
730 /* Reset the chip to erase previous misconfiguration. */
731 writel(1, base + PCIDeviceConfig);
732 boguscnt = 1000;
733 while (--boguscnt > 0) {
734 udelay(10);
735 if ((readl(base + PCIDeviceConfig) & 1) == 0)
736 break;
737 }
738 if (boguscnt == 0)
739 printk("%s: chipset reset never completed!\n", dev->name);
740 /* wait a little longer */
741 udelay(1000);
742
1da177e4 743 np = netdev_priv(dev);
bea3348e 744 np->dev = dev;
1da177e4
LT
745 np->base = base;
746 spin_lock_init(&np->lock);
747 pci_set_drvdata(pdev, dev);
748
749 np->pci_dev = pdev;
750
751 np->mii_if.dev = dev;
752 np->mii_if.mdio_read = mdio_read;
753 np->mii_if.mdio_write = mdio_write;
754 np->mii_if.phy_id_mask = 0x1f;
755 np->mii_if.reg_num_mask = 0x1f;
756
757 drv_flags = netdrv_tbl[chip_idx].drv_flags;
758
1da177e4
LT
759 np->speed100 = 1;
760
761 /* timer resolution is 128 * 0.8us */
762 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
763 Timer10X | EnableIntrMasking;
764
765 if (small_frames > 0) {
766 np->intr_timer_ctrl |= SmallFrameBypass;
767 switch (small_frames) {
768 case 1 ... 64:
769 np->intr_timer_ctrl |= SmallFrame64;
770 break;
771 case 65 ... 128:
772 np->intr_timer_ctrl |= SmallFrame128;
773 break;
774 case 129 ... 256:
775 np->intr_timer_ctrl |= SmallFrame256;
776 break;
777 default:
778 np->intr_timer_ctrl |= SmallFrame512;
779 if (small_frames > 512)
780 printk("Adjusting small_frames down to 512\n");
781 break;
782 }
783 }
784
4fc8006e 785 dev->netdev_ops = &netdev_ops;
fdecea66 786 dev->watchdog_timeo = TX_TIMEOUT;
7ad24ea4 787 dev->ethtool_ops = &ethtool_ops;
1da177e4 788
4fc8006e
SH
789 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
790
1da177e4
LT
791 if (mtu)
792 dev->mtu = mtu;
793
794 if (register_netdev(dev))
795 goto err_out_cleardev;
796
e174961c 797 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 798 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 799 dev->dev_addr, irq);
1da177e4
LT
800
801 if (drv_flags & CanHaveMII) {
802 int phy, phy_idx = 0;
803 int mii_status;
804 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
805 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
806 mdelay(100);
807 boguscnt = 1000;
808 while (--boguscnt > 0)
809 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
810 break;
811 if (boguscnt == 0) {
fdecea66 812 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
813 continue;
814 }
815 mii_status = mdio_read(dev, phy, MII_BMSR);
816 if (mii_status != 0) {
817 np->phys[phy_idx++] = phy;
818 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
819 printk(KERN_INFO "%s: MII PHY found at address %d, status "
820 "%#4.4x advertising %#4.4x.\n",
821 dev->name, phy, mii_status, np->mii_if.advertising);
822 /* there can be only one PHY on-board */
823 break;
824 }
825 }
826 np->phy_cnt = phy_idx;
827 if (np->phy_cnt > 0)
828 np->mii_if.phy_id = np->phys[0];
829 else
830 memset(&np->mii_if, 0, sizeof(np->mii_if));
831 }
832
833 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
834 dev->name, enable_hw_cksum ? "enabled" : "disabled");
835 return 0;
836
837err_out_cleardev:
1da177e4
LT
838 iounmap(base);
839err_out_free_res:
840 pci_release_regions (pdev);
841err_out_free_netdev:
842 free_netdev(dev);
843 return -ENODEV;
844}
845
846
847/* Read the MII Management Data I/O (MDIO) interfaces. */
848static int mdio_read(struct net_device *dev, int phy_id, int location)
849{
850 struct netdev_private *np = netdev_priv(dev);
851 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
852 int result, boguscnt=1000;
853 /* ??? Should we add a busy-wait here? */
e4c3c13c 854 do {
1da177e4 855 result = readl(mdio_addr);
e4c3c13c 856 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
857 if (boguscnt == 0)
858 return 0;
859 if ((result & 0xffff) == 0xffff)
860 return 0;
861 return result & 0xffff;
862}
863
864
865static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
866{
867 struct netdev_private *np = netdev_priv(dev);
868 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
869 writel(value, mdio_addr);
870 /* The busy-wait will occur before a read. */
871}
872
873
874static int netdev_open(struct net_device *dev)
875{
cfc3a44c
JSR
876 const struct firmware *fw_rx, *fw_tx;
877 const __be32 *fw_rx_data, *fw_tx_data;
1da177e4
LT
878 struct netdev_private *np = netdev_priv(dev);
879 void __iomem *ioaddr = np->base;
ea8f2ed0 880 const int irq = np->pci_dev->irq;
1da177e4 881 int i, retval;
cfc3a44c 882 size_t tx_size, rx_size;
1da177e4
LT
883 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
884
885 /* Do we ever need to reset the chip??? */
fdecea66 886
ea8f2ed0 887 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
888 if (retval)
889 return retval;
890
891 /* Disable the Rx and Tx, and reset the chip. */
892 writel(0, ioaddr + GenCtrl);
893 writel(1, ioaddr + PCIDeviceConfig);
894 if (debug > 1)
895 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
ea8f2ed0 896 dev->name, irq);
1da177e4
LT
897
898 /* Allocate the various queues. */
88b1943b 899 if (!np->queue_mem) {
1da177e4
LT
900 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
903 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
904 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
905 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9 906 if (np->queue_mem == NULL) {
ea8f2ed0 907 free_irq(irq, dev);
1da177e4 908 return -ENOMEM;
d8840ac9 909 }
1da177e4
LT
910
911 np->tx_done_q = np->queue_mem;
912 np->tx_done_q_dma = np->queue_mem_dma;
913 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
914 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
915 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
916 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
917 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
918 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
919 }
920
921 /* Start with no carrier, it gets adjusted later */
922 netif_carrier_off(dev);
923 init_ring(dev);
924 /* Set the size of the Rx buffers. */
925 writel((np->rx_buf_sz << RxBufferLenShift) |
926 (0 << RxMinDescrThreshShift) |
927 RxPrefetchMode | RxVariableQ |
928 RX_Q_ENTRIES |
929 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
930 RxDescSpace4,
931 ioaddr + RxDescQCtrl);
932
933 /* Set up the Rx DMA controller. */
934 writel(RxChecksumIgnore |
935 (0 << RxEarlyIntThreshShift) |
936 (6 << RxHighPrioThreshShift) |
937 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
938 ioaddr + RxDMACtrl);
939
940 /* Set Tx descriptor */
941 writel((2 << TxHiPriFIFOThreshShift) |
942 (0 << TxPadLenShift) |
943 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
944 TX_DESC_Q_ADDR_SIZE |
945 TX_DESC_SPACING | TX_DESC_TYPE,
946 ioaddr + TxDescCtrl);
947
948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
950 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
951 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
952 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
953
954 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
955 writel(np->rx_done_q_dma |
956 RxComplType |
957 (0 << RxComplThreshShift),
958 ioaddr + RxCompletionAddr);
959
960 if (debug > 1)
961 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
962
963 /* Fill both the Tx SA register and the Rx perfect filter. */
964 for (i = 0; i < 6; i++)
965 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
966 /* The first entry is special because it bypasses the VLAN filter.
967 Don't use it. */
968 writew(0, ioaddr + PerfFilterTable);
969 writew(0, ioaddr + PerfFilterTable + 4);
970 writew(0, ioaddr + PerfFilterTable + 8);
971 for (i = 1; i < 16; i++) {
88b1943b 972 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 973 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
974 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
975 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
976 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
977 }
978
979 /* Initialize other registers. */
980 /* Configure the PCI bus bursts and FIFO thresholds. */
981 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
982 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
983 udelay(1000);
984 writel(np->tx_mode, ioaddr + TxMode);
985 np->tx_threshold = 4;
986 writel(np->tx_threshold, ioaddr + TxThreshold);
987
988 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
989
bea3348e 990 napi_enable(&np->napi);
a6676019 991
1da177e4
LT
992 netif_start_queue(dev);
993
994 if (debug > 1)
995 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
996 set_rx_mode(dev);
997
998 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
999 check_duplex(dev);
1000
1001 /* Enable GPIO interrupts on link change */
1002 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1003
1004 /* Set the interrupt mask */
1005 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1006 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1007 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1008 ioaddr + IntrEnable);
1009 /* Enable PCI interrupts. */
1010 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1011 ioaddr + PCIDeviceConfig);
1012
1013#ifdef VLAN_SUPPORT
1014 /* Set VLAN type to 802.1q */
1015 writel(ETH_P_8021Q, ioaddr + VlanType);
1016#endif /* VLAN_SUPPORT */
1017
cfc3a44c
JSR
1018 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1019 if (retval) {
1020 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021 FIRMWARE_RX);
c928febf 1022 goto out_init;
cfc3a44c
JSR
1023 }
1024 if (fw_rx->size % 4) {
1025 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 fw_rx->size, FIRMWARE_RX);
1027 retval = -EINVAL;
1028 goto out_rx;
1029 }
1030 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1031 if (retval) {
1032 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1033 FIRMWARE_TX);
1034 goto out_rx;
1035 }
1036 if (fw_tx->size % 4) {
1037 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1038 fw_tx->size, FIRMWARE_TX);
1039 retval = -EINVAL;
1040 goto out_tx;
1041 }
1042 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1043 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1044 rx_size = fw_rx->size / 4;
1045 tx_size = fw_tx->size / 4;
1046
1da177e4 1047 /* Load Rx/Tx firmware into the frame processors */
cfc3a44c
JSR
1048 for (i = 0; i < rx_size; i++)
1049 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1050 for (i = 0; i < tx_size; i++)
1051 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1052 if (enable_hw_cksum)
1053 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1054 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1055 else
1056 /* Enable the Rx and Tx units only. */
1057 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1058
1059 if (debug > 1)
1060 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1061 dev->name);
1062
cfc3a44c
JSR
1063out_tx:
1064 release_firmware(fw_tx);
1065out_rx:
1066 release_firmware(fw_rx);
c928febf
BH
1067out_init:
1068 if (retval)
1069 netdev_close(dev);
cfc3a44c 1070 return retval;
1da177e4
LT
1071}
1072
1073
1074static void check_duplex(struct net_device *dev)
1075{
1076 struct netdev_private *np = netdev_priv(dev);
1077 u16 reg0;
1078 int silly_count = 1000;
1079
1080 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1081 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1082 udelay(500);
1083 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1084 /* do nothing */;
1085 if (!silly_count) {
1086 printk("%s: MII reset failed!\n", dev->name);
1087 return;
1088 }
1089
1090 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1091
1092 if (!np->mii_if.force_media) {
1093 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1094 } else {
1095 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1096 if (np->speed100)
1097 reg0 |= BMCR_SPEED100;
1098 if (np->mii_if.full_duplex)
1099 reg0 |= BMCR_FULLDPLX;
1100 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1101 dev->name,
1102 np->speed100 ? "100" : "10",
1103 np->mii_if.full_duplex ? "full" : "half");
1104 }
1105 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1106}
1107
1108
1109static void tx_timeout(struct net_device *dev)
1110{
1111 struct netdev_private *np = netdev_priv(dev);
1112 void __iomem *ioaddr = np->base;
1113 int old_debug;
1114
1115 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1116 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1117
1118 /* Perhaps we should reinitialize the hardware here. */
1119
1120 /*
1121 * Stop and restart the interface.
1122 * Cheat and increase the debug level temporarily.
1123 */
1124 old_debug = debug;
1125 debug = 2;
1126 netdev_close(dev);
1127 netdev_open(dev);
1128 debug = old_debug;
1129
1130 /* Trigger an immediate transmit demand. */
1131
1ae5dc34 1132 dev->trans_start = jiffies; /* prevent tx timeout */
86678a20 1133 dev->stats.tx_errors++;
1da177e4
LT
1134 netif_wake_queue(dev);
1135}
1136
1137
1138/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1139static void init_ring(struct net_device *dev)
1140{
1141 struct netdev_private *np = netdev_priv(dev);
1142 int i;
1143
1144 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1145 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1146
1147 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148
1149 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1150 for (i = 0; i < RX_RING_SIZE; i++) {
1d266430 1151 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1da177e4
LT
1152 np->rx_info[i].skb = skb;
1153 if (skb == NULL)
1154 break;
689be439 1155 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1156 /* Grrr, we cannot offset to correctly align the IP header. */
1157 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1158 }
1159 writew(i - 1, np->base + RxDescQIdx);
1160 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1161
1162 /* Clear the remainder of the Rx buffer ring. */
1163 for ( ; i < RX_RING_SIZE; i++) {
1164 np->rx_ring[i].rxaddr = 0;
1165 np->rx_info[i].skb = NULL;
1166 np->rx_info[i].mapping = 0;
1167 }
1168 /* Mark the last entry as wrapping the ring. */
1169 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1170
1171 /* Clear the completion rings. */
1172 for (i = 0; i < DONE_Q_SIZE; i++) {
1173 np->rx_done_q[i].status = 0;
1174 np->tx_done_q[i].status = 0;
1175 }
1176
1177 for (i = 0; i < TX_RING_SIZE; i++)
1178 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1da177e4
LT
1179}
1180
1181
61357325 1182static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1183{
1184 struct netdev_private *np = netdev_priv(dev);
1185 unsigned int entry;
1186 u32 status;
1187 int i;
1188
1da177e4
LT
1189 /*
1190 * be cautious here, wrapping the queue has weird semantics
1191 * and we may not have enough slots even when it seems we do.
1192 */
1193 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1194 netif_stop_queue(dev);
5b548140 1195 return NETDEV_TX_BUSY;
1da177e4
LT
1196 }
1197
1198#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1199 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1200 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1201 return NETDEV_TX_OK;
1da177e4
LT
1202 }
1203#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1204
1205 entry = np->cur_tx % TX_RING_SIZE;
1206 for (i = 0; i < skb_num_frags(skb); i++) {
1207 int wrap_ring = 0;
1208 status = TxDescID;
1209
1210 if (i == 0) {
1211 np->tx_info[entry].skb = skb;
1212 status |= TxCRCEn;
1213 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1214 status |= TxRingWrap;
1215 wrap_ring = 1;
1216 }
1217 if (np->reap_tx) {
1218 status |= TxDescIntr;
1219 np->reap_tx = 0;
1220 }
84fa7933 1221 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1222 status |= TxCalTCP;
86678a20 1223 dev->stats.tx_compressed++;
1da177e4
LT
1224 }
1225 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1226
1227 np->tx_info[entry].mapping =
1228 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1229 } else {
9e903e08
ED
1230 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 status |= skb_frag_size(this_frag);
1da177e4 1232 np->tx_info[entry].mapping =
0cd83cc0
IC
1233 pci_map_single(np->pci_dev,
1234 skb_frag_address(this_frag),
9e903e08 1235 skb_frag_size(this_frag),
0cd83cc0 1236 PCI_DMA_TODEVICE);
1da177e4
LT
1237 }
1238
1239 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1240 np->tx_ring[entry].status = cpu_to_le32(status);
1241 if (debug > 3)
1242 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1243 dev->name, np->cur_tx, np->dirty_tx,
1244 entry, status);
1245 if (wrap_ring) {
1246 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1247 np->cur_tx += np->tx_info[entry].used_slots;
1248 entry = 0;
1249 } else {
1250 np->tx_info[entry].used_slots = 1;
1251 np->cur_tx += np->tx_info[entry].used_slots;
1252 entry++;
1253 }
1254 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1255 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1256 np->reap_tx = 1;
1257 }
1258
1259 /* Non-x86: explicitly flush descriptor cache lines here. */
1260 /* Ensure all descriptors are written back before the transmit is
1261 initiated. - Jes */
1262 wmb();
1263
1264 /* Update the producer index. */
1265 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1266
1267 /* 4 is arbitrary, but should be ok */
1268 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1269 netif_stop_queue(dev);
1270
6ed10654 1271 return NETDEV_TX_OK;
1da177e4
LT
1272}
1273
1274
1275/* The interrupt handler does all of the Rx thread work and cleans up
1276 after the Tx thread. */
7d12e780 1277static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1278{
1279 struct net_device *dev = dev_instance;
1280 struct netdev_private *np = netdev_priv(dev);
1281 void __iomem *ioaddr = np->base;
1282 int boguscnt = max_interrupt_work;
1283 int consumer;
1284 int tx_status;
1285 int handled = 0;
1286
1287 do {
1288 u32 intr_status = readl(ioaddr + IntrClear);
1289
1290 if (debug > 4)
1291 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1292 dev->name, intr_status);
1293
1294 if (intr_status == 0 || intr_status == (u32) -1)
1295 break;
1296
1297 handled = 1;
1298
a6676019
FR
1299 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1300 u32 enable;
1301
288379f0
BH
1302 if (likely(napi_schedule_prep(&np->napi))) {
1303 __napi_schedule(&np->napi);
a6676019
FR
1304 enable = readl(ioaddr + IntrEnable);
1305 enable &= ~(IntrRxDone | IntrRxEmpty);
1306 writel(enable, ioaddr + IntrEnable);
1307 /* flush PCI posting buffers */
1308 readl(ioaddr + IntrEnable);
1309 } else {
1310 /* Paranoia check */
1311 enable = readl(ioaddr + IntrEnable);
1312 if (enable & (IntrRxDone | IntrRxEmpty)) {
1313 printk(KERN_INFO
1314 "%s: interrupt while in poll!\n",
1315 dev->name);
1316 enable &= ~(IntrRxDone | IntrRxEmpty);
1317 writel(enable, ioaddr + IntrEnable);
1318 }
1319 }
1320 }
1da177e4
LT
1321
1322 /* Scavenge the skbuff list based on the Tx-done queue.
1323 There are redundant checks here that may be cleaned up
1324 after the driver has proven to be reliable. */
1325 consumer = readl(ioaddr + TxConsumerIdx);
1326 if (debug > 3)
1327 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1328 dev->name, consumer);
1329
1330 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1331 if (debug > 3)
1332 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1333 dev->name, np->dirty_tx, np->tx_done, tx_status);
1334 if ((tx_status & 0xe0000000) == 0xa0000000) {
86678a20 1335 dev->stats.tx_packets++;
1da177e4
LT
1336 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1337 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1338 struct sk_buff *skb = np->tx_info[entry].skb;
1339 np->tx_info[entry].skb = NULL;
1340 pci_unmap_single(np->pci_dev,
1341 np->tx_info[entry].mapping,
1342 skb_first_frag_len(skb),
1343 PCI_DMA_TODEVICE);
1344 np->tx_info[entry].mapping = 0;
1345 np->dirty_tx += np->tx_info[entry].used_slots;
1346 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1347 {
1348 int i;
1349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350 pci_unmap_single(np->pci_dev,
1351 np->tx_info[entry].mapping,
9e903e08 1352 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1da177e4
LT
1353 PCI_DMA_TODEVICE);
1354 np->dirty_tx++;
1355 entry++;
1356 }
1357 }
fdecea66 1358
1da177e4
LT
1359 dev_kfree_skb_irq(skb);
1360 }
1361 np->tx_done_q[np->tx_done].status = 0;
1362 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1363 }
1364 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1365
1366 if (netif_queue_stopped(dev) &&
1367 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1368 /* The ring is no longer full, wake the queue. */
1369 netif_wake_queue(dev);
1370 }
1371
1372 /* Stats overflow */
1373 if (intr_status & IntrStatsMax)
1374 get_stats(dev);
1375
1376 /* Media change interrupt. */
1377 if (intr_status & IntrLinkChange)
1378 netdev_media_change(dev);
1379
1380 /* Abnormal error summary/uncommon events handlers. */
1381 if (intr_status & IntrAbnormalSummary)
1382 netdev_error(dev, intr_status);
1383
1384 if (--boguscnt < 0) {
1385 if (debug > 1)
1386 printk(KERN_WARNING "%s: Too much work at interrupt, "
1387 "status=%#8.8x.\n",
1388 dev->name, intr_status);
1389 break;
1390 }
1391 } while (1);
1392
1393 if (debug > 4)
1394 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1395 dev->name, (int) readl(ioaddr + IntrStatus));
1396 return IRQ_RETVAL(handled);
1397}
1398
1399
a6676019
FR
1400/*
1401 * This routine is logically part of the interrupt/poll handler, but separated
1402 * for clarity and better register allocation.
1403 */
1da177e4
LT
1404static int __netdev_rx(struct net_device *dev, int *quota)
1405{
1406 struct netdev_private *np = netdev_priv(dev);
1407 u32 desc_status;
1408 int retcode = 0;
1409
1410 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1411 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1412 struct sk_buff *skb;
1413 u16 pkt_len;
1414 int entry;
1415 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1416
1417 if (debug > 4)
1418 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1419 if (!(desc_status & RxOK)) {
fdecea66 1420 /* There was an error. */
1da177e4
LT
1421 if (debug > 2)
1422 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
86678a20 1423 dev->stats.rx_errors++;
1da177e4 1424 if (desc_status & RxFIFOErr)
86678a20 1425 dev->stats.rx_fifo_errors++;
1da177e4
LT
1426 goto next_rx;
1427 }
1428
1429 if (*quota <= 0) { /* out of rx quota */
1430 retcode = 1;
1431 goto out;
1432 }
1433 (*quota)--;
1434
1435 pkt_len = desc_status; /* Implicitly Truncate */
1436 entry = (desc_status >> 16) & 0x7ff;
1437
1438 if (debug > 4)
1439 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1440 /* Check if the packet is long enough to accept without copying
1441 to a minimally-sized skbuff. */
8e95a202 1442 if (pkt_len < rx_copybreak &&
1d266430 1443 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1da177e4
LT
1444 skb_reserve(skb, 2); /* 16 byte align the IP header */
1445 pci_dma_sync_single_for_cpu(np->pci_dev,
1446 np->rx_info[entry].mapping,
1447 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1448 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1449 pci_dma_sync_single_for_device(np->pci_dev,
1450 np->rx_info[entry].mapping,
1451 pkt_len, PCI_DMA_FROMDEVICE);
1452 skb_put(skb, pkt_len);
1453 } else {
1454 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1455 skb = np->rx_info[entry].skb;
1456 skb_put(skb, pkt_len);
1457 np->rx_info[entry].skb = NULL;
1458 np->rx_info[entry].mapping = 0;
1459 }
1460#ifndef final_version /* Remove after testing. */
1461 /* You will want this info for the initial debug. */
0795af57 1462 if (debug > 5) {
e174961c
JB
1463 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1464 skb->data, skb->data + 6,
0795af57
JP
1465 skb->data[12], skb->data[13]);
1466 }
1da177e4
LT
1467#endif
1468
1469 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1470#ifdef VLAN_SUPPORT
1da177e4
LT
1471 if (debug > 4)
1472 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1473#endif
1da177e4
LT
1474 if (le16_to_cpu(desc->status2) & 0x0100) {
1475 skb->ip_summed = CHECKSUM_UNNECESSARY;
86678a20 1476 dev->stats.rx_compressed++;
1da177e4
LT
1477 }
1478 /*
1479 * This feature doesn't seem to be working, at least
1480 * with the two firmware versions I have. If the GFP sees
1481 * an IP fragment, it either ignores it completely, or reports
1482 * "bad checksum" on it.
1483 *
1484 * Maybe I missed something -- corrections are welcome.
1485 * Until then, the printk stays. :-) -Ion
1486 */
1487 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1488 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1489 skb->csum = le16_to_cpu(desc->csum);
1490 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1491 }
1da177e4 1492#ifdef VLAN_SUPPORT
5da96be5 1493 if (le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1494 u16 vlid = le16_to_cpu(desc->vlanid);
1495
1496 if (debug > 4) {
1497 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1498 vlid);
1499 }
86a9bad3 1500 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
5da96be5 1501 }
1da177e4 1502#endif /* VLAN_SUPPORT */
5da96be5 1503 netif_receive_skb(skb);
86678a20 1504 dev->stats.rx_packets++;
1da177e4
LT
1505
1506 next_rx:
1507 np->cur_rx++;
1508 desc->status = 0;
1509 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1510 }
9a3de255
JP
1511
1512 if (*quota == 0) { /* out of rx quota */
1513 retcode = 1;
1514 goto out;
1515 }
1da177e4
LT
1516 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1517
1518 out:
1519 refill_rx_ring(dev);
1520 if (debug > 5)
1521 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1522 retcode, np->rx_done, desc_status);
1523 return retcode;
1524}
1525
bea3348e 1526static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1527{
bea3348e
SH
1528 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1529 struct net_device *dev = np->dev;
1da177e4 1530 u32 intr_status;
1da177e4 1531 void __iomem *ioaddr = np->base;
bea3348e 1532 int quota = budget;
1da177e4
LT
1533
1534 do {
1535 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1536
bea3348e 1537 if (__netdev_rx(dev, &quota))
1da177e4
LT
1538 goto out;
1539
1540 intr_status = readl(ioaddr + IntrStatus);
1541 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1542
288379f0 1543 napi_complete(napi);
1da177e4
LT
1544 intr_status = readl(ioaddr + IntrEnable);
1545 intr_status |= IntrRxDone | IntrRxEmpty;
1546 writel(intr_status, ioaddr + IntrEnable);
1547
1548 out:
1549 if (debug > 5)
bea3348e
SH
1550 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1551 budget - quota);
1da177e4
LT
1552
1553 /* Restart Rx engine if stopped. */
bea3348e 1554 return budget - quota;
1da177e4 1555}
1da177e4
LT
1556
1557static void refill_rx_ring(struct net_device *dev)
1558{
1559 struct netdev_private *np = netdev_priv(dev);
1560 struct sk_buff *skb;
1561 int entry = -1;
1562
1563 /* Refill the Rx ring buffers. */
1564 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1565 entry = np->dirty_rx % RX_RING_SIZE;
1566 if (np->rx_info[entry].skb == NULL) {
1d266430 1567 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1da177e4
LT
1568 np->rx_info[entry].skb = skb;
1569 if (skb == NULL)
1570 break; /* Better luck next round. */
1571 np->rx_info[entry].mapping =
689be439 1572 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1573 np->rx_ring[entry].rxaddr =
1574 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1575 }
1576 if (entry == RX_RING_SIZE - 1)
1577 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1578 }
1579 if (entry >= 0)
1580 writew(entry, np->base + RxDescQIdx);
1581}
1582
1583
1584static void netdev_media_change(struct net_device *dev)
1585{
1586 struct netdev_private *np = netdev_priv(dev);
1587 void __iomem *ioaddr = np->base;
1588 u16 reg0, reg1, reg4, reg5;
1589 u32 new_tx_mode;
1590 u32 new_intr_timer_ctrl;
1591
1592 /* reset status first */
1593 mdio_read(dev, np->phys[0], MII_BMCR);
1594 mdio_read(dev, np->phys[0], MII_BMSR);
1595
1596 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1597 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1598
1599 if (reg1 & BMSR_LSTATUS) {
1600 /* link is up */
1601 if (reg0 & BMCR_ANENABLE) {
1602 /* autonegotiation is enabled */
1603 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1604 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1605 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1606 np->speed100 = 1;
1607 np->mii_if.full_duplex = 1;
1608 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1609 np->speed100 = 1;
1610 np->mii_if.full_duplex = 0;
1611 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1612 np->speed100 = 0;
1613 np->mii_if.full_duplex = 1;
1614 } else {
1615 np->speed100 = 0;
1616 np->mii_if.full_duplex = 0;
1617 }
1618 } else {
1619 /* autonegotiation is disabled */
1620 if (reg0 & BMCR_SPEED100)
1621 np->speed100 = 1;
1622 else
1623 np->speed100 = 0;
1624 if (reg0 & BMCR_FULLDPLX)
1625 np->mii_if.full_duplex = 1;
1626 else
1627 np->mii_if.full_duplex = 0;
1628 }
1629 netif_carrier_on(dev);
1630 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1631 dev->name,
1632 np->speed100 ? "100" : "10",
1633 np->mii_if.full_duplex ? "full" : "half");
1634
1635 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1636 if (np->mii_if.full_duplex)
1637 new_tx_mode |= FullDuplex;
1638 if (np->tx_mode != new_tx_mode) {
1639 np->tx_mode = new_tx_mode;
1640 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1641 udelay(1000);
1642 writel(np->tx_mode, ioaddr + TxMode);
1643 }
1644
1645 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1646 if (np->speed100)
1647 new_intr_timer_ctrl |= Timer10X;
1648 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1649 np->intr_timer_ctrl = new_intr_timer_ctrl;
1650 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1651 }
1652 } else {
1653 netif_carrier_off(dev);
1654 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1655 }
1656}
1657
1658
1659static void netdev_error(struct net_device *dev, int intr_status)
1660{
1661 struct netdev_private *np = netdev_priv(dev);
1662
1663 /* Came close to underrunning the Tx FIFO, increase threshold. */
1664 if (intr_status & IntrTxDataLow) {
1665 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1666 writel(++np->tx_threshold, np->base + TxThreshold);
1667 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1668 dev->name, np->tx_threshold * 16);
1669 } else
1670 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1671 }
1672 if (intr_status & IntrRxGFPDead) {
86678a20
KV
1673 dev->stats.rx_fifo_errors++;
1674 dev->stats.rx_errors++;
1da177e4
LT
1675 }
1676 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
86678a20
KV
1677 dev->stats.tx_fifo_errors++;
1678 dev->stats.tx_errors++;
1da177e4
LT
1679 }
1680 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1681 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1682 dev->name, intr_status);
1683}
1684
1685
1686static struct net_device_stats *get_stats(struct net_device *dev)
1687{
1688 struct netdev_private *np = netdev_priv(dev);
1689 void __iomem *ioaddr = np->base;
1690
1691 /* This adapter architecture needs no SMP locks. */
86678a20
KV
1692 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1693 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1694 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1695 dev->stats.tx_aborted_errors =
1da177e4 1696 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
86678a20
KV
1697 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1698 dev->stats.collisions =
1da177e4
LT
1699 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1700
1701 /* The chip only need report frame silently dropped. */
86678a20 1702 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1da177e4 1703 writew(0, ioaddr + RxDMAStatus);
86678a20
KV
1704 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1705 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1706 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1707 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1da177e4 1708
86678a20 1709 return &dev->stats;
1da177e4
LT
1710}
1711
5da96be5
JP
1712#ifdef VLAN_SUPPORT
1713static u32 set_vlan_mode(struct netdev_private *np)
1714{
1715 u32 ret = VlanMode;
1716 u16 vid;
1717 void __iomem *filter_addr = np->base + HashTable + 8;
1718 int vlan_count = 0;
1719
1720 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1721 if (vlan_count == 32)
1722 break;
1723 writew(vid, filter_addr);
1724 filter_addr += 16;
1725 vlan_count++;
1726 }
1727 if (vlan_count == 32) {
1728 ret |= PerfectFilterVlan;
1729 while (vlan_count < 32) {
1730 writew(0, filter_addr);
1731 filter_addr += 16;
1732 vlan_count++;
1733 }
1734 }
1735 return ret;
1736}
1737#endif /* VLAN_SUPPORT */
1da177e4 1738
1da177e4
LT
1739static void set_rx_mode(struct net_device *dev)
1740{
1741 struct netdev_private *np = netdev_priv(dev);
1742 void __iomem *ioaddr = np->base;
1743 u32 rx_mode = MinVLANPrio;
22bedad3 1744 struct netdev_hw_addr *ha;
1da177e4 1745 int i;
1da177e4 1746
5da96be5
JP
1747#ifdef VLAN_SUPPORT
1748 rx_mode |= set_vlan_mode(np);
1da177e4
LT
1749#endif /* VLAN_SUPPORT */
1750
1751 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1752 rx_mode |= AcceptAll;
4cd24eaf 1753 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1754 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1755 /* Too many to match, or accept all multicasts. */
1756 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
4cd24eaf 1757 } else if (netdev_mc_count(dev) <= 14) {
1da177e4
LT
1758 /* Use the 16 element perfect filter, skip first two entries. */
1759 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1760 __be16 *eaddrs;
22bedad3
JP
1761 netdev_for_each_mc_addr(ha, dev) {
1762 eaddrs = (__be16 *) ha->addr;
88b1943b
AV
1763 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1764 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1765 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1766 }
88b1943b 1767 eaddrs = (__be16 *)dev->dev_addr;
5508590c 1768 i = netdev_mc_count(dev) + 2;
1da177e4 1769 while (i++ < 16) {
88b1943b
AV
1770 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1771 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1772 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1773 }
1774 rx_mode |= AcceptBroadcast|PerfectFilter;
1775 } else {
1776 /* Must use a multicast hash table. */
1777 void __iomem *filter_addr;
88b1943b
AV
1778 __be16 *eaddrs;
1779 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1780
1781 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3 1782 netdev_for_each_mc_addr(ha, dev) {
fdecea66
JG
1783 /* The chip uses the upper 9 CRC bits
1784 as index into the hash table */
22bedad3 1785 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
88b1943b 1786 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1787
1788 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1789 }
1790 /* Clear the perfect filter list, skip first two entries. */
1791 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1792 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1793 for (i = 2; i < 16; i++) {
88b1943b
AV
1794 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1797 }
1798 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1799 writew(mc_filter[i], filter_addr);
1800 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1801 }
1802 writel(rx_mode, ioaddr + RxFilterMode);
1803}
1804
1805static int check_if_running(struct net_device *dev)
1806{
1807 if (!netif_running(dev))
1808 return -EINVAL;
1809 return 0;
1810}
1811
1812static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813{
1814 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1815 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1818}
1819
1820static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1821{
1822 struct netdev_private *np = netdev_priv(dev);
1823 spin_lock_irq(&np->lock);
1824 mii_ethtool_gset(&np->mii_if, ecmd);
1825 spin_unlock_irq(&np->lock);
1826 return 0;
1827}
1828
1829static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1830{
1831 struct netdev_private *np = netdev_priv(dev);
1832 int res;
1833 spin_lock_irq(&np->lock);
1834 res = mii_ethtool_sset(&np->mii_if, ecmd);
1835 spin_unlock_irq(&np->lock);
1836 check_duplex(dev);
1837 return res;
1838}
1839
1840static int nway_reset(struct net_device *dev)
1841{
1842 struct netdev_private *np = netdev_priv(dev);
1843 return mii_nway_restart(&np->mii_if);
1844}
1845
1846static u32 get_link(struct net_device *dev)
1847{
1848 struct netdev_private *np = netdev_priv(dev);
1849 return mii_link_ok(&np->mii_if);
1850}
1851
1852static u32 get_msglevel(struct net_device *dev)
1853{
1854 return debug;
1855}
1856
1857static void set_msglevel(struct net_device *dev, u32 val)
1858{
1859 debug = val;
1860}
1861
7282d491 1862static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1863 .begin = check_if_running,
1864 .get_drvinfo = get_drvinfo,
1865 .get_settings = get_settings,
1866 .set_settings = set_settings,
1867 .nway_reset = nway_reset,
1868 .get_link = get_link,
1869 .get_msglevel = get_msglevel,
1870 .set_msglevel = set_msglevel,
1871};
1872
1873static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 struct mii_ioctl_data *data = if_mii(rq);
1877 int rc;
1878
1879 if (!netif_running(dev))
1880 return -EINVAL;
1881
1882 spin_lock_irq(&np->lock);
1883 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1884 spin_unlock_irq(&np->lock);
1885
1886 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1887 check_duplex(dev);
1888
1889 return rc;
1890}
1891
1892static int netdev_close(struct net_device *dev)
1893{
1894 struct netdev_private *np = netdev_priv(dev);
1895 void __iomem *ioaddr = np->base;
1896 int i;
1897
1898 netif_stop_queue(dev);
a6676019 1899
bea3348e 1900 napi_disable(&np->napi);
1da177e4
LT
1901
1902 if (debug > 1) {
1903 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1904 dev->name, (int) readl(ioaddr + IntrStatus));
1905 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1906 dev->name, np->cur_tx, np->dirty_tx,
1907 np->cur_rx, np->dirty_rx);
1908 }
1909
1910 /* Disable interrupts by clearing the interrupt mask. */
1911 writel(0, ioaddr + IntrEnable);
1912
1913 /* Stop the chip's Tx and Rx processes. */
1914 writel(0, ioaddr + GenCtrl);
1915 readl(ioaddr + GenCtrl);
1916
1917 if (debug > 5) {
1918 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1919 (long long) np->tx_ring_dma);
1920 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1921 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1922 i, le32_to_cpu(np->tx_ring[i].status),
1923 (long long) dma_to_cpu(np->tx_ring[i].addr),
1924 le32_to_cpu(np->tx_done_q[i].status));
1925 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1926 (long long) np->rx_ring_dma, np->rx_done_q);
1927 if (np->rx_done_q)
1928 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1929 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1930 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1931 }
1932 }
1933
ea8f2ed0 1934 free_irq(np->pci_dev->irq, dev);
1da177e4
LT
1935
1936 /* Free all the skbuffs in the Rx queue. */
1937 for (i = 0; i < RX_RING_SIZE; i++) {
1938 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1939 if (np->rx_info[i].skb != NULL) {
1940 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1941 dev_kfree_skb(np->rx_info[i].skb);
1942 }
1943 np->rx_info[i].skb = NULL;
1944 np->rx_info[i].mapping = 0;
1945 }
1946 for (i = 0; i < TX_RING_SIZE; i++) {
1947 struct sk_buff *skb = np->tx_info[i].skb;
1948 if (skb == NULL)
1949 continue;
1950 pci_unmap_single(np->pci_dev,
1951 np->tx_info[i].mapping,
1952 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1953 np->tx_info[i].mapping = 0;
1954 dev_kfree_skb(skb);
1955 np->tx_info[i].skb = NULL;
1956 }
1957
1958 return 0;
1959}
1960
d4fbeabb
SR
1961#ifdef CONFIG_PM
1962static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1963{
1964 struct net_device *dev = pci_get_drvdata(pdev);
1965
1966 if (netif_running(dev)) {
1967 netif_device_detach(dev);
1968 netdev_close(dev);
1969 }
1970
1971 pci_save_state(pdev);
1972 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1973
1974 return 0;
1975}
1976
1977static int starfire_resume(struct pci_dev *pdev)
1978{
1979 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 1980
d4fbeabb
SR
1981 pci_set_power_state(pdev, PCI_D0);
1982 pci_restore_state(pdev);
1983
1984 if (netif_running(dev)) {
1985 netdev_open(dev);
1986 netif_device_attach(dev);
1987 }
1988
1989 return 0;
1990}
1991#endif /* CONFIG_PM */
1992
1da177e4 1993
d3ace588 1994static void starfire_remove_one(struct pci_dev *pdev)
1da177e4
LT
1995{
1996 struct net_device *dev = pci_get_drvdata(pdev);
1997 struct netdev_private *np = netdev_priv(dev);
1998
5d9428de 1999 BUG_ON(!dev);
1da177e4
LT
2000
2001 unregister_netdev(dev);
2002
2003 if (np->queue_mem)
2004 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2005
2006
2007 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2008 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2009 pci_disable_device(pdev);
2010
2011 iounmap(np->base);
2012 pci_release_regions(pdev);
2013
1da177e4
LT
2014 free_netdev(dev); /* Will also free np!! */
2015}
2016
2017
2018static struct pci_driver starfire_driver = {
2019 .name = DRV_NAME,
2020 .probe = starfire_init_one,
d3ace588 2021 .remove = starfire_remove_one,
d4fbeabb
SR
2022#ifdef CONFIG_PM
2023 .suspend = starfire_suspend,
2024 .resume = starfire_resume,
2025#endif /* CONFIG_PM */
1da177e4
LT
2026 .id_table = starfire_pci_tbl,
2027};
2028
2029
2030static int __init starfire_init (void)
2031{
2032/* when a module, this is printed whether or not devices are found in probe */
2033#ifdef MODULE
2034 printk(version);
a6676019 2035
fdecea66 2036 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2037#endif
2038
56543af9 2039 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
67974231 2040
29917620 2041 return pci_register_driver(&starfire_driver);
1da177e4
LT
2042}
2043
2044
2045static void __exit starfire_cleanup (void)
2046{
2047 pci_unregister_driver (&starfire_driver);
2048}
2049
2050
2051module_init(starfire_init);
2052module_exit(starfire_cleanup);
2053
2054
2055/*
2056 * Local variables:
2057 * c-basic-offset: 8
2058 * tab-width: 8
2059 * End:
2060 */