]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4: Allocate dynamic mem. for egress and ingress queue maps
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
01bcca68
VP
79#ifdef DRV_VERSION
80#undef DRV_VERSION
81#endif
3a7f8554
SR
82#define DRV_VERSION "2.0.0-ko"
83#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9 84
b8ff05a9
DM
85enum {
86 MAX_TXQ_ENTRIES = 16384,
87 MAX_CTRL_TXQ_ENTRIES = 1024,
88 MAX_RSPQ_ENTRIES = 16384,
89 MAX_RX_BUFFERS = 16384,
90 MIN_TXQ_ENTRIES = 32,
91 MIN_CTRL_TXQ_ENTRIES = 32,
92 MIN_RSPQ_ENTRIES = 128,
93 MIN_FL_ENTRIES = 16
94};
95
f2b7e78d
VP
96/* Host shadow copy of ingress filter entry. This is in host native format
97 * and doesn't match the ordering or bit order, etc. of the hardware of the
98 * firmware command. The use of bit-field structure elements is purely to
99 * remind ourselves of the field size limitations and save memory in the case
100 * where the filter table is large.
101 */
102struct filter_entry {
103 /* Administrative fields for filter.
104 */
105 u32 valid:1; /* filter allocated and valid */
106 u32 locked:1; /* filter is administratively locked */
107
108 u32 pending:1; /* filter action is pending firmware reply */
109 u32 smtidx:8; /* Source MAC Table index for smac */
110 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
111
112 /* The filter itself. Most of this is a straight copy of information
113 * provided by the extended ioctl(). Some fields are translated to
114 * internal forms -- for instance the Ingress Queue ID passed in from
115 * the ioctl() is translated into the Absolute Ingress Queue ID.
116 */
117 struct ch_filter_specification fs;
118};
119
b8ff05a9
DM
120#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
121 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
122 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
123
3fedeab1
HS
124/* Macros needed to support the PCI Device ID Table ...
125 */
126#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
127 static struct pci_device_id cxgb4_pci_tbl[] = {
128#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 129
3fedeab1
HS
130/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
131 * called for both.
132 */
133#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
134
135#define CH_PCI_ID_TABLE_ENTRY(devid) \
136 {PCI_VDEVICE(CHELSIO, (devid)), 4}
137
138#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
139 { 0, } \
140 }
141
142#include "t4_pci_id_tbl.h"
b8ff05a9 143
16e47624 144#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 145#define FW5_FNAME "cxgb4/t5fw.bin"
16e47624 146#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 147#define FW5_CFNAME "cxgb4/t5-config.txt"
b8ff05a9
DM
148
149MODULE_DESCRIPTION(DRV_DESC);
150MODULE_AUTHOR("Chelsio Communications");
151MODULE_LICENSE("Dual BSD/GPL");
152MODULE_VERSION(DRV_VERSION);
153MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 154MODULE_FIRMWARE(FW4_FNAME);
0a57a536 155MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 156
636f9d37
VP
157/*
158 * Normally we're willing to become the firmware's Master PF but will be happy
159 * if another PF has already become the Master and initialized the adapter.
160 * Setting "force_init" will cause this driver to forcibly establish itself as
161 * the Master PF and initialize the adapter.
162 */
163static uint force_init;
164
165module_param(force_init, uint, 0644);
166MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
167
13ee15d3
VP
168/*
169 * Normally if the firmware we connect to has Configuration File support, we
170 * use that and only fall back to the old Driver-based initialization if the
171 * Configuration File fails for some reason. If force_old_init is set, then
172 * we'll always use the old Driver-based initialization sequence.
173 */
174static uint force_old_init;
175
176module_param(force_old_init, uint, 0644);
06640310
HS
177MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
178 " parameter");
13ee15d3 179
b8ff05a9
DM
180static int dflt_msg_enable = DFLT_MSG_ENABLE;
181
182module_param(dflt_msg_enable, int, 0644);
183MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
184
185/*
186 * The driver uses the best interrupt scheme available on a platform in the
187 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
188 * of these schemes the driver may consider as follows:
189 *
190 * msi = 2: choose from among all three options
191 * msi = 1: only consider MSI and INTx interrupts
192 * msi = 0: force INTx interrupts
193 */
194static int msi = 2;
195
196module_param(msi, int, 0644);
197MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
198
199/*
200 * Queue interrupt hold-off timer values. Queues default to the first of these
201 * upon creation.
202 */
203static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
204
205module_param_array(intr_holdoff, uint, NULL, 0644);
206MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 207 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
208
209static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
210
211module_param_array(intr_cnt, uint, NULL, 0644);
212MODULE_PARM_DESC(intr_cnt,
06640310
HS
213 "thresholds 1..3 for queue interrupt packet counters, "
214 "deprecated parameter");
b8ff05a9 215
636f9d37
VP
216/*
217 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
218 * offset by 2 bytes in order to have the IP headers line up on 4-byte
219 * boundaries. This is a requirement for many architectures which will throw
220 * a machine check fault if an attempt is made to access one of the 4-byte IP
221 * header fields on a non-4-byte boundary. And it's a major performance issue
222 * even on some architectures which allow it like some implementations of the
223 * x86 ISA. However, some architectures don't mind this and for some very
224 * edge-case performance sensitive applications (like forwarding large volumes
225 * of small packets), setting this DMA offset to 0 will decrease the number of
226 * PCI-E Bus transfers enough to measurably affect performance.
227 */
228static int rx_dma_offset = 2;
229
eb939922 230static bool vf_acls;
b8ff05a9
DM
231
232#ifdef CONFIG_PCI_IOV
233module_param(vf_acls, bool, 0644);
06640310
HS
234MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
235 "deprecated parameter");
b8ff05a9 236
7d6727cf
SR
237/* Configure the number of PCI-E Virtual Function which are to be instantiated
238 * on SR-IOV Capable Physical Functions.
0a57a536 239 */
7d6727cf 240static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
241
242module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 243MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
244#endif
245
688848b1
AB
246/* TX Queue select used to determine what algorithm to use for selecting TX
247 * queue. Select between the kernel provided function (select_queue=0) or user
248 * cxgb_select_queue function (select_queue=1)
249 *
250 * Default: select_queue=0
251 */
252static int select_queue;
253module_param(select_queue, int, 0644);
254MODULE_PARM_DESC(select_queue,
255 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
256
06640310 257static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 258
f2b7e78d 259module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
260MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
261 "deprecated parameter");
f2b7e78d 262
b8ff05a9
DM
263static struct dentry *cxgb4_debugfs_root;
264
265static LIST_HEAD(adapter_list);
266static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
267/* Adapter list to be accessed from atomic context */
268static LIST_HEAD(adap_rcu_list);
269static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
270static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
271static const char *uld_str[] = { "RDMA", "iSCSI" };
272
273static void link_report(struct net_device *dev)
274{
275 if (!netif_carrier_ok(dev))
276 netdev_info(dev, "link down\n");
277 else {
278 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
279
280 const char *s = "10Mbps";
281 const struct port_info *p = netdev_priv(dev);
282
283 switch (p->link_cfg.speed) {
e8b39015 284 case 10000:
b8ff05a9
DM
285 s = "10Gbps";
286 break;
e8b39015 287 case 1000:
b8ff05a9
DM
288 s = "1000Mbps";
289 break;
e8b39015 290 case 100:
b8ff05a9
DM
291 s = "100Mbps";
292 break;
e8b39015 293 case 40000:
72aca4bf
KS
294 s = "40Gbps";
295 break;
b8ff05a9
DM
296 }
297
298 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
299 fc[p->link_cfg.fc]);
300 }
301}
302
688848b1
AB
303#ifdef CONFIG_CHELSIO_T4_DCB
304/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
305static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
306{
307 struct port_info *pi = netdev_priv(dev);
308 struct adapter *adap = pi->adapter;
309 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
310 int i;
311
312 /* We use a simple mapping of Port TX Queue Index to DCB
313 * Priority when we're enabling DCB.
314 */
315 for (i = 0; i < pi->nqsets; i++, txq++) {
316 u32 name, value;
317 int err;
318
5167865a
HS
319 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
320 FW_PARAMS_PARAM_X_V(
321 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
322 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
323 value = enable ? i : 0xffffffff;
324
325 /* Since we can be called while atomic (from "interrupt
326 * level") we need to issue the Set Parameters Commannd
327 * without sleeping (timeout < 0).
328 */
329 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
330 &name, &value);
331
332 if (err)
333 dev_err(adap->pdev_dev,
334 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
335 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
336 else
337 txq->dcb_prio = value;
688848b1
AB
338 }
339}
340#endif /* CONFIG_CHELSIO_T4_DCB */
341
b8ff05a9
DM
342void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
343{
344 struct net_device *dev = adapter->port[port_id];
345
346 /* Skip changes from disabled ports. */
347 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
348 if (link_stat)
349 netif_carrier_on(dev);
688848b1
AB
350 else {
351#ifdef CONFIG_CHELSIO_T4_DCB
352 cxgb4_dcb_state_init(dev);
353 dcb_tx_queue_prio_enable(dev, false);
354#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 355 netif_carrier_off(dev);
688848b1 356 }
b8ff05a9
DM
357
358 link_report(dev);
359 }
360}
361
362void t4_os_portmod_changed(const struct adapter *adap, int port_id)
363{
364 static const char *mod_str[] = {
a0881cab 365 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
366 };
367
368 const struct net_device *dev = adap->port[port_id];
369 const struct port_info *pi = netdev_priv(dev);
370
371 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
372 netdev_info(dev, "port module unplugged\n");
a0881cab 373 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
374 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
375}
376
377/*
378 * Configure the exact and hash address filters to handle a port's multicast
379 * and secondary unicast MAC addresses.
380 */
381static int set_addr_filters(const struct net_device *dev, bool sleep)
382{
383 u64 mhash = 0;
384 u64 uhash = 0;
385 bool free = true;
386 u16 filt_idx[7];
387 const u8 *addr[7];
388 int ret, naddr = 0;
b8ff05a9
DM
389 const struct netdev_hw_addr *ha;
390 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 391 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 392 const struct port_info *pi = netdev_priv(dev);
060e0c75 393 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
394
395 /* first do the secondary unicast addresses */
396 netdev_for_each_uc_addr(ha, dev) {
397 addr[naddr++] = ha->addr;
398 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 399 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
400 naddr, addr, filt_idx, &uhash, sleep);
401 if (ret < 0)
402 return ret;
403
404 free = false;
405 naddr = 0;
406 }
407 }
408
409 /* next set up the multicast addresses */
4a35ecf8
DM
410 netdev_for_each_mc_addr(ha, dev) {
411 addr[naddr++] = ha->addr;
412 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 413 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
414 naddr, addr, filt_idx, &mhash, sleep);
415 if (ret < 0)
416 return ret;
417
418 free = false;
419 naddr = 0;
420 }
421 }
422
060e0c75 423 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
424 uhash | mhash, sleep);
425}
426
3069ee9b
VP
427int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
428module_param(dbfifo_int_thresh, int, 0644);
429MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
430
404d9e3f
VP
431/*
432 * usecs to sleep while draining the dbfifo
433 */
434static int dbfifo_drain_delay = 1000;
3069ee9b
VP
435module_param(dbfifo_drain_delay, int, 0644);
436MODULE_PARM_DESC(dbfifo_drain_delay,
437 "usecs to sleep while draining the dbfifo");
438
b8ff05a9
DM
439/*
440 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
441 * If @mtu is -1 it is left unchanged.
442 */
443static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
444{
445 int ret;
446 struct port_info *pi = netdev_priv(dev);
447
448 ret = set_addr_filters(dev, sleep_ok);
449 if (ret == 0)
060e0c75 450 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
b8ff05a9 451 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 452 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
453 sleep_ok);
454 return ret;
455}
456
457/**
458 * link_start - enable a port
459 * @dev: the port to enable
460 *
461 * Performs the MAC and PHY actions needed to enable a port.
462 */
463static int link_start(struct net_device *dev)
464{
465 int ret;
466 struct port_info *pi = netdev_priv(dev);
060e0c75 467 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
468
469 /*
470 * We do not set address filters and promiscuity here, the stack does
471 * that step explicitly.
472 */
060e0c75 473 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 474 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 475 if (ret == 0) {
060e0c75 476 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 477 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 478 true);
b8ff05a9
DM
479 if (ret >= 0) {
480 pi->xact_addr_filt = ret;
481 ret = 0;
482 }
483 }
484 if (ret == 0)
060e0c75
DM
485 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
486 &pi->link_cfg);
30f00847
AB
487 if (ret == 0) {
488 local_bh_disable();
688848b1
AB
489 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
490 true, CXGB4_DCB_ENABLED);
30f00847
AB
491 local_bh_enable();
492 }
688848b1 493
b8ff05a9
DM
494 return ret;
495}
496
688848b1
AB
497int cxgb4_dcb_enabled(const struct net_device *dev)
498{
499#ifdef CONFIG_CHELSIO_T4_DCB
500 struct port_info *pi = netdev_priv(dev);
501
3bb06261
AB
502 if (!pi->dcb.enabled)
503 return 0;
504
505 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
506 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
507#else
508 return 0;
509#endif
510}
511EXPORT_SYMBOL(cxgb4_dcb_enabled);
512
513#ifdef CONFIG_CHELSIO_T4_DCB
514/* Handle a Data Center Bridging update message from the firmware. */
515static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
516{
2b5fb1f2 517 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
518 struct net_device *dev = adap->port[port];
519 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
520 int new_dcb_enabled;
521
522 cxgb4_dcb_handle_fw_update(adap, pcmd);
523 new_dcb_enabled = cxgb4_dcb_enabled(dev);
524
525 /* If the DCB has become enabled or disabled on the port then we're
526 * going to need to set up/tear down DCB Priority parameters for the
527 * TX Queues associated with the port.
528 */
529 if (new_dcb_enabled != old_dcb_enabled)
530 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
531}
532#endif /* CONFIG_CHELSIO_T4_DCB */
533
f2b7e78d
VP
534/* Clear a filter and release any of its resources that we own. This also
535 * clears the filter's "pending" status.
536 */
537static void clear_filter(struct adapter *adap, struct filter_entry *f)
538{
539 /* If the new or old filter have loopback rewriteing rules then we'll
540 * need to free any existing Layer Two Table (L2T) entries of the old
541 * filter rule. The firmware will handle freeing up any Source MAC
542 * Table (SMT) entries used for rewriting Source MAC Addresses in
543 * loopback rules.
544 */
545 if (f->l2t)
546 cxgb4_l2t_release(f->l2t);
547
548 /* The zeroing of the filter rule below clears the filter valid,
549 * pending, locked flags, l2t pointer, etc. so it's all we need for
550 * this operation.
551 */
552 memset(f, 0, sizeof(*f));
553}
554
555/* Handle a filter write/deletion reply.
556 */
557static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
558{
559 unsigned int idx = GET_TID(rpl);
560 unsigned int nidx = idx - adap->tids.ftid_base;
561 unsigned int ret;
562 struct filter_entry *f;
563
564 if (idx >= adap->tids.ftid_base && nidx <
565 (adap->tids.nftids + adap->tids.nsftids)) {
566 idx = nidx;
bdc590b9 567 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
568 f = &adap->tids.ftid_tab[idx];
569
570 if (ret == FW_FILTER_WR_FLT_DELETED) {
571 /* Clear the filter when we get confirmation from the
572 * hardware that the filter has been deleted.
573 */
574 clear_filter(adap, f);
575 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
576 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
577 idx);
578 clear_filter(adap, f);
579 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
580 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
581 f->pending = 0; /* asynchronous setup completed */
582 f->valid = 1;
583 } else {
584 /* Something went wrong. Issue a warning about the
585 * problem and clear everything out.
586 */
587 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
588 idx, ret);
589 clear_filter(adap, f);
590 }
591 }
592}
593
594/* Response queue handler for the FW event queue.
b8ff05a9
DM
595 */
596static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
597 const struct pkt_gl *gl)
598{
599 u8 opcode = ((const struct rss_header *)rsp)->opcode;
600
601 rsp++; /* skip RSS header */
b407a4a9
VP
602
603 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
604 */
605 if (unlikely(opcode == CPL_FW4_MSG &&
606 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
607 rsp++;
608 opcode = ((const struct rss_header *)rsp)->opcode;
609 rsp++;
610 if (opcode != CPL_SGE_EGR_UPDATE) {
611 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
612 , opcode);
613 goto out;
614 }
615 }
616
b8ff05a9
DM
617 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
618 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 619 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 620 struct sge_txq *txq;
b8ff05a9 621
e46dab4d 622 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 623 txq->restarts++;
e46dab4d 624 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
625 struct sge_eth_txq *eq;
626
627 eq = container_of(txq, struct sge_eth_txq, q);
628 netif_tx_wake_queue(eq->txq);
629 } else {
630 struct sge_ofld_txq *oq;
631
632 oq = container_of(txq, struct sge_ofld_txq, q);
633 tasklet_schedule(&oq->qresume_tsk);
634 }
635 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
636 const struct cpl_fw6_msg *p = (void *)rsp;
637
688848b1
AB
638#ifdef CONFIG_CHELSIO_T4_DCB
639 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 640 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 641 unsigned int action =
2b5fb1f2 642 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
643
644 if (cmd == FW_PORT_CMD &&
645 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 646 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
647 be32_to_cpu(pcmd->op_to_portid));
648 struct net_device *dev = q->adap->port[port];
649 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 650 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
651 ? CXGB4_DCB_INPUT_FW_DISABLED
652 : CXGB4_DCB_INPUT_FW_ENABLED);
653
654 cxgb4_dcb_state_fsm(dev, state_input);
655 }
656
657 if (cmd == FW_PORT_CMD &&
658 action == FW_PORT_ACTION_L2_DCB_CFG)
659 dcb_rpl(q->adap, pcmd);
660 else
661#endif
662 if (p->type == 0)
663 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
664 } else if (opcode == CPL_L2T_WRITE_RPL) {
665 const struct cpl_l2t_write_rpl *p = (void *)rsp;
666
667 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
668 } else if (opcode == CPL_SET_TCB_RPL) {
669 const struct cpl_set_tcb_rpl *p = (void *)rsp;
670
671 filter_rpl(q->adap, p);
b8ff05a9
DM
672 } else
673 dev_err(q->adap->pdev_dev,
674 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 675out:
b8ff05a9
DM
676 return 0;
677}
678
679/**
680 * uldrx_handler - response queue handler for ULD queues
681 * @q: the response queue that received the packet
682 * @rsp: the response queue descriptor holding the offload message
683 * @gl: the gather list of packet fragments
684 *
685 * Deliver an ingress offload packet to a ULD. All processing is done by
686 * the ULD, we just maintain statistics.
687 */
688static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
689 const struct pkt_gl *gl)
690{
691 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
692
b407a4a9
VP
693 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
694 */
695 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
696 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
697 rsp += 2;
698
b8ff05a9
DM
699 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
700 rxq->stats.nomem++;
701 return -1;
702 }
703 if (gl == NULL)
704 rxq->stats.imm++;
705 else if (gl == CXGB4_MSG_AN)
706 rxq->stats.an++;
707 else
708 rxq->stats.pkts++;
709 return 0;
710}
711
712static void disable_msi(struct adapter *adapter)
713{
714 if (adapter->flags & USING_MSIX) {
715 pci_disable_msix(adapter->pdev);
716 adapter->flags &= ~USING_MSIX;
717 } else if (adapter->flags & USING_MSI) {
718 pci_disable_msi(adapter->pdev);
719 adapter->flags &= ~USING_MSI;
720 }
721}
722
723/*
724 * Interrupt handler for non-data events used with MSI-X.
725 */
726static irqreturn_t t4_nondata_intr(int irq, void *cookie)
727{
728 struct adapter *adap = cookie;
0d804338 729 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 730
0d804338 731 if (v & PFSW_F) {
b8ff05a9 732 adap->swintr = 1;
0d804338 733 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9
DM
734 }
735 t4_slow_intr_handler(adap);
736 return IRQ_HANDLED;
737}
738
739/*
740 * Name the MSI-X interrupts.
741 */
742static void name_msix_vecs(struct adapter *adap)
743{
ba27816c 744 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
745
746 /* non-data interrupts */
b1a3c2b6 747 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
748
749 /* FW events */
b1a3c2b6
DM
750 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
751 adap->port[0]->name);
b8ff05a9
DM
752
753 /* Ethernet queues */
754 for_each_port(adap, j) {
755 struct net_device *d = adap->port[j];
756 const struct port_info *pi = netdev_priv(d);
757
ba27816c 758 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
759 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
760 d->name, i);
b8ff05a9
DM
761 }
762
763 /* offload queues */
ba27816c
DM
764 for_each_ofldrxq(&adap->sge, i)
765 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 766 adap->port[0]->name, i);
ba27816c
DM
767
768 for_each_rdmarxq(&adap->sge, i)
769 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 770 adap->port[0]->name, i);
cf38be6d
HS
771
772 for_each_rdmaciq(&adap->sge, i)
773 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
774 adap->port[0]->name, i);
b8ff05a9
DM
775}
776
777static int request_msix_queue_irqs(struct adapter *adap)
778{
779 struct sge *s = &adap->sge;
cf38be6d
HS
780 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
781 int msi_index = 2;
b8ff05a9
DM
782
783 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
784 adap->msix_info[1].desc, &s->fw_evtq);
785 if (err)
786 return err;
787
788 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
789 err = request_irq(adap->msix_info[msi_index].vec,
790 t4_sge_intr_msix, 0,
791 adap->msix_info[msi_index].desc,
b8ff05a9
DM
792 &s->ethrxq[ethqidx].rspq);
793 if (err)
794 goto unwind;
404d9e3f 795 msi_index++;
b8ff05a9
DM
796 }
797 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
798 err = request_irq(adap->msix_info[msi_index].vec,
799 t4_sge_intr_msix, 0,
800 adap->msix_info[msi_index].desc,
b8ff05a9
DM
801 &s->ofldrxq[ofldqidx].rspq);
802 if (err)
803 goto unwind;
404d9e3f 804 msi_index++;
b8ff05a9
DM
805 }
806 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
807 err = request_irq(adap->msix_info[msi_index].vec,
808 t4_sge_intr_msix, 0,
809 adap->msix_info[msi_index].desc,
b8ff05a9
DM
810 &s->rdmarxq[rdmaqidx].rspq);
811 if (err)
812 goto unwind;
404d9e3f 813 msi_index++;
b8ff05a9 814 }
cf38be6d
HS
815 for_each_rdmaciq(s, rdmaciqqidx) {
816 err = request_irq(adap->msix_info[msi_index].vec,
817 t4_sge_intr_msix, 0,
818 adap->msix_info[msi_index].desc,
819 &s->rdmaciq[rdmaciqqidx].rspq);
820 if (err)
821 goto unwind;
822 msi_index++;
823 }
b8ff05a9
DM
824 return 0;
825
826unwind:
cf38be6d
HS
827 while (--rdmaciqqidx >= 0)
828 free_irq(adap->msix_info[--msi_index].vec,
829 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 830 while (--rdmaqidx >= 0)
404d9e3f 831 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
832 &s->rdmarxq[rdmaqidx].rspq);
833 while (--ofldqidx >= 0)
404d9e3f 834 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
835 &s->ofldrxq[ofldqidx].rspq);
836 while (--ethqidx >= 0)
404d9e3f
VP
837 free_irq(adap->msix_info[--msi_index].vec,
838 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
839 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
840 return err;
841}
842
843static void free_msix_queue_irqs(struct adapter *adap)
844{
404d9e3f 845 int i, msi_index = 2;
b8ff05a9
DM
846 struct sge *s = &adap->sge;
847
848 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
849 for_each_ethrxq(s, i)
404d9e3f 850 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 851 for_each_ofldrxq(s, i)
404d9e3f 852 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 853 for_each_rdmarxq(s, i)
404d9e3f 854 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
855 for_each_rdmaciq(s, i)
856 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
857}
858
671b0060
DM
859/**
860 * write_rss - write the RSS table for a given port
861 * @pi: the port
862 * @queues: array of queue indices for RSS
863 *
864 * Sets up the portion of the HW RSS table for the port's VI to distribute
865 * packets to the Rx queues in @queues.
866 */
867static int write_rss(const struct port_info *pi, const u16 *queues)
868{
869 u16 *rss;
870 int i, err;
871 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
872
873 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
874 if (!rss)
875 return -ENOMEM;
876
877 /* map the queue indices to queue ids */
878 for (i = 0; i < pi->rss_size; i++, queues++)
879 rss[i] = q[*queues].rspq.abs_id;
880
060e0c75
DM
881 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
882 pi->rss_size, rss, pi->rss_size);
671b0060
DM
883 kfree(rss);
884 return err;
885}
886
b8ff05a9
DM
887/**
888 * setup_rss - configure RSS
889 * @adap: the adapter
890 *
671b0060 891 * Sets up RSS for each port.
b8ff05a9
DM
892 */
893static int setup_rss(struct adapter *adap)
894{
671b0060 895 int i, err;
b8ff05a9
DM
896
897 for_each_port(adap, i) {
898 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 899
671b0060 900 err = write_rss(pi, pi->rss);
b8ff05a9
DM
901 if (err)
902 return err;
903 }
904 return 0;
905}
906
e46dab4d
DM
907/*
908 * Return the channel of the ingress queue with the given qid.
909 */
910static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
911{
912 qid -= p->ingr_start;
913 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
914}
915
b8ff05a9
DM
916/*
917 * Wait until all NAPI handlers are descheduled.
918 */
919static void quiesce_rx(struct adapter *adap)
920{
921 int i;
922
4b8e27a8 923 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
924 struct sge_rspq *q = adap->sge.ingr_map[i];
925
3a336cb1 926 if (q && q->handler) {
b8ff05a9 927 napi_disable(&q->napi);
3a336cb1
HS
928 local_bh_disable();
929 while (!cxgb_poll_lock_napi(q))
930 mdelay(1);
931 local_bh_enable();
932 }
933
b8ff05a9
DM
934 }
935}
936
937/*
938 * Enable NAPI scheduling and interrupt generation for all Rx queues.
939 */
940static void enable_rx(struct adapter *adap)
941{
942 int i;
943
4b8e27a8 944 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
945 struct sge_rspq *q = adap->sge.ingr_map[i];
946
947 if (!q)
948 continue;
3a336cb1
HS
949 if (q->handler) {
950 cxgb_busy_poll_init_lock(q);
b8ff05a9 951 napi_enable(&q->napi);
3a336cb1 952 }
b8ff05a9 953 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
954 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
955 SEINTARM_V(q->intr_params) |
956 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
957 }
958}
959
960/**
961 * setup_sge_queues - configure SGE Tx/Rx/response queues
962 * @adap: the adapter
963 *
964 * Determines how many sets of SGE queues to use and initializes them.
965 * We support multiple queue sets per port if we have MSI-X, otherwise
966 * just one queue set per port.
967 */
968static int setup_sge_queues(struct adapter *adap)
969{
970 int err, msi_idx, i, j;
971 struct sge *s = &adap->sge;
972
4b8e27a8
HS
973 bitmap_zero(s->starving_fl, s->egr_sz);
974 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
975
976 if (adap->flags & USING_MSIX)
977 msi_idx = 1; /* vector 0 is for non-queue interrupts */
978 else {
979 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
980 NULL, NULL);
981 if (err)
982 return err;
983 msi_idx = -((int)s->intrq.abs_id + 1);
984 }
985
4b8e27a8
HS
986 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
987 * don't forget to update the following which need to be
988 * synchronized to and changes here.
989 *
990 * 1. The calculations of MAX_INGQ in cxgb4.h.
991 *
992 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
993 * to accommodate any new/deleted Ingress Queues
994 * which need MSI-X Vectors.
995 *
996 * 3. Update sge_qinfo_show() to include information on the
997 * new/deleted queues.
998 */
b8ff05a9
DM
999 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1000 msi_idx, NULL, fwevtq_handler);
1001 if (err) {
1002freeout: t4_free_sge_resources(adap);
1003 return err;
1004 }
1005
1006 for_each_port(adap, i) {
1007 struct net_device *dev = adap->port[i];
1008 struct port_info *pi = netdev_priv(dev);
1009 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1010 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1011
1012 for (j = 0; j < pi->nqsets; j++, q++) {
1013 if (msi_idx > 0)
1014 msi_idx++;
1015 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1016 msi_idx, &q->fl,
1017 t4_ethrx_handler);
1018 if (err)
1019 goto freeout;
1020 q->rspq.idx = j;
1021 memset(&q->stats, 0, sizeof(q->stats));
1022 }
1023 for (j = 0; j < pi->nqsets; j++, t++) {
1024 err = t4_sge_alloc_eth_txq(adap, t, dev,
1025 netdev_get_tx_queue(dev, j),
1026 s->fw_evtq.cntxt_id);
1027 if (err)
1028 goto freeout;
1029 }
1030 }
1031
1032 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1033 for_each_ofldrxq(s, i) {
1034 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1035 struct net_device *dev = adap->port[i / j];
1036
1037 if (msi_idx > 0)
1038 msi_idx++;
1039 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
cf38be6d
HS
1040 q->fl.size ? &q->fl : NULL,
1041 uldrx_handler);
b8ff05a9
DM
1042 if (err)
1043 goto freeout;
1044 memset(&q->stats, 0, sizeof(q->stats));
1045 s->ofld_rxq[i] = q->rspq.abs_id;
1046 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1047 s->fw_evtq.cntxt_id);
1048 if (err)
1049 goto freeout;
1050 }
1051
1052 for_each_rdmarxq(s, i) {
1053 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1054
1055 if (msi_idx > 0)
1056 msi_idx++;
1057 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
cf38be6d
HS
1058 msi_idx, q->fl.size ? &q->fl : NULL,
1059 uldrx_handler);
b8ff05a9
DM
1060 if (err)
1061 goto freeout;
1062 memset(&q->stats, 0, sizeof(q->stats));
1063 s->rdma_rxq[i] = q->rspq.abs_id;
1064 }
1065
cf38be6d
HS
1066 for_each_rdmaciq(s, i) {
1067 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1068
1069 if (msi_idx > 0)
1070 msi_idx++;
1071 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1072 msi_idx, q->fl.size ? &q->fl : NULL,
1073 uldrx_handler);
1074 if (err)
1075 goto freeout;
1076 memset(&q->stats, 0, sizeof(q->stats));
1077 s->rdma_ciq[i] = q->rspq.abs_id;
1078 }
1079
b8ff05a9
DM
1080 for_each_port(adap, i) {
1081 /*
1082 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1083 * have RDMA queues, and that's the right value.
1084 */
1085 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1086 s->fw_evtq.cntxt_id,
1087 s->rdmarxq[i].rspq.cntxt_id);
1088 if (err)
1089 goto freeout;
1090 }
1091
9bb59b96 1092 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1093 MPS_TRC_RSS_CONTROL_A :
1094 MPS_T5_TRC_RSS_CONTROL_A,
1095 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1096 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1097 return 0;
1098}
1099
b8ff05a9
DM
1100/*
1101 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1102 * The allocated memory is cleared.
1103 */
1104void *t4_alloc_mem(size_t size)
1105{
8be04b93 1106 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1107
1108 if (!p)
89bf67f1 1109 p = vzalloc(size);
b8ff05a9
DM
1110 return p;
1111}
1112
1113/*
1114 * Free memory allocated through alloc_mem().
1115 */
fd88b31a 1116void t4_free_mem(void *addr)
b8ff05a9
DM
1117{
1118 if (is_vmalloc_addr(addr))
1119 vfree(addr);
1120 else
1121 kfree(addr);
1122}
1123
f2b7e78d
VP
1124/* Send a Work Request to write the filter at a specified index. We construct
1125 * a Firmware Filter Work Request to have the work done and put the indicated
1126 * filter into "pending" mode which will prevent any further actions against
1127 * it till we get a reply from the firmware on the completion status of the
1128 * request.
1129 */
1130static int set_filter_wr(struct adapter *adapter, int fidx)
1131{
1132 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1133 struct sk_buff *skb;
1134 struct fw_filter_wr *fwr;
1135 unsigned int ftid;
1136
1137 /* If the new filter requires loopback Destination MAC and/or VLAN
1138 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1139 * the filter.
1140 */
1141 if (f->fs.newdmac || f->fs.newvlan) {
1142 /* allocate L2T entry for new filter */
1143 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1144 if (f->l2t == NULL)
1145 return -EAGAIN;
1146 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1147 f->fs.eport, f->fs.dmac)) {
1148 cxgb4_l2t_release(f->l2t);
1149 f->l2t = NULL;
1150 return -ENOMEM;
1151 }
1152 }
1153
1154 ftid = adapter->tids.ftid_base + fidx;
1155
1156 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1157 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1158 memset(fwr, 0, sizeof(*fwr));
1159
1160 /* It would be nice to put most of the following in t4_hw.c but most
1161 * of the work is translating the cxgbtool ch_filter_specification
1162 * into the Work Request and the definition of that structure is
1163 * currently in cxgbtool.h which isn't appropriate to pull into the
1164 * common code. We may eventually try to come up with a more neutral
1165 * filter specification structure but for now it's easiest to simply
1166 * put this fairly direct code in line ...
1167 */
e2ac9628
HS
1168 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1169 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1170 fwr->tid_to_iq =
77a80e23
HS
1171 htonl(FW_FILTER_WR_TID_V(ftid) |
1172 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1173 FW_FILTER_WR_NOREPLY_V(0) |
1174 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1175 fwr->del_filter_to_l2tix =
77a80e23
HS
1176 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1177 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1178 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1179 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1180 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1181 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1182 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1183 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1184 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1185 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1186 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1187 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1188 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1189 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1190 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1191 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1192 fwr->ethtype = htons(f->fs.val.ethtype);
1193 fwr->ethtypem = htons(f->fs.mask.ethtype);
1194 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1195 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1196 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1197 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1198 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1199 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1200 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1201 fwr->smac_sel = 0;
1202 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1203 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1204 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1205 fwr->maci_to_matchtypem =
77a80e23
HS
1206 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1207 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1208 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1209 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1210 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1211 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1212 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1213 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1214 fwr->ptcl = f->fs.val.proto;
1215 fwr->ptclm = f->fs.mask.proto;
1216 fwr->ttyp = f->fs.val.tos;
1217 fwr->ttypm = f->fs.mask.tos;
1218 fwr->ivlan = htons(f->fs.val.ivlan);
1219 fwr->ivlanm = htons(f->fs.mask.ivlan);
1220 fwr->ovlan = htons(f->fs.val.ovlan);
1221 fwr->ovlanm = htons(f->fs.mask.ovlan);
1222 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1223 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1224 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1225 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1226 fwr->lp = htons(f->fs.val.lport);
1227 fwr->lpm = htons(f->fs.mask.lport);
1228 fwr->fp = htons(f->fs.val.fport);
1229 fwr->fpm = htons(f->fs.mask.fport);
1230 if (f->fs.newsmac)
1231 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1232
1233 /* Mark the filter as "pending" and ship off the Filter Work Request.
1234 * When we get the Work Request Reply we'll clear the pending status.
1235 */
1236 f->pending = 1;
1237 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1238 t4_ofld_send(adapter, skb);
1239 return 0;
1240}
1241
1242/* Delete the filter at a specified index.
1243 */
1244static int del_filter_wr(struct adapter *adapter, int fidx)
1245{
1246 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1247 struct sk_buff *skb;
1248 struct fw_filter_wr *fwr;
1249 unsigned int len, ftid;
1250
1251 len = sizeof(*fwr);
1252 ftid = adapter->tids.ftid_base + fidx;
1253
1254 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1255 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1256 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1257
1258 /* Mark the filter as "pending" and ship off the Filter Work Request.
1259 * When we get the Work Request Reply we'll clear the pending status.
1260 */
1261 f->pending = 1;
1262 t4_mgmt_tx(adapter, skb);
1263 return 0;
1264}
1265
688848b1
AB
1266static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1267 void *accel_priv, select_queue_fallback_t fallback)
1268{
1269 int txq;
1270
1271#ifdef CONFIG_CHELSIO_T4_DCB
1272 /* If a Data Center Bridging has been successfully negotiated on this
1273 * link then we'll use the skb's priority to map it to a TX Queue.
1274 * The skb's priority is determined via the VLAN Tag Priority Code
1275 * Point field.
1276 */
1277 if (cxgb4_dcb_enabled(dev)) {
1278 u16 vlan_tci;
1279 int err;
1280
1281 err = vlan_get_tag(skb, &vlan_tci);
1282 if (unlikely(err)) {
1283 if (net_ratelimit())
1284 netdev_warn(dev,
1285 "TX Packet without VLAN Tag on DCB Link\n");
1286 txq = 0;
1287 } else {
1288 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1289 }
1290 return txq;
1291 }
1292#endif /* CONFIG_CHELSIO_T4_DCB */
1293
1294 if (select_queue) {
1295 txq = (skb_rx_queue_recorded(skb)
1296 ? skb_get_rx_queue(skb)
1297 : smp_processor_id());
1298
1299 while (unlikely(txq >= dev->real_num_tx_queues))
1300 txq -= dev->real_num_tx_queues;
1301
1302 return txq;
1303 }
1304
1305 return fallback(dev, skb) % dev->real_num_tx_queues;
1306}
1307
b8ff05a9
DM
1308static inline int is_offload(const struct adapter *adap)
1309{
1310 return adap->params.offload;
1311}
1312
1313/*
1314 * Implementation of ethtool operations.
1315 */
1316
1317static u32 get_msglevel(struct net_device *dev)
1318{
1319 return netdev2adap(dev)->msg_enable;
1320}
1321
1322static void set_msglevel(struct net_device *dev, u32 val)
1323{
1324 netdev2adap(dev)->msg_enable = val;
1325}
1326
1327static char stats_strings[][ETH_GSTRING_LEN] = {
1328 "TxOctetsOK ",
1329 "TxFramesOK ",
1330 "TxBroadcastFrames ",
1331 "TxMulticastFrames ",
1332 "TxUnicastFrames ",
1333 "TxErrorFrames ",
1334
1335 "TxFrames64 ",
1336 "TxFrames65To127 ",
1337 "TxFrames128To255 ",
1338 "TxFrames256To511 ",
1339 "TxFrames512To1023 ",
1340 "TxFrames1024To1518 ",
1341 "TxFrames1519ToMax ",
1342
1343 "TxFramesDropped ",
1344 "TxPauseFrames ",
1345 "TxPPP0Frames ",
1346 "TxPPP1Frames ",
1347 "TxPPP2Frames ",
1348 "TxPPP3Frames ",
1349 "TxPPP4Frames ",
1350 "TxPPP5Frames ",
1351 "TxPPP6Frames ",
1352 "TxPPP7Frames ",
1353
1354 "RxOctetsOK ",
1355 "RxFramesOK ",
1356 "RxBroadcastFrames ",
1357 "RxMulticastFrames ",
1358 "RxUnicastFrames ",
1359
1360 "RxFramesTooLong ",
1361 "RxJabberErrors ",
1362 "RxFCSErrors ",
1363 "RxLengthErrors ",
1364 "RxSymbolErrors ",
1365 "RxRuntFrames ",
1366
1367 "RxFrames64 ",
1368 "RxFrames65To127 ",
1369 "RxFrames128To255 ",
1370 "RxFrames256To511 ",
1371 "RxFrames512To1023 ",
1372 "RxFrames1024To1518 ",
1373 "RxFrames1519ToMax ",
1374
1375 "RxPauseFrames ",
1376 "RxPPP0Frames ",
1377 "RxPPP1Frames ",
1378 "RxPPP2Frames ",
1379 "RxPPP3Frames ",
1380 "RxPPP4Frames ",
1381 "RxPPP5Frames ",
1382 "RxPPP6Frames ",
1383 "RxPPP7Frames ",
1384
1385 "RxBG0FramesDropped ",
1386 "RxBG1FramesDropped ",
1387 "RxBG2FramesDropped ",
1388 "RxBG3FramesDropped ",
1389 "RxBG0FramesTrunc ",
1390 "RxBG1FramesTrunc ",
1391 "RxBG2FramesTrunc ",
1392 "RxBG3FramesTrunc ",
1393
1394 "TSO ",
1395 "TxCsumOffload ",
1396 "RxCsumGood ",
1397 "VLANextractions ",
1398 "VLANinsertions ",
4a6346d4
DM
1399 "GROpackets ",
1400 "GROmerged ",
22adfe0a
SR
1401 "WriteCoalSuccess ",
1402 "WriteCoalFail ",
b8ff05a9
DM
1403};
1404
1405static int get_sset_count(struct net_device *dev, int sset)
1406{
1407 switch (sset) {
1408 case ETH_SS_STATS:
1409 return ARRAY_SIZE(stats_strings);
1410 default:
1411 return -EOPNOTSUPP;
1412 }
1413}
1414
1415#define T4_REGMAP_SIZE (160 * 1024)
251f9e88 1416#define T5_REGMAP_SIZE (332 * 1024)
b8ff05a9
DM
1417
1418static int get_regs_len(struct net_device *dev)
1419{
251f9e88 1420 struct adapter *adap = netdev2adap(dev);
d14807dd 1421 if (is_t4(adap->params.chip))
251f9e88
SR
1422 return T4_REGMAP_SIZE;
1423 else
1424 return T5_REGMAP_SIZE;
b8ff05a9
DM
1425}
1426
1427static int get_eeprom_len(struct net_device *dev)
1428{
1429 return EEPROMSIZE;
1430}
1431
1432static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1433{
1434 struct adapter *adapter = netdev2adap(dev);
ba3f8cd5 1435 u32 exprom_vers;
b8ff05a9 1436
23020ab3
RJ
1437 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1438 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1439 strlcpy(info->bus_info, pci_name(adapter->pdev),
1440 sizeof(info->bus_info));
b8ff05a9 1441
84b40501 1442 if (adapter->params.fw_vers)
b8ff05a9
DM
1443 snprintf(info->fw_version, sizeof(info->fw_version),
1444 "%u.%u.%u.%u, TP %u.%u.%u.%u",
b2e1a3f0
HS
1445 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
1446 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
1447 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
1448 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers),
1449 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
1450 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
1451 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
1452 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
ba3f8cd5
HS
1453
1454 if (!t4_get_exprom_version(adapter, &exprom_vers))
1455 snprintf(info->erom_version, sizeof(info->erom_version),
1456 "%u.%u.%u.%u",
1457 FW_HDR_FW_VER_MAJOR_G(exprom_vers),
1458 FW_HDR_FW_VER_MINOR_G(exprom_vers),
1459 FW_HDR_FW_VER_MICRO_G(exprom_vers),
1460 FW_HDR_FW_VER_BUILD_G(exprom_vers));
b8ff05a9
DM
1461}
1462
1463static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1464{
1465 if (stringset == ETH_SS_STATS)
1466 memcpy(data, stats_strings, sizeof(stats_strings));
1467}
1468
1469/*
1470 * port stats maintained per queue of the port. They should be in the same
1471 * order as in stats_strings above.
1472 */
1473struct queue_port_stats {
1474 u64 tso;
1475 u64 tx_csum;
1476 u64 rx_csum;
1477 u64 vlan_ex;
1478 u64 vlan_ins;
4a6346d4
DM
1479 u64 gro_pkts;
1480 u64 gro_merged;
b8ff05a9
DM
1481};
1482
1483static void collect_sge_port_stats(const struct adapter *adap,
1484 const struct port_info *p, struct queue_port_stats *s)
1485{
1486 int i;
1487 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1488 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1489
1490 memset(s, 0, sizeof(*s));
1491 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1492 s->tso += tx->tso;
1493 s->tx_csum += tx->tx_cso;
1494 s->rx_csum += rx->stats.rx_cso;
1495 s->vlan_ex += rx->stats.vlan_ex;
1496 s->vlan_ins += tx->vlan_ins;
4a6346d4
DM
1497 s->gro_pkts += rx->stats.lro_pkts;
1498 s->gro_merged += rx->stats.lro_merged;
b8ff05a9
DM
1499 }
1500}
1501
1502static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1503 u64 *data)
1504{
1505 struct port_info *pi = netdev_priv(dev);
1506 struct adapter *adapter = pi->adapter;
22adfe0a 1507 u32 val1, val2;
b8ff05a9
DM
1508
1509 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1510
1511 data += sizeof(struct port_stats) / sizeof(u64);
1512 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
22adfe0a 1513 data += sizeof(struct queue_port_stats) / sizeof(u64);
d14807dd 1514 if (!is_t4(adapter->params.chip)) {
f061de42
HS
1515 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7));
1516 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL_A);
1517 val2 = t4_read_reg(adapter, SGE_STAT_MATCH_A);
22adfe0a
SR
1518 *data = val1 - val2;
1519 data++;
1520 *data = val2;
1521 data++;
1522 } else {
1523 memset(data, 0, 2 * sizeof(u64));
1524 *data += 2;
1525 }
b8ff05a9
DM
1526}
1527
1528/*
1529 * Return a version number to identify the type of adapter. The scheme is:
1530 * - bits 0..9: chip version
1531 * - bits 10..15: chip revision
835bb606 1532 * - bits 16..23: register dump version
b8ff05a9
DM
1533 */
1534static inline unsigned int mk_adap_vers(const struct adapter *ap)
1535{
d14807dd
HS
1536 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1537 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
b8ff05a9
DM
1538}
1539
1540static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1541 unsigned int end)
1542{
1543 u32 *p = buf + start;
1544
1545 for ( ; start <= end; start += sizeof(u32))
1546 *p++ = t4_read_reg(ap, start);
1547}
1548
1549static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1550 void *buf)
1551{
251f9e88 1552 static const unsigned int t4_reg_ranges[] = {
b8ff05a9
DM
1553 0x1008, 0x1108,
1554 0x1180, 0x11b4,
1555 0x11fc, 0x123c,
1556 0x1300, 0x173c,
1557 0x1800, 0x18fc,
1558 0x3000, 0x30d8,
1559 0x30e0, 0x5924,
1560 0x5960, 0x59d4,
1561 0x5a00, 0x5af8,
1562 0x6000, 0x6098,
1563 0x6100, 0x6150,
1564 0x6200, 0x6208,
1565 0x6240, 0x6248,
1566 0x6280, 0x6338,
1567 0x6370, 0x638c,
1568 0x6400, 0x643c,
1569 0x6500, 0x6524,
1570 0x6a00, 0x6a38,
1571 0x6a60, 0x6a78,
1572 0x6b00, 0x6b84,
1573 0x6bf0, 0x6c84,
1574 0x6cf0, 0x6d84,
1575 0x6df0, 0x6e84,
1576 0x6ef0, 0x6f84,
1577 0x6ff0, 0x7084,
1578 0x70f0, 0x7184,
1579 0x71f0, 0x7284,
1580 0x72f0, 0x7384,
1581 0x73f0, 0x7450,
1582 0x7500, 0x7530,
1583 0x7600, 0x761c,
1584 0x7680, 0x76cc,
1585 0x7700, 0x7798,
1586 0x77c0, 0x77fc,
1587 0x7900, 0x79fc,
1588 0x7b00, 0x7c38,
1589 0x7d00, 0x7efc,
1590 0x8dc0, 0x8e1c,
1591 0x8e30, 0x8e78,
1592 0x8ea0, 0x8f6c,
1593 0x8fc0, 0x9074,
1594 0x90fc, 0x90fc,
1595 0x9400, 0x9458,
1596 0x9600, 0x96bc,
1597 0x9800, 0x9808,
1598 0x9820, 0x983c,
1599 0x9850, 0x9864,
1600 0x9c00, 0x9c6c,
1601 0x9c80, 0x9cec,
1602 0x9d00, 0x9d6c,
1603 0x9d80, 0x9dec,
1604 0x9e00, 0x9e6c,
1605 0x9e80, 0x9eec,
1606 0x9f00, 0x9f6c,
1607 0x9f80, 0x9fec,
1608 0xd004, 0xd03c,
1609 0xdfc0, 0xdfe0,
1610 0xe000, 0xea7c,
3d9103f8
HS
1611 0xf000, 0x11110,
1612 0x11118, 0x11190,
835bb606
DM
1613 0x19040, 0x1906c,
1614 0x19078, 0x19080,
1615 0x1908c, 0x19124,
b8ff05a9
DM
1616 0x19150, 0x191b0,
1617 0x191d0, 0x191e8,
1618 0x19238, 0x1924c,
1619 0x193f8, 0x19474,
1620 0x19490, 0x194f8,
1621 0x19800, 0x19f30,
1622 0x1a000, 0x1a06c,
1623 0x1a0b0, 0x1a120,
1624 0x1a128, 0x1a138,
1625 0x1a190, 0x1a1c4,
1626 0x1a1fc, 0x1a1fc,
1627 0x1e040, 0x1e04c,
835bb606 1628 0x1e284, 0x1e28c,
b8ff05a9
DM
1629 0x1e2c0, 0x1e2c0,
1630 0x1e2e0, 0x1e2e0,
1631 0x1e300, 0x1e384,
1632 0x1e3c0, 0x1e3c8,
1633 0x1e440, 0x1e44c,
835bb606 1634 0x1e684, 0x1e68c,
b8ff05a9
DM
1635 0x1e6c0, 0x1e6c0,
1636 0x1e6e0, 0x1e6e0,
1637 0x1e700, 0x1e784,
1638 0x1e7c0, 0x1e7c8,
1639 0x1e840, 0x1e84c,
835bb606 1640 0x1ea84, 0x1ea8c,
b8ff05a9
DM
1641 0x1eac0, 0x1eac0,
1642 0x1eae0, 0x1eae0,
1643 0x1eb00, 0x1eb84,
1644 0x1ebc0, 0x1ebc8,
1645 0x1ec40, 0x1ec4c,
835bb606 1646 0x1ee84, 0x1ee8c,
b8ff05a9
DM
1647 0x1eec0, 0x1eec0,
1648 0x1eee0, 0x1eee0,
1649 0x1ef00, 0x1ef84,
1650 0x1efc0, 0x1efc8,
1651 0x1f040, 0x1f04c,
835bb606 1652 0x1f284, 0x1f28c,
b8ff05a9
DM
1653 0x1f2c0, 0x1f2c0,
1654 0x1f2e0, 0x1f2e0,
1655 0x1f300, 0x1f384,
1656 0x1f3c0, 0x1f3c8,
1657 0x1f440, 0x1f44c,
835bb606 1658 0x1f684, 0x1f68c,
b8ff05a9
DM
1659 0x1f6c0, 0x1f6c0,
1660 0x1f6e0, 0x1f6e0,
1661 0x1f700, 0x1f784,
1662 0x1f7c0, 0x1f7c8,
1663 0x1f840, 0x1f84c,
835bb606 1664 0x1fa84, 0x1fa8c,
b8ff05a9
DM
1665 0x1fac0, 0x1fac0,
1666 0x1fae0, 0x1fae0,
1667 0x1fb00, 0x1fb84,
1668 0x1fbc0, 0x1fbc8,
1669 0x1fc40, 0x1fc4c,
835bb606 1670 0x1fe84, 0x1fe8c,
b8ff05a9
DM
1671 0x1fec0, 0x1fec0,
1672 0x1fee0, 0x1fee0,
1673 0x1ff00, 0x1ff84,
1674 0x1ffc0, 0x1ffc8,
1675 0x20000, 0x2002c,
1676 0x20100, 0x2013c,
1677 0x20190, 0x201c8,
1678 0x20200, 0x20318,
1679 0x20400, 0x20528,
1680 0x20540, 0x20614,
1681 0x21000, 0x21040,
1682 0x2104c, 0x21060,
1683 0x210c0, 0x210ec,
1684 0x21200, 0x21268,
1685 0x21270, 0x21284,
1686 0x212fc, 0x21388,
1687 0x21400, 0x21404,
1688 0x21500, 0x21518,
1689 0x2152c, 0x2153c,
1690 0x21550, 0x21554,
1691 0x21600, 0x21600,
1692 0x21608, 0x21628,
1693 0x21630, 0x2163c,
1694 0x21700, 0x2171c,
1695 0x21780, 0x2178c,
1696 0x21800, 0x21c38,
1697 0x21c80, 0x21d7c,
1698 0x21e00, 0x21e04,
1699 0x22000, 0x2202c,
1700 0x22100, 0x2213c,
1701 0x22190, 0x221c8,
1702 0x22200, 0x22318,
1703 0x22400, 0x22528,
1704 0x22540, 0x22614,
1705 0x23000, 0x23040,
1706 0x2304c, 0x23060,
1707 0x230c0, 0x230ec,
1708 0x23200, 0x23268,
1709 0x23270, 0x23284,
1710 0x232fc, 0x23388,
1711 0x23400, 0x23404,
1712 0x23500, 0x23518,
1713 0x2352c, 0x2353c,
1714 0x23550, 0x23554,
1715 0x23600, 0x23600,
1716 0x23608, 0x23628,
1717 0x23630, 0x2363c,
1718 0x23700, 0x2371c,
1719 0x23780, 0x2378c,
1720 0x23800, 0x23c38,
1721 0x23c80, 0x23d7c,
1722 0x23e00, 0x23e04,
1723 0x24000, 0x2402c,
1724 0x24100, 0x2413c,
1725 0x24190, 0x241c8,
1726 0x24200, 0x24318,
1727 0x24400, 0x24528,
1728 0x24540, 0x24614,
1729 0x25000, 0x25040,
1730 0x2504c, 0x25060,
1731 0x250c0, 0x250ec,
1732 0x25200, 0x25268,
1733 0x25270, 0x25284,
1734 0x252fc, 0x25388,
1735 0x25400, 0x25404,
1736 0x25500, 0x25518,
1737 0x2552c, 0x2553c,
1738 0x25550, 0x25554,
1739 0x25600, 0x25600,
1740 0x25608, 0x25628,
1741 0x25630, 0x2563c,
1742 0x25700, 0x2571c,
1743 0x25780, 0x2578c,
1744 0x25800, 0x25c38,
1745 0x25c80, 0x25d7c,
1746 0x25e00, 0x25e04,
1747 0x26000, 0x2602c,
1748 0x26100, 0x2613c,
1749 0x26190, 0x261c8,
1750 0x26200, 0x26318,
1751 0x26400, 0x26528,
1752 0x26540, 0x26614,
1753 0x27000, 0x27040,
1754 0x2704c, 0x27060,
1755 0x270c0, 0x270ec,
1756 0x27200, 0x27268,
1757 0x27270, 0x27284,
1758 0x272fc, 0x27388,
1759 0x27400, 0x27404,
1760 0x27500, 0x27518,
1761 0x2752c, 0x2753c,
1762 0x27550, 0x27554,
1763 0x27600, 0x27600,
1764 0x27608, 0x27628,
1765 0x27630, 0x2763c,
1766 0x27700, 0x2771c,
1767 0x27780, 0x2778c,
1768 0x27800, 0x27c38,
1769 0x27c80, 0x27d7c,
1770 0x27e00, 0x27e04
1771 };
1772
251f9e88
SR
1773 static const unsigned int t5_reg_ranges[] = {
1774 0x1008, 0x1148,
1775 0x1180, 0x11b4,
1776 0x11fc, 0x123c,
1777 0x1280, 0x173c,
1778 0x1800, 0x18fc,
1779 0x3000, 0x3028,
1780 0x3060, 0x30d8,
1781 0x30e0, 0x30fc,
1782 0x3140, 0x357c,
1783 0x35a8, 0x35cc,
1784 0x35ec, 0x35ec,
1785 0x3600, 0x5624,
1786 0x56cc, 0x575c,
1787 0x580c, 0x5814,
1788 0x5890, 0x58bc,
1789 0x5940, 0x59dc,
1790 0x59fc, 0x5a18,
1791 0x5a60, 0x5a9c,
1792 0x5b9c, 0x5bfc,
1793 0x6000, 0x6040,
1794 0x6058, 0x614c,
1795 0x7700, 0x7798,
1796 0x77c0, 0x78fc,
1797 0x7b00, 0x7c54,
1798 0x7d00, 0x7efc,
1799 0x8dc0, 0x8de0,
1800 0x8df8, 0x8e84,
1801 0x8ea0, 0x8f84,
1802 0x8fc0, 0x90f8,
1803 0x9400, 0x9470,
1804 0x9600, 0x96f4,
1805 0x9800, 0x9808,
1806 0x9820, 0x983c,
1807 0x9850, 0x9864,
1808 0x9c00, 0x9c6c,
1809 0x9c80, 0x9cec,
1810 0x9d00, 0x9d6c,
1811 0x9d80, 0x9dec,
1812 0x9e00, 0x9e6c,
1813 0x9e80, 0x9eec,
1814 0x9f00, 0x9f6c,
1815 0x9f80, 0xa020,
1816 0xd004, 0xd03c,
1817 0xdfc0, 0xdfe0,
1818 0xe000, 0x11088,
3d9103f8
HS
1819 0x1109c, 0x11110,
1820 0x11118, 0x1117c,
251f9e88
SR
1821 0x11190, 0x11204,
1822 0x19040, 0x1906c,
1823 0x19078, 0x19080,
1824 0x1908c, 0x19124,
1825 0x19150, 0x191b0,
1826 0x191d0, 0x191e8,
1827 0x19238, 0x19290,
1828 0x193f8, 0x19474,
1829 0x19490, 0x194cc,
1830 0x194f0, 0x194f8,
1831 0x19c00, 0x19c60,
1832 0x19c94, 0x19e10,
1833 0x19e50, 0x19f34,
1834 0x19f40, 0x19f50,
1835 0x19f90, 0x19fe4,
1836 0x1a000, 0x1a06c,
1837 0x1a0b0, 0x1a120,
1838 0x1a128, 0x1a138,
1839 0x1a190, 0x1a1c4,
1840 0x1a1fc, 0x1a1fc,
1841 0x1e008, 0x1e00c,
1842 0x1e040, 0x1e04c,
1843 0x1e284, 0x1e290,
1844 0x1e2c0, 0x1e2c0,
1845 0x1e2e0, 0x1e2e0,
1846 0x1e300, 0x1e384,
1847 0x1e3c0, 0x1e3c8,
1848 0x1e408, 0x1e40c,
1849 0x1e440, 0x1e44c,
1850 0x1e684, 0x1e690,
1851 0x1e6c0, 0x1e6c0,
1852 0x1e6e0, 0x1e6e0,
1853 0x1e700, 0x1e784,
1854 0x1e7c0, 0x1e7c8,
1855 0x1e808, 0x1e80c,
1856 0x1e840, 0x1e84c,
1857 0x1ea84, 0x1ea90,
1858 0x1eac0, 0x1eac0,
1859 0x1eae0, 0x1eae0,
1860 0x1eb00, 0x1eb84,
1861 0x1ebc0, 0x1ebc8,
1862 0x1ec08, 0x1ec0c,
1863 0x1ec40, 0x1ec4c,
1864 0x1ee84, 0x1ee90,
1865 0x1eec0, 0x1eec0,
1866 0x1eee0, 0x1eee0,
1867 0x1ef00, 0x1ef84,
1868 0x1efc0, 0x1efc8,
1869 0x1f008, 0x1f00c,
1870 0x1f040, 0x1f04c,
1871 0x1f284, 0x1f290,
1872 0x1f2c0, 0x1f2c0,
1873 0x1f2e0, 0x1f2e0,
1874 0x1f300, 0x1f384,
1875 0x1f3c0, 0x1f3c8,
1876 0x1f408, 0x1f40c,
1877 0x1f440, 0x1f44c,
1878 0x1f684, 0x1f690,
1879 0x1f6c0, 0x1f6c0,
1880 0x1f6e0, 0x1f6e0,
1881 0x1f700, 0x1f784,
1882 0x1f7c0, 0x1f7c8,
1883 0x1f808, 0x1f80c,
1884 0x1f840, 0x1f84c,
1885 0x1fa84, 0x1fa90,
1886 0x1fac0, 0x1fac0,
1887 0x1fae0, 0x1fae0,
1888 0x1fb00, 0x1fb84,
1889 0x1fbc0, 0x1fbc8,
1890 0x1fc08, 0x1fc0c,
1891 0x1fc40, 0x1fc4c,
1892 0x1fe84, 0x1fe90,
1893 0x1fec0, 0x1fec0,
1894 0x1fee0, 0x1fee0,
1895 0x1ff00, 0x1ff84,
1896 0x1ffc0, 0x1ffc8,
1897 0x30000, 0x30030,
1898 0x30100, 0x30144,
1899 0x30190, 0x301d0,
1900 0x30200, 0x30318,
1901 0x30400, 0x3052c,
1902 0x30540, 0x3061c,
1903 0x30800, 0x30834,
1904 0x308c0, 0x30908,
1905 0x30910, 0x309ac,
1906 0x30a00, 0x30a04,
1907 0x30a0c, 0x30a2c,
1908 0x30a44, 0x30a50,
1909 0x30a74, 0x30c24,
1910 0x30d08, 0x30d14,
1911 0x30d1c, 0x30d20,
1912 0x30d3c, 0x30d50,
1913 0x31200, 0x3120c,
1914 0x31220, 0x31220,
1915 0x31240, 0x31240,
1916 0x31600, 0x31600,
1917 0x31608, 0x3160c,
1918 0x31a00, 0x31a1c,
1919 0x31e04, 0x31e20,
1920 0x31e38, 0x31e3c,
1921 0x31e80, 0x31e80,
1922 0x31e88, 0x31ea8,
1923 0x31eb0, 0x31eb4,
1924 0x31ec8, 0x31ed4,
1925 0x31fb8, 0x32004,
1926 0x32208, 0x3223c,
1927 0x32600, 0x32630,
1928 0x32a00, 0x32abc,
1929 0x32b00, 0x32b70,
1930 0x33000, 0x33048,
1931 0x33060, 0x3309c,
1932 0x330f0, 0x33148,
1933 0x33160, 0x3319c,
1934 0x331f0, 0x332e4,
1935 0x332f8, 0x333e4,
1936 0x333f8, 0x33448,
1937 0x33460, 0x3349c,
1938 0x334f0, 0x33548,
1939 0x33560, 0x3359c,
1940 0x335f0, 0x336e4,
1941 0x336f8, 0x337e4,
1942 0x337f8, 0x337fc,
1943 0x33814, 0x33814,
1944 0x3382c, 0x3382c,
1945 0x33880, 0x3388c,
1946 0x338e8, 0x338ec,
1947 0x33900, 0x33948,
1948 0x33960, 0x3399c,
1949 0x339f0, 0x33ae4,
1950 0x33af8, 0x33b10,
1951 0x33b28, 0x33b28,
1952 0x33b3c, 0x33b50,
1953 0x33bf0, 0x33c10,
1954 0x33c28, 0x33c28,
1955 0x33c3c, 0x33c50,
1956 0x33cf0, 0x33cfc,
1957 0x34000, 0x34030,
1958 0x34100, 0x34144,
1959 0x34190, 0x341d0,
1960 0x34200, 0x34318,
1961 0x34400, 0x3452c,
1962 0x34540, 0x3461c,
1963 0x34800, 0x34834,
1964 0x348c0, 0x34908,
1965 0x34910, 0x349ac,
1966 0x34a00, 0x34a04,
1967 0x34a0c, 0x34a2c,
1968 0x34a44, 0x34a50,
1969 0x34a74, 0x34c24,
1970 0x34d08, 0x34d14,
1971 0x34d1c, 0x34d20,
1972 0x34d3c, 0x34d50,
1973 0x35200, 0x3520c,
1974 0x35220, 0x35220,
1975 0x35240, 0x35240,
1976 0x35600, 0x35600,
1977 0x35608, 0x3560c,
1978 0x35a00, 0x35a1c,
1979 0x35e04, 0x35e20,
1980 0x35e38, 0x35e3c,
1981 0x35e80, 0x35e80,
1982 0x35e88, 0x35ea8,
1983 0x35eb0, 0x35eb4,
1984 0x35ec8, 0x35ed4,
1985 0x35fb8, 0x36004,
1986 0x36208, 0x3623c,
1987 0x36600, 0x36630,
1988 0x36a00, 0x36abc,
1989 0x36b00, 0x36b70,
1990 0x37000, 0x37048,
1991 0x37060, 0x3709c,
1992 0x370f0, 0x37148,
1993 0x37160, 0x3719c,
1994 0x371f0, 0x372e4,
1995 0x372f8, 0x373e4,
1996 0x373f8, 0x37448,
1997 0x37460, 0x3749c,
1998 0x374f0, 0x37548,
1999 0x37560, 0x3759c,
2000 0x375f0, 0x376e4,
2001 0x376f8, 0x377e4,
2002 0x377f8, 0x377fc,
2003 0x37814, 0x37814,
2004 0x3782c, 0x3782c,
2005 0x37880, 0x3788c,
2006 0x378e8, 0x378ec,
2007 0x37900, 0x37948,
2008 0x37960, 0x3799c,
2009 0x379f0, 0x37ae4,
2010 0x37af8, 0x37b10,
2011 0x37b28, 0x37b28,
2012 0x37b3c, 0x37b50,
2013 0x37bf0, 0x37c10,
2014 0x37c28, 0x37c28,
2015 0x37c3c, 0x37c50,
2016 0x37cf0, 0x37cfc,
2017 0x38000, 0x38030,
2018 0x38100, 0x38144,
2019 0x38190, 0x381d0,
2020 0x38200, 0x38318,
2021 0x38400, 0x3852c,
2022 0x38540, 0x3861c,
2023 0x38800, 0x38834,
2024 0x388c0, 0x38908,
2025 0x38910, 0x389ac,
2026 0x38a00, 0x38a04,
2027 0x38a0c, 0x38a2c,
2028 0x38a44, 0x38a50,
2029 0x38a74, 0x38c24,
2030 0x38d08, 0x38d14,
2031 0x38d1c, 0x38d20,
2032 0x38d3c, 0x38d50,
2033 0x39200, 0x3920c,
2034 0x39220, 0x39220,
2035 0x39240, 0x39240,
2036 0x39600, 0x39600,
2037 0x39608, 0x3960c,
2038 0x39a00, 0x39a1c,
2039 0x39e04, 0x39e20,
2040 0x39e38, 0x39e3c,
2041 0x39e80, 0x39e80,
2042 0x39e88, 0x39ea8,
2043 0x39eb0, 0x39eb4,
2044 0x39ec8, 0x39ed4,
2045 0x39fb8, 0x3a004,
2046 0x3a208, 0x3a23c,
2047 0x3a600, 0x3a630,
2048 0x3aa00, 0x3aabc,
2049 0x3ab00, 0x3ab70,
2050 0x3b000, 0x3b048,
2051 0x3b060, 0x3b09c,
2052 0x3b0f0, 0x3b148,
2053 0x3b160, 0x3b19c,
2054 0x3b1f0, 0x3b2e4,
2055 0x3b2f8, 0x3b3e4,
2056 0x3b3f8, 0x3b448,
2057 0x3b460, 0x3b49c,
2058 0x3b4f0, 0x3b548,
2059 0x3b560, 0x3b59c,
2060 0x3b5f0, 0x3b6e4,
2061 0x3b6f8, 0x3b7e4,
2062 0x3b7f8, 0x3b7fc,
2063 0x3b814, 0x3b814,
2064 0x3b82c, 0x3b82c,
2065 0x3b880, 0x3b88c,
2066 0x3b8e8, 0x3b8ec,
2067 0x3b900, 0x3b948,
2068 0x3b960, 0x3b99c,
2069 0x3b9f0, 0x3bae4,
2070 0x3baf8, 0x3bb10,
2071 0x3bb28, 0x3bb28,
2072 0x3bb3c, 0x3bb50,
2073 0x3bbf0, 0x3bc10,
2074 0x3bc28, 0x3bc28,
2075 0x3bc3c, 0x3bc50,
2076 0x3bcf0, 0x3bcfc,
2077 0x3c000, 0x3c030,
2078 0x3c100, 0x3c144,
2079 0x3c190, 0x3c1d0,
2080 0x3c200, 0x3c318,
2081 0x3c400, 0x3c52c,
2082 0x3c540, 0x3c61c,
2083 0x3c800, 0x3c834,
2084 0x3c8c0, 0x3c908,
2085 0x3c910, 0x3c9ac,
2086 0x3ca00, 0x3ca04,
2087 0x3ca0c, 0x3ca2c,
2088 0x3ca44, 0x3ca50,
2089 0x3ca74, 0x3cc24,
2090 0x3cd08, 0x3cd14,
2091 0x3cd1c, 0x3cd20,
2092 0x3cd3c, 0x3cd50,
2093 0x3d200, 0x3d20c,
2094 0x3d220, 0x3d220,
2095 0x3d240, 0x3d240,
2096 0x3d600, 0x3d600,
2097 0x3d608, 0x3d60c,
2098 0x3da00, 0x3da1c,
2099 0x3de04, 0x3de20,
2100 0x3de38, 0x3de3c,
2101 0x3de80, 0x3de80,
2102 0x3de88, 0x3dea8,
2103 0x3deb0, 0x3deb4,
2104 0x3dec8, 0x3ded4,
2105 0x3dfb8, 0x3e004,
2106 0x3e208, 0x3e23c,
2107 0x3e600, 0x3e630,
2108 0x3ea00, 0x3eabc,
2109 0x3eb00, 0x3eb70,
2110 0x3f000, 0x3f048,
2111 0x3f060, 0x3f09c,
2112 0x3f0f0, 0x3f148,
2113 0x3f160, 0x3f19c,
2114 0x3f1f0, 0x3f2e4,
2115 0x3f2f8, 0x3f3e4,
2116 0x3f3f8, 0x3f448,
2117 0x3f460, 0x3f49c,
2118 0x3f4f0, 0x3f548,
2119 0x3f560, 0x3f59c,
2120 0x3f5f0, 0x3f6e4,
2121 0x3f6f8, 0x3f7e4,
2122 0x3f7f8, 0x3f7fc,
2123 0x3f814, 0x3f814,
2124 0x3f82c, 0x3f82c,
2125 0x3f880, 0x3f88c,
2126 0x3f8e8, 0x3f8ec,
2127 0x3f900, 0x3f948,
2128 0x3f960, 0x3f99c,
2129 0x3f9f0, 0x3fae4,
2130 0x3faf8, 0x3fb10,
2131 0x3fb28, 0x3fb28,
2132 0x3fb3c, 0x3fb50,
2133 0x3fbf0, 0x3fc10,
2134 0x3fc28, 0x3fc28,
2135 0x3fc3c, 0x3fc50,
2136 0x3fcf0, 0x3fcfc,
2137 0x40000, 0x4000c,
2138 0x40040, 0x40068,
2139 0x40080, 0x40144,
2140 0x40180, 0x4018c,
2141 0x40200, 0x40298,
2142 0x402ac, 0x4033c,
2143 0x403f8, 0x403fc,
c1f49e3e 2144 0x41304, 0x413c4,
251f9e88
SR
2145 0x41400, 0x4141c,
2146 0x41480, 0x414d0,
2147 0x44000, 0x44078,
2148 0x440c0, 0x44278,
2149 0x442c0, 0x44478,
2150 0x444c0, 0x44678,
2151 0x446c0, 0x44878,
2152 0x448c0, 0x449fc,
2153 0x45000, 0x45068,
2154 0x45080, 0x45084,
2155 0x450a0, 0x450b0,
2156 0x45200, 0x45268,
2157 0x45280, 0x45284,
2158 0x452a0, 0x452b0,
2159 0x460c0, 0x460e4,
2160 0x47000, 0x4708c,
2161 0x47200, 0x47250,
2162 0x47400, 0x47420,
2163 0x47600, 0x47618,
2164 0x47800, 0x47814,
2165 0x48000, 0x4800c,
2166 0x48040, 0x48068,
2167 0x48080, 0x48144,
2168 0x48180, 0x4818c,
2169 0x48200, 0x48298,
2170 0x482ac, 0x4833c,
2171 0x483f8, 0x483fc,
c1f49e3e 2172 0x49304, 0x493c4,
251f9e88
SR
2173 0x49400, 0x4941c,
2174 0x49480, 0x494d0,
2175 0x4c000, 0x4c078,
2176 0x4c0c0, 0x4c278,
2177 0x4c2c0, 0x4c478,
2178 0x4c4c0, 0x4c678,
2179 0x4c6c0, 0x4c878,
2180 0x4c8c0, 0x4c9fc,
2181 0x4d000, 0x4d068,
2182 0x4d080, 0x4d084,
2183 0x4d0a0, 0x4d0b0,
2184 0x4d200, 0x4d268,
2185 0x4d280, 0x4d284,
2186 0x4d2a0, 0x4d2b0,
2187 0x4e0c0, 0x4e0e4,
2188 0x4f000, 0x4f08c,
2189 0x4f200, 0x4f250,
2190 0x4f400, 0x4f420,
2191 0x4f600, 0x4f618,
2192 0x4f800, 0x4f814,
2193 0x50000, 0x500cc,
2194 0x50400, 0x50400,
2195 0x50800, 0x508cc,
2196 0x50c00, 0x50c00,
2197 0x51000, 0x5101c,
2198 0x51300, 0x51308,
2199 };
2200
b8ff05a9
DM
2201 int i;
2202 struct adapter *ap = netdev2adap(dev);
251f9e88
SR
2203 static const unsigned int *reg_ranges;
2204 int arr_size = 0, buf_size = 0;
2205
d14807dd 2206 if (is_t4(ap->params.chip)) {
251f9e88
SR
2207 reg_ranges = &t4_reg_ranges[0];
2208 arr_size = ARRAY_SIZE(t4_reg_ranges);
2209 buf_size = T4_REGMAP_SIZE;
2210 } else {
2211 reg_ranges = &t5_reg_ranges[0];
2212 arr_size = ARRAY_SIZE(t5_reg_ranges);
2213 buf_size = T5_REGMAP_SIZE;
2214 }
b8ff05a9
DM
2215
2216 regs->version = mk_adap_vers(ap);
2217
251f9e88
SR
2218 memset(buf, 0, buf_size);
2219 for (i = 0; i < arr_size; i += 2)
b8ff05a9
DM
2220 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2221}
2222
2223static int restart_autoneg(struct net_device *dev)
2224{
2225 struct port_info *p = netdev_priv(dev);
2226
2227 if (!netif_running(dev))
2228 return -EAGAIN;
2229 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2230 return -EINVAL;
060e0c75 2231 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
b8ff05a9
DM
2232 return 0;
2233}
2234
c5e06360
DM
2235static int identify_port(struct net_device *dev,
2236 enum ethtool_phys_id_state state)
b8ff05a9 2237{
c5e06360 2238 unsigned int val;
060e0c75
DM
2239 struct adapter *adap = netdev2adap(dev);
2240
c5e06360
DM
2241 if (state == ETHTOOL_ID_ACTIVE)
2242 val = 0xffff;
2243 else if (state == ETHTOOL_ID_INACTIVE)
2244 val = 0;
2245 else
2246 return -EINVAL;
b8ff05a9 2247
c5e06360 2248 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
b8ff05a9
DM
2249}
2250
40e9de4b 2251static unsigned int from_fw_linkcaps(enum fw_port_type type, unsigned int caps)
b8ff05a9
DM
2252{
2253 unsigned int v = 0;
2254
a0881cab
DM
2255 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2256 type == FW_PORT_TYPE_BT_XAUI) {
b8ff05a9
DM
2257 v |= SUPPORTED_TP;
2258 if (caps & FW_PORT_CAP_SPEED_100M)
2259 v |= SUPPORTED_100baseT_Full;
2260 if (caps & FW_PORT_CAP_SPEED_1G)
2261 v |= SUPPORTED_1000baseT_Full;
2262 if (caps & FW_PORT_CAP_SPEED_10G)
2263 v |= SUPPORTED_10000baseT_Full;
2264 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2265 v |= SUPPORTED_Backplane;
2266 if (caps & FW_PORT_CAP_SPEED_1G)
2267 v |= SUPPORTED_1000baseKX_Full;
2268 if (caps & FW_PORT_CAP_SPEED_10G)
2269 v |= SUPPORTED_10000baseKX4_Full;
2270 } else if (type == FW_PORT_TYPE_KR)
2271 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
a0881cab 2272 else if (type == FW_PORT_TYPE_BP_AP)
7d5e77aa
DM
2273 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2274 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2275 else if (type == FW_PORT_TYPE_BP4_AP)
2276 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2277 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2278 SUPPORTED_10000baseKX4_Full;
a0881cab 2279 else if (type == FW_PORT_TYPE_FIBER_XFI ||
40e9de4b
HS
2280 type == FW_PORT_TYPE_FIBER_XAUI ||
2281 type == FW_PORT_TYPE_SFP ||
2282 type == FW_PORT_TYPE_QSFP_10G ||
2283 type == FW_PORT_TYPE_QSA) {
b8ff05a9 2284 v |= SUPPORTED_FIBRE;
4c2d5186
HS
2285 if (caps & FW_PORT_CAP_SPEED_1G)
2286 v |= SUPPORTED_1000baseT_Full;
2287 if (caps & FW_PORT_CAP_SPEED_10G)
2288 v |= SUPPORTED_10000baseT_Full;
40e9de4b
HS
2289 } else if (type == FW_PORT_TYPE_BP40_BA ||
2290 type == FW_PORT_TYPE_QSFP) {
72aca4bf 2291 v |= SUPPORTED_40000baseSR4_Full;
40e9de4b
HS
2292 v |= SUPPORTED_FIBRE;
2293 }
b8ff05a9
DM
2294
2295 if (caps & FW_PORT_CAP_ANEG)
2296 v |= SUPPORTED_Autoneg;
2297 return v;
2298}
2299
2300static unsigned int to_fw_linkcaps(unsigned int caps)
2301{
2302 unsigned int v = 0;
2303
2304 if (caps & ADVERTISED_100baseT_Full)
2305 v |= FW_PORT_CAP_SPEED_100M;
2306 if (caps & ADVERTISED_1000baseT_Full)
2307 v |= FW_PORT_CAP_SPEED_1G;
2308 if (caps & ADVERTISED_10000baseT_Full)
2309 v |= FW_PORT_CAP_SPEED_10G;
72aca4bf
KS
2310 if (caps & ADVERTISED_40000baseSR4_Full)
2311 v |= FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2312 return v;
2313}
2314
2315static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2316{
2317 const struct port_info *p = netdev_priv(dev);
2318
2319 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
a0881cab 2320 p->port_type == FW_PORT_TYPE_BT_XFI ||
b8ff05a9
DM
2321 p->port_type == FW_PORT_TYPE_BT_XAUI)
2322 cmd->port = PORT_TP;
a0881cab
DM
2323 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2324 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
b8ff05a9 2325 cmd->port = PORT_FIBRE;
3e00a509
HS
2326 else if (p->port_type == FW_PORT_TYPE_SFP ||
2327 p->port_type == FW_PORT_TYPE_QSFP_10G ||
40e9de4b 2328 p->port_type == FW_PORT_TYPE_QSA ||
3e00a509
HS
2329 p->port_type == FW_PORT_TYPE_QSFP) {
2330 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2331 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2332 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2333 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2334 cmd->port = PORT_FIBRE;
2335 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2336 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
a0881cab
DM
2337 cmd->port = PORT_DA;
2338 else
3e00a509 2339 cmd->port = PORT_OTHER;
a0881cab 2340 } else
b8ff05a9
DM
2341 cmd->port = PORT_OTHER;
2342
2343 if (p->mdio_addr >= 0) {
2344 cmd->phy_address = p->mdio_addr;
2345 cmd->transceiver = XCVR_EXTERNAL;
2346 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2347 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2348 } else {
2349 cmd->phy_address = 0; /* not really, but no better option */
2350 cmd->transceiver = XCVR_INTERNAL;
2351 cmd->mdio_support = 0;
2352 }
2353
2354 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2355 cmd->advertising = from_fw_linkcaps(p->port_type,
2356 p->link_cfg.advertising);
70739497
DD
2357 ethtool_cmd_speed_set(cmd,
2358 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
b8ff05a9
DM
2359 cmd->duplex = DUPLEX_FULL;
2360 cmd->autoneg = p->link_cfg.autoneg;
2361 cmd->maxtxpkt = 0;
2362 cmd->maxrxpkt = 0;
2363 return 0;
2364}
2365
2366static unsigned int speed_to_caps(int speed)
2367{
e8b39015 2368 if (speed == 100)
b8ff05a9 2369 return FW_PORT_CAP_SPEED_100M;
e8b39015 2370 if (speed == 1000)
b8ff05a9 2371 return FW_PORT_CAP_SPEED_1G;
e8b39015 2372 if (speed == 10000)
b8ff05a9 2373 return FW_PORT_CAP_SPEED_10G;
e8b39015 2374 if (speed == 40000)
72aca4bf 2375 return FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2376 return 0;
2377}
2378
2379static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2380{
2381 unsigned int cap;
2382 struct port_info *p = netdev_priv(dev);
2383 struct link_config *lc = &p->link_cfg;
25db0338 2384 u32 speed = ethtool_cmd_speed(cmd);
b8ff05a9
DM
2385
2386 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2387 return -EINVAL;
2388
2389 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2390 /*
2391 * PHY offers a single speed. See if that's what's
2392 * being requested.
2393 */
2394 if (cmd->autoneg == AUTONEG_DISABLE &&
25db0338
DD
2395 (lc->supported & speed_to_caps(speed)))
2396 return 0;
b8ff05a9
DM
2397 return -EINVAL;
2398 }
2399
2400 if (cmd->autoneg == AUTONEG_DISABLE) {
25db0338 2401 cap = speed_to_caps(speed);
b8ff05a9 2402
72aca4bf 2403 if (!(lc->supported & cap) ||
e8b39015
BH
2404 (speed == 1000) ||
2405 (speed == 10000) ||
72aca4bf 2406 (speed == 40000))
b8ff05a9
DM
2407 return -EINVAL;
2408 lc->requested_speed = cap;
2409 lc->advertising = 0;
2410 } else {
2411 cap = to_fw_linkcaps(cmd->advertising);
2412 if (!(lc->supported & cap))
2413 return -EINVAL;
2414 lc->requested_speed = 0;
2415 lc->advertising = cap | FW_PORT_CAP_ANEG;
2416 }
2417 lc->autoneg = cmd->autoneg;
2418
2419 if (netif_running(dev))
060e0c75
DM
2420 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2421 lc);
b8ff05a9
DM
2422 return 0;
2423}
2424
2425static void get_pauseparam(struct net_device *dev,
2426 struct ethtool_pauseparam *epause)
2427{
2428 struct port_info *p = netdev_priv(dev);
2429
2430 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2431 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2432 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2433}
2434
2435static int set_pauseparam(struct net_device *dev,
2436 struct ethtool_pauseparam *epause)
2437{
2438 struct port_info *p = netdev_priv(dev);
2439 struct link_config *lc = &p->link_cfg;
2440
2441 if (epause->autoneg == AUTONEG_DISABLE)
2442 lc->requested_fc = 0;
2443 else if (lc->supported & FW_PORT_CAP_ANEG)
2444 lc->requested_fc = PAUSE_AUTONEG;
2445 else
2446 return -EINVAL;
2447
2448 if (epause->rx_pause)
2449 lc->requested_fc |= PAUSE_RX;
2450 if (epause->tx_pause)
2451 lc->requested_fc |= PAUSE_TX;
2452 if (netif_running(dev))
060e0c75
DM
2453 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2454 lc);
b8ff05a9
DM
2455 return 0;
2456}
2457
b8ff05a9
DM
2458static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2459{
2460 const struct port_info *pi = netdev_priv(dev);
2461 const struct sge *s = &pi->adapter->sge;
2462
2463 e->rx_max_pending = MAX_RX_BUFFERS;
2464 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2465 e->rx_jumbo_max_pending = 0;
2466 e->tx_max_pending = MAX_TXQ_ENTRIES;
2467
2468 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2469 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2470 e->rx_jumbo_pending = 0;
2471 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2472}
2473
2474static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2475{
2476 int i;
2477 const struct port_info *pi = netdev_priv(dev);
2478 struct adapter *adapter = pi->adapter;
2479 struct sge *s = &adapter->sge;
2480
2481 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2482 e->tx_pending > MAX_TXQ_ENTRIES ||
2483 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2484 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2485 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2486 return -EINVAL;
2487
2488 if (adapter->flags & FULL_INIT_DONE)
2489 return -EBUSY;
2490
2491 for (i = 0; i < pi->nqsets; ++i) {
2492 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2493 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2494 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2495 }
2496 return 0;
2497}
2498
2499static int closest_timer(const struct sge *s, int time)
2500{
2501 int i, delta, match = 0, min_delta = INT_MAX;
2502
2503 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2504 delta = time - s->timer_val[i];
2505 if (delta < 0)
2506 delta = -delta;
2507 if (delta < min_delta) {
2508 min_delta = delta;
2509 match = i;
2510 }
2511 }
2512 return match;
2513}
2514
2515static int closest_thres(const struct sge *s, int thres)
2516{
2517 int i, delta, match = 0, min_delta = INT_MAX;
2518
2519 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2520 delta = thres - s->counter_val[i];
2521 if (delta < 0)
2522 delta = -delta;
2523 if (delta < min_delta) {
2524 min_delta = delta;
2525 match = i;
2526 }
2527 }
2528 return match;
2529}
2530
2531/*
2532 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2533 */
dc9daab2
HS
2534unsigned int qtimer_val(const struct adapter *adap,
2535 const struct sge_rspq *q)
b8ff05a9
DM
2536{
2537 unsigned int idx = q->intr_params >> 1;
2538
2539 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2540}
2541
2542/**
c887ad0e 2543 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
2544 * @q: the Rx queue
2545 * @us: the hold-off time in us, or 0 to disable timer
2546 * @cnt: the hold-off packet count, or 0 to disable counter
2547 *
2548 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2549 * one of the two needs to be enabled for the queue to generate interrupts.
2550 */
c887ad0e
HS
2551static int set_rspq_intr_params(struct sge_rspq *q,
2552 unsigned int us, unsigned int cnt)
b8ff05a9 2553{
c887ad0e
HS
2554 struct adapter *adap = q->adap;
2555
b8ff05a9
DM
2556 if ((us | cnt) == 0)
2557 cnt = 1;
2558
2559 if (cnt) {
2560 int err;
2561 u32 v, new_idx;
2562
2563 new_idx = closest_thres(&adap->sge, cnt);
2564 if (q->desc && q->pktcnt_idx != new_idx) {
2565 /* the queue has already been created, update it */
5167865a
HS
2566 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2567 FW_PARAMS_PARAM_X_V(
2568 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2569 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
060e0c75
DM
2570 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2571 &new_idx);
b8ff05a9
DM
2572 if (err)
2573 return err;
2574 }
2575 q->pktcnt_idx = new_idx;
2576 }
2577
2578 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2579 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2580 return 0;
2581}
2582
c887ad0e
HS
2583/**
2584 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2585 * @dev: the network device
2586 * @us: the hold-off time in us, or 0 to disable timer
2587 * @cnt: the hold-off packet count, or 0 to disable counter
2588 *
2589 * Set the RX interrupt hold-off parameters for a network device.
2590 */
2591static int set_rx_intr_params(struct net_device *dev,
2592 unsigned int us, unsigned int cnt)
b8ff05a9 2593{
c887ad0e
HS
2594 int i, err;
2595 struct port_info *pi = netdev_priv(dev);
b8ff05a9 2596 struct adapter *adap = pi->adapter;
c887ad0e
HS
2597 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2598
2599 for (i = 0; i < pi->nqsets; i++, q++) {
2600 err = set_rspq_intr_params(&q->rspq, us, cnt);
2601 if (err)
2602 return err;
d4fc9dc2 2603 }
c887ad0e
HS
2604 return 0;
2605}
2606
e553ec3f
HS
2607static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2608{
2609 int i;
2610 struct port_info *pi = netdev_priv(dev);
2611 struct adapter *adap = pi->adapter;
2612 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2613
2614 for (i = 0; i < pi->nqsets; i++, q++)
2615 q->rspq.adaptive_rx = adaptive_rx;
2616
2617 return 0;
2618}
2619
2620static int get_adaptive_rx_setting(struct net_device *dev)
2621{
2622 struct port_info *pi = netdev_priv(dev);
2623 struct adapter *adap = pi->adapter;
2624 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2625
2626 return q->rspq.adaptive_rx;
2627}
2628
c887ad0e
HS
2629static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2630{
e553ec3f 2631 set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
c887ad0e
HS
2632 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2633 c->rx_max_coalesced_frames);
b8ff05a9
DM
2634}
2635
2636static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2637{
2638 const struct port_info *pi = netdev_priv(dev);
2639 const struct adapter *adap = pi->adapter;
2640 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2641
2642 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2643 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2644 adap->sge.counter_val[rq->pktcnt_idx] : 0;
e553ec3f 2645 c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
b8ff05a9
DM
2646 return 0;
2647}
2648
1478b3ee
DM
2649/**
2650 * eeprom_ptov - translate a physical EEPROM address to virtual
2651 * @phys_addr: the physical EEPROM address
2652 * @fn: the PCI function number
2653 * @sz: size of function-specific area
2654 *
2655 * Translate a physical EEPROM address to virtual. The first 1K is
2656 * accessed through virtual addresses starting at 31K, the rest is
2657 * accessed through virtual addresses starting at 0.
2658 *
2659 * The mapping is as follows:
2660 * [0..1K) -> [31K..32K)
2661 * [1K..1K+A) -> [31K-A..31K)
2662 * [1K+A..ES) -> [0..ES-A-1K)
2663 *
2664 * where A = @fn * @sz, and ES = EEPROM size.
b8ff05a9 2665 */
1478b3ee 2666static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
b8ff05a9 2667{
1478b3ee 2668 fn *= sz;
b8ff05a9
DM
2669 if (phys_addr < 1024)
2670 return phys_addr + (31 << 10);
1478b3ee
DM
2671 if (phys_addr < 1024 + fn)
2672 return 31744 - fn + phys_addr - 1024;
b8ff05a9 2673 if (phys_addr < EEPROMSIZE)
1478b3ee 2674 return phys_addr - 1024 - fn;
b8ff05a9
DM
2675 return -EINVAL;
2676}
2677
2678/*
2679 * The next two routines implement eeprom read/write from physical addresses.
b8ff05a9
DM
2680 */
2681static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2682{
1478b3ee 2683 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2684
2685 if (vaddr >= 0)
2686 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2687 return vaddr < 0 ? vaddr : 0;
2688}
2689
2690static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2691{
1478b3ee 2692 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2693
2694 if (vaddr >= 0)
2695 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2696 return vaddr < 0 ? vaddr : 0;
2697}
2698
2699#define EEPROM_MAGIC 0x38E2F10C
2700
2701static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2702 u8 *data)
2703{
2704 int i, err = 0;
2705 struct adapter *adapter = netdev2adap(dev);
2706
2707 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2708 if (!buf)
2709 return -ENOMEM;
2710
2711 e->magic = EEPROM_MAGIC;
2712 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2713 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2714
2715 if (!err)
2716 memcpy(data, buf + e->offset, e->len);
2717 kfree(buf);
2718 return err;
2719}
2720
2721static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2722 u8 *data)
2723{
2724 u8 *buf;
2725 int err = 0;
2726 u32 aligned_offset, aligned_len, *p;
2727 struct adapter *adapter = netdev2adap(dev);
2728
2729 if (eeprom->magic != EEPROM_MAGIC)
2730 return -EINVAL;
2731
2732 aligned_offset = eeprom->offset & ~3;
2733 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2734
1478b3ee
DM
2735 if (adapter->fn > 0) {
2736 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2737
2738 if (aligned_offset < start ||
2739 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2740 return -EPERM;
2741 }
2742
b8ff05a9
DM
2743 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2744 /*
2745 * RMW possibly needed for first or last words.
2746 */
2747 buf = kmalloc(aligned_len, GFP_KERNEL);
2748 if (!buf)
2749 return -ENOMEM;
2750 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2751 if (!err && aligned_len > 4)
2752 err = eeprom_rd_phys(adapter,
2753 aligned_offset + aligned_len - 4,
2754 (u32 *)&buf[aligned_len - 4]);
2755 if (err)
2756 goto out;
2757 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2758 } else
2759 buf = data;
2760
2761 err = t4_seeprom_wp(adapter, false);
2762 if (err)
2763 goto out;
2764
2765 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2766 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2767 aligned_offset += 4;
2768 }
2769
2770 if (!err)
2771 err = t4_seeprom_wp(adapter, true);
2772out:
2773 if (buf != data)
2774 kfree(buf);
2775 return err;
2776}
2777
2778static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2779{
2780 int ret;
2781 const struct firmware *fw;
2782 struct adapter *adap = netdev2adap(netdev);
b2e1a3f0 2783 unsigned int mbox = PCIE_FW_MASTER_M + 1;
b8ff05a9
DM
2784
2785 ef->data[sizeof(ef->data) - 1] = '\0';
2786 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2787 if (ret < 0)
2788 return ret;
2789
22c0b963
HS
2790 /* If the adapter has been fully initialized then we'll go ahead and
2791 * try to get the firmware's cooperation in upgrading to the new
2792 * firmware image otherwise we'll try to do the entire job from the
2793 * host ... and we always "force" the operation in this path.
2794 */
2795 if (adap->flags & FULL_INIT_DONE)
2796 mbox = adap->mbox;
2797
2798 ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
b8ff05a9
DM
2799 release_firmware(fw);
2800 if (!ret)
22c0b963
HS
2801 dev_info(adap->pdev_dev, "loaded firmware %s,"
2802 " reload cxgb4 driver\n", ef->data);
b8ff05a9
DM
2803 return ret;
2804}
2805
2806#define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2807#define BCAST_CRC 0xa0ccc1a6
2808
2809static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2810{
2811 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2812 wol->wolopts = netdev2adap(dev)->wol;
2813 memset(&wol->sopass, 0, sizeof(wol->sopass));
2814}
2815
2816static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2817{
2818 int err = 0;
2819 struct port_info *pi = netdev_priv(dev);
2820
2821 if (wol->wolopts & ~WOL_SUPPORTED)
2822 return -EINVAL;
2823 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2824 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2825 if (wol->wolopts & WAKE_BCAST) {
2826 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2827 ~0ULL, 0, false);
2828 if (!err)
2829 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2830 ~6ULL, ~0ULL, BCAST_CRC, true);
2831 } else
2832 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2833 return err;
2834}
2835
c8f44aff 2836static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 2837{
2ed28baa 2838 const struct port_info *pi = netdev_priv(dev);
c8f44aff 2839 netdev_features_t changed = dev->features ^ features;
19ecae2c 2840 int err;
19ecae2c 2841
f646968f 2842 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 2843 return 0;
19ecae2c 2844
2ed28baa
MM
2845 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2846 -1, -1, -1,
f646968f 2847 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 2848 if (unlikely(err))
f646968f 2849 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 2850 return err;
87b6cf51
DM
2851}
2852
7850f63f 2853static u32 get_rss_table_size(struct net_device *dev)
671b0060
DM
2854{
2855 const struct port_info *pi = netdev_priv(dev);
671b0060 2856
7850f63f
BH
2857 return pi->rss_size;
2858}
2859
892311f6 2860static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc)
7850f63f
BH
2861{
2862 const struct port_info *pi = netdev_priv(dev);
2863 unsigned int n = pi->rss_size;
2864
892311f6
EP
2865 if (hfunc)
2866 *hfunc = ETH_RSS_HASH_TOP;
2867 if (!p)
2868 return 0;
671b0060 2869 while (n--)
7850f63f 2870 p[n] = pi->rss[n];
671b0060
DM
2871 return 0;
2872}
2873
892311f6
EP
2874static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key,
2875 const u8 hfunc)
671b0060
DM
2876{
2877 unsigned int i;
2878 struct port_info *pi = netdev_priv(dev);
2879
892311f6
EP
2880 /* We require at least one supported parameter to be changed and no
2881 * change in any of the unsupported parameters
2882 */
2883 if (key ||
2884 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
2885 return -EOPNOTSUPP;
2886 if (!p)
2887 return 0;
2888
7850f63f
BH
2889 for (i = 0; i < pi->rss_size; i++)
2890 pi->rss[i] = p[i];
671b0060
DM
2891 if (pi->adapter->flags & FULL_INIT_DONE)
2892 return write_rss(pi, pi->rss);
2893 return 0;
2894}
2895
2896static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
815c7db5 2897 u32 *rules)
671b0060 2898{
f796564a
DM
2899 const struct port_info *pi = netdev_priv(dev);
2900
671b0060 2901 switch (info->cmd) {
f796564a
DM
2902 case ETHTOOL_GRXFH: {
2903 unsigned int v = pi->rss_mode;
2904
2905 info->data = 0;
2906 switch (info->flow_type) {
2907 case TCP_V4_FLOW:
b2e1a3f0 2908 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F)
f796564a
DM
2909 info->data = RXH_IP_SRC | RXH_IP_DST |
2910 RXH_L4_B_0_1 | RXH_L4_B_2_3;
b2e1a3f0 2911 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
f796564a
DM
2912 info->data = RXH_IP_SRC | RXH_IP_DST;
2913 break;
2914 case UDP_V4_FLOW:
b2e1a3f0
HS
2915 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) &&
2916 (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
f796564a
DM
2917 info->data = RXH_IP_SRC | RXH_IP_DST |
2918 RXH_L4_B_0_1 | RXH_L4_B_2_3;
b2e1a3f0 2919 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
f796564a
DM
2920 info->data = RXH_IP_SRC | RXH_IP_DST;
2921 break;
2922 case SCTP_V4_FLOW:
2923 case AH_ESP_V4_FLOW:
2924 case IPV4_FLOW:
b2e1a3f0 2925 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
f796564a
DM
2926 info->data = RXH_IP_SRC | RXH_IP_DST;
2927 break;
2928 case TCP_V6_FLOW:
b2e1a3f0 2929 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F)
f796564a
DM
2930 info->data = RXH_IP_SRC | RXH_IP_DST |
2931 RXH_L4_B_0_1 | RXH_L4_B_2_3;
b2e1a3f0 2932 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
f796564a
DM
2933 info->data = RXH_IP_SRC | RXH_IP_DST;
2934 break;
2935 case UDP_V6_FLOW:
b2e1a3f0
HS
2936 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) &&
2937 (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
f796564a
DM
2938 info->data = RXH_IP_SRC | RXH_IP_DST |
2939 RXH_L4_B_0_1 | RXH_L4_B_2_3;
b2e1a3f0 2940 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
f796564a
DM
2941 info->data = RXH_IP_SRC | RXH_IP_DST;
2942 break;
2943 case SCTP_V6_FLOW:
2944 case AH_ESP_V6_FLOW:
2945 case IPV6_FLOW:
b2e1a3f0 2946 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
f796564a
DM
2947 info->data = RXH_IP_SRC | RXH_IP_DST;
2948 break;
2949 }
2950 return 0;
2951 }
671b0060 2952 case ETHTOOL_GRXRINGS:
f796564a 2953 info->data = pi->nqsets;
671b0060
DM
2954 return 0;
2955 }
2956 return -EOPNOTSUPP;
2957}
2958
9b07be4b 2959static const struct ethtool_ops cxgb_ethtool_ops = {
b8ff05a9
DM
2960 .get_settings = get_settings,
2961 .set_settings = set_settings,
2962 .get_drvinfo = get_drvinfo,
2963 .get_msglevel = get_msglevel,
2964 .set_msglevel = set_msglevel,
2965 .get_ringparam = get_sge_param,
2966 .set_ringparam = set_sge_param,
2967 .get_coalesce = get_coalesce,
2968 .set_coalesce = set_coalesce,
2969 .get_eeprom_len = get_eeprom_len,
2970 .get_eeprom = get_eeprom,
2971 .set_eeprom = set_eeprom,
2972 .get_pauseparam = get_pauseparam,
2973 .set_pauseparam = set_pauseparam,
b8ff05a9
DM
2974 .get_link = ethtool_op_get_link,
2975 .get_strings = get_strings,
c5e06360 2976 .set_phys_id = identify_port,
b8ff05a9
DM
2977 .nway_reset = restart_autoneg,
2978 .get_sset_count = get_sset_count,
2979 .get_ethtool_stats = get_stats,
2980 .get_regs_len = get_regs_len,
2981 .get_regs = get_regs,
2982 .get_wol = get_wol,
2983 .set_wol = set_wol,
671b0060 2984 .get_rxnfc = get_rxnfc,
7850f63f 2985 .get_rxfh_indir_size = get_rss_table_size,
fe62d001
BH
2986 .get_rxfh = get_rss_table,
2987 .set_rxfh = set_rss_table,
b8ff05a9
DM
2988 .flash_device = set_flash,
2989};
2990
91744948 2991static int setup_debugfs(struct adapter *adap)
b8ff05a9 2992{
b8ff05a9
DM
2993 if (IS_ERR_OR_NULL(adap->debugfs_root))
2994 return -1;
2995
fd88b31a
HS
2996#ifdef CONFIG_DEBUG_FS
2997 t4_setup_debugfs(adap);
2998#endif
b8ff05a9
DM
2999 return 0;
3000}
3001
3002/*
3003 * upper-layer driver support
3004 */
3005
3006/*
3007 * Allocate an active-open TID and set it to the supplied value.
3008 */
3009int cxgb4_alloc_atid(struct tid_info *t, void *data)
3010{
3011 int atid = -1;
3012
3013 spin_lock_bh(&t->atid_lock);
3014 if (t->afree) {
3015 union aopen_entry *p = t->afree;
3016
f2b7e78d 3017 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
3018 t->afree = p->next;
3019 p->data = data;
3020 t->atids_in_use++;
3021 }
3022 spin_unlock_bh(&t->atid_lock);
3023 return atid;
3024}
3025EXPORT_SYMBOL(cxgb4_alloc_atid);
3026
3027/*
3028 * Release an active-open TID.
3029 */
3030void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3031{
f2b7e78d 3032 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
3033
3034 spin_lock_bh(&t->atid_lock);
3035 p->next = t->afree;
3036 t->afree = p;
3037 t->atids_in_use--;
3038 spin_unlock_bh(&t->atid_lock);
3039}
3040EXPORT_SYMBOL(cxgb4_free_atid);
3041
3042/*
3043 * Allocate a server TID and set it to the supplied value.
3044 */
3045int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3046{
3047 int stid;
3048
3049 spin_lock_bh(&t->stid_lock);
3050 if (family == PF_INET) {
3051 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3052 if (stid < t->nstids)
3053 __set_bit(stid, t->stid_bmap);
3054 else
3055 stid = -1;
3056 } else {
3057 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3058 if (stid < 0)
3059 stid = -1;
3060 }
3061 if (stid >= 0) {
3062 t->stid_tab[stid].data = data;
3063 stid += t->stid_base;
15f63b74
KS
3064 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3065 * This is equivalent to 4 TIDs. With CLIP enabled it
3066 * needs 2 TIDs.
3067 */
3068 if (family == PF_INET)
3069 t->stids_in_use++;
3070 else
3071 t->stids_in_use += 4;
b8ff05a9
DM
3072 }
3073 spin_unlock_bh(&t->stid_lock);
3074 return stid;
3075}
3076EXPORT_SYMBOL(cxgb4_alloc_stid);
3077
dca4faeb
VP
3078/* Allocate a server filter TID and set it to the supplied value.
3079 */
3080int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3081{
3082 int stid;
3083
3084 spin_lock_bh(&t->stid_lock);
3085 if (family == PF_INET) {
3086 stid = find_next_zero_bit(t->stid_bmap,
3087 t->nstids + t->nsftids, t->nstids);
3088 if (stid < (t->nstids + t->nsftids))
3089 __set_bit(stid, t->stid_bmap);
3090 else
3091 stid = -1;
3092 } else {
3093 stid = -1;
3094 }
3095 if (stid >= 0) {
3096 t->stid_tab[stid].data = data;
470c60c4
KS
3097 stid -= t->nstids;
3098 stid += t->sftid_base;
dca4faeb
VP
3099 t->stids_in_use++;
3100 }
3101 spin_unlock_bh(&t->stid_lock);
3102 return stid;
3103}
3104EXPORT_SYMBOL(cxgb4_alloc_sftid);
3105
3106/* Release a server TID.
b8ff05a9
DM
3107 */
3108void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3109{
470c60c4
KS
3110 /* Is it a server filter TID? */
3111 if (t->nsftids && (stid >= t->sftid_base)) {
3112 stid -= t->sftid_base;
3113 stid += t->nstids;
3114 } else {
3115 stid -= t->stid_base;
3116 }
3117
b8ff05a9
DM
3118 spin_lock_bh(&t->stid_lock);
3119 if (family == PF_INET)
3120 __clear_bit(stid, t->stid_bmap);
3121 else
3122 bitmap_release_region(t->stid_bmap, stid, 2);
3123 t->stid_tab[stid].data = NULL;
15f63b74
KS
3124 if (family == PF_INET)
3125 t->stids_in_use--;
3126 else
3127 t->stids_in_use -= 4;
b8ff05a9
DM
3128 spin_unlock_bh(&t->stid_lock);
3129}
3130EXPORT_SYMBOL(cxgb4_free_stid);
3131
3132/*
3133 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3134 */
3135static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3136 unsigned int tid)
3137{
3138 struct cpl_tid_release *req;
3139
3140 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3141 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3142 INIT_TP_WR(req, tid);
3143 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3144}
3145
3146/*
3147 * Queue a TID release request and if necessary schedule a work queue to
3148 * process it.
3149 */
31b9c19b 3150static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3151 unsigned int tid)
b8ff05a9
DM
3152{
3153 void **p = &t->tid_tab[tid];
3154 struct adapter *adap = container_of(t, struct adapter, tids);
3155
3156 spin_lock_bh(&adap->tid_release_lock);
3157 *p = adap->tid_release_head;
3158 /* Low 2 bits encode the Tx channel number */
3159 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3160 if (!adap->tid_release_task_busy) {
3161 adap->tid_release_task_busy = true;
29aaee65 3162 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
3163 }
3164 spin_unlock_bh(&adap->tid_release_lock);
3165}
b8ff05a9
DM
3166
3167/*
3168 * Process the list of pending TID release requests.
3169 */
3170static void process_tid_release_list(struct work_struct *work)
3171{
3172 struct sk_buff *skb;
3173 struct adapter *adap;
3174
3175 adap = container_of(work, struct adapter, tid_release_task);
3176
3177 spin_lock_bh(&adap->tid_release_lock);
3178 while (adap->tid_release_head) {
3179 void **p = adap->tid_release_head;
3180 unsigned int chan = (uintptr_t)p & 3;
3181 p = (void *)p - chan;
3182
3183 adap->tid_release_head = *p;
3184 *p = NULL;
3185 spin_unlock_bh(&adap->tid_release_lock);
3186
3187 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3188 GFP_KERNEL)))
3189 schedule_timeout_uninterruptible(1);
3190
3191 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3192 t4_ofld_send(adap, skb);
3193 spin_lock_bh(&adap->tid_release_lock);
3194 }
3195 adap->tid_release_task_busy = false;
3196 spin_unlock_bh(&adap->tid_release_lock);
3197}
3198
3199/*
3200 * Release a TID and inform HW. If we are unable to allocate the release
3201 * message we defer to a work queue.
3202 */
3203void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3204{
3205 void *old;
3206 struct sk_buff *skb;
3207 struct adapter *adap = container_of(t, struct adapter, tids);
3208
3209 old = t->tid_tab[tid];
3210 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3211 if (likely(skb)) {
3212 t->tid_tab[tid] = NULL;
3213 mk_tid_release(skb, chan, tid);
3214 t4_ofld_send(adap, skb);
3215 } else
3216 cxgb4_queue_tid_release(t, chan, tid);
3217 if (old)
3218 atomic_dec(&t->tids_in_use);
3219}
3220EXPORT_SYMBOL(cxgb4_remove_tid);
3221
3222/*
3223 * Allocate and initialize the TID tables. Returns 0 on success.
3224 */
3225static int tid_init(struct tid_info *t)
3226{
3227 size_t size;
f2b7e78d 3228 unsigned int stid_bmap_size;
b8ff05a9 3229 unsigned int natids = t->natids;
b6f8eaec 3230 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 3231
dca4faeb 3232 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
3233 size = t->ntids * sizeof(*t->tid_tab) +
3234 natids * sizeof(*t->atid_tab) +
b8ff05a9 3235 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 3236 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 3237 stid_bmap_size * sizeof(long) +
dca4faeb
VP
3238 t->nftids * sizeof(*t->ftid_tab) +
3239 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 3240
b8ff05a9
DM
3241 t->tid_tab = t4_alloc_mem(size);
3242 if (!t->tid_tab)
3243 return -ENOMEM;
3244
3245 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3246 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 3247 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 3248 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
3249 spin_lock_init(&t->stid_lock);
3250 spin_lock_init(&t->atid_lock);
3251
3252 t->stids_in_use = 0;
3253 t->afree = NULL;
3254 t->atids_in_use = 0;
3255 atomic_set(&t->tids_in_use, 0);
3256
3257 /* Setup the free list for atid_tab and clear the stid bitmap. */
3258 if (natids) {
3259 while (--natids)
3260 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3261 t->afree = t->atid_tab;
3262 }
dca4faeb 3263 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
3264 /* Reserve stid 0 for T4/T5 adapters */
3265 if (!t->stid_base &&
3266 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3267 __set_bit(0, t->stid_bmap);
3268
b8ff05a9
DM
3269 return 0;
3270}
3271
3272/**
3273 * cxgb4_create_server - create an IP server
3274 * @dev: the device
3275 * @stid: the server TID
3276 * @sip: local IP address to bind server to
3277 * @sport: the server's TCP port
3278 * @queue: queue to direct messages from this server to
3279 *
3280 * Create an IP server for the given port and address.
3281 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3282 */
3283int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
3284 __be32 sip, __be16 sport, __be16 vlan,
3285 unsigned int queue)
b8ff05a9
DM
3286{
3287 unsigned int chan;
3288 struct sk_buff *skb;
3289 struct adapter *adap;
3290 struct cpl_pass_open_req *req;
80f40c1f 3291 int ret;
b8ff05a9
DM
3292
3293 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3294 if (!skb)
3295 return -ENOMEM;
3296
3297 adap = netdev2adap(dev);
3298 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3299 INIT_TP_WR(req, 0);
3300 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3301 req->local_port = sport;
3302 req->peer_port = htons(0);
3303 req->local_ip = sip;
3304 req->peer_ip = htonl(0);
e46dab4d 3305 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 3306 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
3307 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
3308 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
3309 ret = t4_mgmt_tx(adap, skb);
3310 return net_xmit_eval(ret);
b8ff05a9
DM
3311}
3312EXPORT_SYMBOL(cxgb4_create_server);
3313
80f40c1f
VP
3314/* cxgb4_create_server6 - create an IPv6 server
3315 * @dev: the device
3316 * @stid: the server TID
3317 * @sip: local IPv6 address to bind server to
3318 * @sport: the server's TCP port
3319 * @queue: queue to direct messages from this server to
3320 *
3321 * Create an IPv6 server for the given port and address.
3322 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3323 */
3324int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3325 const struct in6_addr *sip, __be16 sport,
3326 unsigned int queue)
3327{
3328 unsigned int chan;
3329 struct sk_buff *skb;
3330 struct adapter *adap;
3331 struct cpl_pass_open_req6 *req;
3332 int ret;
3333
3334 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3335 if (!skb)
3336 return -ENOMEM;
3337
3338 adap = netdev2adap(dev);
3339 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3340 INIT_TP_WR(req, 0);
3341 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3342 req->local_port = sport;
3343 req->peer_port = htons(0);
3344 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3345 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3346 req->peer_ip_hi = cpu_to_be64(0);
3347 req->peer_ip_lo = cpu_to_be64(0);
3348 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 3349 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
3350 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
3351 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
3352 ret = t4_mgmt_tx(adap, skb);
3353 return net_xmit_eval(ret);
3354}
3355EXPORT_SYMBOL(cxgb4_create_server6);
3356
3357int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3358 unsigned int queue, bool ipv6)
3359{
3360 struct sk_buff *skb;
3361 struct adapter *adap;
3362 struct cpl_close_listsvr_req *req;
3363 int ret;
3364
3365 adap = netdev2adap(dev);
3366
3367 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3368 if (!skb)
3369 return -ENOMEM;
3370
3371 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3372 INIT_TP_WR(req, 0);
3373 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
3374 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
3375 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
3376 ret = t4_mgmt_tx(adap, skb);
3377 return net_xmit_eval(ret);
3378}
3379EXPORT_SYMBOL(cxgb4_remove_server);
3380
b8ff05a9
DM
3381/**
3382 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3383 * @mtus: the HW MTU table
3384 * @mtu: the target MTU
3385 * @idx: index of selected entry in the MTU table
3386 *
3387 * Returns the index and the value in the HW MTU table that is closest to
3388 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3389 * table, in which case that smallest available value is selected.
3390 */
3391unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3392 unsigned int *idx)
3393{
3394 unsigned int i = 0;
3395
3396 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3397 ++i;
3398 if (idx)
3399 *idx = i;
3400 return mtus[i];
3401}
3402EXPORT_SYMBOL(cxgb4_best_mtu);
3403
92e7ae71
HS
3404/**
3405 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3406 * @mtus: the HW MTU table
3407 * @header_size: Header Size
3408 * @data_size_max: maximum Data Segment Size
3409 * @data_size_align: desired Data Segment Size Alignment (2^N)
3410 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3411 *
3412 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3413 * MTU Table based solely on a Maximum MTU parameter, we break that
3414 * parameter up into a Header Size and Maximum Data Segment Size, and
3415 * provide a desired Data Segment Size Alignment. If we find an MTU in
3416 * the Hardware MTU Table which will result in a Data Segment Size with
3417 * the requested alignment _and_ that MTU isn't "too far" from the
3418 * closest MTU, then we'll return that rather than the closest MTU.
3419 */
3420unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3421 unsigned short header_size,
3422 unsigned short data_size_max,
3423 unsigned short data_size_align,
3424 unsigned int *mtu_idxp)
3425{
3426 unsigned short max_mtu = header_size + data_size_max;
3427 unsigned short data_size_align_mask = data_size_align - 1;
3428 int mtu_idx, aligned_mtu_idx;
3429
3430 /* Scan the MTU Table till we find an MTU which is larger than our
3431 * Maximum MTU or we reach the end of the table. Along the way,
3432 * record the last MTU found, if any, which will result in a Data
3433 * Segment Length matching the requested alignment.
3434 */
3435 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3436 unsigned short data_size = mtus[mtu_idx] - header_size;
3437
3438 /* If this MTU minus the Header Size would result in a
3439 * Data Segment Size of the desired alignment, remember it.
3440 */
3441 if ((data_size & data_size_align_mask) == 0)
3442 aligned_mtu_idx = mtu_idx;
3443
3444 /* If we're not at the end of the Hardware MTU Table and the
3445 * next element is larger than our Maximum MTU, drop out of
3446 * the loop.
3447 */
3448 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3449 break;
3450 }
3451
3452 /* If we fell out of the loop because we ran to the end of the table,
3453 * then we just have to use the last [largest] entry.
3454 */
3455 if (mtu_idx == NMTUS)
3456 mtu_idx--;
3457
3458 /* If we found an MTU which resulted in the requested Data Segment
3459 * Length alignment and that's "not far" from the largest MTU which is
3460 * less than or equal to the maximum MTU, then use that.
3461 */
3462 if (aligned_mtu_idx >= 0 &&
3463 mtu_idx - aligned_mtu_idx <= 1)
3464 mtu_idx = aligned_mtu_idx;
3465
3466 /* If the caller has passed in an MTU Index pointer, pass the
3467 * MTU Index back. Return the MTU value.
3468 */
3469 if (mtu_idxp)
3470 *mtu_idxp = mtu_idx;
3471 return mtus[mtu_idx];
3472}
3473EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3474
b8ff05a9
DM
3475/**
3476 * cxgb4_port_chan - get the HW channel of a port
3477 * @dev: the net device for the port
3478 *
3479 * Return the HW Tx channel of the given port.
3480 */
3481unsigned int cxgb4_port_chan(const struct net_device *dev)
3482{
3483 return netdev2pinfo(dev)->tx_chan;
3484}
3485EXPORT_SYMBOL(cxgb4_port_chan);
3486
881806bc
VP
3487unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3488{
3489 struct adapter *adap = netdev2adap(dev);
2cc301d2 3490 u32 v1, v2, lp_count, hp_count;
881806bc 3491
f061de42
HS
3492 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
3493 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 3494 if (is_t4(adap->params.chip)) {
f061de42
HS
3495 lp_count = LP_COUNT_G(v1);
3496 hp_count = HP_COUNT_G(v1);
2cc301d2 3497 } else {
f061de42
HS
3498 lp_count = LP_COUNT_T5_G(v1);
3499 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
3500 }
3501 return lpfifo ? lp_count : hp_count;
881806bc
VP
3502}
3503EXPORT_SYMBOL(cxgb4_dbfifo_count);
3504
b8ff05a9
DM
3505/**
3506 * cxgb4_port_viid - get the VI id of a port
3507 * @dev: the net device for the port
3508 *
3509 * Return the VI id of the given port.
3510 */
3511unsigned int cxgb4_port_viid(const struct net_device *dev)
3512{
3513 return netdev2pinfo(dev)->viid;
3514}
3515EXPORT_SYMBOL(cxgb4_port_viid);
3516
3517/**
3518 * cxgb4_port_idx - get the index of a port
3519 * @dev: the net device for the port
3520 *
3521 * Return the index of the given port.
3522 */
3523unsigned int cxgb4_port_idx(const struct net_device *dev)
3524{
3525 return netdev2pinfo(dev)->port_id;
3526}
3527EXPORT_SYMBOL(cxgb4_port_idx);
3528
b8ff05a9
DM
3529void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3530 struct tp_tcp_stats *v6)
3531{
3532 struct adapter *adap = pci_get_drvdata(pdev);
3533
3534 spin_lock(&adap->stats_lock);
3535 t4_tp_get_tcp_stats(adap, v4, v6);
3536 spin_unlock(&adap->stats_lock);
3537}
3538EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3539
3540void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3541 const unsigned int *pgsz_order)
3542{
3543 struct adapter *adap = netdev2adap(dev);
3544
0d804338
HS
3545 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
3546 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
3547 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
3548 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
3549}
3550EXPORT_SYMBOL(cxgb4_iscsi_init);
3551
3069ee9b
VP
3552int cxgb4_flush_eq_cache(struct net_device *dev)
3553{
3554 struct adapter *adap = netdev2adap(dev);
3555 int ret;
3556
3557 ret = t4_fwaddrspace_write(adap, adap->mbox,
f061de42 3558 0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
3069ee9b
VP
3559 return ret;
3560}
3561EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3562
3563static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3564{
f061de42 3565 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
3566 __be64 indices;
3567 int ret;
3568
fc5ab020
HS
3569 spin_lock(&adap->win0_lock);
3570 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3571 sizeof(indices), (__be32 *)&indices,
3572 T4_MEMORY_READ);
3573 spin_unlock(&adap->win0_lock);
3069ee9b 3574 if (!ret) {
404d9e3f
VP
3575 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3576 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
3577 }
3578 return ret;
3579}
3580
3581int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3582 u16 size)
3583{
3584 struct adapter *adap = netdev2adap(dev);
3585 u16 hw_pidx, hw_cidx;
3586 int ret;
3587
3588 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3589 if (ret)
3590 goto out;
3591
3592 if (pidx != hw_pidx) {
3593 u16 delta;
f612b815 3594 u32 val;
3069ee9b
VP
3595
3596 if (pidx >= hw_pidx)
3597 delta = pidx - hw_pidx;
3598 else
3599 delta = size - hw_pidx + pidx;
f612b815
HS
3600
3601 if (is_t4(adap->params.chip))
3602 val = PIDX_V(delta);
3603 else
3604 val = PIDX_T5_V(delta);
3069ee9b 3605 wmb();
f612b815
HS
3606 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
3607 QID_V(qid) | val);
3069ee9b
VP
3608 }
3609out:
3610 return ret;
3611}
3612EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3613
3cbdb928
VP
3614void cxgb4_disable_db_coalescing(struct net_device *dev)
3615{
3616 struct adapter *adap;
3617
3618 adap = netdev2adap(dev);
f061de42 3619 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
f612b815 3620 NOCOALESCE_F);
3cbdb928
VP
3621}
3622EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3623
3624void cxgb4_enable_db_coalescing(struct net_device *dev)
3625{
3626 struct adapter *adap;
3627
3628 adap = netdev2adap(dev);
f061de42 3629 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
3cbdb928
VP
3630}
3631EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3632
031cf476
HS
3633int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3634{
3635 struct adapter *adap;
3636 u32 offset, memtype, memaddr;
6559a7e8 3637 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
3638 u32 edc0_end, edc1_end, mc0_end, mc1_end;
3639 int ret;
3640
3641 adap = netdev2adap(dev);
3642
3643 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3644
3645 /* Figure out where the offset lands in the Memory Type/Address scheme.
3646 * This code assumes that the memory is laid out starting at offset 0
3647 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3648 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
3649 * MC0, and some have both MC0 and MC1.
3650 */
6559a7e8
HS
3651 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3652 edc0_size = EDRAM0_SIZE_G(size) << 20;
3653 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3654 edc1_size = EDRAM1_SIZE_G(size) << 20;
3655 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3656 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
3657
3658 edc0_end = edc0_size;
3659 edc1_end = edc0_end + edc1_size;
3660 mc0_end = edc1_end + mc0_size;
3661
3662 if (offset < edc0_end) {
3663 memtype = MEM_EDC0;
3664 memaddr = offset;
3665 } else if (offset < edc1_end) {
3666 memtype = MEM_EDC1;
3667 memaddr = offset - edc0_end;
3668 } else {
3669 if (offset < mc0_end) {
3670 memtype = MEM_MC0;
3671 memaddr = offset - edc1_end;
3672 } else if (is_t4(adap->params.chip)) {
3673 /* T4 only has a single memory channel */
3674 goto err;
3675 } else {
6559a7e8
HS
3676 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3677 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
3678 mc1_end = mc0_end + mc1_size;
3679 if (offset < mc1_end) {
3680 memtype = MEM_MC1;
3681 memaddr = offset - mc0_end;
3682 } else {
3683 /* offset beyond the end of any memory */
3684 goto err;
3685 }
3686 }
3687 }
3688
3689 spin_lock(&adap->win0_lock);
3690 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3691 spin_unlock(&adap->win0_lock);
3692 return ret;
3693
3694err:
3695 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3696 stag, offset);
3697 return -EINVAL;
3698}
3699EXPORT_SYMBOL(cxgb4_read_tpte);
3700
7730b4c7
HS
3701u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3702{
3703 u32 hi, lo;
3704 struct adapter *adap;
3705
3706 adap = netdev2adap(dev);
f612b815
HS
3707 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
3708 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
3709
3710 return ((u64)hi << 32) | (u64)lo;
3711}
3712EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3713
df64e4d3
HS
3714int cxgb4_bar2_sge_qregs(struct net_device *dev,
3715 unsigned int qid,
3716 enum cxgb4_bar2_qtype qtype,
3717 u64 *pbar2_qoffset,
3718 unsigned int *pbar2_qid)
3719{
dd0bcc0b 3720 return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
3721 qid,
3722 (qtype == CXGB4_BAR2_QTYPE_EGRESS
3723 ? T4_BAR2_QTYPE_EGRESS
3724 : T4_BAR2_QTYPE_INGRESS),
3725 pbar2_qoffset,
3726 pbar2_qid);
3727}
3728EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
3729
b8ff05a9
DM
3730static struct pci_driver cxgb4_driver;
3731
3732static void check_neigh_update(struct neighbour *neigh)
3733{
3734 const struct device *parent;
3735 const struct net_device *netdev = neigh->dev;
3736
3737 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3738 netdev = vlan_dev_real_dev(netdev);
3739 parent = netdev->dev.parent;
3740 if (parent && parent->driver == &cxgb4_driver.driver)
3741 t4_l2t_update(dev_get_drvdata(parent), neigh);
3742}
3743
3744static int netevent_cb(struct notifier_block *nb, unsigned long event,
3745 void *data)
3746{
3747 switch (event) {
3748 case NETEVENT_NEIGH_UPDATE:
3749 check_neigh_update(data);
3750 break;
b8ff05a9
DM
3751 case NETEVENT_REDIRECT:
3752 default:
3753 break;
3754 }
3755 return 0;
3756}
3757
3758static bool netevent_registered;
3759static struct notifier_block cxgb4_netevent_nb = {
3760 .notifier_call = netevent_cb
3761};
3762
3069ee9b
VP
3763static void drain_db_fifo(struct adapter *adap, int usecs)
3764{
2cc301d2 3765 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
3766
3767 do {
f061de42
HS
3768 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
3769 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 3770 if (is_t4(adap->params.chip)) {
f061de42
HS
3771 lp_count = LP_COUNT_G(v1);
3772 hp_count = HP_COUNT_G(v1);
2cc301d2 3773 } else {
f061de42
HS
3774 lp_count = LP_COUNT_T5_G(v1);
3775 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
3776 }
3777
3778 if (lp_count == 0 && hp_count == 0)
3779 break;
3069ee9b
VP
3780 set_current_state(TASK_UNINTERRUPTIBLE);
3781 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
3782 } while (1);
3783}
3784
3785static void disable_txq_db(struct sge_txq *q)
3786{
05eb2389
SW
3787 unsigned long flags;
3788
3789 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 3790 q->db_disabled = 1;
05eb2389 3791 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
3792}
3793
05eb2389 3794static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
3795{
3796 spin_lock_irq(&q->db_lock);
05eb2389
SW
3797 if (q->db_pidx_inc) {
3798 /* Make sure that all writes to the TX descriptors
3799 * are committed before we tell HW about them.
3800 */
3801 wmb();
f612b815
HS
3802 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
3803 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
3804 q->db_pidx_inc = 0;
3805 }
3069ee9b
VP
3806 q->db_disabled = 0;
3807 spin_unlock_irq(&q->db_lock);
3808}
3809
3810static void disable_dbs(struct adapter *adap)
3811{
3812 int i;
3813
3814 for_each_ethrxq(&adap->sge, i)
3815 disable_txq_db(&adap->sge.ethtxq[i].q);
3816 for_each_ofldrxq(&adap->sge, i)
3817 disable_txq_db(&adap->sge.ofldtxq[i].q);
3818 for_each_port(adap, i)
3819 disable_txq_db(&adap->sge.ctrlq[i].q);
3820}
3821
3822static void enable_dbs(struct adapter *adap)
3823{
3824 int i;
3825
3826 for_each_ethrxq(&adap->sge, i)
05eb2389 3827 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 3828 for_each_ofldrxq(&adap->sge, i)
05eb2389 3829 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 3830 for_each_port(adap, i)
05eb2389
SW
3831 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3832}
3833
3834static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3835{
3836 if (adap->uld_handle[CXGB4_ULD_RDMA])
3837 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3838 cmd);
3839}
3840
3841static void process_db_full(struct work_struct *work)
3842{
3843 struct adapter *adap;
3844
3845 adap = container_of(work, struct adapter, db_full_task);
3846
3847 drain_db_fifo(adap, dbfifo_drain_delay);
3848 enable_dbs(adap);
3849 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
f612b815
HS
3850 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
3851 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
3852 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
3069ee9b
VP
3853}
3854
3855static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3856{
3857 u16 hw_pidx, hw_cidx;
3858 int ret;
3859
05eb2389 3860 spin_lock_irq(&q->db_lock);
3069ee9b
VP
3861 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3862 if (ret)
3863 goto out;
3864 if (q->db_pidx != hw_pidx) {
3865 u16 delta;
f612b815 3866 u32 val;
3069ee9b
VP
3867
3868 if (q->db_pidx >= hw_pidx)
3869 delta = q->db_pidx - hw_pidx;
3870 else
3871 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
3872
3873 if (is_t4(adap->params.chip))
3874 val = PIDX_V(delta);
3875 else
3876 val = PIDX_T5_V(delta);
3069ee9b 3877 wmb();
f612b815
HS
3878 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
3879 QID_V(q->cntxt_id) | val);
3069ee9b
VP
3880 }
3881out:
3882 q->db_disabled = 0;
05eb2389
SW
3883 q->db_pidx_inc = 0;
3884 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
3885 if (ret)
3886 CH_WARN(adap, "DB drop recovery failed.\n");
3887}
3888static void recover_all_queues(struct adapter *adap)
3889{
3890 int i;
3891
3892 for_each_ethrxq(&adap->sge, i)
3893 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3894 for_each_ofldrxq(&adap->sge, i)
3895 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3896 for_each_port(adap, i)
3897 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3898}
3899
881806bc
VP
3900static void process_db_drop(struct work_struct *work)
3901{
3902 struct adapter *adap;
881806bc 3903
3069ee9b 3904 adap = container_of(work, struct adapter, db_drop_task);
881806bc 3905
d14807dd 3906 if (is_t4(adap->params.chip)) {
05eb2389 3907 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3908 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 3909 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3910 recover_all_queues(adap);
05eb2389 3911 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3912 enable_dbs(adap);
05eb2389 3913 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2cc301d2
SR
3914 } else {
3915 u32 dropped_db = t4_read_reg(adap, 0x010ac);
3916 u16 qid = (dropped_db >> 15) & 0x1ffff;
3917 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
3918 u64 bar2_qoffset;
3919 unsigned int bar2_qid;
3920 int ret;
2cc301d2 3921
dd0bcc0b 3922 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
df64e4d3
HS
3923 &bar2_qoffset, &bar2_qid);
3924 if (ret)
3925 dev_err(adap->pdev_dev, "doorbell drop recovery: "
3926 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
3927 else
f612b815 3928 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 3929 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
3930
3931 /* Re-enable BAR2 WC */
3932 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
3933 }
3934
f061de42 3935 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
3936}
3937
3938void t4_db_full(struct adapter *adap)
3939{
d14807dd 3940 if (is_t4(adap->params.chip)) {
05eb2389
SW
3941 disable_dbs(adap);
3942 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
3943 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
3944 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 3945 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 3946 }
881806bc
VP
3947}
3948
3949void t4_db_dropped(struct adapter *adap)
3950{
05eb2389
SW
3951 if (is_t4(adap->params.chip)) {
3952 disable_dbs(adap);
3953 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3954 }
29aaee65 3955 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
3956}
3957
b8ff05a9
DM
3958static void uld_attach(struct adapter *adap, unsigned int uld)
3959{
3960 void *handle;
3961 struct cxgb4_lld_info lli;
dca4faeb 3962 unsigned short i;
b8ff05a9
DM
3963
3964 lli.pdev = adap->pdev;
35b1de55 3965 lli.pf = adap->fn;
b8ff05a9
DM
3966 lli.l2t = adap->l2t;
3967 lli.tids = &adap->tids;
3968 lli.ports = adap->port;
3969 lli.vr = &adap->vres;
3970 lli.mtus = adap->params.mtus;
3971 if (uld == CXGB4_ULD_RDMA) {
3972 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 3973 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 3974 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 3975 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
3976 } else if (uld == CXGB4_ULD_ISCSI) {
3977 lli.rxq_ids = adap->sge.ofld_rxq;
3978 lli.nrxq = adap->sge.ofldqsets;
3979 }
3980 lli.ntxq = adap->sge.ofldqsets;
3981 lli.nchan = adap->params.nports;
3982 lli.nports = adap->params.nports;
3983 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 3984 lli.adapter_type = adap->params.chip;
837e4a42 3985 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 3986 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
3987 lli.udb_density = 1 << adap->params.sge.eq_qpp;
3988 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 3989 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
3990 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3991 for (i = 0; i < NCHAN; i++)
3992 lli.tx_modq[i] = i;
f612b815
HS
3993 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
3994 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 3995 lli.fw_vers = adap->params.fw_vers;
3069ee9b 3996 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
3997 lli.sge_ingpadboundary = adap->sge.fl_align;
3998 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
3999 lli.sge_pktshift = adap->sge.pktshift;
4000 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
4001 lli.max_ordird_qp = adap->params.max_ordird_qp;
4002 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 4003 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
b8ff05a9
DM
4004
4005 handle = ulds[uld].add(&lli);
4006 if (IS_ERR(handle)) {
4007 dev_warn(adap->pdev_dev,
4008 "could not attach to the %s driver, error %ld\n",
4009 uld_str[uld], PTR_ERR(handle));
4010 return;
4011 }
4012
4013 adap->uld_handle[uld] = handle;
4014
4015 if (!netevent_registered) {
4016 register_netevent_notifier(&cxgb4_netevent_nb);
4017 netevent_registered = true;
4018 }
e29f5dbc
DM
4019
4020 if (adap->flags & FULL_INIT_DONE)
4021 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
4022}
4023
4024static void attach_ulds(struct adapter *adap)
4025{
4026 unsigned int i;
4027
01bcca68
VP
4028 spin_lock(&adap_rcu_lock);
4029 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4030 spin_unlock(&adap_rcu_lock);
4031
b8ff05a9
DM
4032 mutex_lock(&uld_mutex);
4033 list_add_tail(&adap->list_node, &adapter_list);
4034 for (i = 0; i < CXGB4_ULD_MAX; i++)
4035 if (ulds[i].add)
4036 uld_attach(adap, i);
4037 mutex_unlock(&uld_mutex);
4038}
4039
4040static void detach_ulds(struct adapter *adap)
4041{
4042 unsigned int i;
4043
4044 mutex_lock(&uld_mutex);
4045 list_del(&adap->list_node);
4046 for (i = 0; i < CXGB4_ULD_MAX; i++)
4047 if (adap->uld_handle[i]) {
4048 ulds[i].state_change(adap->uld_handle[i],
4049 CXGB4_STATE_DETACH);
4050 adap->uld_handle[i] = NULL;
4051 }
4052 if (netevent_registered && list_empty(&adapter_list)) {
4053 unregister_netevent_notifier(&cxgb4_netevent_nb);
4054 netevent_registered = false;
4055 }
4056 mutex_unlock(&uld_mutex);
01bcca68
VP
4057
4058 spin_lock(&adap_rcu_lock);
4059 list_del_rcu(&adap->rcu_node);
4060 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
4061}
4062
4063static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4064{
4065 unsigned int i;
4066
4067 mutex_lock(&uld_mutex);
4068 for (i = 0; i < CXGB4_ULD_MAX; i++)
4069 if (adap->uld_handle[i])
4070 ulds[i].state_change(adap->uld_handle[i], new_state);
4071 mutex_unlock(&uld_mutex);
4072}
4073
4074/**
4075 * cxgb4_register_uld - register an upper-layer driver
4076 * @type: the ULD type
4077 * @p: the ULD methods
4078 *
4079 * Registers an upper-layer driver with this driver and notifies the ULD
4080 * about any presently available devices that support its type. Returns
4081 * %-EBUSY if a ULD of the same type is already registered.
4082 */
4083int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4084{
4085 int ret = 0;
4086 struct adapter *adap;
4087
4088 if (type >= CXGB4_ULD_MAX)
4089 return -EINVAL;
4090 mutex_lock(&uld_mutex);
4091 if (ulds[type].add) {
4092 ret = -EBUSY;
4093 goto out;
4094 }
4095 ulds[type] = *p;
4096 list_for_each_entry(adap, &adapter_list, list_node)
4097 uld_attach(adap, type);
4098out: mutex_unlock(&uld_mutex);
4099 return ret;
4100}
4101EXPORT_SYMBOL(cxgb4_register_uld);
4102
4103/**
4104 * cxgb4_unregister_uld - unregister an upper-layer driver
4105 * @type: the ULD type
4106 *
4107 * Unregisters an existing upper-layer driver.
4108 */
4109int cxgb4_unregister_uld(enum cxgb4_uld type)
4110{
4111 struct adapter *adap;
4112
4113 if (type >= CXGB4_ULD_MAX)
4114 return -EINVAL;
4115 mutex_lock(&uld_mutex);
4116 list_for_each_entry(adap, &adapter_list, list_node)
4117 adap->uld_handle[type] = NULL;
4118 ulds[type].add = NULL;
4119 mutex_unlock(&uld_mutex);
4120 return 0;
4121}
4122EXPORT_SYMBOL(cxgb4_unregister_uld);
4123
1bb60376 4124#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
4125static int cxgb4_inet6addr_handler(struct notifier_block *this,
4126 unsigned long event, void *data)
01bcca68 4127{
b5a02f50
AB
4128 struct inet6_ifaddr *ifa = data;
4129 struct net_device *event_dev = ifa->idev->dev;
4130 const struct device *parent = NULL;
4131#if IS_ENABLED(CONFIG_BONDING)
01bcca68 4132 struct adapter *adap;
b5a02f50
AB
4133#endif
4134 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
4135 event_dev = vlan_dev_real_dev(event_dev);
4136#if IS_ENABLED(CONFIG_BONDING)
4137 if (event_dev->flags & IFF_MASTER) {
4138 list_for_each_entry(adap, &adapter_list, list_node) {
4139 switch (event) {
4140 case NETDEV_UP:
4141 cxgb4_clip_get(adap->port[0],
4142 (const u32 *)ifa, 1);
4143 break;
4144 case NETDEV_DOWN:
4145 cxgb4_clip_release(adap->port[0],
4146 (const u32 *)ifa, 1);
4147 break;
4148 default:
4149 break;
4150 }
4151 }
4152 return NOTIFY_OK;
4153 }
4154#endif
01bcca68 4155
b5a02f50
AB
4156 if (event_dev)
4157 parent = event_dev->dev.parent;
01bcca68 4158
b5a02f50 4159 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
4160 switch (event) {
4161 case NETDEV_UP:
b5a02f50 4162 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
4163 break;
4164 case NETDEV_DOWN:
b5a02f50 4165 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
4166 break;
4167 default:
4168 break;
4169 }
4170 }
b5a02f50 4171 return NOTIFY_OK;
01bcca68
VP
4172}
4173
b5a02f50 4174static bool inet6addr_registered;
01bcca68
VP
4175static struct notifier_block cxgb4_inet6addr_notifier = {
4176 .notifier_call = cxgb4_inet6addr_handler
4177};
4178
01bcca68
VP
4179static void update_clip(const struct adapter *adap)
4180{
4181 int i;
4182 struct net_device *dev;
4183 int ret;
4184
4185 rcu_read_lock();
4186
4187 for (i = 0; i < MAX_NPORTS; i++) {
4188 dev = adap->port[i];
4189 ret = 0;
4190
4191 if (dev)
b5a02f50 4192 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
4193
4194 if (ret < 0)
4195 break;
4196 }
4197 rcu_read_unlock();
4198}
1bb60376 4199#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 4200
b8ff05a9
DM
4201/**
4202 * cxgb_up - enable the adapter
4203 * @adap: adapter being enabled
4204 *
4205 * Called when the first port is enabled, this function performs the
4206 * actions necessary to make an adapter operational, such as completing
4207 * the initialization of HW modules, and enabling interrupts.
4208 *
4209 * Must be called with the rtnl lock held.
4210 */
4211static int cxgb_up(struct adapter *adap)
4212{
aaefae9b 4213 int err;
b8ff05a9 4214
aaefae9b
DM
4215 err = setup_sge_queues(adap);
4216 if (err)
4217 goto out;
4218 err = setup_rss(adap);
4219 if (err)
4220 goto freeq;
b8ff05a9
DM
4221
4222 if (adap->flags & USING_MSIX) {
aaefae9b 4223 name_msix_vecs(adap);
b8ff05a9
DM
4224 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4225 adap->msix_info[0].desc, adap);
4226 if (err)
4227 goto irq_err;
4228
4229 err = request_msix_queue_irqs(adap);
4230 if (err) {
4231 free_irq(adap->msix_info[0].vec, adap);
4232 goto irq_err;
4233 }
4234 } else {
4235 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4236 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 4237 adap->port[0]->name, adap);
b8ff05a9
DM
4238 if (err)
4239 goto irq_err;
4240 }
4241 enable_rx(adap);
4242 t4_sge_start(adap);
4243 t4_intr_enable(adap);
aaefae9b 4244 adap->flags |= FULL_INIT_DONE;
b8ff05a9 4245 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 4246#if IS_ENABLED(CONFIG_IPV6)
01bcca68 4247 update_clip(adap);
1bb60376 4248#endif
b8ff05a9
DM
4249 out:
4250 return err;
4251 irq_err:
4252 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
4253 freeq:
4254 t4_free_sge_resources(adap);
b8ff05a9
DM
4255 goto out;
4256}
4257
4258static void cxgb_down(struct adapter *adapter)
4259{
4260 t4_intr_disable(adapter);
4261 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
4262 cancel_work_sync(&adapter->db_full_task);
4263 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 4264 adapter->tid_release_task_busy = false;
204dc3c0 4265 adapter->tid_release_head = NULL;
b8ff05a9
DM
4266
4267 if (adapter->flags & USING_MSIX) {
4268 free_msix_queue_irqs(adapter);
4269 free_irq(adapter->msix_info[0].vec, adapter);
4270 } else
4271 free_irq(adapter->pdev->irq, adapter);
4272 quiesce_rx(adapter);
aaefae9b
DM
4273 t4_sge_stop(adapter);
4274 t4_free_sge_resources(adapter);
4275 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
4276}
4277
4278/*
4279 * net_device operations
4280 */
4281static int cxgb_open(struct net_device *dev)
4282{
4283 int err;
4284 struct port_info *pi = netdev_priv(dev);
4285 struct adapter *adapter = pi->adapter;
4286
6a3c869a
DM
4287 netif_carrier_off(dev);
4288
aaefae9b
DM
4289 if (!(adapter->flags & FULL_INIT_DONE)) {
4290 err = cxgb_up(adapter);
4291 if (err < 0)
4292 return err;
4293 }
b8ff05a9 4294
f68707b8
DM
4295 err = link_start(dev);
4296 if (!err)
4297 netif_tx_start_all_queues(dev);
4298 return err;
b8ff05a9
DM
4299}
4300
4301static int cxgb_close(struct net_device *dev)
4302{
b8ff05a9
DM
4303 struct port_info *pi = netdev_priv(dev);
4304 struct adapter *adapter = pi->adapter;
4305
4306 netif_tx_stop_all_queues(dev);
4307 netif_carrier_off(dev);
060e0c75 4308 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
b8ff05a9
DM
4309}
4310
f2b7e78d
VP
4311/* Return an error number if the indicated filter isn't writable ...
4312 */
4313static int writable_filter(struct filter_entry *f)
4314{
4315 if (f->locked)
4316 return -EPERM;
4317 if (f->pending)
4318 return -EBUSY;
4319
4320 return 0;
4321}
4322
4323/* Delete the filter at the specified index (if valid). The checks for all
4324 * the common problems with doing this like the filter being locked, currently
4325 * pending in another operation, etc.
4326 */
4327static int delete_filter(struct adapter *adapter, unsigned int fidx)
4328{
4329 struct filter_entry *f;
4330 int ret;
4331
dca4faeb 4332 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
4333 return -EINVAL;
4334
4335 f = &adapter->tids.ftid_tab[fidx];
4336 ret = writable_filter(f);
4337 if (ret)
4338 return ret;
4339 if (f->valid)
4340 return del_filter_wr(adapter, fidx);
4341
4342 return 0;
4343}
4344
dca4faeb 4345int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
4346 __be32 sip, __be16 sport, __be16 vlan,
4347 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
4348{
4349 int ret;
4350 struct filter_entry *f;
4351 struct adapter *adap;
4352 int i;
4353 u8 *val;
4354
4355 adap = netdev2adap(dev);
4356
1cab775c 4357 /* Adjust stid to correct filter index */
470c60c4 4358 stid -= adap->tids.sftid_base;
1cab775c
VP
4359 stid += adap->tids.nftids;
4360
dca4faeb
VP
4361 /* Check to make sure the filter requested is writable ...
4362 */
4363 f = &adap->tids.ftid_tab[stid];
4364 ret = writable_filter(f);
4365 if (ret)
4366 return ret;
4367
4368 /* Clear out any old resources being used by the filter before
4369 * we start constructing the new filter.
4370 */
4371 if (f->valid)
4372 clear_filter(adap, f);
4373
4374 /* Clear out filter specifications */
4375 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4376 f->fs.val.lport = cpu_to_be16(sport);
4377 f->fs.mask.lport = ~0;
4378 val = (u8 *)&sip;
793dad94 4379 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
4380 for (i = 0; i < 4; i++) {
4381 f->fs.val.lip[i] = val[i];
4382 f->fs.mask.lip[i] = ~0;
4383 }
0d804338 4384 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
4385 f->fs.val.iport = port;
4386 f->fs.mask.iport = mask;
4387 }
4388 }
dca4faeb 4389
0d804338 4390 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
4391 f->fs.val.proto = IPPROTO_TCP;
4392 f->fs.mask.proto = ~0;
4393 }
4394
dca4faeb
VP
4395 f->fs.dirsteer = 1;
4396 f->fs.iq = queue;
4397 /* Mark filter as locked */
4398 f->locked = 1;
4399 f->fs.rpttid = 1;
4400
4401 ret = set_filter_wr(adap, stid);
4402 if (ret) {
4403 clear_filter(adap, f);
4404 return ret;
4405 }
4406
4407 return 0;
4408}
4409EXPORT_SYMBOL(cxgb4_create_server_filter);
4410
4411int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4412 unsigned int queue, bool ipv6)
4413{
4414 int ret;
4415 struct filter_entry *f;
4416 struct adapter *adap;
4417
4418 adap = netdev2adap(dev);
1cab775c
VP
4419
4420 /* Adjust stid to correct filter index */
470c60c4 4421 stid -= adap->tids.sftid_base;
1cab775c
VP
4422 stid += adap->tids.nftids;
4423
dca4faeb
VP
4424 f = &adap->tids.ftid_tab[stid];
4425 /* Unlock the filter */
4426 f->locked = 0;
4427
4428 ret = delete_filter(adap, stid);
4429 if (ret)
4430 return ret;
4431
4432 return 0;
4433}
4434EXPORT_SYMBOL(cxgb4_remove_server_filter);
4435
f5152c90
DM
4436static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4437 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
4438{
4439 struct port_stats stats;
4440 struct port_info *p = netdev_priv(dev);
4441 struct adapter *adapter = p->adapter;
b8ff05a9 4442
9fe6cb58
GS
4443 /* Block retrieving statistics during EEH error
4444 * recovery. Otherwise, the recovery might fail
4445 * and the PCI device will be removed permanently
4446 */
b8ff05a9 4447 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
4448 if (!netif_device_present(dev)) {
4449 spin_unlock(&adapter->stats_lock);
4450 return ns;
4451 }
b8ff05a9
DM
4452 t4_get_port_stats(adapter, p->tx_chan, &stats);
4453 spin_unlock(&adapter->stats_lock);
4454
4455 ns->tx_bytes = stats.tx_octets;
4456 ns->tx_packets = stats.tx_frames;
4457 ns->rx_bytes = stats.rx_octets;
4458 ns->rx_packets = stats.rx_frames;
4459 ns->multicast = stats.rx_mcast_frames;
4460
4461 /* detailed rx_errors */
4462 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4463 stats.rx_runt;
4464 ns->rx_over_errors = 0;
4465 ns->rx_crc_errors = stats.rx_fcs_err;
4466 ns->rx_frame_errors = stats.rx_symbol_err;
4467 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4468 stats.rx_ovflow2 + stats.rx_ovflow3 +
4469 stats.rx_trunc0 + stats.rx_trunc1 +
4470 stats.rx_trunc2 + stats.rx_trunc3;
4471 ns->rx_missed_errors = 0;
4472
4473 /* detailed tx_errors */
4474 ns->tx_aborted_errors = 0;
4475 ns->tx_carrier_errors = 0;
4476 ns->tx_fifo_errors = 0;
4477 ns->tx_heartbeat_errors = 0;
4478 ns->tx_window_errors = 0;
4479
4480 ns->tx_errors = stats.tx_error_frames;
4481 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4482 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4483 return ns;
4484}
4485
4486static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4487{
060e0c75 4488 unsigned int mbox;
b8ff05a9
DM
4489 int ret = 0, prtad, devad;
4490 struct port_info *pi = netdev_priv(dev);
4491 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4492
4493 switch (cmd) {
4494 case SIOCGMIIPHY:
4495 if (pi->mdio_addr < 0)
4496 return -EOPNOTSUPP;
4497 data->phy_id = pi->mdio_addr;
4498 break;
4499 case SIOCGMIIREG:
4500 case SIOCSMIIREG:
4501 if (mdio_phy_id_is_c45(data->phy_id)) {
4502 prtad = mdio_phy_id_prtad(data->phy_id);
4503 devad = mdio_phy_id_devad(data->phy_id);
4504 } else if (data->phy_id < 32) {
4505 prtad = data->phy_id;
4506 devad = 0;
4507 data->reg_num &= 0x1f;
4508 } else
4509 return -EINVAL;
4510
060e0c75 4511 mbox = pi->adapter->fn;
b8ff05a9 4512 if (cmd == SIOCGMIIREG)
060e0c75 4513 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4514 data->reg_num, &data->val_out);
4515 else
060e0c75 4516 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4517 data->reg_num, data->val_in);
4518 break;
4519 default:
4520 return -EOPNOTSUPP;
4521 }
4522 return ret;
4523}
4524
4525static void cxgb_set_rxmode(struct net_device *dev)
4526{
4527 /* unfortunately we can't return errors to the stack */
4528 set_rxmode(dev, -1, false);
4529}
4530
4531static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4532{
4533 int ret;
4534 struct port_info *pi = netdev_priv(dev);
4535
4536 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4537 return -EINVAL;
060e0c75
DM
4538 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4539 -1, -1, -1, true);
b8ff05a9
DM
4540 if (!ret)
4541 dev->mtu = new_mtu;
4542 return ret;
4543}
4544
4545static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4546{
4547 int ret;
4548 struct sockaddr *addr = p;
4549 struct port_info *pi = netdev_priv(dev);
4550
4551 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 4552 return -EADDRNOTAVAIL;
b8ff05a9 4553
060e0c75
DM
4554 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4555 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
4556 if (ret < 0)
4557 return ret;
4558
4559 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4560 pi->xact_addr_filt = ret;
4561 return 0;
4562}
4563
b8ff05a9
DM
4564#ifdef CONFIG_NET_POLL_CONTROLLER
4565static void cxgb_netpoll(struct net_device *dev)
4566{
4567 struct port_info *pi = netdev_priv(dev);
4568 struct adapter *adap = pi->adapter;
4569
4570 if (adap->flags & USING_MSIX) {
4571 int i;
4572 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4573
4574 for (i = pi->nqsets; i; i--, rx++)
4575 t4_sge_intr_msix(0, &rx->rspq);
4576 } else
4577 t4_intr_handler(adap)(0, adap);
4578}
4579#endif
4580
4581static const struct net_device_ops cxgb4_netdev_ops = {
4582 .ndo_open = cxgb_open,
4583 .ndo_stop = cxgb_close,
4584 .ndo_start_xmit = t4_eth_xmit,
688848b1 4585 .ndo_select_queue = cxgb_select_queue,
9be793bf 4586 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
4587 .ndo_set_rx_mode = cxgb_set_rxmode,
4588 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 4589 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
4590 .ndo_validate_addr = eth_validate_addr,
4591 .ndo_do_ioctl = cxgb_ioctl,
4592 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
4593#ifdef CONFIG_NET_POLL_CONTROLLER
4594 .ndo_poll_controller = cxgb_netpoll,
4595#endif
3a336cb1
HS
4596#ifdef CONFIG_NET_RX_BUSY_POLL
4597 .ndo_busy_poll = cxgb_busy_poll,
4598#endif
4599
b8ff05a9
DM
4600};
4601
4602void t4_fatal_err(struct adapter *adap)
4603{
f612b815 4604 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
4605 t4_intr_disable(adap);
4606 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4607}
4608
0abfd152
HS
4609/* Return the specified PCI-E Configuration Space register from our Physical
4610 * Function. We try first via a Firmware LDST Command since we prefer to let
4611 * the firmware own all of these registers, but if that fails we go for it
4612 * directly ourselves.
4613 */
4614static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4615{
4616 struct fw_ldst_cmd ldst_cmd;
4617 u32 val;
4618 int ret;
4619
4620 /* Construct and send the Firmware LDST Command to retrieve the
4621 * specified PCI-E Configuration Space register.
4622 */
4623 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4624 ldst_cmd.op_to_addrspace =
e2ac9628
HS
4625 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
4626 FW_CMD_REQUEST_F |
4627 FW_CMD_READ_F |
5167865a 4628 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
0abfd152 4629 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
5167865a 4630 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
0abfd152 4631 ldst_cmd.u.pcie.ctrl_to_fn =
5167865a 4632 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
0abfd152
HS
4633 ldst_cmd.u.pcie.r = reg;
4634 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4635 &ldst_cmd);
4636
4637 /* If the LDST Command suucceeded, exctract the returned register
4638 * value. Otherwise read it directly ourself.
4639 */
4640 if (ret == 0)
4641 val = ntohl(ldst_cmd.u.pcie.data[0]);
4642 else
4643 t4_hw_pci_read_cfg4(adap, reg, &val);
4644
4645 return val;
4646}
4647
b8ff05a9
DM
4648static void setup_memwin(struct adapter *adap)
4649{
0abfd152 4650 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
b8ff05a9 4651
d14807dd 4652 if (is_t4(adap->params.chip)) {
0abfd152
HS
4653 u32 bar0;
4654
4655 /* Truncation intentional: we only read the bottom 32-bits of
4656 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
4657 * mechanism to read BAR0 instead of using
4658 * pci_resource_start() because we could be operating from
4659 * within a Virtual Machine which is trapping our accesses to
4660 * our Configuration Space and we need to set up the PCI-E
4661 * Memory Window decoders with the actual addresses which will
4662 * be coming across the PCI-E link.
4663 */
4664 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4665 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4666 adap->t4_bar0 = bar0;
4667
19dd37ba
SR
4668 mem_win0_base = bar0 + MEMWIN0_BASE;
4669 mem_win1_base = bar0 + MEMWIN1_BASE;
4670 mem_win2_base = bar0 + MEMWIN2_BASE;
0abfd152 4671 mem_win2_aperture = MEMWIN2_APERTURE;
19dd37ba
SR
4672 } else {
4673 /* For T5, only relative offset inside the PCIe BAR is passed */
4674 mem_win0_base = MEMWIN0_BASE;
0abfd152 4675 mem_win1_base = MEMWIN1_BASE;
19dd37ba 4676 mem_win2_base = MEMWIN2_BASE_T5;
0abfd152 4677 mem_win2_aperture = MEMWIN2_APERTURE_T5;
19dd37ba 4678 }
f061de42
HS
4679 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
4680 mem_win0_base | BIR_V(0) |
4681 WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
4682 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
4683 mem_win1_base | BIR_V(0) |
4684 WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
4685 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
4686 mem_win2_base | BIR_V(0) |
4687 WINDOW_V(ilog2(mem_win2_aperture) - 10));
4688 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
636f9d37
VP
4689}
4690
4691static void setup_memwin_rdma(struct adapter *adap)
4692{
1ae970e0 4693 if (adap->vres.ocq.size) {
0abfd152
HS
4694 u32 start;
4695 unsigned int sz_kb;
1ae970e0 4696
0abfd152
HS
4697 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4698 start &= PCI_BASE_ADDRESS_MEM_MASK;
4699 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
4700 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4701 t4_write_reg(adap,
f061de42
HS
4702 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
4703 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 4704 t4_write_reg(adap,
f061de42 4705 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
4706 adap->vres.ocq.start);
4707 t4_read_reg(adap,
f061de42 4708 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 4709 }
b8ff05a9
DM
4710}
4711
02b5fb8e
DM
4712static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4713{
4714 u32 v;
4715 int ret;
4716
4717 /* get device capabilities */
4718 memset(c, 0, sizeof(*c));
e2ac9628
HS
4719 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4720 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 4721 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
060e0c75 4722 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
02b5fb8e
DM
4723 if (ret < 0)
4724 return ret;
4725
4726 /* select capabilities we'll be using */
4727 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4728 if (!vf_acls)
4729 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4730 else
4731 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4732 } else if (vf_acls) {
4733 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4734 return ret;
4735 }
e2ac9628
HS
4736 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4737 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
060e0c75 4738 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
02b5fb8e
DM
4739 if (ret < 0)
4740 return ret;
4741
060e0c75 4742 ret = t4_config_glbl_rss(adap, adap->fn,
02b5fb8e 4743 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
4744 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4745 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
4746 if (ret < 0)
4747 return ret;
4748
4b8e27a8
HS
4749 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
4750 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4751 FW_CMD_CAP_PF);
02b5fb8e
DM
4752 if (ret < 0)
4753 return ret;
4754
4755 t4_sge_init(adap);
4756
02b5fb8e 4757 /* tweak some settings */
837e4a42 4758 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 4759 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
4760 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4761 v = t4_read_reg(adap, TP_PIO_DATA_A);
4762 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 4763
dca4faeb
VP
4764 /* first 4 Tx modulation queues point to consecutive Tx channels */
4765 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
4766 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4767 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
4768
4769 /* associate each Tx modulation queue with consecutive Tx channels */
4770 v = 0x84218421;
837e4a42 4771 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 4772 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 4773 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 4774 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 4775 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 4776 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
4777
4778#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4779 if (is_offload(adap)) {
0d804338
HS
4780 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4781 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4782 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4783 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4784 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4785 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4786 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4787 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4788 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4789 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
4790 }
4791
060e0c75
DM
4792 /* get basic stuff going */
4793 return t4_early_init(adap, adap->fn);
02b5fb8e
DM
4794}
4795
b8ff05a9
DM
4796/*
4797 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4798 */
4799#define MAX_ATIDS 8192U
4800
636f9d37
VP
4801/*
4802 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4803 *
4804 * If the firmware we're dealing with has Configuration File support, then
4805 * we use that to perform all configuration
4806 */
4807
4808/*
4809 * Tweak configuration based on module parameters, etc. Most of these have
4810 * defaults assigned to them by Firmware Configuration Files (if we're using
4811 * them) but need to be explicitly set if we're using hard-coded
4812 * initialization. But even in the case of using Firmware Configuration
4813 * Files, we'd like to expose the ability to change these via module
4814 * parameters so these are essentially common tweaks/settings for
4815 * Configuration Files and hard-coded initialization ...
4816 */
4817static int adap_init0_tweaks(struct adapter *adapter)
4818{
4819 /*
4820 * Fix up various Host-Dependent Parameters like Page Size, Cache
4821 * Line Size, etc. The firmware default is for a 4KB Page Size and
4822 * 64B Cache Line Size ...
4823 */
4824 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4825
4826 /*
4827 * Process module parameters which affect early initialization.
4828 */
4829 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4830 dev_err(&adapter->pdev->dev,
4831 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4832 rx_dma_offset);
4833 rx_dma_offset = 2;
4834 }
f612b815
HS
4835 t4_set_reg_field(adapter, SGE_CONTROL_A,
4836 PKTSHIFT_V(PKTSHIFT_M),
4837 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
4838
4839 /*
4840 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4841 * adds the pseudo header itself.
4842 */
837e4a42
HS
4843 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4844 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
4845
4846 return 0;
4847}
4848
4849/*
4850 * Attempt to initialize the adapter via a Firmware Configuration File.
4851 */
4852static int adap_init0_config(struct adapter *adapter, int reset)
4853{
4854 struct fw_caps_config_cmd caps_cmd;
4855 const struct firmware *cf;
4856 unsigned long mtype = 0, maddr = 0;
4857 u32 finiver, finicsum, cfcsum;
16e47624
HS
4858 int ret;
4859 int config_issued = 0;
0a57a536 4860 char *fw_config_file, fw_config_file_path[256];
16e47624 4861 char *config_name = NULL;
636f9d37
VP
4862
4863 /*
4864 * Reset device if necessary.
4865 */
4866 if (reset) {
4867 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 4868 PIORSTMODE_F | PIORST_F);
636f9d37
VP
4869 if (ret < 0)
4870 goto bye;
4871 }
4872
4873 /*
4874 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4875 * then use that. Otherwise, use the configuration file stored
4876 * in the adapter flash ...
4877 */
d14807dd 4878 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 4879 case CHELSIO_T4:
16e47624 4880 fw_config_file = FW4_CFNAME;
0a57a536
SR
4881 break;
4882 case CHELSIO_T5:
4883 fw_config_file = FW5_CFNAME;
4884 break;
4885 default:
4886 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4887 adapter->pdev->device);
4888 ret = -EINVAL;
4889 goto bye;
4890 }
4891
4892 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 4893 if (ret < 0) {
16e47624 4894 config_name = "On FLASH";
636f9d37
VP
4895 mtype = FW_MEMTYPE_CF_FLASH;
4896 maddr = t4_flash_cfg_addr(adapter);
4897 } else {
4898 u32 params[7], val[7];
4899
16e47624
HS
4900 sprintf(fw_config_file_path,
4901 "/lib/firmware/%s", fw_config_file);
4902 config_name = fw_config_file_path;
4903
636f9d37
VP
4904 if (cf->size >= FLASH_CFG_MAX_SIZE)
4905 ret = -ENOMEM;
4906 else {
5167865a
HS
4907 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4908 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37
VP
4909 ret = t4_query_params(adapter, adapter->mbox,
4910 adapter->fn, 0, 1, params, val);
4911 if (ret == 0) {
4912 /*
fc5ab020 4913 * For t4_memory_rw() below addresses and
636f9d37
VP
4914 * sizes have to be in terms of multiples of 4
4915 * bytes. So, if the Configuration File isn't
4916 * a multiple of 4 bytes in length we'll have
4917 * to write that out separately since we can't
4918 * guarantee that the bytes following the
4919 * residual byte in the buffer returned by
4920 * request_firmware() are zeroed out ...
4921 */
4922 size_t resid = cf->size & 0x3;
4923 size_t size = cf->size & ~0x3;
4924 __be32 *data = (__be32 *)cf->data;
4925
5167865a
HS
4926 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4927 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 4928
fc5ab020
HS
4929 spin_lock(&adapter->win0_lock);
4930 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4931 size, data, T4_MEMORY_WRITE);
636f9d37
VP
4932 if (ret == 0 && resid != 0) {
4933 union {
4934 __be32 word;
4935 char buf[4];
4936 } last;
4937 int i;
4938
4939 last.word = data[size >> 2];
4940 for (i = resid; i < 4; i++)
4941 last.buf[i] = 0;
fc5ab020
HS
4942 ret = t4_memory_rw(adapter, 0, mtype,
4943 maddr + size,
4944 4, &last.word,
4945 T4_MEMORY_WRITE);
636f9d37 4946 }
fc5ab020 4947 spin_unlock(&adapter->win0_lock);
636f9d37
VP
4948 }
4949 }
4950
4951 release_firmware(cf);
4952 if (ret)
4953 goto bye;
4954 }
4955
4956 /*
4957 * Issue a Capability Configuration command to the firmware to get it
4958 * to parse the Configuration File. We don't use t4_fw_config_file()
4959 * because we want the ability to modify various features after we've
4960 * processed the configuration file ...
4961 */
4962 memset(&caps_cmd, 0, sizeof(caps_cmd));
4963 caps_cmd.op_to_write =
e2ac9628
HS
4964 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4965 FW_CMD_REQUEST_F |
4966 FW_CMD_READ_F);
ce91a923 4967 caps_cmd.cfvalid_to_len16 =
5167865a
HS
4968 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4969 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4970 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
4971 FW_LEN16(caps_cmd));
4972 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4973 &caps_cmd);
16e47624
HS
4974
4975 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4976 * Configuration File in FLASH), our last gasp effort is to use the
4977 * Firmware Configuration File which is embedded in the firmware. A
4978 * very few early versions of the firmware didn't have one embedded
4979 * but we can ignore those.
4980 */
4981 if (ret == -ENOENT) {
4982 memset(&caps_cmd, 0, sizeof(caps_cmd));
4983 caps_cmd.op_to_write =
e2ac9628
HS
4984 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4985 FW_CMD_REQUEST_F |
4986 FW_CMD_READ_F);
16e47624
HS
4987 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4988 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4989 sizeof(caps_cmd), &caps_cmd);
4990 config_name = "Firmware Default";
4991 }
4992
4993 config_issued = 1;
636f9d37
VP
4994 if (ret < 0)
4995 goto bye;
4996
4997 finiver = ntohl(caps_cmd.finiver);
4998 finicsum = ntohl(caps_cmd.finicsum);
4999 cfcsum = ntohl(caps_cmd.cfcsum);
5000 if (finicsum != cfcsum)
5001 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5002 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5003 finicsum, cfcsum);
5004
636f9d37
VP
5005 /*
5006 * And now tell the firmware to use the configuration we just loaded.
5007 */
5008 caps_cmd.op_to_write =
e2ac9628
HS
5009 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5010 FW_CMD_REQUEST_F |
5011 FW_CMD_WRITE_F);
ce91a923 5012 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5013 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5014 NULL);
5015 if (ret < 0)
5016 goto bye;
5017
5018 /*
5019 * Tweak configuration based on system architecture, module
5020 * parameters, etc.
5021 */
5022 ret = adap_init0_tweaks(adapter);
5023 if (ret < 0)
5024 goto bye;
5025
5026 /*
5027 * And finally tell the firmware to initialize itself using the
5028 * parameters from the Configuration File.
5029 */
5030 ret = t4_fw_initialize(adapter, adapter->mbox);
5031 if (ret < 0)
5032 goto bye;
5033
06640310
HS
5034 /* Emit Firmware Configuration File information and return
5035 * successfully.
636f9d37 5036 */
636f9d37 5037 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
5038 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5039 config_name, finiver, cfcsum);
636f9d37
VP
5040 return 0;
5041
5042 /*
5043 * Something bad happened. Return the error ... (If the "error"
5044 * is that there's no Configuration File on the adapter we don't
5045 * want to issue a warning since this is fairly common.)
5046 */
5047bye:
16e47624
HS
5048 if (config_issued && ret != -ENOENT)
5049 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5050 config_name, -ret);
636f9d37
VP
5051 return ret;
5052}
5053
16e47624
HS
5054static struct fw_info fw_info_array[] = {
5055 {
5056 .chip = CHELSIO_T4,
5057 .fs_name = FW4_CFNAME,
5058 .fw_mod_name = FW4_FNAME,
5059 .fw_hdr = {
5060 .chip = FW_HDR_CHIP_T4,
5061 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5062 .intfver_nic = FW_INTFVER(T4, NIC),
5063 .intfver_vnic = FW_INTFVER(T4, VNIC),
5064 .intfver_ri = FW_INTFVER(T4, RI),
5065 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5066 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5067 },
5068 }, {
5069 .chip = CHELSIO_T5,
5070 .fs_name = FW5_CFNAME,
5071 .fw_mod_name = FW5_FNAME,
5072 .fw_hdr = {
5073 .chip = FW_HDR_CHIP_T5,
5074 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5075 .intfver_nic = FW_INTFVER(T5, NIC),
5076 .intfver_vnic = FW_INTFVER(T5, VNIC),
5077 .intfver_ri = FW_INTFVER(T5, RI),
5078 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5079 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5080 },
5081 }
5082};
5083
5084static struct fw_info *find_fw_info(int chip)
5085{
5086 int i;
5087
5088 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5089 if (fw_info_array[i].chip == chip)
5090 return &fw_info_array[i];
5091 }
5092 return NULL;
5093}
5094
b8ff05a9
DM
5095/*
5096 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5097 */
5098static int adap_init0(struct adapter *adap)
5099{
5100 int ret;
5101 u32 v, port_vec;
5102 enum dev_state state;
5103 u32 params[7], val[7];
9a4da2cd 5104 struct fw_caps_config_cmd caps_cmd;
49aa284f
HS
5105 struct fw_devlog_cmd devlog_cmd;
5106 u32 devlog_meminfo;
dcf7b6f5 5107 int reset = 1;
b8ff05a9 5108
666224d4
HS
5109 /* Contact FW, advertising Master capability */
5110 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
5111 if (ret < 0) {
5112 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5113 ret);
5114 return ret;
5115 }
636f9d37
VP
5116 if (ret == adap->mbox)
5117 adap->flags |= MASTER_PF;
b8ff05a9 5118
636f9d37
VP
5119 /*
5120 * If we're the Master PF Driver and the device is uninitialized,
5121 * then let's consider upgrading the firmware ... (We always want
5122 * to check the firmware version number in order to A. get it for
5123 * later reporting and B. to warn if the currently loaded firmware
5124 * is excessively mismatched relative to the driver.)
5125 */
16e47624
HS
5126 t4_get_fw_version(adap, &adap->params.fw_vers);
5127 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 5128 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
5129 struct fw_info *fw_info;
5130 struct fw_hdr *card_fw;
5131 const struct firmware *fw;
5132 const u8 *fw_data = NULL;
5133 unsigned int fw_size = 0;
5134
5135 /* This is the firmware whose headers the driver was compiled
5136 * against
5137 */
5138 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5139 if (fw_info == NULL) {
5140 dev_err(adap->pdev_dev,
5141 "unable to get firmware info for chip %d.\n",
5142 CHELSIO_CHIP_VERSION(adap->params.chip));
5143 return -EINVAL;
636f9d37 5144 }
16e47624
HS
5145
5146 /* allocate memory to read the header of the firmware on the
5147 * card
5148 */
5149 card_fw = t4_alloc_mem(sizeof(*card_fw));
5150
5151 /* Get FW from from /lib/firmware/ */
5152 ret = request_firmware(&fw, fw_info->fw_mod_name,
5153 adap->pdev_dev);
5154 if (ret < 0) {
5155 dev_err(adap->pdev_dev,
5156 "unable to load firmware image %s, error %d\n",
5157 fw_info->fw_mod_name, ret);
5158 } else {
5159 fw_data = fw->data;
5160 fw_size = fw->size;
5161 }
5162
5163 /* upgrade FW logic */
5164 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5165 state, &reset);
5166
5167 /* Cleaning up */
0b5b6bee 5168 release_firmware(fw);
16e47624
HS
5169 t4_free_mem(card_fw);
5170
636f9d37 5171 if (ret < 0)
16e47624 5172 goto bye;
636f9d37 5173 }
b8ff05a9 5174
636f9d37
VP
5175 /*
5176 * Grab VPD parameters. This should be done after we establish a
5177 * connection to the firmware since some of the VPD parameters
5178 * (notably the Core Clock frequency) are retrieved via requests to
5179 * the firmware. On the other hand, we need these fairly early on
5180 * so we do this right after getting ahold of the firmware.
5181 */
5182 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
5183 if (ret < 0)
5184 goto bye;
a0881cab 5185
49aa284f
HS
5186 /* Read firmware device log parameters. We really need to find a way
5187 * to get these parameters initialized with some default values (which
5188 * are likely to be correct) for the case where we either don't
5189 * attache to the firmware or it's crashed when we probe the adapter.
5190 * That way we'll still be able to perform early firmware startup
5191 * debugging ... If the request to get the Firmware's Device Log
5192 * parameters fails, we'll live so we don't make that a fatal error.
5193 */
5194 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
5195 devlog_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_DEVLOG_CMD) |
5196 FW_CMD_REQUEST_F | FW_CMD_READ_F);
5197 devlog_cmd.retval_len16 = htonl(FW_LEN16(devlog_cmd));
5198 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
5199 &devlog_cmd);
5200 if (ret == 0) {
5201 devlog_meminfo =
5202 ntohl(devlog_cmd.memtype_devlog_memaddr16_devlog);
5203 adap->params.devlog.memtype =
5204 FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
5205 adap->params.devlog.start =
5206 FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
5207 adap->params.devlog.size = ntohl(devlog_cmd.memsize_devlog);
5208 }
5209
636f9d37 5210 /*
13ee15d3
VP
5211 * Find out what ports are available to us. Note that we need to do
5212 * this before calling adap_init0_no_config() since it needs nports
5213 * and portvec ...
636f9d37
VP
5214 */
5215 v =
5167865a
HS
5216 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5217 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
636f9d37 5218 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
a0881cab
DM
5219 if (ret < 0)
5220 goto bye;
5221
636f9d37
VP
5222 adap->params.nports = hweight32(port_vec);
5223 adap->params.portvec = port_vec;
5224
06640310
HS
5225 /* If the firmware is initialized already, emit a simply note to that
5226 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
5227 */
5228 if (state == DEV_STATE_INIT) {
5229 dev_info(adap->pdev_dev, "Coming up as %s: "\
5230 "Adapter already initialized\n",
5231 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
5232 } else {
5233 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5234 "Initializing adapter\n");
06640310
HS
5235
5236 /* Find out whether we're dealing with a version of the
5237 * firmware which has configuration file support.
636f9d37 5238 */
06640310
HS
5239 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5240 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
5241 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5242 params, val);
13ee15d3 5243
06640310
HS
5244 /* If the firmware doesn't support Configuration Files,
5245 * return an error.
5246 */
5247 if (ret < 0) {
5248 dev_err(adap->pdev_dev, "firmware doesn't support "
5249 "Firmware Configuration Files\n");
5250 goto bye;
5251 }
5252
5253 /* The firmware provides us with a memory buffer where we can
5254 * load a Configuration File from the host if we want to
5255 * override the Configuration File in flash.
5256 */
5257 ret = adap_init0_config(adap, reset);
5258 if (ret == -ENOENT) {
5259 dev_err(adap->pdev_dev, "no Configuration File "
5260 "present on adapter.\n");
5261 goto bye;
636f9d37
VP
5262 }
5263 if (ret < 0) {
06640310
HS
5264 dev_err(adap->pdev_dev, "could not initialize "
5265 "adapter, error %d\n", -ret);
636f9d37
VP
5266 goto bye;
5267 }
5268 }
5269
06640310
HS
5270 /* Give the SGE code a chance to pull in anything that it needs ...
5271 * Note that this must be called after we retrieve our VPD parameters
5272 * in order to know how to convert core ticks to seconds, etc.
636f9d37 5273 */
06640310
HS
5274 ret = t4_sge_init(adap);
5275 if (ret < 0)
5276 goto bye;
636f9d37 5277
9a4da2cd
VP
5278 if (is_bypass_device(adap->pdev->device))
5279 adap->params.bypass = 1;
5280
636f9d37
VP
5281 /*
5282 * Grab some of our basic fundamental operating parameters.
5283 */
5284#define FW_PARAM_DEV(param) \
5167865a
HS
5285 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
5286 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 5287
b8ff05a9 5288#define FW_PARAM_PFVF(param) \
5167865a
HS
5289 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
5290 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
5291 FW_PARAMS_PARAM_Y_V(0) | \
5292 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 5293
636f9d37 5294 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
5295 params[1] = FW_PARAM_PFVF(L2T_START);
5296 params[2] = FW_PARAM_PFVF(L2T_END);
5297 params[3] = FW_PARAM_PFVF(FILTER_START);
5298 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 5299 params[5] = FW_PARAM_PFVF(IQFLINT_START);
636f9d37 5300 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
b8ff05a9
DM
5301 if (ret < 0)
5302 goto bye;
636f9d37
VP
5303 adap->sge.egr_start = val[0];
5304 adap->l2t_start = val[1];
5305 adap->l2t_end = val[2];
b8ff05a9
DM
5306 adap->tids.ftid_base = val[3];
5307 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 5308 adap->sge.ingr_start = val[5];
b8ff05a9 5309
4b8e27a8
HS
5310 /* qids (ingress/egress) returned from firmware can be anywhere
5311 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5312 * Hence driver needs to allocate memory for this range to
5313 * store the queue info. Get the highest IQFLINT/EQ index returned
5314 * in FW_EQ_*_CMD.alloc command.
5315 */
5316 params[0] = FW_PARAM_PFVF(EQ_END);
5317 params[1] = FW_PARAM_PFVF(IQFLINT_END);
5318 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5319 if (ret < 0)
5320 goto bye;
5321 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5322 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5323
5324 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5325 sizeof(*adap->sge.egr_map), GFP_KERNEL);
5326 if (!adap->sge.egr_map) {
5327 ret = -ENOMEM;
5328 goto bye;
5329 }
5330
5331 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5332 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5333 if (!adap->sge.ingr_map) {
5334 ret = -ENOMEM;
5335 goto bye;
5336 }
5337
5338 /* Allocate the memory for the vaious egress queue bitmaps
5339 * ie starving_fl and txq_maperr.
5340 */
5341 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5342 sizeof(long), GFP_KERNEL);
5343 if (!adap->sge.starving_fl) {
5344 ret = -ENOMEM;
5345 goto bye;
5346 }
5347
5348 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5349 sizeof(long), GFP_KERNEL);
5350 if (!adap->sge.txq_maperr) {
5351 ret = -ENOMEM;
5352 goto bye;
5353 }
5354
b5a02f50
AB
5355 params[0] = FW_PARAM_PFVF(CLIP_START);
5356 params[1] = FW_PARAM_PFVF(CLIP_END);
5357 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5358 if (ret < 0)
5359 goto bye;
5360 adap->clipt_start = val[0];
5361 adap->clipt_end = val[1];
5362
636f9d37
VP
5363 /* query params related to active filter region */
5364 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5365 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5366 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5367 /* If Active filter size is set we enable establishing
5368 * offload connection through firmware work request
5369 */
5370 if ((val[0] != val[1]) && (ret >= 0)) {
5371 adap->flags |= FW_OFLD_CONN;
5372 adap->tids.aftid_base = val[0];
5373 adap->tids.aftid_end = val[1];
5374 }
5375
b407a4a9
VP
5376 /* If we're running on newer firmware, let it know that we're
5377 * prepared to deal with encapsulated CPL messages. Older
5378 * firmware won't understand this and we'll just get
5379 * unencapsulated messages ...
5380 */
5381 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5382 val[0] = 1;
5383 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5384
1ac0f095
KS
5385 /*
5386 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5387 * capability. Earlier versions of the firmware didn't have the
5388 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5389 * permission to use ULPTX MEMWRITE DSGL.
5390 */
5391 if (is_t4(adap->params.chip)) {
5392 adap->params.ulptx_memwrite_dsgl = false;
5393 } else {
5394 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5395 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5396 1, params, val);
5397 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5398 }
5399
636f9d37
VP
5400 /*
5401 * Get device capabilities so we can determine what resources we need
5402 * to manage.
5403 */
5404 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
5405 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5406 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 5407 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5408 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5409 &caps_cmd);
5410 if (ret < 0)
5411 goto bye;
5412
13ee15d3 5413 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
5414 /* query offload-related parameters */
5415 params[0] = FW_PARAM_DEV(NTID);
5416 params[1] = FW_PARAM_PFVF(SERVER_START);
5417 params[2] = FW_PARAM_PFVF(SERVER_END);
5418 params[3] = FW_PARAM_PFVF(TDDP_START);
5419 params[4] = FW_PARAM_PFVF(TDDP_END);
5420 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
636f9d37
VP
5421 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5422 params, val);
b8ff05a9
DM
5423 if (ret < 0)
5424 goto bye;
5425 adap->tids.ntids = val[0];
5426 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5427 adap->tids.stid_base = val[1];
5428 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37
VP
5429 /*
5430 * Setup server filter region. Divide the availble filter
5431 * region into two parts. Regular filters get 1/3rd and server
5432 * filters get 2/3rd part. This is only enabled if workarond
5433 * path is enabled.
5434 * 1. For regular filters.
5435 * 2. Server filter: This are special filters which are used
5436 * to redirect SYN packets to offload queue.
5437 */
5438 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5439 adap->tids.sftid_base = adap->tids.ftid_base +
5440 DIV_ROUND_UP(adap->tids.nftids, 3);
5441 adap->tids.nsftids = adap->tids.nftids -
5442 DIV_ROUND_UP(adap->tids.nftids, 3);
5443 adap->tids.nftids = adap->tids.sftid_base -
5444 adap->tids.ftid_base;
5445 }
b8ff05a9
DM
5446 adap->vres.ddp.start = val[3];
5447 adap->vres.ddp.size = val[4] - val[3] + 1;
5448 adap->params.ofldq_wr_cred = val[5];
636f9d37 5449
b8ff05a9
DM
5450 adap->params.offload = 1;
5451 }
636f9d37 5452 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
5453 params[0] = FW_PARAM_PFVF(STAG_START);
5454 params[1] = FW_PARAM_PFVF(STAG_END);
5455 params[2] = FW_PARAM_PFVF(RQ_START);
5456 params[3] = FW_PARAM_PFVF(RQ_END);
5457 params[4] = FW_PARAM_PFVF(PBL_START);
5458 params[5] = FW_PARAM_PFVF(PBL_END);
636f9d37
VP
5459 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5460 params, val);
b8ff05a9
DM
5461 if (ret < 0)
5462 goto bye;
5463 adap->vres.stag.start = val[0];
5464 adap->vres.stag.size = val[1] - val[0] + 1;
5465 adap->vres.rq.start = val[2];
5466 adap->vres.rq.size = val[3] - val[2] + 1;
5467 adap->vres.pbl.start = val[4];
5468 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
5469
5470 params[0] = FW_PARAM_PFVF(SQRQ_START);
5471 params[1] = FW_PARAM_PFVF(SQRQ_END);
5472 params[2] = FW_PARAM_PFVF(CQ_START);
5473 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
5474 params[4] = FW_PARAM_PFVF(OCQ_START);
5475 params[5] = FW_PARAM_PFVF(OCQ_END);
5c937dd3
HS
5476 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5477 val);
a0881cab
DM
5478 if (ret < 0)
5479 goto bye;
5480 adap->vres.qp.start = val[0];
5481 adap->vres.qp.size = val[1] - val[0] + 1;
5482 adap->vres.cq.start = val[2];
5483 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
5484 adap->vres.ocq.start = val[4];
5485 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
5486
5487 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5488 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5c937dd3
HS
5489 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
5490 val);
4c2c5763
HS
5491 if (ret < 0) {
5492 adap->params.max_ordird_qp = 8;
5493 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5494 ret = 0;
5495 } else {
5496 adap->params.max_ordird_qp = val[0];
5497 adap->params.max_ird_adapter = val[1];
5498 }
5499 dev_info(adap->pdev_dev,
5500 "max_ordird_qp %d max_ird_adapter %d\n",
5501 adap->params.max_ordird_qp,
5502 adap->params.max_ird_adapter);
b8ff05a9 5503 }
636f9d37 5504 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
5505 params[0] = FW_PARAM_PFVF(ISCSI_START);
5506 params[1] = FW_PARAM_PFVF(ISCSI_END);
636f9d37
VP
5507 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5508 params, val);
b8ff05a9
DM
5509 if (ret < 0)
5510 goto bye;
5511 adap->vres.iscsi.start = val[0];
5512 adap->vres.iscsi.size = val[1] - val[0] + 1;
5513 }
5514#undef FW_PARAM_PFVF
5515#undef FW_PARAM_DEV
5516
92e7ae71
HS
5517 /* The MTU/MSS Table is initialized by now, so load their values. If
5518 * we're initializing the adapter, then we'll make any modifications
5519 * we want to the MTU/MSS Table and also initialize the congestion
5520 * parameters.
636f9d37 5521 */
b8ff05a9 5522 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
5523 if (state != DEV_STATE_INIT) {
5524 int i;
5525
5526 /* The default MTU Table contains values 1492 and 1500.
5527 * However, for TCP, it's better to have two values which are
5528 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5529 * This allows us to have a TCP Data Payload which is a
5530 * multiple of 8 regardless of what combination of TCP Options
5531 * are in use (always a multiple of 4 bytes) which is
5532 * important for performance reasons. For instance, if no
5533 * options are in use, then we have a 20-byte IP header and a
5534 * 20-byte TCP header. In this case, a 1500-byte MSS would
5535 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5536 * which is not a multiple of 8. So using an MSS of 1488 in
5537 * this case results in a TCP Data Payload of 1448 bytes which
5538 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5539 * Stamps have been negotiated, then an MTU of 1500 bytes
5540 * results in a TCP Data Payload of 1448 bytes which, as
5541 * above, is a multiple of 8 bytes ...
5542 */
5543 for (i = 0; i < NMTUS; i++)
5544 if (adap->params.mtus[i] == 1492) {
5545 adap->params.mtus[i] = 1488;
5546 break;
5547 }
7ee9ff94 5548
92e7ae71
HS
5549 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5550 adap->params.b_wnd);
5551 }
df64e4d3 5552 t4_init_sge_params(adap);
dcf7b6f5 5553 t4_init_tp_params(adap);
636f9d37 5554 adap->flags |= FW_OK;
b8ff05a9
DM
5555 return 0;
5556
5557 /*
636f9d37
VP
5558 * Something bad happened. If a command timed out or failed with EIO
5559 * FW does not operate within its spec or something catastrophic
5560 * happened to HW/FW, stop issuing commands.
b8ff05a9 5561 */
636f9d37 5562bye:
4b8e27a8
HS
5563 kfree(adap->sge.egr_map);
5564 kfree(adap->sge.ingr_map);
5565 kfree(adap->sge.starving_fl);
5566 kfree(adap->sge.txq_maperr);
636f9d37
VP
5567 if (ret != -ETIMEDOUT && ret != -EIO)
5568 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
5569 return ret;
5570}
5571
204dc3c0
DM
5572/* EEH callbacks */
5573
5574static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5575 pci_channel_state_t state)
5576{
5577 int i;
5578 struct adapter *adap = pci_get_drvdata(pdev);
5579
5580 if (!adap)
5581 goto out;
5582
5583 rtnl_lock();
5584 adap->flags &= ~FW_OK;
5585 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 5586 spin_lock(&adap->stats_lock);
204dc3c0
DM
5587 for_each_port(adap, i) {
5588 struct net_device *dev = adap->port[i];
5589
5590 netif_device_detach(dev);
5591 netif_carrier_off(dev);
5592 }
9fe6cb58 5593 spin_unlock(&adap->stats_lock);
204dc3c0
DM
5594 if (adap->flags & FULL_INIT_DONE)
5595 cxgb_down(adap);
5596 rtnl_unlock();
144be3d9
GS
5597 if ((adap->flags & DEV_ENABLED)) {
5598 pci_disable_device(pdev);
5599 adap->flags &= ~DEV_ENABLED;
5600 }
204dc3c0
DM
5601out: return state == pci_channel_io_perm_failure ?
5602 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5603}
5604
5605static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5606{
5607 int i, ret;
5608 struct fw_caps_config_cmd c;
5609 struct adapter *adap = pci_get_drvdata(pdev);
5610
5611 if (!adap) {
5612 pci_restore_state(pdev);
5613 pci_save_state(pdev);
5614 return PCI_ERS_RESULT_RECOVERED;
5615 }
5616
144be3d9
GS
5617 if (!(adap->flags & DEV_ENABLED)) {
5618 if (pci_enable_device(pdev)) {
5619 dev_err(&pdev->dev, "Cannot reenable PCI "
5620 "device after reset\n");
5621 return PCI_ERS_RESULT_DISCONNECT;
5622 }
5623 adap->flags |= DEV_ENABLED;
204dc3c0
DM
5624 }
5625
5626 pci_set_master(pdev);
5627 pci_restore_state(pdev);
5628 pci_save_state(pdev);
5629 pci_cleanup_aer_uncorrect_error_status(pdev);
5630
8203b509 5631 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 5632 return PCI_ERS_RESULT_DISCONNECT;
777c2300 5633 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
204dc3c0
DM
5634 return PCI_ERS_RESULT_DISCONNECT;
5635 adap->flags |= FW_OK;
5636 if (adap_init1(adap, &c))
5637 return PCI_ERS_RESULT_DISCONNECT;
5638
5639 for_each_port(adap, i) {
5640 struct port_info *p = adap2pinfo(adap, i);
5641
060e0c75
DM
5642 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5643 NULL, NULL);
204dc3c0
DM
5644 if (ret < 0)
5645 return PCI_ERS_RESULT_DISCONNECT;
5646 p->viid = ret;
5647 p->xact_addr_filt = -1;
5648 }
5649
5650 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5651 adap->params.b_wnd);
1ae970e0 5652 setup_memwin(adap);
204dc3c0
DM
5653 if (cxgb_up(adap))
5654 return PCI_ERS_RESULT_DISCONNECT;
5655 return PCI_ERS_RESULT_RECOVERED;
5656}
5657
5658static void eeh_resume(struct pci_dev *pdev)
5659{
5660 int i;
5661 struct adapter *adap = pci_get_drvdata(pdev);
5662
5663 if (!adap)
5664 return;
5665
5666 rtnl_lock();
5667 for_each_port(adap, i) {
5668 struct net_device *dev = adap->port[i];
5669
5670 if (netif_running(dev)) {
5671 link_start(dev);
5672 cxgb_set_rxmode(dev);
5673 }
5674 netif_device_attach(dev);
5675 }
5676 rtnl_unlock();
5677}
5678
3646f0e5 5679static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
5680 .error_detected = eeh_err_detected,
5681 .slot_reset = eeh_slot_reset,
5682 .resume = eeh_resume,
5683};
5684
57d8b764 5685static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 5686{
57d8b764
KS
5687 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
5688 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
5689}
5690
c887ad0e
HS
5691static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
5692 unsigned int us, unsigned int cnt,
b8ff05a9
DM
5693 unsigned int size, unsigned int iqe_size)
5694{
c887ad0e
HS
5695 q->adap = adap;
5696 set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
5697 q->iqe_len = iqe_size;
5698 q->size = size;
5699}
5700
5701/*
5702 * Perform default configuration of DMA queues depending on the number and type
5703 * of ports we found and the number of available CPUs. Most settings can be
5704 * modified by the admin prior to actual use.
5705 */
91744948 5706static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
5707{
5708 struct sge *s = &adap->sge;
688848b1
AB
5709 int i, n10g = 0, qidx = 0;
5710#ifndef CONFIG_CHELSIO_T4_DCB
5711 int q10g = 0;
5712#endif
cf38be6d 5713 int ciq_size;
b8ff05a9
DM
5714
5715 for_each_port(adap, i)
57d8b764 5716 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
5717#ifdef CONFIG_CHELSIO_T4_DCB
5718 /* For Data Center Bridging support we need to be able to support up
5719 * to 8 Traffic Priorities; each of which will be assigned to its
5720 * own TX Queue in order to prevent Head-Of-Line Blocking.
5721 */
5722 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
5723 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
5724 MAX_ETH_QSETS, adap->params.nports * 8);
5725 BUG_ON(1);
5726 }
b8ff05a9 5727
688848b1
AB
5728 for_each_port(adap, i) {
5729 struct port_info *pi = adap2pinfo(adap, i);
5730
5731 pi->first_qset = qidx;
5732 pi->nqsets = 8;
5733 qidx += pi->nqsets;
5734 }
5735#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
5736 /*
5737 * We default to 1 queue per non-10G port and up to # of cores queues
5738 * per 10G port.
5739 */
5740 if (n10g)
5741 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
5742 if (q10g > netif_get_num_default_rss_queues())
5743 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
5744
5745 for_each_port(adap, i) {
5746 struct port_info *pi = adap2pinfo(adap, i);
5747
5748 pi->first_qset = qidx;
57d8b764 5749 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
5750 qidx += pi->nqsets;
5751 }
688848b1 5752#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
5753
5754 s->ethqsets = qidx;
5755 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5756
5757 if (is_offload(adap)) {
5758 /*
5759 * For offload we use 1 queue/channel if all ports are up to 1G,
5760 * otherwise we divide all available queues amongst the channels
5761 * capped by the number of available cores.
5762 */
5763 if (n10g) {
5764 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5765 num_online_cpus());
5766 s->ofldqsets = roundup(i, adap->params.nports);
5767 } else
5768 s->ofldqsets = adap->params.nports;
5769 /* For RDMA one Rx queue per channel suffices */
5770 s->rdmaqs = adap->params.nports;
cf38be6d 5771 s->rdmaciqs = adap->params.nports;
b8ff05a9
DM
5772 }
5773
5774 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5775 struct sge_eth_rxq *r = &s->ethrxq[i];
5776
c887ad0e 5777 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
5778 r->fl.size = 72;
5779 }
5780
5781 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5782 s->ethtxq[i].q.size = 1024;
5783
5784 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5785 s->ctrlq[i].q.size = 512;
5786
5787 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5788 s->ofldtxq[i].q.size = 1024;
5789
5790 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5791 struct sge_ofld_rxq *r = &s->ofldrxq[i];
5792
c887ad0e 5793 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
5794 r->rspq.uld = CXGB4_ULD_ISCSI;
5795 r->fl.size = 72;
5796 }
5797
5798 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5799 struct sge_ofld_rxq *r = &s->rdmarxq[i];
5800
c887ad0e 5801 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
5802 r->rspq.uld = CXGB4_ULD_RDMA;
5803 r->fl.size = 72;
5804 }
5805
cf38be6d
HS
5806 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
5807 if (ciq_size > SGE_MAX_IQ_SIZE) {
5808 CH_WARN(adap, "CIQ size too small for available IQs\n");
5809 ciq_size = SGE_MAX_IQ_SIZE;
5810 }
5811
5812 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
5813 struct sge_ofld_rxq *r = &s->rdmaciq[i];
5814
c887ad0e 5815 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
5816 r->rspq.uld = CXGB4_ULD_RDMA;
5817 }
5818
c887ad0e
HS
5819 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5820 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
5821}
5822
5823/*
5824 * Reduce the number of Ethernet queues across all ports to at most n.
5825 * n provides at least one queue per port.
5826 */
91744948 5827static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
5828{
5829 int i;
5830 struct port_info *pi;
5831
5832 while (n < adap->sge.ethqsets)
5833 for_each_port(adap, i) {
5834 pi = adap2pinfo(adap, i);
5835 if (pi->nqsets > 1) {
5836 pi->nqsets--;
5837 adap->sge.ethqsets--;
5838 if (adap->sge.ethqsets <= n)
5839 break;
5840 }
5841 }
5842
5843 n = 0;
5844 for_each_port(adap, i) {
5845 pi = adap2pinfo(adap, i);
5846 pi->first_qset = n;
5847 n += pi->nqsets;
5848 }
5849}
5850
5851/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5852#define EXTRA_VECS 2
5853
91744948 5854static int enable_msix(struct adapter *adap)
b8ff05a9
DM
5855{
5856 int ofld_need = 0;
c32ad224 5857 int i, want, need;
b8ff05a9
DM
5858 struct sge *s = &adap->sge;
5859 unsigned int nchan = adap->params.nports;
5860 struct msix_entry entries[MAX_INGQ + 1];
5861
5862 for (i = 0; i < ARRAY_SIZE(entries); ++i)
5863 entries[i].entry = i;
5864
5865 want = s->max_ethqsets + EXTRA_VECS;
5866 if (is_offload(adap)) {
cf38be6d 5867 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 5868 /* need nchan for each possible ULD */
cf38be6d 5869 ofld_need = 3 * nchan;
b8ff05a9 5870 }
688848b1
AB
5871#ifdef CONFIG_CHELSIO_T4_DCB
5872 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5873 * each port.
5874 */
5875 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
5876#else
b8ff05a9 5877 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 5878#endif
c32ad224
AG
5879 want = pci_enable_msix_range(adap->pdev, entries, need, want);
5880 if (want < 0)
5881 return want;
b8ff05a9 5882
c32ad224
AG
5883 /*
5884 * Distribute available vectors to the various queue groups.
5885 * Every group gets its minimum requirement and NIC gets top
5886 * priority for leftovers.
5887 */
5888 i = want - EXTRA_VECS - ofld_need;
5889 if (i < s->max_ethqsets) {
5890 s->max_ethqsets = i;
5891 if (i < s->ethqsets)
5892 reduce_ethqs(adap, i);
5893 }
5894 if (is_offload(adap)) {
5895 i = want - EXTRA_VECS - s->max_ethqsets;
5896 i -= ofld_need - nchan;
5897 s->ofldqsets = (i / nchan) * nchan; /* round down */
5898 }
5899 for (i = 0; i < want; ++i)
5900 adap->msix_info[i].vec = entries[i].vector;
5901
5902 return 0;
b8ff05a9
DM
5903}
5904
5905#undef EXTRA_VECS
5906
91744948 5907static int init_rss(struct adapter *adap)
671b0060
DM
5908{
5909 unsigned int i, j;
5910
5911 for_each_port(adap, i) {
5912 struct port_info *pi = adap2pinfo(adap, i);
5913
5914 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5915 if (!pi->rss)
5916 return -ENOMEM;
5917 for (j = 0; j < pi->rss_size; j++)
278bc429 5918 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
671b0060
DM
5919 }
5920 return 0;
5921}
5922
91744948 5923static void print_port_info(const struct net_device *dev)
b8ff05a9 5924{
b8ff05a9 5925 char buf[80];
118969ed 5926 char *bufp = buf;
f1a051b9 5927 const char *spd = "";
118969ed
DM
5928 const struct port_info *pi = netdev_priv(dev);
5929 const struct adapter *adap = pi->adapter;
f1a051b9
DM
5930
5931 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5932 spd = " 2.5 GT/s";
5933 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5934 spd = " 5 GT/s";
d2e752db
RD
5935 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
5936 spd = " 8 GT/s";
b8ff05a9 5937
118969ed
DM
5938 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5939 bufp += sprintf(bufp, "100/");
5940 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5941 bufp += sprintf(bufp, "1000/");
5942 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5943 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
5944 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
5945 bufp += sprintf(bufp, "40G/");
118969ed
DM
5946 if (bufp != buf)
5947 --bufp;
72aca4bf 5948 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
5949
5950 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 5951 adap->params.vpd.id,
d14807dd 5952 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
5953 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
5954 (adap->flags & USING_MSIX) ? " MSI-X" :
5955 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
5956 netdev_info(dev, "S/N: %s, P/N: %s\n",
5957 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
5958}
5959
91744948 5960static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 5961{
e5c8ae5f 5962 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
5963}
5964
06546391
DM
5965/*
5966 * Free the following resources:
5967 * - memory used for tables
5968 * - MSI/MSI-X
5969 * - net devices
5970 * - resources FW is holding for us
5971 */
5972static void free_some_resources(struct adapter *adapter)
5973{
5974 unsigned int i;
5975
5976 t4_free_mem(adapter->l2t);
5977 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
5978 kfree(adapter->sge.egr_map);
5979 kfree(adapter->sge.ingr_map);
5980 kfree(adapter->sge.starving_fl);
5981 kfree(adapter->sge.txq_maperr);
06546391
DM
5982 disable_msi(adapter);
5983
5984 for_each_port(adapter, i)
671b0060
DM
5985 if (adapter->port[i]) {
5986 kfree(adap2pinfo(adapter, i)->rss);
06546391 5987 free_netdev(adapter->port[i]);
671b0060 5988 }
06546391 5989 if (adapter->flags & FW_OK)
060e0c75 5990 t4_fw_bye(adapter, adapter->fn);
06546391
DM
5991}
5992
2ed28baa 5993#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 5994#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 5995 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 5996#define SEGMENT_SIZE 128
b8ff05a9 5997
1dd06ae8 5998static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 5999{
22adfe0a 6000 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 6001 struct port_info *pi;
c8f44aff 6002 bool highdma = false;
b8ff05a9 6003 struct adapter *adapter = NULL;
d6ce2628 6004 void __iomem *regs;
b8ff05a9
DM
6005
6006 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6007
6008 err = pci_request_regions(pdev, KBUILD_MODNAME);
6009 if (err) {
6010 /* Just info, some other driver may have claimed the device. */
6011 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6012 return err;
6013 }
6014
b8ff05a9
DM
6015 err = pci_enable_device(pdev);
6016 if (err) {
6017 dev_err(&pdev->dev, "cannot enable PCI device\n");
6018 goto out_release_regions;
6019 }
6020
d6ce2628
HS
6021 regs = pci_ioremap_bar(pdev, 0);
6022 if (!regs) {
6023 dev_err(&pdev->dev, "cannot map device registers\n");
6024 err = -ENOMEM;
6025 goto out_disable_device;
6026 }
6027
8203b509
HS
6028 err = t4_wait_dev_ready(regs);
6029 if (err < 0)
6030 goto out_unmap_bar0;
6031
d6ce2628 6032 /* We control everything through one PF */
0d804338 6033 func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
d6ce2628
HS
6034 if (func != ent->driver_data) {
6035 iounmap(regs);
6036 pci_disable_device(pdev);
6037 pci_save_state(pdev); /* to restore SR-IOV later */
6038 goto sriov;
6039 }
6040
b8ff05a9 6041 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 6042 highdma = true;
b8ff05a9
DM
6043 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6044 if (err) {
6045 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6046 "coherent allocations\n");
d6ce2628 6047 goto out_unmap_bar0;
b8ff05a9
DM
6048 }
6049 } else {
6050 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6051 if (err) {
6052 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 6053 goto out_unmap_bar0;
b8ff05a9
DM
6054 }
6055 }
6056
6057 pci_enable_pcie_error_reporting(pdev);
ef306b50 6058 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
6059 pci_set_master(pdev);
6060 pci_save_state(pdev);
6061
6062 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6063 if (!adapter) {
6064 err = -ENOMEM;
d6ce2628 6065 goto out_unmap_bar0;
b8ff05a9
DM
6066 }
6067
29aaee65
AB
6068 adapter->workq = create_singlethread_workqueue("cxgb4");
6069 if (!adapter->workq) {
6070 err = -ENOMEM;
6071 goto out_free_adapter;
6072 }
6073
144be3d9
GS
6074 /* PCI device has been enabled */
6075 adapter->flags |= DEV_ENABLED;
6076
d6ce2628 6077 adapter->regs = regs;
b8ff05a9
DM
6078 adapter->pdev = pdev;
6079 adapter->pdev_dev = &pdev->dev;
3069ee9b 6080 adapter->mbox = func;
060e0c75 6081 adapter->fn = func;
b8ff05a9
DM
6082 adapter->msg_enable = dflt_msg_enable;
6083 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6084
6085 spin_lock_init(&adapter->stats_lock);
6086 spin_lock_init(&adapter->tid_release_lock);
e327c225 6087 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
6088
6089 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
6090 INIT_WORK(&adapter->db_full_task, process_db_full);
6091 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
6092
6093 err = t4_prep_adapter(adapter);
6094 if (err)
d6ce2628
HS
6095 goto out_free_adapter;
6096
22adfe0a 6097
d14807dd 6098 if (!is_t4(adapter->params.chip)) {
f612b815
HS
6099 s_qpp = (QUEUESPERPAGEPF0_S +
6100 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6101 adapter->fn);
6102 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6103 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
6104 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6105
6106 /* Each segment size is 128B. Write coalescing is enabled only
6107 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6108 * queue is less no of segments that can be accommodated in
6109 * a page size.
6110 */
6111 if (qpp > num_seg) {
6112 dev_err(&pdev->dev,
6113 "Incorrect number of egress queues per page\n");
6114 err = -EINVAL;
d6ce2628 6115 goto out_free_adapter;
22adfe0a
SR
6116 }
6117 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6118 pci_resource_len(pdev, 2));
6119 if (!adapter->bar2) {
6120 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6121 err = -ENOMEM;
d6ce2628 6122 goto out_free_adapter;
22adfe0a
SR
6123 }
6124 }
6125
636f9d37 6126 setup_memwin(adapter);
b8ff05a9 6127 err = adap_init0(adapter);
636f9d37 6128 setup_memwin_rdma(adapter);
b8ff05a9
DM
6129 if (err)
6130 goto out_unmap_bar;
6131
6132 for_each_port(adapter, i) {
6133 struct net_device *netdev;
6134
6135 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6136 MAX_ETH_QSETS);
6137 if (!netdev) {
6138 err = -ENOMEM;
6139 goto out_free_dev;
6140 }
6141
6142 SET_NETDEV_DEV(netdev, &pdev->dev);
6143
6144 adapter->port[i] = netdev;
6145 pi = netdev_priv(netdev);
6146 pi->adapter = adapter;
6147 pi->xact_addr_filt = -1;
b8ff05a9 6148 pi->port_id = i;
b8ff05a9
DM
6149 netdev->irq = pdev->irq;
6150
2ed28baa
MM
6151 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6152 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6153 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 6154 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
6155 if (highdma)
6156 netdev->hw_features |= NETIF_F_HIGHDMA;
6157 netdev->features |= netdev->hw_features;
b8ff05a9
DM
6158 netdev->vlan_features = netdev->features & VLAN_FEAT;
6159
01789349
JP
6160 netdev->priv_flags |= IFF_UNICAST_FLT;
6161
b8ff05a9 6162 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
6163#ifdef CONFIG_CHELSIO_T4_DCB
6164 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6165 cxgb4_dcb_state_init(netdev);
6166#endif
7ad24ea4 6167 netdev->ethtool_ops = &cxgb_ethtool_ops;
b8ff05a9
DM
6168 }
6169
6170 pci_set_drvdata(pdev, adapter);
6171
6172 if (adapter->flags & FW_OK) {
060e0c75 6173 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
6174 if (err)
6175 goto out_free_dev;
6176 }
6177
6178 /*
6179 * Configure queues and allocate tables now, they can be needed as
6180 * soon as the first register_netdev completes.
6181 */
6182 cfg_queues(adapter);
6183
6184 adapter->l2t = t4_init_l2t();
6185 if (!adapter->l2t) {
6186 /* We tolerate a lack of L2T, giving up some functionality */
6187 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6188 adapter->params.offload = 0;
6189 }
6190
b5a02f50
AB
6191#if IS_ENABLED(CONFIG_IPV6)
6192 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6193 adapter->clipt_end);
6194 if (!adapter->clipt) {
6195 /* We tolerate a lack of clip_table, giving up
6196 * some functionality
6197 */
6198 dev_warn(&pdev->dev,
6199 "could not allocate Clip table, continuing\n");
6200 adapter->params.offload = 0;
6201 }
6202#endif
b8ff05a9
DM
6203 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6204 dev_warn(&pdev->dev, "could not allocate TID table, "
6205 "continuing\n");
6206 adapter->params.offload = 0;
6207 }
6208
f7cabcdd
DM
6209 /* See what interrupts we'll be using */
6210 if (msi > 1 && enable_msix(adapter) == 0)
6211 adapter->flags |= USING_MSIX;
6212 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6213 adapter->flags |= USING_MSI;
6214
671b0060
DM
6215 err = init_rss(adapter);
6216 if (err)
6217 goto out_free_dev;
6218
b8ff05a9
DM
6219 /*
6220 * The card is now ready to go. If any errors occur during device
6221 * registration we do not fail the whole card but rather proceed only
6222 * with the ports we manage to register successfully. However we must
6223 * register at least one net device.
6224 */
6225 for_each_port(adapter, i) {
a57cabe0
DM
6226 pi = adap2pinfo(adapter, i);
6227 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6228 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6229
b8ff05a9
DM
6230 err = register_netdev(adapter->port[i]);
6231 if (err)
b1a3c2b6 6232 break;
b1a3c2b6
DM
6233 adapter->chan_map[pi->tx_chan] = i;
6234 print_port_info(adapter->port[i]);
b8ff05a9 6235 }
b1a3c2b6 6236 if (i == 0) {
b8ff05a9
DM
6237 dev_err(&pdev->dev, "could not register any net devices\n");
6238 goto out_free_dev;
6239 }
b1a3c2b6
DM
6240 if (err) {
6241 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6242 err = 0;
6403eab1 6243 }
b8ff05a9
DM
6244
6245 if (cxgb4_debugfs_root) {
6246 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6247 cxgb4_debugfs_root);
6248 setup_debugfs(adapter);
6249 }
6250
6482aa7c
DLR
6251 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6252 pdev->needs_freset = 1;
6253
b8ff05a9
DM
6254 if (is_offload(adapter))
6255 attach_ulds(adapter);
6256
8e1e6059 6257sriov:
b8ff05a9 6258#ifdef CONFIG_PCI_IOV
7d6727cf 6259 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
6260 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6261 dev_info(&pdev->dev,
6262 "instantiated %u virtual functions\n",
6263 num_vf[func]);
6264#endif
6265 return 0;
6266
6267 out_free_dev:
06546391 6268 free_some_resources(adapter);
b8ff05a9 6269 out_unmap_bar:
d14807dd 6270 if (!is_t4(adapter->params.chip))
22adfe0a 6271 iounmap(adapter->bar2);
b8ff05a9 6272 out_free_adapter:
29aaee65
AB
6273 if (adapter->workq)
6274 destroy_workqueue(adapter->workq);
6275
b8ff05a9 6276 kfree(adapter);
d6ce2628
HS
6277 out_unmap_bar0:
6278 iounmap(regs);
b8ff05a9
DM
6279 out_disable_device:
6280 pci_disable_pcie_error_reporting(pdev);
6281 pci_disable_device(pdev);
6282 out_release_regions:
6283 pci_release_regions(pdev);
b8ff05a9
DM
6284 return err;
6285}
6286
91744948 6287static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
6288{
6289 struct adapter *adapter = pci_get_drvdata(pdev);
6290
636f9d37 6291#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
6292 pci_disable_sriov(pdev);
6293
636f9d37
VP
6294#endif
6295
b8ff05a9
DM
6296 if (adapter) {
6297 int i;
6298
29aaee65
AB
6299 /* Tear down per-adapter Work Queue first since it can contain
6300 * references to our adapter data structure.
6301 */
6302 destroy_workqueue(adapter->workq);
6303
b8ff05a9
DM
6304 if (is_offload(adapter))
6305 detach_ulds(adapter);
6306
6307 for_each_port(adapter, i)
8f3a7676 6308 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
6309 unregister_netdev(adapter->port[i]);
6310
9f16dc2e 6311 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 6312
f2b7e78d
VP
6313 /* If we allocated filters, free up state associated with any
6314 * valid filters ...
6315 */
6316 if (adapter->tids.ftid_tab) {
6317 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
6318 for (i = 0; i < (adapter->tids.nftids +
6319 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
6320 if (f->valid)
6321 clear_filter(adapter, f);
6322 }
6323
aaefae9b
DM
6324 if (adapter->flags & FULL_INIT_DONE)
6325 cxgb_down(adapter);
b8ff05a9 6326
06546391 6327 free_some_resources(adapter);
b5a02f50
AB
6328#if IS_ENABLED(CONFIG_IPV6)
6329 t4_cleanup_clip_tbl(adapter);
6330#endif
b8ff05a9 6331 iounmap(adapter->regs);
d14807dd 6332 if (!is_t4(adapter->params.chip))
22adfe0a 6333 iounmap(adapter->bar2);
b8ff05a9 6334 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
6335 if ((adapter->flags & DEV_ENABLED)) {
6336 pci_disable_device(pdev);
6337 adapter->flags &= ~DEV_ENABLED;
6338 }
b8ff05a9 6339 pci_release_regions(pdev);
ee9a33b2 6340 synchronize_rcu();
8b662fe7 6341 kfree(adapter);
a069ec91 6342 } else
b8ff05a9
DM
6343 pci_release_regions(pdev);
6344}
6345
6346static struct pci_driver cxgb4_driver = {
6347 .name = KBUILD_MODNAME,
6348 .id_table = cxgb4_pci_tbl,
6349 .probe = init_one,
91744948 6350 .remove = remove_one,
687d705c 6351 .shutdown = remove_one,
204dc3c0 6352 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
6353};
6354
6355static int __init cxgb4_init_module(void)
6356{
6357 int ret;
6358
6359 /* Debugfs support is optional, just warn if this fails */
6360 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6361 if (!cxgb4_debugfs_root)
428ac43f 6362 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
6363
6364 ret = pci_register_driver(&cxgb4_driver);
29aaee65 6365 if (ret < 0)
b8ff05a9 6366 debugfs_remove(cxgb4_debugfs_root);
01bcca68 6367
1bb60376 6368#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
6369 if (!inet6addr_registered) {
6370 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6371 inet6addr_registered = true;
6372 }
1bb60376 6373#endif
01bcca68 6374
b8ff05a9
DM
6375 return ret;
6376}
6377
6378static void __exit cxgb4_cleanup_module(void)
6379{
1bb60376 6380#if IS_ENABLED(CONFIG_IPV6)
1793c798 6381 if (inet6addr_registered) {
b5a02f50
AB
6382 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6383 inet6addr_registered = false;
6384 }
1bb60376 6385#endif
b8ff05a9
DM
6386 pci_unregister_driver(&cxgb4_driver);
6387 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6388}
6389
6390module_init(cxgb4_init_module);
6391module_exit(cxgb4_cleanup_module);