]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/adaptec/starfire.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / adaptec / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
a6b7a407 33#include <linux/interrupt.h>
1da177e4
LT
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
fdecea66
JG
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
d7fe0f24 45#include <linux/mm.h>
cfc3a44c 46#include <linux/firmware.h>
1da177e4 47#include <asm/processor.h> /* Processor type for cache alignment. */
7c0f6ba6 48#include <linux/uaccess.h>
1da177e4
LT
49#include <asm/io.h>
50
1da177e4
LT
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
67974231
IB
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
1da177e4
LT
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
1da177e4 67#define ZEROCOPY
1da177e4 68
5a5ab161 69#if IS_ENABLED(CONFIG_VLAN_8021Q)
1da177e4
LT
70#define VLAN_SUPPORT
71#endif
72
1da177e4
LT
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 85static const int multicast_filter_limit = 512;
1da177e4 86/* Whether to do TCP/UDP checksums in hardware */
1da177e4 87static int enable_hw_cksum = 1;
1da177e4
LT
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
1da177e4
LT
117/* Operational parameters that are set at compile time. */
118
119/* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
121*/
122#define RX_RING_SIZE 256
123#define TX_RING_SIZE 32
124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125#define DONE_Q_SIZE 1024
126/* All queues must be aligned on a 256-byte boundary */
127#define QUEUE_ALIGN 256
128
129#if RX_RING_SIZE > 256
130#define RX_Q_ENTRIES Rx2048QEntries
131#else
132#define RX_Q_ENTRIES Rx256QEntries
133#endif
134
135/* Operational parameters that usually are not changed. */
136/* Time in jiffies before concluding the transmitter is hung. */
137#define TX_TIMEOUT (2 * HZ)
138
1591cb60 139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1da177e4
LT
140/* 64-bit dma_addr_t */
141#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 142#define netdrv_addr_t __le64
1da177e4
LT
143#define cpu_to_dma(x) cpu_to_le64(x)
144#define dma_to_cpu(x) le64_to_cpu(x)
145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
150#else /* 32-bit dma_addr_t */
88b1943b 151#define netdrv_addr_t __le32
1da177e4
LT
152#define cpu_to_dma(x) cpu_to_le32(x)
153#define dma_to_cpu(x) le32_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
159#endif
160
1da177e4
LT
161#define skb_first_frag_len(skb) skb_headlen(skb)
162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 163
cfc3a44c
JSR
164/* Firmware names */
165#define FIRMWARE_RX "adaptec/starfire_rx.bin"
166#define FIRMWARE_TX "adaptec/starfire_tx.bin"
167
1da177e4 168/* These identify the driver base version and may not be removed. */
d3ace588 169static const char version[] =
1da177e4 170KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
ad361c98 171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
1da177e4
LT
172
173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175MODULE_LICENSE("GPL");
fdecea66 176MODULE_VERSION(DRV_VERSION);
cfc3a44c
JSR
177MODULE_FIRMWARE(FIRMWARE_RX);
178MODULE_FIRMWARE(FIRMWARE_TX);
1da177e4
LT
179
180module_param(max_interrupt_work, int, 0);
181module_param(mtu, int, 0);
182module_param(debug, int, 0);
183module_param(rx_copybreak, int, 0);
184module_param(intr_latency, int, 0);
185module_param(small_frames, int, 0);
1da177e4
LT
186module_param(enable_hw_cksum, int, 0);
187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188MODULE_PARM_DESC(mtu, "MTU (all boards)");
189MODULE_PARM_DESC(debug, "Debug level (0-6)");
190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
1da177e4
LT
193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195/*
196 Theory of Operation
197
198I. Board Compatibility
199
200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201
202II. Board-specific settings
203
204III. Driver operation
205
206IIIa. Ring buffers
207
208The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209ring sizes are set fixed by the hardware, but may optionally be wrapped
210earlier by the END bit in the descriptor.
211This driver uses that hardware queue size for the Rx ring, where a large
212number of entries has no ill effect beyond increases the potential backlog.
213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214disables the queue layer priority ordering and we have no mechanism to
215utilize the hardware two-level priority queue. When modifying the
216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217levels.
218
219IIIb/c. Transmit/Receive Structure
220
221See the Adaptec manual for the many possible structures, and options for
222each structure. There are far too many to document all of them here.
223
224For transmit this driver uses type 0/1 transmit descriptors (depending
225on the 32/64 bitness of the architecture), and relies on automatic
226minimum-length padding. It does not use the completion queue
227consumer index, but instead checks for non-zero status entries.
228
fdecea66 229For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
230allocates full frame size skbuffs for the Rx ring buffers, so all frames
231should fit in a single descriptor. The driver does not use the completion
232queue consumer index, but instead checks for non-zero status entries.
233
234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235is allocated and the frame is copied to the new skbuff. When the incoming
236frame is larger, the skbuff is passed directly up the protocol stack.
237Buffers consumed this way are replaced by newly allocated skbuffs in a later
238phase of receive.
239
240A notable aspect of operation is that unaligned buffers are not permitted by
241the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242isn't longword aligned, which may cause problems on some machine
243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244the frame into a new skbuff unconditionally. Copied frames are put into the
245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246
247IIId. Synchronization
248
249The driver runs as two independent, single-threaded flows of control. One
250is the send-packet routine, which enforces single-threaded use by the
251dev->tbusy flag. The other thread is the interrupt handler, which is single
252threaded by the hardware and interrupt handling software.
253
254The send packet thread has partial control over the Tx ring and the netif_queue
255status. If the number of free Tx slots in the ring falls below a certain number
256(currently hardcoded to 4), it signals the upper layer to stop the queue.
257
258The interrupt handler has exclusive control over the Rx ring and records stats
259from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261number of free Tx slow is above the threshold, it signals the upper layer to
262restart the queue.
263
264IV. Notes
265
266IVb. References
267
268The Adaptec Starfire manuals, available only from Adaptec.
269http://www.scyld.com/expert/100mbps.html
270http://www.scyld.com/expert/NWay.html
271
272IVc. Errata
273
274- StopOnPerr is broken, don't enable
275- Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
277
278*/
279
fdecea66 280
1da177e4
LT
281
282enum chip_capability_flags {CanHaveMII=1, };
283
284enum chipset {
285 CH_6915 = 0,
286};
287
9baa3c34 288static const struct pci_device_id starfire_pci_tbl[] = {
d08336e9 289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
1da177e4
LT
290 { 0, }
291};
292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 295static const struct chip_info {
1da177e4
LT
296 const char *name;
297 int drv_flags;
d3ace588 298} netdrv_tbl[] = {
1da177e4
LT
299 { "Adaptec Starfire 6915", CanHaveMII },
300};
301
302
303/* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
310*/
311enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
328};
329
330/*
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
334 */
335enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350 /* not quite bits */
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354};
355
356/* Bits in the RxFilterMode register. */
357enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
362};
363
364/* Bits in the TxMode register */
365enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369};
370
371/* Bits in the TxDescCtrl register. */
372enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
381};
382
383/* Bits in the RxDescQCtrl register. */
384enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
394};
395
396/* Bits in the RxDMACtrl register. */
397enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
410};
411
412/* Bits in the RxCompletionAddr register */
413enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
419};
420
421/* Bits in the TxCompletionAddr register */
422enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
428};
429
430/* Bits in the GenCtrl register */
431enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
434};
435
436/* Bits in the IntrTimerCtrl register */
437enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
441};
442
443/* The Rx and Tx buffer descriptors. */
444struct starfire_rx_desc {
88b1943b 445 netdrv_addr_t rxaddr;
1da177e4
LT
446};
447enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
449};
450
451/* Completion queue entry. */
452struct short_rx_done_desc {
88b1943b 453 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
454};
455struct basic_rx_done_desc {
88b1943b
AV
456 __le32 status; /* Low 16 bits is length. */
457 __le16 vlanid;
458 __le16 status2;
1da177e4
LT
459};
460struct csum_rx_done_desc {
88b1943b
AV
461 __le32 status; /* Low 16 bits is length. */
462 __le16 csum; /* Partial checksum */
463 __le16 status2;
1da177e4
LT
464};
465struct full_rx_done_desc {
88b1943b
AV
466 __le32 status; /* Low 16 bits is length. */
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum; /* partial checksum */
471 __le32 timestamp;
1da177e4
LT
472};
473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
474#ifdef VLAN_SUPPORT
475typedef struct full_rx_done_desc rx_done_desc;
476#define RxComplType RxComplType3
477#else /* not VLAN_SUPPORT */
478typedef struct csum_rx_done_desc rx_done_desc;
479#define RxComplType RxComplType2
480#endif /* not VLAN_SUPPORT */
1da177e4
LT
481
482enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484};
485
486/* Type 1 Tx descriptor. */
487struct starfire_tx_desc_1 {
88b1943b
AV
488 __le32 status; /* Upper bits are status, lower 16 length. */
489 __le32 addr;
1da177e4
LT
490};
491
492/* Type 2 Tx descriptor. */
493struct starfire_tx_desc_2 {
88b1943b
AV
494 __le32 status; /* Upper bits are status, lower 16 length. */
495 __le32 reserved;
496 __le64 addr;
1da177e4
LT
497};
498
499#ifdef ADDR_64BITS
500typedef struct starfire_tx_desc_2 starfire_tx_desc;
501#define TX_DESC_TYPE TxDescType2
502#else /* not ADDR_64BITS */
503typedef struct starfire_tx_desc_1 starfire_tx_desc;
504#define TX_DESC_TYPE TxDescType1
505#endif /* not ADDR_64BITS */
506#define TX_DESC_SPACING TxDescSpaceUnlim
507
508enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512};
513struct tx_done_desc {
88b1943b 514 __le32 status; /* timestamp, index. */
1da177e4 515#if 0
88b1943b 516 __le32 intrstatus; /* interrupt status */
1da177e4
LT
517#endif
518};
519
520struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
523};
524struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
528};
529
530#define PHY_CNT 2
531struct netdev_private {
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
bea3348e
SH
547 struct napi_struct napi;
548 struct net_device *dev;
1da177e4
LT
549 struct pci_dev *pci_dev;
550#ifdef VLAN_SUPPORT
5da96be5 551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
1da177e4
LT
552#endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
556
557 /* Frequently used values: keep some adjacent for cache effect. */
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100; /* Set if speed == 100MBit. */
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567 /* MII transceiver section. */
568 struct mii_if_info mii_if; /* MII lib hooks/info */
569 int phy_cnt; /* MII device addresses. */
570 unsigned char phys[PHY_CNT]; /* MII device addresses. */
571 void __iomem *base;
572};
573
574
575static int mdio_read(struct net_device *dev, int phy_id, int location);
576static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577static int netdev_open(struct net_device *dev);
578static void check_duplex(struct net_device *dev);
579static void tx_timeout(struct net_device *dev);
580static void init_ring(struct net_device *dev);
61357325 581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 582static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
583static void netdev_error(struct net_device *dev, int intr_status);
584static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 585static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
586static void refill_rx_ring(struct net_device *dev);
587static void netdev_error(struct net_device *dev, int intr_status);
588static void set_rx_mode(struct net_device *dev);
589static struct net_device_stats *get_stats(struct net_device *dev);
590static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591static int netdev_close(struct net_device *dev);
592static void netdev_media_change(struct net_device *dev);
7282d491 593static const struct ethtool_ops ethtool_ops;
1da177e4
LT
594
595
596#ifdef VLAN_SUPPORT
80d5c368
PM
597static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 __be16 proto, u16 vid)
1da177e4
LT
599{
600 struct netdev_private *np = netdev_priv(dev);
601
602 spin_lock(&np->lock);
603 if (debug > 1)
604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
5da96be5 605 set_bit(vid, np->active_vlans);
1da177e4
LT
606 set_rx_mode(dev);
607 spin_unlock(&np->lock);
8e586137
JP
608
609 return 0;
1da177e4
LT
610}
611
80d5c368
PM
612static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 __be16 proto, u16 vid)
1da177e4
LT
614{
615 struct netdev_private *np = netdev_priv(dev);
616
617 spin_lock(&np->lock);
618 if (debug > 1)
619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5da96be5 620 clear_bit(vid, np->active_vlans);
1da177e4
LT
621 set_rx_mode(dev);
622 spin_unlock(&np->lock);
8e586137
JP
623
624 return 0;
1da177e4
LT
625}
626#endif /* VLAN_SUPPORT */
627
628
4fc8006e
SH
629static const struct net_device_ops netdev_ops = {
630 .ndo_open = netdev_open,
631 .ndo_stop = netdev_close,
632 .ndo_start_xmit = start_tx,
5da96be5
JP
633 .ndo_tx_timeout = tx_timeout,
634 .ndo_get_stats = get_stats,
afc4b13d 635 .ndo_set_rx_mode = set_rx_mode,
5da96be5 636 .ndo_do_ioctl = netdev_ioctl,
5da96be5 637 .ndo_set_mac_address = eth_mac_addr,
4fc8006e
SH
638 .ndo_validate_addr = eth_validate_addr,
639#ifdef VLAN_SUPPORT
4fc8006e
SH
640 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
641 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
642#endif
643};
644
d3ace588 645static int starfire_init_one(struct pci_dev *pdev,
1dd06ae8 646 const struct pci_device_id *ent)
1da177e4 647{
2d5fb628 648 struct device *d = &pdev->dev;
1da177e4 649 struct netdev_private *np;
2d5fb628 650 int i, irq, chip_idx = ent->driver_data;
1da177e4 651 struct net_device *dev;
1da177e4
LT
652 long ioaddr;
653 void __iomem *base;
654 int drv_flags, io_size;
655 int boguscnt;
656
657/* when built into the kernel, we only print version if device is found */
658#ifndef MODULE
659 static int printed_version;
660 if (!printed_version++)
661 printk(version);
662#endif
663
1da177e4
LT
664 if (pci_enable_device (pdev))
665 return -EIO;
666
667 ioaddr = pci_resource_start(pdev, 0);
668 io_size = pci_resource_len(pdev, 0);
669 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
2d5fb628 670 dev_err(d, "no PCI MEM resources, aborting\n");
1da177e4
LT
671 return -ENODEV;
672 }
673
674 dev = alloc_etherdev(sizeof(*np));
41de8d4c 675 if (!dev)
1da177e4 676 return -ENOMEM;
41de8d4c 677
1da177e4
LT
678 SET_NETDEV_DEV(dev, &pdev->dev);
679
680 irq = pdev->irq;
681
682 if (pci_request_regions (pdev, DRV_NAME)) {
2d5fb628 683 dev_err(d, "cannot reserve PCI resources, aborting\n");
1da177e4
LT
684 goto err_out_free_netdev;
685 }
686
1da177e4
LT
687 base = ioremap(ioaddr, io_size);
688 if (!base) {
2d5fb628
FR
689 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
690 io_size, ioaddr);
1da177e4
LT
691 goto err_out_free_res;
692 }
693
694 pci_set_master(pdev);
695
696 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 697 pci_try_set_mwi(pdev);
1da177e4 698
1da177e4
LT
699#ifdef ZEROCOPY
700 /* Starfire can do TCP/UDP checksumming */
701 if (enable_hw_cksum)
fdecea66 702 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4 703#endif /* ZEROCOPY */
4fc8006e 704
1da177e4 705#ifdef VLAN_SUPPORT
f646968f 706 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
1da177e4
LT
707#endif /* VLAN_RX_KILL_VID */
708#ifdef ADDR_64BITS
709 dev->features |= NETIF_F_HIGHDMA;
710#endif /* ADDR_64BITS */
711
712 /* Serial EEPROM reads are hidden by the hardware. */
713 for (i = 0; i < 6; i++)
714 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
715
716#if ! defined(final_version) /* Dump the EEPROM contents during development. */
717 if (debug > 4)
718 for (i = 0; i < 0x20; i++)
719 printk("%2.2x%s",
720 (unsigned int)readb(base + EEPROMCtrl + i),
721 i % 16 != 15 ? " " : "\n");
722#endif
723
724 /* Issue soft reset */
725 writel(MiiSoftReset, base + TxMode);
726 udelay(1000);
727 writel(0, base + TxMode);
728
729 /* Reset the chip to erase previous misconfiguration. */
730 writel(1, base + PCIDeviceConfig);
731 boguscnt = 1000;
732 while (--boguscnt > 0) {
733 udelay(10);
734 if ((readl(base + PCIDeviceConfig) & 1) == 0)
735 break;
736 }
737 if (boguscnt == 0)
738 printk("%s: chipset reset never completed!\n", dev->name);
739 /* wait a little longer */
740 udelay(1000);
741
1da177e4 742 np = netdev_priv(dev);
bea3348e 743 np->dev = dev;
1da177e4
LT
744 np->base = base;
745 spin_lock_init(&np->lock);
746 pci_set_drvdata(pdev, dev);
747
748 np->pci_dev = pdev;
749
750 np->mii_if.dev = dev;
751 np->mii_if.mdio_read = mdio_read;
752 np->mii_if.mdio_write = mdio_write;
753 np->mii_if.phy_id_mask = 0x1f;
754 np->mii_if.reg_num_mask = 0x1f;
755
756 drv_flags = netdrv_tbl[chip_idx].drv_flags;
757
1da177e4
LT
758 np->speed100 = 1;
759
760 /* timer resolution is 128 * 0.8us */
761 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
762 Timer10X | EnableIntrMasking;
763
764 if (small_frames > 0) {
765 np->intr_timer_ctrl |= SmallFrameBypass;
766 switch (small_frames) {
767 case 1 ... 64:
768 np->intr_timer_ctrl |= SmallFrame64;
769 break;
770 case 65 ... 128:
771 np->intr_timer_ctrl |= SmallFrame128;
772 break;
773 case 129 ... 256:
774 np->intr_timer_ctrl |= SmallFrame256;
775 break;
776 default:
777 np->intr_timer_ctrl |= SmallFrame512;
778 if (small_frames > 512)
779 printk("Adjusting small_frames down to 512\n");
780 break;
781 }
782 }
783
4fc8006e 784 dev->netdev_ops = &netdev_ops;
fdecea66 785 dev->watchdog_timeo = TX_TIMEOUT;
7ad24ea4 786 dev->ethtool_ops = &ethtool_ops;
1da177e4 787
4fc8006e
SH
788 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
789
1da177e4
LT
790 if (mtu)
791 dev->mtu = mtu;
792
793 if (register_netdev(dev))
794 goto err_out_cleardev;
795
e174961c 796 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 797 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 798 dev->dev_addr, irq);
1da177e4
LT
799
800 if (drv_flags & CanHaveMII) {
801 int phy, phy_idx = 0;
802 int mii_status;
803 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
804 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
805 mdelay(100);
806 boguscnt = 1000;
807 while (--boguscnt > 0)
808 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
809 break;
810 if (boguscnt == 0) {
fdecea66 811 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
812 continue;
813 }
814 mii_status = mdio_read(dev, phy, MII_BMSR);
815 if (mii_status != 0) {
816 np->phys[phy_idx++] = phy;
817 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
818 printk(KERN_INFO "%s: MII PHY found at address %d, status "
819 "%#4.4x advertising %#4.4x.\n",
820 dev->name, phy, mii_status, np->mii_if.advertising);
821 /* there can be only one PHY on-board */
822 break;
823 }
824 }
825 np->phy_cnt = phy_idx;
826 if (np->phy_cnt > 0)
827 np->mii_if.phy_id = np->phys[0];
828 else
829 memset(&np->mii_if, 0, sizeof(np->mii_if));
830 }
831
832 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
833 dev->name, enable_hw_cksum ? "enabled" : "disabled");
834 return 0;
835
836err_out_cleardev:
1da177e4
LT
837 iounmap(base);
838err_out_free_res:
839 pci_release_regions (pdev);
840err_out_free_netdev:
841 free_netdev(dev);
842 return -ENODEV;
843}
844
845
846/* Read the MII Management Data I/O (MDIO) interfaces. */
847static int mdio_read(struct net_device *dev, int phy_id, int location)
848{
849 struct netdev_private *np = netdev_priv(dev);
850 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
851 int result, boguscnt=1000;
852 /* ??? Should we add a busy-wait here? */
e4c3c13c 853 do {
1da177e4 854 result = readl(mdio_addr);
e4c3c13c 855 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
856 if (boguscnt == 0)
857 return 0;
858 if ((result & 0xffff) == 0xffff)
859 return 0;
860 return result & 0xffff;
861}
862
863
864static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
865{
866 struct netdev_private *np = netdev_priv(dev);
867 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
868 writel(value, mdio_addr);
869 /* The busy-wait will occur before a read. */
870}
871
872
873static int netdev_open(struct net_device *dev)
874{
cfc3a44c
JSR
875 const struct firmware *fw_rx, *fw_tx;
876 const __be32 *fw_rx_data, *fw_tx_data;
1da177e4
LT
877 struct netdev_private *np = netdev_priv(dev);
878 void __iomem *ioaddr = np->base;
ea8f2ed0 879 const int irq = np->pci_dev->irq;
1da177e4 880 int i, retval;
cfc3a44c 881 size_t tx_size, rx_size;
1da177e4
LT
882 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
883
884 /* Do we ever need to reset the chip??? */
fdecea66 885
ea8f2ed0 886 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
887 if (retval)
888 return retval;
889
890 /* Disable the Rx and Tx, and reset the chip. */
891 writel(0, ioaddr + GenCtrl);
892 writel(1, ioaddr + PCIDeviceConfig);
893 if (debug > 1)
894 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
ea8f2ed0 895 dev->name, irq);
1da177e4
LT
896
897 /* Allocate the various queues. */
88b1943b 898 if (!np->queue_mem) {
1da177e4
LT
899 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
900 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
903 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
904 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9 905 if (np->queue_mem == NULL) {
ea8f2ed0 906 free_irq(irq, dev);
1da177e4 907 return -ENOMEM;
d8840ac9 908 }
1da177e4
LT
909
910 np->tx_done_q = np->queue_mem;
911 np->tx_done_q_dma = np->queue_mem_dma;
912 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
913 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
914 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
915 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
916 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
917 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
918 }
919
920 /* Start with no carrier, it gets adjusted later */
921 netif_carrier_off(dev);
922 init_ring(dev);
923 /* Set the size of the Rx buffers. */
924 writel((np->rx_buf_sz << RxBufferLenShift) |
925 (0 << RxMinDescrThreshShift) |
926 RxPrefetchMode | RxVariableQ |
927 RX_Q_ENTRIES |
928 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
929 RxDescSpace4,
930 ioaddr + RxDescQCtrl);
931
932 /* Set up the Rx DMA controller. */
933 writel(RxChecksumIgnore |
934 (0 << RxEarlyIntThreshShift) |
935 (6 << RxHighPrioThreshShift) |
936 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
937 ioaddr + RxDMACtrl);
938
939 /* Set Tx descriptor */
940 writel((2 << TxHiPriFIFOThreshShift) |
941 (0 << TxPadLenShift) |
942 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
943 TX_DESC_Q_ADDR_SIZE |
944 TX_DESC_SPACING | TX_DESC_TYPE,
945 ioaddr + TxDescCtrl);
946
947 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
950 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
951 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
952
953 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
954 writel(np->rx_done_q_dma |
955 RxComplType |
956 (0 << RxComplThreshShift),
957 ioaddr + RxCompletionAddr);
958
959 if (debug > 1)
960 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
961
962 /* Fill both the Tx SA register and the Rx perfect filter. */
963 for (i = 0; i < 6; i++)
964 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
965 /* The first entry is special because it bypasses the VLAN filter.
966 Don't use it. */
967 writew(0, ioaddr + PerfFilterTable);
968 writew(0, ioaddr + PerfFilterTable + 4);
969 writew(0, ioaddr + PerfFilterTable + 8);
970 for (i = 1; i < 16; i++) {
88b1943b 971 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 972 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
973 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
974 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
975 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
976 }
977
978 /* Initialize other registers. */
979 /* Configure the PCI bus bursts and FIFO thresholds. */
980 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
981 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
982 udelay(1000);
983 writel(np->tx_mode, ioaddr + TxMode);
984 np->tx_threshold = 4;
985 writel(np->tx_threshold, ioaddr + TxThreshold);
986
987 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
988
bea3348e 989 napi_enable(&np->napi);
a6676019 990
1da177e4
LT
991 netif_start_queue(dev);
992
993 if (debug > 1)
994 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
995 set_rx_mode(dev);
996
997 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
998 check_duplex(dev);
999
1000 /* Enable GPIO interrupts on link change */
1001 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1002
1003 /* Set the interrupt mask */
1004 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1005 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1006 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1007 ioaddr + IntrEnable);
1008 /* Enable PCI interrupts. */
1009 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1010 ioaddr + PCIDeviceConfig);
1011
1012#ifdef VLAN_SUPPORT
1013 /* Set VLAN type to 802.1q */
1014 writel(ETH_P_8021Q, ioaddr + VlanType);
1015#endif /* VLAN_SUPPORT */
1016
cfc3a44c
JSR
1017 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1018 if (retval) {
1019 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1020 FIRMWARE_RX);
c928febf 1021 goto out_init;
cfc3a44c
JSR
1022 }
1023 if (fw_rx->size % 4) {
1024 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1025 fw_rx->size, FIRMWARE_RX);
1026 retval = -EINVAL;
1027 goto out_rx;
1028 }
1029 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1030 if (retval) {
1031 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1032 FIRMWARE_TX);
1033 goto out_rx;
1034 }
1035 if (fw_tx->size % 4) {
1036 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1037 fw_tx->size, FIRMWARE_TX);
1038 retval = -EINVAL;
1039 goto out_tx;
1040 }
1041 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1042 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1043 rx_size = fw_rx->size / 4;
1044 tx_size = fw_tx->size / 4;
1045
1da177e4 1046 /* Load Rx/Tx firmware into the frame processors */
cfc3a44c
JSR
1047 for (i = 0; i < rx_size; i++)
1048 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1049 for (i = 0; i < tx_size; i++)
1050 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1051 if (enable_hw_cksum)
1052 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1053 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1054 else
1055 /* Enable the Rx and Tx units only. */
1056 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057
1058 if (debug > 1)
1059 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1060 dev->name);
1061
cfc3a44c
JSR
1062out_tx:
1063 release_firmware(fw_tx);
1064out_rx:
1065 release_firmware(fw_rx);
c928febf
BH
1066out_init:
1067 if (retval)
1068 netdev_close(dev);
cfc3a44c 1069 return retval;
1da177e4
LT
1070}
1071
1072
1073static void check_duplex(struct net_device *dev)
1074{
1075 struct netdev_private *np = netdev_priv(dev);
1076 u16 reg0;
1077 int silly_count = 1000;
1078
1079 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1080 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1081 udelay(500);
1082 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1083 /* do nothing */;
1084 if (!silly_count) {
1085 printk("%s: MII reset failed!\n", dev->name);
1086 return;
1087 }
1088
1089 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1090
1091 if (!np->mii_if.force_media) {
1092 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1093 } else {
1094 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1095 if (np->speed100)
1096 reg0 |= BMCR_SPEED100;
1097 if (np->mii_if.full_duplex)
1098 reg0 |= BMCR_FULLDPLX;
1099 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1100 dev->name,
1101 np->speed100 ? "100" : "10",
1102 np->mii_if.full_duplex ? "full" : "half");
1103 }
1104 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1105}
1106
1107
1108static void tx_timeout(struct net_device *dev)
1109{
1110 struct netdev_private *np = netdev_priv(dev);
1111 void __iomem *ioaddr = np->base;
1112 int old_debug;
1113
1114 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1115 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1116
1117 /* Perhaps we should reinitialize the hardware here. */
1118
1119 /*
1120 * Stop and restart the interface.
1121 * Cheat and increase the debug level temporarily.
1122 */
1123 old_debug = debug;
1124 debug = 2;
1125 netdev_close(dev);
1126 netdev_open(dev);
1127 debug = old_debug;
1128
1129 /* Trigger an immediate transmit demand. */
1130
860e9538 1131 netif_trans_update(dev); /* prevent tx timeout */
86678a20 1132 dev->stats.tx_errors++;
1da177e4
LT
1133 netif_wake_queue(dev);
1134}
1135
1136
1137/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1138static void init_ring(struct net_device *dev)
1139{
1140 struct netdev_private *np = netdev_priv(dev);
1141 int i;
1142
1143 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1144 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1145
1146 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1147
1148 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1149 for (i = 0; i < RX_RING_SIZE; i++) {
1d266430 1150 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1da177e4
LT
1151 np->rx_info[i].skb = skb;
1152 if (skb == NULL)
1153 break;
689be439 1154 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1155 /* Grrr, we cannot offset to correctly align the IP header. */
1156 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1157 }
1158 writew(i - 1, np->base + RxDescQIdx);
1159 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1160
1161 /* Clear the remainder of the Rx buffer ring. */
1162 for ( ; i < RX_RING_SIZE; i++) {
1163 np->rx_ring[i].rxaddr = 0;
1164 np->rx_info[i].skb = NULL;
1165 np->rx_info[i].mapping = 0;
1166 }
1167 /* Mark the last entry as wrapping the ring. */
1168 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1169
1170 /* Clear the completion rings. */
1171 for (i = 0; i < DONE_Q_SIZE; i++) {
1172 np->rx_done_q[i].status = 0;
1173 np->tx_done_q[i].status = 0;
1174 }
1175
1176 for (i = 0; i < TX_RING_SIZE; i++)
1177 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1da177e4
LT
1178}
1179
1180
61357325 1181static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1182{
1183 struct netdev_private *np = netdev_priv(dev);
1184 unsigned int entry;
1185 u32 status;
1186 int i;
1187
1da177e4
LT
1188 /*
1189 * be cautious here, wrapping the queue has weird semantics
1190 * and we may not have enough slots even when it seems we do.
1191 */
1192 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1193 netif_stop_queue(dev);
5b548140 1194 return NETDEV_TX_BUSY;
1da177e4
LT
1195 }
1196
1197#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1198 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1199 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1200 return NETDEV_TX_OK;
1da177e4
LT
1201 }
1202#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1203
1204 entry = np->cur_tx % TX_RING_SIZE;
1205 for (i = 0; i < skb_num_frags(skb); i++) {
1206 int wrap_ring = 0;
1207 status = TxDescID;
1208
1209 if (i == 0) {
1210 np->tx_info[entry].skb = skb;
1211 status |= TxCRCEn;
1212 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1213 status |= TxRingWrap;
1214 wrap_ring = 1;
1215 }
1216 if (np->reap_tx) {
1217 status |= TxDescIntr;
1218 np->reap_tx = 0;
1219 }
84fa7933 1220 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1221 status |= TxCalTCP;
86678a20 1222 dev->stats.tx_compressed++;
1da177e4
LT
1223 }
1224 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1225
1226 np->tx_info[entry].mapping =
1227 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1228 } else {
9e903e08
ED
1229 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1230 status |= skb_frag_size(this_frag);
1da177e4 1231 np->tx_info[entry].mapping =
0cd83cc0
IC
1232 pci_map_single(np->pci_dev,
1233 skb_frag_address(this_frag),
9e903e08 1234 skb_frag_size(this_frag),
0cd83cc0 1235 PCI_DMA_TODEVICE);
1da177e4
LT
1236 }
1237
1238 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1239 np->tx_ring[entry].status = cpu_to_le32(status);
1240 if (debug > 3)
1241 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1242 dev->name, np->cur_tx, np->dirty_tx,
1243 entry, status);
1244 if (wrap_ring) {
1245 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1246 np->cur_tx += np->tx_info[entry].used_slots;
1247 entry = 0;
1248 } else {
1249 np->tx_info[entry].used_slots = 1;
1250 np->cur_tx += np->tx_info[entry].used_slots;
1251 entry++;
1252 }
1253 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1254 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1255 np->reap_tx = 1;
1256 }
1257
1258 /* Non-x86: explicitly flush descriptor cache lines here. */
1259 /* Ensure all descriptors are written back before the transmit is
1260 initiated. - Jes */
1261 wmb();
1262
1263 /* Update the producer index. */
1264 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1265
1266 /* 4 is arbitrary, but should be ok */
1267 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1268 netif_stop_queue(dev);
1269
6ed10654 1270 return NETDEV_TX_OK;
1da177e4
LT
1271}
1272
1273
1274/* The interrupt handler does all of the Rx thread work and cleans up
1275 after the Tx thread. */
7d12e780 1276static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1277{
1278 struct net_device *dev = dev_instance;
1279 struct netdev_private *np = netdev_priv(dev);
1280 void __iomem *ioaddr = np->base;
1281 int boguscnt = max_interrupt_work;
1282 int consumer;
1283 int tx_status;
1284 int handled = 0;
1285
1286 do {
1287 u32 intr_status = readl(ioaddr + IntrClear);
1288
1289 if (debug > 4)
1290 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1291 dev->name, intr_status);
1292
1293 if (intr_status == 0 || intr_status == (u32) -1)
1294 break;
1295
1296 handled = 1;
1297
a6676019
FR
1298 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1299 u32 enable;
1300
288379f0
BH
1301 if (likely(napi_schedule_prep(&np->napi))) {
1302 __napi_schedule(&np->napi);
a6676019
FR
1303 enable = readl(ioaddr + IntrEnable);
1304 enable &= ~(IntrRxDone | IntrRxEmpty);
1305 writel(enable, ioaddr + IntrEnable);
1306 /* flush PCI posting buffers */
1307 readl(ioaddr + IntrEnable);
1308 } else {
1309 /* Paranoia check */
1310 enable = readl(ioaddr + IntrEnable);
1311 if (enable & (IntrRxDone | IntrRxEmpty)) {
1312 printk(KERN_INFO
1313 "%s: interrupt while in poll!\n",
1314 dev->name);
1315 enable &= ~(IntrRxDone | IntrRxEmpty);
1316 writel(enable, ioaddr + IntrEnable);
1317 }
1318 }
1319 }
1da177e4
LT
1320
1321 /* Scavenge the skbuff list based on the Tx-done queue.
1322 There are redundant checks here that may be cleaned up
1323 after the driver has proven to be reliable. */
1324 consumer = readl(ioaddr + TxConsumerIdx);
1325 if (debug > 3)
1326 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1327 dev->name, consumer);
1328
1329 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1330 if (debug > 3)
1331 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1332 dev->name, np->dirty_tx, np->tx_done, tx_status);
1333 if ((tx_status & 0xe0000000) == 0xa0000000) {
86678a20 1334 dev->stats.tx_packets++;
1da177e4
LT
1335 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1336 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1337 struct sk_buff *skb = np->tx_info[entry].skb;
1338 np->tx_info[entry].skb = NULL;
1339 pci_unmap_single(np->pci_dev,
1340 np->tx_info[entry].mapping,
1341 skb_first_frag_len(skb),
1342 PCI_DMA_TODEVICE);
1343 np->tx_info[entry].mapping = 0;
1344 np->dirty_tx += np->tx_info[entry].used_slots;
1345 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1346 {
1347 int i;
1348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1349 pci_unmap_single(np->pci_dev,
1350 np->tx_info[entry].mapping,
9e903e08 1351 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1da177e4
LT
1352 PCI_DMA_TODEVICE);
1353 np->dirty_tx++;
1354 entry++;
1355 }
1356 }
fdecea66 1357
1da177e4
LT
1358 dev_kfree_skb_irq(skb);
1359 }
1360 np->tx_done_q[np->tx_done].status = 0;
1361 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1362 }
1363 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1364
1365 if (netif_queue_stopped(dev) &&
1366 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1367 /* The ring is no longer full, wake the queue. */
1368 netif_wake_queue(dev);
1369 }
1370
1371 /* Stats overflow */
1372 if (intr_status & IntrStatsMax)
1373 get_stats(dev);
1374
1375 /* Media change interrupt. */
1376 if (intr_status & IntrLinkChange)
1377 netdev_media_change(dev);
1378
1379 /* Abnormal error summary/uncommon events handlers. */
1380 if (intr_status & IntrAbnormalSummary)
1381 netdev_error(dev, intr_status);
1382
1383 if (--boguscnt < 0) {
1384 if (debug > 1)
1385 printk(KERN_WARNING "%s: Too much work at interrupt, "
1386 "status=%#8.8x.\n",
1387 dev->name, intr_status);
1388 break;
1389 }
1390 } while (1);
1391
1392 if (debug > 4)
1393 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1394 dev->name, (int) readl(ioaddr + IntrStatus));
1395 return IRQ_RETVAL(handled);
1396}
1397
1398
a6676019
FR
1399/*
1400 * This routine is logically part of the interrupt/poll handler, but separated
1401 * for clarity and better register allocation.
1402 */
1da177e4
LT
1403static int __netdev_rx(struct net_device *dev, int *quota)
1404{
1405 struct netdev_private *np = netdev_priv(dev);
1406 u32 desc_status;
1407 int retcode = 0;
1408
1409 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1410 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1411 struct sk_buff *skb;
1412 u16 pkt_len;
1413 int entry;
1414 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1415
1416 if (debug > 4)
1417 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1418 if (!(desc_status & RxOK)) {
fdecea66 1419 /* There was an error. */
1da177e4
LT
1420 if (debug > 2)
1421 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
86678a20 1422 dev->stats.rx_errors++;
1da177e4 1423 if (desc_status & RxFIFOErr)
86678a20 1424 dev->stats.rx_fifo_errors++;
1da177e4
LT
1425 goto next_rx;
1426 }
1427
1428 if (*quota <= 0) { /* out of rx quota */
1429 retcode = 1;
1430 goto out;
1431 }
1432 (*quota)--;
1433
1434 pkt_len = desc_status; /* Implicitly Truncate */
1435 entry = (desc_status >> 16) & 0x7ff;
1436
1437 if (debug > 4)
1438 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1439 /* Check if the packet is long enough to accept without copying
1440 to a minimally-sized skbuff. */
8e95a202 1441 if (pkt_len < rx_copybreak &&
1d266430 1442 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1da177e4
LT
1443 skb_reserve(skb, 2); /* 16 byte align the IP header */
1444 pci_dma_sync_single_for_cpu(np->pci_dev,
1445 np->rx_info[entry].mapping,
1446 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1447 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1448 pci_dma_sync_single_for_device(np->pci_dev,
1449 np->rx_info[entry].mapping,
1450 pkt_len, PCI_DMA_FROMDEVICE);
1451 skb_put(skb, pkt_len);
1452 } else {
1453 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1454 skb = np->rx_info[entry].skb;
1455 skb_put(skb, pkt_len);
1456 np->rx_info[entry].skb = NULL;
1457 np->rx_info[entry].mapping = 0;
1458 }
1459#ifndef final_version /* Remove after testing. */
1460 /* You will want this info for the initial debug. */
0795af57 1461 if (debug > 5) {
e174961c
JB
1462 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1463 skb->data, skb->data + 6,
0795af57
JP
1464 skb->data[12], skb->data[13]);
1465 }
1da177e4
LT
1466#endif
1467
1468 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1469#ifdef VLAN_SUPPORT
1da177e4
LT
1470 if (debug > 4)
1471 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1472#endif
1da177e4
LT
1473 if (le16_to_cpu(desc->status2) & 0x0100) {
1474 skb->ip_summed = CHECKSUM_UNNECESSARY;
86678a20 1475 dev->stats.rx_compressed++;
1da177e4
LT
1476 }
1477 /*
1478 * This feature doesn't seem to be working, at least
1479 * with the two firmware versions I have. If the GFP sees
1480 * an IP fragment, it either ignores it completely, or reports
1481 * "bad checksum" on it.
1482 *
1483 * Maybe I missed something -- corrections are welcome.
1484 * Until then, the printk stays. :-) -Ion
1485 */
1486 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1487 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1488 skb->csum = le16_to_cpu(desc->csum);
1489 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1490 }
1da177e4 1491#ifdef VLAN_SUPPORT
5da96be5 1492 if (le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1493 u16 vlid = le16_to_cpu(desc->vlanid);
1494
1495 if (debug > 4) {
1496 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1497 vlid);
1498 }
86a9bad3 1499 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
5da96be5 1500 }
1da177e4 1501#endif /* VLAN_SUPPORT */
5da96be5 1502 netif_receive_skb(skb);
86678a20 1503 dev->stats.rx_packets++;
1da177e4
LT
1504
1505 next_rx:
1506 np->cur_rx++;
1507 desc->status = 0;
1508 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1509 }
9a3de255
JP
1510
1511 if (*quota == 0) { /* out of rx quota */
1512 retcode = 1;
1513 goto out;
1514 }
1da177e4
LT
1515 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1516
1517 out:
1518 refill_rx_ring(dev);
1519 if (debug > 5)
1520 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1521 retcode, np->rx_done, desc_status);
1522 return retcode;
1523}
1524
bea3348e 1525static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1526{
bea3348e
SH
1527 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1528 struct net_device *dev = np->dev;
1da177e4 1529 u32 intr_status;
1da177e4 1530 void __iomem *ioaddr = np->base;
bea3348e 1531 int quota = budget;
1da177e4
LT
1532
1533 do {
1534 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1535
bea3348e 1536 if (__netdev_rx(dev, &quota))
1da177e4
LT
1537 goto out;
1538
1539 intr_status = readl(ioaddr + IntrStatus);
1540 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1541
288379f0 1542 napi_complete(napi);
1da177e4
LT
1543 intr_status = readl(ioaddr + IntrEnable);
1544 intr_status |= IntrRxDone | IntrRxEmpty;
1545 writel(intr_status, ioaddr + IntrEnable);
1546
1547 out:
1548 if (debug > 5)
bea3348e
SH
1549 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1550 budget - quota);
1da177e4
LT
1551
1552 /* Restart Rx engine if stopped. */
bea3348e 1553 return budget - quota;
1da177e4 1554}
1da177e4
LT
1555
1556static void refill_rx_ring(struct net_device *dev)
1557{
1558 struct netdev_private *np = netdev_priv(dev);
1559 struct sk_buff *skb;
1560 int entry = -1;
1561
1562 /* Refill the Rx ring buffers. */
1563 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1564 entry = np->dirty_rx % RX_RING_SIZE;
1565 if (np->rx_info[entry].skb == NULL) {
1d266430 1566 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1da177e4
LT
1567 np->rx_info[entry].skb = skb;
1568 if (skb == NULL)
1569 break; /* Better luck next round. */
1570 np->rx_info[entry].mapping =
689be439 1571 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1572 np->rx_ring[entry].rxaddr =
1573 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1574 }
1575 if (entry == RX_RING_SIZE - 1)
1576 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1577 }
1578 if (entry >= 0)
1579 writew(entry, np->base + RxDescQIdx);
1580}
1581
1582
1583static void netdev_media_change(struct net_device *dev)
1584{
1585 struct netdev_private *np = netdev_priv(dev);
1586 void __iomem *ioaddr = np->base;
1587 u16 reg0, reg1, reg4, reg5;
1588 u32 new_tx_mode;
1589 u32 new_intr_timer_ctrl;
1590
1591 /* reset status first */
1592 mdio_read(dev, np->phys[0], MII_BMCR);
1593 mdio_read(dev, np->phys[0], MII_BMSR);
1594
1595 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1596 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1597
1598 if (reg1 & BMSR_LSTATUS) {
1599 /* link is up */
1600 if (reg0 & BMCR_ANENABLE) {
1601 /* autonegotiation is enabled */
1602 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1603 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1604 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1605 np->speed100 = 1;
1606 np->mii_if.full_duplex = 1;
1607 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1608 np->speed100 = 1;
1609 np->mii_if.full_duplex = 0;
1610 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1611 np->speed100 = 0;
1612 np->mii_if.full_duplex = 1;
1613 } else {
1614 np->speed100 = 0;
1615 np->mii_if.full_duplex = 0;
1616 }
1617 } else {
1618 /* autonegotiation is disabled */
1619 if (reg0 & BMCR_SPEED100)
1620 np->speed100 = 1;
1621 else
1622 np->speed100 = 0;
1623 if (reg0 & BMCR_FULLDPLX)
1624 np->mii_if.full_duplex = 1;
1625 else
1626 np->mii_if.full_duplex = 0;
1627 }
1628 netif_carrier_on(dev);
1629 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1630 dev->name,
1631 np->speed100 ? "100" : "10",
1632 np->mii_if.full_duplex ? "full" : "half");
1633
1634 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1635 if (np->mii_if.full_duplex)
1636 new_tx_mode |= FullDuplex;
1637 if (np->tx_mode != new_tx_mode) {
1638 np->tx_mode = new_tx_mode;
1639 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1640 udelay(1000);
1641 writel(np->tx_mode, ioaddr + TxMode);
1642 }
1643
1644 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1645 if (np->speed100)
1646 new_intr_timer_ctrl |= Timer10X;
1647 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1648 np->intr_timer_ctrl = new_intr_timer_ctrl;
1649 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1650 }
1651 } else {
1652 netif_carrier_off(dev);
1653 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1654 }
1655}
1656
1657
1658static void netdev_error(struct net_device *dev, int intr_status)
1659{
1660 struct netdev_private *np = netdev_priv(dev);
1661
1662 /* Came close to underrunning the Tx FIFO, increase threshold. */
1663 if (intr_status & IntrTxDataLow) {
1664 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1665 writel(++np->tx_threshold, np->base + TxThreshold);
1666 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1667 dev->name, np->tx_threshold * 16);
1668 } else
1669 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1670 }
1671 if (intr_status & IntrRxGFPDead) {
86678a20
KV
1672 dev->stats.rx_fifo_errors++;
1673 dev->stats.rx_errors++;
1da177e4
LT
1674 }
1675 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
86678a20
KV
1676 dev->stats.tx_fifo_errors++;
1677 dev->stats.tx_errors++;
1da177e4
LT
1678 }
1679 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1680 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1681 dev->name, intr_status);
1682}
1683
1684
1685static struct net_device_stats *get_stats(struct net_device *dev)
1686{
1687 struct netdev_private *np = netdev_priv(dev);
1688 void __iomem *ioaddr = np->base;
1689
1690 /* This adapter architecture needs no SMP locks. */
86678a20
KV
1691 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1692 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1693 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1694 dev->stats.tx_aborted_errors =
1da177e4 1695 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
86678a20
KV
1696 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1697 dev->stats.collisions =
1da177e4
LT
1698 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1699
1700 /* The chip only need report frame silently dropped. */
86678a20 1701 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1da177e4 1702 writew(0, ioaddr + RxDMAStatus);
86678a20
KV
1703 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1704 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1705 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1706 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1da177e4 1707
86678a20 1708 return &dev->stats;
1da177e4
LT
1709}
1710
5da96be5
JP
1711#ifdef VLAN_SUPPORT
1712static u32 set_vlan_mode(struct netdev_private *np)
1713{
1714 u32 ret = VlanMode;
1715 u16 vid;
1716 void __iomem *filter_addr = np->base + HashTable + 8;
1717 int vlan_count = 0;
1718
1719 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1720 if (vlan_count == 32)
1721 break;
1722 writew(vid, filter_addr);
1723 filter_addr += 16;
1724 vlan_count++;
1725 }
1726 if (vlan_count == 32) {
1727 ret |= PerfectFilterVlan;
1728 while (vlan_count < 32) {
1729 writew(0, filter_addr);
1730 filter_addr += 16;
1731 vlan_count++;
1732 }
1733 }
1734 return ret;
1735}
1736#endif /* VLAN_SUPPORT */
1da177e4 1737
1da177e4
LT
1738static void set_rx_mode(struct net_device *dev)
1739{
1740 struct netdev_private *np = netdev_priv(dev);
1741 void __iomem *ioaddr = np->base;
1742 u32 rx_mode = MinVLANPrio;
22bedad3 1743 struct netdev_hw_addr *ha;
1da177e4 1744 int i;
1da177e4 1745
5da96be5
JP
1746#ifdef VLAN_SUPPORT
1747 rx_mode |= set_vlan_mode(np);
1da177e4
LT
1748#endif /* VLAN_SUPPORT */
1749
1750 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1751 rx_mode |= AcceptAll;
4cd24eaf 1752 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1753 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1754 /* Too many to match, or accept all multicasts. */
1755 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
4cd24eaf 1756 } else if (netdev_mc_count(dev) <= 14) {
1da177e4
LT
1757 /* Use the 16 element perfect filter, skip first two entries. */
1758 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1759 __be16 *eaddrs;
22bedad3
JP
1760 netdev_for_each_mc_addr(ha, dev) {
1761 eaddrs = (__be16 *) ha->addr;
88b1943b
AV
1762 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1763 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1764 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1765 }
88b1943b 1766 eaddrs = (__be16 *)dev->dev_addr;
5508590c 1767 i = netdev_mc_count(dev) + 2;
1da177e4 1768 while (i++ < 16) {
88b1943b
AV
1769 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1770 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1771 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1772 }
1773 rx_mode |= AcceptBroadcast|PerfectFilter;
1774 } else {
1775 /* Must use a multicast hash table. */
1776 void __iomem *filter_addr;
88b1943b
AV
1777 __be16 *eaddrs;
1778 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1779
1780 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3 1781 netdev_for_each_mc_addr(ha, dev) {
fdecea66
JG
1782 /* The chip uses the upper 9 CRC bits
1783 as index into the hash table */
22bedad3 1784 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
88b1943b 1785 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1786
1787 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1788 }
1789 /* Clear the perfect filter list, skip first two entries. */
1790 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1791 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1792 for (i = 2; i < 16; i++) {
88b1943b
AV
1793 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1794 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1796 }
1797 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1798 writew(mc_filter[i], filter_addr);
1799 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1800 }
1801 writel(rx_mode, ioaddr + RxFilterMode);
1802}
1803
1804static int check_if_running(struct net_device *dev)
1805{
1806 if (!netif_running(dev))
1807 return -EINVAL;
1808 return 0;
1809}
1810
1811static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1812{
1813 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1814 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1815 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1816 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1817}
1818
f1cd5aa0
PR
1819static int get_link_ksettings(struct net_device *dev,
1820 struct ethtool_link_ksettings *cmd)
1da177e4
LT
1821{
1822 struct netdev_private *np = netdev_priv(dev);
1823 spin_lock_irq(&np->lock);
f1cd5aa0 1824 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1da177e4
LT
1825 spin_unlock_irq(&np->lock);
1826 return 0;
1827}
1828
f1cd5aa0
PR
1829static int set_link_ksettings(struct net_device *dev,
1830 const struct ethtool_link_ksettings *cmd)
1da177e4
LT
1831{
1832 struct netdev_private *np = netdev_priv(dev);
1833 int res;
1834 spin_lock_irq(&np->lock);
f1cd5aa0 1835 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1da177e4
LT
1836 spin_unlock_irq(&np->lock);
1837 check_duplex(dev);
1838 return res;
1839}
1840
1841static int nway_reset(struct net_device *dev)
1842{
1843 struct netdev_private *np = netdev_priv(dev);
1844 return mii_nway_restart(&np->mii_if);
1845}
1846
1847static u32 get_link(struct net_device *dev)
1848{
1849 struct netdev_private *np = netdev_priv(dev);
1850 return mii_link_ok(&np->mii_if);
1851}
1852
1853static u32 get_msglevel(struct net_device *dev)
1854{
1855 return debug;
1856}
1857
1858static void set_msglevel(struct net_device *dev, u32 val)
1859{
1860 debug = val;
1861}
1862
7282d491 1863static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1864 .begin = check_if_running,
1865 .get_drvinfo = get_drvinfo,
1da177e4
LT
1866 .nway_reset = nway_reset,
1867 .get_link = get_link,
1868 .get_msglevel = get_msglevel,
1869 .set_msglevel = set_msglevel,
f1cd5aa0
PR
1870 .get_link_ksettings = get_link_ksettings,
1871 .set_link_ksettings = set_link_ksettings,
1da177e4
LT
1872};
1873
1874static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1875{
1876 struct netdev_private *np = netdev_priv(dev);
1877 struct mii_ioctl_data *data = if_mii(rq);
1878 int rc;
1879
1880 if (!netif_running(dev))
1881 return -EINVAL;
1882
1883 spin_lock_irq(&np->lock);
1884 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1885 spin_unlock_irq(&np->lock);
1886
1887 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1888 check_duplex(dev);
1889
1890 return rc;
1891}
1892
1893static int netdev_close(struct net_device *dev)
1894{
1895 struct netdev_private *np = netdev_priv(dev);
1896 void __iomem *ioaddr = np->base;
1897 int i;
1898
1899 netif_stop_queue(dev);
a6676019 1900
bea3348e 1901 napi_disable(&np->napi);
1da177e4
LT
1902
1903 if (debug > 1) {
1904 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1905 dev->name, (int) readl(ioaddr + IntrStatus));
1906 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1907 dev->name, np->cur_tx, np->dirty_tx,
1908 np->cur_rx, np->dirty_rx);
1909 }
1910
1911 /* Disable interrupts by clearing the interrupt mask. */
1912 writel(0, ioaddr + IntrEnable);
1913
1914 /* Stop the chip's Tx and Rx processes. */
1915 writel(0, ioaddr + GenCtrl);
1916 readl(ioaddr + GenCtrl);
1917
1918 if (debug > 5) {
1919 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1920 (long long) np->tx_ring_dma);
1921 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1922 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1923 i, le32_to_cpu(np->tx_ring[i].status),
1924 (long long) dma_to_cpu(np->tx_ring[i].addr),
1925 le32_to_cpu(np->tx_done_q[i].status));
1926 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1927 (long long) np->rx_ring_dma, np->rx_done_q);
1928 if (np->rx_done_q)
1929 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1930 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1931 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1932 }
1933 }
1934
ea8f2ed0 1935 free_irq(np->pci_dev->irq, dev);
1da177e4
LT
1936
1937 /* Free all the skbuffs in the Rx queue. */
1938 for (i = 0; i < RX_RING_SIZE; i++) {
1939 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1940 if (np->rx_info[i].skb != NULL) {
1941 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1942 dev_kfree_skb(np->rx_info[i].skb);
1943 }
1944 np->rx_info[i].skb = NULL;
1945 np->rx_info[i].mapping = 0;
1946 }
1947 for (i = 0; i < TX_RING_SIZE; i++) {
1948 struct sk_buff *skb = np->tx_info[i].skb;
1949 if (skb == NULL)
1950 continue;
1951 pci_unmap_single(np->pci_dev,
1952 np->tx_info[i].mapping,
1953 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1954 np->tx_info[i].mapping = 0;
1955 dev_kfree_skb(skb);
1956 np->tx_info[i].skb = NULL;
1957 }
1958
1959 return 0;
1960}
1961
d4fbeabb
SR
1962#ifdef CONFIG_PM
1963static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1964{
1965 struct net_device *dev = pci_get_drvdata(pdev);
1966
1967 if (netif_running(dev)) {
1968 netif_device_detach(dev);
1969 netdev_close(dev);
1970 }
1971
1972 pci_save_state(pdev);
1973 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1974
1975 return 0;
1976}
1977
1978static int starfire_resume(struct pci_dev *pdev)
1979{
1980 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 1981
d4fbeabb
SR
1982 pci_set_power_state(pdev, PCI_D0);
1983 pci_restore_state(pdev);
1984
1985 if (netif_running(dev)) {
1986 netdev_open(dev);
1987 netif_device_attach(dev);
1988 }
1989
1990 return 0;
1991}
1992#endif /* CONFIG_PM */
1993
1da177e4 1994
d3ace588 1995static void starfire_remove_one(struct pci_dev *pdev)
1da177e4
LT
1996{
1997 struct net_device *dev = pci_get_drvdata(pdev);
1998 struct netdev_private *np = netdev_priv(dev);
1999
5d9428de 2000 BUG_ON(!dev);
1da177e4
LT
2001
2002 unregister_netdev(dev);
2003
2004 if (np->queue_mem)
2005 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2006
2007
2008 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2009 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2010 pci_disable_device(pdev);
2011
2012 iounmap(np->base);
2013 pci_release_regions(pdev);
2014
1da177e4
LT
2015 free_netdev(dev); /* Will also free np!! */
2016}
2017
2018
2019static struct pci_driver starfire_driver = {
2020 .name = DRV_NAME,
2021 .probe = starfire_init_one,
d3ace588 2022 .remove = starfire_remove_one,
d4fbeabb
SR
2023#ifdef CONFIG_PM
2024 .suspend = starfire_suspend,
2025 .resume = starfire_resume,
2026#endif /* CONFIG_PM */
1da177e4
LT
2027 .id_table = starfire_pci_tbl,
2028};
2029
2030
2031static int __init starfire_init (void)
2032{
2033/* when a module, this is printed whether or not devices are found in probe */
2034#ifdef MODULE
2035 printk(version);
a6676019 2036
fdecea66 2037 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2038#endif
2039
56543af9 2040 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
67974231 2041
29917620 2042 return pci_register_driver(&starfire_driver);
1da177e4
LT
2043}
2044
2045
2046static void __exit starfire_cleanup (void)
2047{
2048 pci_unregister_driver (&starfire_driver);
2049}
2050
2051
2052module_init(starfire_init);
2053module_exit(starfire_cleanup);
2054
2055
2056/*
2057 * Local variables:
2058 * c-basic-offset: 8
2059 * tab-width: 8
2060 * End:
2061 */