]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb3/sge.c
Merge tag 'sh-pfc-for-v5.1-tag2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / chelsio / cxgb3 / sge.c
CommitLineData
4d22de3e 1/*
a02d44a0 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4d22de3e 3 *
1d68e93d
DLR
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
4d22de3e 9 *
1d68e93d
DLR
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
4d22de3e 31 */
4d22de3e
DLR
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
5a0e3ad6 39#include <linux/slab.h>
70c71606 40#include <linux/prefetch.h>
a109a5b9 41#include <net/arp.h>
4d22de3e
DLR
42#include "common.h"
43#include "regs.h"
44#include "sge_defs.h"
45#include "t3_cpl.h"
46#include "firmware_exports.h"
e998f245 47#include "cxgb3_offload.h"
4d22de3e
DLR
48
49#define USE_GTS 0
50
51#define SGE_RX_SM_BUF_SIZE 1536
e0994eb1 52
4d22de3e 53#define SGE_RX_COPY_THRES 256
cf992af5 54#define SGE_RX_PULL_LEN 128
4d22de3e 55
5e68b772 56#define SGE_PG_RSVD SMP_CACHE_BYTES
e0994eb1 57/*
cf992af5
DLR
58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
60 * directly.
e0994eb1 61 */
cf992af5 62#define FL0_PG_CHUNK_SIZE 2048
7385ecf3 63#define FL0_PG_ORDER 0
5e68b772 64#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
7385ecf3
DLR
65#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
5e68b772 67#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
cf992af5 68
e0994eb1 69#define SGE_RX_DROP_THRES 16
42c8ea17 70#define RX_RECLAIM_PERIOD (HZ/4)
4d22de3e 71
26b3871d
DLR
72/*
73 * Max number of Rx buffers we replenish at a time.
74 */
75#define MAX_RX_REFILL 16U
4d22de3e
DLR
76/*
77 * Period of the Tx buffer reclaim timer. This timer does not need to run
78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
79 */
80#define TX_RECLAIM_PERIOD (HZ / 4)
42c8ea17
DLR
81#define TX_RECLAIM_TIMER_CHUNK 64U
82#define TX_RECLAIM_CHUNK 16U
4d22de3e
DLR
83
84/* WR size in bytes */
85#define WR_LEN (WR_FLITS * 8)
86
87/*
88 * Types of Tx queues in each queue set. Order here matters, do not change.
89 */
90enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91
92/* Values for sge_txq.flags */
93enum {
94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
96};
97
98struct tx_desc {
fb8e4444 99 __be64 flit[TX_DESC_FLITS];
4d22de3e
DLR
100};
101
102struct rx_desc {
103 __be32 addr_lo;
104 __be32 len_gen;
105 __be32 gen2;
106 __be32 addr_hi;
107};
108
109struct tx_sw_desc { /* SW state per Tx descriptor */
110 struct sk_buff *skb;
23561c94
DLR
111 u8 eop; /* set if last descriptor for packet */
112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
113 u8 fragidx; /* first page fragment associated with descriptor */
114 s8 sflit; /* start flit of first SGL entry in descriptor */
4d22de3e
DLR
115};
116
cf992af5 117struct rx_sw_desc { /* SW state per Rx descriptor */
e0994eb1
DLR
118 union {
119 struct sk_buff *skb;
cf992af5
DLR
120 struct fl_pg_chunk pg_chunk;
121 };
56e3b9df 122 DEFINE_DMA_UNMAP_ADDR(dma_addr);
4d22de3e
DLR
123};
124
125struct rsp_desc { /* response queue descriptor */
126 struct rss_header rss_hdr;
127 __be32 flags;
128 __be32 len_cq;
129 u8 imm_data[47];
130 u8 intr_gen;
131};
132
99d7cf30
DLR
133/*
134 * Holds unmapping information for Tx packets that need deferred unmapping.
135 * This structure lives at skb->head and must be allocated by callers.
136 */
137struct deferred_unmap_info {
138 struct pci_dev *pdev;
139 dma_addr_t addr[MAX_SKB_FRAGS + 1];
140};
141
4d22de3e
DLR
142/*
143 * Maps a number of flits to the number of Tx descriptors that can hold them.
144 * The formula is
145 *
146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147 *
148 * HW allows up to 4 descriptors to be combined into a WR.
149 */
150static u8 flit_desc_map[] = {
151 0,
152#if SGE_NUM_GENBITS == 1
153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157#elif SGE_NUM_GENBITS == 2
158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162#else
163# error "SGE_NUM_GENBITS must be 1 or 2"
164#endif
165};
166
167static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
168{
169 return container_of(q, struct sge_qset, fl[qidx]);
170}
171
172static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
173{
174 return container_of(q, struct sge_qset, rspq);
175}
176
177static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
178{
179 return container_of(q, struct sge_qset, txq[qidx]);
180}
181
182/**
183 * refill_rspq - replenish an SGE response queue
184 * @adapter: the adapter
185 * @q: the response queue to replenish
186 * @credits: how many new responses to make available
187 *
188 * Replenishes a response queue by making the supplied number of responses
189 * available to HW.
190 */
191static inline void refill_rspq(struct adapter *adapter,
192 const struct sge_rspq *q, unsigned int credits)
193{
afefce66 194 rmb();
4d22de3e
DLR
195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197}
198
199/**
200 * need_skb_unmap - does the platform need unmapping of sk_buffs?
201 *
947af294 202 * Returns true if the platform needs sk_buff unmapping. The compiler
25985edc 203 * optimizes away unnecessary code if this returns true.
4d22de3e
DLR
204 */
205static inline int need_skb_unmap(void)
206{
122e28eb
FT
207#ifdef CONFIG_NEED_DMA_MAP_STATE
208 return 1;
209#else
210 return 0;
211#endif
4d22de3e
DLR
212}
213
214/**
215 * unmap_skb - unmap a packet main body and its page fragments
216 * @skb: the packet
217 * @q: the Tx queue containing Tx descriptors for the packet
218 * @cidx: index of Tx descriptor
219 * @pdev: the PCI device
220 *
221 * Unmap the main body of an sk_buff and its page fragments, if any.
222 * Because of the fairly complicated structure of our SGLs and the desire
23561c94
DLR
223 * to conserve space for metadata, the information necessary to unmap an
224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225 * descriptors (the physical addresses of the various data buffers), and
226 * the SW descriptor state (assorted indices). The send functions
227 * initialize the indices for the first packet descriptor so we can unmap
228 * the buffers held in the first Tx descriptor here, and we have enough
229 * information at this point to set the state for the next Tx descriptor.
230 *
231 * Note that it is possible to clean up the first descriptor of a packet
232 * before the send routines have written the next descriptors, but this
233 * race does not cause any problem. We just end up writing the unmapping
234 * info for the descriptor first.
4d22de3e
DLR
235 */
236static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 unsigned int cidx, struct pci_dev *pdev)
238{
239 const struct sg_ent *sgp;
23561c94
DLR
240 struct tx_sw_desc *d = &q->sdesc[cidx];
241 int nfrags, frag_idx, curflit, j = d->addr_idx;
4d22de3e 242
23561c94
DLR
243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 frag_idx = d->fragidx;
4d22de3e 245
23561c94
DLR
246 if (frag_idx == 0 && skb_headlen(skb)) {
247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 skb_headlen(skb), PCI_DMA_TODEVICE);
4d22de3e
DLR
249 j = 1;
250 }
251
23561c94 252 curflit = d->sflit + 1 + j;
4d22de3e
DLR
253 nfrags = skb_shinfo(skb)->nr_frags;
254
255 while (frag_idx < nfrags && curflit < WR_FLITS) {
256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
9e903e08 257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
4d22de3e
DLR
258 PCI_DMA_TODEVICE);
259 j ^= 1;
260 if (j == 0) {
261 sgp++;
262 curflit++;
263 }
264 curflit++;
265 frag_idx++;
266 }
267
23561c94
DLR
268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
269 d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 d->fragidx = frag_idx;
271 d->addr_idx = j;
272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
4d22de3e
DLR
273 }
274}
275
276/**
277 * free_tx_desc - reclaims Tx descriptors and their buffers
278 * @adapter: the adapter
279 * @q: the Tx queue to reclaim descriptors from
280 * @n: the number of descriptors to reclaim
281 *
282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283 * Tx buffers. Called with the Tx queue lock held.
284 */
285static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 unsigned int n)
287{
288 struct tx_sw_desc *d;
289 struct pci_dev *pdev = adapter->pdev;
290 unsigned int cidx = q->cidx;
291
99d7cf30
DLR
292 const int need_unmap = need_skb_unmap() &&
293 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
294
4d22de3e
DLR
295 d = &q->sdesc[cidx];
296 while (n--) {
297 if (d->skb) { /* an SGL is present */
99d7cf30 298 if (need_unmap)
4d22de3e 299 unmap_skb(d->skb, q, cidx, pdev);
b1424ed9 300 if (d->eop) {
f9ec8131 301 dev_consume_skb_any(d->skb);
b1424ed9
KK
302 d->skb = NULL;
303 }
4d22de3e
DLR
304 }
305 ++d;
306 if (++cidx == q->size) {
307 cidx = 0;
308 d = q->sdesc;
309 }
310 }
311 q->cidx = cidx;
312}
313
314/**
315 * reclaim_completed_tx - reclaims completed Tx descriptors
316 * @adapter: the adapter
317 * @q: the Tx queue to reclaim completed descriptors from
42c8ea17 318 * @chunk: maximum number of descriptors to reclaim
4d22de3e
DLR
319 *
320 * Reclaims Tx descriptors that the SGE has indicated it has processed,
321 * and frees the associated buffers if possible. Called with the Tx
322 * queue's lock held.
323 */
42c8ea17
DLR
324static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 struct sge_txq *q,
326 unsigned int chunk)
4d22de3e
DLR
327{
328 unsigned int reclaim = q->processed - q->cleaned;
329
42c8ea17 330 reclaim = min(chunk, reclaim);
4d22de3e
DLR
331 if (reclaim) {
332 free_tx_desc(adapter, q, reclaim);
333 q->cleaned += reclaim;
334 q->in_use -= reclaim;
335 }
42c8ea17 336 return q->processed - q->cleaned;
4d22de3e
DLR
337}
338
339/**
340 * should_restart_tx - are there enough resources to restart a Tx queue?
341 * @q: the Tx queue
342 *
343 * Checks if there are enough descriptors to restart a suspended Tx queue.
344 */
345static inline int should_restart_tx(const struct sge_txq *q)
346{
347 unsigned int r = q->processed - q->cleaned;
348
349 return q->in_use - r < (q->size >> 1);
350}
351
5e68b772
DLR
352static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 struct rx_sw_desc *d)
9bb2b31e 354{
5e68b772
DLR
355 if (q->use_pages && d->pg_chunk.page) {
356 (*d->pg_chunk.p_cnt)--;
357 if (!*d->pg_chunk.p_cnt)
358 pci_unmap_page(pdev,
10b6d956 359 d->pg_chunk.mapping,
5e68b772
DLR
360 q->alloc_size, PCI_DMA_FROMDEVICE);
361
362 put_page(d->pg_chunk.page);
9bb2b31e
DLR
363 d->pg_chunk.page = NULL;
364 } else {
56e3b9df 365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
5e68b772 366 q->buf_size, PCI_DMA_FROMDEVICE);
9bb2b31e
DLR
367 kfree_skb(d->skb);
368 d->skb = NULL;
369 }
370}
371
4d22de3e
DLR
372/**
373 * free_rx_bufs - free the Rx buffers on an SGE free list
374 * @pdev: the PCI device associated with the adapter
375 * @rxq: the SGE free list to clean up
376 *
377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
378 * this queue should be stopped before calling this function.
379 */
380static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381{
382 unsigned int cidx = q->cidx;
383
384 while (q->credits--) {
385 struct rx_sw_desc *d = &q->sdesc[cidx];
386
5e68b772
DLR
387
388 clear_rx_desc(pdev, q, d);
4d22de3e
DLR
389 if (++cidx == q->size)
390 cidx = 0;
391 }
e0994eb1 392
cf992af5 393 if (q->pg_chunk.page) {
7385ecf3 394 __free_pages(q->pg_chunk.page, q->order);
cf992af5
DLR
395 q->pg_chunk.page = NULL;
396 }
4d22de3e
DLR
397}
398
399/**
400 * add_one_rx_buf - add a packet buffer to a free-buffer list
cf992af5 401 * @va: buffer start VA
4d22de3e
DLR
402 * @len: the buffer length
403 * @d: the HW Rx descriptor to write
404 * @sd: the SW Rx descriptor to write
405 * @gen: the generation bit value
406 * @pdev: the PCI device associated with the adapter
407 *
408 * Add a buffer of the given length to the supplied HW and SW Rx
409 * descriptors.
410 */
b1fb1f28
DLR
411static inline int add_one_rx_buf(void *va, unsigned int len,
412 struct rx_desc *d, struct rx_sw_desc *sd,
413 unsigned int gen, struct pci_dev *pdev)
4d22de3e
DLR
414{
415 dma_addr_t mapping;
416
e0994eb1 417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
8d8bb39b 418 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
b1fb1f28
DLR
419 return -ENOMEM;
420
56e3b9df 421 dma_unmap_addr_set(sd, dma_addr, mapping);
4d22de3e
DLR
422
423 d->addr_lo = cpu_to_be32(mapping);
424 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
019be1cf 425 dma_wmb();
4d22de3e
DLR
426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
b1fb1f28 428 return 0;
4d22de3e
DLR
429}
430
5e68b772
DLR
431static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 unsigned int gen)
433{
434 d->addr_lo = cpu_to_be32(mapping);
435 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
019be1cf 436 dma_wmb();
5e68b772
DLR
437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 return 0;
440}
441
442static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 struct rx_sw_desc *sd, gfp_t gfp,
7385ecf3 444 unsigned int order)
cf992af5
DLR
445{
446 if (!q->pg_chunk.page) {
5e68b772
DLR
447 dma_addr_t mapping;
448
7385ecf3 449 q->pg_chunk.page = alloc_pages(gfp, order);
cf992af5
DLR
450 if (unlikely(!q->pg_chunk.page))
451 return -ENOMEM;
452 q->pg_chunk.va = page_address(q->pg_chunk.page);
5e68b772
DLR
453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 SGE_PG_RSVD;
cf992af5 455 q->pg_chunk.offset = 0;
5e68b772
DLR
456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 0, q->alloc_size, PCI_DMA_FROMDEVICE);
c69fe407
AV
458 if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
459 __free_pages(q->pg_chunk.page, order);
460 q->pg_chunk.page = NULL;
461 return -EIO;
462 }
10b6d956 463 q->pg_chunk.mapping = mapping;
cf992af5
DLR
464 }
465 sd->pg_chunk = q->pg_chunk;
466
5e68b772
DLR
467 prefetch(sd->pg_chunk.p_cnt);
468
cf992af5 469 q->pg_chunk.offset += q->buf_size;
7385ecf3 470 if (q->pg_chunk.offset == (PAGE_SIZE << order))
cf992af5
DLR
471 q->pg_chunk.page = NULL;
472 else {
473 q->pg_chunk.va += q->buf_size;
474 get_page(q->pg_chunk.page);
475 }
5e68b772
DLR
476
477 if (sd->pg_chunk.offset == 0)
478 *sd->pg_chunk.p_cnt = 1;
479 else
480 *sd->pg_chunk.p_cnt += 1;
481
cf992af5
DLR
482 return 0;
483}
484
26b3871d
DLR
485static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
486{
487 if (q->pend_cred >= q->credits / 4) {
488 q->pend_cred = 0;
2e02644a 489 wmb();
26b3871d
DLR
490 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
491 }
492}
493
4d22de3e
DLR
494/**
495 * refill_fl - refill an SGE free-buffer list
496 * @adapter: the adapter
497 * @q: the free-list to refill
498 * @n: the number of new buffers to allocate
499 * @gfp: the gfp flags for allocating new buffers
500 *
501 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
502 * allocated with the supplied gfp flags. The caller must assure that
503 * @n does not exceed the queue's capacity.
504 */
b1fb1f28 505static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
4d22de3e
DLR
506{
507 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
508 struct rx_desc *d = &q->desc[q->pidx];
b1fb1f28 509 unsigned int count = 0;
4d22de3e
DLR
510
511 while (n--) {
5e68b772 512 dma_addr_t mapping;
b1fb1f28
DLR
513 int err;
514
cf992af5 515 if (q->use_pages) {
5e68b772
DLR
516 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
517 q->order))) {
cf992af5 518nomem: q->alloc_failed++;
e0994eb1
DLR
519 break;
520 }
10b6d956 521 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
56e3b9df 522 dma_unmap_addr_set(sd, dma_addr, mapping);
5e68b772
DLR
523
524 add_one_rx_chunk(mapping, d, q->gen);
525 pci_dma_sync_single_for_device(adap->pdev, mapping,
526 q->buf_size - SGE_PG_RSVD,
527 PCI_DMA_FROMDEVICE);
e0994eb1 528 } else {
5e68b772 529 void *buf_start;
e0994eb1 530
5e68b772 531 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
cf992af5
DLR
532 if (!skb)
533 goto nomem;
e0994eb1 534
cf992af5
DLR
535 sd->skb = skb;
536 buf_start = skb->data;
5e68b772
DLR
537 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
538 q->gen, adap->pdev);
539 if (unlikely(err)) {
540 clear_rx_desc(adap->pdev, q, sd);
541 break;
542 }
b1fb1f28
DLR
543 }
544
4d22de3e
DLR
545 d++;
546 sd++;
547 if (++q->pidx == q->size) {
548 q->pidx = 0;
549 q->gen ^= 1;
550 sd = q->sdesc;
551 d = q->desc;
552 }
b1fb1f28 553 count++;
4d22de3e 554 }
26b3871d
DLR
555
556 q->credits += count;
557 q->pend_cred += count;
558 ring_fl_db(adap, q);
b1fb1f28
DLR
559
560 return count;
4d22de3e
DLR
561}
562
563static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
564{
26b3871d 565 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
7385ecf3 566 GFP_ATOMIC | __GFP_COMP);
4d22de3e
DLR
567}
568
569/**
570 * recycle_rx_buf - recycle a receive buffer
571 * @adapter: the adapter
572 * @q: the SGE free list
573 * @idx: index of buffer to recycle
574 *
575 * Recycles the specified buffer on the given free list by adding it at
576 * the next available slot on the list.
577 */
578static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
579 unsigned int idx)
580{
581 struct rx_desc *from = &q->desc[idx];
582 struct rx_desc *to = &q->desc[q->pidx];
583
cf992af5 584 q->sdesc[q->pidx] = q->sdesc[idx];
4d22de3e
DLR
585 to->addr_lo = from->addr_lo; /* already big endian */
586 to->addr_hi = from->addr_hi; /* likewise */
019be1cf 587 dma_wmb();
4d22de3e
DLR
588 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
589 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
4d22de3e
DLR
590
591 if (++q->pidx == q->size) {
592 q->pidx = 0;
593 q->gen ^= 1;
594 }
26b3871d
DLR
595
596 q->credits++;
597 q->pend_cred++;
598 ring_fl_db(adap, q);
4d22de3e
DLR
599}
600
601/**
602 * alloc_ring - allocate resources for an SGE descriptor ring
603 * @pdev: the PCI device
604 * @nelem: the number of descriptors
605 * @elem_size: the size of each descriptor
606 * @sw_size: the size of the SW state associated with each ring element
607 * @phys: the physical address of the allocated ring
608 * @metadata: address of the array holding the SW state for the ring
609 *
610 * Allocates resources for an SGE descriptor ring, such as Tx queues,
611 * free buffer lists, or response queues. Each SGE ring requires
612 * space for its HW descriptors plus, optionally, space for the SW state
613 * associated with each HW entry (the metadata). The function returns
614 * three values: the virtual address for the HW ring (the return value
615 * of the function), the physical address of the HW ring, and the address
616 * of the SW ring.
617 */
618static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
e0994eb1 619 size_t sw_size, dma_addr_t * phys, void *metadata)
4d22de3e
DLR
620{
621 size_t len = nelem * elem_size;
622 void *s = NULL;
750afb08 623 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
4d22de3e
DLR
624
625 if (!p)
626 return NULL;
52565544 627 if (sw_size && metadata) {
4d22de3e
DLR
628 s = kcalloc(nelem, sw_size, GFP_KERNEL);
629
630 if (!s) {
631 dma_free_coherent(&pdev->dev, len, p, *phys);
632 return NULL;
633 }
4d22de3e 634 *(void **)metadata = s;
52565544 635 }
4d22de3e
DLR
636 return p;
637}
638
204e2f98
DLR
639/**
640 * t3_reset_qset - reset a sge qset
641 * @q: the queue set
642 *
643 * Reset the qset structure.
644 * the NAPI structure is preserved in the event of
645 * the qset's reincarnation, for example during EEH recovery.
646 */
647static void t3_reset_qset(struct sge_qset *q)
648{
649 if (q->adap &&
650 !(q->adap->flags & NAPI_INIT)) {
651 memset(q, 0, sizeof(*q));
652 return;
653 }
654
655 q->adap = NULL;
656 memset(&q->rspq, 0, sizeof(q->rspq));
657 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
658 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
659 q->txq_stopped = 0;
20d3fc11 660 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
42c8ea17 661 q->rx_reclaim_timer.function = NULL;
76620aaf
HX
662 q->nomem = 0;
663 napi_free_frags(&q->napi);
204e2f98
DLR
664}
665
666
4d22de3e
DLR
667/**
668 * free_qset - free the resources of an SGE queue set
669 * @adapter: the adapter owning the queue set
670 * @q: the queue set
671 *
672 * Release the HW and SW resources associated with an SGE queue set, such
673 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
674 * queue set must be quiesced prior to calling this.
675 */
9265fabf 676static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
4d22de3e
DLR
677{
678 int i;
679 struct pci_dev *pdev = adapter->pdev;
680
4d22de3e
DLR
681 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
682 if (q->fl[i].desc) {
b1186dee 683 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 684 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
b1186dee 685 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
686 free_rx_bufs(pdev, &q->fl[i]);
687 kfree(q->fl[i].sdesc);
688 dma_free_coherent(&pdev->dev,
689 q->fl[i].size *
690 sizeof(struct rx_desc), q->fl[i].desc,
691 q->fl[i].phys_addr);
692 }
693
694 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
695 if (q->txq[i].desc) {
b1186dee 696 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 697 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
b1186dee 698 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
699 if (q->txq[i].sdesc) {
700 free_tx_desc(adapter, &q->txq[i],
701 q->txq[i].in_use);
702 kfree(q->txq[i].sdesc);
703 }
704 dma_free_coherent(&pdev->dev,
705 q->txq[i].size *
706 sizeof(struct tx_desc),
707 q->txq[i].desc, q->txq[i].phys_addr);
708 __skb_queue_purge(&q->txq[i].sendq);
709 }
710
711 if (q->rspq.desc) {
b1186dee 712 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 713 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
b1186dee 714 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
715 dma_free_coherent(&pdev->dev,
716 q->rspq.size * sizeof(struct rsp_desc),
717 q->rspq.desc, q->rspq.phys_addr);
718 }
719
204e2f98 720 t3_reset_qset(q);
4d22de3e
DLR
721}
722
723/**
724 * init_qset_cntxt - initialize an SGE queue set context info
725 * @qs: the queue set
726 * @id: the queue set id
727 *
728 * Initializes the TIDs and context ids for the queues of a queue set.
729 */
730static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
731{
732 qs->rspq.cntxt_id = id;
733 qs->fl[0].cntxt_id = 2 * id;
734 qs->fl[1].cntxt_id = 2 * id + 1;
735 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
736 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
737 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
738 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
739 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
740}
741
742/**
743 * sgl_len - calculates the size of an SGL of the given capacity
744 * @n: the number of SGL entries
745 *
746 * Calculates the number of flits needed for a scatter/gather list that
747 * can hold the given number of entries.
748 */
749static inline unsigned int sgl_len(unsigned int n)
750{
751 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
752 return (3 * n) / 2 + (n & 1);
753}
754
755/**
756 * flits_to_desc - returns the num of Tx descriptors for the given flits
757 * @n: the number of flits
758 *
759 * Calculates the number of Tx descriptors needed for the supplied number
760 * of flits.
761 */
762static inline unsigned int flits_to_desc(unsigned int n)
763{
764 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
765 return flit_desc_map[n];
766}
767
cf992af5
DLR
768/**
769 * get_packet - return the next ingress packet buffer from a free list
770 * @adap: the adapter that received the packet
771 * @fl: the SGE free list holding the packet
772 * @len: the packet length including any SGE padding
773 * @drop_thres: # of remaining buffers before we start dropping packets
774 *
775 * Get the next packet from a free list and complete setup of the
776 * sk_buff. If the packet is small we make a copy and recycle the
777 * original buffer, otherwise we use the original buffer itself. If a
778 * positive drop threshold is supplied packets are dropped and their
779 * buffers recycled if (a) the number of remaining buffers is under the
780 * threshold and the packet is too big to copy, or (b) the packet should
781 * be copied but there is no memory for the copy.
782 */
783static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
784 unsigned int len, unsigned int drop_thres)
785{
786 struct sk_buff *skb = NULL;
787 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
788
789 prefetch(sd->skb->data);
790 fl->credits--;
791
792 if (len <= SGE_RX_COPY_THRES) {
793 skb = alloc_skb(len, GFP_ATOMIC);
794 if (likely(skb != NULL)) {
795 __skb_put(skb, len);
796 pci_dma_sync_single_for_cpu(adap->pdev,
56e3b9df 797 dma_unmap_addr(sd, dma_addr), len,
cf992af5
DLR
798 PCI_DMA_FROMDEVICE);
799 memcpy(skb->data, sd->skb->data, len);
800 pci_dma_sync_single_for_device(adap->pdev,
56e3b9df 801 dma_unmap_addr(sd, dma_addr), len,
cf992af5
DLR
802 PCI_DMA_FROMDEVICE);
803 } else if (!drop_thres)
804 goto use_orig_buf;
805recycle:
806 recycle_rx_buf(adap, fl, fl->cidx);
807 return skb;
808 }
809
26b3871d
DLR
810 if (unlikely(fl->credits < drop_thres) &&
811 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
812 GFP_ATOMIC | __GFP_COMP) == 0)
cf992af5
DLR
813 goto recycle;
814
815use_orig_buf:
56e3b9df 816 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
cf992af5
DLR
817 fl->buf_size, PCI_DMA_FROMDEVICE);
818 skb = sd->skb;
819 skb_put(skb, len);
820 __refill_fl(adap, fl);
821 return skb;
822}
823
824/**
825 * get_packet_pg - return the next ingress packet buffer from a free list
826 * @adap: the adapter that received the packet
827 * @fl: the SGE free list holding the packet
828 * @len: the packet length including any SGE padding
829 * @drop_thres: # of remaining buffers before we start dropping packets
830 *
831 * Get the next packet from a free list populated with page chunks.
832 * If the packet is small we make a copy and recycle the original buffer,
833 * otherwise we attach the original buffer as a page fragment to a fresh
834 * sk_buff. If a positive drop threshold is supplied packets are dropped
835 * and their buffers recycled if (a) the number of remaining buffers is
836 * under the threshold and the packet is too big to copy, or (b) there's
837 * no system memory.
838 *
839 * Note: this function is similar to @get_packet but deals with Rx buffers
840 * that are page chunks rather than sk_buffs.
841 */
842static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
7385ecf3
DLR
843 struct sge_rspq *q, unsigned int len,
844 unsigned int drop_thres)
cf992af5 845{
7385ecf3 846 struct sk_buff *newskb, *skb;
cf992af5
DLR
847 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
848
56e3b9df 849 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
7385ecf3 850
5e68b772 851 newskb = skb = q->pg_skb;
7385ecf3
DLR
852 if (!skb && (len <= SGE_RX_COPY_THRES)) {
853 newskb = alloc_skb(len, GFP_ATOMIC);
854 if (likely(newskb != NULL)) {
855 __skb_put(newskb, len);
5e68b772 856 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
cf992af5 857 PCI_DMA_FROMDEVICE);
7385ecf3 858 memcpy(newskb->data, sd->pg_chunk.va, len);
5e68b772
DLR
859 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
860 len,
861 PCI_DMA_FROMDEVICE);
cf992af5
DLR
862 } else if (!drop_thres)
863 return NULL;
864recycle:
865 fl->credits--;
866 recycle_rx_buf(adap, fl, fl->cidx);
7385ecf3
DLR
867 q->rx_recycle_buf++;
868 return newskb;
cf992af5
DLR
869 }
870
7385ecf3 871 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
cf992af5
DLR
872 goto recycle;
873
5e68b772
DLR
874 prefetch(sd->pg_chunk.p_cnt);
875
7385ecf3 876 if (!skb)
b47385bd 877 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
5e68b772 878
7385ecf3 879 if (unlikely(!newskb)) {
cf992af5
DLR
880 if (!drop_thres)
881 return NULL;
882 goto recycle;
883 }
884
5e68b772
DLR
885 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
886 PCI_DMA_FROMDEVICE);
887 (*sd->pg_chunk.p_cnt)--;
70e3bb50 888 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
5e68b772 889 pci_unmap_page(adap->pdev,
10b6d956 890 sd->pg_chunk.mapping,
5e68b772
DLR
891 fl->alloc_size,
892 PCI_DMA_FROMDEVICE);
7385ecf3
DLR
893 if (!skb) {
894 __skb_put(newskb, SGE_RX_PULL_LEN);
895 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
896 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
897 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
898 len - SGE_RX_PULL_LEN);
899 newskb->len = len;
900 newskb->data_len = len - SGE_RX_PULL_LEN;
8f435804 901 newskb->truesize += newskb->data_len;
7385ecf3
DLR
902 } else {
903 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
904 sd->pg_chunk.page,
905 sd->pg_chunk.offset, len);
906 newskb->len += len;
907 newskb->data_len += len;
8f435804 908 newskb->truesize += len;
7385ecf3 909 }
cf992af5
DLR
910
911 fl->credits--;
912 /*
913 * We do not refill FLs here, we let the caller do it to overlap a
914 * prefetch.
915 */
7385ecf3 916 return newskb;
cf992af5
DLR
917}
918
4d22de3e
DLR
919/**
920 * get_imm_packet - return the next ingress packet buffer from a response
921 * @resp: the response descriptor containing the packet data
922 *
923 * Return a packet containing the immediate data of the given response.
924 */
925static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
926{
927 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
928
929 if (skb) {
930 __skb_put(skb, IMMED_PKT_SIZE);
27d7ff46 931 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
4d22de3e
DLR
932 }
933 return skb;
934}
935
936/**
937 * calc_tx_descs - calculate the number of Tx descriptors for a packet
938 * @skb: the packet
939 *
940 * Returns the number of Tx descriptors needed for the given Ethernet
941 * packet. Ethernet packets require addition of WR and CPL headers.
942 */
943static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
944{
945 unsigned int flits;
946
947 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
948 return 1;
949
950 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
951 if (skb_shinfo(skb)->gso_size)
952 flits++;
953 return flits_to_desc(flits);
954}
955
c69fe407
AV
956/* map_skb - map a packet main body and its page fragments
957 * @pdev: the PCI device
958 * @skb: the packet
959 * @addr: placeholder to save the mapped addresses
960 *
961 * map the main body of an sk_buff and its page fragments, if any.
962 */
963static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
964 dma_addr_t *addr)
965{
966 const skb_frag_t *fp, *end;
967 const struct skb_shared_info *si;
968
969 if (skb_headlen(skb)) {
970 *addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
971 PCI_DMA_TODEVICE);
972 if (pci_dma_mapping_error(pdev, *addr))
973 goto out_err;
974 addr++;
975 }
976
977 si = skb_shinfo(skb);
978 end = &si->frags[si->nr_frags];
979
980 for (fp = si->frags; fp < end; fp++) {
981 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
982 DMA_TO_DEVICE);
983 if (pci_dma_mapping_error(pdev, *addr))
984 goto unwind;
985 addr++;
986 }
987 return 0;
988
989unwind:
990 while (fp-- > si->frags)
991 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
992 DMA_TO_DEVICE);
993
994 pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
995out_err:
996 return -ENOMEM;
997}
998
4d22de3e 999/**
c69fe407 1000 * write_sgl - populate a scatter/gather list for a packet
4d22de3e
DLR
1001 * @skb: the packet
1002 * @sgp: the SGL to populate
1003 * @start: start address of skb main body data to include in the SGL
1004 * @len: length of skb main body data to include in the SGL
c69fe407 1005 * @addr: the list of the mapped addresses
4d22de3e 1006 *
c69fe407 1007 * Copies the scatter/gather list for the buffers that make up a packet
4d22de3e
DLR
1008 * and returns the SGL size in 8-byte words. The caller must size the SGL
1009 * appropriately.
1010 */
c69fe407
AV
1011static inline unsigned int write_sgl(const struct sk_buff *skb,
1012 struct sg_ent *sgp, unsigned char *start,
1013 unsigned int len, const dma_addr_t *addr)
4d22de3e 1014{
c69fe407 1015 unsigned int i, j = 0, k = 0, nfrags;
4d22de3e
DLR
1016
1017 if (len) {
4d22de3e 1018 sgp->len[0] = cpu_to_be32(len);
c69fe407 1019 sgp->addr[j++] = cpu_to_be64(addr[k++]);
4d22de3e
DLR
1020 }
1021
1022 nfrags = skb_shinfo(skb)->nr_frags;
1023 for (i = 0; i < nfrags; i++) {
9e903e08 1024 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4d22de3e 1025
9e903e08 1026 sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
c69fe407 1027 sgp->addr[j] = cpu_to_be64(addr[k++]);
4d22de3e
DLR
1028 j ^= 1;
1029 if (j == 0)
1030 ++sgp;
1031 }
1032 if (j)
1033 sgp->len[j] = 0;
1034 return ((nfrags + (len != 0)) * 3) / 2 + j;
1035}
1036
1037/**
1038 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1039 * @adap: the adapter
1040 * @q: the Tx queue
1041 *
1042 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1043 * where the HW is going to sleep just after we checked, however,
1044 * then the interrupt handler will detect the outstanding TX packet
1045 * and ring the doorbell for us.
1046 *
1047 * When GTS is disabled we unconditionally ring the doorbell.
1048 */
1049static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1050{
1051#if USE_GTS
1052 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1053 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1054 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1055 t3_write_reg(adap, A_SG_KDOORBELL,
1056 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1057 }
1058#else
1059 wmb(); /* write descriptors before telling HW */
1060 t3_write_reg(adap, A_SG_KDOORBELL,
1061 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1062#endif
1063}
1064
1065static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1066{
1067#if SGE_NUM_GENBITS == 2
1068 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1069#endif
1070}
1071
1072/**
1073 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1074 * @ndesc: number of Tx descriptors spanned by the SGL
1075 * @skb: the packet corresponding to the WR
1076 * @d: first Tx descriptor to be written
1077 * @pidx: index of above descriptors
1078 * @q: the SGE Tx queue
1079 * @sgl: the SGL
1080 * @flits: number of flits to the start of the SGL in the first descriptor
1081 * @sgl_flits: the SGL size in flits
1082 * @gen: the Tx descriptor generation
1083 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1084 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1085 *
1086 * Write a work request header and an associated SGL. If the SGL is
1087 * small enough to fit into one Tx descriptor it has already been written
1088 * and we just need to write the WR header. Otherwise we distribute the
1089 * SGL across the number of descriptors it spans.
1090 */
1091static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1092 struct tx_desc *d, unsigned int pidx,
1093 const struct sge_txq *q,
1094 const struct sg_ent *sgl,
1095 unsigned int flits, unsigned int sgl_flits,
fb8e4444
AV
1096 unsigned int gen, __be32 wr_hi,
1097 __be32 wr_lo)
4d22de3e
DLR
1098{
1099 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1100 struct tx_sw_desc *sd = &q->sdesc[pidx];
1101
1102 sd->skb = skb;
1103 if (need_skb_unmap()) {
23561c94
DLR
1104 sd->fragidx = 0;
1105 sd->addr_idx = 0;
1106 sd->sflit = flits;
4d22de3e
DLR
1107 }
1108
1109 if (likely(ndesc == 1)) {
23561c94 1110 sd->eop = 1;
4d22de3e
DLR
1111 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1112 V_WR_SGLSFLT(flits)) | wr_hi;
019be1cf 1113 dma_wmb();
4d22de3e
DLR
1114 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1115 V_WR_GEN(gen)) | wr_lo;
1116 wr_gen2(d, gen);
1117 } else {
1118 unsigned int ogen = gen;
1119 const u64 *fp = (const u64 *)sgl;
1120 struct work_request_hdr *wp = wrp;
1121
1122 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1123 V_WR_SGLSFLT(flits)) | wr_hi;
1124
1125 while (sgl_flits) {
1126 unsigned int avail = WR_FLITS - flits;
1127
1128 if (avail > sgl_flits)
1129 avail = sgl_flits;
1130 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1131 sgl_flits -= avail;
1132 ndesc--;
1133 if (!sgl_flits)
1134 break;
1135
1136 fp += avail;
1137 d++;
23561c94 1138 sd->eop = 0;
4d22de3e
DLR
1139 sd++;
1140 if (++pidx == q->size) {
1141 pidx = 0;
1142 gen ^= 1;
1143 d = q->desc;
1144 sd = q->sdesc;
1145 }
1146
1147 sd->skb = skb;
1148 wrp = (struct work_request_hdr *)d;
1149 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1150 V_WR_SGLSFLT(1)) | wr_hi;
1151 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1152 sgl_flits + 1)) |
1153 V_WR_GEN(gen)) | wr_lo;
1154 wr_gen2(d, gen);
1155 flits = 1;
1156 }
23561c94 1157 sd->eop = 1;
4d22de3e 1158 wrp->wr_hi |= htonl(F_WR_EOP);
019be1cf 1159 dma_wmb();
4d22de3e
DLR
1160 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1161 wr_gen2((struct tx_desc *)wp, ogen);
1162 WARN_ON(ndesc != 0);
1163 }
1164}
1165
1166/**
1167 * write_tx_pkt_wr - write a TX_PKT work request
1168 * @adap: the adapter
1169 * @skb: the packet to send
1170 * @pi: the egress interface
1171 * @pidx: index of the first Tx descriptor to write
1172 * @gen: the generation value to use
1173 * @q: the Tx queue
1174 * @ndesc: number of descriptors the packet will occupy
1175 * @compl: the value of the COMPL bit to use
1176 *
1177 * Generate a TX_PKT work request to send the supplied packet.
1178 */
1179static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1180 const struct port_info *pi,
1181 unsigned int pidx, unsigned int gen,
1182 struct sge_txq *q, unsigned int ndesc,
c69fe407 1183 unsigned int compl, const dma_addr_t *addr)
4d22de3e
DLR
1184{
1185 unsigned int flits, sgl_flits, cntrl, tso_info;
1186 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1187 struct tx_desc *d = &q->desc[pidx];
1188 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1189
3fa58c88 1190 cpl->len = htonl(skb->len);
4d22de3e
DLR
1191 cntrl = V_TXPKT_INTF(pi->port_id);
1192
df8a39de
JP
1193 if (skb_vlan_tag_present(skb))
1194 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
4d22de3e
DLR
1195
1196 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1197 if (tso_info) {
1198 int eth_type;
1199 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1200
1201 d->flit[2] = 0;
1202 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1203 hdr->cntrl = htonl(cntrl);
bbe735e4 1204 eth_type = skb_network_offset(skb) == ETH_HLEN ?
4d22de3e
DLR
1205 CPL_ETH_II : CPL_ETH_II_VLAN;
1206 tso_info |= V_LSO_ETH_TYPE(eth_type) |
eddc9ec5 1207 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
aa8223c7 1208 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
4d22de3e
DLR
1209 hdr->lso_info = htonl(tso_info);
1210 flits = 3;
1211 } else {
1212 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1213 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1214 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1215 cpl->cntrl = htonl(cntrl);
1216
1217 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1218 q->sdesc[pidx].skb = NULL;
1219 if (!skb->data_len)
d626f62b
ACM
1220 skb_copy_from_linear_data(skb, &d->flit[2],
1221 skb->len);
4d22de3e
DLR
1222 else
1223 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1224
1225 flits = (skb->len + 7) / 8 + 2;
1226 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1227 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1228 | F_WR_SOP | F_WR_EOP | compl);
019be1cf 1229 dma_wmb();
4d22de3e
DLR
1230 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1231 V_WR_TID(q->token));
1232 wr_gen2(d, gen);
f9ec8131 1233 dev_consume_skb_any(skb);
4d22de3e
DLR
1234 return;
1235 }
1236
1237 flits = 2;
1238 }
1239
1240 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
c69fe407 1241 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
4d22de3e
DLR
1242
1243 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1244 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1245 htonl(V_WR_TID(q->token)));
1246}
1247
82ad3329
DLR
1248static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1249 struct sge_qset *qs, struct sge_txq *q)
a8cc21f6 1250{
82ad3329 1251 netif_tx_stop_queue(txq);
a8cc21f6
KK
1252 set_bit(TXQ_ETH, &qs->txq_stopped);
1253 q->stops++;
1254}
1255
4d22de3e
DLR
1256/**
1257 * eth_xmit - add a packet to the Ethernet Tx queue
1258 * @skb: the packet
1259 * @dev: the egress net device
1260 *
1261 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1262 */
61357325 1263netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
4d22de3e 1264{
82ad3329 1265 int qidx;
4d22de3e
DLR
1266 unsigned int ndesc, pidx, credits, gen, compl;
1267 const struct port_info *pi = netdev_priv(dev);
5fbf816f 1268 struct adapter *adap = pi->adapter;
82ad3329
DLR
1269 struct netdev_queue *txq;
1270 struct sge_qset *qs;
1271 struct sge_txq *q;
c69fe407 1272 dma_addr_t addr[MAX_SKB_FRAGS + 1];
4d22de3e
DLR
1273
1274 /*
1275 * The chip min packet length is 9 octets but play safe and reject
1276 * anything shorter than an Ethernet header.
1277 */
1278 if (unlikely(skb->len < ETH_HLEN)) {
f9ec8131 1279 dev_kfree_skb_any(skb);
4d22de3e
DLR
1280 return NETDEV_TX_OK;
1281 }
1282
82ad3329
DLR
1283 qidx = skb_get_queue_mapping(skb);
1284 qs = &pi->qs[qidx];
1285 q = &qs->txq[TXQ_ETH];
1286 txq = netdev_get_tx_queue(dev, qidx);
1287
42c8ea17 1288 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1289
1290 credits = q->size - q->in_use;
1291 ndesc = calc_tx_descs(skb);
1292
1293 if (unlikely(credits < ndesc)) {
82ad3329 1294 t3_stop_tx_queue(txq, qs, q);
a8cc21f6
KK
1295 dev_err(&adap->pdev->dev,
1296 "%s: Tx ring %u full while queue awake!\n",
1297 dev->name, q->cntxt_id & 7);
4d22de3e
DLR
1298 return NETDEV_TX_BUSY;
1299 }
1300
c69fe407
AV
1301 /* Check if ethernet packet can't be sent as immediate data */
1302 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1303 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1304 dev_kfree_skb(skb);
1305 return NETDEV_TX_OK;
1306 }
1307 }
1308
4d22de3e 1309 q->in_use += ndesc;
cd7e9034 1310 if (unlikely(credits - ndesc < q->stop_thres)) {
82ad3329 1311 t3_stop_tx_queue(txq, qs, q);
cd7e9034
DLR
1312
1313 if (should_restart_tx(q) &&
1314 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1315 q->restarts++;
0d9a40de 1316 netif_tx_start_queue(txq);
cd7e9034
DLR
1317 }
1318 }
4d22de3e
DLR
1319
1320 gen = q->gen;
1321 q->unacked += ndesc;
1322 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1323 q->unacked &= 7;
1324 pidx = q->pidx;
1325 q->pidx += ndesc;
1326 if (q->pidx >= q->size) {
1327 q->pidx -= q->size;
1328 q->gen ^= 1;
1329 }
1330
1331 /* update port statistics */
bc6c47b5 1332 if (skb->ip_summed == CHECKSUM_PARTIAL)
4d22de3e
DLR
1333 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1334 if (skb_shinfo(skb)->gso_size)
1335 qs->port_stats[SGE_PSTAT_TSO]++;
df8a39de 1336 if (skb_vlan_tag_present(skb))
4d22de3e
DLR
1337 qs->port_stats[SGE_PSTAT_VLANINS]++;
1338
4d22de3e
DLR
1339 /*
1340 * We do not use Tx completion interrupts to free DMAd Tx packets.
af901ca1 1341 * This is good for performance but means that we rely on new Tx
4d22de3e
DLR
1342 * packets arriving to run the destructors of completed packets,
1343 * which open up space in their sockets' send queues. Sometimes
1344 * we do not get such new packets causing Tx to stall. A single
1345 * UDP transmitter is a good example of this situation. We have
1346 * a clean up timer that periodically reclaims completed packets
1347 * but it doesn't run often enough (nor do we want it to) to prevent
1348 * lengthy stalls. A solution to this problem is to run the
1349 * destructor early, after the packet is queued but before it's DMAd.
1350 * A cons is that we lie to socket memory accounting, but the amount
1351 * of extra memory is reasonable (limited by the number of Tx
1352 * descriptors), the packets do actually get freed quickly by new
1353 * packets almost always, and for protocols like TCP that wait for
1354 * acks to really free up the data the extra memory is even less.
1355 * On the positive side we run the destructors on the sending CPU
1356 * rather than on a potentially different completing CPU, usually a
1357 * good thing. We also run them without holding our Tx queue lock,
1358 * unlike what reclaim_completed_tx() would otherwise do.
1359 *
1360 * Run the destructor before telling the DMA engine about the packet
1361 * to make sure it doesn't complete and get freed prematurely.
1362 */
1363 if (likely(!skb_shared(skb)))
1364 skb_orphan(skb);
1365
c69fe407 1366 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
4d22de3e
DLR
1367 check_ring_tx_db(adap, q);
1368 return NETDEV_TX_OK;
1369}
1370
1371/**
1372 * write_imm - write a packet into a Tx descriptor as immediate data
1373 * @d: the Tx descriptor to write
1374 * @skb: the packet
1375 * @len: the length of packet data to write as immediate data
1376 * @gen: the generation bit value to write
1377 *
1378 * Writes a packet as immediate data into a Tx descriptor. The packet
1379 * contains a work request at its beginning. We must write the packet
27186dc3
DLR
1380 * carefully so the SGE doesn't read it accidentally before it's written
1381 * in its entirety.
4d22de3e
DLR
1382 */
1383static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1384 unsigned int len, unsigned int gen)
1385{
1386 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1387 struct work_request_hdr *to = (struct work_request_hdr *)d;
1388
27186dc3
DLR
1389 if (likely(!skb->data_len))
1390 memcpy(&to[1], &from[1], len - sizeof(*from));
1391 else
1392 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1393
4d22de3e
DLR
1394 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1395 V_WR_BCNTLFLT(len & 7));
019be1cf 1396 dma_wmb();
4d22de3e
DLR
1397 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1398 V_WR_LEN((len + 7) / 8));
1399 wr_gen2(d, gen);
1400 kfree_skb(skb);
1401}
1402
1403/**
1404 * check_desc_avail - check descriptor availability on a send queue
1405 * @adap: the adapter
1406 * @q: the send queue
1407 * @skb: the packet needing the descriptors
1408 * @ndesc: the number of Tx descriptors needed
1409 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1410 *
1411 * Checks if the requested number of Tx descriptors is available on an
1412 * SGE send queue. If the queue is already suspended or not enough
1413 * descriptors are available the packet is queued for later transmission.
1414 * Must be called with the Tx queue locked.
1415 *
1416 * Returns 0 if enough descriptors are available, 1 if there aren't
1417 * enough descriptors and the packet has been queued, and 2 if the caller
1418 * needs to retry because there weren't enough descriptors at the
1419 * beginning of the call but some freed up in the mean time.
1420 */
1421static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1422 struct sk_buff *skb, unsigned int ndesc,
1423 unsigned int qid)
1424{
1425 if (unlikely(!skb_queue_empty(&q->sendq))) {
1426 addq_exit:__skb_queue_tail(&q->sendq, skb);
1427 return 1;
1428 }
1429 if (unlikely(q->size - q->in_use < ndesc)) {
1430 struct sge_qset *qs = txq_to_qset(q, qid);
1431
1432 set_bit(qid, &qs->txq_stopped);
4e857c58 1433 smp_mb__after_atomic();
4d22de3e
DLR
1434
1435 if (should_restart_tx(q) &&
1436 test_and_clear_bit(qid, &qs->txq_stopped))
1437 return 2;
1438
1439 q->stops++;
1440 goto addq_exit;
1441 }
1442 return 0;
1443}
1444
1445/**
1446 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1447 * @q: the SGE control Tx queue
1448 *
1449 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1450 * that send only immediate data (presently just the control queues) and
1451 * thus do not have any sk_buffs to release.
1452 */
1453static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1454{
1455 unsigned int reclaim = q->processed - q->cleaned;
1456
1457 q->in_use -= reclaim;
1458 q->cleaned += reclaim;
1459}
1460
1461static inline int immediate(const struct sk_buff *skb)
1462{
27186dc3 1463 return skb->len <= WR_LEN;
4d22de3e
DLR
1464}
1465
1466/**
1467 * ctrl_xmit - send a packet through an SGE control Tx queue
1468 * @adap: the adapter
1469 * @q: the control queue
1470 * @skb: the packet
1471 *
1472 * Send a packet through an SGE control Tx queue. Packets sent through
1473 * a control queue must fit entirely as immediate data in a single Tx
1474 * descriptor and have no page fragments.
1475 */
1476static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1477 struct sk_buff *skb)
1478{
1479 int ret;
1480 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1481
1482 if (unlikely(!immediate(skb))) {
1483 WARN_ON(1);
1484 dev_kfree_skb(skb);
1485 return NET_XMIT_SUCCESS;
1486 }
1487
1488 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1489 wrp->wr_lo = htonl(V_WR_TID(q->token));
1490
1491 spin_lock(&q->lock);
1492 again:reclaim_completed_tx_imm(q);
1493
1494 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1495 if (unlikely(ret)) {
1496 if (ret == 1) {
1497 spin_unlock(&q->lock);
1498 return NET_XMIT_CN;
1499 }
1500 goto again;
1501 }
1502
1503 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1504
1505 q->in_use++;
1506 if (++q->pidx >= q->size) {
1507 q->pidx = 0;
1508 q->gen ^= 1;
1509 }
1510 spin_unlock(&q->lock);
1511 wmb();
1512 t3_write_reg(adap, A_SG_KDOORBELL,
1513 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1514 return NET_XMIT_SUCCESS;
1515}
1516
1517/**
1518 * restart_ctrlq - restart a suspended control queue
1519 * @qs: the queue set cotaining the control queue
1520 *
1521 * Resumes transmission on a suspended Tx control queue.
1522 */
1523static void restart_ctrlq(unsigned long data)
1524{
1525 struct sk_buff *skb;
1526 struct sge_qset *qs = (struct sge_qset *)data;
1527 struct sge_txq *q = &qs->txq[TXQ_CTRL];
4d22de3e
DLR
1528
1529 spin_lock(&q->lock);
1530 again:reclaim_completed_tx_imm(q);
1531
bea3348e
SH
1532 while (q->in_use < q->size &&
1533 (skb = __skb_dequeue(&q->sendq)) != NULL) {
4d22de3e
DLR
1534
1535 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1536
1537 if (++q->pidx >= q->size) {
1538 q->pidx = 0;
1539 q->gen ^= 1;
1540 }
1541 q->in_use++;
1542 }
1543
1544 if (!skb_queue_empty(&q->sendq)) {
1545 set_bit(TXQ_CTRL, &qs->txq_stopped);
4e857c58 1546 smp_mb__after_atomic();
4d22de3e
DLR
1547
1548 if (should_restart_tx(q) &&
1549 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1550 goto again;
1551 q->stops++;
1552 }
1553
1554 spin_unlock(&q->lock);
afefce66 1555 wmb();
bea3348e 1556 t3_write_reg(qs->adap, A_SG_KDOORBELL,
4d22de3e
DLR
1557 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1558}
1559
14ab9892
DLR
1560/*
1561 * Send a management message through control queue 0
1562 */
1563int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1564{
204e2f98 1565 int ret;
bc4b6b52
DLR
1566 local_bh_disable();
1567 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1568 local_bh_enable();
1569
1570 return ret;
14ab9892
DLR
1571}
1572
99d7cf30
DLR
1573/**
1574 * deferred_unmap_destructor - unmap a packet when it is freed
1575 * @skb: the packet
1576 *
1577 * This is the packet destructor used for Tx packets that need to remain
1578 * mapped until they are freed rather than until their Tx descriptors are
1579 * freed.
1580 */
1581static void deferred_unmap_destructor(struct sk_buff *skb)
1582{
1583 int i;
1584 const dma_addr_t *p;
1585 const struct skb_shared_info *si;
1586 const struct deferred_unmap_info *dui;
99d7cf30
DLR
1587
1588 dui = (struct deferred_unmap_info *)skb->head;
1589 p = dui->addr;
1590
15dd16c2 1591 if (skb_tail_pointer(skb) - skb_transport_header(skb))
be8b678c
SH
1592 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1593 skb_transport_header(skb), PCI_DMA_TODEVICE);
99d7cf30
DLR
1594
1595 si = skb_shinfo(skb);
1596 for (i = 0; i < si->nr_frags; i++)
9e903e08 1597 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
99d7cf30
DLR
1598 PCI_DMA_TODEVICE);
1599}
1600
1601static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1602 const struct sg_ent *sgl, int sgl_flits)
1603{
1604 dma_addr_t *p;
1605 struct deferred_unmap_info *dui;
1606
1607 dui = (struct deferred_unmap_info *)skb->head;
1608 dui->pdev = pdev;
1609 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1610 *p++ = be64_to_cpu(sgl->addr[0]);
1611 *p++ = be64_to_cpu(sgl->addr[1]);
1612 }
1613 if (sgl_flits)
1614 *p = be64_to_cpu(sgl->addr[0]);
1615}
1616
4d22de3e
DLR
1617/**
1618 * write_ofld_wr - write an offload work request
1619 * @adap: the adapter
1620 * @skb: the packet to send
1621 * @q: the Tx queue
1622 * @pidx: index of the first Tx descriptor to write
1623 * @gen: the generation value to use
1624 * @ndesc: number of descriptors the packet will occupy
1625 *
1626 * Write an offload work request to send the supplied packet. The packet
1627 * data already carry the work request with most fields populated.
1628 */
1629static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1630 struct sge_txq *q, unsigned int pidx,
c69fe407
AV
1631 unsigned int gen, unsigned int ndesc,
1632 const dma_addr_t *addr)
4d22de3e
DLR
1633{
1634 unsigned int sgl_flits, flits;
1635 struct work_request_hdr *from;
1636 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1637 struct tx_desc *d = &q->desc[pidx];
1638
1639 if (immediate(skb)) {
1640 q->sdesc[pidx].skb = NULL;
1641 write_imm(d, skb, skb->len, gen);
1642 return;
1643 }
1644
1645 /* Only TX_DATA builds SGLs */
1646
1647 from = (struct work_request_hdr *)skb->data;
ea2ae17d
ACM
1648 memcpy(&d->flit[1], &from[1],
1649 skb_transport_offset(skb) - sizeof(*from));
4d22de3e 1650
ea2ae17d 1651 flits = skb_transport_offset(skb) / 8;
4d22de3e 1652 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
c69fe407
AV
1653 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1654 skb_tail_pointer(skb) - skb_transport_header(skb),
1655 addr);
99d7cf30
DLR
1656 if (need_skb_unmap()) {
1657 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1658 skb->destructor = deferred_unmap_destructor;
99d7cf30 1659 }
4d22de3e
DLR
1660
1661 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1662 gen, from->wr_hi, from->wr_lo);
1663}
1664
1665/**
1666 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1667 * @skb: the packet
1668 *
1669 * Returns the number of Tx descriptors needed for the given offload
1670 * packet. These packets are already fully constructed.
1671 */
1672static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1673{
27186dc3 1674 unsigned int flits, cnt;
4d22de3e 1675
27186dc3 1676 if (skb->len <= WR_LEN)
4d22de3e
DLR
1677 return 1; /* packet fits as immediate data */
1678
ea2ae17d 1679 flits = skb_transport_offset(skb) / 8; /* headers */
27186dc3 1680 cnt = skb_shinfo(skb)->nr_frags;
be8b678c 1681 if (skb_tail_pointer(skb) != skb_transport_header(skb))
4d22de3e
DLR
1682 cnt++;
1683 return flits_to_desc(flits + sgl_len(cnt));
1684}
1685
1686/**
1687 * ofld_xmit - send a packet through an offload queue
1688 * @adap: the adapter
1689 * @q: the Tx offload queue
1690 * @skb: the packet
1691 *
1692 * Send an offload packet through an SGE offload queue.
1693 */
1694static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1695 struct sk_buff *skb)
1696{
1697 int ret;
1698 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1699
1700 spin_lock(&q->lock);
42c8ea17 1701again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1702
1703 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1704 if (unlikely(ret)) {
1705 if (ret == 1) {
1706 skb->priority = ndesc; /* save for restart */
1707 spin_unlock(&q->lock);
1708 return NET_XMIT_CN;
1709 }
1710 goto again;
1711 }
1712
c69fe407
AV
1713 if (!immediate(skb) &&
1714 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1715 spin_unlock(&q->lock);
1716 return NET_XMIT_SUCCESS;
1717 }
1718
4d22de3e
DLR
1719 gen = q->gen;
1720 q->in_use += ndesc;
1721 pidx = q->pidx;
1722 q->pidx += ndesc;
1723 if (q->pidx >= q->size) {
1724 q->pidx -= q->size;
1725 q->gen ^= 1;
1726 }
1727 spin_unlock(&q->lock);
1728
c69fe407 1729 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
4d22de3e
DLR
1730 check_ring_tx_db(adap, q);
1731 return NET_XMIT_SUCCESS;
1732}
1733
1734/**
1735 * restart_offloadq - restart a suspended offload queue
1736 * @qs: the queue set cotaining the offload queue
1737 *
1738 * Resumes transmission on a suspended Tx offload queue.
1739 */
1740static void restart_offloadq(unsigned long data)
1741{
1742 struct sk_buff *skb;
1743 struct sge_qset *qs = (struct sge_qset *)data;
1744 struct sge_txq *q = &qs->txq[TXQ_OFLD];
5fbf816f
DLR
1745 const struct port_info *pi = netdev_priv(qs->netdev);
1746 struct adapter *adap = pi->adapter;
c69fe407 1747 unsigned int written = 0;
4d22de3e
DLR
1748
1749 spin_lock(&q->lock);
42c8ea17 1750again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1751
1752 while ((skb = skb_peek(&q->sendq)) != NULL) {
1753 unsigned int gen, pidx;
1754 unsigned int ndesc = skb->priority;
1755
1756 if (unlikely(q->size - q->in_use < ndesc)) {
1757 set_bit(TXQ_OFLD, &qs->txq_stopped);
4e857c58 1758 smp_mb__after_atomic();
4d22de3e
DLR
1759
1760 if (should_restart_tx(q) &&
1761 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1762 goto again;
1763 q->stops++;
1764 break;
1765 }
1766
c69fe407
AV
1767 if (!immediate(skb) &&
1768 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1769 break;
1770
4d22de3e
DLR
1771 gen = q->gen;
1772 q->in_use += ndesc;
1773 pidx = q->pidx;
1774 q->pidx += ndesc;
c69fe407 1775 written += ndesc;
4d22de3e
DLR
1776 if (q->pidx >= q->size) {
1777 q->pidx -= q->size;
1778 q->gen ^= 1;
1779 }
1780 __skb_unlink(skb, &q->sendq);
1781 spin_unlock(&q->lock);
1782
c69fe407
AV
1783 write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1784 (dma_addr_t *)skb->head);
4d22de3e
DLR
1785 spin_lock(&q->lock);
1786 }
1787 spin_unlock(&q->lock);
1788
1789#if USE_GTS
1790 set_bit(TXQ_RUNNING, &q->flags);
1791 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1792#endif
afefce66 1793 wmb();
c69fe407
AV
1794 if (likely(written))
1795 t3_write_reg(adap, A_SG_KDOORBELL,
1796 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
4d22de3e
DLR
1797}
1798
1799/**
1800 * queue_set - return the queue set a packet should use
1801 * @skb: the packet
1802 *
1803 * Maps a packet to the SGE queue set it should use. The desired queue
1804 * set is carried in bits 1-3 in the packet's priority.
1805 */
1806static inline int queue_set(const struct sk_buff *skb)
1807{
1808 return skb->priority >> 1;
1809}
1810
1811/**
1812 * is_ctrl_pkt - return whether an offload packet is a control packet
1813 * @skb: the packet
1814 *
1815 * Determines whether an offload packet should use an OFLD or a CTRL
1816 * Tx queue. This is indicated by bit 0 in the packet's priority.
1817 */
1818static inline int is_ctrl_pkt(const struct sk_buff *skb)
1819{
1820 return skb->priority & 1;
1821}
1822
1823/**
1824 * t3_offload_tx - send an offload packet
1825 * @tdev: the offload device to send to
1826 * @skb: the packet
1827 *
1828 * Sends an offload packet. We use the packet priority to select the
1829 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1830 * should be sent as regular or control, bits 1-3 select the queue set.
1831 */
1832int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1833{
1834 struct adapter *adap = tdev2adap(tdev);
1835 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1836
1837 if (unlikely(is_ctrl_pkt(skb)))
1838 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1839
1840 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1841}
1842
1843/**
1844 * offload_enqueue - add an offload packet to an SGE offload receive queue
1845 * @q: the SGE response queue
1846 * @skb: the packet
1847 *
1848 * Add a new offload packet to an SGE response queue's offload packet
1849 * queue. If the packet is the first on the queue it schedules the RX
1850 * softirq to process the queue.
1851 */
1852static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1853{
147e70e6
DM
1854 int was_empty = skb_queue_empty(&q->rx_queue);
1855
1856 __skb_queue_tail(&q->rx_queue, skb);
1857
1858 if (was_empty) {
4d22de3e
DLR
1859 struct sge_qset *qs = rspq_to_qset(q);
1860
bea3348e 1861 napi_schedule(&qs->napi);
4d22de3e 1862 }
4d22de3e
DLR
1863}
1864
1865/**
1866 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1867 * @tdev: the offload device that will be receiving the packets
1868 * @q: the SGE response queue that assembled the bundle
1869 * @skbs: the partial bundle
1870 * @n: the number of packets in the bundle
1871 *
1872 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1873 */
1874static inline void deliver_partial_bundle(struct t3cdev *tdev,
1875 struct sge_rspq *q,
1876 struct sk_buff *skbs[], int n)
1877{
1878 if (n) {
1879 q->offload_bundles++;
1880 tdev->recv(tdev, skbs, n);
1881 }
1882}
1883
1884/**
1885 * ofld_poll - NAPI handler for offload packets in interrupt mode
1886 * @dev: the network device doing the polling
1887 * @budget: polling budget
1888 *
1889 * The NAPI handler for offload packets when a response queue is serviced
1890 * by the hard interrupt handler, i.e., when it's operating in non-polling
1891 * mode. Creates small packet batches and sends them through the offload
1892 * receive handler. Batches need to be of modest size as we do prefetches
1893 * on the packets in each.
1894 */
bea3348e 1895static int ofld_poll(struct napi_struct *napi, int budget)
4d22de3e 1896{
bea3348e 1897 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
4d22de3e 1898 struct sge_rspq *q = &qs->rspq;
bea3348e
SH
1899 struct adapter *adapter = qs->adap;
1900 int work_done = 0;
4d22de3e 1901
bea3348e 1902 while (work_done < budget) {
147e70e6
DM
1903 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1904 struct sk_buff_head queue;
4d22de3e
DLR
1905 int ngathered;
1906
1907 spin_lock_irq(&q->lock);
147e70e6
DM
1908 __skb_queue_head_init(&queue);
1909 skb_queue_splice_init(&q->rx_queue, &queue);
1910 if (skb_queue_empty(&queue)) {
6ad20165 1911 napi_complete_done(napi, work_done);
4d22de3e 1912 spin_unlock_irq(&q->lock);
bea3348e 1913 return work_done;
4d22de3e 1914 }
4d22de3e
DLR
1915 spin_unlock_irq(&q->lock);
1916
147e70e6
DM
1917 ngathered = 0;
1918 skb_queue_walk_safe(&queue, skb, tmp) {
1919 if (work_done >= budget)
1920 break;
1921 work_done++;
1922
1923 __skb_unlink(skb, &queue);
1924 prefetch(skb->data);
1925 skbs[ngathered] = skb;
4d22de3e
DLR
1926 if (++ngathered == RX_BUNDLE_SIZE) {
1927 q->offload_bundles++;
1928 adapter->tdev.recv(&adapter->tdev, skbs,
1929 ngathered);
1930 ngathered = 0;
1931 }
1932 }
147e70e6
DM
1933 if (!skb_queue_empty(&queue)) {
1934 /* splice remaining packets back onto Rx queue */
4d22de3e 1935 spin_lock_irq(&q->lock);
147e70e6 1936 skb_queue_splice(&queue, &q->rx_queue);
4d22de3e
DLR
1937 spin_unlock_irq(&q->lock);
1938 }
1939 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1940 }
bea3348e
SH
1941
1942 return work_done;
4d22de3e
DLR
1943}
1944
1945/**
1946 * rx_offload - process a received offload packet
1947 * @tdev: the offload device receiving the packet
1948 * @rq: the response queue that received the packet
1949 * @skb: the packet
1950 * @rx_gather: a gather list of packets if we are building a bundle
1951 * @gather_idx: index of the next available slot in the bundle
1952 *
1953 * Process an ingress offload pakcet and add it to the offload ingress
1954 * queue. Returns the index of the next available slot in the bundle.
1955 */
1956static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1957 struct sk_buff *skb, struct sk_buff *rx_gather[],
1958 unsigned int gather_idx)
1959{
459a98ed 1960 skb_reset_mac_header(skb);
c1d2bbe1 1961 skb_reset_network_header(skb);
badff6d0 1962 skb_reset_transport_header(skb);
4d22de3e
DLR
1963
1964 if (rq->polling) {
1965 rx_gather[gather_idx++] = skb;
1966 if (gather_idx == RX_BUNDLE_SIZE) {
1967 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1968 gather_idx = 0;
1969 rq->offload_bundles++;
1970 }
1971 } else
1972 offload_enqueue(rq, skb);
1973
1974 return gather_idx;
1975}
1976
4d22de3e
DLR
1977/**
1978 * restart_tx - check whether to restart suspended Tx queues
1979 * @qs: the queue set to resume
1980 *
1981 * Restarts suspended Tx queues of an SGE queue set if they have enough
1982 * free resources to resume operation.
1983 */
1984static void restart_tx(struct sge_qset *qs)
1985{
1986 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1987 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1988 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1989 qs->txq[TXQ_ETH].restarts++;
1990 if (netif_running(qs->netdev))
82ad3329 1991 netif_tx_wake_queue(qs->tx_q);
4d22de3e
DLR
1992 }
1993
1994 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1995 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1996 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1997 qs->txq[TXQ_OFLD].restarts++;
1998 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1999 }
2000 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2001 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2002 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2003 qs->txq[TXQ_CTRL].restarts++;
2004 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
2005 }
2006}
2007
a109a5b9
KX
2008/**
2009 * cxgb3_arp_process - process an ARP request probing a private IP address
2010 * @adapter: the adapter
2011 * @skb: the skbuff containing the ARP request
2012 *
2013 * Check if the ARP request is probing the private IP address
2014 * dedicated to iSCSI, generate an ARP reply if so.
2015 */
f14d42f3 2016static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
a109a5b9
KX
2017{
2018 struct net_device *dev = skb->dev;
a109a5b9
KX
2019 struct arphdr *arp;
2020 unsigned char *arp_ptr;
2021 unsigned char *sha;
2022 __be32 sip, tip;
2023
2024 if (!dev)
2025 return;
2026
2027 skb_reset_network_header(skb);
2028 arp = arp_hdr(skb);
2029
2030 if (arp->ar_op != htons(ARPOP_REQUEST))
2031 return;
2032
2033 arp_ptr = (unsigned char *)(arp + 1);
2034 sha = arp_ptr;
2035 arp_ptr += dev->addr_len;
2036 memcpy(&sip, arp_ptr, sizeof(sip));
2037 arp_ptr += sizeof(sip);
2038 arp_ptr += dev->addr_len;
2039 memcpy(&tip, arp_ptr, sizeof(tip));
2040
a109a5b9
KX
2041 if (tip != pi->iscsi_ipv4addr)
2042 return;
2043
2044 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
f14d42f3 2045 pi->iscsic.mac_addr, sha);
a109a5b9
KX
2046
2047}
2048
2049static inline int is_arp(struct sk_buff *skb)
2050{
2051 return skb->protocol == htons(ETH_P_ARP);
2052}
2053
f14d42f3
KX
2054static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2055 struct sk_buff *skb)
2056{
2057 if (is_arp(skb)) {
2058 cxgb3_arp_process(pi, skb);
2059 return;
2060 }
2061
2062 if (pi->iscsic.recv)
2063 pi->iscsic.recv(pi, skb);
2064
2065}
2066
4d22de3e
DLR
2067/**
2068 * rx_eth - process an ingress ethernet packet
2069 * @adap: the adapter
2070 * @rq: the response queue that received the packet
2071 * @skb: the packet
2072 * @pad: amount of padding at the start of the buffer
2073 *
2074 * Process an ingress ethernet pakcet and deliver it to the stack.
2075 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2076 * if it was immediate data in a response.
2077 */
2078static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
b47385bd 2079 struct sk_buff *skb, int pad, int lro)
4d22de3e
DLR
2080{
2081 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
b47385bd 2082 struct sge_qset *qs = rspq_to_qset(rq);
4d22de3e
DLR
2083 struct port_info *pi;
2084
4d22de3e 2085 skb_pull(skb, sizeof(*p) + pad);
4c13eb66 2086 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
4d22de3e 2087 pi = netdev_priv(skb->dev);
d2fe2755 2088 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
5e68b772 2089 p->csum == htons(0xffff) && !p->fragment) {
a109a5b9 2090 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
4d22de3e
DLR
2091 skb->ip_summed = CHECKSUM_UNNECESSARY;
2092 } else
bc8acf2c 2093 skb_checksum_none_assert(skb);
d6fe5f4e 2094 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
4d22de3e 2095
892ef5d8 2096 if (p->vlan_valid) {
b47385bd 2097 qs->port_stats[SGE_PSTAT_VLANEX]++;
86a9bad3 2098 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
892ef5d8
JP
2099 }
2100 if (rq->polling) {
b47385bd 2101 if (lro)
7be2df45 2102 napi_gro_receive(&qs->napi, skb);
a109a5b9 2103 else {
f14d42f3
KX
2104 if (unlikely(pi->iscsic.flags))
2105 cxgb3_process_iscsi_prov_pack(pi, skb);
b47385bd 2106 netif_receive_skb(skb);
a109a5b9 2107 }
b47385bd 2108 } else
4d22de3e
DLR
2109 netif_rx(skb);
2110}
2111
b47385bd
DLR
2112static inline int is_eth_tcp(u32 rss)
2113{
2114 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2115}
2116
b47385bd
DLR
2117/**
2118 * lro_add_page - add a page chunk to an LRO session
2119 * @adap: the adapter
2120 * @qs: the associated queue set
2121 * @fl: the free list containing the page chunk to add
2122 * @len: packet length
2123 * @complete: Indicates the last fragment of a frame
2124 *
2125 * Add a received packet contained in a page chunk to an existing LRO
2126 * session.
2127 */
2128static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2129 struct sge_fl *fl, int len, int complete)
2130{
2131 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2d171886 2132 struct port_info *pi = netdev_priv(qs->netdev);
76620aaf 2133 struct sk_buff *skb = NULL;
b47385bd 2134 struct cpl_rx_pkt *cpl;
76620aaf
HX
2135 struct skb_frag_struct *rx_frag;
2136 int nr_frags;
b47385bd
DLR
2137 int offset = 0;
2138
76620aaf
HX
2139 if (!qs->nomem) {
2140 skb = napi_get_frags(&qs->napi);
2141 qs->nomem = !skb;
b47385bd
DLR
2142 }
2143
2144 fl->credits--;
2145
5e68b772 2146 pci_dma_sync_single_for_cpu(adap->pdev,
56e3b9df 2147 dma_unmap_addr(sd, dma_addr),
5e68b772
DLR
2148 fl->buf_size - SGE_PG_RSVD,
2149 PCI_DMA_FROMDEVICE);
2150
2151 (*sd->pg_chunk.p_cnt)--;
70e3bb50 2152 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
5e68b772 2153 pci_unmap_page(adap->pdev,
10b6d956 2154 sd->pg_chunk.mapping,
5e68b772
DLR
2155 fl->alloc_size,
2156 PCI_DMA_FROMDEVICE);
b47385bd 2157
76620aaf
HX
2158 if (!skb) {
2159 put_page(sd->pg_chunk.page);
2160 if (complete)
2161 qs->nomem = 0;
2162 return;
2163 }
2164
2165 rx_frag = skb_shinfo(skb)->frags;
2166 nr_frags = skb_shinfo(skb)->nr_frags;
2167
2168 if (!nr_frags) {
2169 offset = 2 + sizeof(struct cpl_rx_pkt);
2d171886
DLR
2170 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2171
d2fe2755 2172 if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2d171886
DLR
2173 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2174 skb->ip_summed = CHECKSUM_UNNECESSARY;
2175 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2176 } else
2177 skb->ip_summed = CHECKSUM_NONE;
2178 } else
2179 cpl = qs->lro_va;
76620aaf 2180
2d171886 2181 len -= offset;
b2b964f0 2182
b47385bd 2183 rx_frag += nr_frags;
6a930b9f 2184 __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
b47385bd 2185 rx_frag->page_offset = sd->pg_chunk.offset + offset;
9e903e08 2186 skb_frag_size_set(rx_frag, len);
b47385bd 2187
76620aaf
HX
2188 skb->len += len;
2189 skb->data_len += len;
2190 skb->truesize += len;
2191 skb_shinfo(skb)->nr_frags++;
5e68b772 2192
b47385bd
DLR
2193 if (!complete)
2194 return;
2195
d6fe5f4e 2196 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
b47385bd 2197
72073ad2
VP
2198 if (cpl->vlan_valid) {
2199 qs->port_stats[SGE_PSTAT_VLANEX]++;
86a9bad3 2200 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
72073ad2 2201 }
76620aaf 2202 napi_gro_frags(&qs->napi);
b47385bd
DLR
2203}
2204
4d22de3e
DLR
2205/**
2206 * handle_rsp_cntrl_info - handles control information in a response
2207 * @qs: the queue set corresponding to the response
2208 * @flags: the response control flags
4d22de3e
DLR
2209 *
2210 * Handles the control information of an SGE response, such as GTS
2211 * indications and completion credits for the queue set's Tx queues.
6195c71d 2212 * HW coalesces credits, we don't do any extra SW coalescing.
4d22de3e 2213 */
6195c71d 2214static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
4d22de3e
DLR
2215{
2216 unsigned int credits;
2217
2218#if USE_GTS
2219 if (flags & F_RSPD_TXQ0_GTS)
2220 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2221#endif
2222
4d22de3e
DLR
2223 credits = G_RSPD_TXQ0_CR(flags);
2224 if (credits)
2225 qs->txq[TXQ_ETH].processed += credits;
2226
6195c71d
DLR
2227 credits = G_RSPD_TXQ2_CR(flags);
2228 if (credits)
2229 qs->txq[TXQ_CTRL].processed += credits;
2230
4d22de3e
DLR
2231# if USE_GTS
2232 if (flags & F_RSPD_TXQ1_GTS)
2233 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2234# endif
6195c71d
DLR
2235 credits = G_RSPD_TXQ1_CR(flags);
2236 if (credits)
2237 qs->txq[TXQ_OFLD].processed += credits;
4d22de3e
DLR
2238}
2239
2240/**
2241 * check_ring_db - check if we need to ring any doorbells
2242 * @adapter: the adapter
2243 * @qs: the queue set whose Tx queues are to be examined
2244 * @sleeping: indicates which Tx queue sent GTS
2245 *
2246 * Checks if some of a queue set's Tx queues need to ring their doorbells
2247 * to resume transmission after idling while they still have unprocessed
2248 * descriptors.
2249 */
2250static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2251 unsigned int sleeping)
2252{
2253 if (sleeping & F_RSPD_TXQ0_GTS) {
2254 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2255
2256 if (txq->cleaned + txq->in_use != txq->processed &&
2257 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2258 set_bit(TXQ_RUNNING, &txq->flags);
2259 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2260 V_EGRCNTX(txq->cntxt_id));
2261 }
2262 }
2263
2264 if (sleeping & F_RSPD_TXQ1_GTS) {
2265 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2266
2267 if (txq->cleaned + txq->in_use != txq->processed &&
2268 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2269 set_bit(TXQ_RUNNING, &txq->flags);
2270 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2271 V_EGRCNTX(txq->cntxt_id));
2272 }
2273 }
2274}
2275
2276/**
2277 * is_new_response - check if a response is newly written
2278 * @r: the response descriptor
2279 * @q: the response queue
2280 *
2281 * Returns true if a response descriptor contains a yet unprocessed
2282 * response.
2283 */
2284static inline int is_new_response(const struct rsp_desc *r,
2285 const struct sge_rspq *q)
2286{
2287 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2288}
2289
7385ecf3
DLR
2290static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2291{
2292 q->pg_skb = NULL;
2293 q->rx_recycle_buf = 0;
2294}
2295
4d22de3e
DLR
2296#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2297#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2298 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2299 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2300 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2301
2302/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2303#define NOMEM_INTR_DELAY 2500
2304
2305/**
2306 * process_responses - process responses from an SGE response queue
2307 * @adap: the adapter
2308 * @qs: the queue set to which the response queue belongs
2309 * @budget: how many responses can be processed in this round
2310 *
2311 * Process responses from an SGE response queue up to the supplied budget.
2312 * Responses include received packets as well as credits and other events
2313 * for the queues that belong to the response queue's queue set.
2314 * A negative budget is effectively unlimited.
2315 *
2316 * Additionally choose the interrupt holdoff time for the next interrupt
2317 * on this queue. If the system is under memory shortage use a fairly
2318 * long delay to help recovery.
2319 */
2320static int process_responses(struct adapter *adap, struct sge_qset *qs,
2321 int budget)
2322{
2323 struct sge_rspq *q = &qs->rspq;
2324 struct rsp_desc *r = &q->desc[q->cidx];
2325 int budget_left = budget;
6195c71d 2326 unsigned int sleeping = 0;
4d22de3e
DLR
2327 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2328 int ngathered = 0;
2329
2330 q->next_holdoff = q->holdoff_tmr;
2331
2332 while (likely(budget_left && is_new_response(r, q))) {
d2fe2755
MM
2333 int packet_complete, eth, ethpad = 2;
2334 int lro = !!(qs->netdev->features & NETIF_F_GRO);
4d22de3e 2335 struct sk_buff *skb = NULL;
2e02644a
DLR
2336 u32 len, flags;
2337 __be32 rss_hi, rss_lo;
4d22de3e 2338
019be1cf 2339 dma_rmb();
4d22de3e 2340 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2e02644a
DLR
2341 rss_hi = *(const __be32 *)r;
2342 rss_lo = r->rss_hdr.rss_hash_val;
2343 flags = ntohl(r->flags);
4d22de3e
DLR
2344
2345 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2346 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2347 if (!skb)
2348 goto no_mem;
2349
de77b966 2350 __skb_put_data(skb, r, AN_PKT_SIZE);
4d22de3e
DLR
2351 skb->data[0] = CPL_ASYNC_NOTIF;
2352 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2353 q->async_notif++;
2354 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2355 skb = get_imm_packet(r);
2356 if (unlikely(!skb)) {
cf992af5 2357no_mem:
4d22de3e
DLR
2358 q->next_holdoff = NOMEM_INTR_DELAY;
2359 q->nomem++;
2360 /* consume one credit since we tried */
2361 budget_left--;
2362 break;
2363 }
2364 q->imm_data++;
e0994eb1 2365 ethpad = 0;
4d22de3e 2366 } else if ((len = ntohl(r->len_cq)) != 0) {
cf992af5 2367 struct sge_fl *fl;
e0994eb1 2368
65ab8385 2369 lro &= eth && is_eth_tcp(rss_hi);
b47385bd 2370
cf992af5
DLR
2371 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2372 if (fl->use_pages) {
2373 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
e0994eb1 2374
cf992af5
DLR
2375 prefetch(addr);
2376#if L1_CACHE_BYTES < 128
2377 prefetch(addr + L1_CACHE_BYTES);
2378#endif
e0994eb1 2379 __refill_fl(adap, fl);
b47385bd
DLR
2380 if (lro > 0) {
2381 lro_add_page(adap, qs, fl,
2382 G_RSPD_LEN(len),
2383 flags & F_RSPD_EOP);
2acc0abc 2384 goto next_fl;
b47385bd 2385 }
e0994eb1 2386
7385ecf3
DLR
2387 skb = get_packet_pg(adap, fl, q,
2388 G_RSPD_LEN(len),
2389 eth ?
2390 SGE_RX_DROP_THRES : 0);
2391 q->pg_skb = skb;
cf992af5 2392 } else
e0994eb1
DLR
2393 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2394 eth ? SGE_RX_DROP_THRES : 0);
cf992af5
DLR
2395 if (unlikely(!skb)) {
2396 if (!eth)
2397 goto no_mem;
2398 q->rx_drops++;
2399 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2400 __skb_pull(skb, 2);
b47385bd 2401next_fl:
4d22de3e
DLR
2402 if (++fl->cidx == fl->size)
2403 fl->cidx = 0;
2404 } else
2405 q->pure_rsps++;
2406
2407 if (flags & RSPD_CTRL_MASK) {
2408 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2409 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2410 }
2411
2412 r++;
2413 if (unlikely(++q->cidx == q->size)) {
2414 q->cidx = 0;
2415 q->gen ^= 1;
2416 r = q->desc;
2417 }
2418 prefetch(r);
2419
2420 if (++q->credits >= (q->size / 4)) {
2421 refill_rspq(adap, q, q->credits);
2422 q->credits = 0;
2423 }
2424
7385ecf3
DLR
2425 packet_complete = flags &
2426 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2427 F_RSPD_ASYNC_NOTIF);
2428
2429 if (skb != NULL && packet_complete) {
4d22de3e 2430 if (eth)
b47385bd 2431 rx_eth(adap, q, skb, ethpad, lro);
4d22de3e 2432 else {
afefce66 2433 q->offload_pkts++;
cf992af5
DLR
2434 /* Preserve the RSS info in csum & priority */
2435 skb->csum = rss_hi;
2436 skb->priority = rss_lo;
2437 ngathered = rx_offload(&adap->tdev, q, skb,
2438 offload_skbs,
e0994eb1 2439 ngathered);
4d22de3e 2440 }
7385ecf3
DLR
2441
2442 if (flags & F_RSPD_EOP)
b47385bd 2443 clear_rspq_bufstate(q);
4d22de3e 2444 }
4d22de3e
DLR
2445 --budget_left;
2446 }
2447
4d22de3e 2448 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
b47385bd 2449
4d22de3e
DLR
2450 if (sleeping)
2451 check_ring_db(adap, qs, sleeping);
2452
2453 smp_mb(); /* commit Tx queue .processed updates */
2454 if (unlikely(qs->txq_stopped != 0))
2455 restart_tx(qs);
2456
2457 budget -= budget_left;
2458 return budget;
2459}
2460
2461static inline int is_pure_response(const struct rsp_desc *r)
2462{
c5419e6f 2463 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
4d22de3e
DLR
2464
2465 return (n | r->len_cq) == 0;
2466}
2467
2468/**
2469 * napi_rx_handler - the NAPI handler for Rx processing
bea3348e 2470 * @napi: the napi instance
4d22de3e
DLR
2471 * @budget: how many packets we can process in this round
2472 *
2473 * Handler for new data events when using NAPI.
2474 */
bea3348e 2475static int napi_rx_handler(struct napi_struct *napi, int budget)
4d22de3e 2476{
bea3348e
SH
2477 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2478 struct adapter *adap = qs->adap;
2479 int work_done = process_responses(adap, qs, budget);
4d22de3e 2480
bea3348e 2481 if (likely(work_done < budget)) {
6ad20165 2482 napi_complete_done(napi, work_done);
4d22de3e 2483
bea3348e
SH
2484 /*
2485 * Because we don't atomically flush the following
2486 * write it is possible that in very rare cases it can
2487 * reach the device in a way that races with a new
2488 * response being written plus an error interrupt
2489 * causing the NAPI interrupt handler below to return
2490 * unhandled status to the OS. To protect against
2491 * this would require flushing the write and doing
2492 * both the write and the flush with interrupts off.
2493 * Way too expensive and unjustifiable given the
2494 * rarity of the race.
2495 *
2496 * The race cannot happen at all with MSI-X.
2497 */
2498 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2499 V_NEWTIMER(qs->rspq.next_holdoff) |
2500 V_NEWINDEX(qs->rspq.cidx));
2501 }
2502 return work_done;
4d22de3e
DLR
2503}
2504
2505/*
2506 * Returns true if the device is already scheduled for polling.
2507 */
bea3348e 2508static inline int napi_is_scheduled(struct napi_struct *napi)
4d22de3e 2509{
bea3348e 2510 return test_bit(NAPI_STATE_SCHED, &napi->state);
4d22de3e
DLR
2511}
2512
2513/**
2514 * process_pure_responses - process pure responses from a response queue
2515 * @adap: the adapter
2516 * @qs: the queue set owning the response queue
2517 * @r: the first pure response to process
2518 *
2519 * A simpler version of process_responses() that handles only pure (i.e.,
2520 * non data-carrying) responses. Such respones are too light-weight to
2521 * justify calling a softirq under NAPI, so we handle them specially in
2522 * the interrupt handler. The function is called with a pointer to a
2523 * response, which the caller must ensure is a valid pure response.
2524 *
2525 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2526 */
2527static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2528 struct rsp_desc *r)
2529{
2530 struct sge_rspq *q = &qs->rspq;
6195c71d 2531 unsigned int sleeping = 0;
4d22de3e
DLR
2532
2533 do {
2534 u32 flags = ntohl(r->flags);
2535
2536 r++;
2537 if (unlikely(++q->cidx == q->size)) {
2538 q->cidx = 0;
2539 q->gen ^= 1;
2540 r = q->desc;
2541 }
2542 prefetch(r);
2543
2544 if (flags & RSPD_CTRL_MASK) {
2545 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2546 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2547 }
2548
2549 q->pure_rsps++;
2550 if (++q->credits >= (q->size / 4)) {
2551 refill_rspq(adap, q, q->credits);
2552 q->credits = 0;
2553 }
2e02644a
DLR
2554 if (!is_new_response(r, q))
2555 break;
019be1cf 2556 dma_rmb();
2e02644a 2557 } while (is_pure_response(r));
4d22de3e 2558
4d22de3e
DLR
2559 if (sleeping)
2560 check_ring_db(adap, qs, sleeping);
2561
2562 smp_mb(); /* commit Tx queue .processed updates */
2563 if (unlikely(qs->txq_stopped != 0))
2564 restart_tx(qs);
2565
2566 return is_new_response(r, q);
2567}
2568
2569/**
2570 * handle_responses - decide what to do with new responses in NAPI mode
2571 * @adap: the adapter
2572 * @q: the response queue
2573 *
2574 * This is used by the NAPI interrupt handlers to decide what to do with
2575 * new SGE responses. If there are no new responses it returns -1. If
2576 * there are new responses and they are pure (i.e., non-data carrying)
2577 * it handles them straight in hard interrupt context as they are very
2578 * cheap and don't deliver any packets. Finally, if there are any data
2579 * signaling responses it schedules the NAPI handler. Returns 1 if it
2580 * schedules NAPI, 0 if all new responses were pure.
2581 *
2582 * The caller must ascertain NAPI is not already running.
2583 */
2584static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2585{
2586 struct sge_qset *qs = rspq_to_qset(q);
2587 struct rsp_desc *r = &q->desc[q->cidx];
2588
2589 if (!is_new_response(r, q))
2590 return -1;
019be1cf 2591 dma_rmb();
4d22de3e
DLR
2592 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2593 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2594 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2595 return 0;
2596 }
bea3348e 2597 napi_schedule(&qs->napi);
4d22de3e
DLR
2598 return 1;
2599}
2600
2601/*
2602 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2603 * (i.e., response queue serviced in hard interrupt).
2604 */
a5190b4e 2605static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
4d22de3e
DLR
2606{
2607 struct sge_qset *qs = cookie;
bea3348e 2608 struct adapter *adap = qs->adap;
4d22de3e
DLR
2609 struct sge_rspq *q = &qs->rspq;
2610
2611 spin_lock(&q->lock);
2612 if (process_responses(adap, qs, -1) == 0)
2613 q->unhandled_irqs++;
2614 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2615 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2616 spin_unlock(&q->lock);
2617 return IRQ_HANDLED;
2618}
2619
2620/*
2621 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2622 * (i.e., response queue serviced by NAPI polling).
2623 */
9265fabf 2624static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
4d22de3e
DLR
2625{
2626 struct sge_qset *qs = cookie;
4d22de3e
DLR
2627 struct sge_rspq *q = &qs->rspq;
2628
2629 spin_lock(&q->lock);
4d22de3e 2630
bea3348e 2631 if (handle_responses(qs->adap, q) < 0)
4d22de3e
DLR
2632 q->unhandled_irqs++;
2633 spin_unlock(&q->lock);
2634 return IRQ_HANDLED;
2635}
2636
2637/*
2638 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2639 * SGE response queues as well as error and other async events as they all use
2640 * the same MSI vector. We use one SGE response queue per port in this mode
2641 * and protect all response queues with queue 0's lock.
2642 */
2643static irqreturn_t t3_intr_msi(int irq, void *cookie)
2644{
2645 int new_packets = 0;
2646 struct adapter *adap = cookie;
2647 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2648
2649 spin_lock(&q->lock);
2650
2651 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2652 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2653 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2654 new_packets = 1;
2655 }
2656
2657 if (adap->params.nports == 2 &&
2658 process_responses(adap, &adap->sge.qs[1], -1)) {
2659 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2660
2661 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2662 V_NEWTIMER(q1->next_holdoff) |
2663 V_NEWINDEX(q1->cidx));
2664 new_packets = 1;
2665 }
2666
2667 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2668 q->unhandled_irqs++;
2669
2670 spin_unlock(&q->lock);
2671 return IRQ_HANDLED;
2672}
2673
bea3348e 2674static int rspq_check_napi(struct sge_qset *qs)
4d22de3e 2675{
bea3348e
SH
2676 struct sge_rspq *q = &qs->rspq;
2677
2678 if (!napi_is_scheduled(&qs->napi) &&
2679 is_new_response(&q->desc[q->cidx], q)) {
2680 napi_schedule(&qs->napi);
4d22de3e
DLR
2681 return 1;
2682 }
2683 return 0;
2684}
2685
2686/*
2687 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2688 * by NAPI polling). Handles data events from SGE response queues as well as
2689 * error and other async events as they all use the same MSI vector. We use
2690 * one SGE response queue per port in this mode and protect all response
2691 * queues with queue 0's lock.
2692 */
9265fabf 2693static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
4d22de3e
DLR
2694{
2695 int new_packets;
2696 struct adapter *adap = cookie;
2697 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2698
2699 spin_lock(&q->lock);
2700
bea3348e 2701 new_packets = rspq_check_napi(&adap->sge.qs[0]);
4d22de3e 2702 if (adap->params.nports == 2)
bea3348e 2703 new_packets += rspq_check_napi(&adap->sge.qs[1]);
4d22de3e
DLR
2704 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2705 q->unhandled_irqs++;
2706
2707 spin_unlock(&q->lock);
2708 return IRQ_HANDLED;
2709}
2710
2711/*
2712 * A helper function that processes responses and issues GTS.
2713 */
2714static inline int process_responses_gts(struct adapter *adap,
2715 struct sge_rspq *rq)
2716{
2717 int work;
2718
2719 work = process_responses(adap, rspq_to_qset(rq), -1);
2720 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2721 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2722 return work;
2723}
2724
2725/*
2726 * The legacy INTx interrupt handler. This needs to handle data events from
2727 * SGE response queues as well as error and other async events as they all use
2728 * the same interrupt pin. We use one SGE response queue per port in this mode
2729 * and protect all response queues with queue 0's lock.
2730 */
2731static irqreturn_t t3_intr(int irq, void *cookie)
2732{
2733 int work_done, w0, w1;
2734 struct adapter *adap = cookie;
2735 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2736 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2737
2738 spin_lock(&q0->lock);
2739
2740 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2741 w1 = adap->params.nports == 2 &&
2742 is_new_response(&q1->desc[q1->cidx], q1);
2743
2744 if (likely(w0 | w1)) {
2745 t3_write_reg(adap, A_PL_CLI, 0);
2746 t3_read_reg(adap, A_PL_CLI); /* flush */
2747
2748 if (likely(w0))
2749 process_responses_gts(adap, q0);
2750
2751 if (w1)
2752 process_responses_gts(adap, q1);
2753
2754 work_done = w0 | w1;
2755 } else
2756 work_done = t3_slow_intr_handler(adap);
2757
2758 spin_unlock(&q0->lock);
2759 return IRQ_RETVAL(work_done != 0);
2760}
2761
2762/*
2763 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2764 * Handles data events from SGE response queues as well as error and other
2765 * async events as they all use the same interrupt pin. We use one SGE
2766 * response queue per port in this mode and protect all response queues with
2767 * queue 0's lock.
2768 */
2769static irqreturn_t t3b_intr(int irq, void *cookie)
2770{
2771 u32 map;
2772 struct adapter *adap = cookie;
2773 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2774
2775 t3_write_reg(adap, A_PL_CLI, 0);
2776 map = t3_read_reg(adap, A_SG_DATA_INTR);
2777
2778 if (unlikely(!map)) /* shared interrupt, most likely */
2779 return IRQ_NONE;
2780
2781 spin_lock(&q0->lock);
2782
2783 if (unlikely(map & F_ERRINTR))
2784 t3_slow_intr_handler(adap);
2785
2786 if (likely(map & 1))
2787 process_responses_gts(adap, q0);
2788
2789 if (map & 2)
2790 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2791
2792 spin_unlock(&q0->lock);
2793 return IRQ_HANDLED;
2794}
2795
2796/*
2797 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2798 * Handles data events from SGE response queues as well as error and other
2799 * async events as they all use the same interrupt pin. We use one SGE
2800 * response queue per port in this mode and protect all response queues with
2801 * queue 0's lock.
2802 */
2803static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2804{
2805 u32 map;
4d22de3e 2806 struct adapter *adap = cookie;
bea3348e
SH
2807 struct sge_qset *qs0 = &adap->sge.qs[0];
2808 struct sge_rspq *q0 = &qs0->rspq;
4d22de3e
DLR
2809
2810 t3_write_reg(adap, A_PL_CLI, 0);
2811 map = t3_read_reg(adap, A_SG_DATA_INTR);
2812
2813 if (unlikely(!map)) /* shared interrupt, most likely */
2814 return IRQ_NONE;
2815
2816 spin_lock(&q0->lock);
2817
2818 if (unlikely(map & F_ERRINTR))
2819 t3_slow_intr_handler(adap);
2820
bea3348e
SH
2821 if (likely(map & 1))
2822 napi_schedule(&qs0->napi);
4d22de3e 2823
bea3348e
SH
2824 if (map & 2)
2825 napi_schedule(&adap->sge.qs[1].napi);
4d22de3e
DLR
2826
2827 spin_unlock(&q0->lock);
2828 return IRQ_HANDLED;
2829}
2830
2831/**
2832 * t3_intr_handler - select the top-level interrupt handler
2833 * @adap: the adapter
2834 * @polling: whether using NAPI to service response queues
2835 *
2836 * Selects the top-level interrupt handler based on the type of interrupts
2837 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2838 * response queues.
2839 */
7c239975 2840irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
4d22de3e
DLR
2841{
2842 if (adap->flags & USING_MSIX)
2843 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2844 if (adap->flags & USING_MSI)
2845 return polling ? t3_intr_msi_napi : t3_intr_msi;
2846 if (adap->params.rev > 0)
2847 return polling ? t3b_intr_napi : t3b_intr;
2848 return t3_intr;
2849}
2850
b881955b
DLR
2851#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2852 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2853 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2854 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2855 F_HIRCQPARITYERROR)
2856#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2857#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2858 F_RSPQDISABLED)
2859
4d22de3e
DLR
2860/**
2861 * t3_sge_err_intr_handler - SGE async event interrupt handler
2862 * @adapter: the adapter
2863 *
2864 * Interrupt handler for SGE asynchronous (non-data) events.
2865 */
2866void t3_sge_err_intr_handler(struct adapter *adapter)
2867{
fc882196
DLR
2868 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2869 ~F_FLEMPTY;
4d22de3e 2870
b881955b
DLR
2871 if (status & SGE_PARERR)
2872 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2873 status & SGE_PARERR);
2874 if (status & SGE_FRAMINGERR)
2875 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2876 status & SGE_FRAMINGERR);
2877
4d22de3e
DLR
2878 if (status & F_RSPQCREDITOVERFOW)
2879 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2880
2881 if (status & F_RSPQDISABLED) {
2882 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2883
2884 CH_ALERT(adapter,
2885 "packet delivered to disabled response queue "
2886 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2887 }
2888
6e3f03b7 2889 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
e998f245
SW
2890 queue_work(cxgb3_wq, &adapter->db_drop_task);
2891
2892 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2893 queue_work(cxgb3_wq, &adapter->db_full_task);
2894
2895 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2896 queue_work(cxgb3_wq, &adapter->db_empty_task);
6e3f03b7 2897
4d22de3e 2898 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
b881955b 2899 if (status & SGE_FATALERR)
4d22de3e
DLR
2900 t3_fatal_err(adapter);
2901}
2902
2903/**
42c8ea17 2904 * sge_timer_tx - perform periodic maintenance of an SGE qset
4d22de3e
DLR
2905 * @data: the SGE queue set to maintain
2906 *
2907 * Runs periodically from a timer to perform maintenance of an SGE queue
2908 * set. It performs two tasks:
2909 *
42c8ea17 2910 * Cleans up any completed Tx descriptors that may still be pending.
4d22de3e
DLR
2911 * Normal descriptor cleanup happens when new packets are added to a Tx
2912 * queue so this timer is relatively infrequent and does any cleanup only
2913 * if the Tx queue has not seen any new packets in a while. We make a
2914 * best effort attempt to reclaim descriptors, in that we don't wait
2915 * around if we cannot get a queue's lock (which most likely is because
2916 * someone else is queueing new packets and so will also handle the clean
2917 * up). Since control queues use immediate data exclusively we don't
2918 * bother cleaning them up here.
2919 *
4d22de3e 2920 */
0e23daeb 2921static void sge_timer_tx(struct timer_list *t)
4d22de3e 2922{
0e23daeb 2923 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
42c8ea17
DLR
2924 struct port_info *pi = netdev_priv(qs->netdev);
2925 struct adapter *adap = pi->adapter;
2926 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2927 unsigned long next_period;
4d22de3e 2928
c3a8c5b6
DLR
2929 if (__netif_tx_trylock(qs->tx_q)) {
2930 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2931 TX_RECLAIM_TIMER_CHUNK);
2932 __netif_tx_unlock(qs->tx_q);
4d22de3e 2933 }
c3a8c5b6 2934
4d22de3e 2935 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
42c8ea17
DLR
2936 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2937 TX_RECLAIM_TIMER_CHUNK);
4d22de3e
DLR
2938 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2939 }
42c8ea17
DLR
2940
2941 next_period = TX_RECLAIM_PERIOD >>
c3a8c5b6
DLR
2942 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2943 TX_RECLAIM_TIMER_CHUNK);
42c8ea17
DLR
2944 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2945}
2946
49ce9c2c 2947/**
42c8ea17
DLR
2948 * sge_timer_rx - perform periodic maintenance of an SGE qset
2949 * @data: the SGE queue set to maintain
2950 *
2951 * a) Replenishes Rx queues that have run out due to memory shortage.
2952 * Normally new Rx buffers are added when existing ones are consumed but
2953 * when out of memory a queue can become empty. We try to add only a few
2954 * buffers here, the queue will be replenished fully as these new buffers
2955 * are used up if memory shortage has subsided.
2956 *
2957 * b) Return coalesced response queue credits in case a response queue is
2958 * starved.
2959 *
2960 */
0e23daeb 2961static void sge_timer_rx(struct timer_list *t)
42c8ea17
DLR
2962{
2963 spinlock_t *lock;
0e23daeb 2964 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
42c8ea17
DLR
2965 struct port_info *pi = netdev_priv(qs->netdev);
2966 struct adapter *adap = pi->adapter;
2967 u32 status;
2968
2969 lock = adap->params.rev > 0 ?
2970 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2971
2972 if (!spin_trylock_irq(lock))
2973 goto out;
2974
2975 if (napi_is_scheduled(&qs->napi))
2976 goto unlock;
2977
2978 if (adap->params.rev < 4) {
2979 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2980
2981 if (status & (1 << qs->rspq.cntxt_id)) {
2982 qs->rspq.starved++;
2983 if (qs->rspq.credits) {
2984 qs->rspq.credits--;
2985 refill_rspq(adap, &qs->rspq, 1);
2986 qs->rspq.restarted++;
2987 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2988 1 << qs->rspq.cntxt_id);
bae73f44 2989 }
4d22de3e 2990 }
4d22de3e 2991 }
42c8ea17
DLR
2992
2993 if (qs->fl[0].credits < qs->fl[0].size)
2994 __refill_fl(adap, &qs->fl[0]);
2995 if (qs->fl[1].credits < qs->fl[1].size)
2996 __refill_fl(adap, &qs->fl[1]);
2997
2998unlock:
2999 spin_unlock_irq(lock);
3000out:
3001 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
4d22de3e
DLR
3002}
3003
3004/**
3005 * t3_update_qset_coalesce - update coalescing settings for a queue set
3006 * @qs: the SGE queue set
3007 * @p: new queue set parameters
3008 *
3009 * Update the coalescing settings for an SGE queue set. Nothing is done
3010 * if the queue set is not initialized yet.
3011 */
3012void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3013{
4d22de3e
DLR
3014 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3015 qs->rspq.polling = p->polling;
bea3348e 3016 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
4d22de3e
DLR
3017}
3018
3019/**
3020 * t3_sge_alloc_qset - initialize an SGE queue set
3021 * @adapter: the adapter
3022 * @id: the queue set id
3023 * @nports: how many Ethernet ports will be using this queue set
3024 * @irq_vec_idx: the IRQ vector index for response queue interrupts
3025 * @p: configuration parameters for this queue set
3026 * @ntxq: number of Tx queues for the queue set
3027 * @netdev: net device associated with this queue set
82ad3329 3028 * @netdevq: net device TX queue associated with this queue set
4d22de3e
DLR
3029 *
3030 * Allocate resources and initialize an SGE queue set. A queue set
3031 * comprises a response queue, two Rx free-buffer queues, and up to 3
3032 * Tx queues. The Tx queues are assigned roles in the order Ethernet
3033 * queue, offload queue, and control queue.
3034 */
3035int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3036 int irq_vec_idx, const struct qset_params *p,
82ad3329
DLR
3037 int ntxq, struct net_device *dev,
3038 struct netdev_queue *netdevq)
4d22de3e 3039{
b1fb1f28 3040 int i, avail, ret = -ENOMEM;
4d22de3e
DLR
3041 struct sge_qset *q = &adapter->sge.qs[id];
3042
3043 init_qset_cntxt(q, id);
0e23daeb
KC
3044 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3045 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
4d22de3e
DLR
3046
3047 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3048 sizeof(struct rx_desc),
3049 sizeof(struct rx_sw_desc),
3050 &q->fl[0].phys_addr, &q->fl[0].sdesc);
3051 if (!q->fl[0].desc)
3052 goto err;
3053
3054 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3055 sizeof(struct rx_desc),
3056 sizeof(struct rx_sw_desc),
3057 &q->fl[1].phys_addr, &q->fl[1].sdesc);
3058 if (!q->fl[1].desc)
3059 goto err;
3060
3061 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3062 sizeof(struct rsp_desc), 0,
3063 &q->rspq.phys_addr, NULL);
3064 if (!q->rspq.desc)
3065 goto err;
3066
3067 for (i = 0; i < ntxq; ++i) {
3068 /*
3069 * The control queue always uses immediate data so does not
3070 * need to keep track of any sk_buffs.
3071 */
3072 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3073
3074 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3075 sizeof(struct tx_desc), sz,
3076 &q->txq[i].phys_addr,
3077 &q->txq[i].sdesc);
3078 if (!q->txq[i].desc)
3079 goto err;
3080
3081 q->txq[i].gen = 1;
3082 q->txq[i].size = p->txq_size[i];
3083 spin_lock_init(&q->txq[i].lock);
3084 skb_queue_head_init(&q->txq[i].sendq);
3085 }
3086
3087 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3088 (unsigned long)q);
3089 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3090 (unsigned long)q);
3091
3092 q->fl[0].gen = q->fl[1].gen = 1;
3093 q->fl[0].size = p->fl_size;
3094 q->fl[1].size = p->jumbo_size;
3095
3096 q->rspq.gen = 1;
3097 q->rspq.size = p->rspq_size;
3098 spin_lock_init(&q->rspq.lock);
147e70e6 3099 skb_queue_head_init(&q->rspq.rx_queue);
4d22de3e
DLR
3100
3101 q->txq[TXQ_ETH].stop_thres = nports *
3102 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3103
cf992af5
DLR
3104#if FL0_PG_CHUNK_SIZE > 0
3105 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
e0994eb1 3106#else
cf992af5 3107 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
e0994eb1 3108#endif
7385ecf3
DLR
3109#if FL1_PG_CHUNK_SIZE > 0
3110 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3111#else
cf992af5
DLR
3112 q->fl[1].buf_size = is_offload(adapter) ?
3113 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3114 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
7385ecf3
DLR
3115#endif
3116
3117 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3118 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3119 q->fl[0].order = FL0_PG_ORDER;
3120 q->fl[1].order = FL1_PG_ORDER;
5e68b772
DLR
3121 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3122 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
4d22de3e 3123
b1186dee 3124 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
3125
3126 /* FL threshold comparison uses < */
3127 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3128 q->rspq.phys_addr, q->rspq.size,
5e68b772 3129 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
4d22de3e
DLR
3130 if (ret)
3131 goto err_unlock;
3132
3133 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3134 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3135 q->fl[i].phys_addr, q->fl[i].size,
5e68b772
DLR
3136 q->fl[i].buf_size - SGE_PG_RSVD,
3137 p->cong_thres, 1, 0);
4d22de3e
DLR
3138 if (ret)
3139 goto err_unlock;
3140 }
3141
3142 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3143 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3144 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3145 1, 0);
3146 if (ret)
3147 goto err_unlock;
3148
3149 if (ntxq > 1) {
3150 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3151 USE_GTS, SGE_CNTXT_OFLD, id,
3152 q->txq[TXQ_OFLD].phys_addr,
3153 q->txq[TXQ_OFLD].size, 0, 1, 0);
3154 if (ret)
3155 goto err_unlock;
3156 }
3157
3158 if (ntxq > 2) {
3159 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3160 SGE_CNTXT_CTRL, id,
3161 q->txq[TXQ_CTRL].phys_addr,
3162 q->txq[TXQ_CTRL].size,
3163 q->txq[TXQ_CTRL].token, 1, 0);
3164 if (ret)
3165 goto err_unlock;
3166 }
3167
b1186dee 3168 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e 3169
bea3348e
SH
3170 q->adap = adapter;
3171 q->netdev = dev;
82ad3329 3172 q->tx_q = netdevq;
bea3348e 3173 t3_update_qset_coalesce(q, p);
b47385bd 3174
7385ecf3
DLR
3175 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3176 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
3177 if (!avail) {
3178 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3179 goto err;
3180 }
3181 if (avail < q->fl[0].size)
3182 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3183 avail);
3184
7385ecf3
DLR
3185 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3186 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
3187 if (avail < q->fl[1].size)
3188 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3189 avail);
4d22de3e
DLR
3190 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3191
3192 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3193 V_NEWTIMER(q->rspq.holdoff_tmr));
3194
4d22de3e
DLR
3195 return 0;
3196
b1fb1f28 3197err_unlock:
b1186dee 3198 spin_unlock_irq(&adapter->sge.reg_lock);
b1fb1f28 3199err:
4d22de3e
DLR
3200 t3_free_qset(adapter, q);
3201 return ret;
3202}
3203
31563789
DLR
3204/**
3205 * t3_start_sge_timers - start SGE timer call backs
3206 * @adap: the adapter
3207 *
3208 * Starts each SGE queue set's timer call back
3209 */
3210void t3_start_sge_timers(struct adapter *adap)
3211{
3212 int i;
3213
3214 for (i = 0; i < SGE_QSETS; ++i) {
3215 struct sge_qset *q = &adap->sge.qs[i];
3216
2acc0abc
CIK
3217 if (q->tx_reclaim_timer.function)
3218 mod_timer(&q->tx_reclaim_timer,
3219 jiffies + TX_RECLAIM_PERIOD);
31563789 3220
2acc0abc
CIK
3221 if (q->rx_reclaim_timer.function)
3222 mod_timer(&q->rx_reclaim_timer,
3223 jiffies + RX_RECLAIM_PERIOD);
31563789
DLR
3224 }
3225}
3226
0ca41c04
DLR
3227/**
3228 * t3_stop_sge_timers - stop SGE timer call backs
3229 * @adap: the adapter
3230 *
3231 * Stops each SGE queue set's timer call back
3232 */
3233void t3_stop_sge_timers(struct adapter *adap)
3234{
3235 int i;
3236
3237 for (i = 0; i < SGE_QSETS; ++i) {
3238 struct sge_qset *q = &adap->sge.qs[i];
3239
3240 if (q->tx_reclaim_timer.function)
3241 del_timer_sync(&q->tx_reclaim_timer);
42c8ea17
DLR
3242 if (q->rx_reclaim_timer.function)
3243 del_timer_sync(&q->rx_reclaim_timer);
0ca41c04
DLR
3244 }
3245}
3246
4d22de3e
DLR
3247/**
3248 * t3_free_sge_resources - free SGE resources
3249 * @adap: the adapter
3250 *
3251 * Frees resources used by the SGE queue sets.
3252 */
3253void t3_free_sge_resources(struct adapter *adap)
3254{
3255 int i;
3256
3257 for (i = 0; i < SGE_QSETS; ++i)
3258 t3_free_qset(adap, &adap->sge.qs[i]);
3259}
3260
3261/**
3262 * t3_sge_start - enable SGE
3263 * @adap: the adapter
3264 *
3265 * Enables the SGE for DMAs. This is the last step in starting packet
3266 * transfers.
3267 */
3268void t3_sge_start(struct adapter *adap)
3269{
3270 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3271}
3272
3273/**
3274 * t3_sge_stop - disable SGE operation
3275 * @adap: the adapter
3276 *
3277 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3278 * from error interrupts) or from normal process context. In the latter
3279 * case it also disables any pending queue restart tasklets. Note that
3280 * if it is called in interrupt context it cannot disable the restart
3281 * tasklets as it cannot wait, however the tasklets will have no effect
3282 * since the doorbells are disabled and the driver will call this again
3283 * later from process context, at which time the tasklets will be stopped
3284 * if they are still running.
3285 */
3286void t3_sge_stop(struct adapter *adap)
3287{
3288 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3289 if (!in_interrupt()) {
3290 int i;
3291
3292 for (i = 0; i < SGE_QSETS; ++i) {
3293 struct sge_qset *qs = &adap->sge.qs[i];
3294
3295 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3296 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3297 }
3298 }
3299}
3300
3301/**
3302 * t3_sge_init - initialize SGE
3303 * @adap: the adapter
3304 * @p: the SGE parameters
3305 *
3306 * Performs SGE initialization needed every time after a chip reset.
3307 * We do not initialize any of the queue sets here, instead the driver
3308 * top-level must request those individually. We also do not enable DMA
3309 * here, that should be done after the queues have been set up.
3310 */
3311void t3_sge_init(struct adapter *adap, struct sge_params *p)
3312{
3313 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3314
3315 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
b881955b 3316 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
4d22de3e
DLR
3317 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3318 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3319#if SGE_NUM_GENBITS == 1
3320 ctrl |= F_EGRGENCTRL;
3321#endif
3322 if (adap->params.rev > 0) {
3323 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3324 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
4d22de3e
DLR
3325 }
3326 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3327 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3328 V_LORCQDRBTHRSH(512));
3329 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3330 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
6195c71d 3331 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
b881955b
DLR
3332 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3333 adap->params.rev < T3_REV_C ? 1000 : 500);
4d22de3e
DLR
3334 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3335 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3336 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3337 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3338 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3339}
3340
3341/**
3342 * t3_sge_prep - one-time SGE initialization
3343 * @adap: the associated adapter
3344 * @p: SGE parameters
3345 *
3346 * Performs one-time initialization of SGE SW state. Includes determining
3347 * defaults for the assorted SGE parameters, which admins can change until
3348 * they are used to initialize the SGE.
3349 */
7b9b0943 3350void t3_sge_prep(struct adapter *adap, struct sge_params *p)
4d22de3e
DLR
3351{
3352 int i;
3353
3354 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3355 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3356
3357 for (i = 0; i < SGE_QSETS; ++i) {
3358 struct qset_params *q = p->qset + i;
3359
3360 q->polling = adap->params.rev > 0;
3361 q->coalesce_usecs = 5;
3362 q->rspq_size = 1024;
e0994eb1 3363 q->fl_size = 1024;
7385ecf3 3364 q->jumbo_size = 512;
4d22de3e
DLR
3365 q->txq_size[TXQ_ETH] = 1024;
3366 q->txq_size[TXQ_OFLD] = 1024;
3367 q->txq_size[TXQ_CTRL] = 256;
3368 q->cong_thres = 0;
3369 }
3370
3371 spin_lock_init(&adap->sge.reg_lock);
3372}