]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
sctp: not send SCTP_PEER_ADDR_CHANGE notifications with failed probe
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
b8ff05a9
DM
64#include <asm/uaccess.h>
65
66#include "cxgb4.h"
67#include "t4_regs.h"
68#include "t4_msg.h"
69#include "t4fw_api.h"
688848b1 70#include "cxgb4_dcb.h"
b8ff05a9
DM
71#include "l2t.h"
72
01bcca68
VP
73#include <../drivers/net/bonding/bonding.h>
74
75#ifdef DRV_VERSION
76#undef DRV_VERSION
77#endif
3a7f8554
SR
78#define DRV_VERSION "2.0.0-ko"
79#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9
DM
80
81/*
82 * Max interrupt hold-off timer value in us. Queues fall back to this value
83 * under extreme memory pressure so it's largish to give the system time to
84 * recover.
85 */
86#define MAX_SGE_TIMERVAL 200U
87
7ee9ff94 88enum {
13ee15d3
VP
89 /*
90 * Physical Function provisioning constants.
91 */
92 PFRES_NVI = 4, /* # of Virtual Interfaces */
93 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
94 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
95 */
96 PFRES_NEQ = 256, /* # of egress queues */
97 PFRES_NIQ = 0, /* # of ingress queues */
98 PFRES_TC = 0, /* PCI-E traffic class */
99 PFRES_NEXACTF = 128, /* # of exact MPS filters */
100
101 PFRES_R_CAPS = FW_CMD_CAP_PF,
102 PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104#ifdef CONFIG_PCI_IOV
105 /*
106 * Virtual Function provisioning constants. We need two extra Ingress
107 * Queues with Interrupt capability to serve as the VF's Firmware
108 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 * neither will have Free Lists associated with them). For each
110 * Ethernet/Control Egress Queue and for each Free List, we need an
111 * Egress Context.
112 */
7ee9ff94
CL
113 VFRES_NPORTS = 1, /* # of "ports" per VF */
114 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
115
116 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
117 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
118 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
7ee9ff94 119 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
13ee15d3 120 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
7ee9ff94
CL
121 VFRES_TC = 0, /* PCI-E traffic class */
122 VFRES_NEXACTF = 16, /* # of exact MPS filters */
123
124 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
13ee15d3 126#endif
7ee9ff94
CL
127};
128
129/*
130 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
131 * static and likely not to be useful in the long run. We really need to
132 * implement some form of persistent configuration which the firmware
133 * controls.
134 */
135static unsigned int pfvfres_pmask(struct adapter *adapter,
136 unsigned int pf, unsigned int vf)
137{
138 unsigned int portn, portvec;
139
140 /*
141 * Give PF's access to all of the ports.
142 */
143 if (vf == 0)
144 return FW_PFVF_CMD_PMASK_MASK;
145
146 /*
147 * For VFs, we'll assign them access to the ports based purely on the
148 * PF. We assign active ports in order, wrapping around if there are
149 * fewer active ports than PFs: e.g. active port[pf % nports].
150 * Unfortunately the adapter's port_info structs haven't been
151 * initialized yet so we have to compute this.
152 */
153 if (adapter->params.nports == 0)
154 return 0;
155
156 portn = pf % adapter->params.nports;
157 portvec = adapter->params.portvec;
158 for (;;) {
159 /*
160 * Isolate the lowest set bit in the port vector. If we're at
161 * the port number that we want, return that as the pmask.
162 * otherwise mask that bit out of the port vector and
163 * decrement our port number ...
164 */
165 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 if (portn == 0)
167 return pmask;
168 portn--;
169 portvec &= ~pmask;
170 }
171 /*NOTREACHED*/
172}
7ee9ff94 173
b8ff05a9
DM
174enum {
175 MAX_TXQ_ENTRIES = 16384,
176 MAX_CTRL_TXQ_ENTRIES = 1024,
177 MAX_RSPQ_ENTRIES = 16384,
178 MAX_RX_BUFFERS = 16384,
179 MIN_TXQ_ENTRIES = 32,
180 MIN_CTRL_TXQ_ENTRIES = 32,
181 MIN_RSPQ_ENTRIES = 128,
182 MIN_FL_ENTRIES = 16
183};
184
f2b7e78d
VP
185/* Host shadow copy of ingress filter entry. This is in host native format
186 * and doesn't match the ordering or bit order, etc. of the hardware of the
187 * firmware command. The use of bit-field structure elements is purely to
188 * remind ourselves of the field size limitations and save memory in the case
189 * where the filter table is large.
190 */
191struct filter_entry {
192 /* Administrative fields for filter.
193 */
194 u32 valid:1; /* filter allocated and valid */
195 u32 locked:1; /* filter is administratively locked */
196
197 u32 pending:1; /* filter action is pending firmware reply */
198 u32 smtidx:8; /* Source MAC Table index for smac */
199 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
200
201 /* The filter itself. Most of this is a straight copy of information
202 * provided by the extended ioctl(). Some fields are translated to
203 * internal forms -- for instance the Ingress Queue ID passed in from
204 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 */
206 struct ch_filter_specification fs;
207};
208
b8ff05a9
DM
209#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
060e0c75 213#define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
b8ff05a9 214
9baa3c34 215static const struct pci_device_id cxgb4_pci_tbl[] = {
060e0c75 216 CH_DEVICE(0xa000, 0), /* PE10K */
ccea790e
DM
217 CH_DEVICE(0x4001, -1),
218 CH_DEVICE(0x4002, -1),
219 CH_DEVICE(0x4003, -1),
220 CH_DEVICE(0x4004, -1),
221 CH_DEVICE(0x4005, -1),
222 CH_DEVICE(0x4006, -1),
223 CH_DEVICE(0x4007, -1),
224 CH_DEVICE(0x4008, -1),
225 CH_DEVICE(0x4009, -1),
226 CH_DEVICE(0x400a, -1),
fb1e933d
HS
227 CH_DEVICE(0x400d, -1),
228 CH_DEVICE(0x400e, -1),
229 CH_DEVICE(0x4080, -1),
230 CH_DEVICE(0x4081, -1),
231 CH_DEVICE(0x4082, -1),
232 CH_DEVICE(0x4083, -1),
233 CH_DEVICE(0x4084, -1),
234 CH_DEVICE(0x4085, -1),
235 CH_DEVICE(0x4086, -1),
236 CH_DEVICE(0x4087, -1),
237 CH_DEVICE(0x4088, -1),
ccea790e
DM
238 CH_DEVICE(0x4401, 4),
239 CH_DEVICE(0x4402, 4),
240 CH_DEVICE(0x4403, 4),
241 CH_DEVICE(0x4404, 4),
242 CH_DEVICE(0x4405, 4),
243 CH_DEVICE(0x4406, 4),
244 CH_DEVICE(0x4407, 4),
245 CH_DEVICE(0x4408, 4),
246 CH_DEVICE(0x4409, 4),
247 CH_DEVICE(0x440a, 4),
f637d577
VP
248 CH_DEVICE(0x440d, 4),
249 CH_DEVICE(0x440e, 4),
fb1e933d
HS
250 CH_DEVICE(0x4480, 4),
251 CH_DEVICE(0x4481, 4),
252 CH_DEVICE(0x4482, 4),
253 CH_DEVICE(0x4483, 4),
254 CH_DEVICE(0x4484, 4),
255 CH_DEVICE(0x4485, 4),
256 CH_DEVICE(0x4486, 4),
257 CH_DEVICE(0x4487, 4),
258 CH_DEVICE(0x4488, 4),
9ef603a0
VP
259 CH_DEVICE(0x5001, 4),
260 CH_DEVICE(0x5002, 4),
261 CH_DEVICE(0x5003, 4),
262 CH_DEVICE(0x5004, 4),
263 CH_DEVICE(0x5005, 4),
264 CH_DEVICE(0x5006, 4),
265 CH_DEVICE(0x5007, 4),
266 CH_DEVICE(0x5008, 4),
267 CH_DEVICE(0x5009, 4),
268 CH_DEVICE(0x500A, 4),
269 CH_DEVICE(0x500B, 4),
270 CH_DEVICE(0x500C, 4),
271 CH_DEVICE(0x500D, 4),
272 CH_DEVICE(0x500E, 4),
273 CH_DEVICE(0x500F, 4),
274 CH_DEVICE(0x5010, 4),
275 CH_DEVICE(0x5011, 4),
276 CH_DEVICE(0x5012, 4),
277 CH_DEVICE(0x5013, 4),
f0a8e6de
HS
278 CH_DEVICE(0x5014, 4),
279 CH_DEVICE(0x5015, 4),
0183aa62
HS
280 CH_DEVICE(0x5080, 4),
281 CH_DEVICE(0x5081, 4),
282 CH_DEVICE(0x5082, 4),
283 CH_DEVICE(0x5083, 4),
284 CH_DEVICE(0x5084, 4),
285 CH_DEVICE(0x5085, 4),
9ef603a0
VP
286 CH_DEVICE(0x5401, 4),
287 CH_DEVICE(0x5402, 4),
288 CH_DEVICE(0x5403, 4),
289 CH_DEVICE(0x5404, 4),
290 CH_DEVICE(0x5405, 4),
291 CH_DEVICE(0x5406, 4),
292 CH_DEVICE(0x5407, 4),
293 CH_DEVICE(0x5408, 4),
294 CH_DEVICE(0x5409, 4),
295 CH_DEVICE(0x540A, 4),
296 CH_DEVICE(0x540B, 4),
297 CH_DEVICE(0x540C, 4),
298 CH_DEVICE(0x540D, 4),
299 CH_DEVICE(0x540E, 4),
300 CH_DEVICE(0x540F, 4),
301 CH_DEVICE(0x5410, 4),
302 CH_DEVICE(0x5411, 4),
303 CH_DEVICE(0x5412, 4),
304 CH_DEVICE(0x5413, 4),
f0a8e6de
HS
305 CH_DEVICE(0x5414, 4),
306 CH_DEVICE(0x5415, 4),
0183aa62
HS
307 CH_DEVICE(0x5480, 4),
308 CH_DEVICE(0x5481, 4),
309 CH_DEVICE(0x5482, 4),
310 CH_DEVICE(0x5483, 4),
311 CH_DEVICE(0x5484, 4),
312 CH_DEVICE(0x5485, 4),
b8ff05a9
DM
313 { 0, }
314};
315
16e47624 316#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 317#define FW5_FNAME "cxgb4/t5fw.bin"
16e47624 318#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 319#define FW5_CFNAME "cxgb4/t5-config.txt"
b8ff05a9
DM
320
321MODULE_DESCRIPTION(DRV_DESC);
322MODULE_AUTHOR("Chelsio Communications");
323MODULE_LICENSE("Dual BSD/GPL");
324MODULE_VERSION(DRV_VERSION);
325MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 326MODULE_FIRMWARE(FW4_FNAME);
0a57a536 327MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 328
636f9d37
VP
329/*
330 * Normally we're willing to become the firmware's Master PF but will be happy
331 * if another PF has already become the Master and initialized the adapter.
332 * Setting "force_init" will cause this driver to forcibly establish itself as
333 * the Master PF and initialize the adapter.
334 */
335static uint force_init;
336
337module_param(force_init, uint, 0644);
338MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
339
13ee15d3
VP
340/*
341 * Normally if the firmware we connect to has Configuration File support, we
342 * use that and only fall back to the old Driver-based initialization if the
343 * Configuration File fails for some reason. If force_old_init is set, then
344 * we'll always use the old Driver-based initialization sequence.
345 */
346static uint force_old_init;
347
348module_param(force_old_init, uint, 0644);
349MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
350
b8ff05a9
DM
351static int dflt_msg_enable = DFLT_MSG_ENABLE;
352
353module_param(dflt_msg_enable, int, 0644);
354MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
355
356/*
357 * The driver uses the best interrupt scheme available on a platform in the
358 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
359 * of these schemes the driver may consider as follows:
360 *
361 * msi = 2: choose from among all three options
362 * msi = 1: only consider MSI and INTx interrupts
363 * msi = 0: force INTx interrupts
364 */
365static int msi = 2;
366
367module_param(msi, int, 0644);
368MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
369
370/*
371 * Queue interrupt hold-off timer values. Queues default to the first of these
372 * upon creation.
373 */
374static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
375
376module_param_array(intr_holdoff, uint, NULL, 0644);
377MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
378 "0..4 in microseconds");
379
380static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
381
382module_param_array(intr_cnt, uint, NULL, 0644);
383MODULE_PARM_DESC(intr_cnt,
384 "thresholds 1..3 for queue interrupt packet counters");
385
636f9d37
VP
386/*
387 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
388 * offset by 2 bytes in order to have the IP headers line up on 4-byte
389 * boundaries. This is a requirement for many architectures which will throw
390 * a machine check fault if an attempt is made to access one of the 4-byte IP
391 * header fields on a non-4-byte boundary. And it's a major performance issue
392 * even on some architectures which allow it like some implementations of the
393 * x86 ISA. However, some architectures don't mind this and for some very
394 * edge-case performance sensitive applications (like forwarding large volumes
395 * of small packets), setting this DMA offset to 0 will decrease the number of
396 * PCI-E Bus transfers enough to measurably affect performance.
397 */
398static int rx_dma_offset = 2;
399
eb939922 400static bool vf_acls;
b8ff05a9
DM
401
402#ifdef CONFIG_PCI_IOV
403module_param(vf_acls, bool, 0644);
404MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
405
7d6727cf
SR
406/* Configure the number of PCI-E Virtual Function which are to be instantiated
407 * on SR-IOV Capable Physical Functions.
0a57a536 408 */
7d6727cf 409static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
410
411module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 412MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
413#endif
414
688848b1
AB
415/* TX Queue select used to determine what algorithm to use for selecting TX
416 * queue. Select between the kernel provided function (select_queue=0) or user
417 * cxgb_select_queue function (select_queue=1)
418 *
419 * Default: select_queue=0
420 */
421static int select_queue;
422module_param(select_queue, int, 0644);
423MODULE_PARM_DESC(select_queue,
424 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
425
13ee15d3
VP
426/*
427 * The filter TCAM has a fixed portion and a variable portion. The fixed
428 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
429 * ports. The variable portion is 36 bits which can include things like Exact
430 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
431 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
432 * far exceed the 36-bit budget for this "compressed" header portion of the
433 * filter. Thus, we have a scarce resource which must be carefully managed.
434 *
435 * By default we set this up to mostly match the set of filter matching
436 * capabilities of T3 but with accommodations for some of T4's more
437 * interesting features:
438 *
439 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
440 * [Inner] VLAN (17), Port (3), FCoE (1) }
441 */
442enum {
443 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
444 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
445 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
446};
447
448static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
449
f2b7e78d
VP
450module_param(tp_vlan_pri_map, uint, 0644);
451MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
452
b8ff05a9
DM
453static struct dentry *cxgb4_debugfs_root;
454
455static LIST_HEAD(adapter_list);
456static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
457/* Adapter list to be accessed from atomic context */
458static LIST_HEAD(adap_rcu_list);
459static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
460static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
461static const char *uld_str[] = { "RDMA", "iSCSI" };
462
463static void link_report(struct net_device *dev)
464{
465 if (!netif_carrier_ok(dev))
466 netdev_info(dev, "link down\n");
467 else {
468 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
469
470 const char *s = "10Mbps";
471 const struct port_info *p = netdev_priv(dev);
472
473 switch (p->link_cfg.speed) {
e8b39015 474 case 10000:
b8ff05a9
DM
475 s = "10Gbps";
476 break;
e8b39015 477 case 1000:
b8ff05a9
DM
478 s = "1000Mbps";
479 break;
e8b39015 480 case 100:
b8ff05a9
DM
481 s = "100Mbps";
482 break;
e8b39015 483 case 40000:
72aca4bf
KS
484 s = "40Gbps";
485 break;
b8ff05a9
DM
486 }
487
488 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
489 fc[p->link_cfg.fc]);
490 }
491}
492
688848b1
AB
493#ifdef CONFIG_CHELSIO_T4_DCB
494/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
495static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
496{
497 struct port_info *pi = netdev_priv(dev);
498 struct adapter *adap = pi->adapter;
499 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
500 int i;
501
502 /* We use a simple mapping of Port TX Queue Index to DCB
503 * Priority when we're enabling DCB.
504 */
505 for (i = 0; i < pi->nqsets; i++, txq++) {
506 u32 name, value;
507 int err;
508
509 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
510 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
511 FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
512 value = enable ? i : 0xffffffff;
513
514 /* Since we can be called while atomic (from "interrupt
515 * level") we need to issue the Set Parameters Commannd
516 * without sleeping (timeout < 0).
517 */
518 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
519 &name, &value);
520
521 if (err)
522 dev_err(adap->pdev_dev,
523 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
524 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
525 else
526 txq->dcb_prio = value;
688848b1
AB
527 }
528}
529#endif /* CONFIG_CHELSIO_T4_DCB */
530
b8ff05a9
DM
531void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
532{
533 struct net_device *dev = adapter->port[port_id];
534
535 /* Skip changes from disabled ports. */
536 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
537 if (link_stat)
538 netif_carrier_on(dev);
688848b1
AB
539 else {
540#ifdef CONFIG_CHELSIO_T4_DCB
541 cxgb4_dcb_state_init(dev);
542 dcb_tx_queue_prio_enable(dev, false);
543#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 544 netif_carrier_off(dev);
688848b1 545 }
b8ff05a9
DM
546
547 link_report(dev);
548 }
549}
550
551void t4_os_portmod_changed(const struct adapter *adap, int port_id)
552{
553 static const char *mod_str[] = {
a0881cab 554 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
555 };
556
557 const struct net_device *dev = adap->port[port_id];
558 const struct port_info *pi = netdev_priv(dev);
559
560 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
561 netdev_info(dev, "port module unplugged\n");
a0881cab 562 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
563 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
564}
565
566/*
567 * Configure the exact and hash address filters to handle a port's multicast
568 * and secondary unicast MAC addresses.
569 */
570static int set_addr_filters(const struct net_device *dev, bool sleep)
571{
572 u64 mhash = 0;
573 u64 uhash = 0;
574 bool free = true;
575 u16 filt_idx[7];
576 const u8 *addr[7];
577 int ret, naddr = 0;
b8ff05a9
DM
578 const struct netdev_hw_addr *ha;
579 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 580 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 581 const struct port_info *pi = netdev_priv(dev);
060e0c75 582 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
583
584 /* first do the secondary unicast addresses */
585 netdev_for_each_uc_addr(ha, dev) {
586 addr[naddr++] = ha->addr;
587 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 588 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
589 naddr, addr, filt_idx, &uhash, sleep);
590 if (ret < 0)
591 return ret;
592
593 free = false;
594 naddr = 0;
595 }
596 }
597
598 /* next set up the multicast addresses */
4a35ecf8
DM
599 netdev_for_each_mc_addr(ha, dev) {
600 addr[naddr++] = ha->addr;
601 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 602 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
603 naddr, addr, filt_idx, &mhash, sleep);
604 if (ret < 0)
605 return ret;
606
607 free = false;
608 naddr = 0;
609 }
610 }
611
060e0c75 612 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
613 uhash | mhash, sleep);
614}
615
3069ee9b
VP
616int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
617module_param(dbfifo_int_thresh, int, 0644);
618MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
619
404d9e3f
VP
620/*
621 * usecs to sleep while draining the dbfifo
622 */
623static int dbfifo_drain_delay = 1000;
3069ee9b
VP
624module_param(dbfifo_drain_delay, int, 0644);
625MODULE_PARM_DESC(dbfifo_drain_delay,
626 "usecs to sleep while draining the dbfifo");
627
b8ff05a9
DM
628/*
629 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
630 * If @mtu is -1 it is left unchanged.
631 */
632static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
633{
634 int ret;
635 struct port_info *pi = netdev_priv(dev);
636
637 ret = set_addr_filters(dev, sleep_ok);
638 if (ret == 0)
060e0c75 639 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
b8ff05a9 640 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 641 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
642 sleep_ok);
643 return ret;
644}
645
3069ee9b
VP
646static struct workqueue_struct *workq;
647
b8ff05a9
DM
648/**
649 * link_start - enable a port
650 * @dev: the port to enable
651 *
652 * Performs the MAC and PHY actions needed to enable a port.
653 */
654static int link_start(struct net_device *dev)
655{
656 int ret;
657 struct port_info *pi = netdev_priv(dev);
060e0c75 658 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
659
660 /*
661 * We do not set address filters and promiscuity here, the stack does
662 * that step explicitly.
663 */
060e0c75 664 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 665 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 666 if (ret == 0) {
060e0c75 667 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 668 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 669 true);
b8ff05a9
DM
670 if (ret >= 0) {
671 pi->xact_addr_filt = ret;
672 ret = 0;
673 }
674 }
675 if (ret == 0)
060e0c75
DM
676 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
677 &pi->link_cfg);
30f00847
AB
678 if (ret == 0) {
679 local_bh_disable();
688848b1
AB
680 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
681 true, CXGB4_DCB_ENABLED);
30f00847
AB
682 local_bh_enable();
683 }
688848b1 684
b8ff05a9
DM
685 return ret;
686}
687
688848b1
AB
688int cxgb4_dcb_enabled(const struct net_device *dev)
689{
690#ifdef CONFIG_CHELSIO_T4_DCB
691 struct port_info *pi = netdev_priv(dev);
692
693 return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
694#else
695 return 0;
696#endif
697}
698EXPORT_SYMBOL(cxgb4_dcb_enabled);
699
700#ifdef CONFIG_CHELSIO_T4_DCB
701/* Handle a Data Center Bridging update message from the firmware. */
702static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
703{
704 int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
705 struct net_device *dev = adap->port[port];
706 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
707 int new_dcb_enabled;
708
709 cxgb4_dcb_handle_fw_update(adap, pcmd);
710 new_dcb_enabled = cxgb4_dcb_enabled(dev);
711
712 /* If the DCB has become enabled or disabled on the port then we're
713 * going to need to set up/tear down DCB Priority parameters for the
714 * TX Queues associated with the port.
715 */
716 if (new_dcb_enabled != old_dcb_enabled)
717 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
718}
719#endif /* CONFIG_CHELSIO_T4_DCB */
720
f2b7e78d
VP
721/* Clear a filter and release any of its resources that we own. This also
722 * clears the filter's "pending" status.
723 */
724static void clear_filter(struct adapter *adap, struct filter_entry *f)
725{
726 /* If the new or old filter have loopback rewriteing rules then we'll
727 * need to free any existing Layer Two Table (L2T) entries of the old
728 * filter rule. The firmware will handle freeing up any Source MAC
729 * Table (SMT) entries used for rewriting Source MAC Addresses in
730 * loopback rules.
731 */
732 if (f->l2t)
733 cxgb4_l2t_release(f->l2t);
734
735 /* The zeroing of the filter rule below clears the filter valid,
736 * pending, locked flags, l2t pointer, etc. so it's all we need for
737 * this operation.
738 */
739 memset(f, 0, sizeof(*f));
740}
741
742/* Handle a filter write/deletion reply.
743 */
744static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
745{
746 unsigned int idx = GET_TID(rpl);
747 unsigned int nidx = idx - adap->tids.ftid_base;
748 unsigned int ret;
749 struct filter_entry *f;
750
751 if (idx >= adap->tids.ftid_base && nidx <
752 (adap->tids.nftids + adap->tids.nsftids)) {
753 idx = nidx;
754 ret = GET_TCB_COOKIE(rpl->cookie);
755 f = &adap->tids.ftid_tab[idx];
756
757 if (ret == FW_FILTER_WR_FLT_DELETED) {
758 /* Clear the filter when we get confirmation from the
759 * hardware that the filter has been deleted.
760 */
761 clear_filter(adap, f);
762 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
763 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
764 idx);
765 clear_filter(adap, f);
766 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
767 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
768 f->pending = 0; /* asynchronous setup completed */
769 f->valid = 1;
770 } else {
771 /* Something went wrong. Issue a warning about the
772 * problem and clear everything out.
773 */
774 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
775 idx, ret);
776 clear_filter(adap, f);
777 }
778 }
779}
780
781/* Response queue handler for the FW event queue.
b8ff05a9
DM
782 */
783static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
784 const struct pkt_gl *gl)
785{
786 u8 opcode = ((const struct rss_header *)rsp)->opcode;
787
788 rsp++; /* skip RSS header */
b407a4a9
VP
789
790 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
791 */
792 if (unlikely(opcode == CPL_FW4_MSG &&
793 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
794 rsp++;
795 opcode = ((const struct rss_header *)rsp)->opcode;
796 rsp++;
797 if (opcode != CPL_SGE_EGR_UPDATE) {
798 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
799 , opcode);
800 goto out;
801 }
802 }
803
b8ff05a9
DM
804 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
805 const struct cpl_sge_egr_update *p = (void *)rsp;
806 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
e46dab4d 807 struct sge_txq *txq;
b8ff05a9 808
e46dab4d 809 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 810 txq->restarts++;
e46dab4d 811 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
812 struct sge_eth_txq *eq;
813
814 eq = container_of(txq, struct sge_eth_txq, q);
815 netif_tx_wake_queue(eq->txq);
816 } else {
817 struct sge_ofld_txq *oq;
818
819 oq = container_of(txq, struct sge_ofld_txq, q);
820 tasklet_schedule(&oq->qresume_tsk);
821 }
822 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
823 const struct cpl_fw6_msg *p = (void *)rsp;
824
688848b1
AB
825#ifdef CONFIG_CHELSIO_T4_DCB
826 const struct fw_port_cmd *pcmd = (const void *)p->data;
827 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
828 unsigned int action =
829 FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
830
831 if (cmd == FW_PORT_CMD &&
832 action == FW_PORT_ACTION_GET_PORT_INFO) {
833 int port = FW_PORT_CMD_PORTID_GET(
834 be32_to_cpu(pcmd->op_to_portid));
835 struct net_device *dev = q->adap->port[port];
836 int state_input = ((pcmd->u.info.dcbxdis_pkd &
837 FW_PORT_CMD_DCBXDIS)
838 ? CXGB4_DCB_INPUT_FW_DISABLED
839 : CXGB4_DCB_INPUT_FW_ENABLED);
840
841 cxgb4_dcb_state_fsm(dev, state_input);
842 }
843
844 if (cmd == FW_PORT_CMD &&
845 action == FW_PORT_ACTION_L2_DCB_CFG)
846 dcb_rpl(q->adap, pcmd);
847 else
848#endif
849 if (p->type == 0)
850 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
851 } else if (opcode == CPL_L2T_WRITE_RPL) {
852 const struct cpl_l2t_write_rpl *p = (void *)rsp;
853
854 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
855 } else if (opcode == CPL_SET_TCB_RPL) {
856 const struct cpl_set_tcb_rpl *p = (void *)rsp;
857
858 filter_rpl(q->adap, p);
b8ff05a9
DM
859 } else
860 dev_err(q->adap->pdev_dev,
861 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 862out:
b8ff05a9
DM
863 return 0;
864}
865
866/**
867 * uldrx_handler - response queue handler for ULD queues
868 * @q: the response queue that received the packet
869 * @rsp: the response queue descriptor holding the offload message
870 * @gl: the gather list of packet fragments
871 *
872 * Deliver an ingress offload packet to a ULD. All processing is done by
873 * the ULD, we just maintain statistics.
874 */
875static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
876 const struct pkt_gl *gl)
877{
878 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
879
b407a4a9
VP
880 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
881 */
882 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
883 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
884 rsp += 2;
885
b8ff05a9
DM
886 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
887 rxq->stats.nomem++;
888 return -1;
889 }
890 if (gl == NULL)
891 rxq->stats.imm++;
892 else if (gl == CXGB4_MSG_AN)
893 rxq->stats.an++;
894 else
895 rxq->stats.pkts++;
896 return 0;
897}
898
899static void disable_msi(struct adapter *adapter)
900{
901 if (adapter->flags & USING_MSIX) {
902 pci_disable_msix(adapter->pdev);
903 adapter->flags &= ~USING_MSIX;
904 } else if (adapter->flags & USING_MSI) {
905 pci_disable_msi(adapter->pdev);
906 adapter->flags &= ~USING_MSI;
907 }
908}
909
910/*
911 * Interrupt handler for non-data events used with MSI-X.
912 */
913static irqreturn_t t4_nondata_intr(int irq, void *cookie)
914{
915 struct adapter *adap = cookie;
916
917 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
918 if (v & PFSW) {
919 adap->swintr = 1;
920 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
921 }
922 t4_slow_intr_handler(adap);
923 return IRQ_HANDLED;
924}
925
926/*
927 * Name the MSI-X interrupts.
928 */
929static void name_msix_vecs(struct adapter *adap)
930{
ba27816c 931 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
932
933 /* non-data interrupts */
b1a3c2b6 934 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
935
936 /* FW events */
b1a3c2b6
DM
937 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
938 adap->port[0]->name);
b8ff05a9
DM
939
940 /* Ethernet queues */
941 for_each_port(adap, j) {
942 struct net_device *d = adap->port[j];
943 const struct port_info *pi = netdev_priv(d);
944
ba27816c 945 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
946 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
947 d->name, i);
b8ff05a9
DM
948 }
949
950 /* offload queues */
ba27816c
DM
951 for_each_ofldrxq(&adap->sge, i)
952 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 953 adap->port[0]->name, i);
ba27816c
DM
954
955 for_each_rdmarxq(&adap->sge, i)
956 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 957 adap->port[0]->name, i);
cf38be6d
HS
958
959 for_each_rdmaciq(&adap->sge, i)
960 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
961 adap->port[0]->name, i);
b8ff05a9
DM
962}
963
964static int request_msix_queue_irqs(struct adapter *adap)
965{
966 struct sge *s = &adap->sge;
cf38be6d
HS
967 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
968 int msi_index = 2;
b8ff05a9
DM
969
970 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
971 adap->msix_info[1].desc, &s->fw_evtq);
972 if (err)
973 return err;
974
975 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
976 err = request_irq(adap->msix_info[msi_index].vec,
977 t4_sge_intr_msix, 0,
978 adap->msix_info[msi_index].desc,
b8ff05a9
DM
979 &s->ethrxq[ethqidx].rspq);
980 if (err)
981 goto unwind;
404d9e3f 982 msi_index++;
b8ff05a9
DM
983 }
984 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
985 err = request_irq(adap->msix_info[msi_index].vec,
986 t4_sge_intr_msix, 0,
987 adap->msix_info[msi_index].desc,
b8ff05a9
DM
988 &s->ofldrxq[ofldqidx].rspq);
989 if (err)
990 goto unwind;
404d9e3f 991 msi_index++;
b8ff05a9
DM
992 }
993 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
994 err = request_irq(adap->msix_info[msi_index].vec,
995 t4_sge_intr_msix, 0,
996 adap->msix_info[msi_index].desc,
b8ff05a9
DM
997 &s->rdmarxq[rdmaqidx].rspq);
998 if (err)
999 goto unwind;
404d9e3f 1000 msi_index++;
b8ff05a9 1001 }
cf38be6d
HS
1002 for_each_rdmaciq(s, rdmaciqqidx) {
1003 err = request_irq(adap->msix_info[msi_index].vec,
1004 t4_sge_intr_msix, 0,
1005 adap->msix_info[msi_index].desc,
1006 &s->rdmaciq[rdmaciqqidx].rspq);
1007 if (err)
1008 goto unwind;
1009 msi_index++;
1010 }
b8ff05a9
DM
1011 return 0;
1012
1013unwind:
cf38be6d
HS
1014 while (--rdmaciqqidx >= 0)
1015 free_irq(adap->msix_info[--msi_index].vec,
1016 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 1017 while (--rdmaqidx >= 0)
404d9e3f 1018 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
1019 &s->rdmarxq[rdmaqidx].rspq);
1020 while (--ofldqidx >= 0)
404d9e3f 1021 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
1022 &s->ofldrxq[ofldqidx].rspq);
1023 while (--ethqidx >= 0)
404d9e3f
VP
1024 free_irq(adap->msix_info[--msi_index].vec,
1025 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
1026 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1027 return err;
1028}
1029
1030static void free_msix_queue_irqs(struct adapter *adap)
1031{
404d9e3f 1032 int i, msi_index = 2;
b8ff05a9
DM
1033 struct sge *s = &adap->sge;
1034
1035 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1036 for_each_ethrxq(s, i)
404d9e3f 1037 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 1038 for_each_ofldrxq(s, i)
404d9e3f 1039 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 1040 for_each_rdmarxq(s, i)
404d9e3f 1041 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
1042 for_each_rdmaciq(s, i)
1043 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
1044}
1045
671b0060
DM
1046/**
1047 * write_rss - write the RSS table for a given port
1048 * @pi: the port
1049 * @queues: array of queue indices for RSS
1050 *
1051 * Sets up the portion of the HW RSS table for the port's VI to distribute
1052 * packets to the Rx queues in @queues.
1053 */
1054static int write_rss(const struct port_info *pi, const u16 *queues)
1055{
1056 u16 *rss;
1057 int i, err;
1058 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1059
1060 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1061 if (!rss)
1062 return -ENOMEM;
1063
1064 /* map the queue indices to queue ids */
1065 for (i = 0; i < pi->rss_size; i++, queues++)
1066 rss[i] = q[*queues].rspq.abs_id;
1067
060e0c75
DM
1068 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1069 pi->rss_size, rss, pi->rss_size);
671b0060
DM
1070 kfree(rss);
1071 return err;
1072}
1073
b8ff05a9
DM
1074/**
1075 * setup_rss - configure RSS
1076 * @adap: the adapter
1077 *
671b0060 1078 * Sets up RSS for each port.
b8ff05a9
DM
1079 */
1080static int setup_rss(struct adapter *adap)
1081{
671b0060 1082 int i, err;
b8ff05a9
DM
1083
1084 for_each_port(adap, i) {
1085 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 1086
671b0060 1087 err = write_rss(pi, pi->rss);
b8ff05a9
DM
1088 if (err)
1089 return err;
1090 }
1091 return 0;
1092}
1093
e46dab4d
DM
1094/*
1095 * Return the channel of the ingress queue with the given qid.
1096 */
1097static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1098{
1099 qid -= p->ingr_start;
1100 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1101}
1102
b8ff05a9
DM
1103/*
1104 * Wait until all NAPI handlers are descheduled.
1105 */
1106static void quiesce_rx(struct adapter *adap)
1107{
1108 int i;
1109
1110 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1111 struct sge_rspq *q = adap->sge.ingr_map[i];
1112
1113 if (q && q->handler)
1114 napi_disable(&q->napi);
1115 }
1116}
1117
1118/*
1119 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1120 */
1121static void enable_rx(struct adapter *adap)
1122{
1123 int i;
1124
1125 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1126 struct sge_rspq *q = adap->sge.ingr_map[i];
1127
1128 if (!q)
1129 continue;
1130 if (q->handler)
1131 napi_enable(&q->napi);
1132 /* 0-increment GTS to start the timer and enable interrupts */
1133 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1134 SEINTARM(q->intr_params) |
1135 INGRESSQID(q->cntxt_id));
1136 }
1137}
1138
1139/**
1140 * setup_sge_queues - configure SGE Tx/Rx/response queues
1141 * @adap: the adapter
1142 *
1143 * Determines how many sets of SGE queues to use and initializes them.
1144 * We support multiple queue sets per port if we have MSI-X, otherwise
1145 * just one queue set per port.
1146 */
1147static int setup_sge_queues(struct adapter *adap)
1148{
1149 int err, msi_idx, i, j;
1150 struct sge *s = &adap->sge;
1151
1152 bitmap_zero(s->starving_fl, MAX_EGRQ);
1153 bitmap_zero(s->txq_maperr, MAX_EGRQ);
1154
1155 if (adap->flags & USING_MSIX)
1156 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1157 else {
1158 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1159 NULL, NULL);
1160 if (err)
1161 return err;
1162 msi_idx = -((int)s->intrq.abs_id + 1);
1163 }
1164
1165 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1166 msi_idx, NULL, fwevtq_handler);
1167 if (err) {
1168freeout: t4_free_sge_resources(adap);
1169 return err;
1170 }
1171
1172 for_each_port(adap, i) {
1173 struct net_device *dev = adap->port[i];
1174 struct port_info *pi = netdev_priv(dev);
1175 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1176 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1177
1178 for (j = 0; j < pi->nqsets; j++, q++) {
1179 if (msi_idx > 0)
1180 msi_idx++;
1181 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1182 msi_idx, &q->fl,
1183 t4_ethrx_handler);
1184 if (err)
1185 goto freeout;
1186 q->rspq.idx = j;
1187 memset(&q->stats, 0, sizeof(q->stats));
1188 }
1189 for (j = 0; j < pi->nqsets; j++, t++) {
1190 err = t4_sge_alloc_eth_txq(adap, t, dev,
1191 netdev_get_tx_queue(dev, j),
1192 s->fw_evtq.cntxt_id);
1193 if (err)
1194 goto freeout;
1195 }
1196 }
1197
1198 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1199 for_each_ofldrxq(s, i) {
1200 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1201 struct net_device *dev = adap->port[i / j];
1202
1203 if (msi_idx > 0)
1204 msi_idx++;
1205 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
cf38be6d
HS
1206 q->fl.size ? &q->fl : NULL,
1207 uldrx_handler);
b8ff05a9
DM
1208 if (err)
1209 goto freeout;
1210 memset(&q->stats, 0, sizeof(q->stats));
1211 s->ofld_rxq[i] = q->rspq.abs_id;
1212 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1213 s->fw_evtq.cntxt_id);
1214 if (err)
1215 goto freeout;
1216 }
1217
1218 for_each_rdmarxq(s, i) {
1219 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1220
1221 if (msi_idx > 0)
1222 msi_idx++;
1223 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
cf38be6d
HS
1224 msi_idx, q->fl.size ? &q->fl : NULL,
1225 uldrx_handler);
b8ff05a9
DM
1226 if (err)
1227 goto freeout;
1228 memset(&q->stats, 0, sizeof(q->stats));
1229 s->rdma_rxq[i] = q->rspq.abs_id;
1230 }
1231
cf38be6d
HS
1232 for_each_rdmaciq(s, i) {
1233 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1234
1235 if (msi_idx > 0)
1236 msi_idx++;
1237 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1238 msi_idx, q->fl.size ? &q->fl : NULL,
1239 uldrx_handler);
1240 if (err)
1241 goto freeout;
1242 memset(&q->stats, 0, sizeof(q->stats));
1243 s->rdma_ciq[i] = q->rspq.abs_id;
1244 }
1245
b8ff05a9
DM
1246 for_each_port(adap, i) {
1247 /*
1248 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1249 * have RDMA queues, and that's the right value.
1250 */
1251 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1252 s->fw_evtq.cntxt_id,
1253 s->rdmarxq[i].rspq.cntxt_id);
1254 if (err)
1255 goto freeout;
1256 }
1257
1258 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1259 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1260 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1261 return 0;
1262}
1263
b8ff05a9
DM
1264/*
1265 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1266 * The allocated memory is cleared.
1267 */
1268void *t4_alloc_mem(size_t size)
1269{
8be04b93 1270 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1271
1272 if (!p)
89bf67f1 1273 p = vzalloc(size);
b8ff05a9
DM
1274 return p;
1275}
1276
1277/*
1278 * Free memory allocated through alloc_mem().
1279 */
31b9c19b 1280static void t4_free_mem(void *addr)
b8ff05a9
DM
1281{
1282 if (is_vmalloc_addr(addr))
1283 vfree(addr);
1284 else
1285 kfree(addr);
1286}
1287
f2b7e78d
VP
1288/* Send a Work Request to write the filter at a specified index. We construct
1289 * a Firmware Filter Work Request to have the work done and put the indicated
1290 * filter into "pending" mode which will prevent any further actions against
1291 * it till we get a reply from the firmware on the completion status of the
1292 * request.
1293 */
1294static int set_filter_wr(struct adapter *adapter, int fidx)
1295{
1296 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1297 struct sk_buff *skb;
1298 struct fw_filter_wr *fwr;
1299 unsigned int ftid;
1300
1301 /* If the new filter requires loopback Destination MAC and/or VLAN
1302 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1303 * the filter.
1304 */
1305 if (f->fs.newdmac || f->fs.newvlan) {
1306 /* allocate L2T entry for new filter */
1307 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1308 if (f->l2t == NULL)
1309 return -EAGAIN;
1310 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1311 f->fs.eport, f->fs.dmac)) {
1312 cxgb4_l2t_release(f->l2t);
1313 f->l2t = NULL;
1314 return -ENOMEM;
1315 }
1316 }
1317
1318 ftid = adapter->tids.ftid_base + fidx;
1319
1320 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1321 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1322 memset(fwr, 0, sizeof(*fwr));
1323
1324 /* It would be nice to put most of the following in t4_hw.c but most
1325 * of the work is translating the cxgbtool ch_filter_specification
1326 * into the Work Request and the definition of that structure is
1327 * currently in cxgbtool.h which isn't appropriate to pull into the
1328 * common code. We may eventually try to come up with a more neutral
1329 * filter specification structure but for now it's easiest to simply
1330 * put this fairly direct code in line ...
1331 */
1332 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1333 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1334 fwr->tid_to_iq =
1335 htonl(V_FW_FILTER_WR_TID(ftid) |
1336 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1337 V_FW_FILTER_WR_NOREPLY(0) |
1338 V_FW_FILTER_WR_IQ(f->fs.iq));
1339 fwr->del_filter_to_l2tix =
1340 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1341 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1342 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1343 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1344 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1345 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1346 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1347 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1348 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1349 f->fs.newvlan == VLAN_REWRITE) |
1350 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1351 f->fs.newvlan == VLAN_REWRITE) |
1352 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1353 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1354 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1355 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1356 fwr->ethtype = htons(f->fs.val.ethtype);
1357 fwr->ethtypem = htons(f->fs.mask.ethtype);
1358 fwr->frag_to_ovlan_vldm =
1359 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1360 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1361 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1362 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1363 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1364 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1365 fwr->smac_sel = 0;
1366 fwr->rx_chan_rx_rpl_iq =
1367 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1368 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1369 fwr->maci_to_matchtypem =
1370 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1371 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1372 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1373 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1374 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1375 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1376 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1377 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1378 fwr->ptcl = f->fs.val.proto;
1379 fwr->ptclm = f->fs.mask.proto;
1380 fwr->ttyp = f->fs.val.tos;
1381 fwr->ttypm = f->fs.mask.tos;
1382 fwr->ivlan = htons(f->fs.val.ivlan);
1383 fwr->ivlanm = htons(f->fs.mask.ivlan);
1384 fwr->ovlan = htons(f->fs.val.ovlan);
1385 fwr->ovlanm = htons(f->fs.mask.ovlan);
1386 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1387 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1388 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1389 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1390 fwr->lp = htons(f->fs.val.lport);
1391 fwr->lpm = htons(f->fs.mask.lport);
1392 fwr->fp = htons(f->fs.val.fport);
1393 fwr->fpm = htons(f->fs.mask.fport);
1394 if (f->fs.newsmac)
1395 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1396
1397 /* Mark the filter as "pending" and ship off the Filter Work Request.
1398 * When we get the Work Request Reply we'll clear the pending status.
1399 */
1400 f->pending = 1;
1401 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1402 t4_ofld_send(adapter, skb);
1403 return 0;
1404}
1405
1406/* Delete the filter at a specified index.
1407 */
1408static int del_filter_wr(struct adapter *adapter, int fidx)
1409{
1410 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1411 struct sk_buff *skb;
1412 struct fw_filter_wr *fwr;
1413 unsigned int len, ftid;
1414
1415 len = sizeof(*fwr);
1416 ftid = adapter->tids.ftid_base + fidx;
1417
1418 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1419 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1420 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1421
1422 /* Mark the filter as "pending" and ship off the Filter Work Request.
1423 * When we get the Work Request Reply we'll clear the pending status.
1424 */
1425 f->pending = 1;
1426 t4_mgmt_tx(adapter, skb);
1427 return 0;
1428}
1429
688848b1
AB
1430static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1431 void *accel_priv, select_queue_fallback_t fallback)
1432{
1433 int txq;
1434
1435#ifdef CONFIG_CHELSIO_T4_DCB
1436 /* If a Data Center Bridging has been successfully negotiated on this
1437 * link then we'll use the skb's priority to map it to a TX Queue.
1438 * The skb's priority is determined via the VLAN Tag Priority Code
1439 * Point field.
1440 */
1441 if (cxgb4_dcb_enabled(dev)) {
1442 u16 vlan_tci;
1443 int err;
1444
1445 err = vlan_get_tag(skb, &vlan_tci);
1446 if (unlikely(err)) {
1447 if (net_ratelimit())
1448 netdev_warn(dev,
1449 "TX Packet without VLAN Tag on DCB Link\n");
1450 txq = 0;
1451 } else {
1452 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1453 }
1454 return txq;
1455 }
1456#endif /* CONFIG_CHELSIO_T4_DCB */
1457
1458 if (select_queue) {
1459 txq = (skb_rx_queue_recorded(skb)
1460 ? skb_get_rx_queue(skb)
1461 : smp_processor_id());
1462
1463 while (unlikely(txq >= dev->real_num_tx_queues))
1464 txq -= dev->real_num_tx_queues;
1465
1466 return txq;
1467 }
1468
1469 return fallback(dev, skb) % dev->real_num_tx_queues;
1470}
1471
b8ff05a9
DM
1472static inline int is_offload(const struct adapter *adap)
1473{
1474 return adap->params.offload;
1475}
1476
1477/*
1478 * Implementation of ethtool operations.
1479 */
1480
1481static u32 get_msglevel(struct net_device *dev)
1482{
1483 return netdev2adap(dev)->msg_enable;
1484}
1485
1486static void set_msglevel(struct net_device *dev, u32 val)
1487{
1488 netdev2adap(dev)->msg_enable = val;
1489}
1490
1491static char stats_strings[][ETH_GSTRING_LEN] = {
1492 "TxOctetsOK ",
1493 "TxFramesOK ",
1494 "TxBroadcastFrames ",
1495 "TxMulticastFrames ",
1496 "TxUnicastFrames ",
1497 "TxErrorFrames ",
1498
1499 "TxFrames64 ",
1500 "TxFrames65To127 ",
1501 "TxFrames128To255 ",
1502 "TxFrames256To511 ",
1503 "TxFrames512To1023 ",
1504 "TxFrames1024To1518 ",
1505 "TxFrames1519ToMax ",
1506
1507 "TxFramesDropped ",
1508 "TxPauseFrames ",
1509 "TxPPP0Frames ",
1510 "TxPPP1Frames ",
1511 "TxPPP2Frames ",
1512 "TxPPP3Frames ",
1513 "TxPPP4Frames ",
1514 "TxPPP5Frames ",
1515 "TxPPP6Frames ",
1516 "TxPPP7Frames ",
1517
1518 "RxOctetsOK ",
1519 "RxFramesOK ",
1520 "RxBroadcastFrames ",
1521 "RxMulticastFrames ",
1522 "RxUnicastFrames ",
1523
1524 "RxFramesTooLong ",
1525 "RxJabberErrors ",
1526 "RxFCSErrors ",
1527 "RxLengthErrors ",
1528 "RxSymbolErrors ",
1529 "RxRuntFrames ",
1530
1531 "RxFrames64 ",
1532 "RxFrames65To127 ",
1533 "RxFrames128To255 ",
1534 "RxFrames256To511 ",
1535 "RxFrames512To1023 ",
1536 "RxFrames1024To1518 ",
1537 "RxFrames1519ToMax ",
1538
1539 "RxPauseFrames ",
1540 "RxPPP0Frames ",
1541 "RxPPP1Frames ",
1542 "RxPPP2Frames ",
1543 "RxPPP3Frames ",
1544 "RxPPP4Frames ",
1545 "RxPPP5Frames ",
1546 "RxPPP6Frames ",
1547 "RxPPP7Frames ",
1548
1549 "RxBG0FramesDropped ",
1550 "RxBG1FramesDropped ",
1551 "RxBG2FramesDropped ",
1552 "RxBG3FramesDropped ",
1553 "RxBG0FramesTrunc ",
1554 "RxBG1FramesTrunc ",
1555 "RxBG2FramesTrunc ",
1556 "RxBG3FramesTrunc ",
1557
1558 "TSO ",
1559 "TxCsumOffload ",
1560 "RxCsumGood ",
1561 "VLANextractions ",
1562 "VLANinsertions ",
4a6346d4
DM
1563 "GROpackets ",
1564 "GROmerged ",
22adfe0a
SR
1565 "WriteCoalSuccess ",
1566 "WriteCoalFail ",
b8ff05a9
DM
1567};
1568
1569static int get_sset_count(struct net_device *dev, int sset)
1570{
1571 switch (sset) {
1572 case ETH_SS_STATS:
1573 return ARRAY_SIZE(stats_strings);
1574 default:
1575 return -EOPNOTSUPP;
1576 }
1577}
1578
1579#define T4_REGMAP_SIZE (160 * 1024)
251f9e88 1580#define T5_REGMAP_SIZE (332 * 1024)
b8ff05a9
DM
1581
1582static int get_regs_len(struct net_device *dev)
1583{
251f9e88 1584 struct adapter *adap = netdev2adap(dev);
d14807dd 1585 if (is_t4(adap->params.chip))
251f9e88
SR
1586 return T4_REGMAP_SIZE;
1587 else
1588 return T5_REGMAP_SIZE;
b8ff05a9
DM
1589}
1590
1591static int get_eeprom_len(struct net_device *dev)
1592{
1593 return EEPROMSIZE;
1594}
1595
1596static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1597{
1598 struct adapter *adapter = netdev2adap(dev);
1599
23020ab3
RJ
1600 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1601 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1602 strlcpy(info->bus_info, pci_name(adapter->pdev),
1603 sizeof(info->bus_info));
b8ff05a9 1604
84b40501 1605 if (adapter->params.fw_vers)
b8ff05a9
DM
1606 snprintf(info->fw_version, sizeof(info->fw_version),
1607 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1608 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1609 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1610 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1611 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1612 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1613 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1614 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1615 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1616}
1617
1618static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1619{
1620 if (stringset == ETH_SS_STATS)
1621 memcpy(data, stats_strings, sizeof(stats_strings));
1622}
1623
1624/*
1625 * port stats maintained per queue of the port. They should be in the same
1626 * order as in stats_strings above.
1627 */
1628struct queue_port_stats {
1629 u64 tso;
1630 u64 tx_csum;
1631 u64 rx_csum;
1632 u64 vlan_ex;
1633 u64 vlan_ins;
4a6346d4
DM
1634 u64 gro_pkts;
1635 u64 gro_merged;
b8ff05a9
DM
1636};
1637
1638static void collect_sge_port_stats(const struct adapter *adap,
1639 const struct port_info *p, struct queue_port_stats *s)
1640{
1641 int i;
1642 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1643 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1644
1645 memset(s, 0, sizeof(*s));
1646 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1647 s->tso += tx->tso;
1648 s->tx_csum += tx->tx_cso;
1649 s->rx_csum += rx->stats.rx_cso;
1650 s->vlan_ex += rx->stats.vlan_ex;
1651 s->vlan_ins += tx->vlan_ins;
4a6346d4
DM
1652 s->gro_pkts += rx->stats.lro_pkts;
1653 s->gro_merged += rx->stats.lro_merged;
b8ff05a9
DM
1654 }
1655}
1656
1657static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1658 u64 *data)
1659{
1660 struct port_info *pi = netdev_priv(dev);
1661 struct adapter *adapter = pi->adapter;
22adfe0a 1662 u32 val1, val2;
b8ff05a9
DM
1663
1664 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1665
1666 data += sizeof(struct port_stats) / sizeof(u64);
1667 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
22adfe0a 1668 data += sizeof(struct queue_port_stats) / sizeof(u64);
d14807dd 1669 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
1670 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1671 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1672 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1673 *data = val1 - val2;
1674 data++;
1675 *data = val2;
1676 data++;
1677 } else {
1678 memset(data, 0, 2 * sizeof(u64));
1679 *data += 2;
1680 }
b8ff05a9
DM
1681}
1682
1683/*
1684 * Return a version number to identify the type of adapter. The scheme is:
1685 * - bits 0..9: chip version
1686 * - bits 10..15: chip revision
835bb606 1687 * - bits 16..23: register dump version
b8ff05a9
DM
1688 */
1689static inline unsigned int mk_adap_vers(const struct adapter *ap)
1690{
d14807dd
HS
1691 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1692 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
b8ff05a9
DM
1693}
1694
1695static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1696 unsigned int end)
1697{
1698 u32 *p = buf + start;
1699
1700 for ( ; start <= end; start += sizeof(u32))
1701 *p++ = t4_read_reg(ap, start);
1702}
1703
1704static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1705 void *buf)
1706{
251f9e88 1707 static const unsigned int t4_reg_ranges[] = {
b8ff05a9
DM
1708 0x1008, 0x1108,
1709 0x1180, 0x11b4,
1710 0x11fc, 0x123c,
1711 0x1300, 0x173c,
1712 0x1800, 0x18fc,
1713 0x3000, 0x30d8,
1714 0x30e0, 0x5924,
1715 0x5960, 0x59d4,
1716 0x5a00, 0x5af8,
1717 0x6000, 0x6098,
1718 0x6100, 0x6150,
1719 0x6200, 0x6208,
1720 0x6240, 0x6248,
1721 0x6280, 0x6338,
1722 0x6370, 0x638c,
1723 0x6400, 0x643c,
1724 0x6500, 0x6524,
1725 0x6a00, 0x6a38,
1726 0x6a60, 0x6a78,
1727 0x6b00, 0x6b84,
1728 0x6bf0, 0x6c84,
1729 0x6cf0, 0x6d84,
1730 0x6df0, 0x6e84,
1731 0x6ef0, 0x6f84,
1732 0x6ff0, 0x7084,
1733 0x70f0, 0x7184,
1734 0x71f0, 0x7284,
1735 0x72f0, 0x7384,
1736 0x73f0, 0x7450,
1737 0x7500, 0x7530,
1738 0x7600, 0x761c,
1739 0x7680, 0x76cc,
1740 0x7700, 0x7798,
1741 0x77c0, 0x77fc,
1742 0x7900, 0x79fc,
1743 0x7b00, 0x7c38,
1744 0x7d00, 0x7efc,
1745 0x8dc0, 0x8e1c,
1746 0x8e30, 0x8e78,
1747 0x8ea0, 0x8f6c,
1748 0x8fc0, 0x9074,
1749 0x90fc, 0x90fc,
1750 0x9400, 0x9458,
1751 0x9600, 0x96bc,
1752 0x9800, 0x9808,
1753 0x9820, 0x983c,
1754 0x9850, 0x9864,
1755 0x9c00, 0x9c6c,
1756 0x9c80, 0x9cec,
1757 0x9d00, 0x9d6c,
1758 0x9d80, 0x9dec,
1759 0x9e00, 0x9e6c,
1760 0x9e80, 0x9eec,
1761 0x9f00, 0x9f6c,
1762 0x9f80, 0x9fec,
1763 0xd004, 0xd03c,
1764 0xdfc0, 0xdfe0,
1765 0xe000, 0xea7c,
1766 0xf000, 0x11190,
835bb606
DM
1767 0x19040, 0x1906c,
1768 0x19078, 0x19080,
1769 0x1908c, 0x19124,
b8ff05a9
DM
1770 0x19150, 0x191b0,
1771 0x191d0, 0x191e8,
1772 0x19238, 0x1924c,
1773 0x193f8, 0x19474,
1774 0x19490, 0x194f8,
1775 0x19800, 0x19f30,
1776 0x1a000, 0x1a06c,
1777 0x1a0b0, 0x1a120,
1778 0x1a128, 0x1a138,
1779 0x1a190, 0x1a1c4,
1780 0x1a1fc, 0x1a1fc,
1781 0x1e040, 0x1e04c,
835bb606 1782 0x1e284, 0x1e28c,
b8ff05a9
DM
1783 0x1e2c0, 0x1e2c0,
1784 0x1e2e0, 0x1e2e0,
1785 0x1e300, 0x1e384,
1786 0x1e3c0, 0x1e3c8,
1787 0x1e440, 0x1e44c,
835bb606 1788 0x1e684, 0x1e68c,
b8ff05a9
DM
1789 0x1e6c0, 0x1e6c0,
1790 0x1e6e0, 0x1e6e0,
1791 0x1e700, 0x1e784,
1792 0x1e7c0, 0x1e7c8,
1793 0x1e840, 0x1e84c,
835bb606 1794 0x1ea84, 0x1ea8c,
b8ff05a9
DM
1795 0x1eac0, 0x1eac0,
1796 0x1eae0, 0x1eae0,
1797 0x1eb00, 0x1eb84,
1798 0x1ebc0, 0x1ebc8,
1799 0x1ec40, 0x1ec4c,
835bb606 1800 0x1ee84, 0x1ee8c,
b8ff05a9
DM
1801 0x1eec0, 0x1eec0,
1802 0x1eee0, 0x1eee0,
1803 0x1ef00, 0x1ef84,
1804 0x1efc0, 0x1efc8,
1805 0x1f040, 0x1f04c,
835bb606 1806 0x1f284, 0x1f28c,
b8ff05a9
DM
1807 0x1f2c0, 0x1f2c0,
1808 0x1f2e0, 0x1f2e0,
1809 0x1f300, 0x1f384,
1810 0x1f3c0, 0x1f3c8,
1811 0x1f440, 0x1f44c,
835bb606 1812 0x1f684, 0x1f68c,
b8ff05a9
DM
1813 0x1f6c0, 0x1f6c0,
1814 0x1f6e0, 0x1f6e0,
1815 0x1f700, 0x1f784,
1816 0x1f7c0, 0x1f7c8,
1817 0x1f840, 0x1f84c,
835bb606 1818 0x1fa84, 0x1fa8c,
b8ff05a9
DM
1819 0x1fac0, 0x1fac0,
1820 0x1fae0, 0x1fae0,
1821 0x1fb00, 0x1fb84,
1822 0x1fbc0, 0x1fbc8,
1823 0x1fc40, 0x1fc4c,
835bb606 1824 0x1fe84, 0x1fe8c,
b8ff05a9
DM
1825 0x1fec0, 0x1fec0,
1826 0x1fee0, 0x1fee0,
1827 0x1ff00, 0x1ff84,
1828 0x1ffc0, 0x1ffc8,
1829 0x20000, 0x2002c,
1830 0x20100, 0x2013c,
1831 0x20190, 0x201c8,
1832 0x20200, 0x20318,
1833 0x20400, 0x20528,
1834 0x20540, 0x20614,
1835 0x21000, 0x21040,
1836 0x2104c, 0x21060,
1837 0x210c0, 0x210ec,
1838 0x21200, 0x21268,
1839 0x21270, 0x21284,
1840 0x212fc, 0x21388,
1841 0x21400, 0x21404,
1842 0x21500, 0x21518,
1843 0x2152c, 0x2153c,
1844 0x21550, 0x21554,
1845 0x21600, 0x21600,
1846 0x21608, 0x21628,
1847 0x21630, 0x2163c,
1848 0x21700, 0x2171c,
1849 0x21780, 0x2178c,
1850 0x21800, 0x21c38,
1851 0x21c80, 0x21d7c,
1852 0x21e00, 0x21e04,
1853 0x22000, 0x2202c,
1854 0x22100, 0x2213c,
1855 0x22190, 0x221c8,
1856 0x22200, 0x22318,
1857 0x22400, 0x22528,
1858 0x22540, 0x22614,
1859 0x23000, 0x23040,
1860 0x2304c, 0x23060,
1861 0x230c0, 0x230ec,
1862 0x23200, 0x23268,
1863 0x23270, 0x23284,
1864 0x232fc, 0x23388,
1865 0x23400, 0x23404,
1866 0x23500, 0x23518,
1867 0x2352c, 0x2353c,
1868 0x23550, 0x23554,
1869 0x23600, 0x23600,
1870 0x23608, 0x23628,
1871 0x23630, 0x2363c,
1872 0x23700, 0x2371c,
1873 0x23780, 0x2378c,
1874 0x23800, 0x23c38,
1875 0x23c80, 0x23d7c,
1876 0x23e00, 0x23e04,
1877 0x24000, 0x2402c,
1878 0x24100, 0x2413c,
1879 0x24190, 0x241c8,
1880 0x24200, 0x24318,
1881 0x24400, 0x24528,
1882 0x24540, 0x24614,
1883 0x25000, 0x25040,
1884 0x2504c, 0x25060,
1885 0x250c0, 0x250ec,
1886 0x25200, 0x25268,
1887 0x25270, 0x25284,
1888 0x252fc, 0x25388,
1889 0x25400, 0x25404,
1890 0x25500, 0x25518,
1891 0x2552c, 0x2553c,
1892 0x25550, 0x25554,
1893 0x25600, 0x25600,
1894 0x25608, 0x25628,
1895 0x25630, 0x2563c,
1896 0x25700, 0x2571c,
1897 0x25780, 0x2578c,
1898 0x25800, 0x25c38,
1899 0x25c80, 0x25d7c,
1900 0x25e00, 0x25e04,
1901 0x26000, 0x2602c,
1902 0x26100, 0x2613c,
1903 0x26190, 0x261c8,
1904 0x26200, 0x26318,
1905 0x26400, 0x26528,
1906 0x26540, 0x26614,
1907 0x27000, 0x27040,
1908 0x2704c, 0x27060,
1909 0x270c0, 0x270ec,
1910 0x27200, 0x27268,
1911 0x27270, 0x27284,
1912 0x272fc, 0x27388,
1913 0x27400, 0x27404,
1914 0x27500, 0x27518,
1915 0x2752c, 0x2753c,
1916 0x27550, 0x27554,
1917 0x27600, 0x27600,
1918 0x27608, 0x27628,
1919 0x27630, 0x2763c,
1920 0x27700, 0x2771c,
1921 0x27780, 0x2778c,
1922 0x27800, 0x27c38,
1923 0x27c80, 0x27d7c,
1924 0x27e00, 0x27e04
1925 };
1926
251f9e88
SR
1927 static const unsigned int t5_reg_ranges[] = {
1928 0x1008, 0x1148,
1929 0x1180, 0x11b4,
1930 0x11fc, 0x123c,
1931 0x1280, 0x173c,
1932 0x1800, 0x18fc,
1933 0x3000, 0x3028,
1934 0x3060, 0x30d8,
1935 0x30e0, 0x30fc,
1936 0x3140, 0x357c,
1937 0x35a8, 0x35cc,
1938 0x35ec, 0x35ec,
1939 0x3600, 0x5624,
1940 0x56cc, 0x575c,
1941 0x580c, 0x5814,
1942 0x5890, 0x58bc,
1943 0x5940, 0x59dc,
1944 0x59fc, 0x5a18,
1945 0x5a60, 0x5a9c,
1946 0x5b9c, 0x5bfc,
1947 0x6000, 0x6040,
1948 0x6058, 0x614c,
1949 0x7700, 0x7798,
1950 0x77c0, 0x78fc,
1951 0x7b00, 0x7c54,
1952 0x7d00, 0x7efc,
1953 0x8dc0, 0x8de0,
1954 0x8df8, 0x8e84,
1955 0x8ea0, 0x8f84,
1956 0x8fc0, 0x90f8,
1957 0x9400, 0x9470,
1958 0x9600, 0x96f4,
1959 0x9800, 0x9808,
1960 0x9820, 0x983c,
1961 0x9850, 0x9864,
1962 0x9c00, 0x9c6c,
1963 0x9c80, 0x9cec,
1964 0x9d00, 0x9d6c,
1965 0x9d80, 0x9dec,
1966 0x9e00, 0x9e6c,
1967 0x9e80, 0x9eec,
1968 0x9f00, 0x9f6c,
1969 0x9f80, 0xa020,
1970 0xd004, 0xd03c,
1971 0xdfc0, 0xdfe0,
1972 0xe000, 0x11088,
1973 0x1109c, 0x1117c,
1974 0x11190, 0x11204,
1975 0x19040, 0x1906c,
1976 0x19078, 0x19080,
1977 0x1908c, 0x19124,
1978 0x19150, 0x191b0,
1979 0x191d0, 0x191e8,
1980 0x19238, 0x19290,
1981 0x193f8, 0x19474,
1982 0x19490, 0x194cc,
1983 0x194f0, 0x194f8,
1984 0x19c00, 0x19c60,
1985 0x19c94, 0x19e10,
1986 0x19e50, 0x19f34,
1987 0x19f40, 0x19f50,
1988 0x19f90, 0x19fe4,
1989 0x1a000, 0x1a06c,
1990 0x1a0b0, 0x1a120,
1991 0x1a128, 0x1a138,
1992 0x1a190, 0x1a1c4,
1993 0x1a1fc, 0x1a1fc,
1994 0x1e008, 0x1e00c,
1995 0x1e040, 0x1e04c,
1996 0x1e284, 0x1e290,
1997 0x1e2c0, 0x1e2c0,
1998 0x1e2e0, 0x1e2e0,
1999 0x1e300, 0x1e384,
2000 0x1e3c0, 0x1e3c8,
2001 0x1e408, 0x1e40c,
2002 0x1e440, 0x1e44c,
2003 0x1e684, 0x1e690,
2004 0x1e6c0, 0x1e6c0,
2005 0x1e6e0, 0x1e6e0,
2006 0x1e700, 0x1e784,
2007 0x1e7c0, 0x1e7c8,
2008 0x1e808, 0x1e80c,
2009 0x1e840, 0x1e84c,
2010 0x1ea84, 0x1ea90,
2011 0x1eac0, 0x1eac0,
2012 0x1eae0, 0x1eae0,
2013 0x1eb00, 0x1eb84,
2014 0x1ebc0, 0x1ebc8,
2015 0x1ec08, 0x1ec0c,
2016 0x1ec40, 0x1ec4c,
2017 0x1ee84, 0x1ee90,
2018 0x1eec0, 0x1eec0,
2019 0x1eee0, 0x1eee0,
2020 0x1ef00, 0x1ef84,
2021 0x1efc0, 0x1efc8,
2022 0x1f008, 0x1f00c,
2023 0x1f040, 0x1f04c,
2024 0x1f284, 0x1f290,
2025 0x1f2c0, 0x1f2c0,
2026 0x1f2e0, 0x1f2e0,
2027 0x1f300, 0x1f384,
2028 0x1f3c0, 0x1f3c8,
2029 0x1f408, 0x1f40c,
2030 0x1f440, 0x1f44c,
2031 0x1f684, 0x1f690,
2032 0x1f6c0, 0x1f6c0,
2033 0x1f6e0, 0x1f6e0,
2034 0x1f700, 0x1f784,
2035 0x1f7c0, 0x1f7c8,
2036 0x1f808, 0x1f80c,
2037 0x1f840, 0x1f84c,
2038 0x1fa84, 0x1fa90,
2039 0x1fac0, 0x1fac0,
2040 0x1fae0, 0x1fae0,
2041 0x1fb00, 0x1fb84,
2042 0x1fbc0, 0x1fbc8,
2043 0x1fc08, 0x1fc0c,
2044 0x1fc40, 0x1fc4c,
2045 0x1fe84, 0x1fe90,
2046 0x1fec0, 0x1fec0,
2047 0x1fee0, 0x1fee0,
2048 0x1ff00, 0x1ff84,
2049 0x1ffc0, 0x1ffc8,
2050 0x30000, 0x30030,
2051 0x30100, 0x30144,
2052 0x30190, 0x301d0,
2053 0x30200, 0x30318,
2054 0x30400, 0x3052c,
2055 0x30540, 0x3061c,
2056 0x30800, 0x30834,
2057 0x308c0, 0x30908,
2058 0x30910, 0x309ac,
2059 0x30a00, 0x30a04,
2060 0x30a0c, 0x30a2c,
2061 0x30a44, 0x30a50,
2062 0x30a74, 0x30c24,
2063 0x30d08, 0x30d14,
2064 0x30d1c, 0x30d20,
2065 0x30d3c, 0x30d50,
2066 0x31200, 0x3120c,
2067 0x31220, 0x31220,
2068 0x31240, 0x31240,
2069 0x31600, 0x31600,
2070 0x31608, 0x3160c,
2071 0x31a00, 0x31a1c,
2072 0x31e04, 0x31e20,
2073 0x31e38, 0x31e3c,
2074 0x31e80, 0x31e80,
2075 0x31e88, 0x31ea8,
2076 0x31eb0, 0x31eb4,
2077 0x31ec8, 0x31ed4,
2078 0x31fb8, 0x32004,
2079 0x32208, 0x3223c,
2080 0x32600, 0x32630,
2081 0x32a00, 0x32abc,
2082 0x32b00, 0x32b70,
2083 0x33000, 0x33048,
2084 0x33060, 0x3309c,
2085 0x330f0, 0x33148,
2086 0x33160, 0x3319c,
2087 0x331f0, 0x332e4,
2088 0x332f8, 0x333e4,
2089 0x333f8, 0x33448,
2090 0x33460, 0x3349c,
2091 0x334f0, 0x33548,
2092 0x33560, 0x3359c,
2093 0x335f0, 0x336e4,
2094 0x336f8, 0x337e4,
2095 0x337f8, 0x337fc,
2096 0x33814, 0x33814,
2097 0x3382c, 0x3382c,
2098 0x33880, 0x3388c,
2099 0x338e8, 0x338ec,
2100 0x33900, 0x33948,
2101 0x33960, 0x3399c,
2102 0x339f0, 0x33ae4,
2103 0x33af8, 0x33b10,
2104 0x33b28, 0x33b28,
2105 0x33b3c, 0x33b50,
2106 0x33bf0, 0x33c10,
2107 0x33c28, 0x33c28,
2108 0x33c3c, 0x33c50,
2109 0x33cf0, 0x33cfc,
2110 0x34000, 0x34030,
2111 0x34100, 0x34144,
2112 0x34190, 0x341d0,
2113 0x34200, 0x34318,
2114 0x34400, 0x3452c,
2115 0x34540, 0x3461c,
2116 0x34800, 0x34834,
2117 0x348c0, 0x34908,
2118 0x34910, 0x349ac,
2119 0x34a00, 0x34a04,
2120 0x34a0c, 0x34a2c,
2121 0x34a44, 0x34a50,
2122 0x34a74, 0x34c24,
2123 0x34d08, 0x34d14,
2124 0x34d1c, 0x34d20,
2125 0x34d3c, 0x34d50,
2126 0x35200, 0x3520c,
2127 0x35220, 0x35220,
2128 0x35240, 0x35240,
2129 0x35600, 0x35600,
2130 0x35608, 0x3560c,
2131 0x35a00, 0x35a1c,
2132 0x35e04, 0x35e20,
2133 0x35e38, 0x35e3c,
2134 0x35e80, 0x35e80,
2135 0x35e88, 0x35ea8,
2136 0x35eb0, 0x35eb4,
2137 0x35ec8, 0x35ed4,
2138 0x35fb8, 0x36004,
2139 0x36208, 0x3623c,
2140 0x36600, 0x36630,
2141 0x36a00, 0x36abc,
2142 0x36b00, 0x36b70,
2143 0x37000, 0x37048,
2144 0x37060, 0x3709c,
2145 0x370f0, 0x37148,
2146 0x37160, 0x3719c,
2147 0x371f0, 0x372e4,
2148 0x372f8, 0x373e4,
2149 0x373f8, 0x37448,
2150 0x37460, 0x3749c,
2151 0x374f0, 0x37548,
2152 0x37560, 0x3759c,
2153 0x375f0, 0x376e4,
2154 0x376f8, 0x377e4,
2155 0x377f8, 0x377fc,
2156 0x37814, 0x37814,
2157 0x3782c, 0x3782c,
2158 0x37880, 0x3788c,
2159 0x378e8, 0x378ec,
2160 0x37900, 0x37948,
2161 0x37960, 0x3799c,
2162 0x379f0, 0x37ae4,
2163 0x37af8, 0x37b10,
2164 0x37b28, 0x37b28,
2165 0x37b3c, 0x37b50,
2166 0x37bf0, 0x37c10,
2167 0x37c28, 0x37c28,
2168 0x37c3c, 0x37c50,
2169 0x37cf0, 0x37cfc,
2170 0x38000, 0x38030,
2171 0x38100, 0x38144,
2172 0x38190, 0x381d0,
2173 0x38200, 0x38318,
2174 0x38400, 0x3852c,
2175 0x38540, 0x3861c,
2176 0x38800, 0x38834,
2177 0x388c0, 0x38908,
2178 0x38910, 0x389ac,
2179 0x38a00, 0x38a04,
2180 0x38a0c, 0x38a2c,
2181 0x38a44, 0x38a50,
2182 0x38a74, 0x38c24,
2183 0x38d08, 0x38d14,
2184 0x38d1c, 0x38d20,
2185 0x38d3c, 0x38d50,
2186 0x39200, 0x3920c,
2187 0x39220, 0x39220,
2188 0x39240, 0x39240,
2189 0x39600, 0x39600,
2190 0x39608, 0x3960c,
2191 0x39a00, 0x39a1c,
2192 0x39e04, 0x39e20,
2193 0x39e38, 0x39e3c,
2194 0x39e80, 0x39e80,
2195 0x39e88, 0x39ea8,
2196 0x39eb0, 0x39eb4,
2197 0x39ec8, 0x39ed4,
2198 0x39fb8, 0x3a004,
2199 0x3a208, 0x3a23c,
2200 0x3a600, 0x3a630,
2201 0x3aa00, 0x3aabc,
2202 0x3ab00, 0x3ab70,
2203 0x3b000, 0x3b048,
2204 0x3b060, 0x3b09c,
2205 0x3b0f0, 0x3b148,
2206 0x3b160, 0x3b19c,
2207 0x3b1f0, 0x3b2e4,
2208 0x3b2f8, 0x3b3e4,
2209 0x3b3f8, 0x3b448,
2210 0x3b460, 0x3b49c,
2211 0x3b4f0, 0x3b548,
2212 0x3b560, 0x3b59c,
2213 0x3b5f0, 0x3b6e4,
2214 0x3b6f8, 0x3b7e4,
2215 0x3b7f8, 0x3b7fc,
2216 0x3b814, 0x3b814,
2217 0x3b82c, 0x3b82c,
2218 0x3b880, 0x3b88c,
2219 0x3b8e8, 0x3b8ec,
2220 0x3b900, 0x3b948,
2221 0x3b960, 0x3b99c,
2222 0x3b9f0, 0x3bae4,
2223 0x3baf8, 0x3bb10,
2224 0x3bb28, 0x3bb28,
2225 0x3bb3c, 0x3bb50,
2226 0x3bbf0, 0x3bc10,
2227 0x3bc28, 0x3bc28,
2228 0x3bc3c, 0x3bc50,
2229 0x3bcf0, 0x3bcfc,
2230 0x3c000, 0x3c030,
2231 0x3c100, 0x3c144,
2232 0x3c190, 0x3c1d0,
2233 0x3c200, 0x3c318,
2234 0x3c400, 0x3c52c,
2235 0x3c540, 0x3c61c,
2236 0x3c800, 0x3c834,
2237 0x3c8c0, 0x3c908,
2238 0x3c910, 0x3c9ac,
2239 0x3ca00, 0x3ca04,
2240 0x3ca0c, 0x3ca2c,
2241 0x3ca44, 0x3ca50,
2242 0x3ca74, 0x3cc24,
2243 0x3cd08, 0x3cd14,
2244 0x3cd1c, 0x3cd20,
2245 0x3cd3c, 0x3cd50,
2246 0x3d200, 0x3d20c,
2247 0x3d220, 0x3d220,
2248 0x3d240, 0x3d240,
2249 0x3d600, 0x3d600,
2250 0x3d608, 0x3d60c,
2251 0x3da00, 0x3da1c,
2252 0x3de04, 0x3de20,
2253 0x3de38, 0x3de3c,
2254 0x3de80, 0x3de80,
2255 0x3de88, 0x3dea8,
2256 0x3deb0, 0x3deb4,
2257 0x3dec8, 0x3ded4,
2258 0x3dfb8, 0x3e004,
2259 0x3e208, 0x3e23c,
2260 0x3e600, 0x3e630,
2261 0x3ea00, 0x3eabc,
2262 0x3eb00, 0x3eb70,
2263 0x3f000, 0x3f048,
2264 0x3f060, 0x3f09c,
2265 0x3f0f0, 0x3f148,
2266 0x3f160, 0x3f19c,
2267 0x3f1f0, 0x3f2e4,
2268 0x3f2f8, 0x3f3e4,
2269 0x3f3f8, 0x3f448,
2270 0x3f460, 0x3f49c,
2271 0x3f4f0, 0x3f548,
2272 0x3f560, 0x3f59c,
2273 0x3f5f0, 0x3f6e4,
2274 0x3f6f8, 0x3f7e4,
2275 0x3f7f8, 0x3f7fc,
2276 0x3f814, 0x3f814,
2277 0x3f82c, 0x3f82c,
2278 0x3f880, 0x3f88c,
2279 0x3f8e8, 0x3f8ec,
2280 0x3f900, 0x3f948,
2281 0x3f960, 0x3f99c,
2282 0x3f9f0, 0x3fae4,
2283 0x3faf8, 0x3fb10,
2284 0x3fb28, 0x3fb28,
2285 0x3fb3c, 0x3fb50,
2286 0x3fbf0, 0x3fc10,
2287 0x3fc28, 0x3fc28,
2288 0x3fc3c, 0x3fc50,
2289 0x3fcf0, 0x3fcfc,
2290 0x40000, 0x4000c,
2291 0x40040, 0x40068,
2292 0x40080, 0x40144,
2293 0x40180, 0x4018c,
2294 0x40200, 0x40298,
2295 0x402ac, 0x4033c,
2296 0x403f8, 0x403fc,
c1f49e3e 2297 0x41304, 0x413c4,
251f9e88
SR
2298 0x41400, 0x4141c,
2299 0x41480, 0x414d0,
2300 0x44000, 0x44078,
2301 0x440c0, 0x44278,
2302 0x442c0, 0x44478,
2303 0x444c0, 0x44678,
2304 0x446c0, 0x44878,
2305 0x448c0, 0x449fc,
2306 0x45000, 0x45068,
2307 0x45080, 0x45084,
2308 0x450a0, 0x450b0,
2309 0x45200, 0x45268,
2310 0x45280, 0x45284,
2311 0x452a0, 0x452b0,
2312 0x460c0, 0x460e4,
2313 0x47000, 0x4708c,
2314 0x47200, 0x47250,
2315 0x47400, 0x47420,
2316 0x47600, 0x47618,
2317 0x47800, 0x47814,
2318 0x48000, 0x4800c,
2319 0x48040, 0x48068,
2320 0x48080, 0x48144,
2321 0x48180, 0x4818c,
2322 0x48200, 0x48298,
2323 0x482ac, 0x4833c,
2324 0x483f8, 0x483fc,
c1f49e3e 2325 0x49304, 0x493c4,
251f9e88
SR
2326 0x49400, 0x4941c,
2327 0x49480, 0x494d0,
2328 0x4c000, 0x4c078,
2329 0x4c0c0, 0x4c278,
2330 0x4c2c0, 0x4c478,
2331 0x4c4c0, 0x4c678,
2332 0x4c6c0, 0x4c878,
2333 0x4c8c0, 0x4c9fc,
2334 0x4d000, 0x4d068,
2335 0x4d080, 0x4d084,
2336 0x4d0a0, 0x4d0b0,
2337 0x4d200, 0x4d268,
2338 0x4d280, 0x4d284,
2339 0x4d2a0, 0x4d2b0,
2340 0x4e0c0, 0x4e0e4,
2341 0x4f000, 0x4f08c,
2342 0x4f200, 0x4f250,
2343 0x4f400, 0x4f420,
2344 0x4f600, 0x4f618,
2345 0x4f800, 0x4f814,
2346 0x50000, 0x500cc,
2347 0x50400, 0x50400,
2348 0x50800, 0x508cc,
2349 0x50c00, 0x50c00,
2350 0x51000, 0x5101c,
2351 0x51300, 0x51308,
2352 };
2353
b8ff05a9
DM
2354 int i;
2355 struct adapter *ap = netdev2adap(dev);
251f9e88
SR
2356 static const unsigned int *reg_ranges;
2357 int arr_size = 0, buf_size = 0;
2358
d14807dd 2359 if (is_t4(ap->params.chip)) {
251f9e88
SR
2360 reg_ranges = &t4_reg_ranges[0];
2361 arr_size = ARRAY_SIZE(t4_reg_ranges);
2362 buf_size = T4_REGMAP_SIZE;
2363 } else {
2364 reg_ranges = &t5_reg_ranges[0];
2365 arr_size = ARRAY_SIZE(t5_reg_ranges);
2366 buf_size = T5_REGMAP_SIZE;
2367 }
b8ff05a9
DM
2368
2369 regs->version = mk_adap_vers(ap);
2370
251f9e88
SR
2371 memset(buf, 0, buf_size);
2372 for (i = 0; i < arr_size; i += 2)
b8ff05a9
DM
2373 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2374}
2375
2376static int restart_autoneg(struct net_device *dev)
2377{
2378 struct port_info *p = netdev_priv(dev);
2379
2380 if (!netif_running(dev))
2381 return -EAGAIN;
2382 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2383 return -EINVAL;
060e0c75 2384 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
b8ff05a9
DM
2385 return 0;
2386}
2387
c5e06360
DM
2388static int identify_port(struct net_device *dev,
2389 enum ethtool_phys_id_state state)
b8ff05a9 2390{
c5e06360 2391 unsigned int val;
060e0c75
DM
2392 struct adapter *adap = netdev2adap(dev);
2393
c5e06360
DM
2394 if (state == ETHTOOL_ID_ACTIVE)
2395 val = 0xffff;
2396 else if (state == ETHTOOL_ID_INACTIVE)
2397 val = 0;
2398 else
2399 return -EINVAL;
b8ff05a9 2400
c5e06360 2401 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
b8ff05a9
DM
2402}
2403
2404static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2405{
2406 unsigned int v = 0;
2407
a0881cab
DM
2408 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2409 type == FW_PORT_TYPE_BT_XAUI) {
b8ff05a9
DM
2410 v |= SUPPORTED_TP;
2411 if (caps & FW_PORT_CAP_SPEED_100M)
2412 v |= SUPPORTED_100baseT_Full;
2413 if (caps & FW_PORT_CAP_SPEED_1G)
2414 v |= SUPPORTED_1000baseT_Full;
2415 if (caps & FW_PORT_CAP_SPEED_10G)
2416 v |= SUPPORTED_10000baseT_Full;
2417 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2418 v |= SUPPORTED_Backplane;
2419 if (caps & FW_PORT_CAP_SPEED_1G)
2420 v |= SUPPORTED_1000baseKX_Full;
2421 if (caps & FW_PORT_CAP_SPEED_10G)
2422 v |= SUPPORTED_10000baseKX4_Full;
2423 } else if (type == FW_PORT_TYPE_KR)
2424 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
a0881cab 2425 else if (type == FW_PORT_TYPE_BP_AP)
7d5e77aa
DM
2426 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2427 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2428 else if (type == FW_PORT_TYPE_BP4_AP)
2429 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2430 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2431 SUPPORTED_10000baseKX4_Full;
a0881cab
DM
2432 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2433 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
b8ff05a9 2434 v |= SUPPORTED_FIBRE;
72aca4bf
KS
2435 else if (type == FW_PORT_TYPE_BP40_BA)
2436 v |= SUPPORTED_40000baseSR4_Full;
b8ff05a9
DM
2437
2438 if (caps & FW_PORT_CAP_ANEG)
2439 v |= SUPPORTED_Autoneg;
2440 return v;
2441}
2442
2443static unsigned int to_fw_linkcaps(unsigned int caps)
2444{
2445 unsigned int v = 0;
2446
2447 if (caps & ADVERTISED_100baseT_Full)
2448 v |= FW_PORT_CAP_SPEED_100M;
2449 if (caps & ADVERTISED_1000baseT_Full)
2450 v |= FW_PORT_CAP_SPEED_1G;
2451 if (caps & ADVERTISED_10000baseT_Full)
2452 v |= FW_PORT_CAP_SPEED_10G;
72aca4bf
KS
2453 if (caps & ADVERTISED_40000baseSR4_Full)
2454 v |= FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2455 return v;
2456}
2457
2458static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2459{
2460 const struct port_info *p = netdev_priv(dev);
2461
2462 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
a0881cab 2463 p->port_type == FW_PORT_TYPE_BT_XFI ||
b8ff05a9
DM
2464 p->port_type == FW_PORT_TYPE_BT_XAUI)
2465 cmd->port = PORT_TP;
a0881cab
DM
2466 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2467 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
b8ff05a9 2468 cmd->port = PORT_FIBRE;
3e00a509
HS
2469 else if (p->port_type == FW_PORT_TYPE_SFP ||
2470 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2471 p->port_type == FW_PORT_TYPE_QSFP) {
2472 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2473 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2474 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2475 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2476 cmd->port = PORT_FIBRE;
2477 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2478 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
a0881cab
DM
2479 cmd->port = PORT_DA;
2480 else
3e00a509 2481 cmd->port = PORT_OTHER;
a0881cab 2482 } else
b8ff05a9
DM
2483 cmd->port = PORT_OTHER;
2484
2485 if (p->mdio_addr >= 0) {
2486 cmd->phy_address = p->mdio_addr;
2487 cmd->transceiver = XCVR_EXTERNAL;
2488 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2489 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2490 } else {
2491 cmd->phy_address = 0; /* not really, but no better option */
2492 cmd->transceiver = XCVR_INTERNAL;
2493 cmd->mdio_support = 0;
2494 }
2495
2496 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2497 cmd->advertising = from_fw_linkcaps(p->port_type,
2498 p->link_cfg.advertising);
70739497
DD
2499 ethtool_cmd_speed_set(cmd,
2500 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
b8ff05a9
DM
2501 cmd->duplex = DUPLEX_FULL;
2502 cmd->autoneg = p->link_cfg.autoneg;
2503 cmd->maxtxpkt = 0;
2504 cmd->maxrxpkt = 0;
2505 return 0;
2506}
2507
2508static unsigned int speed_to_caps(int speed)
2509{
e8b39015 2510 if (speed == 100)
b8ff05a9 2511 return FW_PORT_CAP_SPEED_100M;
e8b39015 2512 if (speed == 1000)
b8ff05a9 2513 return FW_PORT_CAP_SPEED_1G;
e8b39015 2514 if (speed == 10000)
b8ff05a9 2515 return FW_PORT_CAP_SPEED_10G;
e8b39015 2516 if (speed == 40000)
72aca4bf 2517 return FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2518 return 0;
2519}
2520
2521static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2522{
2523 unsigned int cap;
2524 struct port_info *p = netdev_priv(dev);
2525 struct link_config *lc = &p->link_cfg;
25db0338 2526 u32 speed = ethtool_cmd_speed(cmd);
b8ff05a9
DM
2527
2528 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2529 return -EINVAL;
2530
2531 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2532 /*
2533 * PHY offers a single speed. See if that's what's
2534 * being requested.
2535 */
2536 if (cmd->autoneg == AUTONEG_DISABLE &&
25db0338
DD
2537 (lc->supported & speed_to_caps(speed)))
2538 return 0;
b8ff05a9
DM
2539 return -EINVAL;
2540 }
2541
2542 if (cmd->autoneg == AUTONEG_DISABLE) {
25db0338 2543 cap = speed_to_caps(speed);
b8ff05a9 2544
72aca4bf 2545 if (!(lc->supported & cap) ||
e8b39015
BH
2546 (speed == 1000) ||
2547 (speed == 10000) ||
72aca4bf 2548 (speed == 40000))
b8ff05a9
DM
2549 return -EINVAL;
2550 lc->requested_speed = cap;
2551 lc->advertising = 0;
2552 } else {
2553 cap = to_fw_linkcaps(cmd->advertising);
2554 if (!(lc->supported & cap))
2555 return -EINVAL;
2556 lc->requested_speed = 0;
2557 lc->advertising = cap | FW_PORT_CAP_ANEG;
2558 }
2559 lc->autoneg = cmd->autoneg;
2560
2561 if (netif_running(dev))
060e0c75
DM
2562 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2563 lc);
b8ff05a9
DM
2564 return 0;
2565}
2566
2567static void get_pauseparam(struct net_device *dev,
2568 struct ethtool_pauseparam *epause)
2569{
2570 struct port_info *p = netdev_priv(dev);
2571
2572 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2573 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2574 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2575}
2576
2577static int set_pauseparam(struct net_device *dev,
2578 struct ethtool_pauseparam *epause)
2579{
2580 struct port_info *p = netdev_priv(dev);
2581 struct link_config *lc = &p->link_cfg;
2582
2583 if (epause->autoneg == AUTONEG_DISABLE)
2584 lc->requested_fc = 0;
2585 else if (lc->supported & FW_PORT_CAP_ANEG)
2586 lc->requested_fc = PAUSE_AUTONEG;
2587 else
2588 return -EINVAL;
2589
2590 if (epause->rx_pause)
2591 lc->requested_fc |= PAUSE_RX;
2592 if (epause->tx_pause)
2593 lc->requested_fc |= PAUSE_TX;
2594 if (netif_running(dev))
060e0c75
DM
2595 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2596 lc);
b8ff05a9
DM
2597 return 0;
2598}
2599
b8ff05a9
DM
2600static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2601{
2602 const struct port_info *pi = netdev_priv(dev);
2603 const struct sge *s = &pi->adapter->sge;
2604
2605 e->rx_max_pending = MAX_RX_BUFFERS;
2606 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2607 e->rx_jumbo_max_pending = 0;
2608 e->tx_max_pending = MAX_TXQ_ENTRIES;
2609
2610 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2611 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2612 e->rx_jumbo_pending = 0;
2613 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2614}
2615
2616static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2617{
2618 int i;
2619 const struct port_info *pi = netdev_priv(dev);
2620 struct adapter *adapter = pi->adapter;
2621 struct sge *s = &adapter->sge;
2622
2623 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2624 e->tx_pending > MAX_TXQ_ENTRIES ||
2625 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2626 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2627 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2628 return -EINVAL;
2629
2630 if (adapter->flags & FULL_INIT_DONE)
2631 return -EBUSY;
2632
2633 for (i = 0; i < pi->nqsets; ++i) {
2634 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2635 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2636 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2637 }
2638 return 0;
2639}
2640
2641static int closest_timer(const struct sge *s, int time)
2642{
2643 int i, delta, match = 0, min_delta = INT_MAX;
2644
2645 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2646 delta = time - s->timer_val[i];
2647 if (delta < 0)
2648 delta = -delta;
2649 if (delta < min_delta) {
2650 min_delta = delta;
2651 match = i;
2652 }
2653 }
2654 return match;
2655}
2656
2657static int closest_thres(const struct sge *s, int thres)
2658{
2659 int i, delta, match = 0, min_delta = INT_MAX;
2660
2661 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2662 delta = thres - s->counter_val[i];
2663 if (delta < 0)
2664 delta = -delta;
2665 if (delta < min_delta) {
2666 min_delta = delta;
2667 match = i;
2668 }
2669 }
2670 return match;
2671}
2672
2673/*
2674 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2675 */
2676static unsigned int qtimer_val(const struct adapter *adap,
2677 const struct sge_rspq *q)
2678{
2679 unsigned int idx = q->intr_params >> 1;
2680
2681 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2682}
2683
2684/**
c887ad0e 2685 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
2686 * @q: the Rx queue
2687 * @us: the hold-off time in us, or 0 to disable timer
2688 * @cnt: the hold-off packet count, or 0 to disable counter
2689 *
2690 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2691 * one of the two needs to be enabled for the queue to generate interrupts.
2692 */
c887ad0e
HS
2693static int set_rspq_intr_params(struct sge_rspq *q,
2694 unsigned int us, unsigned int cnt)
b8ff05a9 2695{
c887ad0e
HS
2696 struct adapter *adap = q->adap;
2697
b8ff05a9
DM
2698 if ((us | cnt) == 0)
2699 cnt = 1;
2700
2701 if (cnt) {
2702 int err;
2703 u32 v, new_idx;
2704
2705 new_idx = closest_thres(&adap->sge, cnt);
2706 if (q->desc && q->pktcnt_idx != new_idx) {
2707 /* the queue has already been created, update it */
2708 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2709 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2710 FW_PARAMS_PARAM_YZ(q->cntxt_id);
060e0c75
DM
2711 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2712 &new_idx);
b8ff05a9
DM
2713 if (err)
2714 return err;
2715 }
2716 q->pktcnt_idx = new_idx;
2717 }
2718
2719 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2720 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2721 return 0;
2722}
2723
c887ad0e
HS
2724/**
2725 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2726 * @dev: the network device
2727 * @us: the hold-off time in us, or 0 to disable timer
2728 * @cnt: the hold-off packet count, or 0 to disable counter
2729 *
2730 * Set the RX interrupt hold-off parameters for a network device.
2731 */
2732static int set_rx_intr_params(struct net_device *dev,
2733 unsigned int us, unsigned int cnt)
b8ff05a9 2734{
c887ad0e
HS
2735 int i, err;
2736 struct port_info *pi = netdev_priv(dev);
b8ff05a9 2737 struct adapter *adap = pi->adapter;
c887ad0e
HS
2738 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2739
2740 for (i = 0; i < pi->nqsets; i++, q++) {
2741 err = set_rspq_intr_params(&q->rspq, us, cnt);
2742 if (err)
2743 return err;
d4fc9dc2 2744 }
c887ad0e
HS
2745 return 0;
2746}
2747
2748static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2749{
2750 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2751 c->rx_max_coalesced_frames);
b8ff05a9
DM
2752}
2753
2754static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2755{
2756 const struct port_info *pi = netdev_priv(dev);
2757 const struct adapter *adap = pi->adapter;
2758 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2759
2760 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2761 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2762 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2763 return 0;
2764}
2765
1478b3ee
DM
2766/**
2767 * eeprom_ptov - translate a physical EEPROM address to virtual
2768 * @phys_addr: the physical EEPROM address
2769 * @fn: the PCI function number
2770 * @sz: size of function-specific area
2771 *
2772 * Translate a physical EEPROM address to virtual. The first 1K is
2773 * accessed through virtual addresses starting at 31K, the rest is
2774 * accessed through virtual addresses starting at 0.
2775 *
2776 * The mapping is as follows:
2777 * [0..1K) -> [31K..32K)
2778 * [1K..1K+A) -> [31K-A..31K)
2779 * [1K+A..ES) -> [0..ES-A-1K)
2780 *
2781 * where A = @fn * @sz, and ES = EEPROM size.
b8ff05a9 2782 */
1478b3ee 2783static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
b8ff05a9 2784{
1478b3ee 2785 fn *= sz;
b8ff05a9
DM
2786 if (phys_addr < 1024)
2787 return phys_addr + (31 << 10);
1478b3ee
DM
2788 if (phys_addr < 1024 + fn)
2789 return 31744 - fn + phys_addr - 1024;
b8ff05a9 2790 if (phys_addr < EEPROMSIZE)
1478b3ee 2791 return phys_addr - 1024 - fn;
b8ff05a9
DM
2792 return -EINVAL;
2793}
2794
2795/*
2796 * The next two routines implement eeprom read/write from physical addresses.
b8ff05a9
DM
2797 */
2798static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2799{
1478b3ee 2800 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2801
2802 if (vaddr >= 0)
2803 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2804 return vaddr < 0 ? vaddr : 0;
2805}
2806
2807static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2808{
1478b3ee 2809 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2810
2811 if (vaddr >= 0)
2812 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2813 return vaddr < 0 ? vaddr : 0;
2814}
2815
2816#define EEPROM_MAGIC 0x38E2F10C
2817
2818static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2819 u8 *data)
2820{
2821 int i, err = 0;
2822 struct adapter *adapter = netdev2adap(dev);
2823
2824 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2825 if (!buf)
2826 return -ENOMEM;
2827
2828 e->magic = EEPROM_MAGIC;
2829 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2830 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2831
2832 if (!err)
2833 memcpy(data, buf + e->offset, e->len);
2834 kfree(buf);
2835 return err;
2836}
2837
2838static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2839 u8 *data)
2840{
2841 u8 *buf;
2842 int err = 0;
2843 u32 aligned_offset, aligned_len, *p;
2844 struct adapter *adapter = netdev2adap(dev);
2845
2846 if (eeprom->magic != EEPROM_MAGIC)
2847 return -EINVAL;
2848
2849 aligned_offset = eeprom->offset & ~3;
2850 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2851
1478b3ee
DM
2852 if (adapter->fn > 0) {
2853 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2854
2855 if (aligned_offset < start ||
2856 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2857 return -EPERM;
2858 }
2859
b8ff05a9
DM
2860 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2861 /*
2862 * RMW possibly needed for first or last words.
2863 */
2864 buf = kmalloc(aligned_len, GFP_KERNEL);
2865 if (!buf)
2866 return -ENOMEM;
2867 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2868 if (!err && aligned_len > 4)
2869 err = eeprom_rd_phys(adapter,
2870 aligned_offset + aligned_len - 4,
2871 (u32 *)&buf[aligned_len - 4]);
2872 if (err)
2873 goto out;
2874 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2875 } else
2876 buf = data;
2877
2878 err = t4_seeprom_wp(adapter, false);
2879 if (err)
2880 goto out;
2881
2882 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2883 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2884 aligned_offset += 4;
2885 }
2886
2887 if (!err)
2888 err = t4_seeprom_wp(adapter, true);
2889out:
2890 if (buf != data)
2891 kfree(buf);
2892 return err;
2893}
2894
2895static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2896{
2897 int ret;
2898 const struct firmware *fw;
2899 struct adapter *adap = netdev2adap(netdev);
2900
2901 ef->data[sizeof(ef->data) - 1] = '\0';
2902 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2903 if (ret < 0)
2904 return ret;
2905
2906 ret = t4_load_fw(adap, fw->data, fw->size);
2907 release_firmware(fw);
2908 if (!ret)
2909 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2910 return ret;
2911}
2912
2913#define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2914#define BCAST_CRC 0xa0ccc1a6
2915
2916static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2917{
2918 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2919 wol->wolopts = netdev2adap(dev)->wol;
2920 memset(&wol->sopass, 0, sizeof(wol->sopass));
2921}
2922
2923static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2924{
2925 int err = 0;
2926 struct port_info *pi = netdev_priv(dev);
2927
2928 if (wol->wolopts & ~WOL_SUPPORTED)
2929 return -EINVAL;
2930 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2931 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2932 if (wol->wolopts & WAKE_BCAST) {
2933 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2934 ~0ULL, 0, false);
2935 if (!err)
2936 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2937 ~6ULL, ~0ULL, BCAST_CRC, true);
2938 } else
2939 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2940 return err;
2941}
2942
c8f44aff 2943static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 2944{
2ed28baa 2945 const struct port_info *pi = netdev_priv(dev);
c8f44aff 2946 netdev_features_t changed = dev->features ^ features;
19ecae2c 2947 int err;
19ecae2c 2948
f646968f 2949 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 2950 return 0;
19ecae2c 2951
2ed28baa
MM
2952 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2953 -1, -1, -1,
f646968f 2954 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 2955 if (unlikely(err))
f646968f 2956 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 2957 return err;
87b6cf51
DM
2958}
2959
7850f63f 2960static u32 get_rss_table_size(struct net_device *dev)
671b0060
DM
2961{
2962 const struct port_info *pi = netdev_priv(dev);
671b0060 2963
7850f63f
BH
2964 return pi->rss_size;
2965}
2966
fe62d001 2967static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
7850f63f
BH
2968{
2969 const struct port_info *pi = netdev_priv(dev);
2970 unsigned int n = pi->rss_size;
2971
671b0060 2972 while (n--)
7850f63f 2973 p[n] = pi->rss[n];
671b0060
DM
2974 return 0;
2975}
2976
fe62d001 2977static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
671b0060
DM
2978{
2979 unsigned int i;
2980 struct port_info *pi = netdev_priv(dev);
2981
7850f63f
BH
2982 for (i = 0; i < pi->rss_size; i++)
2983 pi->rss[i] = p[i];
671b0060
DM
2984 if (pi->adapter->flags & FULL_INIT_DONE)
2985 return write_rss(pi, pi->rss);
2986 return 0;
2987}
2988
2989static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
815c7db5 2990 u32 *rules)
671b0060 2991{
f796564a
DM
2992 const struct port_info *pi = netdev_priv(dev);
2993
671b0060 2994 switch (info->cmd) {
f796564a
DM
2995 case ETHTOOL_GRXFH: {
2996 unsigned int v = pi->rss_mode;
2997
2998 info->data = 0;
2999 switch (info->flow_type) {
3000 case TCP_V4_FLOW:
3001 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3002 info->data = RXH_IP_SRC | RXH_IP_DST |
3003 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3004 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3005 info->data = RXH_IP_SRC | RXH_IP_DST;
3006 break;
3007 case UDP_V4_FLOW:
3008 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3009 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3010 info->data = RXH_IP_SRC | RXH_IP_DST |
3011 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3012 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3013 info->data = RXH_IP_SRC | RXH_IP_DST;
3014 break;
3015 case SCTP_V4_FLOW:
3016 case AH_ESP_V4_FLOW:
3017 case IPV4_FLOW:
3018 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3019 info->data = RXH_IP_SRC | RXH_IP_DST;
3020 break;
3021 case TCP_V6_FLOW:
3022 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3023 info->data = RXH_IP_SRC | RXH_IP_DST |
3024 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3025 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3026 info->data = RXH_IP_SRC | RXH_IP_DST;
3027 break;
3028 case UDP_V6_FLOW:
3029 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3030 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3031 info->data = RXH_IP_SRC | RXH_IP_DST |
3032 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3033 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3034 info->data = RXH_IP_SRC | RXH_IP_DST;
3035 break;
3036 case SCTP_V6_FLOW:
3037 case AH_ESP_V6_FLOW:
3038 case IPV6_FLOW:
3039 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3040 info->data = RXH_IP_SRC | RXH_IP_DST;
3041 break;
3042 }
3043 return 0;
3044 }
671b0060 3045 case ETHTOOL_GRXRINGS:
f796564a 3046 info->data = pi->nqsets;
671b0060
DM
3047 return 0;
3048 }
3049 return -EOPNOTSUPP;
3050}
3051
9b07be4b 3052static const struct ethtool_ops cxgb_ethtool_ops = {
b8ff05a9
DM
3053 .get_settings = get_settings,
3054 .set_settings = set_settings,
3055 .get_drvinfo = get_drvinfo,
3056 .get_msglevel = get_msglevel,
3057 .set_msglevel = set_msglevel,
3058 .get_ringparam = get_sge_param,
3059 .set_ringparam = set_sge_param,
3060 .get_coalesce = get_coalesce,
3061 .set_coalesce = set_coalesce,
3062 .get_eeprom_len = get_eeprom_len,
3063 .get_eeprom = get_eeprom,
3064 .set_eeprom = set_eeprom,
3065 .get_pauseparam = get_pauseparam,
3066 .set_pauseparam = set_pauseparam,
b8ff05a9
DM
3067 .get_link = ethtool_op_get_link,
3068 .get_strings = get_strings,
c5e06360 3069 .set_phys_id = identify_port,
b8ff05a9
DM
3070 .nway_reset = restart_autoneg,
3071 .get_sset_count = get_sset_count,
3072 .get_ethtool_stats = get_stats,
3073 .get_regs_len = get_regs_len,
3074 .get_regs = get_regs,
3075 .get_wol = get_wol,
3076 .set_wol = set_wol,
671b0060 3077 .get_rxnfc = get_rxnfc,
7850f63f 3078 .get_rxfh_indir_size = get_rss_table_size,
fe62d001
BH
3079 .get_rxfh = get_rss_table,
3080 .set_rxfh = set_rss_table,
b8ff05a9
DM
3081 .flash_device = set_flash,
3082};
3083
3084/*
3085 * debugfs support
3086 */
b8ff05a9
DM
3087static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3088 loff_t *ppos)
3089{
3090 loff_t pos = *ppos;
496ad9aa 3091 loff_t avail = file_inode(file)->i_size;
b8ff05a9
DM
3092 unsigned int mem = (uintptr_t)file->private_data & 3;
3093 struct adapter *adap = file->private_data - mem;
fc5ab020
HS
3094 __be32 *data;
3095 int ret;
b8ff05a9
DM
3096
3097 if (pos < 0)
3098 return -EINVAL;
3099 if (pos >= avail)
3100 return 0;
3101 if (count > avail - pos)
3102 count = avail - pos;
3103
fc5ab020
HS
3104 data = t4_alloc_mem(count);
3105 if (!data)
3106 return -ENOMEM;
b8ff05a9 3107
fc5ab020
HS
3108 spin_lock(&adap->win0_lock);
3109 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3110 spin_unlock(&adap->win0_lock);
3111 if (ret) {
3112 t4_free_mem(data);
3113 return ret;
3114 }
3115 ret = copy_to_user(buf, data, count);
b8ff05a9 3116
fc5ab020
HS
3117 t4_free_mem(data);
3118 if (ret)
3119 return -EFAULT;
b8ff05a9 3120
fc5ab020 3121 *ppos = pos + count;
b8ff05a9
DM
3122 return count;
3123}
3124
3125static const struct file_operations mem_debugfs_fops = {
3126 .owner = THIS_MODULE,
234e3405 3127 .open = simple_open,
b8ff05a9 3128 .read = mem_read,
6038f373 3129 .llseek = default_llseek,
b8ff05a9
DM
3130};
3131
91744948 3132static void add_debugfs_mem(struct adapter *adap, const char *name,
1dd06ae8 3133 unsigned int idx, unsigned int size_mb)
b8ff05a9
DM
3134{
3135 struct dentry *de;
3136
3137 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3138 (void *)adap + idx, &mem_debugfs_fops);
3139 if (de && de->d_inode)
3140 de->d_inode->i_size = size_mb << 20;
3141}
3142
91744948 3143static int setup_debugfs(struct adapter *adap)
b8ff05a9
DM
3144{
3145 int i;
19dd37ba 3146 u32 size;
b8ff05a9
DM
3147
3148 if (IS_ERR_OR_NULL(adap->debugfs_root))
3149 return -1;
3150
3151 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
19dd37ba
SR
3152 if (i & EDRAM0_ENABLE) {
3153 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3154 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3155 }
3156 if (i & EDRAM1_ENABLE) {
3157 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3158 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3159 }
d14807dd 3160 if (is_t4(adap->params.chip)) {
19dd37ba
SR
3161 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3162 if (i & EXT_MEM_ENABLE)
3163 add_debugfs_mem(adap, "mc", MEM_MC,
3164 EXT_MEM_SIZE_GET(size));
3165 } else {
3166 if (i & EXT_MEM_ENABLE) {
3167 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3168 add_debugfs_mem(adap, "mc0", MEM_MC0,
3169 EXT_MEM_SIZE_GET(size));
3170 }
3171 if (i & EXT_MEM1_ENABLE) {
3172 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3173 add_debugfs_mem(adap, "mc1", MEM_MC1,
3174 EXT_MEM_SIZE_GET(size));
3175 }
3176 }
b8ff05a9
DM
3177 if (adap->l2t)
3178 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3179 &t4_l2t_fops);
3180 return 0;
3181}
3182
3183/*
3184 * upper-layer driver support
3185 */
3186
3187/*
3188 * Allocate an active-open TID and set it to the supplied value.
3189 */
3190int cxgb4_alloc_atid(struct tid_info *t, void *data)
3191{
3192 int atid = -1;
3193
3194 spin_lock_bh(&t->atid_lock);
3195 if (t->afree) {
3196 union aopen_entry *p = t->afree;
3197
f2b7e78d 3198 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
3199 t->afree = p->next;
3200 p->data = data;
3201 t->atids_in_use++;
3202 }
3203 spin_unlock_bh(&t->atid_lock);
3204 return atid;
3205}
3206EXPORT_SYMBOL(cxgb4_alloc_atid);
3207
3208/*
3209 * Release an active-open TID.
3210 */
3211void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3212{
f2b7e78d 3213 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
3214
3215 spin_lock_bh(&t->atid_lock);
3216 p->next = t->afree;
3217 t->afree = p;
3218 t->atids_in_use--;
3219 spin_unlock_bh(&t->atid_lock);
3220}
3221EXPORT_SYMBOL(cxgb4_free_atid);
3222
3223/*
3224 * Allocate a server TID and set it to the supplied value.
3225 */
3226int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3227{
3228 int stid;
3229
3230 spin_lock_bh(&t->stid_lock);
3231 if (family == PF_INET) {
3232 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3233 if (stid < t->nstids)
3234 __set_bit(stid, t->stid_bmap);
3235 else
3236 stid = -1;
3237 } else {
3238 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3239 if (stid < 0)
3240 stid = -1;
3241 }
3242 if (stid >= 0) {
3243 t->stid_tab[stid].data = data;
3244 stid += t->stid_base;
15f63b74
KS
3245 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3246 * This is equivalent to 4 TIDs. With CLIP enabled it
3247 * needs 2 TIDs.
3248 */
3249 if (family == PF_INET)
3250 t->stids_in_use++;
3251 else
3252 t->stids_in_use += 4;
b8ff05a9
DM
3253 }
3254 spin_unlock_bh(&t->stid_lock);
3255 return stid;
3256}
3257EXPORT_SYMBOL(cxgb4_alloc_stid);
3258
dca4faeb
VP
3259/* Allocate a server filter TID and set it to the supplied value.
3260 */
3261int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3262{
3263 int stid;
3264
3265 spin_lock_bh(&t->stid_lock);
3266 if (family == PF_INET) {
3267 stid = find_next_zero_bit(t->stid_bmap,
3268 t->nstids + t->nsftids, t->nstids);
3269 if (stid < (t->nstids + t->nsftids))
3270 __set_bit(stid, t->stid_bmap);
3271 else
3272 stid = -1;
3273 } else {
3274 stid = -1;
3275 }
3276 if (stid >= 0) {
3277 t->stid_tab[stid].data = data;
470c60c4
KS
3278 stid -= t->nstids;
3279 stid += t->sftid_base;
dca4faeb
VP
3280 t->stids_in_use++;
3281 }
3282 spin_unlock_bh(&t->stid_lock);
3283 return stid;
3284}
3285EXPORT_SYMBOL(cxgb4_alloc_sftid);
3286
3287/* Release a server TID.
b8ff05a9
DM
3288 */
3289void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3290{
470c60c4
KS
3291 /* Is it a server filter TID? */
3292 if (t->nsftids && (stid >= t->sftid_base)) {
3293 stid -= t->sftid_base;
3294 stid += t->nstids;
3295 } else {
3296 stid -= t->stid_base;
3297 }
3298
b8ff05a9
DM
3299 spin_lock_bh(&t->stid_lock);
3300 if (family == PF_INET)
3301 __clear_bit(stid, t->stid_bmap);
3302 else
3303 bitmap_release_region(t->stid_bmap, stid, 2);
3304 t->stid_tab[stid].data = NULL;
15f63b74
KS
3305 if (family == PF_INET)
3306 t->stids_in_use--;
3307 else
3308 t->stids_in_use -= 4;
b8ff05a9
DM
3309 spin_unlock_bh(&t->stid_lock);
3310}
3311EXPORT_SYMBOL(cxgb4_free_stid);
3312
3313/*
3314 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3315 */
3316static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3317 unsigned int tid)
3318{
3319 struct cpl_tid_release *req;
3320
3321 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3322 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3323 INIT_TP_WR(req, tid);
3324 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3325}
3326
3327/*
3328 * Queue a TID release request and if necessary schedule a work queue to
3329 * process it.
3330 */
31b9c19b 3331static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3332 unsigned int tid)
b8ff05a9
DM
3333{
3334 void **p = &t->tid_tab[tid];
3335 struct adapter *adap = container_of(t, struct adapter, tids);
3336
3337 spin_lock_bh(&adap->tid_release_lock);
3338 *p = adap->tid_release_head;
3339 /* Low 2 bits encode the Tx channel number */
3340 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3341 if (!adap->tid_release_task_busy) {
3342 adap->tid_release_task_busy = true;
3069ee9b 3343 queue_work(workq, &adap->tid_release_task);
b8ff05a9
DM
3344 }
3345 spin_unlock_bh(&adap->tid_release_lock);
3346}
b8ff05a9
DM
3347
3348/*
3349 * Process the list of pending TID release requests.
3350 */
3351static void process_tid_release_list(struct work_struct *work)
3352{
3353 struct sk_buff *skb;
3354 struct adapter *adap;
3355
3356 adap = container_of(work, struct adapter, tid_release_task);
3357
3358 spin_lock_bh(&adap->tid_release_lock);
3359 while (adap->tid_release_head) {
3360 void **p = adap->tid_release_head;
3361 unsigned int chan = (uintptr_t)p & 3;
3362 p = (void *)p - chan;
3363
3364 adap->tid_release_head = *p;
3365 *p = NULL;
3366 spin_unlock_bh(&adap->tid_release_lock);
3367
3368 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3369 GFP_KERNEL)))
3370 schedule_timeout_uninterruptible(1);
3371
3372 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3373 t4_ofld_send(adap, skb);
3374 spin_lock_bh(&adap->tid_release_lock);
3375 }
3376 adap->tid_release_task_busy = false;
3377 spin_unlock_bh(&adap->tid_release_lock);
3378}
3379
3380/*
3381 * Release a TID and inform HW. If we are unable to allocate the release
3382 * message we defer to a work queue.
3383 */
3384void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3385{
3386 void *old;
3387 struct sk_buff *skb;
3388 struct adapter *adap = container_of(t, struct adapter, tids);
3389
3390 old = t->tid_tab[tid];
3391 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3392 if (likely(skb)) {
3393 t->tid_tab[tid] = NULL;
3394 mk_tid_release(skb, chan, tid);
3395 t4_ofld_send(adap, skb);
3396 } else
3397 cxgb4_queue_tid_release(t, chan, tid);
3398 if (old)
3399 atomic_dec(&t->tids_in_use);
3400}
3401EXPORT_SYMBOL(cxgb4_remove_tid);
3402
3403/*
3404 * Allocate and initialize the TID tables. Returns 0 on success.
3405 */
3406static int tid_init(struct tid_info *t)
3407{
3408 size_t size;
f2b7e78d 3409 unsigned int stid_bmap_size;
b8ff05a9 3410 unsigned int natids = t->natids;
b6f8eaec 3411 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 3412
dca4faeb 3413 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
3414 size = t->ntids * sizeof(*t->tid_tab) +
3415 natids * sizeof(*t->atid_tab) +
b8ff05a9 3416 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 3417 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 3418 stid_bmap_size * sizeof(long) +
dca4faeb
VP
3419 t->nftids * sizeof(*t->ftid_tab) +
3420 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 3421
b8ff05a9
DM
3422 t->tid_tab = t4_alloc_mem(size);
3423 if (!t->tid_tab)
3424 return -ENOMEM;
3425
3426 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3427 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 3428 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 3429 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
3430 spin_lock_init(&t->stid_lock);
3431 spin_lock_init(&t->atid_lock);
3432
3433 t->stids_in_use = 0;
3434 t->afree = NULL;
3435 t->atids_in_use = 0;
3436 atomic_set(&t->tids_in_use, 0);
3437
3438 /* Setup the free list for atid_tab and clear the stid bitmap. */
3439 if (natids) {
3440 while (--natids)
3441 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3442 t->afree = t->atid_tab;
3443 }
dca4faeb 3444 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
3445 /* Reserve stid 0 for T4/T5 adapters */
3446 if (!t->stid_base &&
3447 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3448 __set_bit(0, t->stid_bmap);
3449
b8ff05a9
DM
3450 return 0;
3451}
3452
a3e3b285
AB
3453int cxgb4_clip_get(const struct net_device *dev,
3454 const struct in6_addr *lip)
01bcca68
VP
3455{
3456 struct adapter *adap;
3457 struct fw_clip_cmd c;
3458
3459 adap = netdev2adap(dev);
3460 memset(&c, 0, sizeof(c));
3461 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3462 FW_CMD_REQUEST | FW_CMD_WRITE);
3463 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
12f2a479
JP
3464 c.ip_hi = *(__be64 *)(lip->s6_addr);
3465 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3466 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3467}
a3e3b285 3468EXPORT_SYMBOL(cxgb4_clip_get);
01bcca68 3469
a3e3b285
AB
3470int cxgb4_clip_release(const struct net_device *dev,
3471 const struct in6_addr *lip)
01bcca68
VP
3472{
3473 struct adapter *adap;
3474 struct fw_clip_cmd c;
3475
3476 adap = netdev2adap(dev);
3477 memset(&c, 0, sizeof(c));
3478 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3479 FW_CMD_REQUEST | FW_CMD_READ);
3480 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
12f2a479
JP
3481 c.ip_hi = *(__be64 *)(lip->s6_addr);
3482 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3483 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3484}
a3e3b285 3485EXPORT_SYMBOL(cxgb4_clip_release);
01bcca68 3486
b8ff05a9
DM
3487/**
3488 * cxgb4_create_server - create an IP server
3489 * @dev: the device
3490 * @stid: the server TID
3491 * @sip: local IP address to bind server to
3492 * @sport: the server's TCP port
3493 * @queue: queue to direct messages from this server to
3494 *
3495 * Create an IP server for the given port and address.
3496 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3497 */
3498int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
3499 __be32 sip, __be16 sport, __be16 vlan,
3500 unsigned int queue)
b8ff05a9
DM
3501{
3502 unsigned int chan;
3503 struct sk_buff *skb;
3504 struct adapter *adap;
3505 struct cpl_pass_open_req *req;
80f40c1f 3506 int ret;
b8ff05a9
DM
3507
3508 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3509 if (!skb)
3510 return -ENOMEM;
3511
3512 adap = netdev2adap(dev);
3513 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3514 INIT_TP_WR(req, 0);
3515 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3516 req->local_port = sport;
3517 req->peer_port = htons(0);
3518 req->local_ip = sip;
3519 req->peer_ip = htonl(0);
e46dab4d 3520 chan = rxq_to_chan(&adap->sge, queue);
b8ff05a9
DM
3521 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3522 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3523 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
80f40c1f
VP
3524 ret = t4_mgmt_tx(adap, skb);
3525 return net_xmit_eval(ret);
b8ff05a9
DM
3526}
3527EXPORT_SYMBOL(cxgb4_create_server);
3528
80f40c1f
VP
3529/* cxgb4_create_server6 - create an IPv6 server
3530 * @dev: the device
3531 * @stid: the server TID
3532 * @sip: local IPv6 address to bind server to
3533 * @sport: the server's TCP port
3534 * @queue: queue to direct messages from this server to
3535 *
3536 * Create an IPv6 server for the given port and address.
3537 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3538 */
3539int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3540 const struct in6_addr *sip, __be16 sport,
3541 unsigned int queue)
3542{
3543 unsigned int chan;
3544 struct sk_buff *skb;
3545 struct adapter *adap;
3546 struct cpl_pass_open_req6 *req;
3547 int ret;
3548
3549 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3550 if (!skb)
3551 return -ENOMEM;
3552
3553 adap = netdev2adap(dev);
3554 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3555 INIT_TP_WR(req, 0);
3556 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3557 req->local_port = sport;
3558 req->peer_port = htons(0);
3559 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3560 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3561 req->peer_ip_hi = cpu_to_be64(0);
3562 req->peer_ip_lo = cpu_to_be64(0);
3563 chan = rxq_to_chan(&adap->sge, queue);
3564 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3565 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3566 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3567 ret = t4_mgmt_tx(adap, skb);
3568 return net_xmit_eval(ret);
3569}
3570EXPORT_SYMBOL(cxgb4_create_server6);
3571
3572int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3573 unsigned int queue, bool ipv6)
3574{
3575 struct sk_buff *skb;
3576 struct adapter *adap;
3577 struct cpl_close_listsvr_req *req;
3578 int ret;
3579
3580 adap = netdev2adap(dev);
3581
3582 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3583 if (!skb)
3584 return -ENOMEM;
3585
3586 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3587 INIT_TP_WR(req, 0);
3588 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3589 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3590 LISTSVR_IPV6(0)) | QUEUENO(queue));
3591 ret = t4_mgmt_tx(adap, skb);
3592 return net_xmit_eval(ret);
3593}
3594EXPORT_SYMBOL(cxgb4_remove_server);
3595
b8ff05a9
DM
3596/**
3597 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3598 * @mtus: the HW MTU table
3599 * @mtu: the target MTU
3600 * @idx: index of selected entry in the MTU table
3601 *
3602 * Returns the index and the value in the HW MTU table that is closest to
3603 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3604 * table, in which case that smallest available value is selected.
3605 */
3606unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3607 unsigned int *idx)
3608{
3609 unsigned int i = 0;
3610
3611 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3612 ++i;
3613 if (idx)
3614 *idx = i;
3615 return mtus[i];
3616}
3617EXPORT_SYMBOL(cxgb4_best_mtu);
3618
92e7ae71
HS
3619/**
3620 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3621 * @mtus: the HW MTU table
3622 * @header_size: Header Size
3623 * @data_size_max: maximum Data Segment Size
3624 * @data_size_align: desired Data Segment Size Alignment (2^N)
3625 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3626 *
3627 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3628 * MTU Table based solely on a Maximum MTU parameter, we break that
3629 * parameter up into a Header Size and Maximum Data Segment Size, and
3630 * provide a desired Data Segment Size Alignment. If we find an MTU in
3631 * the Hardware MTU Table which will result in a Data Segment Size with
3632 * the requested alignment _and_ that MTU isn't "too far" from the
3633 * closest MTU, then we'll return that rather than the closest MTU.
3634 */
3635unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3636 unsigned short header_size,
3637 unsigned short data_size_max,
3638 unsigned short data_size_align,
3639 unsigned int *mtu_idxp)
3640{
3641 unsigned short max_mtu = header_size + data_size_max;
3642 unsigned short data_size_align_mask = data_size_align - 1;
3643 int mtu_idx, aligned_mtu_idx;
3644
3645 /* Scan the MTU Table till we find an MTU which is larger than our
3646 * Maximum MTU or we reach the end of the table. Along the way,
3647 * record the last MTU found, if any, which will result in a Data
3648 * Segment Length matching the requested alignment.
3649 */
3650 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3651 unsigned short data_size = mtus[mtu_idx] - header_size;
3652
3653 /* If this MTU minus the Header Size would result in a
3654 * Data Segment Size of the desired alignment, remember it.
3655 */
3656 if ((data_size & data_size_align_mask) == 0)
3657 aligned_mtu_idx = mtu_idx;
3658
3659 /* If we're not at the end of the Hardware MTU Table and the
3660 * next element is larger than our Maximum MTU, drop out of
3661 * the loop.
3662 */
3663 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3664 break;
3665 }
3666
3667 /* If we fell out of the loop because we ran to the end of the table,
3668 * then we just have to use the last [largest] entry.
3669 */
3670 if (mtu_idx == NMTUS)
3671 mtu_idx--;
3672
3673 /* If we found an MTU which resulted in the requested Data Segment
3674 * Length alignment and that's "not far" from the largest MTU which is
3675 * less than or equal to the maximum MTU, then use that.
3676 */
3677 if (aligned_mtu_idx >= 0 &&
3678 mtu_idx - aligned_mtu_idx <= 1)
3679 mtu_idx = aligned_mtu_idx;
3680
3681 /* If the caller has passed in an MTU Index pointer, pass the
3682 * MTU Index back. Return the MTU value.
3683 */
3684 if (mtu_idxp)
3685 *mtu_idxp = mtu_idx;
3686 return mtus[mtu_idx];
3687}
3688EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3689
b8ff05a9
DM
3690/**
3691 * cxgb4_port_chan - get the HW channel of a port
3692 * @dev: the net device for the port
3693 *
3694 * Return the HW Tx channel of the given port.
3695 */
3696unsigned int cxgb4_port_chan(const struct net_device *dev)
3697{
3698 return netdev2pinfo(dev)->tx_chan;
3699}
3700EXPORT_SYMBOL(cxgb4_port_chan);
3701
881806bc
VP
3702unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3703{
3704 struct adapter *adap = netdev2adap(dev);
2cc301d2 3705 u32 v1, v2, lp_count, hp_count;
881806bc 3706
2cc301d2
SR
3707 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3708 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3709 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3710 lp_count = G_LP_COUNT(v1);
3711 hp_count = G_HP_COUNT(v1);
3712 } else {
3713 lp_count = G_LP_COUNT_T5(v1);
3714 hp_count = G_HP_COUNT_T5(v2);
3715 }
3716 return lpfifo ? lp_count : hp_count;
881806bc
VP
3717}
3718EXPORT_SYMBOL(cxgb4_dbfifo_count);
3719
b8ff05a9
DM
3720/**
3721 * cxgb4_port_viid - get the VI id of a port
3722 * @dev: the net device for the port
3723 *
3724 * Return the VI id of the given port.
3725 */
3726unsigned int cxgb4_port_viid(const struct net_device *dev)
3727{
3728 return netdev2pinfo(dev)->viid;
3729}
3730EXPORT_SYMBOL(cxgb4_port_viid);
3731
3732/**
3733 * cxgb4_port_idx - get the index of a port
3734 * @dev: the net device for the port
3735 *
3736 * Return the index of the given port.
3737 */
3738unsigned int cxgb4_port_idx(const struct net_device *dev)
3739{
3740 return netdev2pinfo(dev)->port_id;
3741}
3742EXPORT_SYMBOL(cxgb4_port_idx);
3743
b8ff05a9
DM
3744void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3745 struct tp_tcp_stats *v6)
3746{
3747 struct adapter *adap = pci_get_drvdata(pdev);
3748
3749 spin_lock(&adap->stats_lock);
3750 t4_tp_get_tcp_stats(adap, v4, v6);
3751 spin_unlock(&adap->stats_lock);
3752}
3753EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3754
3755void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3756 const unsigned int *pgsz_order)
3757{
3758 struct adapter *adap = netdev2adap(dev);
3759
3760 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3761 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3762 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3763 HPZ3(pgsz_order[3]));
3764}
3765EXPORT_SYMBOL(cxgb4_iscsi_init);
3766
3069ee9b
VP
3767int cxgb4_flush_eq_cache(struct net_device *dev)
3768{
3769 struct adapter *adap = netdev2adap(dev);
3770 int ret;
3771
3772 ret = t4_fwaddrspace_write(adap, adap->mbox,
3773 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3774 return ret;
3775}
3776EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3777
3778static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3779{
3780 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3781 __be64 indices;
3782 int ret;
3783
fc5ab020
HS
3784 spin_lock(&adap->win0_lock);
3785 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3786 sizeof(indices), (__be32 *)&indices,
3787 T4_MEMORY_READ);
3788 spin_unlock(&adap->win0_lock);
3069ee9b 3789 if (!ret) {
404d9e3f
VP
3790 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3791 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
3792 }
3793 return ret;
3794}
3795
3796int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3797 u16 size)
3798{
3799 struct adapter *adap = netdev2adap(dev);
3800 u16 hw_pidx, hw_cidx;
3801 int ret;
3802
3803 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3804 if (ret)
3805 goto out;
3806
3807 if (pidx != hw_pidx) {
3808 u16 delta;
3809
3810 if (pidx >= hw_pidx)
3811 delta = pidx - hw_pidx;
3812 else
3813 delta = size - hw_pidx + pidx;
3814 wmb();
840f3000
VP
3815 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3816 QID(qid) | PIDX(delta));
3069ee9b
VP
3817 }
3818out:
3819 return ret;
3820}
3821EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3822
3cbdb928
VP
3823void cxgb4_disable_db_coalescing(struct net_device *dev)
3824{
3825 struct adapter *adap;
3826
3827 adap = netdev2adap(dev);
3828 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3829 F_NOCOALESCE);
3830}
3831EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3832
3833void cxgb4_enable_db_coalescing(struct net_device *dev)
3834{
3835 struct adapter *adap;
3836
3837 adap = netdev2adap(dev);
3838 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3839}
3840EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3841
031cf476
HS
3842int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3843{
3844 struct adapter *adap;
3845 u32 offset, memtype, memaddr;
3846 u32 edc0_size, edc1_size, mc0_size, mc1_size;
3847 u32 edc0_end, edc1_end, mc0_end, mc1_end;
3848 int ret;
3849
3850 adap = netdev2adap(dev);
3851
3852 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3853
3854 /* Figure out where the offset lands in the Memory Type/Address scheme.
3855 * This code assumes that the memory is laid out starting at offset 0
3856 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3857 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
3858 * MC0, and some have both MC0 and MC1.
3859 */
3860 edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3861 edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3862 mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3863
3864 edc0_end = edc0_size;
3865 edc1_end = edc0_end + edc1_size;
3866 mc0_end = edc1_end + mc0_size;
3867
3868 if (offset < edc0_end) {
3869 memtype = MEM_EDC0;
3870 memaddr = offset;
3871 } else if (offset < edc1_end) {
3872 memtype = MEM_EDC1;
3873 memaddr = offset - edc0_end;
3874 } else {
3875 if (offset < mc0_end) {
3876 memtype = MEM_MC0;
3877 memaddr = offset - edc1_end;
3878 } else if (is_t4(adap->params.chip)) {
3879 /* T4 only has a single memory channel */
3880 goto err;
3881 } else {
3882 mc1_size = EXT_MEM_SIZE_GET(
3883 t4_read_reg(adap,
3884 MA_EXT_MEMORY1_BAR)) << 20;
3885 mc1_end = mc0_end + mc1_size;
3886 if (offset < mc1_end) {
3887 memtype = MEM_MC1;
3888 memaddr = offset - mc0_end;
3889 } else {
3890 /* offset beyond the end of any memory */
3891 goto err;
3892 }
3893 }
3894 }
3895
3896 spin_lock(&adap->win0_lock);
3897 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3898 spin_unlock(&adap->win0_lock);
3899 return ret;
3900
3901err:
3902 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3903 stag, offset);
3904 return -EINVAL;
3905}
3906EXPORT_SYMBOL(cxgb4_read_tpte);
3907
7730b4c7
HS
3908u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3909{
3910 u32 hi, lo;
3911 struct adapter *adap;
3912
3913 adap = netdev2adap(dev);
3914 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3915 hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3916
3917 return ((u64)hi << 32) | (u64)lo;
3918}
3919EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3920
b8ff05a9
DM
3921static struct pci_driver cxgb4_driver;
3922
3923static void check_neigh_update(struct neighbour *neigh)
3924{
3925 const struct device *parent;
3926 const struct net_device *netdev = neigh->dev;
3927
3928 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3929 netdev = vlan_dev_real_dev(netdev);
3930 parent = netdev->dev.parent;
3931 if (parent && parent->driver == &cxgb4_driver.driver)
3932 t4_l2t_update(dev_get_drvdata(parent), neigh);
3933}
3934
3935static int netevent_cb(struct notifier_block *nb, unsigned long event,
3936 void *data)
3937{
3938 switch (event) {
3939 case NETEVENT_NEIGH_UPDATE:
3940 check_neigh_update(data);
3941 break;
b8ff05a9
DM
3942 case NETEVENT_REDIRECT:
3943 default:
3944 break;
3945 }
3946 return 0;
3947}
3948
3949static bool netevent_registered;
3950static struct notifier_block cxgb4_netevent_nb = {
3951 .notifier_call = netevent_cb
3952};
3953
3069ee9b
VP
3954static void drain_db_fifo(struct adapter *adap, int usecs)
3955{
2cc301d2 3956 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
3957
3958 do {
2cc301d2
SR
3959 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3960 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3961 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3962 lp_count = G_LP_COUNT(v1);
3963 hp_count = G_HP_COUNT(v1);
3964 } else {
3965 lp_count = G_LP_COUNT_T5(v1);
3966 hp_count = G_HP_COUNT_T5(v2);
3967 }
3968
3969 if (lp_count == 0 && hp_count == 0)
3970 break;
3069ee9b
VP
3971 set_current_state(TASK_UNINTERRUPTIBLE);
3972 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
3973 } while (1);
3974}
3975
3976static void disable_txq_db(struct sge_txq *q)
3977{
05eb2389
SW
3978 unsigned long flags;
3979
3980 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 3981 q->db_disabled = 1;
05eb2389 3982 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
3983}
3984
05eb2389 3985static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
3986{
3987 spin_lock_irq(&q->db_lock);
05eb2389
SW
3988 if (q->db_pidx_inc) {
3989 /* Make sure that all writes to the TX descriptors
3990 * are committed before we tell HW about them.
3991 */
3992 wmb();
3993 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3994 QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3995 q->db_pidx_inc = 0;
3996 }
3069ee9b
VP
3997 q->db_disabled = 0;
3998 spin_unlock_irq(&q->db_lock);
3999}
4000
4001static void disable_dbs(struct adapter *adap)
4002{
4003 int i;
4004
4005 for_each_ethrxq(&adap->sge, i)
4006 disable_txq_db(&adap->sge.ethtxq[i].q);
4007 for_each_ofldrxq(&adap->sge, i)
4008 disable_txq_db(&adap->sge.ofldtxq[i].q);
4009 for_each_port(adap, i)
4010 disable_txq_db(&adap->sge.ctrlq[i].q);
4011}
4012
4013static void enable_dbs(struct adapter *adap)
4014{
4015 int i;
4016
4017 for_each_ethrxq(&adap->sge, i)
05eb2389 4018 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 4019 for_each_ofldrxq(&adap->sge, i)
05eb2389 4020 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 4021 for_each_port(adap, i)
05eb2389
SW
4022 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4023}
4024
4025static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4026{
4027 if (adap->uld_handle[CXGB4_ULD_RDMA])
4028 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4029 cmd);
4030}
4031
4032static void process_db_full(struct work_struct *work)
4033{
4034 struct adapter *adap;
4035
4036 adap = container_of(work, struct adapter, db_full_task);
4037
4038 drain_db_fifo(adap, dbfifo_drain_delay);
4039 enable_dbs(adap);
4040 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4041 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4042 DBFIFO_HP_INT | DBFIFO_LP_INT,
4043 DBFIFO_HP_INT | DBFIFO_LP_INT);
3069ee9b
VP
4044}
4045
4046static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4047{
4048 u16 hw_pidx, hw_cidx;
4049 int ret;
4050
05eb2389 4051 spin_lock_irq(&q->db_lock);
3069ee9b
VP
4052 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4053 if (ret)
4054 goto out;
4055 if (q->db_pidx != hw_pidx) {
4056 u16 delta;
4057
4058 if (q->db_pidx >= hw_pidx)
4059 delta = q->db_pidx - hw_pidx;
4060 else
4061 delta = q->size - hw_pidx + q->db_pidx;
4062 wmb();
840f3000
VP
4063 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4064 QID(q->cntxt_id) | PIDX(delta));
3069ee9b
VP
4065 }
4066out:
4067 q->db_disabled = 0;
05eb2389
SW
4068 q->db_pidx_inc = 0;
4069 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
4070 if (ret)
4071 CH_WARN(adap, "DB drop recovery failed.\n");
4072}
4073static void recover_all_queues(struct adapter *adap)
4074{
4075 int i;
4076
4077 for_each_ethrxq(&adap->sge, i)
4078 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4079 for_each_ofldrxq(&adap->sge, i)
4080 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4081 for_each_port(adap, i)
4082 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4083}
4084
881806bc
VP
4085static void process_db_drop(struct work_struct *work)
4086{
4087 struct adapter *adap;
881806bc 4088
3069ee9b 4089 adap = container_of(work, struct adapter, db_drop_task);
881806bc 4090
d14807dd 4091 if (is_t4(adap->params.chip)) {
05eb2389 4092 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 4093 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 4094 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 4095 recover_all_queues(adap);
05eb2389 4096 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 4097 enable_dbs(adap);
05eb2389 4098 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2cc301d2
SR
4099 } else {
4100 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4101 u16 qid = (dropped_db >> 15) & 0x1ffff;
4102 u16 pidx_inc = dropped_db & 0x1fff;
4103 unsigned int s_qpp;
4104 unsigned short udb_density;
4105 unsigned long qpshift;
4106 int page;
4107 u32 udb;
4108
4109 dev_warn(adap->pdev_dev,
4110 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4111 dropped_db, qid,
4112 (dropped_db >> 14) & 1,
4113 (dropped_db >> 13) & 1,
4114 pidx_inc);
4115
4116 drain_db_fifo(adap, 1);
4117
4118 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4119 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4120 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4121 qpshift = PAGE_SHIFT - ilog2(udb_density);
4122 udb = qid << qpshift;
4123 udb &= PAGE_MASK;
4124 page = udb / PAGE_SIZE;
4125 udb += (qid - (page * udb_density)) * 128;
4126
4127 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
4128
4129 /* Re-enable BAR2 WC */
4130 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4131 }
4132
3069ee9b 4133 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
881806bc
VP
4134}
4135
4136void t4_db_full(struct adapter *adap)
4137{
d14807dd 4138 if (is_t4(adap->params.chip)) {
05eb2389
SW
4139 disable_dbs(adap);
4140 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2cc301d2
SR
4141 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4142 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4143 queue_work(workq, &adap->db_full_task);
4144 }
881806bc
VP
4145}
4146
4147void t4_db_dropped(struct adapter *adap)
4148{
05eb2389
SW
4149 if (is_t4(adap->params.chip)) {
4150 disable_dbs(adap);
4151 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4152 }
4153 queue_work(workq, &adap->db_drop_task);
881806bc
VP
4154}
4155
b8ff05a9
DM
4156static void uld_attach(struct adapter *adap, unsigned int uld)
4157{
4158 void *handle;
4159 struct cxgb4_lld_info lli;
dca4faeb 4160 unsigned short i;
b8ff05a9
DM
4161
4162 lli.pdev = adap->pdev;
35b1de55 4163 lli.pf = adap->fn;
b8ff05a9
DM
4164 lli.l2t = adap->l2t;
4165 lli.tids = &adap->tids;
4166 lli.ports = adap->port;
4167 lli.vr = &adap->vres;
4168 lli.mtus = adap->params.mtus;
4169 if (uld == CXGB4_ULD_RDMA) {
4170 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 4171 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 4172 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 4173 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
4174 } else if (uld == CXGB4_ULD_ISCSI) {
4175 lli.rxq_ids = adap->sge.ofld_rxq;
4176 lli.nrxq = adap->sge.ofldqsets;
4177 }
4178 lli.ntxq = adap->sge.ofldqsets;
4179 lli.nchan = adap->params.nports;
4180 lli.nports = adap->params.nports;
4181 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 4182 lli.adapter_type = adap->params.chip;
b8ff05a9 4183 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
7730b4c7 4184 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
b8ff05a9 4185 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4186 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4187 (adap->fn * 4));
b8ff05a9 4188 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4189 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4190 (adap->fn * 4));
dcf7b6f5 4191 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
4192 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4193 for (i = 0; i < NCHAN; i++)
4194 lli.tx_modq[i] = i;
b8ff05a9
DM
4195 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4196 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4197 lli.fw_vers = adap->params.fw_vers;
3069ee9b 4198 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
4199 lli.sge_ingpadboundary = adap->sge.fl_align;
4200 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
4201 lli.sge_pktshift = adap->sge.pktshift;
4202 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
4203 lli.max_ordird_qp = adap->params.max_ordird_qp;
4204 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 4205 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
b8ff05a9
DM
4206
4207 handle = ulds[uld].add(&lli);
4208 if (IS_ERR(handle)) {
4209 dev_warn(adap->pdev_dev,
4210 "could not attach to the %s driver, error %ld\n",
4211 uld_str[uld], PTR_ERR(handle));
4212 return;
4213 }
4214
4215 adap->uld_handle[uld] = handle;
4216
4217 if (!netevent_registered) {
4218 register_netevent_notifier(&cxgb4_netevent_nb);
4219 netevent_registered = true;
4220 }
e29f5dbc
DM
4221
4222 if (adap->flags & FULL_INIT_DONE)
4223 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
4224}
4225
4226static void attach_ulds(struct adapter *adap)
4227{
4228 unsigned int i;
4229
01bcca68
VP
4230 spin_lock(&adap_rcu_lock);
4231 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4232 spin_unlock(&adap_rcu_lock);
4233
b8ff05a9
DM
4234 mutex_lock(&uld_mutex);
4235 list_add_tail(&adap->list_node, &adapter_list);
4236 for (i = 0; i < CXGB4_ULD_MAX; i++)
4237 if (ulds[i].add)
4238 uld_attach(adap, i);
4239 mutex_unlock(&uld_mutex);
4240}
4241
4242static void detach_ulds(struct adapter *adap)
4243{
4244 unsigned int i;
4245
4246 mutex_lock(&uld_mutex);
4247 list_del(&adap->list_node);
4248 for (i = 0; i < CXGB4_ULD_MAX; i++)
4249 if (adap->uld_handle[i]) {
4250 ulds[i].state_change(adap->uld_handle[i],
4251 CXGB4_STATE_DETACH);
4252 adap->uld_handle[i] = NULL;
4253 }
4254 if (netevent_registered && list_empty(&adapter_list)) {
4255 unregister_netevent_notifier(&cxgb4_netevent_nb);
4256 netevent_registered = false;
4257 }
4258 mutex_unlock(&uld_mutex);
01bcca68
VP
4259
4260 spin_lock(&adap_rcu_lock);
4261 list_del_rcu(&adap->rcu_node);
4262 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
4263}
4264
4265static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4266{
4267 unsigned int i;
4268
4269 mutex_lock(&uld_mutex);
4270 for (i = 0; i < CXGB4_ULD_MAX; i++)
4271 if (adap->uld_handle[i])
4272 ulds[i].state_change(adap->uld_handle[i], new_state);
4273 mutex_unlock(&uld_mutex);
4274}
4275
4276/**
4277 * cxgb4_register_uld - register an upper-layer driver
4278 * @type: the ULD type
4279 * @p: the ULD methods
4280 *
4281 * Registers an upper-layer driver with this driver and notifies the ULD
4282 * about any presently available devices that support its type. Returns
4283 * %-EBUSY if a ULD of the same type is already registered.
4284 */
4285int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4286{
4287 int ret = 0;
4288 struct adapter *adap;
4289
4290 if (type >= CXGB4_ULD_MAX)
4291 return -EINVAL;
4292 mutex_lock(&uld_mutex);
4293 if (ulds[type].add) {
4294 ret = -EBUSY;
4295 goto out;
4296 }
4297 ulds[type] = *p;
4298 list_for_each_entry(adap, &adapter_list, list_node)
4299 uld_attach(adap, type);
4300out: mutex_unlock(&uld_mutex);
4301 return ret;
4302}
4303EXPORT_SYMBOL(cxgb4_register_uld);
4304
4305/**
4306 * cxgb4_unregister_uld - unregister an upper-layer driver
4307 * @type: the ULD type
4308 *
4309 * Unregisters an existing upper-layer driver.
4310 */
4311int cxgb4_unregister_uld(enum cxgb4_uld type)
4312{
4313 struct adapter *adap;
4314
4315 if (type >= CXGB4_ULD_MAX)
4316 return -EINVAL;
4317 mutex_lock(&uld_mutex);
4318 list_for_each_entry(adap, &adapter_list, list_node)
4319 adap->uld_handle[type] = NULL;
4320 ulds[type].add = NULL;
4321 mutex_unlock(&uld_mutex);
4322 return 0;
4323}
4324EXPORT_SYMBOL(cxgb4_unregister_uld);
4325
01bcca68 4326/* Check if netdev on which event is occured belongs to us or not. Return
ee9a33b2
LR
4327 * success (true) if it belongs otherwise failure (false).
4328 * Called with rcu_read_lock() held.
01bcca68 4329 */
ee9a33b2 4330static bool cxgb4_netdev(const struct net_device *netdev)
01bcca68
VP
4331{
4332 struct adapter *adap;
4333 int i;
4334
01bcca68
VP
4335 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4336 for (i = 0; i < MAX_NPORTS; i++)
ee9a33b2
LR
4337 if (adap->port[i] == netdev)
4338 return true;
4339 return false;
01bcca68
VP
4340}
4341
4342static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4343 unsigned long event)
4344{
4345 int ret = NOTIFY_DONE;
4346
4347 rcu_read_lock();
4348 if (cxgb4_netdev(event_dev)) {
4349 switch (event) {
4350 case NETDEV_UP:
4351 ret = cxgb4_clip_get(event_dev,
4352 (const struct in6_addr *)ifa->addr.s6_addr);
4353 if (ret < 0) {
4354 rcu_read_unlock();
4355 return ret;
4356 }
4357 ret = NOTIFY_OK;
4358 break;
4359 case NETDEV_DOWN:
4360 cxgb4_clip_release(event_dev,
4361 (const struct in6_addr *)ifa->addr.s6_addr);
4362 ret = NOTIFY_OK;
4363 break;
4364 default:
4365 break;
4366 }
4367 }
4368 rcu_read_unlock();
4369 return ret;
4370}
4371
4372static int cxgb4_inet6addr_handler(struct notifier_block *this,
4373 unsigned long event, void *data)
4374{
4375 struct inet6_ifaddr *ifa = data;
4376 struct net_device *event_dev;
4377 int ret = NOTIFY_DONE;
01bcca68 4378 struct bonding *bond = netdev_priv(ifa->idev->dev);
9caff1e7 4379 struct list_head *iter;
01bcca68
VP
4380 struct slave *slave;
4381 struct pci_dev *first_pdev = NULL;
4382
4383 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4384 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4385 ret = clip_add(event_dev, ifa, event);
4386 } else if (ifa->idev->dev->flags & IFF_MASTER) {
4387 /* It is possible that two different adapters are bonded in one
4388 * bond. We need to find such different adapters and add clip
4389 * in all of them only once.
4390 */
4391 read_lock(&bond->lock);
9caff1e7 4392 bond_for_each_slave(bond, slave, iter) {
01bcca68
VP
4393 if (!first_pdev) {
4394 ret = clip_add(slave->dev, ifa, event);
4395 /* If clip_add is success then only initialize
4396 * first_pdev since it means it is our device
4397 */
4398 if (ret == NOTIFY_OK)
4399 first_pdev = to_pci_dev(
4400 slave->dev->dev.parent);
4401 } else if (first_pdev !=
4402 to_pci_dev(slave->dev->dev.parent))
4403 ret = clip_add(slave->dev, ifa, event);
4404 }
4405 read_unlock(&bond->lock);
4406 } else
4407 ret = clip_add(ifa->idev->dev, ifa, event);
4408
4409 return ret;
4410}
4411
4412static struct notifier_block cxgb4_inet6addr_notifier = {
4413 .notifier_call = cxgb4_inet6addr_handler
4414};
4415
4416/* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4417 * a physical device.
4418 * The physical device reference is needed to send the actul CLIP command.
4419 */
4420static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4421{
4422 struct inet6_dev *idev = NULL;
4423 struct inet6_ifaddr *ifa;
4424 int ret = 0;
4425
4426 idev = __in6_dev_get(root_dev);
4427 if (!idev)
4428 return ret;
4429
4430 read_lock_bh(&idev->lock);
4431 list_for_each_entry(ifa, &idev->addr_list, if_list) {
4432 ret = cxgb4_clip_get(dev,
4433 (const struct in6_addr *)ifa->addr.s6_addr);
4434 if (ret < 0)
4435 break;
4436 }
4437 read_unlock_bh(&idev->lock);
4438
4439 return ret;
4440}
4441
4442static int update_root_dev_clip(struct net_device *dev)
4443{
4444 struct net_device *root_dev = NULL;
4445 int i, ret = 0;
4446
4447 /* First populate the real net device's IPv6 addresses */
4448 ret = update_dev_clip(dev, dev);
4449 if (ret)
4450 return ret;
4451
4452 /* Parse all bond and vlan devices layered on top of the physical dev */
4453 for (i = 0; i < VLAN_N_VID; i++) {
f06c7f9f 4454 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
01bcca68
VP
4455 if (!root_dev)
4456 continue;
4457
4458 ret = update_dev_clip(root_dev, dev);
4459 if (ret)
4460 break;
4461 }
4462 return ret;
4463}
4464
4465static void update_clip(const struct adapter *adap)
4466{
4467 int i;
4468 struct net_device *dev;
4469 int ret;
4470
4471 rcu_read_lock();
4472
4473 for (i = 0; i < MAX_NPORTS; i++) {
4474 dev = adap->port[i];
4475 ret = 0;
4476
4477 if (dev)
4478 ret = update_root_dev_clip(dev);
4479
4480 if (ret < 0)
4481 break;
4482 }
4483 rcu_read_unlock();
4484}
4485
b8ff05a9
DM
4486/**
4487 * cxgb_up - enable the adapter
4488 * @adap: adapter being enabled
4489 *
4490 * Called when the first port is enabled, this function performs the
4491 * actions necessary to make an adapter operational, such as completing
4492 * the initialization of HW modules, and enabling interrupts.
4493 *
4494 * Must be called with the rtnl lock held.
4495 */
4496static int cxgb_up(struct adapter *adap)
4497{
aaefae9b 4498 int err;
b8ff05a9 4499
aaefae9b
DM
4500 err = setup_sge_queues(adap);
4501 if (err)
4502 goto out;
4503 err = setup_rss(adap);
4504 if (err)
4505 goto freeq;
b8ff05a9
DM
4506
4507 if (adap->flags & USING_MSIX) {
aaefae9b 4508 name_msix_vecs(adap);
b8ff05a9
DM
4509 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4510 adap->msix_info[0].desc, adap);
4511 if (err)
4512 goto irq_err;
4513
4514 err = request_msix_queue_irqs(adap);
4515 if (err) {
4516 free_irq(adap->msix_info[0].vec, adap);
4517 goto irq_err;
4518 }
4519 } else {
4520 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4521 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 4522 adap->port[0]->name, adap);
b8ff05a9
DM
4523 if (err)
4524 goto irq_err;
4525 }
4526 enable_rx(adap);
4527 t4_sge_start(adap);
4528 t4_intr_enable(adap);
aaefae9b 4529 adap->flags |= FULL_INIT_DONE;
b8ff05a9 4530 notify_ulds(adap, CXGB4_STATE_UP);
01bcca68 4531 update_clip(adap);
b8ff05a9
DM
4532 out:
4533 return err;
4534 irq_err:
4535 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
4536 freeq:
4537 t4_free_sge_resources(adap);
b8ff05a9
DM
4538 goto out;
4539}
4540
4541static void cxgb_down(struct adapter *adapter)
4542{
4543 t4_intr_disable(adapter);
4544 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
4545 cancel_work_sync(&adapter->db_full_task);
4546 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 4547 adapter->tid_release_task_busy = false;
204dc3c0 4548 adapter->tid_release_head = NULL;
b8ff05a9
DM
4549
4550 if (adapter->flags & USING_MSIX) {
4551 free_msix_queue_irqs(adapter);
4552 free_irq(adapter->msix_info[0].vec, adapter);
4553 } else
4554 free_irq(adapter->pdev->irq, adapter);
4555 quiesce_rx(adapter);
aaefae9b
DM
4556 t4_sge_stop(adapter);
4557 t4_free_sge_resources(adapter);
4558 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
4559}
4560
4561/*
4562 * net_device operations
4563 */
4564static int cxgb_open(struct net_device *dev)
4565{
4566 int err;
4567 struct port_info *pi = netdev_priv(dev);
4568 struct adapter *adapter = pi->adapter;
4569
6a3c869a
DM
4570 netif_carrier_off(dev);
4571
aaefae9b
DM
4572 if (!(adapter->flags & FULL_INIT_DONE)) {
4573 err = cxgb_up(adapter);
4574 if (err < 0)
4575 return err;
4576 }
b8ff05a9 4577
f68707b8
DM
4578 err = link_start(dev);
4579 if (!err)
4580 netif_tx_start_all_queues(dev);
4581 return err;
b8ff05a9
DM
4582}
4583
4584static int cxgb_close(struct net_device *dev)
4585{
b8ff05a9
DM
4586 struct port_info *pi = netdev_priv(dev);
4587 struct adapter *adapter = pi->adapter;
4588
4589 netif_tx_stop_all_queues(dev);
4590 netif_carrier_off(dev);
060e0c75 4591 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
b8ff05a9
DM
4592}
4593
f2b7e78d
VP
4594/* Return an error number if the indicated filter isn't writable ...
4595 */
4596static int writable_filter(struct filter_entry *f)
4597{
4598 if (f->locked)
4599 return -EPERM;
4600 if (f->pending)
4601 return -EBUSY;
4602
4603 return 0;
4604}
4605
4606/* Delete the filter at the specified index (if valid). The checks for all
4607 * the common problems with doing this like the filter being locked, currently
4608 * pending in another operation, etc.
4609 */
4610static int delete_filter(struct adapter *adapter, unsigned int fidx)
4611{
4612 struct filter_entry *f;
4613 int ret;
4614
dca4faeb 4615 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
4616 return -EINVAL;
4617
4618 f = &adapter->tids.ftid_tab[fidx];
4619 ret = writable_filter(f);
4620 if (ret)
4621 return ret;
4622 if (f->valid)
4623 return del_filter_wr(adapter, fidx);
4624
4625 return 0;
4626}
4627
dca4faeb 4628int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
4629 __be32 sip, __be16 sport, __be16 vlan,
4630 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
4631{
4632 int ret;
4633 struct filter_entry *f;
4634 struct adapter *adap;
4635 int i;
4636 u8 *val;
4637
4638 adap = netdev2adap(dev);
4639
1cab775c 4640 /* Adjust stid to correct filter index */
470c60c4 4641 stid -= adap->tids.sftid_base;
1cab775c
VP
4642 stid += adap->tids.nftids;
4643
dca4faeb
VP
4644 /* Check to make sure the filter requested is writable ...
4645 */
4646 f = &adap->tids.ftid_tab[stid];
4647 ret = writable_filter(f);
4648 if (ret)
4649 return ret;
4650
4651 /* Clear out any old resources being used by the filter before
4652 * we start constructing the new filter.
4653 */
4654 if (f->valid)
4655 clear_filter(adap, f);
4656
4657 /* Clear out filter specifications */
4658 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4659 f->fs.val.lport = cpu_to_be16(sport);
4660 f->fs.mask.lport = ~0;
4661 val = (u8 *)&sip;
793dad94 4662 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
4663 for (i = 0; i < 4; i++) {
4664 f->fs.val.lip[i] = val[i];
4665 f->fs.mask.lip[i] = ~0;
4666 }
dcf7b6f5 4667 if (adap->params.tp.vlan_pri_map & F_PORT) {
793dad94
VP
4668 f->fs.val.iport = port;
4669 f->fs.mask.iport = mask;
4670 }
4671 }
dca4faeb 4672
dcf7b6f5 4673 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
7c89e555
KS
4674 f->fs.val.proto = IPPROTO_TCP;
4675 f->fs.mask.proto = ~0;
4676 }
4677
dca4faeb
VP
4678 f->fs.dirsteer = 1;
4679 f->fs.iq = queue;
4680 /* Mark filter as locked */
4681 f->locked = 1;
4682 f->fs.rpttid = 1;
4683
4684 ret = set_filter_wr(adap, stid);
4685 if (ret) {
4686 clear_filter(adap, f);
4687 return ret;
4688 }
4689
4690 return 0;
4691}
4692EXPORT_SYMBOL(cxgb4_create_server_filter);
4693
4694int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4695 unsigned int queue, bool ipv6)
4696{
4697 int ret;
4698 struct filter_entry *f;
4699 struct adapter *adap;
4700
4701 adap = netdev2adap(dev);
1cab775c
VP
4702
4703 /* Adjust stid to correct filter index */
470c60c4 4704 stid -= adap->tids.sftid_base;
1cab775c
VP
4705 stid += adap->tids.nftids;
4706
dca4faeb
VP
4707 f = &adap->tids.ftid_tab[stid];
4708 /* Unlock the filter */
4709 f->locked = 0;
4710
4711 ret = delete_filter(adap, stid);
4712 if (ret)
4713 return ret;
4714
4715 return 0;
4716}
4717EXPORT_SYMBOL(cxgb4_remove_server_filter);
4718
f5152c90
DM
4719static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4720 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
4721{
4722 struct port_stats stats;
4723 struct port_info *p = netdev_priv(dev);
4724 struct adapter *adapter = p->adapter;
b8ff05a9 4725
9fe6cb58
GS
4726 /* Block retrieving statistics during EEH error
4727 * recovery. Otherwise, the recovery might fail
4728 * and the PCI device will be removed permanently
4729 */
b8ff05a9 4730 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
4731 if (!netif_device_present(dev)) {
4732 spin_unlock(&adapter->stats_lock);
4733 return ns;
4734 }
b8ff05a9
DM
4735 t4_get_port_stats(adapter, p->tx_chan, &stats);
4736 spin_unlock(&adapter->stats_lock);
4737
4738 ns->tx_bytes = stats.tx_octets;
4739 ns->tx_packets = stats.tx_frames;
4740 ns->rx_bytes = stats.rx_octets;
4741 ns->rx_packets = stats.rx_frames;
4742 ns->multicast = stats.rx_mcast_frames;
4743
4744 /* detailed rx_errors */
4745 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4746 stats.rx_runt;
4747 ns->rx_over_errors = 0;
4748 ns->rx_crc_errors = stats.rx_fcs_err;
4749 ns->rx_frame_errors = stats.rx_symbol_err;
4750 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4751 stats.rx_ovflow2 + stats.rx_ovflow3 +
4752 stats.rx_trunc0 + stats.rx_trunc1 +
4753 stats.rx_trunc2 + stats.rx_trunc3;
4754 ns->rx_missed_errors = 0;
4755
4756 /* detailed tx_errors */
4757 ns->tx_aborted_errors = 0;
4758 ns->tx_carrier_errors = 0;
4759 ns->tx_fifo_errors = 0;
4760 ns->tx_heartbeat_errors = 0;
4761 ns->tx_window_errors = 0;
4762
4763 ns->tx_errors = stats.tx_error_frames;
4764 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4765 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4766 return ns;
4767}
4768
4769static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4770{
060e0c75 4771 unsigned int mbox;
b8ff05a9
DM
4772 int ret = 0, prtad, devad;
4773 struct port_info *pi = netdev_priv(dev);
4774 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4775
4776 switch (cmd) {
4777 case SIOCGMIIPHY:
4778 if (pi->mdio_addr < 0)
4779 return -EOPNOTSUPP;
4780 data->phy_id = pi->mdio_addr;
4781 break;
4782 case SIOCGMIIREG:
4783 case SIOCSMIIREG:
4784 if (mdio_phy_id_is_c45(data->phy_id)) {
4785 prtad = mdio_phy_id_prtad(data->phy_id);
4786 devad = mdio_phy_id_devad(data->phy_id);
4787 } else if (data->phy_id < 32) {
4788 prtad = data->phy_id;
4789 devad = 0;
4790 data->reg_num &= 0x1f;
4791 } else
4792 return -EINVAL;
4793
060e0c75 4794 mbox = pi->adapter->fn;
b8ff05a9 4795 if (cmd == SIOCGMIIREG)
060e0c75 4796 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4797 data->reg_num, &data->val_out);
4798 else
060e0c75 4799 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4800 data->reg_num, data->val_in);
4801 break;
4802 default:
4803 return -EOPNOTSUPP;
4804 }
4805 return ret;
4806}
4807
4808static void cxgb_set_rxmode(struct net_device *dev)
4809{
4810 /* unfortunately we can't return errors to the stack */
4811 set_rxmode(dev, -1, false);
4812}
4813
4814static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4815{
4816 int ret;
4817 struct port_info *pi = netdev_priv(dev);
4818
4819 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4820 return -EINVAL;
060e0c75
DM
4821 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4822 -1, -1, -1, true);
b8ff05a9
DM
4823 if (!ret)
4824 dev->mtu = new_mtu;
4825 return ret;
4826}
4827
4828static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4829{
4830 int ret;
4831 struct sockaddr *addr = p;
4832 struct port_info *pi = netdev_priv(dev);
4833
4834 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 4835 return -EADDRNOTAVAIL;
b8ff05a9 4836
060e0c75
DM
4837 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4838 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
4839 if (ret < 0)
4840 return ret;
4841
4842 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4843 pi->xact_addr_filt = ret;
4844 return 0;
4845}
4846
b8ff05a9
DM
4847#ifdef CONFIG_NET_POLL_CONTROLLER
4848static void cxgb_netpoll(struct net_device *dev)
4849{
4850 struct port_info *pi = netdev_priv(dev);
4851 struct adapter *adap = pi->adapter;
4852
4853 if (adap->flags & USING_MSIX) {
4854 int i;
4855 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4856
4857 for (i = pi->nqsets; i; i--, rx++)
4858 t4_sge_intr_msix(0, &rx->rspq);
4859 } else
4860 t4_intr_handler(adap)(0, adap);
4861}
4862#endif
4863
4864static const struct net_device_ops cxgb4_netdev_ops = {
4865 .ndo_open = cxgb_open,
4866 .ndo_stop = cxgb_close,
4867 .ndo_start_xmit = t4_eth_xmit,
688848b1 4868 .ndo_select_queue = cxgb_select_queue,
9be793bf 4869 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
4870 .ndo_set_rx_mode = cxgb_set_rxmode,
4871 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 4872 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
4873 .ndo_validate_addr = eth_validate_addr,
4874 .ndo_do_ioctl = cxgb_ioctl,
4875 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
4876#ifdef CONFIG_NET_POLL_CONTROLLER
4877 .ndo_poll_controller = cxgb_netpoll,
4878#endif
4879};
4880
4881void t4_fatal_err(struct adapter *adap)
4882{
4883 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4884 t4_intr_disable(adap);
4885 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4886}
4887
0abfd152
HS
4888/* Return the specified PCI-E Configuration Space register from our Physical
4889 * Function. We try first via a Firmware LDST Command since we prefer to let
4890 * the firmware own all of these registers, but if that fails we go for it
4891 * directly ourselves.
4892 */
4893static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4894{
4895 struct fw_ldst_cmd ldst_cmd;
4896 u32 val;
4897 int ret;
4898
4899 /* Construct and send the Firmware LDST Command to retrieve the
4900 * specified PCI-E Configuration Space register.
4901 */
4902 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4903 ldst_cmd.op_to_addrspace =
4904 htonl(FW_CMD_OP(FW_LDST_CMD) |
4905 FW_CMD_REQUEST |
4906 FW_CMD_READ |
4907 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4908 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4909 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4910 ldst_cmd.u.pcie.ctrl_to_fn =
4911 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4912 ldst_cmd.u.pcie.r = reg;
4913 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4914 &ldst_cmd);
4915
4916 /* If the LDST Command suucceeded, exctract the returned register
4917 * value. Otherwise read it directly ourself.
4918 */
4919 if (ret == 0)
4920 val = ntohl(ldst_cmd.u.pcie.data[0]);
4921 else
4922 t4_hw_pci_read_cfg4(adap, reg, &val);
4923
4924 return val;
4925}
4926
b8ff05a9
DM
4927static void setup_memwin(struct adapter *adap)
4928{
0abfd152 4929 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
b8ff05a9 4930
d14807dd 4931 if (is_t4(adap->params.chip)) {
0abfd152
HS
4932 u32 bar0;
4933
4934 /* Truncation intentional: we only read the bottom 32-bits of
4935 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
4936 * mechanism to read BAR0 instead of using
4937 * pci_resource_start() because we could be operating from
4938 * within a Virtual Machine which is trapping our accesses to
4939 * our Configuration Space and we need to set up the PCI-E
4940 * Memory Window decoders with the actual addresses which will
4941 * be coming across the PCI-E link.
4942 */
4943 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4944 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4945 adap->t4_bar0 = bar0;
4946
19dd37ba
SR
4947 mem_win0_base = bar0 + MEMWIN0_BASE;
4948 mem_win1_base = bar0 + MEMWIN1_BASE;
4949 mem_win2_base = bar0 + MEMWIN2_BASE;
0abfd152 4950 mem_win2_aperture = MEMWIN2_APERTURE;
19dd37ba
SR
4951 } else {
4952 /* For T5, only relative offset inside the PCIe BAR is passed */
4953 mem_win0_base = MEMWIN0_BASE;
0abfd152 4954 mem_win1_base = MEMWIN1_BASE;
19dd37ba 4955 mem_win2_base = MEMWIN2_BASE_T5;
0abfd152 4956 mem_win2_aperture = MEMWIN2_APERTURE_T5;
19dd37ba 4957 }
b8ff05a9 4958 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
19dd37ba 4959 mem_win0_base | BIR(0) |
b8ff05a9
DM
4960 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4961 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
19dd37ba 4962 mem_win1_base | BIR(0) |
b8ff05a9
DM
4963 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4964 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
19dd37ba 4965 mem_win2_base | BIR(0) |
0abfd152
HS
4966 WINDOW(ilog2(mem_win2_aperture) - 10));
4967 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
636f9d37
VP
4968}
4969
4970static void setup_memwin_rdma(struct adapter *adap)
4971{
1ae970e0 4972 if (adap->vres.ocq.size) {
0abfd152
HS
4973 u32 start;
4974 unsigned int sz_kb;
1ae970e0 4975
0abfd152
HS
4976 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4977 start &= PCI_BASE_ADDRESS_MEM_MASK;
4978 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
4979 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4980 t4_write_reg(adap,
4981 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4982 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4983 t4_write_reg(adap,
4984 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4985 adap->vres.ocq.start);
4986 t4_read_reg(adap,
4987 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4988 }
b8ff05a9
DM
4989}
4990
02b5fb8e
DM
4991static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4992{
4993 u32 v;
4994 int ret;
4995
4996 /* get device capabilities */
4997 memset(c, 0, sizeof(*c));
4998 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4999 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5000 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
060e0c75 5001 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
02b5fb8e
DM
5002 if (ret < 0)
5003 return ret;
5004
5005 /* select capabilities we'll be using */
5006 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5007 if (!vf_acls)
5008 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5009 else
5010 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5011 } else if (vf_acls) {
5012 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5013 return ret;
5014 }
5015 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5016 FW_CMD_REQUEST | FW_CMD_WRITE);
060e0c75 5017 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
02b5fb8e
DM
5018 if (ret < 0)
5019 return ret;
5020
060e0c75 5021 ret = t4_config_glbl_rss(adap, adap->fn,
02b5fb8e
DM
5022 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5023 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5024 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5025 if (ret < 0)
5026 return ret;
5027
060e0c75
DM
5028 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5029 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
02b5fb8e
DM
5030 if (ret < 0)
5031 return ret;
5032
5033 t4_sge_init(adap);
5034
02b5fb8e
DM
5035 /* tweak some settings */
5036 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5037 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5038 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5039 v = t4_read_reg(adap, TP_PIO_DATA);
5040 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
060e0c75 5041
dca4faeb
VP
5042 /* first 4 Tx modulation queues point to consecutive Tx channels */
5043 adap->params.tp.tx_modq_map = 0xE4;
5044 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5045 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5046
5047 /* associate each Tx modulation queue with consecutive Tx channels */
5048 v = 0x84218421;
5049 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5050 &v, 1, A_TP_TX_SCHED_HDR);
5051 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5052 &v, 1, A_TP_TX_SCHED_FIFO);
5053 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5054 &v, 1, A_TP_TX_SCHED_PCMD);
5055
5056#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5057 if (is_offload(adap)) {
5058 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5059 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5060 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5061 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5062 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5063 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5064 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5065 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5066 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5067 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5068 }
5069
060e0c75
DM
5070 /* get basic stuff going */
5071 return t4_early_init(adap, adap->fn);
02b5fb8e
DM
5072}
5073
b8ff05a9
DM
5074/*
5075 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
5076 */
5077#define MAX_ATIDS 8192U
5078
636f9d37
VP
5079/*
5080 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5081 *
5082 * If the firmware we're dealing with has Configuration File support, then
5083 * we use that to perform all configuration
5084 */
5085
5086/*
5087 * Tweak configuration based on module parameters, etc. Most of these have
5088 * defaults assigned to them by Firmware Configuration Files (if we're using
5089 * them) but need to be explicitly set if we're using hard-coded
5090 * initialization. But even in the case of using Firmware Configuration
5091 * Files, we'd like to expose the ability to change these via module
5092 * parameters so these are essentially common tweaks/settings for
5093 * Configuration Files and hard-coded initialization ...
5094 */
5095static int adap_init0_tweaks(struct adapter *adapter)
5096{
5097 /*
5098 * Fix up various Host-Dependent Parameters like Page Size, Cache
5099 * Line Size, etc. The firmware default is for a 4KB Page Size and
5100 * 64B Cache Line Size ...
5101 */
5102 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5103
5104 /*
5105 * Process module parameters which affect early initialization.
5106 */
5107 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5108 dev_err(&adapter->pdev->dev,
5109 "Ignoring illegal rx_dma_offset=%d, using 2\n",
5110 rx_dma_offset);
5111 rx_dma_offset = 2;
5112 }
5113 t4_set_reg_field(adapter, SGE_CONTROL,
5114 PKTSHIFT_MASK,
5115 PKTSHIFT(rx_dma_offset));
5116
5117 /*
5118 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5119 * adds the pseudo header itself.
5120 */
5121 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5122 CSUM_HAS_PSEUDO_HDR, 0);
5123
5124 return 0;
5125}
5126
5127/*
5128 * Attempt to initialize the adapter via a Firmware Configuration File.
5129 */
5130static int adap_init0_config(struct adapter *adapter, int reset)
5131{
5132 struct fw_caps_config_cmd caps_cmd;
5133 const struct firmware *cf;
5134 unsigned long mtype = 0, maddr = 0;
5135 u32 finiver, finicsum, cfcsum;
16e47624
HS
5136 int ret;
5137 int config_issued = 0;
0a57a536 5138 char *fw_config_file, fw_config_file_path[256];
16e47624 5139 char *config_name = NULL;
636f9d37
VP
5140
5141 /*
5142 * Reset device if necessary.
5143 */
5144 if (reset) {
5145 ret = t4_fw_reset(adapter, adapter->mbox,
5146 PIORSTMODE | PIORST);
5147 if (ret < 0)
5148 goto bye;
5149 }
5150
5151 /*
5152 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5153 * then use that. Otherwise, use the configuration file stored
5154 * in the adapter flash ...
5155 */
d14807dd 5156 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 5157 case CHELSIO_T4:
16e47624 5158 fw_config_file = FW4_CFNAME;
0a57a536
SR
5159 break;
5160 case CHELSIO_T5:
5161 fw_config_file = FW5_CFNAME;
5162 break;
5163 default:
5164 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5165 adapter->pdev->device);
5166 ret = -EINVAL;
5167 goto bye;
5168 }
5169
5170 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 5171 if (ret < 0) {
16e47624 5172 config_name = "On FLASH";
636f9d37
VP
5173 mtype = FW_MEMTYPE_CF_FLASH;
5174 maddr = t4_flash_cfg_addr(adapter);
5175 } else {
5176 u32 params[7], val[7];
5177
16e47624
HS
5178 sprintf(fw_config_file_path,
5179 "/lib/firmware/%s", fw_config_file);
5180 config_name = fw_config_file_path;
5181
636f9d37
VP
5182 if (cf->size >= FLASH_CFG_MAX_SIZE)
5183 ret = -ENOMEM;
5184 else {
5185 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5186 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5187 ret = t4_query_params(adapter, adapter->mbox,
5188 adapter->fn, 0, 1, params, val);
5189 if (ret == 0) {
5190 /*
fc5ab020 5191 * For t4_memory_rw() below addresses and
636f9d37
VP
5192 * sizes have to be in terms of multiples of 4
5193 * bytes. So, if the Configuration File isn't
5194 * a multiple of 4 bytes in length we'll have
5195 * to write that out separately since we can't
5196 * guarantee that the bytes following the
5197 * residual byte in the buffer returned by
5198 * request_firmware() are zeroed out ...
5199 */
5200 size_t resid = cf->size & 0x3;
5201 size_t size = cf->size & ~0x3;
5202 __be32 *data = (__be32 *)cf->data;
5203
5204 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5205 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5206
fc5ab020
HS
5207 spin_lock(&adapter->win0_lock);
5208 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5209 size, data, T4_MEMORY_WRITE);
636f9d37
VP
5210 if (ret == 0 && resid != 0) {
5211 union {
5212 __be32 word;
5213 char buf[4];
5214 } last;
5215 int i;
5216
5217 last.word = data[size >> 2];
5218 for (i = resid; i < 4; i++)
5219 last.buf[i] = 0;
fc5ab020
HS
5220 ret = t4_memory_rw(adapter, 0, mtype,
5221 maddr + size,
5222 4, &last.word,
5223 T4_MEMORY_WRITE);
636f9d37 5224 }
fc5ab020 5225 spin_unlock(&adapter->win0_lock);
636f9d37
VP
5226 }
5227 }
5228
5229 release_firmware(cf);
5230 if (ret)
5231 goto bye;
5232 }
5233
5234 /*
5235 * Issue a Capability Configuration command to the firmware to get it
5236 * to parse the Configuration File. We don't use t4_fw_config_file()
5237 * because we want the ability to modify various features after we've
5238 * processed the configuration file ...
5239 */
5240 memset(&caps_cmd, 0, sizeof(caps_cmd));
5241 caps_cmd.op_to_write =
5242 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5243 FW_CMD_REQUEST |
5244 FW_CMD_READ);
ce91a923 5245 caps_cmd.cfvalid_to_len16 =
636f9d37
VP
5246 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5247 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5248 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5249 FW_LEN16(caps_cmd));
5250 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5251 &caps_cmd);
16e47624
HS
5252
5253 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5254 * Configuration File in FLASH), our last gasp effort is to use the
5255 * Firmware Configuration File which is embedded in the firmware. A
5256 * very few early versions of the firmware didn't have one embedded
5257 * but we can ignore those.
5258 */
5259 if (ret == -ENOENT) {
5260 memset(&caps_cmd, 0, sizeof(caps_cmd));
5261 caps_cmd.op_to_write =
5262 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5263 FW_CMD_REQUEST |
5264 FW_CMD_READ);
5265 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5266 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5267 sizeof(caps_cmd), &caps_cmd);
5268 config_name = "Firmware Default";
5269 }
5270
5271 config_issued = 1;
636f9d37
VP
5272 if (ret < 0)
5273 goto bye;
5274
5275 finiver = ntohl(caps_cmd.finiver);
5276 finicsum = ntohl(caps_cmd.finicsum);
5277 cfcsum = ntohl(caps_cmd.cfcsum);
5278 if (finicsum != cfcsum)
5279 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5280 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5281 finicsum, cfcsum);
5282
636f9d37
VP
5283 /*
5284 * And now tell the firmware to use the configuration we just loaded.
5285 */
5286 caps_cmd.op_to_write =
5287 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5288 FW_CMD_REQUEST |
5289 FW_CMD_WRITE);
ce91a923 5290 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5291 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5292 NULL);
5293 if (ret < 0)
5294 goto bye;
5295
5296 /*
5297 * Tweak configuration based on system architecture, module
5298 * parameters, etc.
5299 */
5300 ret = adap_init0_tweaks(adapter);
5301 if (ret < 0)
5302 goto bye;
5303
5304 /*
5305 * And finally tell the firmware to initialize itself using the
5306 * parameters from the Configuration File.
5307 */
5308 ret = t4_fw_initialize(adapter, adapter->mbox);
5309 if (ret < 0)
5310 goto bye;
5311
5312 /*
5313 * Return successfully and note that we're operating with parameters
5314 * not supplied by the driver, rather than from hard-wired
5315 * initialization constants burried in the driver.
5316 */
5317 adapter->flags |= USING_SOFT_PARAMS;
5318 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
5319 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5320 config_name, finiver, cfcsum);
636f9d37
VP
5321 return 0;
5322
5323 /*
5324 * Something bad happened. Return the error ... (If the "error"
5325 * is that there's no Configuration File on the adapter we don't
5326 * want to issue a warning since this is fairly common.)
5327 */
5328bye:
16e47624
HS
5329 if (config_issued && ret != -ENOENT)
5330 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5331 config_name, -ret);
636f9d37
VP
5332 return ret;
5333}
5334
13ee15d3
VP
5335/*
5336 * Attempt to initialize the adapter via hard-coded, driver supplied
5337 * parameters ...
5338 */
5339static int adap_init0_no_config(struct adapter *adapter, int reset)
5340{
5341 struct sge *s = &adapter->sge;
5342 struct fw_caps_config_cmd caps_cmd;
5343 u32 v;
5344 int i, ret;
5345
5346 /*
5347 * Reset device if necessary
5348 */
5349 if (reset) {
5350 ret = t4_fw_reset(adapter, adapter->mbox,
5351 PIORSTMODE | PIORST);
5352 if (ret < 0)
5353 goto bye;
5354 }
5355
5356 /*
5357 * Get device capabilities and select which we'll be using.
5358 */
5359 memset(&caps_cmd, 0, sizeof(caps_cmd));
5360 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5361 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5362 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
13ee15d3
VP
5363 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5364 &caps_cmd);
5365 if (ret < 0)
5366 goto bye;
5367
13ee15d3
VP
5368 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5369 if (!vf_acls)
5370 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5371 else
5372 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5373 } else if (vf_acls) {
5374 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5375 goto bye;
5376 }
5377 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5378 FW_CMD_REQUEST | FW_CMD_WRITE);
5379 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5380 NULL);
5381 if (ret < 0)
5382 goto bye;
5383
5384 /*
5385 * Tweak configuration based on system architecture, module
5386 * parameters, etc.
5387 */
5388 ret = adap_init0_tweaks(adapter);
5389 if (ret < 0)
5390 goto bye;
5391
5392 /*
5393 * Select RSS Global Mode we want to use. We use "Basic Virtual"
5394 * mode which maps each Virtual Interface to its own section of
5395 * the RSS Table and we turn on all map and hash enables ...
5396 */
5397 adapter->flags |= RSS_TNLALLLOOKUP;
5398 ret = t4_config_glbl_rss(adapter, adapter->mbox,
5399 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5400 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5401 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5402 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5403 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5404 if (ret < 0)
5405 goto bye;
5406
5407 /*
5408 * Set up our own fundamental resource provisioning ...
5409 */
5410 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5411 PFRES_NEQ, PFRES_NETHCTRL,
5412 PFRES_NIQFLINT, PFRES_NIQ,
5413 PFRES_TC, PFRES_NVI,
5414 FW_PFVF_CMD_CMASK_MASK,
5415 pfvfres_pmask(adapter, adapter->fn, 0),
5416 PFRES_NEXACTF,
5417 PFRES_R_CAPS, PFRES_WX_CAPS);
5418 if (ret < 0)
5419 goto bye;
5420
5421 /*
5422 * Perform low level SGE initialization. We need to do this before we
5423 * send the firmware the INITIALIZE command because that will cause
5424 * any other PF Drivers which are waiting for the Master
5425 * Initialization to proceed forward.
5426 */
5427 for (i = 0; i < SGE_NTIMERS - 1; i++)
5428 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5429 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5430 s->counter_val[0] = 1;
5431 for (i = 1; i < SGE_NCOUNTERS; i++)
5432 s->counter_val[i] = min(intr_cnt[i - 1],
5433 THRESHOLD_0_GET(THRESHOLD_0_MASK));
5434 t4_sge_init(adapter);
5435
5436#ifdef CONFIG_PCI_IOV
5437 /*
5438 * Provision resource limits for Virtual Functions. We currently
5439 * grant them all the same static resource limits except for the Port
5440 * Access Rights Mask which we're assigning based on the PF. All of
5441 * the static provisioning stuff for both the PF and VF really needs
5442 * to be managed in a persistent manner for each device which the
5443 * firmware controls.
5444 */
5445 {
5446 int pf, vf;
5447
7d6727cf 5448 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
13ee15d3
VP
5449 if (num_vf[pf] <= 0)
5450 continue;
5451
5452 /* VF numbering starts at 1! */
5453 for (vf = 1; vf <= num_vf[pf]; vf++) {
5454 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5455 pf, vf,
5456 VFRES_NEQ, VFRES_NETHCTRL,
5457 VFRES_NIQFLINT, VFRES_NIQ,
5458 VFRES_TC, VFRES_NVI,
1f1e4958 5459 FW_PFVF_CMD_CMASK_MASK,
13ee15d3
VP
5460 pfvfres_pmask(
5461 adapter, pf, vf),
5462 VFRES_NEXACTF,
5463 VFRES_R_CAPS, VFRES_WX_CAPS);
5464 if (ret < 0)
5465 dev_warn(adapter->pdev_dev,
5466 "failed to "\
5467 "provision pf/vf=%d/%d; "
5468 "err=%d\n", pf, vf, ret);
5469 }
5470 }
5471 }
5472#endif
5473
5474 /*
5475 * Set up the default filter mode. Later we'll want to implement this
5476 * via a firmware command, etc. ... This needs to be done before the
5477 * firmare initialization command ... If the selected set of fields
5478 * isn't equal to the default value, we'll need to make sure that the
5479 * field selections will fit in the 36-bit budget.
5480 */
5481 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
404d9e3f 5482 int j, bits = 0;
13ee15d3 5483
404d9e3f
VP
5484 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5485 switch (tp_vlan_pri_map & (1 << j)) {
13ee15d3
VP
5486 case 0:
5487 /* compressed filter field not enabled */
5488 break;
5489 case FCOE_MASK:
5490 bits += 1;
5491 break;
5492 case PORT_MASK:
5493 bits += 3;
5494 break;
5495 case VNIC_ID_MASK:
5496 bits += 17;
5497 break;
5498 case VLAN_MASK:
5499 bits += 17;
5500 break;
5501 case TOS_MASK:
5502 bits += 8;
5503 break;
5504 case PROTOCOL_MASK:
5505 bits += 8;
5506 break;
5507 case ETHERTYPE_MASK:
5508 bits += 16;
5509 break;
5510 case MACMATCH_MASK:
5511 bits += 9;
5512 break;
5513 case MPSHITTYPE_MASK:
5514 bits += 3;
5515 break;
5516 case FRAGMENTATION_MASK:
5517 bits += 1;
5518 break;
5519 }
5520
5521 if (bits > 36) {
5522 dev_err(adapter->pdev_dev,
5523 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5524 " using %#x\n", tp_vlan_pri_map, bits,
5525 TP_VLAN_PRI_MAP_DEFAULT);
5526 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5527 }
5528 }
5529 v = tp_vlan_pri_map;
5530 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5531 &v, 1, TP_VLAN_PRI_MAP);
5532
5533 /*
5534 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5535 * to support any of the compressed filter fields above. Newer
5536 * versions of the firmware do this automatically but it doesn't hurt
5537 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5538 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5539 * since the firmware automatically turns this on and off when we have
5540 * a non-zero number of filters active (since it does have a
5541 * performance impact).
5542 */
5543 if (tp_vlan_pri_map)
5544 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5545 FIVETUPLELOOKUP_MASK,
5546 FIVETUPLELOOKUP_MASK);
5547
5548 /*
5549 * Tweak some settings.
5550 */
5551 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5552 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5553 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5554 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5555
5556 /*
5557 * Get basic stuff going by issuing the Firmware Initialize command.
5558 * Note that this _must_ be after all PFVF commands ...
5559 */
5560 ret = t4_fw_initialize(adapter, adapter->mbox);
5561 if (ret < 0)
5562 goto bye;
5563
5564 /*
5565 * Return successfully!
5566 */
5567 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5568 "driver parameters\n");
5569 return 0;
5570
5571 /*
5572 * Something bad happened. Return the error ...
5573 */
5574bye:
5575 return ret;
5576}
5577
16e47624
HS
5578static struct fw_info fw_info_array[] = {
5579 {
5580 .chip = CHELSIO_T4,
5581 .fs_name = FW4_CFNAME,
5582 .fw_mod_name = FW4_FNAME,
5583 .fw_hdr = {
5584 .chip = FW_HDR_CHIP_T4,
5585 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5586 .intfver_nic = FW_INTFVER(T4, NIC),
5587 .intfver_vnic = FW_INTFVER(T4, VNIC),
5588 .intfver_ri = FW_INTFVER(T4, RI),
5589 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5590 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5591 },
5592 }, {
5593 .chip = CHELSIO_T5,
5594 .fs_name = FW5_CFNAME,
5595 .fw_mod_name = FW5_FNAME,
5596 .fw_hdr = {
5597 .chip = FW_HDR_CHIP_T5,
5598 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5599 .intfver_nic = FW_INTFVER(T5, NIC),
5600 .intfver_vnic = FW_INTFVER(T5, VNIC),
5601 .intfver_ri = FW_INTFVER(T5, RI),
5602 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5603 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5604 },
5605 }
5606};
5607
5608static struct fw_info *find_fw_info(int chip)
5609{
5610 int i;
5611
5612 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5613 if (fw_info_array[i].chip == chip)
5614 return &fw_info_array[i];
5615 }
5616 return NULL;
5617}
5618
b8ff05a9
DM
5619/*
5620 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5621 */
5622static int adap_init0(struct adapter *adap)
5623{
5624 int ret;
5625 u32 v, port_vec;
5626 enum dev_state state;
5627 u32 params[7], val[7];
9a4da2cd 5628 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 5629 int reset = 1;
b8ff05a9 5630
636f9d37
VP
5631 /*
5632 * Contact FW, advertising Master capability (and potentially forcing
5633 * ourselves as the Master PF if our module parameter force_init is
5634 * set).
5635 */
5636 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5637 force_init ? MASTER_MUST : MASTER_MAY,
5638 &state);
b8ff05a9
DM
5639 if (ret < 0) {
5640 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5641 ret);
5642 return ret;
5643 }
636f9d37
VP
5644 if (ret == adap->mbox)
5645 adap->flags |= MASTER_PF;
5646 if (force_init && state == DEV_STATE_INIT)
5647 state = DEV_STATE_UNINIT;
b8ff05a9 5648
636f9d37
VP
5649 /*
5650 * If we're the Master PF Driver and the device is uninitialized,
5651 * then let's consider upgrading the firmware ... (We always want
5652 * to check the firmware version number in order to A. get it for
5653 * later reporting and B. to warn if the currently loaded firmware
5654 * is excessively mismatched relative to the driver.)
5655 */
16e47624
HS
5656 t4_get_fw_version(adap, &adap->params.fw_vers);
5657 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 5658 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
5659 struct fw_info *fw_info;
5660 struct fw_hdr *card_fw;
5661 const struct firmware *fw;
5662 const u8 *fw_data = NULL;
5663 unsigned int fw_size = 0;
5664
5665 /* This is the firmware whose headers the driver was compiled
5666 * against
5667 */
5668 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5669 if (fw_info == NULL) {
5670 dev_err(adap->pdev_dev,
5671 "unable to get firmware info for chip %d.\n",
5672 CHELSIO_CHIP_VERSION(adap->params.chip));
5673 return -EINVAL;
636f9d37 5674 }
16e47624
HS
5675
5676 /* allocate memory to read the header of the firmware on the
5677 * card
5678 */
5679 card_fw = t4_alloc_mem(sizeof(*card_fw));
5680
5681 /* Get FW from from /lib/firmware/ */
5682 ret = request_firmware(&fw, fw_info->fw_mod_name,
5683 adap->pdev_dev);
5684 if (ret < 0) {
5685 dev_err(adap->pdev_dev,
5686 "unable to load firmware image %s, error %d\n",
5687 fw_info->fw_mod_name, ret);
5688 } else {
5689 fw_data = fw->data;
5690 fw_size = fw->size;
5691 }
5692
5693 /* upgrade FW logic */
5694 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5695 state, &reset);
5696
5697 /* Cleaning up */
5698 if (fw != NULL)
5699 release_firmware(fw);
5700 t4_free_mem(card_fw);
5701
636f9d37 5702 if (ret < 0)
16e47624 5703 goto bye;
636f9d37 5704 }
b8ff05a9 5705
636f9d37
VP
5706 /*
5707 * Grab VPD parameters. This should be done after we establish a
5708 * connection to the firmware since some of the VPD parameters
5709 * (notably the Core Clock frequency) are retrieved via requests to
5710 * the firmware. On the other hand, we need these fairly early on
5711 * so we do this right after getting ahold of the firmware.
5712 */
5713 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
5714 if (ret < 0)
5715 goto bye;
a0881cab 5716
636f9d37 5717 /*
13ee15d3
VP
5718 * Find out what ports are available to us. Note that we need to do
5719 * this before calling adap_init0_no_config() since it needs nports
5720 * and portvec ...
636f9d37
VP
5721 */
5722 v =
5723 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5724 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5725 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
a0881cab
DM
5726 if (ret < 0)
5727 goto bye;
5728
636f9d37
VP
5729 adap->params.nports = hweight32(port_vec);
5730 adap->params.portvec = port_vec;
5731
5732 /*
5733 * If the firmware is initialized already (and we're not forcing a
5734 * master initialization), note that we're living with existing
5735 * adapter parameters. Otherwise, it's time to try initializing the
5736 * adapter ...
5737 */
5738 if (state == DEV_STATE_INIT) {
5739 dev_info(adap->pdev_dev, "Coming up as %s: "\
5740 "Adapter already initialized\n",
5741 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5742 adap->flags |= USING_SOFT_PARAMS;
5743 } else {
5744 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5745 "Initializing adapter\n");
636f9d37
VP
5746
5747 /*
5748 * If the firmware doesn't support Configuration
5749 * Files warn user and exit,
5750 */
5751 if (ret < 0)
13ee15d3 5752 dev_warn(adap->pdev_dev, "Firmware doesn't support "
636f9d37 5753 "configuration file.\n");
13ee15d3
VP
5754 if (force_old_init)
5755 ret = adap_init0_no_config(adap, reset);
636f9d37
VP
5756 else {
5757 /*
13ee15d3
VP
5758 * Find out whether we're dealing with a version of
5759 * the firmware which has configuration file support.
636f9d37 5760 */
13ee15d3
VP
5761 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5762 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5763 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5764 params, val);
636f9d37 5765
13ee15d3
VP
5766 /*
5767 * If the firmware doesn't support Configuration
5768 * Files, use the old Driver-based, hard-wired
5769 * initialization. Otherwise, try using the
5770 * Configuration File support and fall back to the
5771 * Driver-based initialization if there's no
5772 * Configuration File found.
5773 */
5774 if (ret < 0)
5775 ret = adap_init0_no_config(adap, reset);
5776 else {
5777 /*
5778 * The firmware provides us with a memory
5779 * buffer where we can load a Configuration
5780 * File from the host if we want to override
5781 * the Configuration File in flash.
5782 */
5783
5784 ret = adap_init0_config(adap, reset);
5785 if (ret == -ENOENT) {
5786 dev_info(adap->pdev_dev,
5787 "No Configuration File present "
16e47624 5788 "on adapter. Using hard-wired "
13ee15d3
VP
5789 "configuration parameters.\n");
5790 ret = adap_init0_no_config(adap, reset);
5791 }
636f9d37
VP
5792 }
5793 }
5794 if (ret < 0) {
5795 dev_err(adap->pdev_dev,
5796 "could not initialize adapter, error %d\n",
5797 -ret);
5798 goto bye;
5799 }
5800 }
5801
5802 /*
5803 * If we're living with non-hard-coded parameters (either from a
5804 * Firmware Configuration File or values programmed by a different PF
5805 * Driver), give the SGE code a chance to pull in anything that it
5806 * needs ... Note that this must be called after we retrieve our VPD
5807 * parameters in order to know how to convert core ticks to seconds.
5808 */
5809 if (adap->flags & USING_SOFT_PARAMS) {
5810 ret = t4_sge_init(adap);
5811 if (ret < 0)
5812 goto bye;
5813 }
5814
9a4da2cd
VP
5815 if (is_bypass_device(adap->pdev->device))
5816 adap->params.bypass = 1;
5817
636f9d37
VP
5818 /*
5819 * Grab some of our basic fundamental operating parameters.
5820 */
5821#define FW_PARAM_DEV(param) \
5822 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5823 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5824
b8ff05a9 5825#define FW_PARAM_PFVF(param) \
636f9d37
VP
5826 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5827 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5828 FW_PARAMS_PARAM_Y(0) | \
5829 FW_PARAMS_PARAM_Z(0)
b8ff05a9 5830
636f9d37 5831 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
5832 params[1] = FW_PARAM_PFVF(L2T_START);
5833 params[2] = FW_PARAM_PFVF(L2T_END);
5834 params[3] = FW_PARAM_PFVF(FILTER_START);
5835 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 5836 params[5] = FW_PARAM_PFVF(IQFLINT_START);
636f9d37 5837 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
b8ff05a9
DM
5838 if (ret < 0)
5839 goto bye;
636f9d37
VP
5840 adap->sge.egr_start = val[0];
5841 adap->l2t_start = val[1];
5842 adap->l2t_end = val[2];
b8ff05a9
DM
5843 adap->tids.ftid_base = val[3];
5844 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 5845 adap->sge.ingr_start = val[5];
b8ff05a9 5846
636f9d37
VP
5847 /* query params related to active filter region */
5848 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5849 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5850 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5851 /* If Active filter size is set we enable establishing
5852 * offload connection through firmware work request
5853 */
5854 if ((val[0] != val[1]) && (ret >= 0)) {
5855 adap->flags |= FW_OFLD_CONN;
5856 adap->tids.aftid_base = val[0];
5857 adap->tids.aftid_end = val[1];
5858 }
5859
b407a4a9
VP
5860 /* If we're running on newer firmware, let it know that we're
5861 * prepared to deal with encapsulated CPL messages. Older
5862 * firmware won't understand this and we'll just get
5863 * unencapsulated messages ...
5864 */
5865 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5866 val[0] = 1;
5867 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5868
1ac0f095
KS
5869 /*
5870 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5871 * capability. Earlier versions of the firmware didn't have the
5872 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5873 * permission to use ULPTX MEMWRITE DSGL.
5874 */
5875 if (is_t4(adap->params.chip)) {
5876 adap->params.ulptx_memwrite_dsgl = false;
5877 } else {
5878 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5879 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5880 1, params, val);
5881 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5882 }
5883
636f9d37
VP
5884 /*
5885 * Get device capabilities so we can determine what resources we need
5886 * to manage.
5887 */
5888 memset(&caps_cmd, 0, sizeof(caps_cmd));
9a4da2cd 5889 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
13ee15d3 5890 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5891 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5892 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5893 &caps_cmd);
5894 if (ret < 0)
5895 goto bye;
5896
13ee15d3 5897 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
5898 /* query offload-related parameters */
5899 params[0] = FW_PARAM_DEV(NTID);
5900 params[1] = FW_PARAM_PFVF(SERVER_START);
5901 params[2] = FW_PARAM_PFVF(SERVER_END);
5902 params[3] = FW_PARAM_PFVF(TDDP_START);
5903 params[4] = FW_PARAM_PFVF(TDDP_END);
5904 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
636f9d37
VP
5905 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5906 params, val);
b8ff05a9
DM
5907 if (ret < 0)
5908 goto bye;
5909 adap->tids.ntids = val[0];
5910 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5911 adap->tids.stid_base = val[1];
5912 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37
VP
5913 /*
5914 * Setup server filter region. Divide the availble filter
5915 * region into two parts. Regular filters get 1/3rd and server
5916 * filters get 2/3rd part. This is only enabled if workarond
5917 * path is enabled.
5918 * 1. For regular filters.
5919 * 2. Server filter: This are special filters which are used
5920 * to redirect SYN packets to offload queue.
5921 */
5922 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5923 adap->tids.sftid_base = adap->tids.ftid_base +
5924 DIV_ROUND_UP(adap->tids.nftids, 3);
5925 adap->tids.nsftids = adap->tids.nftids -
5926 DIV_ROUND_UP(adap->tids.nftids, 3);
5927 adap->tids.nftids = adap->tids.sftid_base -
5928 adap->tids.ftid_base;
5929 }
b8ff05a9
DM
5930 adap->vres.ddp.start = val[3];
5931 adap->vres.ddp.size = val[4] - val[3] + 1;
5932 adap->params.ofldq_wr_cred = val[5];
636f9d37 5933
b8ff05a9
DM
5934 adap->params.offload = 1;
5935 }
636f9d37 5936 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
5937 params[0] = FW_PARAM_PFVF(STAG_START);
5938 params[1] = FW_PARAM_PFVF(STAG_END);
5939 params[2] = FW_PARAM_PFVF(RQ_START);
5940 params[3] = FW_PARAM_PFVF(RQ_END);
5941 params[4] = FW_PARAM_PFVF(PBL_START);
5942 params[5] = FW_PARAM_PFVF(PBL_END);
636f9d37
VP
5943 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5944 params, val);
b8ff05a9
DM
5945 if (ret < 0)
5946 goto bye;
5947 adap->vres.stag.start = val[0];
5948 adap->vres.stag.size = val[1] - val[0] + 1;
5949 adap->vres.rq.start = val[2];
5950 adap->vres.rq.size = val[3] - val[2] + 1;
5951 adap->vres.pbl.start = val[4];
5952 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
5953
5954 params[0] = FW_PARAM_PFVF(SQRQ_START);
5955 params[1] = FW_PARAM_PFVF(SQRQ_END);
5956 params[2] = FW_PARAM_PFVF(CQ_START);
5957 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
5958 params[4] = FW_PARAM_PFVF(OCQ_START);
5959 params[5] = FW_PARAM_PFVF(OCQ_END);
636f9d37 5960 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
a0881cab
DM
5961 if (ret < 0)
5962 goto bye;
5963 adap->vres.qp.start = val[0];
5964 adap->vres.qp.size = val[1] - val[0] + 1;
5965 adap->vres.cq.start = val[2];
5966 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
5967 adap->vres.ocq.start = val[4];
5968 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
5969
5970 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5971 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5972 ret = t4_query_params(adap, 0, 0, 0, 2, params, val);
5973 if (ret < 0) {
5974 adap->params.max_ordird_qp = 8;
5975 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5976 ret = 0;
5977 } else {
5978 adap->params.max_ordird_qp = val[0];
5979 adap->params.max_ird_adapter = val[1];
5980 }
5981 dev_info(adap->pdev_dev,
5982 "max_ordird_qp %d max_ird_adapter %d\n",
5983 adap->params.max_ordird_qp,
5984 adap->params.max_ird_adapter);
b8ff05a9 5985 }
636f9d37 5986 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
5987 params[0] = FW_PARAM_PFVF(ISCSI_START);
5988 params[1] = FW_PARAM_PFVF(ISCSI_END);
636f9d37
VP
5989 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5990 params, val);
b8ff05a9
DM
5991 if (ret < 0)
5992 goto bye;
5993 adap->vres.iscsi.start = val[0];
5994 adap->vres.iscsi.size = val[1] - val[0] + 1;
5995 }
5996#undef FW_PARAM_PFVF
5997#undef FW_PARAM_DEV
5998
92e7ae71
HS
5999 /* The MTU/MSS Table is initialized by now, so load their values. If
6000 * we're initializing the adapter, then we'll make any modifications
6001 * we want to the MTU/MSS Table and also initialize the congestion
6002 * parameters.
636f9d37 6003 */
b8ff05a9 6004 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
6005 if (state != DEV_STATE_INIT) {
6006 int i;
6007
6008 /* The default MTU Table contains values 1492 and 1500.
6009 * However, for TCP, it's better to have two values which are
6010 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6011 * This allows us to have a TCP Data Payload which is a
6012 * multiple of 8 regardless of what combination of TCP Options
6013 * are in use (always a multiple of 4 bytes) which is
6014 * important for performance reasons. For instance, if no
6015 * options are in use, then we have a 20-byte IP header and a
6016 * 20-byte TCP header. In this case, a 1500-byte MSS would
6017 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6018 * which is not a multiple of 8. So using an MSS of 1488 in
6019 * this case results in a TCP Data Payload of 1448 bytes which
6020 * is a multiple of 8. On the other hand, if 12-byte TCP Time
6021 * Stamps have been negotiated, then an MTU of 1500 bytes
6022 * results in a TCP Data Payload of 1448 bytes which, as
6023 * above, is a multiple of 8 bytes ...
6024 */
6025 for (i = 0; i < NMTUS; i++)
6026 if (adap->params.mtus[i] == 1492) {
6027 adap->params.mtus[i] = 1488;
6028 break;
6029 }
7ee9ff94 6030
92e7ae71
HS
6031 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6032 adap->params.b_wnd);
6033 }
dcf7b6f5 6034 t4_init_tp_params(adap);
636f9d37 6035 adap->flags |= FW_OK;
b8ff05a9
DM
6036 return 0;
6037
6038 /*
636f9d37
VP
6039 * Something bad happened. If a command timed out or failed with EIO
6040 * FW does not operate within its spec or something catastrophic
6041 * happened to HW/FW, stop issuing commands.
b8ff05a9 6042 */
636f9d37
VP
6043bye:
6044 if (ret != -ETIMEDOUT && ret != -EIO)
6045 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
6046 return ret;
6047}
6048
204dc3c0
DM
6049/* EEH callbacks */
6050
6051static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6052 pci_channel_state_t state)
6053{
6054 int i;
6055 struct adapter *adap = pci_get_drvdata(pdev);
6056
6057 if (!adap)
6058 goto out;
6059
6060 rtnl_lock();
6061 adap->flags &= ~FW_OK;
6062 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 6063 spin_lock(&adap->stats_lock);
204dc3c0
DM
6064 for_each_port(adap, i) {
6065 struct net_device *dev = adap->port[i];
6066
6067 netif_device_detach(dev);
6068 netif_carrier_off(dev);
6069 }
9fe6cb58 6070 spin_unlock(&adap->stats_lock);
204dc3c0
DM
6071 if (adap->flags & FULL_INIT_DONE)
6072 cxgb_down(adap);
6073 rtnl_unlock();
144be3d9
GS
6074 if ((adap->flags & DEV_ENABLED)) {
6075 pci_disable_device(pdev);
6076 adap->flags &= ~DEV_ENABLED;
6077 }
204dc3c0
DM
6078out: return state == pci_channel_io_perm_failure ?
6079 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6080}
6081
6082static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6083{
6084 int i, ret;
6085 struct fw_caps_config_cmd c;
6086 struct adapter *adap = pci_get_drvdata(pdev);
6087
6088 if (!adap) {
6089 pci_restore_state(pdev);
6090 pci_save_state(pdev);
6091 return PCI_ERS_RESULT_RECOVERED;
6092 }
6093
144be3d9
GS
6094 if (!(adap->flags & DEV_ENABLED)) {
6095 if (pci_enable_device(pdev)) {
6096 dev_err(&pdev->dev, "Cannot reenable PCI "
6097 "device after reset\n");
6098 return PCI_ERS_RESULT_DISCONNECT;
6099 }
6100 adap->flags |= DEV_ENABLED;
204dc3c0
DM
6101 }
6102
6103 pci_set_master(pdev);
6104 pci_restore_state(pdev);
6105 pci_save_state(pdev);
6106 pci_cleanup_aer_uncorrect_error_status(pdev);
6107
6108 if (t4_wait_dev_ready(adap) < 0)
6109 return PCI_ERS_RESULT_DISCONNECT;
777c2300 6110 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
204dc3c0
DM
6111 return PCI_ERS_RESULT_DISCONNECT;
6112 adap->flags |= FW_OK;
6113 if (adap_init1(adap, &c))
6114 return PCI_ERS_RESULT_DISCONNECT;
6115
6116 for_each_port(adap, i) {
6117 struct port_info *p = adap2pinfo(adap, i);
6118
060e0c75
DM
6119 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6120 NULL, NULL);
204dc3c0
DM
6121 if (ret < 0)
6122 return PCI_ERS_RESULT_DISCONNECT;
6123 p->viid = ret;
6124 p->xact_addr_filt = -1;
6125 }
6126
6127 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6128 adap->params.b_wnd);
1ae970e0 6129 setup_memwin(adap);
204dc3c0
DM
6130 if (cxgb_up(adap))
6131 return PCI_ERS_RESULT_DISCONNECT;
6132 return PCI_ERS_RESULT_RECOVERED;
6133}
6134
6135static void eeh_resume(struct pci_dev *pdev)
6136{
6137 int i;
6138 struct adapter *adap = pci_get_drvdata(pdev);
6139
6140 if (!adap)
6141 return;
6142
6143 rtnl_lock();
6144 for_each_port(adap, i) {
6145 struct net_device *dev = adap->port[i];
6146
6147 if (netif_running(dev)) {
6148 link_start(dev);
6149 cxgb_set_rxmode(dev);
6150 }
6151 netif_device_attach(dev);
6152 }
6153 rtnl_unlock();
6154}
6155
3646f0e5 6156static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
6157 .error_detected = eeh_err_detected,
6158 .slot_reset = eeh_slot_reset,
6159 .resume = eeh_resume,
6160};
6161
57d8b764 6162static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 6163{
57d8b764
KS
6164 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6165 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
6166}
6167
c887ad0e
HS
6168static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6169 unsigned int us, unsigned int cnt,
b8ff05a9
DM
6170 unsigned int size, unsigned int iqe_size)
6171{
c887ad0e
HS
6172 q->adap = adap;
6173 set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
6174 q->iqe_len = iqe_size;
6175 q->size = size;
6176}
6177
6178/*
6179 * Perform default configuration of DMA queues depending on the number and type
6180 * of ports we found and the number of available CPUs. Most settings can be
6181 * modified by the admin prior to actual use.
6182 */
91744948 6183static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
6184{
6185 struct sge *s = &adap->sge;
688848b1
AB
6186 int i, n10g = 0, qidx = 0;
6187#ifndef CONFIG_CHELSIO_T4_DCB
6188 int q10g = 0;
6189#endif
cf38be6d 6190 int ciq_size;
b8ff05a9
DM
6191
6192 for_each_port(adap, i)
57d8b764 6193 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
6194#ifdef CONFIG_CHELSIO_T4_DCB
6195 /* For Data Center Bridging support we need to be able to support up
6196 * to 8 Traffic Priorities; each of which will be assigned to its
6197 * own TX Queue in order to prevent Head-Of-Line Blocking.
6198 */
6199 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6200 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6201 MAX_ETH_QSETS, adap->params.nports * 8);
6202 BUG_ON(1);
6203 }
b8ff05a9 6204
688848b1
AB
6205 for_each_port(adap, i) {
6206 struct port_info *pi = adap2pinfo(adap, i);
6207
6208 pi->first_qset = qidx;
6209 pi->nqsets = 8;
6210 qidx += pi->nqsets;
6211 }
6212#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6213 /*
6214 * We default to 1 queue per non-10G port and up to # of cores queues
6215 * per 10G port.
6216 */
6217 if (n10g)
6218 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
6219 if (q10g > netif_get_num_default_rss_queues())
6220 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
6221
6222 for_each_port(adap, i) {
6223 struct port_info *pi = adap2pinfo(adap, i);
6224
6225 pi->first_qset = qidx;
57d8b764 6226 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
6227 qidx += pi->nqsets;
6228 }
688848b1 6229#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6230
6231 s->ethqsets = qidx;
6232 s->max_ethqsets = qidx; /* MSI-X may lower it later */
6233
6234 if (is_offload(adap)) {
6235 /*
6236 * For offload we use 1 queue/channel if all ports are up to 1G,
6237 * otherwise we divide all available queues amongst the channels
6238 * capped by the number of available cores.
6239 */
6240 if (n10g) {
6241 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6242 num_online_cpus());
6243 s->ofldqsets = roundup(i, adap->params.nports);
6244 } else
6245 s->ofldqsets = adap->params.nports;
6246 /* For RDMA one Rx queue per channel suffices */
6247 s->rdmaqs = adap->params.nports;
cf38be6d 6248 s->rdmaciqs = adap->params.nports;
b8ff05a9
DM
6249 }
6250
6251 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6252 struct sge_eth_rxq *r = &s->ethrxq[i];
6253
c887ad0e 6254 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
6255 r->fl.size = 72;
6256 }
6257
6258 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6259 s->ethtxq[i].q.size = 1024;
6260
6261 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6262 s->ctrlq[i].q.size = 512;
6263
6264 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6265 s->ofldtxq[i].q.size = 1024;
6266
6267 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6268 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6269
c887ad0e 6270 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
6271 r->rspq.uld = CXGB4_ULD_ISCSI;
6272 r->fl.size = 72;
6273 }
6274
6275 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6276 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6277
c887ad0e 6278 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
6279 r->rspq.uld = CXGB4_ULD_RDMA;
6280 r->fl.size = 72;
6281 }
6282
cf38be6d
HS
6283 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6284 if (ciq_size > SGE_MAX_IQ_SIZE) {
6285 CH_WARN(adap, "CIQ size too small for available IQs\n");
6286 ciq_size = SGE_MAX_IQ_SIZE;
6287 }
6288
6289 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6290 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6291
c887ad0e 6292 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
6293 r->rspq.uld = CXGB4_ULD_RDMA;
6294 }
6295
c887ad0e
HS
6296 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6297 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
6298}
6299
6300/*
6301 * Reduce the number of Ethernet queues across all ports to at most n.
6302 * n provides at least one queue per port.
6303 */
91744948 6304static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
6305{
6306 int i;
6307 struct port_info *pi;
6308
6309 while (n < adap->sge.ethqsets)
6310 for_each_port(adap, i) {
6311 pi = adap2pinfo(adap, i);
6312 if (pi->nqsets > 1) {
6313 pi->nqsets--;
6314 adap->sge.ethqsets--;
6315 if (adap->sge.ethqsets <= n)
6316 break;
6317 }
6318 }
6319
6320 n = 0;
6321 for_each_port(adap, i) {
6322 pi = adap2pinfo(adap, i);
6323 pi->first_qset = n;
6324 n += pi->nqsets;
6325 }
6326}
6327
6328/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6329#define EXTRA_VECS 2
6330
91744948 6331static int enable_msix(struct adapter *adap)
b8ff05a9
DM
6332{
6333 int ofld_need = 0;
c32ad224 6334 int i, want, need;
b8ff05a9
DM
6335 struct sge *s = &adap->sge;
6336 unsigned int nchan = adap->params.nports;
6337 struct msix_entry entries[MAX_INGQ + 1];
6338
6339 for (i = 0; i < ARRAY_SIZE(entries); ++i)
6340 entries[i].entry = i;
6341
6342 want = s->max_ethqsets + EXTRA_VECS;
6343 if (is_offload(adap)) {
cf38be6d 6344 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 6345 /* need nchan for each possible ULD */
cf38be6d 6346 ofld_need = 3 * nchan;
b8ff05a9 6347 }
688848b1
AB
6348#ifdef CONFIG_CHELSIO_T4_DCB
6349 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6350 * each port.
6351 */
6352 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6353#else
b8ff05a9 6354 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 6355#endif
c32ad224
AG
6356 want = pci_enable_msix_range(adap->pdev, entries, need, want);
6357 if (want < 0)
6358 return want;
b8ff05a9 6359
c32ad224
AG
6360 /*
6361 * Distribute available vectors to the various queue groups.
6362 * Every group gets its minimum requirement and NIC gets top
6363 * priority for leftovers.
6364 */
6365 i = want - EXTRA_VECS - ofld_need;
6366 if (i < s->max_ethqsets) {
6367 s->max_ethqsets = i;
6368 if (i < s->ethqsets)
6369 reduce_ethqs(adap, i);
6370 }
6371 if (is_offload(adap)) {
6372 i = want - EXTRA_VECS - s->max_ethqsets;
6373 i -= ofld_need - nchan;
6374 s->ofldqsets = (i / nchan) * nchan; /* round down */
6375 }
6376 for (i = 0; i < want; ++i)
6377 adap->msix_info[i].vec = entries[i].vector;
6378
6379 return 0;
b8ff05a9
DM
6380}
6381
6382#undef EXTRA_VECS
6383
91744948 6384static int init_rss(struct adapter *adap)
671b0060
DM
6385{
6386 unsigned int i, j;
6387
6388 for_each_port(adap, i) {
6389 struct port_info *pi = adap2pinfo(adap, i);
6390
6391 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6392 if (!pi->rss)
6393 return -ENOMEM;
6394 for (j = 0; j < pi->rss_size; j++)
278bc429 6395 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
671b0060
DM
6396 }
6397 return 0;
6398}
6399
91744948 6400static void print_port_info(const struct net_device *dev)
b8ff05a9 6401{
b8ff05a9 6402 char buf[80];
118969ed 6403 char *bufp = buf;
f1a051b9 6404 const char *spd = "";
118969ed
DM
6405 const struct port_info *pi = netdev_priv(dev);
6406 const struct adapter *adap = pi->adapter;
f1a051b9
DM
6407
6408 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6409 spd = " 2.5 GT/s";
6410 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6411 spd = " 5 GT/s";
d2e752db
RD
6412 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6413 spd = " 8 GT/s";
b8ff05a9 6414
118969ed
DM
6415 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6416 bufp += sprintf(bufp, "100/");
6417 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6418 bufp += sprintf(bufp, "1000/");
6419 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6420 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
6421 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6422 bufp += sprintf(bufp, "40G/");
118969ed
DM
6423 if (bufp != buf)
6424 --bufp;
72aca4bf 6425 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
6426
6427 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 6428 adap->params.vpd.id,
d14807dd 6429 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
6430 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6431 (adap->flags & USING_MSIX) ? " MSI-X" :
6432 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
6433 netdev_info(dev, "S/N: %s, P/N: %s\n",
6434 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
6435}
6436
91744948 6437static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 6438{
e5c8ae5f 6439 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
6440}
6441
06546391
DM
6442/*
6443 * Free the following resources:
6444 * - memory used for tables
6445 * - MSI/MSI-X
6446 * - net devices
6447 * - resources FW is holding for us
6448 */
6449static void free_some_resources(struct adapter *adapter)
6450{
6451 unsigned int i;
6452
6453 t4_free_mem(adapter->l2t);
6454 t4_free_mem(adapter->tids.tid_tab);
6455 disable_msi(adapter);
6456
6457 for_each_port(adapter, i)
671b0060
DM
6458 if (adapter->port[i]) {
6459 kfree(adap2pinfo(adapter, i)->rss);
06546391 6460 free_netdev(adapter->port[i]);
671b0060 6461 }
06546391 6462 if (adapter->flags & FW_OK)
060e0c75 6463 t4_fw_bye(adapter, adapter->fn);
06546391
DM
6464}
6465
2ed28baa 6466#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 6467#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 6468 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 6469#define SEGMENT_SIZE 128
b8ff05a9 6470
1dd06ae8 6471static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 6472{
22adfe0a 6473 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 6474 struct port_info *pi;
c8f44aff 6475 bool highdma = false;
b8ff05a9
DM
6476 struct adapter *adapter = NULL;
6477
6478 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6479
6480 err = pci_request_regions(pdev, KBUILD_MODNAME);
6481 if (err) {
6482 /* Just info, some other driver may have claimed the device. */
6483 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6484 return err;
6485 }
6486
b8ff05a9
DM
6487 err = pci_enable_device(pdev);
6488 if (err) {
6489 dev_err(&pdev->dev, "cannot enable PCI device\n");
6490 goto out_release_regions;
6491 }
6492
6493 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 6494 highdma = true;
b8ff05a9
DM
6495 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6496 if (err) {
6497 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6498 "coherent allocations\n");
6499 goto out_disable_device;
6500 }
6501 } else {
6502 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6503 if (err) {
6504 dev_err(&pdev->dev, "no usable DMA configuration\n");
6505 goto out_disable_device;
6506 }
6507 }
6508
6509 pci_enable_pcie_error_reporting(pdev);
ef306b50 6510 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
6511 pci_set_master(pdev);
6512 pci_save_state(pdev);
6513
6514 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6515 if (!adapter) {
6516 err = -ENOMEM;
6517 goto out_disable_device;
6518 }
6519
144be3d9
GS
6520 /* PCI device has been enabled */
6521 adapter->flags |= DEV_ENABLED;
6522
b8ff05a9
DM
6523 adapter->regs = pci_ioremap_bar(pdev, 0);
6524 if (!adapter->regs) {
6525 dev_err(&pdev->dev, "cannot map device registers\n");
6526 err = -ENOMEM;
6527 goto out_free_adapter;
6528 }
6529
35b1de55
HS
6530 /* We control everything through one PF */
6531 func = SOURCEPF_GET(readl(adapter->regs + PL_WHOAMI));
8e1e6059 6532 if (func != ent->driver_data) {
35b1de55 6533 pci_save_state(pdev); /* to restore SR-IOV later */
8e1e6059 6534 goto sriov;
35b1de55
HS
6535 }
6536
b8ff05a9
DM
6537 adapter->pdev = pdev;
6538 adapter->pdev_dev = &pdev->dev;
3069ee9b 6539 adapter->mbox = func;
060e0c75 6540 adapter->fn = func;
b8ff05a9
DM
6541 adapter->msg_enable = dflt_msg_enable;
6542 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6543
6544 spin_lock_init(&adapter->stats_lock);
6545 spin_lock_init(&adapter->tid_release_lock);
6546
6547 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
6548 INIT_WORK(&adapter->db_full_task, process_db_full);
6549 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
6550
6551 err = t4_prep_adapter(adapter);
6552 if (err)
22adfe0a
SR
6553 goto out_unmap_bar0;
6554
d14807dd 6555 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
6556 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6557 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6558 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6559 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6560
6561 /* Each segment size is 128B. Write coalescing is enabled only
6562 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6563 * queue is less no of segments that can be accommodated in
6564 * a page size.
6565 */
6566 if (qpp > num_seg) {
6567 dev_err(&pdev->dev,
6568 "Incorrect number of egress queues per page\n");
6569 err = -EINVAL;
6570 goto out_unmap_bar0;
6571 }
6572 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6573 pci_resource_len(pdev, 2));
6574 if (!adapter->bar2) {
6575 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6576 err = -ENOMEM;
6577 goto out_unmap_bar0;
6578 }
6579 }
6580
636f9d37 6581 setup_memwin(adapter);
b8ff05a9 6582 err = adap_init0(adapter);
636f9d37 6583 setup_memwin_rdma(adapter);
b8ff05a9
DM
6584 if (err)
6585 goto out_unmap_bar;
6586
6587 for_each_port(adapter, i) {
6588 struct net_device *netdev;
6589
6590 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6591 MAX_ETH_QSETS);
6592 if (!netdev) {
6593 err = -ENOMEM;
6594 goto out_free_dev;
6595 }
6596
6597 SET_NETDEV_DEV(netdev, &pdev->dev);
6598
6599 adapter->port[i] = netdev;
6600 pi = netdev_priv(netdev);
6601 pi->adapter = adapter;
6602 pi->xact_addr_filt = -1;
b8ff05a9 6603 pi->port_id = i;
b8ff05a9
DM
6604 netdev->irq = pdev->irq;
6605
2ed28baa
MM
6606 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6607 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6608 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 6609 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
6610 if (highdma)
6611 netdev->hw_features |= NETIF_F_HIGHDMA;
6612 netdev->features |= netdev->hw_features;
b8ff05a9
DM
6613 netdev->vlan_features = netdev->features & VLAN_FEAT;
6614
01789349
JP
6615 netdev->priv_flags |= IFF_UNICAST_FLT;
6616
b8ff05a9 6617 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
6618#ifdef CONFIG_CHELSIO_T4_DCB
6619 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6620 cxgb4_dcb_state_init(netdev);
6621#endif
7ad24ea4 6622 netdev->ethtool_ops = &cxgb_ethtool_ops;
b8ff05a9
DM
6623 }
6624
6625 pci_set_drvdata(pdev, adapter);
6626
6627 if (adapter->flags & FW_OK) {
060e0c75 6628 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
6629 if (err)
6630 goto out_free_dev;
6631 }
6632
6633 /*
6634 * Configure queues and allocate tables now, they can be needed as
6635 * soon as the first register_netdev completes.
6636 */
6637 cfg_queues(adapter);
6638
6639 adapter->l2t = t4_init_l2t();
6640 if (!adapter->l2t) {
6641 /* We tolerate a lack of L2T, giving up some functionality */
6642 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6643 adapter->params.offload = 0;
6644 }
6645
6646 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6647 dev_warn(&pdev->dev, "could not allocate TID table, "
6648 "continuing\n");
6649 adapter->params.offload = 0;
6650 }
6651
f7cabcdd
DM
6652 /* See what interrupts we'll be using */
6653 if (msi > 1 && enable_msix(adapter) == 0)
6654 adapter->flags |= USING_MSIX;
6655 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6656 adapter->flags |= USING_MSI;
6657
671b0060
DM
6658 err = init_rss(adapter);
6659 if (err)
6660 goto out_free_dev;
6661
b8ff05a9
DM
6662 /*
6663 * The card is now ready to go. If any errors occur during device
6664 * registration we do not fail the whole card but rather proceed only
6665 * with the ports we manage to register successfully. However we must
6666 * register at least one net device.
6667 */
6668 for_each_port(adapter, i) {
a57cabe0
DM
6669 pi = adap2pinfo(adapter, i);
6670 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6671 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6672
b8ff05a9
DM
6673 err = register_netdev(adapter->port[i]);
6674 if (err)
b1a3c2b6 6675 break;
b1a3c2b6
DM
6676 adapter->chan_map[pi->tx_chan] = i;
6677 print_port_info(adapter->port[i]);
b8ff05a9 6678 }
b1a3c2b6 6679 if (i == 0) {
b8ff05a9
DM
6680 dev_err(&pdev->dev, "could not register any net devices\n");
6681 goto out_free_dev;
6682 }
b1a3c2b6
DM
6683 if (err) {
6684 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6685 err = 0;
6403eab1 6686 }
b8ff05a9
DM
6687
6688 if (cxgb4_debugfs_root) {
6689 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6690 cxgb4_debugfs_root);
6691 setup_debugfs(adapter);
6692 }
6693
6482aa7c
DLR
6694 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6695 pdev->needs_freset = 1;
6696
b8ff05a9
DM
6697 if (is_offload(adapter))
6698 attach_ulds(adapter);
6699
8e1e6059 6700sriov:
b8ff05a9 6701#ifdef CONFIG_PCI_IOV
7d6727cf 6702 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
6703 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6704 dev_info(&pdev->dev,
6705 "instantiated %u virtual functions\n",
6706 num_vf[func]);
6707#endif
6708 return 0;
6709
6710 out_free_dev:
06546391 6711 free_some_resources(adapter);
b8ff05a9 6712 out_unmap_bar:
d14807dd 6713 if (!is_t4(adapter->params.chip))
22adfe0a
SR
6714 iounmap(adapter->bar2);
6715 out_unmap_bar0:
b8ff05a9
DM
6716 iounmap(adapter->regs);
6717 out_free_adapter:
6718 kfree(adapter);
6719 out_disable_device:
6720 pci_disable_pcie_error_reporting(pdev);
6721 pci_disable_device(pdev);
6722 out_release_regions:
6723 pci_release_regions(pdev);
b8ff05a9
DM
6724 return err;
6725}
6726
91744948 6727static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
6728{
6729 struct adapter *adapter = pci_get_drvdata(pdev);
6730
636f9d37 6731#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
6732 pci_disable_sriov(pdev);
6733
636f9d37
VP
6734#endif
6735
b8ff05a9
DM
6736 if (adapter) {
6737 int i;
6738
6739 if (is_offload(adapter))
6740 detach_ulds(adapter);
6741
6742 for_each_port(adapter, i)
8f3a7676 6743 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
6744 unregister_netdev(adapter->port[i]);
6745
9f16dc2e 6746 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 6747
f2b7e78d
VP
6748 /* If we allocated filters, free up state associated with any
6749 * valid filters ...
6750 */
6751 if (adapter->tids.ftid_tab) {
6752 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
6753 for (i = 0; i < (adapter->tids.nftids +
6754 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
6755 if (f->valid)
6756 clear_filter(adapter, f);
6757 }
6758
aaefae9b
DM
6759 if (adapter->flags & FULL_INIT_DONE)
6760 cxgb_down(adapter);
b8ff05a9 6761
06546391 6762 free_some_resources(adapter);
b8ff05a9 6763 iounmap(adapter->regs);
d14807dd 6764 if (!is_t4(adapter->params.chip))
22adfe0a 6765 iounmap(adapter->bar2);
b8ff05a9 6766 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
6767 if ((adapter->flags & DEV_ENABLED)) {
6768 pci_disable_device(pdev);
6769 adapter->flags &= ~DEV_ENABLED;
6770 }
b8ff05a9 6771 pci_release_regions(pdev);
ee9a33b2 6772 synchronize_rcu();
8b662fe7 6773 kfree(adapter);
a069ec91 6774 } else
b8ff05a9
DM
6775 pci_release_regions(pdev);
6776}
6777
6778static struct pci_driver cxgb4_driver = {
6779 .name = KBUILD_MODNAME,
6780 .id_table = cxgb4_pci_tbl,
6781 .probe = init_one,
91744948 6782 .remove = remove_one,
687d705c 6783 .shutdown = remove_one,
204dc3c0 6784 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
6785};
6786
6787static int __init cxgb4_init_module(void)
6788{
6789 int ret;
6790
3069ee9b
VP
6791 workq = create_singlethread_workqueue("cxgb4");
6792 if (!workq)
6793 return -ENOMEM;
6794
b8ff05a9
DM
6795 /* Debugfs support is optional, just warn if this fails */
6796 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6797 if (!cxgb4_debugfs_root)
428ac43f 6798 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
6799
6800 ret = pci_register_driver(&cxgb4_driver);
73a695f8 6801 if (ret < 0) {
b8ff05a9 6802 debugfs_remove(cxgb4_debugfs_root);
73a695f8
WY
6803 destroy_workqueue(workq);
6804 }
01bcca68
VP
6805
6806 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6807
b8ff05a9
DM
6808 return ret;
6809}
6810
6811static void __exit cxgb4_cleanup_module(void)
6812{
01bcca68 6813 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
b8ff05a9
DM
6814 pci_unregister_driver(&cxgb4_driver);
6815 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
3069ee9b
VP
6816 flush_workqueue(workq);
6817 destroy_workqueue(workq);
b8ff05a9
DM
6818}
6819
6820module_init(cxgb4_init_module);
6821module_exit(cxgb4_cleanup_module);