]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
rdma/cxgb4: Fixes cxgb4 probe failure in VM when PF is exposed through PCI Passthrough
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
b8ff05a9
DM
64#include <asm/uaccess.h>
65
66#include "cxgb4.h"
67#include "t4_regs.h"
68#include "t4_msg.h"
69#include "t4fw_api.h"
688848b1 70#include "cxgb4_dcb.h"
b8ff05a9
DM
71#include "l2t.h"
72
01bcca68
VP
73#include <../drivers/net/bonding/bonding.h>
74
75#ifdef DRV_VERSION
76#undef DRV_VERSION
77#endif
3a7f8554
SR
78#define DRV_VERSION "2.0.0-ko"
79#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9
DM
80
81/*
82 * Max interrupt hold-off timer value in us. Queues fall back to this value
83 * under extreme memory pressure so it's largish to give the system time to
84 * recover.
85 */
86#define MAX_SGE_TIMERVAL 200U
87
7ee9ff94 88enum {
13ee15d3
VP
89 /*
90 * Physical Function provisioning constants.
91 */
92 PFRES_NVI = 4, /* # of Virtual Interfaces */
93 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
94 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
95 */
96 PFRES_NEQ = 256, /* # of egress queues */
97 PFRES_NIQ = 0, /* # of ingress queues */
98 PFRES_TC = 0, /* PCI-E traffic class */
99 PFRES_NEXACTF = 128, /* # of exact MPS filters */
100
101 PFRES_R_CAPS = FW_CMD_CAP_PF,
102 PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104#ifdef CONFIG_PCI_IOV
105 /*
106 * Virtual Function provisioning constants. We need two extra Ingress
107 * Queues with Interrupt capability to serve as the VF's Firmware
108 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 * neither will have Free Lists associated with them). For each
110 * Ethernet/Control Egress Queue and for each Free List, we need an
111 * Egress Context.
112 */
7ee9ff94
CL
113 VFRES_NPORTS = 1, /* # of "ports" per VF */
114 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
115
116 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
117 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
118 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
7ee9ff94 119 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
13ee15d3 120 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
7ee9ff94
CL
121 VFRES_TC = 0, /* PCI-E traffic class */
122 VFRES_NEXACTF = 16, /* # of exact MPS filters */
123
124 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
13ee15d3 126#endif
7ee9ff94
CL
127};
128
129/*
130 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
131 * static and likely not to be useful in the long run. We really need to
132 * implement some form of persistent configuration which the firmware
133 * controls.
134 */
135static unsigned int pfvfres_pmask(struct adapter *adapter,
136 unsigned int pf, unsigned int vf)
137{
138 unsigned int portn, portvec;
139
140 /*
141 * Give PF's access to all of the ports.
142 */
143 if (vf == 0)
144 return FW_PFVF_CMD_PMASK_MASK;
145
146 /*
147 * For VFs, we'll assign them access to the ports based purely on the
148 * PF. We assign active ports in order, wrapping around if there are
149 * fewer active ports than PFs: e.g. active port[pf % nports].
150 * Unfortunately the adapter's port_info structs haven't been
151 * initialized yet so we have to compute this.
152 */
153 if (adapter->params.nports == 0)
154 return 0;
155
156 portn = pf % adapter->params.nports;
157 portvec = adapter->params.portvec;
158 for (;;) {
159 /*
160 * Isolate the lowest set bit in the port vector. If we're at
161 * the port number that we want, return that as the pmask.
162 * otherwise mask that bit out of the port vector and
163 * decrement our port number ...
164 */
165 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 if (portn == 0)
167 return pmask;
168 portn--;
169 portvec &= ~pmask;
170 }
171 /*NOTREACHED*/
172}
7ee9ff94 173
b8ff05a9
DM
174enum {
175 MAX_TXQ_ENTRIES = 16384,
176 MAX_CTRL_TXQ_ENTRIES = 1024,
177 MAX_RSPQ_ENTRIES = 16384,
178 MAX_RX_BUFFERS = 16384,
179 MIN_TXQ_ENTRIES = 32,
180 MIN_CTRL_TXQ_ENTRIES = 32,
181 MIN_RSPQ_ENTRIES = 128,
182 MIN_FL_ENTRIES = 16
183};
184
f2b7e78d
VP
185/* Host shadow copy of ingress filter entry. This is in host native format
186 * and doesn't match the ordering or bit order, etc. of the hardware of the
187 * firmware command. The use of bit-field structure elements is purely to
188 * remind ourselves of the field size limitations and save memory in the case
189 * where the filter table is large.
190 */
191struct filter_entry {
192 /* Administrative fields for filter.
193 */
194 u32 valid:1; /* filter allocated and valid */
195 u32 locked:1; /* filter is administratively locked */
196
197 u32 pending:1; /* filter action is pending firmware reply */
198 u32 smtidx:8; /* Source MAC Table index for smac */
199 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
200
201 /* The filter itself. Most of this is a straight copy of information
202 * provided by the extended ioctl(). Some fields are translated to
203 * internal forms -- for instance the Ingress Queue ID passed in from
204 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 */
206 struct ch_filter_specification fs;
207};
208
b8ff05a9
DM
209#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
060e0c75 213#define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
b8ff05a9
DM
214
215static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
060e0c75 216 CH_DEVICE(0xa000, 0), /* PE10K */
ccea790e
DM
217 CH_DEVICE(0x4001, -1),
218 CH_DEVICE(0x4002, -1),
219 CH_DEVICE(0x4003, -1),
220 CH_DEVICE(0x4004, -1),
221 CH_DEVICE(0x4005, -1),
222 CH_DEVICE(0x4006, -1),
223 CH_DEVICE(0x4007, -1),
224 CH_DEVICE(0x4008, -1),
225 CH_DEVICE(0x4009, -1),
226 CH_DEVICE(0x400a, -1),
227 CH_DEVICE(0x4401, 4),
228 CH_DEVICE(0x4402, 4),
229 CH_DEVICE(0x4403, 4),
230 CH_DEVICE(0x4404, 4),
231 CH_DEVICE(0x4405, 4),
232 CH_DEVICE(0x4406, 4),
233 CH_DEVICE(0x4407, 4),
234 CH_DEVICE(0x4408, 4),
235 CH_DEVICE(0x4409, 4),
236 CH_DEVICE(0x440a, 4),
f637d577
VP
237 CH_DEVICE(0x440d, 4),
238 CH_DEVICE(0x440e, 4),
9ef603a0
VP
239 CH_DEVICE(0x5001, 4),
240 CH_DEVICE(0x5002, 4),
241 CH_DEVICE(0x5003, 4),
242 CH_DEVICE(0x5004, 4),
243 CH_DEVICE(0x5005, 4),
244 CH_DEVICE(0x5006, 4),
245 CH_DEVICE(0x5007, 4),
246 CH_DEVICE(0x5008, 4),
247 CH_DEVICE(0x5009, 4),
248 CH_DEVICE(0x500A, 4),
249 CH_DEVICE(0x500B, 4),
250 CH_DEVICE(0x500C, 4),
251 CH_DEVICE(0x500D, 4),
252 CH_DEVICE(0x500E, 4),
253 CH_DEVICE(0x500F, 4),
254 CH_DEVICE(0x5010, 4),
255 CH_DEVICE(0x5011, 4),
256 CH_DEVICE(0x5012, 4),
257 CH_DEVICE(0x5013, 4),
f0a8e6de
HS
258 CH_DEVICE(0x5014, 4),
259 CH_DEVICE(0x5015, 4),
0183aa62
HS
260 CH_DEVICE(0x5080, 4),
261 CH_DEVICE(0x5081, 4),
262 CH_DEVICE(0x5082, 4),
263 CH_DEVICE(0x5083, 4),
264 CH_DEVICE(0x5084, 4),
265 CH_DEVICE(0x5085, 4),
9ef603a0
VP
266 CH_DEVICE(0x5401, 4),
267 CH_DEVICE(0x5402, 4),
268 CH_DEVICE(0x5403, 4),
269 CH_DEVICE(0x5404, 4),
270 CH_DEVICE(0x5405, 4),
271 CH_DEVICE(0x5406, 4),
272 CH_DEVICE(0x5407, 4),
273 CH_DEVICE(0x5408, 4),
274 CH_DEVICE(0x5409, 4),
275 CH_DEVICE(0x540A, 4),
276 CH_DEVICE(0x540B, 4),
277 CH_DEVICE(0x540C, 4),
278 CH_DEVICE(0x540D, 4),
279 CH_DEVICE(0x540E, 4),
280 CH_DEVICE(0x540F, 4),
281 CH_DEVICE(0x5410, 4),
282 CH_DEVICE(0x5411, 4),
283 CH_DEVICE(0x5412, 4),
284 CH_DEVICE(0x5413, 4),
f0a8e6de
HS
285 CH_DEVICE(0x5414, 4),
286 CH_DEVICE(0x5415, 4),
0183aa62
HS
287 CH_DEVICE(0x5480, 4),
288 CH_DEVICE(0x5481, 4),
289 CH_DEVICE(0x5482, 4),
290 CH_DEVICE(0x5483, 4),
291 CH_DEVICE(0x5484, 4),
292 CH_DEVICE(0x5485, 4),
b8ff05a9
DM
293 { 0, }
294};
295
16e47624 296#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 297#define FW5_FNAME "cxgb4/t5fw.bin"
16e47624 298#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 299#define FW5_CFNAME "cxgb4/t5-config.txt"
b8ff05a9
DM
300
301MODULE_DESCRIPTION(DRV_DESC);
302MODULE_AUTHOR("Chelsio Communications");
303MODULE_LICENSE("Dual BSD/GPL");
304MODULE_VERSION(DRV_VERSION);
305MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 306MODULE_FIRMWARE(FW4_FNAME);
0a57a536 307MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 308
636f9d37
VP
309/*
310 * Normally we're willing to become the firmware's Master PF but will be happy
311 * if another PF has already become the Master and initialized the adapter.
312 * Setting "force_init" will cause this driver to forcibly establish itself as
313 * the Master PF and initialize the adapter.
314 */
315static uint force_init;
316
317module_param(force_init, uint, 0644);
318MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
319
13ee15d3
VP
320/*
321 * Normally if the firmware we connect to has Configuration File support, we
322 * use that and only fall back to the old Driver-based initialization if the
323 * Configuration File fails for some reason. If force_old_init is set, then
324 * we'll always use the old Driver-based initialization sequence.
325 */
326static uint force_old_init;
327
328module_param(force_old_init, uint, 0644);
329MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
330
b8ff05a9
DM
331static int dflt_msg_enable = DFLT_MSG_ENABLE;
332
333module_param(dflt_msg_enable, int, 0644);
334MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
335
336/*
337 * The driver uses the best interrupt scheme available on a platform in the
338 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
339 * of these schemes the driver may consider as follows:
340 *
341 * msi = 2: choose from among all three options
342 * msi = 1: only consider MSI and INTx interrupts
343 * msi = 0: force INTx interrupts
344 */
345static int msi = 2;
346
347module_param(msi, int, 0644);
348MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
349
350/*
351 * Queue interrupt hold-off timer values. Queues default to the first of these
352 * upon creation.
353 */
354static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
355
356module_param_array(intr_holdoff, uint, NULL, 0644);
357MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
358 "0..4 in microseconds");
359
360static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
361
362module_param_array(intr_cnt, uint, NULL, 0644);
363MODULE_PARM_DESC(intr_cnt,
364 "thresholds 1..3 for queue interrupt packet counters");
365
636f9d37
VP
366/*
367 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
368 * offset by 2 bytes in order to have the IP headers line up on 4-byte
369 * boundaries. This is a requirement for many architectures which will throw
370 * a machine check fault if an attempt is made to access one of the 4-byte IP
371 * header fields on a non-4-byte boundary. And it's a major performance issue
372 * even on some architectures which allow it like some implementations of the
373 * x86 ISA. However, some architectures don't mind this and for some very
374 * edge-case performance sensitive applications (like forwarding large volumes
375 * of small packets), setting this DMA offset to 0 will decrease the number of
376 * PCI-E Bus transfers enough to measurably affect performance.
377 */
378static int rx_dma_offset = 2;
379
eb939922 380static bool vf_acls;
b8ff05a9
DM
381
382#ifdef CONFIG_PCI_IOV
383module_param(vf_acls, bool, 0644);
384MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
385
7d6727cf
SR
386/* Configure the number of PCI-E Virtual Function which are to be instantiated
387 * on SR-IOV Capable Physical Functions.
0a57a536 388 */
7d6727cf 389static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
390
391module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 392MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
393#endif
394
688848b1
AB
395/* TX Queue select used to determine what algorithm to use for selecting TX
396 * queue. Select between the kernel provided function (select_queue=0) or user
397 * cxgb_select_queue function (select_queue=1)
398 *
399 * Default: select_queue=0
400 */
401static int select_queue;
402module_param(select_queue, int, 0644);
403MODULE_PARM_DESC(select_queue,
404 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
405
13ee15d3
VP
406/*
407 * The filter TCAM has a fixed portion and a variable portion. The fixed
408 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
409 * ports. The variable portion is 36 bits which can include things like Exact
410 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
411 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
412 * far exceed the 36-bit budget for this "compressed" header portion of the
413 * filter. Thus, we have a scarce resource which must be carefully managed.
414 *
415 * By default we set this up to mostly match the set of filter matching
416 * capabilities of T3 but with accommodations for some of T4's more
417 * interesting features:
418 *
419 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
420 * [Inner] VLAN (17), Port (3), FCoE (1) }
421 */
422enum {
423 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
424 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
425 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
426};
427
428static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
429
f2b7e78d
VP
430module_param(tp_vlan_pri_map, uint, 0644);
431MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
432
b8ff05a9
DM
433static struct dentry *cxgb4_debugfs_root;
434
435static LIST_HEAD(adapter_list);
436static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
437/* Adapter list to be accessed from atomic context */
438static LIST_HEAD(adap_rcu_list);
439static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
440static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
441static const char *uld_str[] = { "RDMA", "iSCSI" };
442
443static void link_report(struct net_device *dev)
444{
445 if (!netif_carrier_ok(dev))
446 netdev_info(dev, "link down\n");
447 else {
448 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
449
450 const char *s = "10Mbps";
451 const struct port_info *p = netdev_priv(dev);
452
453 switch (p->link_cfg.speed) {
e8b39015 454 case 10000:
b8ff05a9
DM
455 s = "10Gbps";
456 break;
e8b39015 457 case 1000:
b8ff05a9
DM
458 s = "1000Mbps";
459 break;
e8b39015 460 case 100:
b8ff05a9
DM
461 s = "100Mbps";
462 break;
e8b39015 463 case 40000:
72aca4bf
KS
464 s = "40Gbps";
465 break;
b8ff05a9
DM
466 }
467
468 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
469 fc[p->link_cfg.fc]);
470 }
471}
472
688848b1
AB
473#ifdef CONFIG_CHELSIO_T4_DCB
474/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
475static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
476{
477 struct port_info *pi = netdev_priv(dev);
478 struct adapter *adap = pi->adapter;
479 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
480 int i;
481
482 /* We use a simple mapping of Port TX Queue Index to DCB
483 * Priority when we're enabling DCB.
484 */
485 for (i = 0; i < pi->nqsets; i++, txq++) {
486 u32 name, value;
487 int err;
488
489 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
490 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
491 FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
492 value = enable ? i : 0xffffffff;
493
494 /* Since we can be called while atomic (from "interrupt
495 * level") we need to issue the Set Parameters Commannd
496 * without sleeping (timeout < 0).
497 */
498 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
499 &name, &value);
500
501 if (err)
502 dev_err(adap->pdev_dev,
503 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
504 enable ? "set" : "unset", pi->port_id, i, -err);
505 }
506}
507#endif /* CONFIG_CHELSIO_T4_DCB */
508
b8ff05a9
DM
509void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
510{
511 struct net_device *dev = adapter->port[port_id];
512
513 /* Skip changes from disabled ports. */
514 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
515 if (link_stat)
516 netif_carrier_on(dev);
688848b1
AB
517 else {
518#ifdef CONFIG_CHELSIO_T4_DCB
519 cxgb4_dcb_state_init(dev);
520 dcb_tx_queue_prio_enable(dev, false);
521#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 522 netif_carrier_off(dev);
688848b1 523 }
b8ff05a9
DM
524
525 link_report(dev);
526 }
527}
528
529void t4_os_portmod_changed(const struct adapter *adap, int port_id)
530{
531 static const char *mod_str[] = {
a0881cab 532 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
533 };
534
535 const struct net_device *dev = adap->port[port_id];
536 const struct port_info *pi = netdev_priv(dev);
537
538 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
539 netdev_info(dev, "port module unplugged\n");
a0881cab 540 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
541 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
542}
543
544/*
545 * Configure the exact and hash address filters to handle a port's multicast
546 * and secondary unicast MAC addresses.
547 */
548static int set_addr_filters(const struct net_device *dev, bool sleep)
549{
550 u64 mhash = 0;
551 u64 uhash = 0;
552 bool free = true;
553 u16 filt_idx[7];
554 const u8 *addr[7];
555 int ret, naddr = 0;
b8ff05a9
DM
556 const struct netdev_hw_addr *ha;
557 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 558 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 559 const struct port_info *pi = netdev_priv(dev);
060e0c75 560 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
561
562 /* first do the secondary unicast addresses */
563 netdev_for_each_uc_addr(ha, dev) {
564 addr[naddr++] = ha->addr;
565 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 566 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
567 naddr, addr, filt_idx, &uhash, sleep);
568 if (ret < 0)
569 return ret;
570
571 free = false;
572 naddr = 0;
573 }
574 }
575
576 /* next set up the multicast addresses */
4a35ecf8
DM
577 netdev_for_each_mc_addr(ha, dev) {
578 addr[naddr++] = ha->addr;
579 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 580 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
581 naddr, addr, filt_idx, &mhash, sleep);
582 if (ret < 0)
583 return ret;
584
585 free = false;
586 naddr = 0;
587 }
588 }
589
060e0c75 590 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
591 uhash | mhash, sleep);
592}
593
3069ee9b
VP
594int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
595module_param(dbfifo_int_thresh, int, 0644);
596MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
597
404d9e3f
VP
598/*
599 * usecs to sleep while draining the dbfifo
600 */
601static int dbfifo_drain_delay = 1000;
3069ee9b
VP
602module_param(dbfifo_drain_delay, int, 0644);
603MODULE_PARM_DESC(dbfifo_drain_delay,
604 "usecs to sleep while draining the dbfifo");
605
b8ff05a9
DM
606/*
607 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
608 * If @mtu is -1 it is left unchanged.
609 */
610static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
611{
612 int ret;
613 struct port_info *pi = netdev_priv(dev);
614
615 ret = set_addr_filters(dev, sleep_ok);
616 if (ret == 0)
060e0c75 617 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
b8ff05a9 618 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 619 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
620 sleep_ok);
621 return ret;
622}
623
3069ee9b
VP
624static struct workqueue_struct *workq;
625
b8ff05a9
DM
626/**
627 * link_start - enable a port
628 * @dev: the port to enable
629 *
630 * Performs the MAC and PHY actions needed to enable a port.
631 */
632static int link_start(struct net_device *dev)
633{
634 int ret;
635 struct port_info *pi = netdev_priv(dev);
060e0c75 636 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
637
638 /*
639 * We do not set address filters and promiscuity here, the stack does
640 * that step explicitly.
641 */
060e0c75 642 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 643 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 644 if (ret == 0) {
060e0c75 645 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 646 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 647 true);
b8ff05a9
DM
648 if (ret >= 0) {
649 pi->xact_addr_filt = ret;
650 ret = 0;
651 }
652 }
653 if (ret == 0)
060e0c75
DM
654 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
655 &pi->link_cfg);
b8ff05a9 656 if (ret == 0)
688848b1
AB
657 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
658 true, CXGB4_DCB_ENABLED);
659
b8ff05a9
DM
660 return ret;
661}
662
688848b1
AB
663int cxgb4_dcb_enabled(const struct net_device *dev)
664{
665#ifdef CONFIG_CHELSIO_T4_DCB
666 struct port_info *pi = netdev_priv(dev);
667
668 return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
669#else
670 return 0;
671#endif
672}
673EXPORT_SYMBOL(cxgb4_dcb_enabled);
674
675#ifdef CONFIG_CHELSIO_T4_DCB
676/* Handle a Data Center Bridging update message from the firmware. */
677static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
678{
679 int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
680 struct net_device *dev = adap->port[port];
681 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
682 int new_dcb_enabled;
683
684 cxgb4_dcb_handle_fw_update(adap, pcmd);
685 new_dcb_enabled = cxgb4_dcb_enabled(dev);
686
687 /* If the DCB has become enabled or disabled on the port then we're
688 * going to need to set up/tear down DCB Priority parameters for the
689 * TX Queues associated with the port.
690 */
691 if (new_dcb_enabled != old_dcb_enabled)
692 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
693}
694#endif /* CONFIG_CHELSIO_T4_DCB */
695
f2b7e78d
VP
696/* Clear a filter and release any of its resources that we own. This also
697 * clears the filter's "pending" status.
698 */
699static void clear_filter(struct adapter *adap, struct filter_entry *f)
700{
701 /* If the new or old filter have loopback rewriteing rules then we'll
702 * need to free any existing Layer Two Table (L2T) entries of the old
703 * filter rule. The firmware will handle freeing up any Source MAC
704 * Table (SMT) entries used for rewriting Source MAC Addresses in
705 * loopback rules.
706 */
707 if (f->l2t)
708 cxgb4_l2t_release(f->l2t);
709
710 /* The zeroing of the filter rule below clears the filter valid,
711 * pending, locked flags, l2t pointer, etc. so it's all we need for
712 * this operation.
713 */
714 memset(f, 0, sizeof(*f));
715}
716
717/* Handle a filter write/deletion reply.
718 */
719static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
720{
721 unsigned int idx = GET_TID(rpl);
722 unsigned int nidx = idx - adap->tids.ftid_base;
723 unsigned int ret;
724 struct filter_entry *f;
725
726 if (idx >= adap->tids.ftid_base && nidx <
727 (adap->tids.nftids + adap->tids.nsftids)) {
728 idx = nidx;
729 ret = GET_TCB_COOKIE(rpl->cookie);
730 f = &adap->tids.ftid_tab[idx];
731
732 if (ret == FW_FILTER_WR_FLT_DELETED) {
733 /* Clear the filter when we get confirmation from the
734 * hardware that the filter has been deleted.
735 */
736 clear_filter(adap, f);
737 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
738 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
739 idx);
740 clear_filter(adap, f);
741 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
742 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
743 f->pending = 0; /* asynchronous setup completed */
744 f->valid = 1;
745 } else {
746 /* Something went wrong. Issue a warning about the
747 * problem and clear everything out.
748 */
749 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
750 idx, ret);
751 clear_filter(adap, f);
752 }
753 }
754}
755
756/* Response queue handler for the FW event queue.
b8ff05a9
DM
757 */
758static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
759 const struct pkt_gl *gl)
760{
761 u8 opcode = ((const struct rss_header *)rsp)->opcode;
762
763 rsp++; /* skip RSS header */
b407a4a9
VP
764
765 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
766 */
767 if (unlikely(opcode == CPL_FW4_MSG &&
768 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
769 rsp++;
770 opcode = ((const struct rss_header *)rsp)->opcode;
771 rsp++;
772 if (opcode != CPL_SGE_EGR_UPDATE) {
773 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
774 , opcode);
775 goto out;
776 }
777 }
778
b8ff05a9
DM
779 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
780 const struct cpl_sge_egr_update *p = (void *)rsp;
781 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
e46dab4d 782 struct sge_txq *txq;
b8ff05a9 783
e46dab4d 784 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 785 txq->restarts++;
e46dab4d 786 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
787 struct sge_eth_txq *eq;
788
789 eq = container_of(txq, struct sge_eth_txq, q);
790 netif_tx_wake_queue(eq->txq);
791 } else {
792 struct sge_ofld_txq *oq;
793
794 oq = container_of(txq, struct sge_ofld_txq, q);
795 tasklet_schedule(&oq->qresume_tsk);
796 }
797 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
798 const struct cpl_fw6_msg *p = (void *)rsp;
799
688848b1
AB
800#ifdef CONFIG_CHELSIO_T4_DCB
801 const struct fw_port_cmd *pcmd = (const void *)p->data;
802 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
803 unsigned int action =
804 FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
805
806 if (cmd == FW_PORT_CMD &&
807 action == FW_PORT_ACTION_GET_PORT_INFO) {
808 int port = FW_PORT_CMD_PORTID_GET(
809 be32_to_cpu(pcmd->op_to_portid));
810 struct net_device *dev = q->adap->port[port];
811 int state_input = ((pcmd->u.info.dcbxdis_pkd &
812 FW_PORT_CMD_DCBXDIS)
813 ? CXGB4_DCB_INPUT_FW_DISABLED
814 : CXGB4_DCB_INPUT_FW_ENABLED);
815
816 cxgb4_dcb_state_fsm(dev, state_input);
817 }
818
819 if (cmd == FW_PORT_CMD &&
820 action == FW_PORT_ACTION_L2_DCB_CFG)
821 dcb_rpl(q->adap, pcmd);
822 else
823#endif
824 if (p->type == 0)
825 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
826 } else if (opcode == CPL_L2T_WRITE_RPL) {
827 const struct cpl_l2t_write_rpl *p = (void *)rsp;
828
829 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
830 } else if (opcode == CPL_SET_TCB_RPL) {
831 const struct cpl_set_tcb_rpl *p = (void *)rsp;
832
833 filter_rpl(q->adap, p);
b8ff05a9
DM
834 } else
835 dev_err(q->adap->pdev_dev,
836 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 837out:
b8ff05a9
DM
838 return 0;
839}
840
841/**
842 * uldrx_handler - response queue handler for ULD queues
843 * @q: the response queue that received the packet
844 * @rsp: the response queue descriptor holding the offload message
845 * @gl: the gather list of packet fragments
846 *
847 * Deliver an ingress offload packet to a ULD. All processing is done by
848 * the ULD, we just maintain statistics.
849 */
850static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
851 const struct pkt_gl *gl)
852{
853 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
854
b407a4a9
VP
855 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
856 */
857 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
858 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
859 rsp += 2;
860
b8ff05a9
DM
861 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
862 rxq->stats.nomem++;
863 return -1;
864 }
865 if (gl == NULL)
866 rxq->stats.imm++;
867 else if (gl == CXGB4_MSG_AN)
868 rxq->stats.an++;
869 else
870 rxq->stats.pkts++;
871 return 0;
872}
873
874static void disable_msi(struct adapter *adapter)
875{
876 if (adapter->flags & USING_MSIX) {
877 pci_disable_msix(adapter->pdev);
878 adapter->flags &= ~USING_MSIX;
879 } else if (adapter->flags & USING_MSI) {
880 pci_disable_msi(adapter->pdev);
881 adapter->flags &= ~USING_MSI;
882 }
883}
884
885/*
886 * Interrupt handler for non-data events used with MSI-X.
887 */
888static irqreturn_t t4_nondata_intr(int irq, void *cookie)
889{
890 struct adapter *adap = cookie;
891
892 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
893 if (v & PFSW) {
894 adap->swintr = 1;
895 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
896 }
897 t4_slow_intr_handler(adap);
898 return IRQ_HANDLED;
899}
900
901/*
902 * Name the MSI-X interrupts.
903 */
904static void name_msix_vecs(struct adapter *adap)
905{
ba27816c 906 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
907
908 /* non-data interrupts */
b1a3c2b6 909 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
910
911 /* FW events */
b1a3c2b6
DM
912 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
913 adap->port[0]->name);
b8ff05a9
DM
914
915 /* Ethernet queues */
916 for_each_port(adap, j) {
917 struct net_device *d = adap->port[j];
918 const struct port_info *pi = netdev_priv(d);
919
ba27816c 920 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
921 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
922 d->name, i);
b8ff05a9
DM
923 }
924
925 /* offload queues */
ba27816c
DM
926 for_each_ofldrxq(&adap->sge, i)
927 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 928 adap->port[0]->name, i);
ba27816c
DM
929
930 for_each_rdmarxq(&adap->sge, i)
931 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 932 adap->port[0]->name, i);
cf38be6d
HS
933
934 for_each_rdmaciq(&adap->sge, i)
935 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
936 adap->port[0]->name, i);
b8ff05a9
DM
937}
938
939static int request_msix_queue_irqs(struct adapter *adap)
940{
941 struct sge *s = &adap->sge;
cf38be6d
HS
942 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
943 int msi_index = 2;
b8ff05a9
DM
944
945 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
946 adap->msix_info[1].desc, &s->fw_evtq);
947 if (err)
948 return err;
949
950 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
951 err = request_irq(adap->msix_info[msi_index].vec,
952 t4_sge_intr_msix, 0,
953 adap->msix_info[msi_index].desc,
b8ff05a9
DM
954 &s->ethrxq[ethqidx].rspq);
955 if (err)
956 goto unwind;
404d9e3f 957 msi_index++;
b8ff05a9
DM
958 }
959 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
960 err = request_irq(adap->msix_info[msi_index].vec,
961 t4_sge_intr_msix, 0,
962 adap->msix_info[msi_index].desc,
b8ff05a9
DM
963 &s->ofldrxq[ofldqidx].rspq);
964 if (err)
965 goto unwind;
404d9e3f 966 msi_index++;
b8ff05a9
DM
967 }
968 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
969 err = request_irq(adap->msix_info[msi_index].vec,
970 t4_sge_intr_msix, 0,
971 adap->msix_info[msi_index].desc,
b8ff05a9
DM
972 &s->rdmarxq[rdmaqidx].rspq);
973 if (err)
974 goto unwind;
404d9e3f 975 msi_index++;
b8ff05a9 976 }
cf38be6d
HS
977 for_each_rdmaciq(s, rdmaciqqidx) {
978 err = request_irq(adap->msix_info[msi_index].vec,
979 t4_sge_intr_msix, 0,
980 adap->msix_info[msi_index].desc,
981 &s->rdmaciq[rdmaciqqidx].rspq);
982 if (err)
983 goto unwind;
984 msi_index++;
985 }
b8ff05a9
DM
986 return 0;
987
988unwind:
cf38be6d
HS
989 while (--rdmaciqqidx >= 0)
990 free_irq(adap->msix_info[--msi_index].vec,
991 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 992 while (--rdmaqidx >= 0)
404d9e3f 993 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
994 &s->rdmarxq[rdmaqidx].rspq);
995 while (--ofldqidx >= 0)
404d9e3f 996 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
997 &s->ofldrxq[ofldqidx].rspq);
998 while (--ethqidx >= 0)
404d9e3f
VP
999 free_irq(adap->msix_info[--msi_index].vec,
1000 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
1001 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1002 return err;
1003}
1004
1005static void free_msix_queue_irqs(struct adapter *adap)
1006{
404d9e3f 1007 int i, msi_index = 2;
b8ff05a9
DM
1008 struct sge *s = &adap->sge;
1009
1010 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1011 for_each_ethrxq(s, i)
404d9e3f 1012 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 1013 for_each_ofldrxq(s, i)
404d9e3f 1014 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 1015 for_each_rdmarxq(s, i)
404d9e3f 1016 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
1017 for_each_rdmaciq(s, i)
1018 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
1019}
1020
671b0060
DM
1021/**
1022 * write_rss - write the RSS table for a given port
1023 * @pi: the port
1024 * @queues: array of queue indices for RSS
1025 *
1026 * Sets up the portion of the HW RSS table for the port's VI to distribute
1027 * packets to the Rx queues in @queues.
1028 */
1029static int write_rss(const struct port_info *pi, const u16 *queues)
1030{
1031 u16 *rss;
1032 int i, err;
1033 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1034
1035 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1036 if (!rss)
1037 return -ENOMEM;
1038
1039 /* map the queue indices to queue ids */
1040 for (i = 0; i < pi->rss_size; i++, queues++)
1041 rss[i] = q[*queues].rspq.abs_id;
1042
060e0c75
DM
1043 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1044 pi->rss_size, rss, pi->rss_size);
671b0060
DM
1045 kfree(rss);
1046 return err;
1047}
1048
b8ff05a9
DM
1049/**
1050 * setup_rss - configure RSS
1051 * @adap: the adapter
1052 *
671b0060 1053 * Sets up RSS for each port.
b8ff05a9
DM
1054 */
1055static int setup_rss(struct adapter *adap)
1056{
671b0060 1057 int i, err;
b8ff05a9
DM
1058
1059 for_each_port(adap, i) {
1060 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 1061
671b0060 1062 err = write_rss(pi, pi->rss);
b8ff05a9
DM
1063 if (err)
1064 return err;
1065 }
1066 return 0;
1067}
1068
e46dab4d
DM
1069/*
1070 * Return the channel of the ingress queue with the given qid.
1071 */
1072static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1073{
1074 qid -= p->ingr_start;
1075 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1076}
1077
b8ff05a9
DM
1078/*
1079 * Wait until all NAPI handlers are descheduled.
1080 */
1081static void quiesce_rx(struct adapter *adap)
1082{
1083 int i;
1084
1085 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1086 struct sge_rspq *q = adap->sge.ingr_map[i];
1087
1088 if (q && q->handler)
1089 napi_disable(&q->napi);
1090 }
1091}
1092
1093/*
1094 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1095 */
1096static void enable_rx(struct adapter *adap)
1097{
1098 int i;
1099
1100 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1101 struct sge_rspq *q = adap->sge.ingr_map[i];
1102
1103 if (!q)
1104 continue;
1105 if (q->handler)
1106 napi_enable(&q->napi);
1107 /* 0-increment GTS to start the timer and enable interrupts */
1108 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1109 SEINTARM(q->intr_params) |
1110 INGRESSQID(q->cntxt_id));
1111 }
1112}
1113
1114/**
1115 * setup_sge_queues - configure SGE Tx/Rx/response queues
1116 * @adap: the adapter
1117 *
1118 * Determines how many sets of SGE queues to use and initializes them.
1119 * We support multiple queue sets per port if we have MSI-X, otherwise
1120 * just one queue set per port.
1121 */
1122static int setup_sge_queues(struct adapter *adap)
1123{
1124 int err, msi_idx, i, j;
1125 struct sge *s = &adap->sge;
1126
1127 bitmap_zero(s->starving_fl, MAX_EGRQ);
1128 bitmap_zero(s->txq_maperr, MAX_EGRQ);
1129
1130 if (adap->flags & USING_MSIX)
1131 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1132 else {
1133 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1134 NULL, NULL);
1135 if (err)
1136 return err;
1137 msi_idx = -((int)s->intrq.abs_id + 1);
1138 }
1139
1140 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1141 msi_idx, NULL, fwevtq_handler);
1142 if (err) {
1143freeout: t4_free_sge_resources(adap);
1144 return err;
1145 }
1146
1147 for_each_port(adap, i) {
1148 struct net_device *dev = adap->port[i];
1149 struct port_info *pi = netdev_priv(dev);
1150 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1151 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1152
1153 for (j = 0; j < pi->nqsets; j++, q++) {
1154 if (msi_idx > 0)
1155 msi_idx++;
1156 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1157 msi_idx, &q->fl,
1158 t4_ethrx_handler);
1159 if (err)
1160 goto freeout;
1161 q->rspq.idx = j;
1162 memset(&q->stats, 0, sizeof(q->stats));
1163 }
1164 for (j = 0; j < pi->nqsets; j++, t++) {
1165 err = t4_sge_alloc_eth_txq(adap, t, dev,
1166 netdev_get_tx_queue(dev, j),
1167 s->fw_evtq.cntxt_id);
1168 if (err)
1169 goto freeout;
1170 }
1171 }
1172
1173 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1174 for_each_ofldrxq(s, i) {
1175 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1176 struct net_device *dev = adap->port[i / j];
1177
1178 if (msi_idx > 0)
1179 msi_idx++;
1180 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
cf38be6d
HS
1181 q->fl.size ? &q->fl : NULL,
1182 uldrx_handler);
b8ff05a9
DM
1183 if (err)
1184 goto freeout;
1185 memset(&q->stats, 0, sizeof(q->stats));
1186 s->ofld_rxq[i] = q->rspq.abs_id;
1187 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1188 s->fw_evtq.cntxt_id);
1189 if (err)
1190 goto freeout;
1191 }
1192
1193 for_each_rdmarxq(s, i) {
1194 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1195
1196 if (msi_idx > 0)
1197 msi_idx++;
1198 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
cf38be6d
HS
1199 msi_idx, q->fl.size ? &q->fl : NULL,
1200 uldrx_handler);
b8ff05a9
DM
1201 if (err)
1202 goto freeout;
1203 memset(&q->stats, 0, sizeof(q->stats));
1204 s->rdma_rxq[i] = q->rspq.abs_id;
1205 }
1206
cf38be6d
HS
1207 for_each_rdmaciq(s, i) {
1208 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1209
1210 if (msi_idx > 0)
1211 msi_idx++;
1212 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1213 msi_idx, q->fl.size ? &q->fl : NULL,
1214 uldrx_handler);
1215 if (err)
1216 goto freeout;
1217 memset(&q->stats, 0, sizeof(q->stats));
1218 s->rdma_ciq[i] = q->rspq.abs_id;
1219 }
1220
b8ff05a9
DM
1221 for_each_port(adap, i) {
1222 /*
1223 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1224 * have RDMA queues, and that's the right value.
1225 */
1226 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1227 s->fw_evtq.cntxt_id,
1228 s->rdmarxq[i].rspq.cntxt_id);
1229 if (err)
1230 goto freeout;
1231 }
1232
1233 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1234 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1235 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1236 return 0;
1237}
1238
b8ff05a9
DM
1239/*
1240 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1241 * The allocated memory is cleared.
1242 */
1243void *t4_alloc_mem(size_t size)
1244{
8be04b93 1245 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1246
1247 if (!p)
89bf67f1 1248 p = vzalloc(size);
b8ff05a9
DM
1249 return p;
1250}
1251
1252/*
1253 * Free memory allocated through alloc_mem().
1254 */
31b9c19b 1255static void t4_free_mem(void *addr)
b8ff05a9
DM
1256{
1257 if (is_vmalloc_addr(addr))
1258 vfree(addr);
1259 else
1260 kfree(addr);
1261}
1262
f2b7e78d
VP
1263/* Send a Work Request to write the filter at a specified index. We construct
1264 * a Firmware Filter Work Request to have the work done and put the indicated
1265 * filter into "pending" mode which will prevent any further actions against
1266 * it till we get a reply from the firmware on the completion status of the
1267 * request.
1268 */
1269static int set_filter_wr(struct adapter *adapter, int fidx)
1270{
1271 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1272 struct sk_buff *skb;
1273 struct fw_filter_wr *fwr;
1274 unsigned int ftid;
1275
1276 /* If the new filter requires loopback Destination MAC and/or VLAN
1277 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1278 * the filter.
1279 */
1280 if (f->fs.newdmac || f->fs.newvlan) {
1281 /* allocate L2T entry for new filter */
1282 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1283 if (f->l2t == NULL)
1284 return -EAGAIN;
1285 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1286 f->fs.eport, f->fs.dmac)) {
1287 cxgb4_l2t_release(f->l2t);
1288 f->l2t = NULL;
1289 return -ENOMEM;
1290 }
1291 }
1292
1293 ftid = adapter->tids.ftid_base + fidx;
1294
1295 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1296 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1297 memset(fwr, 0, sizeof(*fwr));
1298
1299 /* It would be nice to put most of the following in t4_hw.c but most
1300 * of the work is translating the cxgbtool ch_filter_specification
1301 * into the Work Request and the definition of that structure is
1302 * currently in cxgbtool.h which isn't appropriate to pull into the
1303 * common code. We may eventually try to come up with a more neutral
1304 * filter specification structure but for now it's easiest to simply
1305 * put this fairly direct code in line ...
1306 */
1307 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1308 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1309 fwr->tid_to_iq =
1310 htonl(V_FW_FILTER_WR_TID(ftid) |
1311 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1312 V_FW_FILTER_WR_NOREPLY(0) |
1313 V_FW_FILTER_WR_IQ(f->fs.iq));
1314 fwr->del_filter_to_l2tix =
1315 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1316 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1317 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1318 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1319 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1320 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1321 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1322 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1323 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1324 f->fs.newvlan == VLAN_REWRITE) |
1325 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1326 f->fs.newvlan == VLAN_REWRITE) |
1327 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1328 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1329 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1330 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1331 fwr->ethtype = htons(f->fs.val.ethtype);
1332 fwr->ethtypem = htons(f->fs.mask.ethtype);
1333 fwr->frag_to_ovlan_vldm =
1334 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1335 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1336 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1337 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1338 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1339 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1340 fwr->smac_sel = 0;
1341 fwr->rx_chan_rx_rpl_iq =
1342 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1343 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1344 fwr->maci_to_matchtypem =
1345 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1346 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1347 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1348 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1349 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1350 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1351 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1352 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1353 fwr->ptcl = f->fs.val.proto;
1354 fwr->ptclm = f->fs.mask.proto;
1355 fwr->ttyp = f->fs.val.tos;
1356 fwr->ttypm = f->fs.mask.tos;
1357 fwr->ivlan = htons(f->fs.val.ivlan);
1358 fwr->ivlanm = htons(f->fs.mask.ivlan);
1359 fwr->ovlan = htons(f->fs.val.ovlan);
1360 fwr->ovlanm = htons(f->fs.mask.ovlan);
1361 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1362 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1363 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1364 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1365 fwr->lp = htons(f->fs.val.lport);
1366 fwr->lpm = htons(f->fs.mask.lport);
1367 fwr->fp = htons(f->fs.val.fport);
1368 fwr->fpm = htons(f->fs.mask.fport);
1369 if (f->fs.newsmac)
1370 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1371
1372 /* Mark the filter as "pending" and ship off the Filter Work Request.
1373 * When we get the Work Request Reply we'll clear the pending status.
1374 */
1375 f->pending = 1;
1376 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1377 t4_ofld_send(adapter, skb);
1378 return 0;
1379}
1380
1381/* Delete the filter at a specified index.
1382 */
1383static int del_filter_wr(struct adapter *adapter, int fidx)
1384{
1385 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1386 struct sk_buff *skb;
1387 struct fw_filter_wr *fwr;
1388 unsigned int len, ftid;
1389
1390 len = sizeof(*fwr);
1391 ftid = adapter->tids.ftid_base + fidx;
1392
1393 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1394 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1395 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1396
1397 /* Mark the filter as "pending" and ship off the Filter Work Request.
1398 * When we get the Work Request Reply we'll clear the pending status.
1399 */
1400 f->pending = 1;
1401 t4_mgmt_tx(adapter, skb);
1402 return 0;
1403}
1404
688848b1
AB
1405static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1406 void *accel_priv, select_queue_fallback_t fallback)
1407{
1408 int txq;
1409
1410#ifdef CONFIG_CHELSIO_T4_DCB
1411 /* If a Data Center Bridging has been successfully negotiated on this
1412 * link then we'll use the skb's priority to map it to a TX Queue.
1413 * The skb's priority is determined via the VLAN Tag Priority Code
1414 * Point field.
1415 */
1416 if (cxgb4_dcb_enabled(dev)) {
1417 u16 vlan_tci;
1418 int err;
1419
1420 err = vlan_get_tag(skb, &vlan_tci);
1421 if (unlikely(err)) {
1422 if (net_ratelimit())
1423 netdev_warn(dev,
1424 "TX Packet without VLAN Tag on DCB Link\n");
1425 txq = 0;
1426 } else {
1427 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1428 }
1429 return txq;
1430 }
1431#endif /* CONFIG_CHELSIO_T4_DCB */
1432
1433 if (select_queue) {
1434 txq = (skb_rx_queue_recorded(skb)
1435 ? skb_get_rx_queue(skb)
1436 : smp_processor_id());
1437
1438 while (unlikely(txq >= dev->real_num_tx_queues))
1439 txq -= dev->real_num_tx_queues;
1440
1441 return txq;
1442 }
1443
1444 return fallback(dev, skb) % dev->real_num_tx_queues;
1445}
1446
b8ff05a9
DM
1447static inline int is_offload(const struct adapter *adap)
1448{
1449 return adap->params.offload;
1450}
1451
1452/*
1453 * Implementation of ethtool operations.
1454 */
1455
1456static u32 get_msglevel(struct net_device *dev)
1457{
1458 return netdev2adap(dev)->msg_enable;
1459}
1460
1461static void set_msglevel(struct net_device *dev, u32 val)
1462{
1463 netdev2adap(dev)->msg_enable = val;
1464}
1465
1466static char stats_strings[][ETH_GSTRING_LEN] = {
1467 "TxOctetsOK ",
1468 "TxFramesOK ",
1469 "TxBroadcastFrames ",
1470 "TxMulticastFrames ",
1471 "TxUnicastFrames ",
1472 "TxErrorFrames ",
1473
1474 "TxFrames64 ",
1475 "TxFrames65To127 ",
1476 "TxFrames128To255 ",
1477 "TxFrames256To511 ",
1478 "TxFrames512To1023 ",
1479 "TxFrames1024To1518 ",
1480 "TxFrames1519ToMax ",
1481
1482 "TxFramesDropped ",
1483 "TxPauseFrames ",
1484 "TxPPP0Frames ",
1485 "TxPPP1Frames ",
1486 "TxPPP2Frames ",
1487 "TxPPP3Frames ",
1488 "TxPPP4Frames ",
1489 "TxPPP5Frames ",
1490 "TxPPP6Frames ",
1491 "TxPPP7Frames ",
1492
1493 "RxOctetsOK ",
1494 "RxFramesOK ",
1495 "RxBroadcastFrames ",
1496 "RxMulticastFrames ",
1497 "RxUnicastFrames ",
1498
1499 "RxFramesTooLong ",
1500 "RxJabberErrors ",
1501 "RxFCSErrors ",
1502 "RxLengthErrors ",
1503 "RxSymbolErrors ",
1504 "RxRuntFrames ",
1505
1506 "RxFrames64 ",
1507 "RxFrames65To127 ",
1508 "RxFrames128To255 ",
1509 "RxFrames256To511 ",
1510 "RxFrames512To1023 ",
1511 "RxFrames1024To1518 ",
1512 "RxFrames1519ToMax ",
1513
1514 "RxPauseFrames ",
1515 "RxPPP0Frames ",
1516 "RxPPP1Frames ",
1517 "RxPPP2Frames ",
1518 "RxPPP3Frames ",
1519 "RxPPP4Frames ",
1520 "RxPPP5Frames ",
1521 "RxPPP6Frames ",
1522 "RxPPP7Frames ",
1523
1524 "RxBG0FramesDropped ",
1525 "RxBG1FramesDropped ",
1526 "RxBG2FramesDropped ",
1527 "RxBG3FramesDropped ",
1528 "RxBG0FramesTrunc ",
1529 "RxBG1FramesTrunc ",
1530 "RxBG2FramesTrunc ",
1531 "RxBG3FramesTrunc ",
1532
1533 "TSO ",
1534 "TxCsumOffload ",
1535 "RxCsumGood ",
1536 "VLANextractions ",
1537 "VLANinsertions ",
4a6346d4
DM
1538 "GROpackets ",
1539 "GROmerged ",
22adfe0a
SR
1540 "WriteCoalSuccess ",
1541 "WriteCoalFail ",
b8ff05a9
DM
1542};
1543
1544static int get_sset_count(struct net_device *dev, int sset)
1545{
1546 switch (sset) {
1547 case ETH_SS_STATS:
1548 return ARRAY_SIZE(stats_strings);
1549 default:
1550 return -EOPNOTSUPP;
1551 }
1552}
1553
1554#define T4_REGMAP_SIZE (160 * 1024)
251f9e88 1555#define T5_REGMAP_SIZE (332 * 1024)
b8ff05a9
DM
1556
1557static int get_regs_len(struct net_device *dev)
1558{
251f9e88 1559 struct adapter *adap = netdev2adap(dev);
d14807dd 1560 if (is_t4(adap->params.chip))
251f9e88
SR
1561 return T4_REGMAP_SIZE;
1562 else
1563 return T5_REGMAP_SIZE;
b8ff05a9
DM
1564}
1565
1566static int get_eeprom_len(struct net_device *dev)
1567{
1568 return EEPROMSIZE;
1569}
1570
1571static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1572{
1573 struct adapter *adapter = netdev2adap(dev);
1574
23020ab3
RJ
1575 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1576 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1577 strlcpy(info->bus_info, pci_name(adapter->pdev),
1578 sizeof(info->bus_info));
b8ff05a9 1579
84b40501 1580 if (adapter->params.fw_vers)
b8ff05a9
DM
1581 snprintf(info->fw_version, sizeof(info->fw_version),
1582 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1583 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1584 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1585 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1586 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1587 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1588 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1589 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1590 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1591}
1592
1593static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1594{
1595 if (stringset == ETH_SS_STATS)
1596 memcpy(data, stats_strings, sizeof(stats_strings));
1597}
1598
1599/*
1600 * port stats maintained per queue of the port. They should be in the same
1601 * order as in stats_strings above.
1602 */
1603struct queue_port_stats {
1604 u64 tso;
1605 u64 tx_csum;
1606 u64 rx_csum;
1607 u64 vlan_ex;
1608 u64 vlan_ins;
4a6346d4
DM
1609 u64 gro_pkts;
1610 u64 gro_merged;
b8ff05a9
DM
1611};
1612
1613static void collect_sge_port_stats(const struct adapter *adap,
1614 const struct port_info *p, struct queue_port_stats *s)
1615{
1616 int i;
1617 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1618 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1619
1620 memset(s, 0, sizeof(*s));
1621 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1622 s->tso += tx->tso;
1623 s->tx_csum += tx->tx_cso;
1624 s->rx_csum += rx->stats.rx_cso;
1625 s->vlan_ex += rx->stats.vlan_ex;
1626 s->vlan_ins += tx->vlan_ins;
4a6346d4
DM
1627 s->gro_pkts += rx->stats.lro_pkts;
1628 s->gro_merged += rx->stats.lro_merged;
b8ff05a9
DM
1629 }
1630}
1631
1632static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1633 u64 *data)
1634{
1635 struct port_info *pi = netdev_priv(dev);
1636 struct adapter *adapter = pi->adapter;
22adfe0a 1637 u32 val1, val2;
b8ff05a9
DM
1638
1639 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1640
1641 data += sizeof(struct port_stats) / sizeof(u64);
1642 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
22adfe0a 1643 data += sizeof(struct queue_port_stats) / sizeof(u64);
d14807dd 1644 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
1645 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1646 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1647 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1648 *data = val1 - val2;
1649 data++;
1650 *data = val2;
1651 data++;
1652 } else {
1653 memset(data, 0, 2 * sizeof(u64));
1654 *data += 2;
1655 }
b8ff05a9
DM
1656}
1657
1658/*
1659 * Return a version number to identify the type of adapter. The scheme is:
1660 * - bits 0..9: chip version
1661 * - bits 10..15: chip revision
835bb606 1662 * - bits 16..23: register dump version
b8ff05a9
DM
1663 */
1664static inline unsigned int mk_adap_vers(const struct adapter *ap)
1665{
d14807dd
HS
1666 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1667 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
b8ff05a9
DM
1668}
1669
1670static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1671 unsigned int end)
1672{
1673 u32 *p = buf + start;
1674
1675 for ( ; start <= end; start += sizeof(u32))
1676 *p++ = t4_read_reg(ap, start);
1677}
1678
1679static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1680 void *buf)
1681{
251f9e88 1682 static const unsigned int t4_reg_ranges[] = {
b8ff05a9
DM
1683 0x1008, 0x1108,
1684 0x1180, 0x11b4,
1685 0x11fc, 0x123c,
1686 0x1300, 0x173c,
1687 0x1800, 0x18fc,
1688 0x3000, 0x30d8,
1689 0x30e0, 0x5924,
1690 0x5960, 0x59d4,
1691 0x5a00, 0x5af8,
1692 0x6000, 0x6098,
1693 0x6100, 0x6150,
1694 0x6200, 0x6208,
1695 0x6240, 0x6248,
1696 0x6280, 0x6338,
1697 0x6370, 0x638c,
1698 0x6400, 0x643c,
1699 0x6500, 0x6524,
1700 0x6a00, 0x6a38,
1701 0x6a60, 0x6a78,
1702 0x6b00, 0x6b84,
1703 0x6bf0, 0x6c84,
1704 0x6cf0, 0x6d84,
1705 0x6df0, 0x6e84,
1706 0x6ef0, 0x6f84,
1707 0x6ff0, 0x7084,
1708 0x70f0, 0x7184,
1709 0x71f0, 0x7284,
1710 0x72f0, 0x7384,
1711 0x73f0, 0x7450,
1712 0x7500, 0x7530,
1713 0x7600, 0x761c,
1714 0x7680, 0x76cc,
1715 0x7700, 0x7798,
1716 0x77c0, 0x77fc,
1717 0x7900, 0x79fc,
1718 0x7b00, 0x7c38,
1719 0x7d00, 0x7efc,
1720 0x8dc0, 0x8e1c,
1721 0x8e30, 0x8e78,
1722 0x8ea0, 0x8f6c,
1723 0x8fc0, 0x9074,
1724 0x90fc, 0x90fc,
1725 0x9400, 0x9458,
1726 0x9600, 0x96bc,
1727 0x9800, 0x9808,
1728 0x9820, 0x983c,
1729 0x9850, 0x9864,
1730 0x9c00, 0x9c6c,
1731 0x9c80, 0x9cec,
1732 0x9d00, 0x9d6c,
1733 0x9d80, 0x9dec,
1734 0x9e00, 0x9e6c,
1735 0x9e80, 0x9eec,
1736 0x9f00, 0x9f6c,
1737 0x9f80, 0x9fec,
1738 0xd004, 0xd03c,
1739 0xdfc0, 0xdfe0,
1740 0xe000, 0xea7c,
1741 0xf000, 0x11190,
835bb606
DM
1742 0x19040, 0x1906c,
1743 0x19078, 0x19080,
1744 0x1908c, 0x19124,
b8ff05a9
DM
1745 0x19150, 0x191b0,
1746 0x191d0, 0x191e8,
1747 0x19238, 0x1924c,
1748 0x193f8, 0x19474,
1749 0x19490, 0x194f8,
1750 0x19800, 0x19f30,
1751 0x1a000, 0x1a06c,
1752 0x1a0b0, 0x1a120,
1753 0x1a128, 0x1a138,
1754 0x1a190, 0x1a1c4,
1755 0x1a1fc, 0x1a1fc,
1756 0x1e040, 0x1e04c,
835bb606 1757 0x1e284, 0x1e28c,
b8ff05a9
DM
1758 0x1e2c0, 0x1e2c0,
1759 0x1e2e0, 0x1e2e0,
1760 0x1e300, 0x1e384,
1761 0x1e3c0, 0x1e3c8,
1762 0x1e440, 0x1e44c,
835bb606 1763 0x1e684, 0x1e68c,
b8ff05a9
DM
1764 0x1e6c0, 0x1e6c0,
1765 0x1e6e0, 0x1e6e0,
1766 0x1e700, 0x1e784,
1767 0x1e7c0, 0x1e7c8,
1768 0x1e840, 0x1e84c,
835bb606 1769 0x1ea84, 0x1ea8c,
b8ff05a9
DM
1770 0x1eac0, 0x1eac0,
1771 0x1eae0, 0x1eae0,
1772 0x1eb00, 0x1eb84,
1773 0x1ebc0, 0x1ebc8,
1774 0x1ec40, 0x1ec4c,
835bb606 1775 0x1ee84, 0x1ee8c,
b8ff05a9
DM
1776 0x1eec0, 0x1eec0,
1777 0x1eee0, 0x1eee0,
1778 0x1ef00, 0x1ef84,
1779 0x1efc0, 0x1efc8,
1780 0x1f040, 0x1f04c,
835bb606 1781 0x1f284, 0x1f28c,
b8ff05a9
DM
1782 0x1f2c0, 0x1f2c0,
1783 0x1f2e0, 0x1f2e0,
1784 0x1f300, 0x1f384,
1785 0x1f3c0, 0x1f3c8,
1786 0x1f440, 0x1f44c,
835bb606 1787 0x1f684, 0x1f68c,
b8ff05a9
DM
1788 0x1f6c0, 0x1f6c0,
1789 0x1f6e0, 0x1f6e0,
1790 0x1f700, 0x1f784,
1791 0x1f7c0, 0x1f7c8,
1792 0x1f840, 0x1f84c,
835bb606 1793 0x1fa84, 0x1fa8c,
b8ff05a9
DM
1794 0x1fac0, 0x1fac0,
1795 0x1fae0, 0x1fae0,
1796 0x1fb00, 0x1fb84,
1797 0x1fbc0, 0x1fbc8,
1798 0x1fc40, 0x1fc4c,
835bb606 1799 0x1fe84, 0x1fe8c,
b8ff05a9
DM
1800 0x1fec0, 0x1fec0,
1801 0x1fee0, 0x1fee0,
1802 0x1ff00, 0x1ff84,
1803 0x1ffc0, 0x1ffc8,
1804 0x20000, 0x2002c,
1805 0x20100, 0x2013c,
1806 0x20190, 0x201c8,
1807 0x20200, 0x20318,
1808 0x20400, 0x20528,
1809 0x20540, 0x20614,
1810 0x21000, 0x21040,
1811 0x2104c, 0x21060,
1812 0x210c0, 0x210ec,
1813 0x21200, 0x21268,
1814 0x21270, 0x21284,
1815 0x212fc, 0x21388,
1816 0x21400, 0x21404,
1817 0x21500, 0x21518,
1818 0x2152c, 0x2153c,
1819 0x21550, 0x21554,
1820 0x21600, 0x21600,
1821 0x21608, 0x21628,
1822 0x21630, 0x2163c,
1823 0x21700, 0x2171c,
1824 0x21780, 0x2178c,
1825 0x21800, 0x21c38,
1826 0x21c80, 0x21d7c,
1827 0x21e00, 0x21e04,
1828 0x22000, 0x2202c,
1829 0x22100, 0x2213c,
1830 0x22190, 0x221c8,
1831 0x22200, 0x22318,
1832 0x22400, 0x22528,
1833 0x22540, 0x22614,
1834 0x23000, 0x23040,
1835 0x2304c, 0x23060,
1836 0x230c0, 0x230ec,
1837 0x23200, 0x23268,
1838 0x23270, 0x23284,
1839 0x232fc, 0x23388,
1840 0x23400, 0x23404,
1841 0x23500, 0x23518,
1842 0x2352c, 0x2353c,
1843 0x23550, 0x23554,
1844 0x23600, 0x23600,
1845 0x23608, 0x23628,
1846 0x23630, 0x2363c,
1847 0x23700, 0x2371c,
1848 0x23780, 0x2378c,
1849 0x23800, 0x23c38,
1850 0x23c80, 0x23d7c,
1851 0x23e00, 0x23e04,
1852 0x24000, 0x2402c,
1853 0x24100, 0x2413c,
1854 0x24190, 0x241c8,
1855 0x24200, 0x24318,
1856 0x24400, 0x24528,
1857 0x24540, 0x24614,
1858 0x25000, 0x25040,
1859 0x2504c, 0x25060,
1860 0x250c0, 0x250ec,
1861 0x25200, 0x25268,
1862 0x25270, 0x25284,
1863 0x252fc, 0x25388,
1864 0x25400, 0x25404,
1865 0x25500, 0x25518,
1866 0x2552c, 0x2553c,
1867 0x25550, 0x25554,
1868 0x25600, 0x25600,
1869 0x25608, 0x25628,
1870 0x25630, 0x2563c,
1871 0x25700, 0x2571c,
1872 0x25780, 0x2578c,
1873 0x25800, 0x25c38,
1874 0x25c80, 0x25d7c,
1875 0x25e00, 0x25e04,
1876 0x26000, 0x2602c,
1877 0x26100, 0x2613c,
1878 0x26190, 0x261c8,
1879 0x26200, 0x26318,
1880 0x26400, 0x26528,
1881 0x26540, 0x26614,
1882 0x27000, 0x27040,
1883 0x2704c, 0x27060,
1884 0x270c0, 0x270ec,
1885 0x27200, 0x27268,
1886 0x27270, 0x27284,
1887 0x272fc, 0x27388,
1888 0x27400, 0x27404,
1889 0x27500, 0x27518,
1890 0x2752c, 0x2753c,
1891 0x27550, 0x27554,
1892 0x27600, 0x27600,
1893 0x27608, 0x27628,
1894 0x27630, 0x2763c,
1895 0x27700, 0x2771c,
1896 0x27780, 0x2778c,
1897 0x27800, 0x27c38,
1898 0x27c80, 0x27d7c,
1899 0x27e00, 0x27e04
1900 };
1901
251f9e88
SR
1902 static const unsigned int t5_reg_ranges[] = {
1903 0x1008, 0x1148,
1904 0x1180, 0x11b4,
1905 0x11fc, 0x123c,
1906 0x1280, 0x173c,
1907 0x1800, 0x18fc,
1908 0x3000, 0x3028,
1909 0x3060, 0x30d8,
1910 0x30e0, 0x30fc,
1911 0x3140, 0x357c,
1912 0x35a8, 0x35cc,
1913 0x35ec, 0x35ec,
1914 0x3600, 0x5624,
1915 0x56cc, 0x575c,
1916 0x580c, 0x5814,
1917 0x5890, 0x58bc,
1918 0x5940, 0x59dc,
1919 0x59fc, 0x5a18,
1920 0x5a60, 0x5a9c,
1921 0x5b9c, 0x5bfc,
1922 0x6000, 0x6040,
1923 0x6058, 0x614c,
1924 0x7700, 0x7798,
1925 0x77c0, 0x78fc,
1926 0x7b00, 0x7c54,
1927 0x7d00, 0x7efc,
1928 0x8dc0, 0x8de0,
1929 0x8df8, 0x8e84,
1930 0x8ea0, 0x8f84,
1931 0x8fc0, 0x90f8,
1932 0x9400, 0x9470,
1933 0x9600, 0x96f4,
1934 0x9800, 0x9808,
1935 0x9820, 0x983c,
1936 0x9850, 0x9864,
1937 0x9c00, 0x9c6c,
1938 0x9c80, 0x9cec,
1939 0x9d00, 0x9d6c,
1940 0x9d80, 0x9dec,
1941 0x9e00, 0x9e6c,
1942 0x9e80, 0x9eec,
1943 0x9f00, 0x9f6c,
1944 0x9f80, 0xa020,
1945 0xd004, 0xd03c,
1946 0xdfc0, 0xdfe0,
1947 0xe000, 0x11088,
1948 0x1109c, 0x1117c,
1949 0x11190, 0x11204,
1950 0x19040, 0x1906c,
1951 0x19078, 0x19080,
1952 0x1908c, 0x19124,
1953 0x19150, 0x191b0,
1954 0x191d0, 0x191e8,
1955 0x19238, 0x19290,
1956 0x193f8, 0x19474,
1957 0x19490, 0x194cc,
1958 0x194f0, 0x194f8,
1959 0x19c00, 0x19c60,
1960 0x19c94, 0x19e10,
1961 0x19e50, 0x19f34,
1962 0x19f40, 0x19f50,
1963 0x19f90, 0x19fe4,
1964 0x1a000, 0x1a06c,
1965 0x1a0b0, 0x1a120,
1966 0x1a128, 0x1a138,
1967 0x1a190, 0x1a1c4,
1968 0x1a1fc, 0x1a1fc,
1969 0x1e008, 0x1e00c,
1970 0x1e040, 0x1e04c,
1971 0x1e284, 0x1e290,
1972 0x1e2c0, 0x1e2c0,
1973 0x1e2e0, 0x1e2e0,
1974 0x1e300, 0x1e384,
1975 0x1e3c0, 0x1e3c8,
1976 0x1e408, 0x1e40c,
1977 0x1e440, 0x1e44c,
1978 0x1e684, 0x1e690,
1979 0x1e6c0, 0x1e6c0,
1980 0x1e6e0, 0x1e6e0,
1981 0x1e700, 0x1e784,
1982 0x1e7c0, 0x1e7c8,
1983 0x1e808, 0x1e80c,
1984 0x1e840, 0x1e84c,
1985 0x1ea84, 0x1ea90,
1986 0x1eac0, 0x1eac0,
1987 0x1eae0, 0x1eae0,
1988 0x1eb00, 0x1eb84,
1989 0x1ebc0, 0x1ebc8,
1990 0x1ec08, 0x1ec0c,
1991 0x1ec40, 0x1ec4c,
1992 0x1ee84, 0x1ee90,
1993 0x1eec0, 0x1eec0,
1994 0x1eee0, 0x1eee0,
1995 0x1ef00, 0x1ef84,
1996 0x1efc0, 0x1efc8,
1997 0x1f008, 0x1f00c,
1998 0x1f040, 0x1f04c,
1999 0x1f284, 0x1f290,
2000 0x1f2c0, 0x1f2c0,
2001 0x1f2e0, 0x1f2e0,
2002 0x1f300, 0x1f384,
2003 0x1f3c0, 0x1f3c8,
2004 0x1f408, 0x1f40c,
2005 0x1f440, 0x1f44c,
2006 0x1f684, 0x1f690,
2007 0x1f6c0, 0x1f6c0,
2008 0x1f6e0, 0x1f6e0,
2009 0x1f700, 0x1f784,
2010 0x1f7c0, 0x1f7c8,
2011 0x1f808, 0x1f80c,
2012 0x1f840, 0x1f84c,
2013 0x1fa84, 0x1fa90,
2014 0x1fac0, 0x1fac0,
2015 0x1fae0, 0x1fae0,
2016 0x1fb00, 0x1fb84,
2017 0x1fbc0, 0x1fbc8,
2018 0x1fc08, 0x1fc0c,
2019 0x1fc40, 0x1fc4c,
2020 0x1fe84, 0x1fe90,
2021 0x1fec0, 0x1fec0,
2022 0x1fee0, 0x1fee0,
2023 0x1ff00, 0x1ff84,
2024 0x1ffc0, 0x1ffc8,
2025 0x30000, 0x30030,
2026 0x30100, 0x30144,
2027 0x30190, 0x301d0,
2028 0x30200, 0x30318,
2029 0x30400, 0x3052c,
2030 0x30540, 0x3061c,
2031 0x30800, 0x30834,
2032 0x308c0, 0x30908,
2033 0x30910, 0x309ac,
2034 0x30a00, 0x30a04,
2035 0x30a0c, 0x30a2c,
2036 0x30a44, 0x30a50,
2037 0x30a74, 0x30c24,
2038 0x30d08, 0x30d14,
2039 0x30d1c, 0x30d20,
2040 0x30d3c, 0x30d50,
2041 0x31200, 0x3120c,
2042 0x31220, 0x31220,
2043 0x31240, 0x31240,
2044 0x31600, 0x31600,
2045 0x31608, 0x3160c,
2046 0x31a00, 0x31a1c,
2047 0x31e04, 0x31e20,
2048 0x31e38, 0x31e3c,
2049 0x31e80, 0x31e80,
2050 0x31e88, 0x31ea8,
2051 0x31eb0, 0x31eb4,
2052 0x31ec8, 0x31ed4,
2053 0x31fb8, 0x32004,
2054 0x32208, 0x3223c,
2055 0x32600, 0x32630,
2056 0x32a00, 0x32abc,
2057 0x32b00, 0x32b70,
2058 0x33000, 0x33048,
2059 0x33060, 0x3309c,
2060 0x330f0, 0x33148,
2061 0x33160, 0x3319c,
2062 0x331f0, 0x332e4,
2063 0x332f8, 0x333e4,
2064 0x333f8, 0x33448,
2065 0x33460, 0x3349c,
2066 0x334f0, 0x33548,
2067 0x33560, 0x3359c,
2068 0x335f0, 0x336e4,
2069 0x336f8, 0x337e4,
2070 0x337f8, 0x337fc,
2071 0x33814, 0x33814,
2072 0x3382c, 0x3382c,
2073 0x33880, 0x3388c,
2074 0x338e8, 0x338ec,
2075 0x33900, 0x33948,
2076 0x33960, 0x3399c,
2077 0x339f0, 0x33ae4,
2078 0x33af8, 0x33b10,
2079 0x33b28, 0x33b28,
2080 0x33b3c, 0x33b50,
2081 0x33bf0, 0x33c10,
2082 0x33c28, 0x33c28,
2083 0x33c3c, 0x33c50,
2084 0x33cf0, 0x33cfc,
2085 0x34000, 0x34030,
2086 0x34100, 0x34144,
2087 0x34190, 0x341d0,
2088 0x34200, 0x34318,
2089 0x34400, 0x3452c,
2090 0x34540, 0x3461c,
2091 0x34800, 0x34834,
2092 0x348c0, 0x34908,
2093 0x34910, 0x349ac,
2094 0x34a00, 0x34a04,
2095 0x34a0c, 0x34a2c,
2096 0x34a44, 0x34a50,
2097 0x34a74, 0x34c24,
2098 0x34d08, 0x34d14,
2099 0x34d1c, 0x34d20,
2100 0x34d3c, 0x34d50,
2101 0x35200, 0x3520c,
2102 0x35220, 0x35220,
2103 0x35240, 0x35240,
2104 0x35600, 0x35600,
2105 0x35608, 0x3560c,
2106 0x35a00, 0x35a1c,
2107 0x35e04, 0x35e20,
2108 0x35e38, 0x35e3c,
2109 0x35e80, 0x35e80,
2110 0x35e88, 0x35ea8,
2111 0x35eb0, 0x35eb4,
2112 0x35ec8, 0x35ed4,
2113 0x35fb8, 0x36004,
2114 0x36208, 0x3623c,
2115 0x36600, 0x36630,
2116 0x36a00, 0x36abc,
2117 0x36b00, 0x36b70,
2118 0x37000, 0x37048,
2119 0x37060, 0x3709c,
2120 0x370f0, 0x37148,
2121 0x37160, 0x3719c,
2122 0x371f0, 0x372e4,
2123 0x372f8, 0x373e4,
2124 0x373f8, 0x37448,
2125 0x37460, 0x3749c,
2126 0x374f0, 0x37548,
2127 0x37560, 0x3759c,
2128 0x375f0, 0x376e4,
2129 0x376f8, 0x377e4,
2130 0x377f8, 0x377fc,
2131 0x37814, 0x37814,
2132 0x3782c, 0x3782c,
2133 0x37880, 0x3788c,
2134 0x378e8, 0x378ec,
2135 0x37900, 0x37948,
2136 0x37960, 0x3799c,
2137 0x379f0, 0x37ae4,
2138 0x37af8, 0x37b10,
2139 0x37b28, 0x37b28,
2140 0x37b3c, 0x37b50,
2141 0x37bf0, 0x37c10,
2142 0x37c28, 0x37c28,
2143 0x37c3c, 0x37c50,
2144 0x37cf0, 0x37cfc,
2145 0x38000, 0x38030,
2146 0x38100, 0x38144,
2147 0x38190, 0x381d0,
2148 0x38200, 0x38318,
2149 0x38400, 0x3852c,
2150 0x38540, 0x3861c,
2151 0x38800, 0x38834,
2152 0x388c0, 0x38908,
2153 0x38910, 0x389ac,
2154 0x38a00, 0x38a04,
2155 0x38a0c, 0x38a2c,
2156 0x38a44, 0x38a50,
2157 0x38a74, 0x38c24,
2158 0x38d08, 0x38d14,
2159 0x38d1c, 0x38d20,
2160 0x38d3c, 0x38d50,
2161 0x39200, 0x3920c,
2162 0x39220, 0x39220,
2163 0x39240, 0x39240,
2164 0x39600, 0x39600,
2165 0x39608, 0x3960c,
2166 0x39a00, 0x39a1c,
2167 0x39e04, 0x39e20,
2168 0x39e38, 0x39e3c,
2169 0x39e80, 0x39e80,
2170 0x39e88, 0x39ea8,
2171 0x39eb0, 0x39eb4,
2172 0x39ec8, 0x39ed4,
2173 0x39fb8, 0x3a004,
2174 0x3a208, 0x3a23c,
2175 0x3a600, 0x3a630,
2176 0x3aa00, 0x3aabc,
2177 0x3ab00, 0x3ab70,
2178 0x3b000, 0x3b048,
2179 0x3b060, 0x3b09c,
2180 0x3b0f0, 0x3b148,
2181 0x3b160, 0x3b19c,
2182 0x3b1f0, 0x3b2e4,
2183 0x3b2f8, 0x3b3e4,
2184 0x3b3f8, 0x3b448,
2185 0x3b460, 0x3b49c,
2186 0x3b4f0, 0x3b548,
2187 0x3b560, 0x3b59c,
2188 0x3b5f0, 0x3b6e4,
2189 0x3b6f8, 0x3b7e4,
2190 0x3b7f8, 0x3b7fc,
2191 0x3b814, 0x3b814,
2192 0x3b82c, 0x3b82c,
2193 0x3b880, 0x3b88c,
2194 0x3b8e8, 0x3b8ec,
2195 0x3b900, 0x3b948,
2196 0x3b960, 0x3b99c,
2197 0x3b9f0, 0x3bae4,
2198 0x3baf8, 0x3bb10,
2199 0x3bb28, 0x3bb28,
2200 0x3bb3c, 0x3bb50,
2201 0x3bbf0, 0x3bc10,
2202 0x3bc28, 0x3bc28,
2203 0x3bc3c, 0x3bc50,
2204 0x3bcf0, 0x3bcfc,
2205 0x3c000, 0x3c030,
2206 0x3c100, 0x3c144,
2207 0x3c190, 0x3c1d0,
2208 0x3c200, 0x3c318,
2209 0x3c400, 0x3c52c,
2210 0x3c540, 0x3c61c,
2211 0x3c800, 0x3c834,
2212 0x3c8c0, 0x3c908,
2213 0x3c910, 0x3c9ac,
2214 0x3ca00, 0x3ca04,
2215 0x3ca0c, 0x3ca2c,
2216 0x3ca44, 0x3ca50,
2217 0x3ca74, 0x3cc24,
2218 0x3cd08, 0x3cd14,
2219 0x3cd1c, 0x3cd20,
2220 0x3cd3c, 0x3cd50,
2221 0x3d200, 0x3d20c,
2222 0x3d220, 0x3d220,
2223 0x3d240, 0x3d240,
2224 0x3d600, 0x3d600,
2225 0x3d608, 0x3d60c,
2226 0x3da00, 0x3da1c,
2227 0x3de04, 0x3de20,
2228 0x3de38, 0x3de3c,
2229 0x3de80, 0x3de80,
2230 0x3de88, 0x3dea8,
2231 0x3deb0, 0x3deb4,
2232 0x3dec8, 0x3ded4,
2233 0x3dfb8, 0x3e004,
2234 0x3e208, 0x3e23c,
2235 0x3e600, 0x3e630,
2236 0x3ea00, 0x3eabc,
2237 0x3eb00, 0x3eb70,
2238 0x3f000, 0x3f048,
2239 0x3f060, 0x3f09c,
2240 0x3f0f0, 0x3f148,
2241 0x3f160, 0x3f19c,
2242 0x3f1f0, 0x3f2e4,
2243 0x3f2f8, 0x3f3e4,
2244 0x3f3f8, 0x3f448,
2245 0x3f460, 0x3f49c,
2246 0x3f4f0, 0x3f548,
2247 0x3f560, 0x3f59c,
2248 0x3f5f0, 0x3f6e4,
2249 0x3f6f8, 0x3f7e4,
2250 0x3f7f8, 0x3f7fc,
2251 0x3f814, 0x3f814,
2252 0x3f82c, 0x3f82c,
2253 0x3f880, 0x3f88c,
2254 0x3f8e8, 0x3f8ec,
2255 0x3f900, 0x3f948,
2256 0x3f960, 0x3f99c,
2257 0x3f9f0, 0x3fae4,
2258 0x3faf8, 0x3fb10,
2259 0x3fb28, 0x3fb28,
2260 0x3fb3c, 0x3fb50,
2261 0x3fbf0, 0x3fc10,
2262 0x3fc28, 0x3fc28,
2263 0x3fc3c, 0x3fc50,
2264 0x3fcf0, 0x3fcfc,
2265 0x40000, 0x4000c,
2266 0x40040, 0x40068,
2267 0x40080, 0x40144,
2268 0x40180, 0x4018c,
2269 0x40200, 0x40298,
2270 0x402ac, 0x4033c,
2271 0x403f8, 0x403fc,
c1f49e3e 2272 0x41304, 0x413c4,
251f9e88
SR
2273 0x41400, 0x4141c,
2274 0x41480, 0x414d0,
2275 0x44000, 0x44078,
2276 0x440c0, 0x44278,
2277 0x442c0, 0x44478,
2278 0x444c0, 0x44678,
2279 0x446c0, 0x44878,
2280 0x448c0, 0x449fc,
2281 0x45000, 0x45068,
2282 0x45080, 0x45084,
2283 0x450a0, 0x450b0,
2284 0x45200, 0x45268,
2285 0x45280, 0x45284,
2286 0x452a0, 0x452b0,
2287 0x460c0, 0x460e4,
2288 0x47000, 0x4708c,
2289 0x47200, 0x47250,
2290 0x47400, 0x47420,
2291 0x47600, 0x47618,
2292 0x47800, 0x47814,
2293 0x48000, 0x4800c,
2294 0x48040, 0x48068,
2295 0x48080, 0x48144,
2296 0x48180, 0x4818c,
2297 0x48200, 0x48298,
2298 0x482ac, 0x4833c,
2299 0x483f8, 0x483fc,
c1f49e3e 2300 0x49304, 0x493c4,
251f9e88
SR
2301 0x49400, 0x4941c,
2302 0x49480, 0x494d0,
2303 0x4c000, 0x4c078,
2304 0x4c0c0, 0x4c278,
2305 0x4c2c0, 0x4c478,
2306 0x4c4c0, 0x4c678,
2307 0x4c6c0, 0x4c878,
2308 0x4c8c0, 0x4c9fc,
2309 0x4d000, 0x4d068,
2310 0x4d080, 0x4d084,
2311 0x4d0a0, 0x4d0b0,
2312 0x4d200, 0x4d268,
2313 0x4d280, 0x4d284,
2314 0x4d2a0, 0x4d2b0,
2315 0x4e0c0, 0x4e0e4,
2316 0x4f000, 0x4f08c,
2317 0x4f200, 0x4f250,
2318 0x4f400, 0x4f420,
2319 0x4f600, 0x4f618,
2320 0x4f800, 0x4f814,
2321 0x50000, 0x500cc,
2322 0x50400, 0x50400,
2323 0x50800, 0x508cc,
2324 0x50c00, 0x50c00,
2325 0x51000, 0x5101c,
2326 0x51300, 0x51308,
2327 };
2328
b8ff05a9
DM
2329 int i;
2330 struct adapter *ap = netdev2adap(dev);
251f9e88
SR
2331 static const unsigned int *reg_ranges;
2332 int arr_size = 0, buf_size = 0;
2333
d14807dd 2334 if (is_t4(ap->params.chip)) {
251f9e88
SR
2335 reg_ranges = &t4_reg_ranges[0];
2336 arr_size = ARRAY_SIZE(t4_reg_ranges);
2337 buf_size = T4_REGMAP_SIZE;
2338 } else {
2339 reg_ranges = &t5_reg_ranges[0];
2340 arr_size = ARRAY_SIZE(t5_reg_ranges);
2341 buf_size = T5_REGMAP_SIZE;
2342 }
b8ff05a9
DM
2343
2344 regs->version = mk_adap_vers(ap);
2345
251f9e88
SR
2346 memset(buf, 0, buf_size);
2347 for (i = 0; i < arr_size; i += 2)
b8ff05a9
DM
2348 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2349}
2350
2351static int restart_autoneg(struct net_device *dev)
2352{
2353 struct port_info *p = netdev_priv(dev);
2354
2355 if (!netif_running(dev))
2356 return -EAGAIN;
2357 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2358 return -EINVAL;
060e0c75 2359 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
b8ff05a9
DM
2360 return 0;
2361}
2362
c5e06360
DM
2363static int identify_port(struct net_device *dev,
2364 enum ethtool_phys_id_state state)
b8ff05a9 2365{
c5e06360 2366 unsigned int val;
060e0c75
DM
2367 struct adapter *adap = netdev2adap(dev);
2368
c5e06360
DM
2369 if (state == ETHTOOL_ID_ACTIVE)
2370 val = 0xffff;
2371 else if (state == ETHTOOL_ID_INACTIVE)
2372 val = 0;
2373 else
2374 return -EINVAL;
b8ff05a9 2375
c5e06360 2376 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
b8ff05a9
DM
2377}
2378
2379static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2380{
2381 unsigned int v = 0;
2382
a0881cab
DM
2383 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2384 type == FW_PORT_TYPE_BT_XAUI) {
b8ff05a9
DM
2385 v |= SUPPORTED_TP;
2386 if (caps & FW_PORT_CAP_SPEED_100M)
2387 v |= SUPPORTED_100baseT_Full;
2388 if (caps & FW_PORT_CAP_SPEED_1G)
2389 v |= SUPPORTED_1000baseT_Full;
2390 if (caps & FW_PORT_CAP_SPEED_10G)
2391 v |= SUPPORTED_10000baseT_Full;
2392 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2393 v |= SUPPORTED_Backplane;
2394 if (caps & FW_PORT_CAP_SPEED_1G)
2395 v |= SUPPORTED_1000baseKX_Full;
2396 if (caps & FW_PORT_CAP_SPEED_10G)
2397 v |= SUPPORTED_10000baseKX4_Full;
2398 } else if (type == FW_PORT_TYPE_KR)
2399 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
a0881cab 2400 else if (type == FW_PORT_TYPE_BP_AP)
7d5e77aa
DM
2401 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2402 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2403 else if (type == FW_PORT_TYPE_BP4_AP)
2404 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2405 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2406 SUPPORTED_10000baseKX4_Full;
a0881cab
DM
2407 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2408 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
b8ff05a9 2409 v |= SUPPORTED_FIBRE;
72aca4bf
KS
2410 else if (type == FW_PORT_TYPE_BP40_BA)
2411 v |= SUPPORTED_40000baseSR4_Full;
b8ff05a9
DM
2412
2413 if (caps & FW_PORT_CAP_ANEG)
2414 v |= SUPPORTED_Autoneg;
2415 return v;
2416}
2417
2418static unsigned int to_fw_linkcaps(unsigned int caps)
2419{
2420 unsigned int v = 0;
2421
2422 if (caps & ADVERTISED_100baseT_Full)
2423 v |= FW_PORT_CAP_SPEED_100M;
2424 if (caps & ADVERTISED_1000baseT_Full)
2425 v |= FW_PORT_CAP_SPEED_1G;
2426 if (caps & ADVERTISED_10000baseT_Full)
2427 v |= FW_PORT_CAP_SPEED_10G;
72aca4bf
KS
2428 if (caps & ADVERTISED_40000baseSR4_Full)
2429 v |= FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2430 return v;
2431}
2432
2433static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2434{
2435 const struct port_info *p = netdev_priv(dev);
2436
2437 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
a0881cab 2438 p->port_type == FW_PORT_TYPE_BT_XFI ||
b8ff05a9
DM
2439 p->port_type == FW_PORT_TYPE_BT_XAUI)
2440 cmd->port = PORT_TP;
a0881cab
DM
2441 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2442 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
b8ff05a9 2443 cmd->port = PORT_FIBRE;
3e00a509
HS
2444 else if (p->port_type == FW_PORT_TYPE_SFP ||
2445 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2446 p->port_type == FW_PORT_TYPE_QSFP) {
2447 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2448 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2449 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2450 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2451 cmd->port = PORT_FIBRE;
2452 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2453 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
a0881cab
DM
2454 cmd->port = PORT_DA;
2455 else
3e00a509 2456 cmd->port = PORT_OTHER;
a0881cab 2457 } else
b8ff05a9
DM
2458 cmd->port = PORT_OTHER;
2459
2460 if (p->mdio_addr >= 0) {
2461 cmd->phy_address = p->mdio_addr;
2462 cmd->transceiver = XCVR_EXTERNAL;
2463 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2464 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2465 } else {
2466 cmd->phy_address = 0; /* not really, but no better option */
2467 cmd->transceiver = XCVR_INTERNAL;
2468 cmd->mdio_support = 0;
2469 }
2470
2471 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2472 cmd->advertising = from_fw_linkcaps(p->port_type,
2473 p->link_cfg.advertising);
70739497
DD
2474 ethtool_cmd_speed_set(cmd,
2475 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
b8ff05a9
DM
2476 cmd->duplex = DUPLEX_FULL;
2477 cmd->autoneg = p->link_cfg.autoneg;
2478 cmd->maxtxpkt = 0;
2479 cmd->maxrxpkt = 0;
2480 return 0;
2481}
2482
2483static unsigned int speed_to_caps(int speed)
2484{
e8b39015 2485 if (speed == 100)
b8ff05a9 2486 return FW_PORT_CAP_SPEED_100M;
e8b39015 2487 if (speed == 1000)
b8ff05a9 2488 return FW_PORT_CAP_SPEED_1G;
e8b39015 2489 if (speed == 10000)
b8ff05a9 2490 return FW_PORT_CAP_SPEED_10G;
e8b39015 2491 if (speed == 40000)
72aca4bf 2492 return FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2493 return 0;
2494}
2495
2496static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2497{
2498 unsigned int cap;
2499 struct port_info *p = netdev_priv(dev);
2500 struct link_config *lc = &p->link_cfg;
25db0338 2501 u32 speed = ethtool_cmd_speed(cmd);
b8ff05a9
DM
2502
2503 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2504 return -EINVAL;
2505
2506 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2507 /*
2508 * PHY offers a single speed. See if that's what's
2509 * being requested.
2510 */
2511 if (cmd->autoneg == AUTONEG_DISABLE &&
25db0338
DD
2512 (lc->supported & speed_to_caps(speed)))
2513 return 0;
b8ff05a9
DM
2514 return -EINVAL;
2515 }
2516
2517 if (cmd->autoneg == AUTONEG_DISABLE) {
25db0338 2518 cap = speed_to_caps(speed);
b8ff05a9 2519
72aca4bf 2520 if (!(lc->supported & cap) ||
e8b39015
BH
2521 (speed == 1000) ||
2522 (speed == 10000) ||
72aca4bf 2523 (speed == 40000))
b8ff05a9
DM
2524 return -EINVAL;
2525 lc->requested_speed = cap;
2526 lc->advertising = 0;
2527 } else {
2528 cap = to_fw_linkcaps(cmd->advertising);
2529 if (!(lc->supported & cap))
2530 return -EINVAL;
2531 lc->requested_speed = 0;
2532 lc->advertising = cap | FW_PORT_CAP_ANEG;
2533 }
2534 lc->autoneg = cmd->autoneg;
2535
2536 if (netif_running(dev))
060e0c75
DM
2537 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2538 lc);
b8ff05a9
DM
2539 return 0;
2540}
2541
2542static void get_pauseparam(struct net_device *dev,
2543 struct ethtool_pauseparam *epause)
2544{
2545 struct port_info *p = netdev_priv(dev);
2546
2547 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2548 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2549 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2550}
2551
2552static int set_pauseparam(struct net_device *dev,
2553 struct ethtool_pauseparam *epause)
2554{
2555 struct port_info *p = netdev_priv(dev);
2556 struct link_config *lc = &p->link_cfg;
2557
2558 if (epause->autoneg == AUTONEG_DISABLE)
2559 lc->requested_fc = 0;
2560 else if (lc->supported & FW_PORT_CAP_ANEG)
2561 lc->requested_fc = PAUSE_AUTONEG;
2562 else
2563 return -EINVAL;
2564
2565 if (epause->rx_pause)
2566 lc->requested_fc |= PAUSE_RX;
2567 if (epause->tx_pause)
2568 lc->requested_fc |= PAUSE_TX;
2569 if (netif_running(dev))
060e0c75
DM
2570 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2571 lc);
b8ff05a9
DM
2572 return 0;
2573}
2574
b8ff05a9
DM
2575static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2576{
2577 const struct port_info *pi = netdev_priv(dev);
2578 const struct sge *s = &pi->adapter->sge;
2579
2580 e->rx_max_pending = MAX_RX_BUFFERS;
2581 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2582 e->rx_jumbo_max_pending = 0;
2583 e->tx_max_pending = MAX_TXQ_ENTRIES;
2584
2585 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2586 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2587 e->rx_jumbo_pending = 0;
2588 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2589}
2590
2591static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2592{
2593 int i;
2594 const struct port_info *pi = netdev_priv(dev);
2595 struct adapter *adapter = pi->adapter;
2596 struct sge *s = &adapter->sge;
2597
2598 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2599 e->tx_pending > MAX_TXQ_ENTRIES ||
2600 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2601 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2602 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2603 return -EINVAL;
2604
2605 if (adapter->flags & FULL_INIT_DONE)
2606 return -EBUSY;
2607
2608 for (i = 0; i < pi->nqsets; ++i) {
2609 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2610 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2611 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2612 }
2613 return 0;
2614}
2615
2616static int closest_timer(const struct sge *s, int time)
2617{
2618 int i, delta, match = 0, min_delta = INT_MAX;
2619
2620 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2621 delta = time - s->timer_val[i];
2622 if (delta < 0)
2623 delta = -delta;
2624 if (delta < min_delta) {
2625 min_delta = delta;
2626 match = i;
2627 }
2628 }
2629 return match;
2630}
2631
2632static int closest_thres(const struct sge *s, int thres)
2633{
2634 int i, delta, match = 0, min_delta = INT_MAX;
2635
2636 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2637 delta = thres - s->counter_val[i];
2638 if (delta < 0)
2639 delta = -delta;
2640 if (delta < min_delta) {
2641 min_delta = delta;
2642 match = i;
2643 }
2644 }
2645 return match;
2646}
2647
2648/*
2649 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2650 */
2651static unsigned int qtimer_val(const struct adapter *adap,
2652 const struct sge_rspq *q)
2653{
2654 unsigned int idx = q->intr_params >> 1;
2655
2656 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2657}
2658
2659/**
c887ad0e 2660 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
2661 * @q: the Rx queue
2662 * @us: the hold-off time in us, or 0 to disable timer
2663 * @cnt: the hold-off packet count, or 0 to disable counter
2664 *
2665 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2666 * one of the two needs to be enabled for the queue to generate interrupts.
2667 */
c887ad0e
HS
2668static int set_rspq_intr_params(struct sge_rspq *q,
2669 unsigned int us, unsigned int cnt)
b8ff05a9 2670{
c887ad0e
HS
2671 struct adapter *adap = q->adap;
2672
b8ff05a9
DM
2673 if ((us | cnt) == 0)
2674 cnt = 1;
2675
2676 if (cnt) {
2677 int err;
2678 u32 v, new_idx;
2679
2680 new_idx = closest_thres(&adap->sge, cnt);
2681 if (q->desc && q->pktcnt_idx != new_idx) {
2682 /* the queue has already been created, update it */
2683 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2684 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2685 FW_PARAMS_PARAM_YZ(q->cntxt_id);
060e0c75
DM
2686 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2687 &new_idx);
b8ff05a9
DM
2688 if (err)
2689 return err;
2690 }
2691 q->pktcnt_idx = new_idx;
2692 }
2693
2694 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2695 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2696 return 0;
2697}
2698
c887ad0e
HS
2699/**
2700 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2701 * @dev: the network device
2702 * @us: the hold-off time in us, or 0 to disable timer
2703 * @cnt: the hold-off packet count, or 0 to disable counter
2704 *
2705 * Set the RX interrupt hold-off parameters for a network device.
2706 */
2707static int set_rx_intr_params(struct net_device *dev,
2708 unsigned int us, unsigned int cnt)
b8ff05a9 2709{
c887ad0e
HS
2710 int i, err;
2711 struct port_info *pi = netdev_priv(dev);
b8ff05a9 2712 struct adapter *adap = pi->adapter;
c887ad0e
HS
2713 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2714
2715 for (i = 0; i < pi->nqsets; i++, q++) {
2716 err = set_rspq_intr_params(&q->rspq, us, cnt);
2717 if (err)
2718 return err;
d4fc9dc2 2719 }
c887ad0e
HS
2720 return 0;
2721}
2722
2723static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2724{
2725 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2726 c->rx_max_coalesced_frames);
b8ff05a9
DM
2727}
2728
2729static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2730{
2731 const struct port_info *pi = netdev_priv(dev);
2732 const struct adapter *adap = pi->adapter;
2733 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2734
2735 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2736 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2737 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2738 return 0;
2739}
2740
1478b3ee
DM
2741/**
2742 * eeprom_ptov - translate a physical EEPROM address to virtual
2743 * @phys_addr: the physical EEPROM address
2744 * @fn: the PCI function number
2745 * @sz: size of function-specific area
2746 *
2747 * Translate a physical EEPROM address to virtual. The first 1K is
2748 * accessed through virtual addresses starting at 31K, the rest is
2749 * accessed through virtual addresses starting at 0.
2750 *
2751 * The mapping is as follows:
2752 * [0..1K) -> [31K..32K)
2753 * [1K..1K+A) -> [31K-A..31K)
2754 * [1K+A..ES) -> [0..ES-A-1K)
2755 *
2756 * where A = @fn * @sz, and ES = EEPROM size.
b8ff05a9 2757 */
1478b3ee 2758static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
b8ff05a9 2759{
1478b3ee 2760 fn *= sz;
b8ff05a9
DM
2761 if (phys_addr < 1024)
2762 return phys_addr + (31 << 10);
1478b3ee
DM
2763 if (phys_addr < 1024 + fn)
2764 return 31744 - fn + phys_addr - 1024;
b8ff05a9 2765 if (phys_addr < EEPROMSIZE)
1478b3ee 2766 return phys_addr - 1024 - fn;
b8ff05a9
DM
2767 return -EINVAL;
2768}
2769
2770/*
2771 * The next two routines implement eeprom read/write from physical addresses.
b8ff05a9
DM
2772 */
2773static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2774{
1478b3ee 2775 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2776
2777 if (vaddr >= 0)
2778 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2779 return vaddr < 0 ? vaddr : 0;
2780}
2781
2782static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2783{
1478b3ee 2784 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2785
2786 if (vaddr >= 0)
2787 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2788 return vaddr < 0 ? vaddr : 0;
2789}
2790
2791#define EEPROM_MAGIC 0x38E2F10C
2792
2793static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2794 u8 *data)
2795{
2796 int i, err = 0;
2797 struct adapter *adapter = netdev2adap(dev);
2798
2799 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2800 if (!buf)
2801 return -ENOMEM;
2802
2803 e->magic = EEPROM_MAGIC;
2804 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2805 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2806
2807 if (!err)
2808 memcpy(data, buf + e->offset, e->len);
2809 kfree(buf);
2810 return err;
2811}
2812
2813static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2814 u8 *data)
2815{
2816 u8 *buf;
2817 int err = 0;
2818 u32 aligned_offset, aligned_len, *p;
2819 struct adapter *adapter = netdev2adap(dev);
2820
2821 if (eeprom->magic != EEPROM_MAGIC)
2822 return -EINVAL;
2823
2824 aligned_offset = eeprom->offset & ~3;
2825 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2826
1478b3ee
DM
2827 if (adapter->fn > 0) {
2828 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2829
2830 if (aligned_offset < start ||
2831 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2832 return -EPERM;
2833 }
2834
b8ff05a9
DM
2835 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2836 /*
2837 * RMW possibly needed for first or last words.
2838 */
2839 buf = kmalloc(aligned_len, GFP_KERNEL);
2840 if (!buf)
2841 return -ENOMEM;
2842 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2843 if (!err && aligned_len > 4)
2844 err = eeprom_rd_phys(adapter,
2845 aligned_offset + aligned_len - 4,
2846 (u32 *)&buf[aligned_len - 4]);
2847 if (err)
2848 goto out;
2849 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2850 } else
2851 buf = data;
2852
2853 err = t4_seeprom_wp(adapter, false);
2854 if (err)
2855 goto out;
2856
2857 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2858 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2859 aligned_offset += 4;
2860 }
2861
2862 if (!err)
2863 err = t4_seeprom_wp(adapter, true);
2864out:
2865 if (buf != data)
2866 kfree(buf);
2867 return err;
2868}
2869
2870static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2871{
2872 int ret;
2873 const struct firmware *fw;
2874 struct adapter *adap = netdev2adap(netdev);
2875
2876 ef->data[sizeof(ef->data) - 1] = '\0';
2877 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2878 if (ret < 0)
2879 return ret;
2880
2881 ret = t4_load_fw(adap, fw->data, fw->size);
2882 release_firmware(fw);
2883 if (!ret)
2884 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2885 return ret;
2886}
2887
2888#define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2889#define BCAST_CRC 0xa0ccc1a6
2890
2891static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2892{
2893 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2894 wol->wolopts = netdev2adap(dev)->wol;
2895 memset(&wol->sopass, 0, sizeof(wol->sopass));
2896}
2897
2898static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2899{
2900 int err = 0;
2901 struct port_info *pi = netdev_priv(dev);
2902
2903 if (wol->wolopts & ~WOL_SUPPORTED)
2904 return -EINVAL;
2905 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2906 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2907 if (wol->wolopts & WAKE_BCAST) {
2908 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2909 ~0ULL, 0, false);
2910 if (!err)
2911 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2912 ~6ULL, ~0ULL, BCAST_CRC, true);
2913 } else
2914 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2915 return err;
2916}
2917
c8f44aff 2918static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 2919{
2ed28baa 2920 const struct port_info *pi = netdev_priv(dev);
c8f44aff 2921 netdev_features_t changed = dev->features ^ features;
19ecae2c 2922 int err;
19ecae2c 2923
f646968f 2924 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 2925 return 0;
19ecae2c 2926
2ed28baa
MM
2927 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2928 -1, -1, -1,
f646968f 2929 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 2930 if (unlikely(err))
f646968f 2931 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 2932 return err;
87b6cf51
DM
2933}
2934
7850f63f 2935static u32 get_rss_table_size(struct net_device *dev)
671b0060
DM
2936{
2937 const struct port_info *pi = netdev_priv(dev);
671b0060 2938
7850f63f
BH
2939 return pi->rss_size;
2940}
2941
fe62d001 2942static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
7850f63f
BH
2943{
2944 const struct port_info *pi = netdev_priv(dev);
2945 unsigned int n = pi->rss_size;
2946
671b0060 2947 while (n--)
7850f63f 2948 p[n] = pi->rss[n];
671b0060
DM
2949 return 0;
2950}
2951
fe62d001 2952static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
671b0060
DM
2953{
2954 unsigned int i;
2955 struct port_info *pi = netdev_priv(dev);
2956
7850f63f
BH
2957 for (i = 0; i < pi->rss_size; i++)
2958 pi->rss[i] = p[i];
671b0060
DM
2959 if (pi->adapter->flags & FULL_INIT_DONE)
2960 return write_rss(pi, pi->rss);
2961 return 0;
2962}
2963
2964static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
815c7db5 2965 u32 *rules)
671b0060 2966{
f796564a
DM
2967 const struct port_info *pi = netdev_priv(dev);
2968
671b0060 2969 switch (info->cmd) {
f796564a
DM
2970 case ETHTOOL_GRXFH: {
2971 unsigned int v = pi->rss_mode;
2972
2973 info->data = 0;
2974 switch (info->flow_type) {
2975 case TCP_V4_FLOW:
2976 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2977 info->data = RXH_IP_SRC | RXH_IP_DST |
2978 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2979 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2980 info->data = RXH_IP_SRC | RXH_IP_DST;
2981 break;
2982 case UDP_V4_FLOW:
2983 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2984 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2985 info->data = RXH_IP_SRC | RXH_IP_DST |
2986 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2987 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2988 info->data = RXH_IP_SRC | RXH_IP_DST;
2989 break;
2990 case SCTP_V4_FLOW:
2991 case AH_ESP_V4_FLOW:
2992 case IPV4_FLOW:
2993 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2994 info->data = RXH_IP_SRC | RXH_IP_DST;
2995 break;
2996 case TCP_V6_FLOW:
2997 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2998 info->data = RXH_IP_SRC | RXH_IP_DST |
2999 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3000 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3001 info->data = RXH_IP_SRC | RXH_IP_DST;
3002 break;
3003 case UDP_V6_FLOW:
3004 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3005 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3006 info->data = RXH_IP_SRC | RXH_IP_DST |
3007 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3008 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3009 info->data = RXH_IP_SRC | RXH_IP_DST;
3010 break;
3011 case SCTP_V6_FLOW:
3012 case AH_ESP_V6_FLOW:
3013 case IPV6_FLOW:
3014 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3015 info->data = RXH_IP_SRC | RXH_IP_DST;
3016 break;
3017 }
3018 return 0;
3019 }
671b0060 3020 case ETHTOOL_GRXRINGS:
f796564a 3021 info->data = pi->nqsets;
671b0060
DM
3022 return 0;
3023 }
3024 return -EOPNOTSUPP;
3025}
3026
9b07be4b 3027static const struct ethtool_ops cxgb_ethtool_ops = {
b8ff05a9
DM
3028 .get_settings = get_settings,
3029 .set_settings = set_settings,
3030 .get_drvinfo = get_drvinfo,
3031 .get_msglevel = get_msglevel,
3032 .set_msglevel = set_msglevel,
3033 .get_ringparam = get_sge_param,
3034 .set_ringparam = set_sge_param,
3035 .get_coalesce = get_coalesce,
3036 .set_coalesce = set_coalesce,
3037 .get_eeprom_len = get_eeprom_len,
3038 .get_eeprom = get_eeprom,
3039 .set_eeprom = set_eeprom,
3040 .get_pauseparam = get_pauseparam,
3041 .set_pauseparam = set_pauseparam,
b8ff05a9
DM
3042 .get_link = ethtool_op_get_link,
3043 .get_strings = get_strings,
c5e06360 3044 .set_phys_id = identify_port,
b8ff05a9
DM
3045 .nway_reset = restart_autoneg,
3046 .get_sset_count = get_sset_count,
3047 .get_ethtool_stats = get_stats,
3048 .get_regs_len = get_regs_len,
3049 .get_regs = get_regs,
3050 .get_wol = get_wol,
3051 .set_wol = set_wol,
671b0060 3052 .get_rxnfc = get_rxnfc,
7850f63f 3053 .get_rxfh_indir_size = get_rss_table_size,
fe62d001
BH
3054 .get_rxfh = get_rss_table,
3055 .set_rxfh = set_rss_table,
b8ff05a9
DM
3056 .flash_device = set_flash,
3057};
3058
3059/*
3060 * debugfs support
3061 */
b8ff05a9
DM
3062static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3063 loff_t *ppos)
3064{
3065 loff_t pos = *ppos;
496ad9aa 3066 loff_t avail = file_inode(file)->i_size;
b8ff05a9
DM
3067 unsigned int mem = (uintptr_t)file->private_data & 3;
3068 struct adapter *adap = file->private_data - mem;
3069
3070 if (pos < 0)
3071 return -EINVAL;
3072 if (pos >= avail)
3073 return 0;
3074 if (count > avail - pos)
3075 count = avail - pos;
3076
3077 while (count) {
3078 size_t len;
3079 int ret, ofst;
3080 __be32 data[16];
3081
19dd37ba
SR
3082 if ((mem == MEM_MC) || (mem == MEM_MC1))
3083 ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL);
b8ff05a9
DM
3084 else
3085 ret = t4_edc_read(adap, mem, pos, data, NULL);
3086 if (ret)
3087 return ret;
3088
3089 ofst = pos % sizeof(data);
3090 len = min(count, sizeof(data) - ofst);
3091 if (copy_to_user(buf, (u8 *)data + ofst, len))
3092 return -EFAULT;
3093
3094 buf += len;
3095 pos += len;
3096 count -= len;
3097 }
3098 count = pos - *ppos;
3099 *ppos = pos;
3100 return count;
3101}
3102
3103static const struct file_operations mem_debugfs_fops = {
3104 .owner = THIS_MODULE,
234e3405 3105 .open = simple_open,
b8ff05a9 3106 .read = mem_read,
6038f373 3107 .llseek = default_llseek,
b8ff05a9
DM
3108};
3109
91744948 3110static void add_debugfs_mem(struct adapter *adap, const char *name,
1dd06ae8 3111 unsigned int idx, unsigned int size_mb)
b8ff05a9
DM
3112{
3113 struct dentry *de;
3114
3115 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3116 (void *)adap + idx, &mem_debugfs_fops);
3117 if (de && de->d_inode)
3118 de->d_inode->i_size = size_mb << 20;
3119}
3120
91744948 3121static int setup_debugfs(struct adapter *adap)
b8ff05a9
DM
3122{
3123 int i;
19dd37ba 3124 u32 size;
b8ff05a9
DM
3125
3126 if (IS_ERR_OR_NULL(adap->debugfs_root))
3127 return -1;
3128
3129 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
19dd37ba
SR
3130 if (i & EDRAM0_ENABLE) {
3131 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3132 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3133 }
3134 if (i & EDRAM1_ENABLE) {
3135 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3136 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3137 }
d14807dd 3138 if (is_t4(adap->params.chip)) {
19dd37ba
SR
3139 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3140 if (i & EXT_MEM_ENABLE)
3141 add_debugfs_mem(adap, "mc", MEM_MC,
3142 EXT_MEM_SIZE_GET(size));
3143 } else {
3144 if (i & EXT_MEM_ENABLE) {
3145 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3146 add_debugfs_mem(adap, "mc0", MEM_MC0,
3147 EXT_MEM_SIZE_GET(size));
3148 }
3149 if (i & EXT_MEM1_ENABLE) {
3150 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3151 add_debugfs_mem(adap, "mc1", MEM_MC1,
3152 EXT_MEM_SIZE_GET(size));
3153 }
3154 }
b8ff05a9
DM
3155 if (adap->l2t)
3156 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3157 &t4_l2t_fops);
3158 return 0;
3159}
3160
3161/*
3162 * upper-layer driver support
3163 */
3164
3165/*
3166 * Allocate an active-open TID and set it to the supplied value.
3167 */
3168int cxgb4_alloc_atid(struct tid_info *t, void *data)
3169{
3170 int atid = -1;
3171
3172 spin_lock_bh(&t->atid_lock);
3173 if (t->afree) {
3174 union aopen_entry *p = t->afree;
3175
f2b7e78d 3176 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
3177 t->afree = p->next;
3178 p->data = data;
3179 t->atids_in_use++;
3180 }
3181 spin_unlock_bh(&t->atid_lock);
3182 return atid;
3183}
3184EXPORT_SYMBOL(cxgb4_alloc_atid);
3185
3186/*
3187 * Release an active-open TID.
3188 */
3189void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3190{
f2b7e78d 3191 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
3192
3193 spin_lock_bh(&t->atid_lock);
3194 p->next = t->afree;
3195 t->afree = p;
3196 t->atids_in_use--;
3197 spin_unlock_bh(&t->atid_lock);
3198}
3199EXPORT_SYMBOL(cxgb4_free_atid);
3200
3201/*
3202 * Allocate a server TID and set it to the supplied value.
3203 */
3204int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3205{
3206 int stid;
3207
3208 spin_lock_bh(&t->stid_lock);
3209 if (family == PF_INET) {
3210 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3211 if (stid < t->nstids)
3212 __set_bit(stid, t->stid_bmap);
3213 else
3214 stid = -1;
3215 } else {
3216 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3217 if (stid < 0)
3218 stid = -1;
3219 }
3220 if (stid >= 0) {
3221 t->stid_tab[stid].data = data;
3222 stid += t->stid_base;
15f63b74
KS
3223 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3224 * This is equivalent to 4 TIDs. With CLIP enabled it
3225 * needs 2 TIDs.
3226 */
3227 if (family == PF_INET)
3228 t->stids_in_use++;
3229 else
3230 t->stids_in_use += 4;
b8ff05a9
DM
3231 }
3232 spin_unlock_bh(&t->stid_lock);
3233 return stid;
3234}
3235EXPORT_SYMBOL(cxgb4_alloc_stid);
3236
dca4faeb
VP
3237/* Allocate a server filter TID and set it to the supplied value.
3238 */
3239int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3240{
3241 int stid;
3242
3243 spin_lock_bh(&t->stid_lock);
3244 if (family == PF_INET) {
3245 stid = find_next_zero_bit(t->stid_bmap,
3246 t->nstids + t->nsftids, t->nstids);
3247 if (stid < (t->nstids + t->nsftids))
3248 __set_bit(stid, t->stid_bmap);
3249 else
3250 stid = -1;
3251 } else {
3252 stid = -1;
3253 }
3254 if (stid >= 0) {
3255 t->stid_tab[stid].data = data;
470c60c4
KS
3256 stid -= t->nstids;
3257 stid += t->sftid_base;
dca4faeb
VP
3258 t->stids_in_use++;
3259 }
3260 spin_unlock_bh(&t->stid_lock);
3261 return stid;
3262}
3263EXPORT_SYMBOL(cxgb4_alloc_sftid);
3264
3265/* Release a server TID.
b8ff05a9
DM
3266 */
3267void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3268{
470c60c4
KS
3269 /* Is it a server filter TID? */
3270 if (t->nsftids && (stid >= t->sftid_base)) {
3271 stid -= t->sftid_base;
3272 stid += t->nstids;
3273 } else {
3274 stid -= t->stid_base;
3275 }
3276
b8ff05a9
DM
3277 spin_lock_bh(&t->stid_lock);
3278 if (family == PF_INET)
3279 __clear_bit(stid, t->stid_bmap);
3280 else
3281 bitmap_release_region(t->stid_bmap, stid, 2);
3282 t->stid_tab[stid].data = NULL;
15f63b74
KS
3283 if (family == PF_INET)
3284 t->stids_in_use--;
3285 else
3286 t->stids_in_use -= 4;
b8ff05a9
DM
3287 spin_unlock_bh(&t->stid_lock);
3288}
3289EXPORT_SYMBOL(cxgb4_free_stid);
3290
3291/*
3292 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3293 */
3294static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3295 unsigned int tid)
3296{
3297 struct cpl_tid_release *req;
3298
3299 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3300 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3301 INIT_TP_WR(req, tid);
3302 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3303}
3304
3305/*
3306 * Queue a TID release request and if necessary schedule a work queue to
3307 * process it.
3308 */
31b9c19b 3309static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3310 unsigned int tid)
b8ff05a9
DM
3311{
3312 void **p = &t->tid_tab[tid];
3313 struct adapter *adap = container_of(t, struct adapter, tids);
3314
3315 spin_lock_bh(&adap->tid_release_lock);
3316 *p = adap->tid_release_head;
3317 /* Low 2 bits encode the Tx channel number */
3318 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3319 if (!adap->tid_release_task_busy) {
3320 adap->tid_release_task_busy = true;
3069ee9b 3321 queue_work(workq, &adap->tid_release_task);
b8ff05a9
DM
3322 }
3323 spin_unlock_bh(&adap->tid_release_lock);
3324}
b8ff05a9
DM
3325
3326/*
3327 * Process the list of pending TID release requests.
3328 */
3329static void process_tid_release_list(struct work_struct *work)
3330{
3331 struct sk_buff *skb;
3332 struct adapter *adap;
3333
3334 adap = container_of(work, struct adapter, tid_release_task);
3335
3336 spin_lock_bh(&adap->tid_release_lock);
3337 while (adap->tid_release_head) {
3338 void **p = adap->tid_release_head;
3339 unsigned int chan = (uintptr_t)p & 3;
3340 p = (void *)p - chan;
3341
3342 adap->tid_release_head = *p;
3343 *p = NULL;
3344 spin_unlock_bh(&adap->tid_release_lock);
3345
3346 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3347 GFP_KERNEL)))
3348 schedule_timeout_uninterruptible(1);
3349
3350 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3351 t4_ofld_send(adap, skb);
3352 spin_lock_bh(&adap->tid_release_lock);
3353 }
3354 adap->tid_release_task_busy = false;
3355 spin_unlock_bh(&adap->tid_release_lock);
3356}
3357
3358/*
3359 * Release a TID and inform HW. If we are unable to allocate the release
3360 * message we defer to a work queue.
3361 */
3362void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3363{
3364 void *old;
3365 struct sk_buff *skb;
3366 struct adapter *adap = container_of(t, struct adapter, tids);
3367
3368 old = t->tid_tab[tid];
3369 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3370 if (likely(skb)) {
3371 t->tid_tab[tid] = NULL;
3372 mk_tid_release(skb, chan, tid);
3373 t4_ofld_send(adap, skb);
3374 } else
3375 cxgb4_queue_tid_release(t, chan, tid);
3376 if (old)
3377 atomic_dec(&t->tids_in_use);
3378}
3379EXPORT_SYMBOL(cxgb4_remove_tid);
3380
3381/*
3382 * Allocate and initialize the TID tables. Returns 0 on success.
3383 */
3384static int tid_init(struct tid_info *t)
3385{
3386 size_t size;
f2b7e78d 3387 unsigned int stid_bmap_size;
b8ff05a9 3388 unsigned int natids = t->natids;
b6f8eaec 3389 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 3390
dca4faeb 3391 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
3392 size = t->ntids * sizeof(*t->tid_tab) +
3393 natids * sizeof(*t->atid_tab) +
b8ff05a9 3394 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 3395 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 3396 stid_bmap_size * sizeof(long) +
dca4faeb
VP
3397 t->nftids * sizeof(*t->ftid_tab) +
3398 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 3399
b8ff05a9
DM
3400 t->tid_tab = t4_alloc_mem(size);
3401 if (!t->tid_tab)
3402 return -ENOMEM;
3403
3404 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3405 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 3406 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 3407 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
3408 spin_lock_init(&t->stid_lock);
3409 spin_lock_init(&t->atid_lock);
3410
3411 t->stids_in_use = 0;
3412 t->afree = NULL;
3413 t->atids_in_use = 0;
3414 atomic_set(&t->tids_in_use, 0);
3415
3416 /* Setup the free list for atid_tab and clear the stid bitmap. */
3417 if (natids) {
3418 while (--natids)
3419 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3420 t->afree = t->atid_tab;
3421 }
dca4faeb 3422 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
3423 /* Reserve stid 0 for T4/T5 adapters */
3424 if (!t->stid_base &&
3425 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3426 __set_bit(0, t->stid_bmap);
3427
b8ff05a9
DM
3428 return 0;
3429}
3430
01bcca68
VP
3431static int cxgb4_clip_get(const struct net_device *dev,
3432 const struct in6_addr *lip)
3433{
3434 struct adapter *adap;
3435 struct fw_clip_cmd c;
3436
3437 adap = netdev2adap(dev);
3438 memset(&c, 0, sizeof(c));
3439 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3440 FW_CMD_REQUEST | FW_CMD_WRITE);
3441 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
12f2a479
JP
3442 c.ip_hi = *(__be64 *)(lip->s6_addr);
3443 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3444 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3445}
3446
3447static int cxgb4_clip_release(const struct net_device *dev,
3448 const struct in6_addr *lip)
3449{
3450 struct adapter *adap;
3451 struct fw_clip_cmd c;
3452
3453 adap = netdev2adap(dev);
3454 memset(&c, 0, sizeof(c));
3455 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3456 FW_CMD_REQUEST | FW_CMD_READ);
3457 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
12f2a479
JP
3458 c.ip_hi = *(__be64 *)(lip->s6_addr);
3459 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3460 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3461}
3462
b8ff05a9
DM
3463/**
3464 * cxgb4_create_server - create an IP server
3465 * @dev: the device
3466 * @stid: the server TID
3467 * @sip: local IP address to bind server to
3468 * @sport: the server's TCP port
3469 * @queue: queue to direct messages from this server to
3470 *
3471 * Create an IP server for the given port and address.
3472 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3473 */
3474int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
3475 __be32 sip, __be16 sport, __be16 vlan,
3476 unsigned int queue)
b8ff05a9
DM
3477{
3478 unsigned int chan;
3479 struct sk_buff *skb;
3480 struct adapter *adap;
3481 struct cpl_pass_open_req *req;
80f40c1f 3482 int ret;
b8ff05a9
DM
3483
3484 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3485 if (!skb)
3486 return -ENOMEM;
3487
3488 adap = netdev2adap(dev);
3489 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3490 INIT_TP_WR(req, 0);
3491 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3492 req->local_port = sport;
3493 req->peer_port = htons(0);
3494 req->local_ip = sip;
3495 req->peer_ip = htonl(0);
e46dab4d 3496 chan = rxq_to_chan(&adap->sge, queue);
b8ff05a9
DM
3497 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3498 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3499 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
80f40c1f
VP
3500 ret = t4_mgmt_tx(adap, skb);
3501 return net_xmit_eval(ret);
b8ff05a9
DM
3502}
3503EXPORT_SYMBOL(cxgb4_create_server);
3504
80f40c1f
VP
3505/* cxgb4_create_server6 - create an IPv6 server
3506 * @dev: the device
3507 * @stid: the server TID
3508 * @sip: local IPv6 address to bind server to
3509 * @sport: the server's TCP port
3510 * @queue: queue to direct messages from this server to
3511 *
3512 * Create an IPv6 server for the given port and address.
3513 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3514 */
3515int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3516 const struct in6_addr *sip, __be16 sport,
3517 unsigned int queue)
3518{
3519 unsigned int chan;
3520 struct sk_buff *skb;
3521 struct adapter *adap;
3522 struct cpl_pass_open_req6 *req;
3523 int ret;
3524
3525 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3526 if (!skb)
3527 return -ENOMEM;
3528
3529 adap = netdev2adap(dev);
3530 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3531 INIT_TP_WR(req, 0);
3532 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3533 req->local_port = sport;
3534 req->peer_port = htons(0);
3535 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3536 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3537 req->peer_ip_hi = cpu_to_be64(0);
3538 req->peer_ip_lo = cpu_to_be64(0);
3539 chan = rxq_to_chan(&adap->sge, queue);
3540 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3541 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3542 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3543 ret = t4_mgmt_tx(adap, skb);
3544 return net_xmit_eval(ret);
3545}
3546EXPORT_SYMBOL(cxgb4_create_server6);
3547
3548int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3549 unsigned int queue, bool ipv6)
3550{
3551 struct sk_buff *skb;
3552 struct adapter *adap;
3553 struct cpl_close_listsvr_req *req;
3554 int ret;
3555
3556 adap = netdev2adap(dev);
3557
3558 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3559 if (!skb)
3560 return -ENOMEM;
3561
3562 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3563 INIT_TP_WR(req, 0);
3564 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3565 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3566 LISTSVR_IPV6(0)) | QUEUENO(queue));
3567 ret = t4_mgmt_tx(adap, skb);
3568 return net_xmit_eval(ret);
3569}
3570EXPORT_SYMBOL(cxgb4_remove_server);
3571
b8ff05a9
DM
3572/**
3573 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3574 * @mtus: the HW MTU table
3575 * @mtu: the target MTU
3576 * @idx: index of selected entry in the MTU table
3577 *
3578 * Returns the index and the value in the HW MTU table that is closest to
3579 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3580 * table, in which case that smallest available value is selected.
3581 */
3582unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3583 unsigned int *idx)
3584{
3585 unsigned int i = 0;
3586
3587 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3588 ++i;
3589 if (idx)
3590 *idx = i;
3591 return mtus[i];
3592}
3593EXPORT_SYMBOL(cxgb4_best_mtu);
3594
92e7ae71
HS
3595/**
3596 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3597 * @mtus: the HW MTU table
3598 * @header_size: Header Size
3599 * @data_size_max: maximum Data Segment Size
3600 * @data_size_align: desired Data Segment Size Alignment (2^N)
3601 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3602 *
3603 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3604 * MTU Table based solely on a Maximum MTU parameter, we break that
3605 * parameter up into a Header Size and Maximum Data Segment Size, and
3606 * provide a desired Data Segment Size Alignment. If we find an MTU in
3607 * the Hardware MTU Table which will result in a Data Segment Size with
3608 * the requested alignment _and_ that MTU isn't "too far" from the
3609 * closest MTU, then we'll return that rather than the closest MTU.
3610 */
3611unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3612 unsigned short header_size,
3613 unsigned short data_size_max,
3614 unsigned short data_size_align,
3615 unsigned int *mtu_idxp)
3616{
3617 unsigned short max_mtu = header_size + data_size_max;
3618 unsigned short data_size_align_mask = data_size_align - 1;
3619 int mtu_idx, aligned_mtu_idx;
3620
3621 /* Scan the MTU Table till we find an MTU which is larger than our
3622 * Maximum MTU or we reach the end of the table. Along the way,
3623 * record the last MTU found, if any, which will result in a Data
3624 * Segment Length matching the requested alignment.
3625 */
3626 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3627 unsigned short data_size = mtus[mtu_idx] - header_size;
3628
3629 /* If this MTU minus the Header Size would result in a
3630 * Data Segment Size of the desired alignment, remember it.
3631 */
3632 if ((data_size & data_size_align_mask) == 0)
3633 aligned_mtu_idx = mtu_idx;
3634
3635 /* If we're not at the end of the Hardware MTU Table and the
3636 * next element is larger than our Maximum MTU, drop out of
3637 * the loop.
3638 */
3639 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3640 break;
3641 }
3642
3643 /* If we fell out of the loop because we ran to the end of the table,
3644 * then we just have to use the last [largest] entry.
3645 */
3646 if (mtu_idx == NMTUS)
3647 mtu_idx--;
3648
3649 /* If we found an MTU which resulted in the requested Data Segment
3650 * Length alignment and that's "not far" from the largest MTU which is
3651 * less than or equal to the maximum MTU, then use that.
3652 */
3653 if (aligned_mtu_idx >= 0 &&
3654 mtu_idx - aligned_mtu_idx <= 1)
3655 mtu_idx = aligned_mtu_idx;
3656
3657 /* If the caller has passed in an MTU Index pointer, pass the
3658 * MTU Index back. Return the MTU value.
3659 */
3660 if (mtu_idxp)
3661 *mtu_idxp = mtu_idx;
3662 return mtus[mtu_idx];
3663}
3664EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3665
b8ff05a9
DM
3666/**
3667 * cxgb4_port_chan - get the HW channel of a port
3668 * @dev: the net device for the port
3669 *
3670 * Return the HW Tx channel of the given port.
3671 */
3672unsigned int cxgb4_port_chan(const struct net_device *dev)
3673{
3674 return netdev2pinfo(dev)->tx_chan;
3675}
3676EXPORT_SYMBOL(cxgb4_port_chan);
3677
881806bc
VP
3678unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3679{
3680 struct adapter *adap = netdev2adap(dev);
2cc301d2 3681 u32 v1, v2, lp_count, hp_count;
881806bc 3682
2cc301d2
SR
3683 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3684 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3685 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3686 lp_count = G_LP_COUNT(v1);
3687 hp_count = G_HP_COUNT(v1);
3688 } else {
3689 lp_count = G_LP_COUNT_T5(v1);
3690 hp_count = G_HP_COUNT_T5(v2);
3691 }
3692 return lpfifo ? lp_count : hp_count;
881806bc
VP
3693}
3694EXPORT_SYMBOL(cxgb4_dbfifo_count);
3695
b8ff05a9
DM
3696/**
3697 * cxgb4_port_viid - get the VI id of a port
3698 * @dev: the net device for the port
3699 *
3700 * Return the VI id of the given port.
3701 */
3702unsigned int cxgb4_port_viid(const struct net_device *dev)
3703{
3704 return netdev2pinfo(dev)->viid;
3705}
3706EXPORT_SYMBOL(cxgb4_port_viid);
3707
3708/**
3709 * cxgb4_port_idx - get the index of a port
3710 * @dev: the net device for the port
3711 *
3712 * Return the index of the given port.
3713 */
3714unsigned int cxgb4_port_idx(const struct net_device *dev)
3715{
3716 return netdev2pinfo(dev)->port_id;
3717}
3718EXPORT_SYMBOL(cxgb4_port_idx);
3719
b8ff05a9
DM
3720void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3721 struct tp_tcp_stats *v6)
3722{
3723 struct adapter *adap = pci_get_drvdata(pdev);
3724
3725 spin_lock(&adap->stats_lock);
3726 t4_tp_get_tcp_stats(adap, v4, v6);
3727 spin_unlock(&adap->stats_lock);
3728}
3729EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3730
3731void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3732 const unsigned int *pgsz_order)
3733{
3734 struct adapter *adap = netdev2adap(dev);
3735
3736 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3737 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3738 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3739 HPZ3(pgsz_order[3]));
3740}
3741EXPORT_SYMBOL(cxgb4_iscsi_init);
3742
3069ee9b
VP
3743int cxgb4_flush_eq_cache(struct net_device *dev)
3744{
3745 struct adapter *adap = netdev2adap(dev);
3746 int ret;
3747
3748 ret = t4_fwaddrspace_write(adap, adap->mbox,
3749 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3750 return ret;
3751}
3752EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3753
3754static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3755{
3756 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3757 __be64 indices;
3758 int ret;
3759
3760 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3761 if (!ret) {
404d9e3f
VP
3762 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3763 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
3764 }
3765 return ret;
3766}
3767
3768int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3769 u16 size)
3770{
3771 struct adapter *adap = netdev2adap(dev);
3772 u16 hw_pidx, hw_cidx;
3773 int ret;
3774
3775 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3776 if (ret)
3777 goto out;
3778
3779 if (pidx != hw_pidx) {
3780 u16 delta;
3781
3782 if (pidx >= hw_pidx)
3783 delta = pidx - hw_pidx;
3784 else
3785 delta = size - hw_pidx + pidx;
3786 wmb();
840f3000
VP
3787 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3788 QID(qid) | PIDX(delta));
3069ee9b
VP
3789 }
3790out:
3791 return ret;
3792}
3793EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3794
3cbdb928
VP
3795void cxgb4_disable_db_coalescing(struct net_device *dev)
3796{
3797 struct adapter *adap;
3798
3799 adap = netdev2adap(dev);
3800 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3801 F_NOCOALESCE);
3802}
3803EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3804
3805void cxgb4_enable_db_coalescing(struct net_device *dev)
3806{
3807 struct adapter *adap;
3808
3809 adap = netdev2adap(dev);
3810 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3811}
3812EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3813
b8ff05a9
DM
3814static struct pci_driver cxgb4_driver;
3815
3816static void check_neigh_update(struct neighbour *neigh)
3817{
3818 const struct device *parent;
3819 const struct net_device *netdev = neigh->dev;
3820
3821 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3822 netdev = vlan_dev_real_dev(netdev);
3823 parent = netdev->dev.parent;
3824 if (parent && parent->driver == &cxgb4_driver.driver)
3825 t4_l2t_update(dev_get_drvdata(parent), neigh);
3826}
3827
3828static int netevent_cb(struct notifier_block *nb, unsigned long event,
3829 void *data)
3830{
3831 switch (event) {
3832 case NETEVENT_NEIGH_UPDATE:
3833 check_neigh_update(data);
3834 break;
b8ff05a9
DM
3835 case NETEVENT_REDIRECT:
3836 default:
3837 break;
3838 }
3839 return 0;
3840}
3841
3842static bool netevent_registered;
3843static struct notifier_block cxgb4_netevent_nb = {
3844 .notifier_call = netevent_cb
3845};
3846
3069ee9b
VP
3847static void drain_db_fifo(struct adapter *adap, int usecs)
3848{
2cc301d2 3849 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
3850
3851 do {
2cc301d2
SR
3852 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3853 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3854 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3855 lp_count = G_LP_COUNT(v1);
3856 hp_count = G_HP_COUNT(v1);
3857 } else {
3858 lp_count = G_LP_COUNT_T5(v1);
3859 hp_count = G_HP_COUNT_T5(v2);
3860 }
3861
3862 if (lp_count == 0 && hp_count == 0)
3863 break;
3069ee9b
VP
3864 set_current_state(TASK_UNINTERRUPTIBLE);
3865 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
3866 } while (1);
3867}
3868
3869static void disable_txq_db(struct sge_txq *q)
3870{
05eb2389
SW
3871 unsigned long flags;
3872
3873 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 3874 q->db_disabled = 1;
05eb2389 3875 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
3876}
3877
05eb2389 3878static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
3879{
3880 spin_lock_irq(&q->db_lock);
05eb2389
SW
3881 if (q->db_pidx_inc) {
3882 /* Make sure that all writes to the TX descriptors
3883 * are committed before we tell HW about them.
3884 */
3885 wmb();
3886 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3887 QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3888 q->db_pidx_inc = 0;
3889 }
3069ee9b
VP
3890 q->db_disabled = 0;
3891 spin_unlock_irq(&q->db_lock);
3892}
3893
3894static void disable_dbs(struct adapter *adap)
3895{
3896 int i;
3897
3898 for_each_ethrxq(&adap->sge, i)
3899 disable_txq_db(&adap->sge.ethtxq[i].q);
3900 for_each_ofldrxq(&adap->sge, i)
3901 disable_txq_db(&adap->sge.ofldtxq[i].q);
3902 for_each_port(adap, i)
3903 disable_txq_db(&adap->sge.ctrlq[i].q);
3904}
3905
3906static void enable_dbs(struct adapter *adap)
3907{
3908 int i;
3909
3910 for_each_ethrxq(&adap->sge, i)
05eb2389 3911 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 3912 for_each_ofldrxq(&adap->sge, i)
05eb2389 3913 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 3914 for_each_port(adap, i)
05eb2389
SW
3915 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3916}
3917
3918static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3919{
3920 if (adap->uld_handle[CXGB4_ULD_RDMA])
3921 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3922 cmd);
3923}
3924
3925static void process_db_full(struct work_struct *work)
3926{
3927 struct adapter *adap;
3928
3929 adap = container_of(work, struct adapter, db_full_task);
3930
3931 drain_db_fifo(adap, dbfifo_drain_delay);
3932 enable_dbs(adap);
3933 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3934 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3935 DBFIFO_HP_INT | DBFIFO_LP_INT,
3936 DBFIFO_HP_INT | DBFIFO_LP_INT);
3069ee9b
VP
3937}
3938
3939static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3940{
3941 u16 hw_pidx, hw_cidx;
3942 int ret;
3943
05eb2389 3944 spin_lock_irq(&q->db_lock);
3069ee9b
VP
3945 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3946 if (ret)
3947 goto out;
3948 if (q->db_pidx != hw_pidx) {
3949 u16 delta;
3950
3951 if (q->db_pidx >= hw_pidx)
3952 delta = q->db_pidx - hw_pidx;
3953 else
3954 delta = q->size - hw_pidx + q->db_pidx;
3955 wmb();
840f3000
VP
3956 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3957 QID(q->cntxt_id) | PIDX(delta));
3069ee9b
VP
3958 }
3959out:
3960 q->db_disabled = 0;
05eb2389
SW
3961 q->db_pidx_inc = 0;
3962 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
3963 if (ret)
3964 CH_WARN(adap, "DB drop recovery failed.\n");
3965}
3966static void recover_all_queues(struct adapter *adap)
3967{
3968 int i;
3969
3970 for_each_ethrxq(&adap->sge, i)
3971 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3972 for_each_ofldrxq(&adap->sge, i)
3973 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3974 for_each_port(adap, i)
3975 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3976}
3977
881806bc
VP
3978static void process_db_drop(struct work_struct *work)
3979{
3980 struct adapter *adap;
881806bc 3981
3069ee9b 3982 adap = container_of(work, struct adapter, db_drop_task);
881806bc 3983
d14807dd 3984 if (is_t4(adap->params.chip)) {
05eb2389 3985 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3986 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 3987 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3988 recover_all_queues(adap);
05eb2389 3989 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3990 enable_dbs(adap);
05eb2389 3991 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2cc301d2
SR
3992 } else {
3993 u32 dropped_db = t4_read_reg(adap, 0x010ac);
3994 u16 qid = (dropped_db >> 15) & 0x1ffff;
3995 u16 pidx_inc = dropped_db & 0x1fff;
3996 unsigned int s_qpp;
3997 unsigned short udb_density;
3998 unsigned long qpshift;
3999 int page;
4000 u32 udb;
4001
4002 dev_warn(adap->pdev_dev,
4003 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4004 dropped_db, qid,
4005 (dropped_db >> 14) & 1,
4006 (dropped_db >> 13) & 1,
4007 pidx_inc);
4008
4009 drain_db_fifo(adap, 1);
4010
4011 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4012 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4013 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4014 qpshift = PAGE_SHIFT - ilog2(udb_density);
4015 udb = qid << qpshift;
4016 udb &= PAGE_MASK;
4017 page = udb / PAGE_SIZE;
4018 udb += (qid - (page * udb_density)) * 128;
4019
4020 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
4021
4022 /* Re-enable BAR2 WC */
4023 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4024 }
4025
3069ee9b 4026 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
881806bc
VP
4027}
4028
4029void t4_db_full(struct adapter *adap)
4030{
d14807dd 4031 if (is_t4(adap->params.chip)) {
05eb2389
SW
4032 disable_dbs(adap);
4033 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2cc301d2
SR
4034 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4035 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4036 queue_work(workq, &adap->db_full_task);
4037 }
881806bc
VP
4038}
4039
4040void t4_db_dropped(struct adapter *adap)
4041{
05eb2389
SW
4042 if (is_t4(adap->params.chip)) {
4043 disable_dbs(adap);
4044 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4045 }
4046 queue_work(workq, &adap->db_drop_task);
881806bc
VP
4047}
4048
b8ff05a9
DM
4049static void uld_attach(struct adapter *adap, unsigned int uld)
4050{
4051 void *handle;
4052 struct cxgb4_lld_info lli;
dca4faeb 4053 unsigned short i;
b8ff05a9
DM
4054
4055 lli.pdev = adap->pdev;
35b1de55 4056 lli.pf = adap->fn;
b8ff05a9
DM
4057 lli.l2t = adap->l2t;
4058 lli.tids = &adap->tids;
4059 lli.ports = adap->port;
4060 lli.vr = &adap->vres;
4061 lli.mtus = adap->params.mtus;
4062 if (uld == CXGB4_ULD_RDMA) {
4063 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 4064 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 4065 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 4066 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
4067 } else if (uld == CXGB4_ULD_ISCSI) {
4068 lli.rxq_ids = adap->sge.ofld_rxq;
4069 lli.nrxq = adap->sge.ofldqsets;
4070 }
4071 lli.ntxq = adap->sge.ofldqsets;
4072 lli.nchan = adap->params.nports;
4073 lli.nports = adap->params.nports;
4074 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 4075 lli.adapter_type = adap->params.chip;
b8ff05a9
DM
4076 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4077 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4078 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4079 (adap->fn * 4));
b8ff05a9 4080 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4081 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4082 (adap->fn * 4));
dcf7b6f5 4083 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
4084 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4085 for (i = 0; i < NCHAN; i++)
4086 lli.tx_modq[i] = i;
b8ff05a9
DM
4087 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4088 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4089 lli.fw_vers = adap->params.fw_vers;
3069ee9b 4090 lli.dbfifo_int_thresh = dbfifo_int_thresh;
dca4faeb
VP
4091 lli.sge_pktshift = adap->sge.pktshift;
4092 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
1ac0f095 4093 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
b8ff05a9
DM
4094
4095 handle = ulds[uld].add(&lli);
4096 if (IS_ERR(handle)) {
4097 dev_warn(adap->pdev_dev,
4098 "could not attach to the %s driver, error %ld\n",
4099 uld_str[uld], PTR_ERR(handle));
4100 return;
4101 }
4102
4103 adap->uld_handle[uld] = handle;
4104
4105 if (!netevent_registered) {
4106 register_netevent_notifier(&cxgb4_netevent_nb);
4107 netevent_registered = true;
4108 }
e29f5dbc
DM
4109
4110 if (adap->flags & FULL_INIT_DONE)
4111 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
4112}
4113
4114static void attach_ulds(struct adapter *adap)
4115{
4116 unsigned int i;
4117
01bcca68
VP
4118 spin_lock(&adap_rcu_lock);
4119 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4120 spin_unlock(&adap_rcu_lock);
4121
b8ff05a9
DM
4122 mutex_lock(&uld_mutex);
4123 list_add_tail(&adap->list_node, &adapter_list);
4124 for (i = 0; i < CXGB4_ULD_MAX; i++)
4125 if (ulds[i].add)
4126 uld_attach(adap, i);
4127 mutex_unlock(&uld_mutex);
4128}
4129
4130static void detach_ulds(struct adapter *adap)
4131{
4132 unsigned int i;
4133
4134 mutex_lock(&uld_mutex);
4135 list_del(&adap->list_node);
4136 for (i = 0; i < CXGB4_ULD_MAX; i++)
4137 if (adap->uld_handle[i]) {
4138 ulds[i].state_change(adap->uld_handle[i],
4139 CXGB4_STATE_DETACH);
4140 adap->uld_handle[i] = NULL;
4141 }
4142 if (netevent_registered && list_empty(&adapter_list)) {
4143 unregister_netevent_notifier(&cxgb4_netevent_nb);
4144 netevent_registered = false;
4145 }
4146 mutex_unlock(&uld_mutex);
01bcca68
VP
4147
4148 spin_lock(&adap_rcu_lock);
4149 list_del_rcu(&adap->rcu_node);
4150 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
4151}
4152
4153static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4154{
4155 unsigned int i;
4156
4157 mutex_lock(&uld_mutex);
4158 for (i = 0; i < CXGB4_ULD_MAX; i++)
4159 if (adap->uld_handle[i])
4160 ulds[i].state_change(adap->uld_handle[i], new_state);
4161 mutex_unlock(&uld_mutex);
4162}
4163
4164/**
4165 * cxgb4_register_uld - register an upper-layer driver
4166 * @type: the ULD type
4167 * @p: the ULD methods
4168 *
4169 * Registers an upper-layer driver with this driver and notifies the ULD
4170 * about any presently available devices that support its type. Returns
4171 * %-EBUSY if a ULD of the same type is already registered.
4172 */
4173int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4174{
4175 int ret = 0;
4176 struct adapter *adap;
4177
4178 if (type >= CXGB4_ULD_MAX)
4179 return -EINVAL;
4180 mutex_lock(&uld_mutex);
4181 if (ulds[type].add) {
4182 ret = -EBUSY;
4183 goto out;
4184 }
4185 ulds[type] = *p;
4186 list_for_each_entry(adap, &adapter_list, list_node)
4187 uld_attach(adap, type);
4188out: mutex_unlock(&uld_mutex);
4189 return ret;
4190}
4191EXPORT_SYMBOL(cxgb4_register_uld);
4192
4193/**
4194 * cxgb4_unregister_uld - unregister an upper-layer driver
4195 * @type: the ULD type
4196 *
4197 * Unregisters an existing upper-layer driver.
4198 */
4199int cxgb4_unregister_uld(enum cxgb4_uld type)
4200{
4201 struct adapter *adap;
4202
4203 if (type >= CXGB4_ULD_MAX)
4204 return -EINVAL;
4205 mutex_lock(&uld_mutex);
4206 list_for_each_entry(adap, &adapter_list, list_node)
4207 adap->uld_handle[type] = NULL;
4208 ulds[type].add = NULL;
4209 mutex_unlock(&uld_mutex);
4210 return 0;
4211}
4212EXPORT_SYMBOL(cxgb4_unregister_uld);
4213
01bcca68 4214/* Check if netdev on which event is occured belongs to us or not. Return
ee9a33b2
LR
4215 * success (true) if it belongs otherwise failure (false).
4216 * Called with rcu_read_lock() held.
01bcca68 4217 */
ee9a33b2 4218static bool cxgb4_netdev(const struct net_device *netdev)
01bcca68
VP
4219{
4220 struct adapter *adap;
4221 int i;
4222
01bcca68
VP
4223 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4224 for (i = 0; i < MAX_NPORTS; i++)
ee9a33b2
LR
4225 if (adap->port[i] == netdev)
4226 return true;
4227 return false;
01bcca68
VP
4228}
4229
4230static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4231 unsigned long event)
4232{
4233 int ret = NOTIFY_DONE;
4234
4235 rcu_read_lock();
4236 if (cxgb4_netdev(event_dev)) {
4237 switch (event) {
4238 case NETDEV_UP:
4239 ret = cxgb4_clip_get(event_dev,
4240 (const struct in6_addr *)ifa->addr.s6_addr);
4241 if (ret < 0) {
4242 rcu_read_unlock();
4243 return ret;
4244 }
4245 ret = NOTIFY_OK;
4246 break;
4247 case NETDEV_DOWN:
4248 cxgb4_clip_release(event_dev,
4249 (const struct in6_addr *)ifa->addr.s6_addr);
4250 ret = NOTIFY_OK;
4251 break;
4252 default:
4253 break;
4254 }
4255 }
4256 rcu_read_unlock();
4257 return ret;
4258}
4259
4260static int cxgb4_inet6addr_handler(struct notifier_block *this,
4261 unsigned long event, void *data)
4262{
4263 struct inet6_ifaddr *ifa = data;
4264 struct net_device *event_dev;
4265 int ret = NOTIFY_DONE;
01bcca68 4266 struct bonding *bond = netdev_priv(ifa->idev->dev);
9caff1e7 4267 struct list_head *iter;
01bcca68
VP
4268 struct slave *slave;
4269 struct pci_dev *first_pdev = NULL;
4270
4271 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4272 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4273 ret = clip_add(event_dev, ifa, event);
4274 } else if (ifa->idev->dev->flags & IFF_MASTER) {
4275 /* It is possible that two different adapters are bonded in one
4276 * bond. We need to find such different adapters and add clip
4277 * in all of them only once.
4278 */
4279 read_lock(&bond->lock);
9caff1e7 4280 bond_for_each_slave(bond, slave, iter) {
01bcca68
VP
4281 if (!first_pdev) {
4282 ret = clip_add(slave->dev, ifa, event);
4283 /* If clip_add is success then only initialize
4284 * first_pdev since it means it is our device
4285 */
4286 if (ret == NOTIFY_OK)
4287 first_pdev = to_pci_dev(
4288 slave->dev->dev.parent);
4289 } else if (first_pdev !=
4290 to_pci_dev(slave->dev->dev.parent))
4291 ret = clip_add(slave->dev, ifa, event);
4292 }
4293 read_unlock(&bond->lock);
4294 } else
4295 ret = clip_add(ifa->idev->dev, ifa, event);
4296
4297 return ret;
4298}
4299
4300static struct notifier_block cxgb4_inet6addr_notifier = {
4301 .notifier_call = cxgb4_inet6addr_handler
4302};
4303
4304/* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4305 * a physical device.
4306 * The physical device reference is needed to send the actul CLIP command.
4307 */
4308static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4309{
4310 struct inet6_dev *idev = NULL;
4311 struct inet6_ifaddr *ifa;
4312 int ret = 0;
4313
4314 idev = __in6_dev_get(root_dev);
4315 if (!idev)
4316 return ret;
4317
4318 read_lock_bh(&idev->lock);
4319 list_for_each_entry(ifa, &idev->addr_list, if_list) {
4320 ret = cxgb4_clip_get(dev,
4321 (const struct in6_addr *)ifa->addr.s6_addr);
4322 if (ret < 0)
4323 break;
4324 }
4325 read_unlock_bh(&idev->lock);
4326
4327 return ret;
4328}
4329
4330static int update_root_dev_clip(struct net_device *dev)
4331{
4332 struct net_device *root_dev = NULL;
4333 int i, ret = 0;
4334
4335 /* First populate the real net device's IPv6 addresses */
4336 ret = update_dev_clip(dev, dev);
4337 if (ret)
4338 return ret;
4339
4340 /* Parse all bond and vlan devices layered on top of the physical dev */
4341 for (i = 0; i < VLAN_N_VID; i++) {
f06c7f9f 4342 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
01bcca68
VP
4343 if (!root_dev)
4344 continue;
4345
4346 ret = update_dev_clip(root_dev, dev);
4347 if (ret)
4348 break;
4349 }
4350 return ret;
4351}
4352
4353static void update_clip(const struct adapter *adap)
4354{
4355 int i;
4356 struct net_device *dev;
4357 int ret;
4358
4359 rcu_read_lock();
4360
4361 for (i = 0; i < MAX_NPORTS; i++) {
4362 dev = adap->port[i];
4363 ret = 0;
4364
4365 if (dev)
4366 ret = update_root_dev_clip(dev);
4367
4368 if (ret < 0)
4369 break;
4370 }
4371 rcu_read_unlock();
4372}
4373
b8ff05a9
DM
4374/**
4375 * cxgb_up - enable the adapter
4376 * @adap: adapter being enabled
4377 *
4378 * Called when the first port is enabled, this function performs the
4379 * actions necessary to make an adapter operational, such as completing
4380 * the initialization of HW modules, and enabling interrupts.
4381 *
4382 * Must be called with the rtnl lock held.
4383 */
4384static int cxgb_up(struct adapter *adap)
4385{
aaefae9b 4386 int err;
b8ff05a9 4387
aaefae9b
DM
4388 err = setup_sge_queues(adap);
4389 if (err)
4390 goto out;
4391 err = setup_rss(adap);
4392 if (err)
4393 goto freeq;
b8ff05a9
DM
4394
4395 if (adap->flags & USING_MSIX) {
aaefae9b 4396 name_msix_vecs(adap);
b8ff05a9
DM
4397 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4398 adap->msix_info[0].desc, adap);
4399 if (err)
4400 goto irq_err;
4401
4402 err = request_msix_queue_irqs(adap);
4403 if (err) {
4404 free_irq(adap->msix_info[0].vec, adap);
4405 goto irq_err;
4406 }
4407 } else {
4408 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4409 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 4410 adap->port[0]->name, adap);
b8ff05a9
DM
4411 if (err)
4412 goto irq_err;
4413 }
4414 enable_rx(adap);
4415 t4_sge_start(adap);
4416 t4_intr_enable(adap);
aaefae9b 4417 adap->flags |= FULL_INIT_DONE;
b8ff05a9 4418 notify_ulds(adap, CXGB4_STATE_UP);
01bcca68 4419 update_clip(adap);
b8ff05a9
DM
4420 out:
4421 return err;
4422 irq_err:
4423 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
4424 freeq:
4425 t4_free_sge_resources(adap);
b8ff05a9
DM
4426 goto out;
4427}
4428
4429static void cxgb_down(struct adapter *adapter)
4430{
4431 t4_intr_disable(adapter);
4432 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
4433 cancel_work_sync(&adapter->db_full_task);
4434 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 4435 adapter->tid_release_task_busy = false;
204dc3c0 4436 adapter->tid_release_head = NULL;
b8ff05a9
DM
4437
4438 if (adapter->flags & USING_MSIX) {
4439 free_msix_queue_irqs(adapter);
4440 free_irq(adapter->msix_info[0].vec, adapter);
4441 } else
4442 free_irq(adapter->pdev->irq, adapter);
4443 quiesce_rx(adapter);
aaefae9b
DM
4444 t4_sge_stop(adapter);
4445 t4_free_sge_resources(adapter);
4446 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
4447}
4448
4449/*
4450 * net_device operations
4451 */
4452static int cxgb_open(struct net_device *dev)
4453{
4454 int err;
4455 struct port_info *pi = netdev_priv(dev);
4456 struct adapter *adapter = pi->adapter;
4457
6a3c869a
DM
4458 netif_carrier_off(dev);
4459
aaefae9b
DM
4460 if (!(adapter->flags & FULL_INIT_DONE)) {
4461 err = cxgb_up(adapter);
4462 if (err < 0)
4463 return err;
4464 }
b8ff05a9 4465
f68707b8
DM
4466 err = link_start(dev);
4467 if (!err)
4468 netif_tx_start_all_queues(dev);
4469 return err;
b8ff05a9
DM
4470}
4471
4472static int cxgb_close(struct net_device *dev)
4473{
b8ff05a9
DM
4474 struct port_info *pi = netdev_priv(dev);
4475 struct adapter *adapter = pi->adapter;
4476
4477 netif_tx_stop_all_queues(dev);
4478 netif_carrier_off(dev);
060e0c75 4479 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
b8ff05a9
DM
4480}
4481
f2b7e78d
VP
4482/* Return an error number if the indicated filter isn't writable ...
4483 */
4484static int writable_filter(struct filter_entry *f)
4485{
4486 if (f->locked)
4487 return -EPERM;
4488 if (f->pending)
4489 return -EBUSY;
4490
4491 return 0;
4492}
4493
4494/* Delete the filter at the specified index (if valid). The checks for all
4495 * the common problems with doing this like the filter being locked, currently
4496 * pending in another operation, etc.
4497 */
4498static int delete_filter(struct adapter *adapter, unsigned int fidx)
4499{
4500 struct filter_entry *f;
4501 int ret;
4502
dca4faeb 4503 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
4504 return -EINVAL;
4505
4506 f = &adapter->tids.ftid_tab[fidx];
4507 ret = writable_filter(f);
4508 if (ret)
4509 return ret;
4510 if (f->valid)
4511 return del_filter_wr(adapter, fidx);
4512
4513 return 0;
4514}
4515
dca4faeb 4516int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
4517 __be32 sip, __be16 sport, __be16 vlan,
4518 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
4519{
4520 int ret;
4521 struct filter_entry *f;
4522 struct adapter *adap;
4523 int i;
4524 u8 *val;
4525
4526 adap = netdev2adap(dev);
4527
1cab775c 4528 /* Adjust stid to correct filter index */
470c60c4 4529 stid -= adap->tids.sftid_base;
1cab775c
VP
4530 stid += adap->tids.nftids;
4531
dca4faeb
VP
4532 /* Check to make sure the filter requested is writable ...
4533 */
4534 f = &adap->tids.ftid_tab[stid];
4535 ret = writable_filter(f);
4536 if (ret)
4537 return ret;
4538
4539 /* Clear out any old resources being used by the filter before
4540 * we start constructing the new filter.
4541 */
4542 if (f->valid)
4543 clear_filter(adap, f);
4544
4545 /* Clear out filter specifications */
4546 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4547 f->fs.val.lport = cpu_to_be16(sport);
4548 f->fs.mask.lport = ~0;
4549 val = (u8 *)&sip;
793dad94 4550 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
4551 for (i = 0; i < 4; i++) {
4552 f->fs.val.lip[i] = val[i];
4553 f->fs.mask.lip[i] = ~0;
4554 }
dcf7b6f5 4555 if (adap->params.tp.vlan_pri_map & F_PORT) {
793dad94
VP
4556 f->fs.val.iport = port;
4557 f->fs.mask.iport = mask;
4558 }
4559 }
dca4faeb 4560
dcf7b6f5 4561 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
7c89e555
KS
4562 f->fs.val.proto = IPPROTO_TCP;
4563 f->fs.mask.proto = ~0;
4564 }
4565
dca4faeb
VP
4566 f->fs.dirsteer = 1;
4567 f->fs.iq = queue;
4568 /* Mark filter as locked */
4569 f->locked = 1;
4570 f->fs.rpttid = 1;
4571
4572 ret = set_filter_wr(adap, stid);
4573 if (ret) {
4574 clear_filter(adap, f);
4575 return ret;
4576 }
4577
4578 return 0;
4579}
4580EXPORT_SYMBOL(cxgb4_create_server_filter);
4581
4582int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4583 unsigned int queue, bool ipv6)
4584{
4585 int ret;
4586 struct filter_entry *f;
4587 struct adapter *adap;
4588
4589 adap = netdev2adap(dev);
1cab775c
VP
4590
4591 /* Adjust stid to correct filter index */
470c60c4 4592 stid -= adap->tids.sftid_base;
1cab775c
VP
4593 stid += adap->tids.nftids;
4594
dca4faeb
VP
4595 f = &adap->tids.ftid_tab[stid];
4596 /* Unlock the filter */
4597 f->locked = 0;
4598
4599 ret = delete_filter(adap, stid);
4600 if (ret)
4601 return ret;
4602
4603 return 0;
4604}
4605EXPORT_SYMBOL(cxgb4_remove_server_filter);
4606
f5152c90
DM
4607static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4608 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
4609{
4610 struct port_stats stats;
4611 struct port_info *p = netdev_priv(dev);
4612 struct adapter *adapter = p->adapter;
b8ff05a9 4613
9fe6cb58
GS
4614 /* Block retrieving statistics during EEH error
4615 * recovery. Otherwise, the recovery might fail
4616 * and the PCI device will be removed permanently
4617 */
b8ff05a9 4618 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
4619 if (!netif_device_present(dev)) {
4620 spin_unlock(&adapter->stats_lock);
4621 return ns;
4622 }
b8ff05a9
DM
4623 t4_get_port_stats(adapter, p->tx_chan, &stats);
4624 spin_unlock(&adapter->stats_lock);
4625
4626 ns->tx_bytes = stats.tx_octets;
4627 ns->tx_packets = stats.tx_frames;
4628 ns->rx_bytes = stats.rx_octets;
4629 ns->rx_packets = stats.rx_frames;
4630 ns->multicast = stats.rx_mcast_frames;
4631
4632 /* detailed rx_errors */
4633 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4634 stats.rx_runt;
4635 ns->rx_over_errors = 0;
4636 ns->rx_crc_errors = stats.rx_fcs_err;
4637 ns->rx_frame_errors = stats.rx_symbol_err;
4638 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4639 stats.rx_ovflow2 + stats.rx_ovflow3 +
4640 stats.rx_trunc0 + stats.rx_trunc1 +
4641 stats.rx_trunc2 + stats.rx_trunc3;
4642 ns->rx_missed_errors = 0;
4643
4644 /* detailed tx_errors */
4645 ns->tx_aborted_errors = 0;
4646 ns->tx_carrier_errors = 0;
4647 ns->tx_fifo_errors = 0;
4648 ns->tx_heartbeat_errors = 0;
4649 ns->tx_window_errors = 0;
4650
4651 ns->tx_errors = stats.tx_error_frames;
4652 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4653 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4654 return ns;
4655}
4656
4657static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4658{
060e0c75 4659 unsigned int mbox;
b8ff05a9
DM
4660 int ret = 0, prtad, devad;
4661 struct port_info *pi = netdev_priv(dev);
4662 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4663
4664 switch (cmd) {
4665 case SIOCGMIIPHY:
4666 if (pi->mdio_addr < 0)
4667 return -EOPNOTSUPP;
4668 data->phy_id = pi->mdio_addr;
4669 break;
4670 case SIOCGMIIREG:
4671 case SIOCSMIIREG:
4672 if (mdio_phy_id_is_c45(data->phy_id)) {
4673 prtad = mdio_phy_id_prtad(data->phy_id);
4674 devad = mdio_phy_id_devad(data->phy_id);
4675 } else if (data->phy_id < 32) {
4676 prtad = data->phy_id;
4677 devad = 0;
4678 data->reg_num &= 0x1f;
4679 } else
4680 return -EINVAL;
4681
060e0c75 4682 mbox = pi->adapter->fn;
b8ff05a9 4683 if (cmd == SIOCGMIIREG)
060e0c75 4684 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4685 data->reg_num, &data->val_out);
4686 else
060e0c75 4687 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4688 data->reg_num, data->val_in);
4689 break;
4690 default:
4691 return -EOPNOTSUPP;
4692 }
4693 return ret;
4694}
4695
4696static void cxgb_set_rxmode(struct net_device *dev)
4697{
4698 /* unfortunately we can't return errors to the stack */
4699 set_rxmode(dev, -1, false);
4700}
4701
4702static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4703{
4704 int ret;
4705 struct port_info *pi = netdev_priv(dev);
4706
4707 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4708 return -EINVAL;
060e0c75
DM
4709 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4710 -1, -1, -1, true);
b8ff05a9
DM
4711 if (!ret)
4712 dev->mtu = new_mtu;
4713 return ret;
4714}
4715
4716static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4717{
4718 int ret;
4719 struct sockaddr *addr = p;
4720 struct port_info *pi = netdev_priv(dev);
4721
4722 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 4723 return -EADDRNOTAVAIL;
b8ff05a9 4724
060e0c75
DM
4725 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4726 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
4727 if (ret < 0)
4728 return ret;
4729
4730 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4731 pi->xact_addr_filt = ret;
4732 return 0;
4733}
4734
b8ff05a9
DM
4735#ifdef CONFIG_NET_POLL_CONTROLLER
4736static void cxgb_netpoll(struct net_device *dev)
4737{
4738 struct port_info *pi = netdev_priv(dev);
4739 struct adapter *adap = pi->adapter;
4740
4741 if (adap->flags & USING_MSIX) {
4742 int i;
4743 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4744
4745 for (i = pi->nqsets; i; i--, rx++)
4746 t4_sge_intr_msix(0, &rx->rspq);
4747 } else
4748 t4_intr_handler(adap)(0, adap);
4749}
4750#endif
4751
4752static const struct net_device_ops cxgb4_netdev_ops = {
4753 .ndo_open = cxgb_open,
4754 .ndo_stop = cxgb_close,
4755 .ndo_start_xmit = t4_eth_xmit,
688848b1 4756 .ndo_select_queue = cxgb_select_queue,
9be793bf 4757 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
4758 .ndo_set_rx_mode = cxgb_set_rxmode,
4759 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 4760 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
4761 .ndo_validate_addr = eth_validate_addr,
4762 .ndo_do_ioctl = cxgb_ioctl,
4763 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
4764#ifdef CONFIG_NET_POLL_CONTROLLER
4765 .ndo_poll_controller = cxgb_netpoll,
4766#endif
4767};
4768
4769void t4_fatal_err(struct adapter *adap)
4770{
4771 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4772 t4_intr_disable(adap);
4773 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4774}
4775
4776static void setup_memwin(struct adapter *adap)
4777{
19dd37ba 4778 u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base;
b8ff05a9
DM
4779
4780 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */
d14807dd 4781 if (is_t4(adap->params.chip)) {
19dd37ba
SR
4782 mem_win0_base = bar0 + MEMWIN0_BASE;
4783 mem_win1_base = bar0 + MEMWIN1_BASE;
4784 mem_win2_base = bar0 + MEMWIN2_BASE;
4785 } else {
4786 /* For T5, only relative offset inside the PCIe BAR is passed */
4787 mem_win0_base = MEMWIN0_BASE;
4788 mem_win1_base = MEMWIN1_BASE_T5;
4789 mem_win2_base = MEMWIN2_BASE_T5;
4790 }
b8ff05a9 4791 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
19dd37ba 4792 mem_win0_base | BIR(0) |
b8ff05a9
DM
4793 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4794 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
19dd37ba 4795 mem_win1_base | BIR(0) |
b8ff05a9
DM
4796 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4797 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
19dd37ba 4798 mem_win2_base | BIR(0) |
b8ff05a9 4799 WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
636f9d37
VP
4800}
4801
4802static void setup_memwin_rdma(struct adapter *adap)
4803{
1ae970e0
DM
4804 if (adap->vres.ocq.size) {
4805 unsigned int start, sz_kb;
4806
4807 start = pci_resource_start(adap->pdev, 2) +
4808 OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4809 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4810 t4_write_reg(adap,
4811 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4812 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4813 t4_write_reg(adap,
4814 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4815 adap->vres.ocq.start);
4816 t4_read_reg(adap,
4817 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4818 }
b8ff05a9
DM
4819}
4820
02b5fb8e
DM
4821static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4822{
4823 u32 v;
4824 int ret;
4825
4826 /* get device capabilities */
4827 memset(c, 0, sizeof(*c));
4828 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4829 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 4830 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
060e0c75 4831 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
02b5fb8e
DM
4832 if (ret < 0)
4833 return ret;
4834
4835 /* select capabilities we'll be using */
4836 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4837 if (!vf_acls)
4838 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4839 else
4840 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4841 } else if (vf_acls) {
4842 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4843 return ret;
4844 }
4845 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4846 FW_CMD_REQUEST | FW_CMD_WRITE);
060e0c75 4847 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
02b5fb8e
DM
4848 if (ret < 0)
4849 return ret;
4850
060e0c75 4851 ret = t4_config_glbl_rss(adap, adap->fn,
02b5fb8e
DM
4852 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4853 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4854 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4855 if (ret < 0)
4856 return ret;
4857
060e0c75
DM
4858 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4859 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
02b5fb8e
DM
4860 if (ret < 0)
4861 return ret;
4862
4863 t4_sge_init(adap);
4864
02b5fb8e
DM
4865 /* tweak some settings */
4866 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4867 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4868 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4869 v = t4_read_reg(adap, TP_PIO_DATA);
4870 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
060e0c75 4871
dca4faeb
VP
4872 /* first 4 Tx modulation queues point to consecutive Tx channels */
4873 adap->params.tp.tx_modq_map = 0xE4;
4874 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4875 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4876
4877 /* associate each Tx modulation queue with consecutive Tx channels */
4878 v = 0x84218421;
4879 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4880 &v, 1, A_TP_TX_SCHED_HDR);
4881 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4882 &v, 1, A_TP_TX_SCHED_FIFO);
4883 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4884 &v, 1, A_TP_TX_SCHED_PCMD);
4885
4886#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4887 if (is_offload(adap)) {
4888 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4889 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4890 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4891 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4892 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4893 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4894 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4895 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4896 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4897 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4898 }
4899
060e0c75
DM
4900 /* get basic stuff going */
4901 return t4_early_init(adap, adap->fn);
02b5fb8e
DM
4902}
4903
b8ff05a9
DM
4904/*
4905 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4906 */
4907#define MAX_ATIDS 8192U
4908
636f9d37
VP
4909/*
4910 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4911 *
4912 * If the firmware we're dealing with has Configuration File support, then
4913 * we use that to perform all configuration
4914 */
4915
4916/*
4917 * Tweak configuration based on module parameters, etc. Most of these have
4918 * defaults assigned to them by Firmware Configuration Files (if we're using
4919 * them) but need to be explicitly set if we're using hard-coded
4920 * initialization. But even in the case of using Firmware Configuration
4921 * Files, we'd like to expose the ability to change these via module
4922 * parameters so these are essentially common tweaks/settings for
4923 * Configuration Files and hard-coded initialization ...
4924 */
4925static int adap_init0_tweaks(struct adapter *adapter)
4926{
4927 /*
4928 * Fix up various Host-Dependent Parameters like Page Size, Cache
4929 * Line Size, etc. The firmware default is for a 4KB Page Size and
4930 * 64B Cache Line Size ...
4931 */
4932 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4933
4934 /*
4935 * Process module parameters which affect early initialization.
4936 */
4937 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4938 dev_err(&adapter->pdev->dev,
4939 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4940 rx_dma_offset);
4941 rx_dma_offset = 2;
4942 }
4943 t4_set_reg_field(adapter, SGE_CONTROL,
4944 PKTSHIFT_MASK,
4945 PKTSHIFT(rx_dma_offset));
4946
4947 /*
4948 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4949 * adds the pseudo header itself.
4950 */
4951 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4952 CSUM_HAS_PSEUDO_HDR, 0);
4953
4954 return 0;
4955}
4956
4957/*
4958 * Attempt to initialize the adapter via a Firmware Configuration File.
4959 */
4960static int adap_init0_config(struct adapter *adapter, int reset)
4961{
4962 struct fw_caps_config_cmd caps_cmd;
4963 const struct firmware *cf;
4964 unsigned long mtype = 0, maddr = 0;
4965 u32 finiver, finicsum, cfcsum;
16e47624
HS
4966 int ret;
4967 int config_issued = 0;
0a57a536 4968 char *fw_config_file, fw_config_file_path[256];
16e47624 4969 char *config_name = NULL;
636f9d37
VP
4970
4971 /*
4972 * Reset device if necessary.
4973 */
4974 if (reset) {
4975 ret = t4_fw_reset(adapter, adapter->mbox,
4976 PIORSTMODE | PIORST);
4977 if (ret < 0)
4978 goto bye;
4979 }
4980
4981 /*
4982 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4983 * then use that. Otherwise, use the configuration file stored
4984 * in the adapter flash ...
4985 */
d14807dd 4986 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 4987 case CHELSIO_T4:
16e47624 4988 fw_config_file = FW4_CFNAME;
0a57a536
SR
4989 break;
4990 case CHELSIO_T5:
4991 fw_config_file = FW5_CFNAME;
4992 break;
4993 default:
4994 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4995 adapter->pdev->device);
4996 ret = -EINVAL;
4997 goto bye;
4998 }
4999
5000 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 5001 if (ret < 0) {
16e47624 5002 config_name = "On FLASH";
636f9d37
VP
5003 mtype = FW_MEMTYPE_CF_FLASH;
5004 maddr = t4_flash_cfg_addr(adapter);
5005 } else {
5006 u32 params[7], val[7];
5007
16e47624
HS
5008 sprintf(fw_config_file_path,
5009 "/lib/firmware/%s", fw_config_file);
5010 config_name = fw_config_file_path;
5011
636f9d37
VP
5012 if (cf->size >= FLASH_CFG_MAX_SIZE)
5013 ret = -ENOMEM;
5014 else {
5015 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5016 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5017 ret = t4_query_params(adapter, adapter->mbox,
5018 adapter->fn, 0, 1, params, val);
5019 if (ret == 0) {
5020 /*
5021 * For t4_memory_write() below addresses and
5022 * sizes have to be in terms of multiples of 4
5023 * bytes. So, if the Configuration File isn't
5024 * a multiple of 4 bytes in length we'll have
5025 * to write that out separately since we can't
5026 * guarantee that the bytes following the
5027 * residual byte in the buffer returned by
5028 * request_firmware() are zeroed out ...
5029 */
5030 size_t resid = cf->size & 0x3;
5031 size_t size = cf->size & ~0x3;
5032 __be32 *data = (__be32 *)cf->data;
5033
5034 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5035 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5036
5037 ret = t4_memory_write(adapter, mtype, maddr,
5038 size, data);
5039 if (ret == 0 && resid != 0) {
5040 union {
5041 __be32 word;
5042 char buf[4];
5043 } last;
5044 int i;
5045
5046 last.word = data[size >> 2];
5047 for (i = resid; i < 4; i++)
5048 last.buf[i] = 0;
5049 ret = t4_memory_write(adapter, mtype,
5050 maddr + size,
5051 4, &last.word);
5052 }
5053 }
5054 }
5055
5056 release_firmware(cf);
5057 if (ret)
5058 goto bye;
5059 }
5060
5061 /*
5062 * Issue a Capability Configuration command to the firmware to get it
5063 * to parse the Configuration File. We don't use t4_fw_config_file()
5064 * because we want the ability to modify various features after we've
5065 * processed the configuration file ...
5066 */
5067 memset(&caps_cmd, 0, sizeof(caps_cmd));
5068 caps_cmd.op_to_write =
5069 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5070 FW_CMD_REQUEST |
5071 FW_CMD_READ);
ce91a923 5072 caps_cmd.cfvalid_to_len16 =
636f9d37
VP
5073 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5074 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5075 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5076 FW_LEN16(caps_cmd));
5077 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5078 &caps_cmd);
16e47624
HS
5079
5080 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5081 * Configuration File in FLASH), our last gasp effort is to use the
5082 * Firmware Configuration File which is embedded in the firmware. A
5083 * very few early versions of the firmware didn't have one embedded
5084 * but we can ignore those.
5085 */
5086 if (ret == -ENOENT) {
5087 memset(&caps_cmd, 0, sizeof(caps_cmd));
5088 caps_cmd.op_to_write =
5089 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5090 FW_CMD_REQUEST |
5091 FW_CMD_READ);
5092 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5093 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5094 sizeof(caps_cmd), &caps_cmd);
5095 config_name = "Firmware Default";
5096 }
5097
5098 config_issued = 1;
636f9d37
VP
5099 if (ret < 0)
5100 goto bye;
5101
5102 finiver = ntohl(caps_cmd.finiver);
5103 finicsum = ntohl(caps_cmd.finicsum);
5104 cfcsum = ntohl(caps_cmd.cfcsum);
5105 if (finicsum != cfcsum)
5106 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5107 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5108 finicsum, cfcsum);
5109
636f9d37
VP
5110 /*
5111 * And now tell the firmware to use the configuration we just loaded.
5112 */
5113 caps_cmd.op_to_write =
5114 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5115 FW_CMD_REQUEST |
5116 FW_CMD_WRITE);
ce91a923 5117 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5118 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5119 NULL);
5120 if (ret < 0)
5121 goto bye;
5122
5123 /*
5124 * Tweak configuration based on system architecture, module
5125 * parameters, etc.
5126 */
5127 ret = adap_init0_tweaks(adapter);
5128 if (ret < 0)
5129 goto bye;
5130
5131 /*
5132 * And finally tell the firmware to initialize itself using the
5133 * parameters from the Configuration File.
5134 */
5135 ret = t4_fw_initialize(adapter, adapter->mbox);
5136 if (ret < 0)
5137 goto bye;
5138
5139 /*
5140 * Return successfully and note that we're operating with parameters
5141 * not supplied by the driver, rather than from hard-wired
5142 * initialization constants burried in the driver.
5143 */
5144 adapter->flags |= USING_SOFT_PARAMS;
5145 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
5146 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5147 config_name, finiver, cfcsum);
636f9d37
VP
5148 return 0;
5149
5150 /*
5151 * Something bad happened. Return the error ... (If the "error"
5152 * is that there's no Configuration File on the adapter we don't
5153 * want to issue a warning since this is fairly common.)
5154 */
5155bye:
16e47624
HS
5156 if (config_issued && ret != -ENOENT)
5157 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5158 config_name, -ret);
636f9d37
VP
5159 return ret;
5160}
5161
13ee15d3
VP
5162/*
5163 * Attempt to initialize the adapter via hard-coded, driver supplied
5164 * parameters ...
5165 */
5166static int adap_init0_no_config(struct adapter *adapter, int reset)
5167{
5168 struct sge *s = &adapter->sge;
5169 struct fw_caps_config_cmd caps_cmd;
5170 u32 v;
5171 int i, ret;
5172
5173 /*
5174 * Reset device if necessary
5175 */
5176 if (reset) {
5177 ret = t4_fw_reset(adapter, adapter->mbox,
5178 PIORSTMODE | PIORST);
5179 if (ret < 0)
5180 goto bye;
5181 }
5182
5183 /*
5184 * Get device capabilities and select which we'll be using.
5185 */
5186 memset(&caps_cmd, 0, sizeof(caps_cmd));
5187 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5188 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5189 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
13ee15d3
VP
5190 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5191 &caps_cmd);
5192 if (ret < 0)
5193 goto bye;
5194
13ee15d3
VP
5195 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5196 if (!vf_acls)
5197 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5198 else
5199 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5200 } else if (vf_acls) {
5201 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5202 goto bye;
5203 }
5204 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5205 FW_CMD_REQUEST | FW_CMD_WRITE);
5206 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5207 NULL);
5208 if (ret < 0)
5209 goto bye;
5210
5211 /*
5212 * Tweak configuration based on system architecture, module
5213 * parameters, etc.
5214 */
5215 ret = adap_init0_tweaks(adapter);
5216 if (ret < 0)
5217 goto bye;
5218
5219 /*
5220 * Select RSS Global Mode we want to use. We use "Basic Virtual"
5221 * mode which maps each Virtual Interface to its own section of
5222 * the RSS Table and we turn on all map and hash enables ...
5223 */
5224 adapter->flags |= RSS_TNLALLLOOKUP;
5225 ret = t4_config_glbl_rss(adapter, adapter->mbox,
5226 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5227 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5228 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5229 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5230 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5231 if (ret < 0)
5232 goto bye;
5233
5234 /*
5235 * Set up our own fundamental resource provisioning ...
5236 */
5237 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5238 PFRES_NEQ, PFRES_NETHCTRL,
5239 PFRES_NIQFLINT, PFRES_NIQ,
5240 PFRES_TC, PFRES_NVI,
5241 FW_PFVF_CMD_CMASK_MASK,
5242 pfvfres_pmask(adapter, adapter->fn, 0),
5243 PFRES_NEXACTF,
5244 PFRES_R_CAPS, PFRES_WX_CAPS);
5245 if (ret < 0)
5246 goto bye;
5247
5248 /*
5249 * Perform low level SGE initialization. We need to do this before we
5250 * send the firmware the INITIALIZE command because that will cause
5251 * any other PF Drivers which are waiting for the Master
5252 * Initialization to proceed forward.
5253 */
5254 for (i = 0; i < SGE_NTIMERS - 1; i++)
5255 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5256 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5257 s->counter_val[0] = 1;
5258 for (i = 1; i < SGE_NCOUNTERS; i++)
5259 s->counter_val[i] = min(intr_cnt[i - 1],
5260 THRESHOLD_0_GET(THRESHOLD_0_MASK));
5261 t4_sge_init(adapter);
5262
5263#ifdef CONFIG_PCI_IOV
5264 /*
5265 * Provision resource limits for Virtual Functions. We currently
5266 * grant them all the same static resource limits except for the Port
5267 * Access Rights Mask which we're assigning based on the PF. All of
5268 * the static provisioning stuff for both the PF and VF really needs
5269 * to be managed in a persistent manner for each device which the
5270 * firmware controls.
5271 */
5272 {
5273 int pf, vf;
5274
7d6727cf 5275 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
13ee15d3
VP
5276 if (num_vf[pf] <= 0)
5277 continue;
5278
5279 /* VF numbering starts at 1! */
5280 for (vf = 1; vf <= num_vf[pf]; vf++) {
5281 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5282 pf, vf,
5283 VFRES_NEQ, VFRES_NETHCTRL,
5284 VFRES_NIQFLINT, VFRES_NIQ,
5285 VFRES_TC, VFRES_NVI,
1f1e4958 5286 FW_PFVF_CMD_CMASK_MASK,
13ee15d3
VP
5287 pfvfres_pmask(
5288 adapter, pf, vf),
5289 VFRES_NEXACTF,
5290 VFRES_R_CAPS, VFRES_WX_CAPS);
5291 if (ret < 0)
5292 dev_warn(adapter->pdev_dev,
5293 "failed to "\
5294 "provision pf/vf=%d/%d; "
5295 "err=%d\n", pf, vf, ret);
5296 }
5297 }
5298 }
5299#endif
5300
5301 /*
5302 * Set up the default filter mode. Later we'll want to implement this
5303 * via a firmware command, etc. ... This needs to be done before the
5304 * firmare initialization command ... If the selected set of fields
5305 * isn't equal to the default value, we'll need to make sure that the
5306 * field selections will fit in the 36-bit budget.
5307 */
5308 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
404d9e3f 5309 int j, bits = 0;
13ee15d3 5310
404d9e3f
VP
5311 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5312 switch (tp_vlan_pri_map & (1 << j)) {
13ee15d3
VP
5313 case 0:
5314 /* compressed filter field not enabled */
5315 break;
5316 case FCOE_MASK:
5317 bits += 1;
5318 break;
5319 case PORT_MASK:
5320 bits += 3;
5321 break;
5322 case VNIC_ID_MASK:
5323 bits += 17;
5324 break;
5325 case VLAN_MASK:
5326 bits += 17;
5327 break;
5328 case TOS_MASK:
5329 bits += 8;
5330 break;
5331 case PROTOCOL_MASK:
5332 bits += 8;
5333 break;
5334 case ETHERTYPE_MASK:
5335 bits += 16;
5336 break;
5337 case MACMATCH_MASK:
5338 bits += 9;
5339 break;
5340 case MPSHITTYPE_MASK:
5341 bits += 3;
5342 break;
5343 case FRAGMENTATION_MASK:
5344 bits += 1;
5345 break;
5346 }
5347
5348 if (bits > 36) {
5349 dev_err(adapter->pdev_dev,
5350 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5351 " using %#x\n", tp_vlan_pri_map, bits,
5352 TP_VLAN_PRI_MAP_DEFAULT);
5353 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5354 }
5355 }
5356 v = tp_vlan_pri_map;
5357 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5358 &v, 1, TP_VLAN_PRI_MAP);
5359
5360 /*
5361 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5362 * to support any of the compressed filter fields above. Newer
5363 * versions of the firmware do this automatically but it doesn't hurt
5364 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5365 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5366 * since the firmware automatically turns this on and off when we have
5367 * a non-zero number of filters active (since it does have a
5368 * performance impact).
5369 */
5370 if (tp_vlan_pri_map)
5371 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5372 FIVETUPLELOOKUP_MASK,
5373 FIVETUPLELOOKUP_MASK);
5374
5375 /*
5376 * Tweak some settings.
5377 */
5378 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5379 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5380 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5381 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5382
5383 /*
5384 * Get basic stuff going by issuing the Firmware Initialize command.
5385 * Note that this _must_ be after all PFVF commands ...
5386 */
5387 ret = t4_fw_initialize(adapter, adapter->mbox);
5388 if (ret < 0)
5389 goto bye;
5390
5391 /*
5392 * Return successfully!
5393 */
5394 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5395 "driver parameters\n");
5396 return 0;
5397
5398 /*
5399 * Something bad happened. Return the error ...
5400 */
5401bye:
5402 return ret;
5403}
5404
16e47624
HS
5405static struct fw_info fw_info_array[] = {
5406 {
5407 .chip = CHELSIO_T4,
5408 .fs_name = FW4_CFNAME,
5409 .fw_mod_name = FW4_FNAME,
5410 .fw_hdr = {
5411 .chip = FW_HDR_CHIP_T4,
5412 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5413 .intfver_nic = FW_INTFVER(T4, NIC),
5414 .intfver_vnic = FW_INTFVER(T4, VNIC),
5415 .intfver_ri = FW_INTFVER(T4, RI),
5416 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5417 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5418 },
5419 }, {
5420 .chip = CHELSIO_T5,
5421 .fs_name = FW5_CFNAME,
5422 .fw_mod_name = FW5_FNAME,
5423 .fw_hdr = {
5424 .chip = FW_HDR_CHIP_T5,
5425 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5426 .intfver_nic = FW_INTFVER(T5, NIC),
5427 .intfver_vnic = FW_INTFVER(T5, VNIC),
5428 .intfver_ri = FW_INTFVER(T5, RI),
5429 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5430 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5431 },
5432 }
5433};
5434
5435static struct fw_info *find_fw_info(int chip)
5436{
5437 int i;
5438
5439 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5440 if (fw_info_array[i].chip == chip)
5441 return &fw_info_array[i];
5442 }
5443 return NULL;
5444}
5445
b8ff05a9
DM
5446/*
5447 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5448 */
5449static int adap_init0(struct adapter *adap)
5450{
5451 int ret;
5452 u32 v, port_vec;
5453 enum dev_state state;
5454 u32 params[7], val[7];
9a4da2cd 5455 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 5456 int reset = 1;
b8ff05a9 5457
636f9d37
VP
5458 /*
5459 * Contact FW, advertising Master capability (and potentially forcing
5460 * ourselves as the Master PF if our module parameter force_init is
5461 * set).
5462 */
5463 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5464 force_init ? MASTER_MUST : MASTER_MAY,
5465 &state);
b8ff05a9
DM
5466 if (ret < 0) {
5467 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5468 ret);
5469 return ret;
5470 }
636f9d37
VP
5471 if (ret == adap->mbox)
5472 adap->flags |= MASTER_PF;
5473 if (force_init && state == DEV_STATE_INIT)
5474 state = DEV_STATE_UNINIT;
b8ff05a9 5475
636f9d37
VP
5476 /*
5477 * If we're the Master PF Driver and the device is uninitialized,
5478 * then let's consider upgrading the firmware ... (We always want
5479 * to check the firmware version number in order to A. get it for
5480 * later reporting and B. to warn if the currently loaded firmware
5481 * is excessively mismatched relative to the driver.)
5482 */
16e47624
HS
5483 t4_get_fw_version(adap, &adap->params.fw_vers);
5484 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 5485 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
5486 struct fw_info *fw_info;
5487 struct fw_hdr *card_fw;
5488 const struct firmware *fw;
5489 const u8 *fw_data = NULL;
5490 unsigned int fw_size = 0;
5491
5492 /* This is the firmware whose headers the driver was compiled
5493 * against
5494 */
5495 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5496 if (fw_info == NULL) {
5497 dev_err(adap->pdev_dev,
5498 "unable to get firmware info for chip %d.\n",
5499 CHELSIO_CHIP_VERSION(adap->params.chip));
5500 return -EINVAL;
636f9d37 5501 }
16e47624
HS
5502
5503 /* allocate memory to read the header of the firmware on the
5504 * card
5505 */
5506 card_fw = t4_alloc_mem(sizeof(*card_fw));
5507
5508 /* Get FW from from /lib/firmware/ */
5509 ret = request_firmware(&fw, fw_info->fw_mod_name,
5510 adap->pdev_dev);
5511 if (ret < 0) {
5512 dev_err(adap->pdev_dev,
5513 "unable to load firmware image %s, error %d\n",
5514 fw_info->fw_mod_name, ret);
5515 } else {
5516 fw_data = fw->data;
5517 fw_size = fw->size;
5518 }
5519
5520 /* upgrade FW logic */
5521 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5522 state, &reset);
5523
5524 /* Cleaning up */
5525 if (fw != NULL)
5526 release_firmware(fw);
5527 t4_free_mem(card_fw);
5528
636f9d37 5529 if (ret < 0)
16e47624 5530 goto bye;
636f9d37 5531 }
b8ff05a9 5532
636f9d37
VP
5533 /*
5534 * Grab VPD parameters. This should be done after we establish a
5535 * connection to the firmware since some of the VPD parameters
5536 * (notably the Core Clock frequency) are retrieved via requests to
5537 * the firmware. On the other hand, we need these fairly early on
5538 * so we do this right after getting ahold of the firmware.
5539 */
5540 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
5541 if (ret < 0)
5542 goto bye;
a0881cab 5543
636f9d37 5544 /*
13ee15d3
VP
5545 * Find out what ports are available to us. Note that we need to do
5546 * this before calling adap_init0_no_config() since it needs nports
5547 * and portvec ...
636f9d37
VP
5548 */
5549 v =
5550 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5551 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5552 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
a0881cab
DM
5553 if (ret < 0)
5554 goto bye;
5555
636f9d37
VP
5556 adap->params.nports = hweight32(port_vec);
5557 adap->params.portvec = port_vec;
5558
5559 /*
5560 * If the firmware is initialized already (and we're not forcing a
5561 * master initialization), note that we're living with existing
5562 * adapter parameters. Otherwise, it's time to try initializing the
5563 * adapter ...
5564 */
5565 if (state == DEV_STATE_INIT) {
5566 dev_info(adap->pdev_dev, "Coming up as %s: "\
5567 "Adapter already initialized\n",
5568 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5569 adap->flags |= USING_SOFT_PARAMS;
5570 } else {
5571 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5572 "Initializing adapter\n");
636f9d37
VP
5573
5574 /*
5575 * If the firmware doesn't support Configuration
5576 * Files warn user and exit,
5577 */
5578 if (ret < 0)
13ee15d3 5579 dev_warn(adap->pdev_dev, "Firmware doesn't support "
636f9d37 5580 "configuration file.\n");
13ee15d3
VP
5581 if (force_old_init)
5582 ret = adap_init0_no_config(adap, reset);
636f9d37
VP
5583 else {
5584 /*
13ee15d3
VP
5585 * Find out whether we're dealing with a version of
5586 * the firmware which has configuration file support.
636f9d37 5587 */
13ee15d3
VP
5588 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5589 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5590 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5591 params, val);
636f9d37 5592
13ee15d3
VP
5593 /*
5594 * If the firmware doesn't support Configuration
5595 * Files, use the old Driver-based, hard-wired
5596 * initialization. Otherwise, try using the
5597 * Configuration File support and fall back to the
5598 * Driver-based initialization if there's no
5599 * Configuration File found.
5600 */
5601 if (ret < 0)
5602 ret = adap_init0_no_config(adap, reset);
5603 else {
5604 /*
5605 * The firmware provides us with a memory
5606 * buffer where we can load a Configuration
5607 * File from the host if we want to override
5608 * the Configuration File in flash.
5609 */
5610
5611 ret = adap_init0_config(adap, reset);
5612 if (ret == -ENOENT) {
5613 dev_info(adap->pdev_dev,
5614 "No Configuration File present "
16e47624 5615 "on adapter. Using hard-wired "
13ee15d3
VP
5616 "configuration parameters.\n");
5617 ret = adap_init0_no_config(adap, reset);
5618 }
636f9d37
VP
5619 }
5620 }
5621 if (ret < 0) {
5622 dev_err(adap->pdev_dev,
5623 "could not initialize adapter, error %d\n",
5624 -ret);
5625 goto bye;
5626 }
5627 }
5628
5629 /*
5630 * If we're living with non-hard-coded parameters (either from a
5631 * Firmware Configuration File or values programmed by a different PF
5632 * Driver), give the SGE code a chance to pull in anything that it
5633 * needs ... Note that this must be called after we retrieve our VPD
5634 * parameters in order to know how to convert core ticks to seconds.
5635 */
5636 if (adap->flags & USING_SOFT_PARAMS) {
5637 ret = t4_sge_init(adap);
5638 if (ret < 0)
5639 goto bye;
5640 }
5641
9a4da2cd
VP
5642 if (is_bypass_device(adap->pdev->device))
5643 adap->params.bypass = 1;
5644
636f9d37
VP
5645 /*
5646 * Grab some of our basic fundamental operating parameters.
5647 */
5648#define FW_PARAM_DEV(param) \
5649 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5650 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5651
b8ff05a9 5652#define FW_PARAM_PFVF(param) \
636f9d37
VP
5653 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5654 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5655 FW_PARAMS_PARAM_Y(0) | \
5656 FW_PARAMS_PARAM_Z(0)
b8ff05a9 5657
636f9d37 5658 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
5659 params[1] = FW_PARAM_PFVF(L2T_START);
5660 params[2] = FW_PARAM_PFVF(L2T_END);
5661 params[3] = FW_PARAM_PFVF(FILTER_START);
5662 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 5663 params[5] = FW_PARAM_PFVF(IQFLINT_START);
636f9d37 5664 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
b8ff05a9
DM
5665 if (ret < 0)
5666 goto bye;
636f9d37
VP
5667 adap->sge.egr_start = val[0];
5668 adap->l2t_start = val[1];
5669 adap->l2t_end = val[2];
b8ff05a9
DM
5670 adap->tids.ftid_base = val[3];
5671 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 5672 adap->sge.ingr_start = val[5];
b8ff05a9 5673
636f9d37
VP
5674 /* query params related to active filter region */
5675 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5676 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5677 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5678 /* If Active filter size is set we enable establishing
5679 * offload connection through firmware work request
5680 */
5681 if ((val[0] != val[1]) && (ret >= 0)) {
5682 adap->flags |= FW_OFLD_CONN;
5683 adap->tids.aftid_base = val[0];
5684 adap->tids.aftid_end = val[1];
5685 }
5686
b407a4a9
VP
5687 /* If we're running on newer firmware, let it know that we're
5688 * prepared to deal with encapsulated CPL messages. Older
5689 * firmware won't understand this and we'll just get
5690 * unencapsulated messages ...
5691 */
5692 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5693 val[0] = 1;
5694 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5695
1ac0f095
KS
5696 /*
5697 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5698 * capability. Earlier versions of the firmware didn't have the
5699 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5700 * permission to use ULPTX MEMWRITE DSGL.
5701 */
5702 if (is_t4(adap->params.chip)) {
5703 adap->params.ulptx_memwrite_dsgl = false;
5704 } else {
5705 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5706 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5707 1, params, val);
5708 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5709 }
5710
636f9d37
VP
5711 /*
5712 * Get device capabilities so we can determine what resources we need
5713 * to manage.
5714 */
5715 memset(&caps_cmd, 0, sizeof(caps_cmd));
9a4da2cd 5716 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
13ee15d3 5717 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5718 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5719 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5720 &caps_cmd);
5721 if (ret < 0)
5722 goto bye;
5723
13ee15d3 5724 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
5725 /* query offload-related parameters */
5726 params[0] = FW_PARAM_DEV(NTID);
5727 params[1] = FW_PARAM_PFVF(SERVER_START);
5728 params[2] = FW_PARAM_PFVF(SERVER_END);
5729 params[3] = FW_PARAM_PFVF(TDDP_START);
5730 params[4] = FW_PARAM_PFVF(TDDP_END);
5731 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
636f9d37
VP
5732 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5733 params, val);
b8ff05a9
DM
5734 if (ret < 0)
5735 goto bye;
5736 adap->tids.ntids = val[0];
5737 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5738 adap->tids.stid_base = val[1];
5739 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37
VP
5740 /*
5741 * Setup server filter region. Divide the availble filter
5742 * region into two parts. Regular filters get 1/3rd and server
5743 * filters get 2/3rd part. This is only enabled if workarond
5744 * path is enabled.
5745 * 1. For regular filters.
5746 * 2. Server filter: This are special filters which are used
5747 * to redirect SYN packets to offload queue.
5748 */
5749 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5750 adap->tids.sftid_base = adap->tids.ftid_base +
5751 DIV_ROUND_UP(adap->tids.nftids, 3);
5752 adap->tids.nsftids = adap->tids.nftids -
5753 DIV_ROUND_UP(adap->tids.nftids, 3);
5754 adap->tids.nftids = adap->tids.sftid_base -
5755 adap->tids.ftid_base;
5756 }
b8ff05a9
DM
5757 adap->vres.ddp.start = val[3];
5758 adap->vres.ddp.size = val[4] - val[3] + 1;
5759 adap->params.ofldq_wr_cred = val[5];
636f9d37 5760
b8ff05a9
DM
5761 adap->params.offload = 1;
5762 }
636f9d37 5763 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
5764 params[0] = FW_PARAM_PFVF(STAG_START);
5765 params[1] = FW_PARAM_PFVF(STAG_END);
5766 params[2] = FW_PARAM_PFVF(RQ_START);
5767 params[3] = FW_PARAM_PFVF(RQ_END);
5768 params[4] = FW_PARAM_PFVF(PBL_START);
5769 params[5] = FW_PARAM_PFVF(PBL_END);
636f9d37
VP
5770 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5771 params, val);
b8ff05a9
DM
5772 if (ret < 0)
5773 goto bye;
5774 adap->vres.stag.start = val[0];
5775 adap->vres.stag.size = val[1] - val[0] + 1;
5776 adap->vres.rq.start = val[2];
5777 adap->vres.rq.size = val[3] - val[2] + 1;
5778 adap->vres.pbl.start = val[4];
5779 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
5780
5781 params[0] = FW_PARAM_PFVF(SQRQ_START);
5782 params[1] = FW_PARAM_PFVF(SQRQ_END);
5783 params[2] = FW_PARAM_PFVF(CQ_START);
5784 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
5785 params[4] = FW_PARAM_PFVF(OCQ_START);
5786 params[5] = FW_PARAM_PFVF(OCQ_END);
636f9d37 5787 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
a0881cab
DM
5788 if (ret < 0)
5789 goto bye;
5790 adap->vres.qp.start = val[0];
5791 adap->vres.qp.size = val[1] - val[0] + 1;
5792 adap->vres.cq.start = val[2];
5793 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
5794 adap->vres.ocq.start = val[4];
5795 adap->vres.ocq.size = val[5] - val[4] + 1;
b8ff05a9 5796 }
636f9d37 5797 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
5798 params[0] = FW_PARAM_PFVF(ISCSI_START);
5799 params[1] = FW_PARAM_PFVF(ISCSI_END);
636f9d37
VP
5800 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5801 params, val);
b8ff05a9
DM
5802 if (ret < 0)
5803 goto bye;
5804 adap->vres.iscsi.start = val[0];
5805 adap->vres.iscsi.size = val[1] - val[0] + 1;
5806 }
5807#undef FW_PARAM_PFVF
5808#undef FW_PARAM_DEV
5809
92e7ae71
HS
5810 /* The MTU/MSS Table is initialized by now, so load their values. If
5811 * we're initializing the adapter, then we'll make any modifications
5812 * we want to the MTU/MSS Table and also initialize the congestion
5813 * parameters.
636f9d37 5814 */
b8ff05a9 5815 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
5816 if (state != DEV_STATE_INIT) {
5817 int i;
5818
5819 /* The default MTU Table contains values 1492 and 1500.
5820 * However, for TCP, it's better to have two values which are
5821 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5822 * This allows us to have a TCP Data Payload which is a
5823 * multiple of 8 regardless of what combination of TCP Options
5824 * are in use (always a multiple of 4 bytes) which is
5825 * important for performance reasons. For instance, if no
5826 * options are in use, then we have a 20-byte IP header and a
5827 * 20-byte TCP header. In this case, a 1500-byte MSS would
5828 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5829 * which is not a multiple of 8. So using an MSS of 1488 in
5830 * this case results in a TCP Data Payload of 1448 bytes which
5831 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5832 * Stamps have been negotiated, then an MTU of 1500 bytes
5833 * results in a TCP Data Payload of 1448 bytes which, as
5834 * above, is a multiple of 8 bytes ...
5835 */
5836 for (i = 0; i < NMTUS; i++)
5837 if (adap->params.mtus[i] == 1492) {
5838 adap->params.mtus[i] = 1488;
5839 break;
5840 }
7ee9ff94 5841
92e7ae71
HS
5842 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5843 adap->params.b_wnd);
5844 }
dcf7b6f5 5845 t4_init_tp_params(adap);
636f9d37 5846 adap->flags |= FW_OK;
b8ff05a9
DM
5847 return 0;
5848
5849 /*
636f9d37
VP
5850 * Something bad happened. If a command timed out or failed with EIO
5851 * FW does not operate within its spec or something catastrophic
5852 * happened to HW/FW, stop issuing commands.
b8ff05a9 5853 */
636f9d37
VP
5854bye:
5855 if (ret != -ETIMEDOUT && ret != -EIO)
5856 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
5857 return ret;
5858}
5859
204dc3c0
DM
5860/* EEH callbacks */
5861
5862static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5863 pci_channel_state_t state)
5864{
5865 int i;
5866 struct adapter *adap = pci_get_drvdata(pdev);
5867
5868 if (!adap)
5869 goto out;
5870
5871 rtnl_lock();
5872 adap->flags &= ~FW_OK;
5873 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 5874 spin_lock(&adap->stats_lock);
204dc3c0
DM
5875 for_each_port(adap, i) {
5876 struct net_device *dev = adap->port[i];
5877
5878 netif_device_detach(dev);
5879 netif_carrier_off(dev);
5880 }
9fe6cb58 5881 spin_unlock(&adap->stats_lock);
204dc3c0
DM
5882 if (adap->flags & FULL_INIT_DONE)
5883 cxgb_down(adap);
5884 rtnl_unlock();
144be3d9
GS
5885 if ((adap->flags & DEV_ENABLED)) {
5886 pci_disable_device(pdev);
5887 adap->flags &= ~DEV_ENABLED;
5888 }
204dc3c0
DM
5889out: return state == pci_channel_io_perm_failure ?
5890 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5891}
5892
5893static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5894{
5895 int i, ret;
5896 struct fw_caps_config_cmd c;
5897 struct adapter *adap = pci_get_drvdata(pdev);
5898
5899 if (!adap) {
5900 pci_restore_state(pdev);
5901 pci_save_state(pdev);
5902 return PCI_ERS_RESULT_RECOVERED;
5903 }
5904
144be3d9
GS
5905 if (!(adap->flags & DEV_ENABLED)) {
5906 if (pci_enable_device(pdev)) {
5907 dev_err(&pdev->dev, "Cannot reenable PCI "
5908 "device after reset\n");
5909 return PCI_ERS_RESULT_DISCONNECT;
5910 }
5911 adap->flags |= DEV_ENABLED;
204dc3c0
DM
5912 }
5913
5914 pci_set_master(pdev);
5915 pci_restore_state(pdev);
5916 pci_save_state(pdev);
5917 pci_cleanup_aer_uncorrect_error_status(pdev);
5918
5919 if (t4_wait_dev_ready(adap) < 0)
5920 return PCI_ERS_RESULT_DISCONNECT;
777c2300 5921 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
204dc3c0
DM
5922 return PCI_ERS_RESULT_DISCONNECT;
5923 adap->flags |= FW_OK;
5924 if (adap_init1(adap, &c))
5925 return PCI_ERS_RESULT_DISCONNECT;
5926
5927 for_each_port(adap, i) {
5928 struct port_info *p = adap2pinfo(adap, i);
5929
060e0c75
DM
5930 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5931 NULL, NULL);
204dc3c0
DM
5932 if (ret < 0)
5933 return PCI_ERS_RESULT_DISCONNECT;
5934 p->viid = ret;
5935 p->xact_addr_filt = -1;
5936 }
5937
5938 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5939 adap->params.b_wnd);
1ae970e0 5940 setup_memwin(adap);
204dc3c0
DM
5941 if (cxgb_up(adap))
5942 return PCI_ERS_RESULT_DISCONNECT;
5943 return PCI_ERS_RESULT_RECOVERED;
5944}
5945
5946static void eeh_resume(struct pci_dev *pdev)
5947{
5948 int i;
5949 struct adapter *adap = pci_get_drvdata(pdev);
5950
5951 if (!adap)
5952 return;
5953
5954 rtnl_lock();
5955 for_each_port(adap, i) {
5956 struct net_device *dev = adap->port[i];
5957
5958 if (netif_running(dev)) {
5959 link_start(dev);
5960 cxgb_set_rxmode(dev);
5961 }
5962 netif_device_attach(dev);
5963 }
5964 rtnl_unlock();
5965}
5966
3646f0e5 5967static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
5968 .error_detected = eeh_err_detected,
5969 .slot_reset = eeh_slot_reset,
5970 .resume = eeh_resume,
5971};
5972
57d8b764 5973static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 5974{
57d8b764
KS
5975 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
5976 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
5977}
5978
c887ad0e
HS
5979static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
5980 unsigned int us, unsigned int cnt,
b8ff05a9
DM
5981 unsigned int size, unsigned int iqe_size)
5982{
c887ad0e
HS
5983 q->adap = adap;
5984 set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
5985 q->iqe_len = iqe_size;
5986 q->size = size;
5987}
5988
5989/*
5990 * Perform default configuration of DMA queues depending on the number and type
5991 * of ports we found and the number of available CPUs. Most settings can be
5992 * modified by the admin prior to actual use.
5993 */
91744948 5994static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
5995{
5996 struct sge *s = &adap->sge;
688848b1
AB
5997 int i, n10g = 0, qidx = 0;
5998#ifndef CONFIG_CHELSIO_T4_DCB
5999 int q10g = 0;
6000#endif
cf38be6d 6001 int ciq_size;
b8ff05a9
DM
6002
6003 for_each_port(adap, i)
57d8b764 6004 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
6005#ifdef CONFIG_CHELSIO_T4_DCB
6006 /* For Data Center Bridging support we need to be able to support up
6007 * to 8 Traffic Priorities; each of which will be assigned to its
6008 * own TX Queue in order to prevent Head-Of-Line Blocking.
6009 */
6010 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6011 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6012 MAX_ETH_QSETS, adap->params.nports * 8);
6013 BUG_ON(1);
6014 }
b8ff05a9 6015
688848b1
AB
6016 for_each_port(adap, i) {
6017 struct port_info *pi = adap2pinfo(adap, i);
6018
6019 pi->first_qset = qidx;
6020 pi->nqsets = 8;
6021 qidx += pi->nqsets;
6022 }
6023#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6024 /*
6025 * We default to 1 queue per non-10G port and up to # of cores queues
6026 * per 10G port.
6027 */
6028 if (n10g)
6029 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
6030 if (q10g > netif_get_num_default_rss_queues())
6031 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
6032
6033 for_each_port(adap, i) {
6034 struct port_info *pi = adap2pinfo(adap, i);
6035
6036 pi->first_qset = qidx;
57d8b764 6037 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
6038 qidx += pi->nqsets;
6039 }
688848b1 6040#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6041
6042 s->ethqsets = qidx;
6043 s->max_ethqsets = qidx; /* MSI-X may lower it later */
6044
6045 if (is_offload(adap)) {
6046 /*
6047 * For offload we use 1 queue/channel if all ports are up to 1G,
6048 * otherwise we divide all available queues amongst the channels
6049 * capped by the number of available cores.
6050 */
6051 if (n10g) {
6052 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6053 num_online_cpus());
6054 s->ofldqsets = roundup(i, adap->params.nports);
6055 } else
6056 s->ofldqsets = adap->params.nports;
6057 /* For RDMA one Rx queue per channel suffices */
6058 s->rdmaqs = adap->params.nports;
cf38be6d 6059 s->rdmaciqs = adap->params.nports;
b8ff05a9
DM
6060 }
6061
6062 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6063 struct sge_eth_rxq *r = &s->ethrxq[i];
6064
c887ad0e 6065 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
6066 r->fl.size = 72;
6067 }
6068
6069 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6070 s->ethtxq[i].q.size = 1024;
6071
6072 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6073 s->ctrlq[i].q.size = 512;
6074
6075 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6076 s->ofldtxq[i].q.size = 1024;
6077
6078 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6079 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6080
c887ad0e 6081 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
6082 r->rspq.uld = CXGB4_ULD_ISCSI;
6083 r->fl.size = 72;
6084 }
6085
6086 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6087 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6088
c887ad0e 6089 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
6090 r->rspq.uld = CXGB4_ULD_RDMA;
6091 r->fl.size = 72;
6092 }
6093
cf38be6d
HS
6094 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6095 if (ciq_size > SGE_MAX_IQ_SIZE) {
6096 CH_WARN(adap, "CIQ size too small for available IQs\n");
6097 ciq_size = SGE_MAX_IQ_SIZE;
6098 }
6099
6100 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6101 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6102
c887ad0e 6103 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
6104 r->rspq.uld = CXGB4_ULD_RDMA;
6105 }
6106
c887ad0e
HS
6107 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6108 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
6109}
6110
6111/*
6112 * Reduce the number of Ethernet queues across all ports to at most n.
6113 * n provides at least one queue per port.
6114 */
91744948 6115static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
6116{
6117 int i;
6118 struct port_info *pi;
6119
6120 while (n < adap->sge.ethqsets)
6121 for_each_port(adap, i) {
6122 pi = adap2pinfo(adap, i);
6123 if (pi->nqsets > 1) {
6124 pi->nqsets--;
6125 adap->sge.ethqsets--;
6126 if (adap->sge.ethqsets <= n)
6127 break;
6128 }
6129 }
6130
6131 n = 0;
6132 for_each_port(adap, i) {
6133 pi = adap2pinfo(adap, i);
6134 pi->first_qset = n;
6135 n += pi->nqsets;
6136 }
6137}
6138
6139/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6140#define EXTRA_VECS 2
6141
91744948 6142static int enable_msix(struct adapter *adap)
b8ff05a9
DM
6143{
6144 int ofld_need = 0;
c32ad224 6145 int i, want, need;
b8ff05a9
DM
6146 struct sge *s = &adap->sge;
6147 unsigned int nchan = adap->params.nports;
6148 struct msix_entry entries[MAX_INGQ + 1];
6149
6150 for (i = 0; i < ARRAY_SIZE(entries); ++i)
6151 entries[i].entry = i;
6152
6153 want = s->max_ethqsets + EXTRA_VECS;
6154 if (is_offload(adap)) {
cf38be6d 6155 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 6156 /* need nchan for each possible ULD */
cf38be6d 6157 ofld_need = 3 * nchan;
b8ff05a9 6158 }
688848b1
AB
6159#ifdef CONFIG_CHELSIO_T4_DCB
6160 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6161 * each port.
6162 */
6163 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6164#else
b8ff05a9 6165 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 6166#endif
c32ad224
AG
6167 want = pci_enable_msix_range(adap->pdev, entries, need, want);
6168 if (want < 0)
6169 return want;
b8ff05a9 6170
c32ad224
AG
6171 /*
6172 * Distribute available vectors to the various queue groups.
6173 * Every group gets its minimum requirement and NIC gets top
6174 * priority for leftovers.
6175 */
6176 i = want - EXTRA_VECS - ofld_need;
6177 if (i < s->max_ethqsets) {
6178 s->max_ethqsets = i;
6179 if (i < s->ethqsets)
6180 reduce_ethqs(adap, i);
6181 }
6182 if (is_offload(adap)) {
6183 i = want - EXTRA_VECS - s->max_ethqsets;
6184 i -= ofld_need - nchan;
6185 s->ofldqsets = (i / nchan) * nchan; /* round down */
6186 }
6187 for (i = 0; i < want; ++i)
6188 adap->msix_info[i].vec = entries[i].vector;
6189
6190 return 0;
b8ff05a9
DM
6191}
6192
6193#undef EXTRA_VECS
6194
91744948 6195static int init_rss(struct adapter *adap)
671b0060
DM
6196{
6197 unsigned int i, j;
6198
6199 for_each_port(adap, i) {
6200 struct port_info *pi = adap2pinfo(adap, i);
6201
6202 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6203 if (!pi->rss)
6204 return -ENOMEM;
6205 for (j = 0; j < pi->rss_size; j++)
278bc429 6206 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
671b0060
DM
6207 }
6208 return 0;
6209}
6210
91744948 6211static void print_port_info(const struct net_device *dev)
b8ff05a9 6212{
b8ff05a9 6213 char buf[80];
118969ed 6214 char *bufp = buf;
f1a051b9 6215 const char *spd = "";
118969ed
DM
6216 const struct port_info *pi = netdev_priv(dev);
6217 const struct adapter *adap = pi->adapter;
f1a051b9
DM
6218
6219 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6220 spd = " 2.5 GT/s";
6221 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6222 spd = " 5 GT/s";
d2e752db
RD
6223 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6224 spd = " 8 GT/s";
b8ff05a9 6225
118969ed
DM
6226 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6227 bufp += sprintf(bufp, "100/");
6228 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6229 bufp += sprintf(bufp, "1000/");
6230 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6231 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
6232 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6233 bufp += sprintf(bufp, "40G/");
118969ed
DM
6234 if (bufp != buf)
6235 --bufp;
72aca4bf 6236 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
6237
6238 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 6239 adap->params.vpd.id,
d14807dd 6240 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
6241 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6242 (adap->flags & USING_MSIX) ? " MSI-X" :
6243 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
6244 netdev_info(dev, "S/N: %s, P/N: %s\n",
6245 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
6246}
6247
91744948 6248static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 6249{
e5c8ae5f 6250 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
6251}
6252
06546391
DM
6253/*
6254 * Free the following resources:
6255 * - memory used for tables
6256 * - MSI/MSI-X
6257 * - net devices
6258 * - resources FW is holding for us
6259 */
6260static void free_some_resources(struct adapter *adapter)
6261{
6262 unsigned int i;
6263
6264 t4_free_mem(adapter->l2t);
6265 t4_free_mem(adapter->tids.tid_tab);
6266 disable_msi(adapter);
6267
6268 for_each_port(adapter, i)
671b0060
DM
6269 if (adapter->port[i]) {
6270 kfree(adap2pinfo(adapter, i)->rss);
06546391 6271 free_netdev(adapter->port[i]);
671b0060 6272 }
06546391 6273 if (adapter->flags & FW_OK)
060e0c75 6274 t4_fw_bye(adapter, adapter->fn);
06546391
DM
6275}
6276
2ed28baa 6277#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 6278#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 6279 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 6280#define SEGMENT_SIZE 128
b8ff05a9 6281
1dd06ae8 6282static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 6283{
22adfe0a 6284 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 6285 struct port_info *pi;
c8f44aff 6286 bool highdma = false;
b8ff05a9
DM
6287 struct adapter *adapter = NULL;
6288
6289 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6290
6291 err = pci_request_regions(pdev, KBUILD_MODNAME);
6292 if (err) {
6293 /* Just info, some other driver may have claimed the device. */
6294 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6295 return err;
6296 }
6297
b8ff05a9
DM
6298 err = pci_enable_device(pdev);
6299 if (err) {
6300 dev_err(&pdev->dev, "cannot enable PCI device\n");
6301 goto out_release_regions;
6302 }
6303
6304 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 6305 highdma = true;
b8ff05a9
DM
6306 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6307 if (err) {
6308 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6309 "coherent allocations\n");
6310 goto out_disable_device;
6311 }
6312 } else {
6313 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6314 if (err) {
6315 dev_err(&pdev->dev, "no usable DMA configuration\n");
6316 goto out_disable_device;
6317 }
6318 }
6319
6320 pci_enable_pcie_error_reporting(pdev);
ef306b50 6321 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
6322 pci_set_master(pdev);
6323 pci_save_state(pdev);
6324
6325 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6326 if (!adapter) {
6327 err = -ENOMEM;
6328 goto out_disable_device;
6329 }
6330
144be3d9
GS
6331 /* PCI device has been enabled */
6332 adapter->flags |= DEV_ENABLED;
6333
b8ff05a9
DM
6334 adapter->regs = pci_ioremap_bar(pdev, 0);
6335 if (!adapter->regs) {
6336 dev_err(&pdev->dev, "cannot map device registers\n");
6337 err = -ENOMEM;
6338 goto out_free_adapter;
6339 }
6340
35b1de55
HS
6341 /* We control everything through one PF */
6342 func = SOURCEPF_GET(readl(adapter->regs + PL_WHOAMI));
6343 if ((pdev->device == 0xa000 && func != 0) ||
6344 func != ent->driver_data) {
6345 pci_save_state(pdev); /* to restore SR-IOV later */
6346 err = 0;
6347 goto out_unmap_bar0;
6348 }
6349
b8ff05a9
DM
6350 adapter->pdev = pdev;
6351 adapter->pdev_dev = &pdev->dev;
3069ee9b 6352 adapter->mbox = func;
060e0c75 6353 adapter->fn = func;
b8ff05a9
DM
6354 adapter->msg_enable = dflt_msg_enable;
6355 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6356
6357 spin_lock_init(&adapter->stats_lock);
6358 spin_lock_init(&adapter->tid_release_lock);
6359
6360 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
6361 INIT_WORK(&adapter->db_full_task, process_db_full);
6362 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
6363
6364 err = t4_prep_adapter(adapter);
6365 if (err)
22adfe0a
SR
6366 goto out_unmap_bar0;
6367
d14807dd 6368 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
6369 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6370 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6371 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6372 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6373
6374 /* Each segment size is 128B. Write coalescing is enabled only
6375 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6376 * queue is less no of segments that can be accommodated in
6377 * a page size.
6378 */
6379 if (qpp > num_seg) {
6380 dev_err(&pdev->dev,
6381 "Incorrect number of egress queues per page\n");
6382 err = -EINVAL;
6383 goto out_unmap_bar0;
6384 }
6385 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6386 pci_resource_len(pdev, 2));
6387 if (!adapter->bar2) {
6388 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6389 err = -ENOMEM;
6390 goto out_unmap_bar0;
6391 }
6392 }
6393
636f9d37 6394 setup_memwin(adapter);
b8ff05a9 6395 err = adap_init0(adapter);
636f9d37 6396 setup_memwin_rdma(adapter);
b8ff05a9
DM
6397 if (err)
6398 goto out_unmap_bar;
6399
6400 for_each_port(adapter, i) {
6401 struct net_device *netdev;
6402
6403 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6404 MAX_ETH_QSETS);
6405 if (!netdev) {
6406 err = -ENOMEM;
6407 goto out_free_dev;
6408 }
6409
6410 SET_NETDEV_DEV(netdev, &pdev->dev);
6411
6412 adapter->port[i] = netdev;
6413 pi = netdev_priv(netdev);
6414 pi->adapter = adapter;
6415 pi->xact_addr_filt = -1;
b8ff05a9 6416 pi->port_id = i;
b8ff05a9
DM
6417 netdev->irq = pdev->irq;
6418
2ed28baa
MM
6419 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6420 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6421 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 6422 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
6423 if (highdma)
6424 netdev->hw_features |= NETIF_F_HIGHDMA;
6425 netdev->features |= netdev->hw_features;
b8ff05a9
DM
6426 netdev->vlan_features = netdev->features & VLAN_FEAT;
6427
01789349
JP
6428 netdev->priv_flags |= IFF_UNICAST_FLT;
6429
b8ff05a9 6430 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
6431#ifdef CONFIG_CHELSIO_T4_DCB
6432 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6433 cxgb4_dcb_state_init(netdev);
6434#endif
7ad24ea4 6435 netdev->ethtool_ops = &cxgb_ethtool_ops;
b8ff05a9
DM
6436 }
6437
6438 pci_set_drvdata(pdev, adapter);
6439
6440 if (adapter->flags & FW_OK) {
060e0c75 6441 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
6442 if (err)
6443 goto out_free_dev;
6444 }
6445
6446 /*
6447 * Configure queues and allocate tables now, they can be needed as
6448 * soon as the first register_netdev completes.
6449 */
6450 cfg_queues(adapter);
6451
6452 adapter->l2t = t4_init_l2t();
6453 if (!adapter->l2t) {
6454 /* We tolerate a lack of L2T, giving up some functionality */
6455 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6456 adapter->params.offload = 0;
6457 }
6458
6459 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6460 dev_warn(&pdev->dev, "could not allocate TID table, "
6461 "continuing\n");
6462 adapter->params.offload = 0;
6463 }
6464
f7cabcdd
DM
6465 /* See what interrupts we'll be using */
6466 if (msi > 1 && enable_msix(adapter) == 0)
6467 adapter->flags |= USING_MSIX;
6468 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6469 adapter->flags |= USING_MSI;
6470
671b0060
DM
6471 err = init_rss(adapter);
6472 if (err)
6473 goto out_free_dev;
6474
b8ff05a9
DM
6475 /*
6476 * The card is now ready to go. If any errors occur during device
6477 * registration we do not fail the whole card but rather proceed only
6478 * with the ports we manage to register successfully. However we must
6479 * register at least one net device.
6480 */
6481 for_each_port(adapter, i) {
a57cabe0
DM
6482 pi = adap2pinfo(adapter, i);
6483 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6484 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6485
b8ff05a9
DM
6486 err = register_netdev(adapter->port[i]);
6487 if (err)
b1a3c2b6 6488 break;
b1a3c2b6
DM
6489 adapter->chan_map[pi->tx_chan] = i;
6490 print_port_info(adapter->port[i]);
b8ff05a9 6491 }
b1a3c2b6 6492 if (i == 0) {
b8ff05a9
DM
6493 dev_err(&pdev->dev, "could not register any net devices\n");
6494 goto out_free_dev;
6495 }
b1a3c2b6
DM
6496 if (err) {
6497 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6498 err = 0;
6403eab1 6499 }
b8ff05a9
DM
6500
6501 if (cxgb4_debugfs_root) {
6502 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6503 cxgb4_debugfs_root);
6504 setup_debugfs(adapter);
6505 }
6506
6482aa7c
DLR
6507 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6508 pdev->needs_freset = 1;
6509
b8ff05a9
DM
6510 if (is_offload(adapter))
6511 attach_ulds(adapter);
6512
b8ff05a9 6513#ifdef CONFIG_PCI_IOV
7d6727cf 6514 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
6515 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6516 dev_info(&pdev->dev,
6517 "instantiated %u virtual functions\n",
6518 num_vf[func]);
6519#endif
6520 return 0;
6521
6522 out_free_dev:
06546391 6523 free_some_resources(adapter);
b8ff05a9 6524 out_unmap_bar:
d14807dd 6525 if (!is_t4(adapter->params.chip))
22adfe0a
SR
6526 iounmap(adapter->bar2);
6527 out_unmap_bar0:
b8ff05a9
DM
6528 iounmap(adapter->regs);
6529 out_free_adapter:
6530 kfree(adapter);
6531 out_disable_device:
6532 pci_disable_pcie_error_reporting(pdev);
6533 pci_disable_device(pdev);
6534 out_release_regions:
6535 pci_release_regions(pdev);
b8ff05a9
DM
6536 return err;
6537}
6538
91744948 6539static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
6540{
6541 struct adapter *adapter = pci_get_drvdata(pdev);
6542
636f9d37 6543#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
6544 pci_disable_sriov(pdev);
6545
636f9d37
VP
6546#endif
6547
b8ff05a9
DM
6548 if (adapter) {
6549 int i;
6550
6551 if (is_offload(adapter))
6552 detach_ulds(adapter);
6553
6554 for_each_port(adapter, i)
8f3a7676 6555 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
6556 unregister_netdev(adapter->port[i]);
6557
6558 if (adapter->debugfs_root)
6559 debugfs_remove_recursive(adapter->debugfs_root);
6560
f2b7e78d
VP
6561 /* If we allocated filters, free up state associated with any
6562 * valid filters ...
6563 */
6564 if (adapter->tids.ftid_tab) {
6565 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
6566 for (i = 0; i < (adapter->tids.nftids +
6567 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
6568 if (f->valid)
6569 clear_filter(adapter, f);
6570 }
6571
aaefae9b
DM
6572 if (adapter->flags & FULL_INIT_DONE)
6573 cxgb_down(adapter);
b8ff05a9 6574
06546391 6575 free_some_resources(adapter);
b8ff05a9 6576 iounmap(adapter->regs);
d14807dd 6577 if (!is_t4(adapter->params.chip))
22adfe0a 6578 iounmap(adapter->bar2);
b8ff05a9 6579 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
6580 if ((adapter->flags & DEV_ENABLED)) {
6581 pci_disable_device(pdev);
6582 adapter->flags &= ~DEV_ENABLED;
6583 }
b8ff05a9 6584 pci_release_regions(pdev);
ee9a33b2 6585 synchronize_rcu();
8b662fe7 6586 kfree(adapter);
a069ec91 6587 } else
b8ff05a9
DM
6588 pci_release_regions(pdev);
6589}
6590
6591static struct pci_driver cxgb4_driver = {
6592 .name = KBUILD_MODNAME,
6593 .id_table = cxgb4_pci_tbl,
6594 .probe = init_one,
91744948 6595 .remove = remove_one,
687d705c 6596 .shutdown = remove_one,
204dc3c0 6597 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
6598};
6599
6600static int __init cxgb4_init_module(void)
6601{
6602 int ret;
6603
3069ee9b
VP
6604 workq = create_singlethread_workqueue("cxgb4");
6605 if (!workq)
6606 return -ENOMEM;
6607
b8ff05a9
DM
6608 /* Debugfs support is optional, just warn if this fails */
6609 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6610 if (!cxgb4_debugfs_root)
428ac43f 6611 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
6612
6613 ret = pci_register_driver(&cxgb4_driver);
73a695f8 6614 if (ret < 0) {
b8ff05a9 6615 debugfs_remove(cxgb4_debugfs_root);
73a695f8
WY
6616 destroy_workqueue(workq);
6617 }
01bcca68
VP
6618
6619 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6620
b8ff05a9
DM
6621 return ret;
6622}
6623
6624static void __exit cxgb4_cleanup_module(void)
6625{
01bcca68 6626 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
b8ff05a9
DM
6627 pci_unregister_driver(&cxgb4_driver);
6628 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
3069ee9b
VP
6629 flush_workqueue(workq);
6630 destroy_workqueue(workq);
b8ff05a9
DM
6631}
6632
6633module_init(cxgb4_init_module);
6634module_exit(cxgb4_cleanup_module);