]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4: Warn if device doesn't have enough PCI bandwidth
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
812034f1
HS
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
01bcca68
VP
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
3a7f8554 84#define DRV_VERSION "2.0.0-ko"
812034f1 85const char cxgb4_driver_version[] = DRV_VERSION;
52a5f846 86#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
b8ff05a9 87
f2b7e78d
VP
88/* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110};
111
b8ff05a9
DM
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
3fedeab1
HS
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 119 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 121
3fedeab1
HS
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134#include "t4_pci_id_tbl.h"
b8ff05a9 135
16e47624 136#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 137#define FW5_FNAME "cxgb4/t5fw.bin"
3ccc6cf7 138#define FW6_FNAME "cxgb4/t6fw.bin"
16e47624 139#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 140#define FW5_CFNAME "cxgb4/t5-config.txt"
3ccc6cf7 141#define FW6_CFNAME "cxgb4/t6-config.txt"
01b69614
HS
142#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144#define PHY_AQ1202_DEVICEID 0x4409
145#define PHY_BCM84834_DEVICEID 0x4486
b8ff05a9
DM
146
147MODULE_DESCRIPTION(DRV_DESC);
148MODULE_AUTHOR("Chelsio Communications");
149MODULE_LICENSE("Dual BSD/GPL");
150MODULE_VERSION(DRV_VERSION);
151MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 152MODULE_FIRMWARE(FW4_FNAME);
0a57a536 153MODULE_FIRMWARE(FW5_FNAME);
52a5f846 154MODULE_FIRMWARE(FW6_FNAME);
b8ff05a9 155
636f9d37
VP
156/*
157 * Normally we're willing to become the firmware's Master PF but will be happy
158 * if another PF has already become the Master and initialized the adapter.
159 * Setting "force_init" will cause this driver to forcibly establish itself as
160 * the Master PF and initialize the adapter.
161 */
162static uint force_init;
163
164module_param(force_init, uint, 0644);
165MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
166
13ee15d3
VP
167/*
168 * Normally if the firmware we connect to has Configuration File support, we
169 * use that and only fall back to the old Driver-based initialization if the
170 * Configuration File fails for some reason. If force_old_init is set, then
171 * we'll always use the old Driver-based initialization sequence.
172 */
173static uint force_old_init;
174
175module_param(force_old_init, uint, 0644);
06640310
HS
176MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
177 " parameter");
13ee15d3 178
b8ff05a9
DM
179static int dflt_msg_enable = DFLT_MSG_ENABLE;
180
181module_param(dflt_msg_enable, int, 0644);
182MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
183
184/*
185 * The driver uses the best interrupt scheme available on a platform in the
186 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
187 * of these schemes the driver may consider as follows:
188 *
189 * msi = 2: choose from among all three options
190 * msi = 1: only consider MSI and INTx interrupts
191 * msi = 0: force INTx interrupts
192 */
193static int msi = 2;
194
195module_param(msi, int, 0644);
196MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
197
198/*
199 * Queue interrupt hold-off timer values. Queues default to the first of these
200 * upon creation.
201 */
202static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
203
204module_param_array(intr_holdoff, uint, NULL, 0644);
205MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 206 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
207
208static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
209
210module_param_array(intr_cnt, uint, NULL, 0644);
211MODULE_PARM_DESC(intr_cnt,
06640310
HS
212 "thresholds 1..3 for queue interrupt packet counters, "
213 "deprecated parameter");
b8ff05a9 214
636f9d37
VP
215/*
216 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
217 * offset by 2 bytes in order to have the IP headers line up on 4-byte
218 * boundaries. This is a requirement for many architectures which will throw
219 * a machine check fault if an attempt is made to access one of the 4-byte IP
220 * header fields on a non-4-byte boundary. And it's a major performance issue
221 * even on some architectures which allow it like some implementations of the
222 * x86 ISA. However, some architectures don't mind this and for some very
223 * edge-case performance sensitive applications (like forwarding large volumes
224 * of small packets), setting this DMA offset to 0 will decrease the number of
225 * PCI-E Bus transfers enough to measurably affect performance.
226 */
227static int rx_dma_offset = 2;
228
eb939922 229static bool vf_acls;
b8ff05a9
DM
230
231#ifdef CONFIG_PCI_IOV
232module_param(vf_acls, bool, 0644);
06640310
HS
233MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
234 "deprecated parameter");
b8ff05a9 235
7d6727cf
SR
236/* Configure the number of PCI-E Virtual Function which are to be instantiated
237 * on SR-IOV Capable Physical Functions.
0a57a536 238 */
7d6727cf 239static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
240
241module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 242MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
243#endif
244
688848b1
AB
245/* TX Queue select used to determine what algorithm to use for selecting TX
246 * queue. Select between the kernel provided function (select_queue=0) or user
247 * cxgb_select_queue function (select_queue=1)
248 *
249 * Default: select_queue=0
250 */
251static int select_queue;
252module_param(select_queue, int, 0644);
253MODULE_PARM_DESC(select_queue,
254 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
255
06640310 256static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 257
f2b7e78d 258module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
259MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
260 "deprecated parameter");
f2b7e78d 261
b8ff05a9
DM
262static struct dentry *cxgb4_debugfs_root;
263
264static LIST_HEAD(adapter_list);
265static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
266/* Adapter list to be accessed from atomic context */
267static LIST_HEAD(adap_rcu_list);
268static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
269static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
270static const char *uld_str[] = { "RDMA", "iSCSI" };
271
272static void link_report(struct net_device *dev)
273{
274 if (!netif_carrier_ok(dev))
275 netdev_info(dev, "link down\n");
276 else {
277 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
278
85412255 279 const char *s;
b8ff05a9
DM
280 const struct port_info *p = netdev_priv(dev);
281
282 switch (p->link_cfg.speed) {
e8b39015 283 case 10000:
b8ff05a9
DM
284 s = "10Gbps";
285 break;
e8b39015 286 case 1000:
b8ff05a9
DM
287 s = "1000Mbps";
288 break;
e8b39015 289 case 100:
b8ff05a9
DM
290 s = "100Mbps";
291 break;
e8b39015 292 case 40000:
72aca4bf
KS
293 s = "40Gbps";
294 break;
85412255
HS
295 default:
296 pr_info("%s: unsupported speed: %d\n",
297 dev->name, p->link_cfg.speed);
298 return;
b8ff05a9
DM
299 }
300
301 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
302 fc[p->link_cfg.fc]);
303 }
304}
305
688848b1
AB
306#ifdef CONFIG_CHELSIO_T4_DCB
307/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
308static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
309{
310 struct port_info *pi = netdev_priv(dev);
311 struct adapter *adap = pi->adapter;
312 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
313 int i;
314
315 /* We use a simple mapping of Port TX Queue Index to DCB
316 * Priority when we're enabling DCB.
317 */
318 for (i = 0; i < pi->nqsets; i++, txq++) {
319 u32 name, value;
320 int err;
321
5167865a
HS
322 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
323 FW_PARAMS_PARAM_X_V(
324 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
325 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
326 value = enable ? i : 0xffffffff;
327
328 /* Since we can be called while atomic (from "interrupt
329 * level") we need to issue the Set Parameters Commannd
330 * without sleeping (timeout < 0).
331 */
b2612722 332 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
333 &name, &value,
334 -FW_CMD_MAX_TIMEOUT);
688848b1
AB
335
336 if (err)
337 dev_err(adap->pdev_dev,
338 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
339 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
340 else
341 txq->dcb_prio = value;
688848b1
AB
342 }
343}
344#endif /* CONFIG_CHELSIO_T4_DCB */
345
b8ff05a9
DM
346void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
347{
348 struct net_device *dev = adapter->port[port_id];
349
350 /* Skip changes from disabled ports. */
351 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
352 if (link_stat)
353 netif_carrier_on(dev);
688848b1
AB
354 else {
355#ifdef CONFIG_CHELSIO_T4_DCB
356 cxgb4_dcb_state_init(dev);
357 dcb_tx_queue_prio_enable(dev, false);
358#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 359 netif_carrier_off(dev);
688848b1 360 }
b8ff05a9
DM
361
362 link_report(dev);
363 }
364}
365
366void t4_os_portmod_changed(const struct adapter *adap, int port_id)
367{
368 static const char *mod_str[] = {
a0881cab 369 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
370 };
371
372 const struct net_device *dev = adap->port[port_id];
373 const struct port_info *pi = netdev_priv(dev);
374
375 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
376 netdev_info(dev, "port module unplugged\n");
a0881cab 377 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
378 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
379}
380
381/*
382 * Configure the exact and hash address filters to handle a port's multicast
383 * and secondary unicast MAC addresses.
384 */
385static int set_addr_filters(const struct net_device *dev, bool sleep)
386{
387 u64 mhash = 0;
388 u64 uhash = 0;
389 bool free = true;
390 u16 filt_idx[7];
391 const u8 *addr[7];
392 int ret, naddr = 0;
b8ff05a9
DM
393 const struct netdev_hw_addr *ha;
394 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 395 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 396 const struct port_info *pi = netdev_priv(dev);
b2612722 397 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
398
399 /* first do the secondary unicast addresses */
400 netdev_for_each_uc_addr(ha, dev) {
401 addr[naddr++] = ha->addr;
402 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 403 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
404 naddr, addr, filt_idx, &uhash, sleep);
405 if (ret < 0)
406 return ret;
407
408 free = false;
409 naddr = 0;
410 }
411 }
412
413 /* next set up the multicast addresses */
4a35ecf8
DM
414 netdev_for_each_mc_addr(ha, dev) {
415 addr[naddr++] = ha->addr;
416 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 417 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
418 naddr, addr, filt_idx, &mhash, sleep);
419 if (ret < 0)
420 return ret;
421
422 free = false;
423 naddr = 0;
424 }
425 }
426
060e0c75 427 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
428 uhash | mhash, sleep);
429}
430
3069ee9b
VP
431int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
432module_param(dbfifo_int_thresh, int, 0644);
433MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
434
404d9e3f
VP
435/*
436 * usecs to sleep while draining the dbfifo
437 */
438static int dbfifo_drain_delay = 1000;
3069ee9b
VP
439module_param(dbfifo_drain_delay, int, 0644);
440MODULE_PARM_DESC(dbfifo_drain_delay,
441 "usecs to sleep while draining the dbfifo");
442
b8ff05a9
DM
443/*
444 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
445 * If @mtu is -1 it is left unchanged.
446 */
447static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
448{
449 int ret;
450 struct port_info *pi = netdev_priv(dev);
451
452 ret = set_addr_filters(dev, sleep_ok);
453 if (ret == 0)
b2612722 454 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
b8ff05a9 455 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 456 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
457 sleep_ok);
458 return ret;
459}
460
461/**
462 * link_start - enable a port
463 * @dev: the port to enable
464 *
465 * Performs the MAC and PHY actions needed to enable a port.
466 */
467static int link_start(struct net_device *dev)
468{
469 int ret;
470 struct port_info *pi = netdev_priv(dev);
b2612722 471 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
472
473 /*
474 * We do not set address filters and promiscuity here, the stack does
475 * that step explicitly.
476 */
060e0c75 477 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 478 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 479 if (ret == 0) {
060e0c75 480 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 481 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 482 true);
b8ff05a9
DM
483 if (ret >= 0) {
484 pi->xact_addr_filt = ret;
485 ret = 0;
486 }
487 }
488 if (ret == 0)
4036da90 489 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
060e0c75 490 &pi->link_cfg);
30f00847
AB
491 if (ret == 0) {
492 local_bh_disable();
688848b1
AB
493 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
494 true, CXGB4_DCB_ENABLED);
30f00847
AB
495 local_bh_enable();
496 }
688848b1 497
b8ff05a9
DM
498 return ret;
499}
500
688848b1
AB
501int cxgb4_dcb_enabled(const struct net_device *dev)
502{
503#ifdef CONFIG_CHELSIO_T4_DCB
504 struct port_info *pi = netdev_priv(dev);
505
3bb06261
AB
506 if (!pi->dcb.enabled)
507 return 0;
508
509 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
510 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
511#else
512 return 0;
513#endif
514}
515EXPORT_SYMBOL(cxgb4_dcb_enabled);
516
517#ifdef CONFIG_CHELSIO_T4_DCB
518/* Handle a Data Center Bridging update message from the firmware. */
519static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
520{
2b5fb1f2 521 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
522 struct net_device *dev = adap->port[port];
523 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
524 int new_dcb_enabled;
525
526 cxgb4_dcb_handle_fw_update(adap, pcmd);
527 new_dcb_enabled = cxgb4_dcb_enabled(dev);
528
529 /* If the DCB has become enabled or disabled on the port then we're
530 * going to need to set up/tear down DCB Priority parameters for the
531 * TX Queues associated with the port.
532 */
533 if (new_dcb_enabled != old_dcb_enabled)
534 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
535}
536#endif /* CONFIG_CHELSIO_T4_DCB */
537
f2b7e78d
VP
538/* Clear a filter and release any of its resources that we own. This also
539 * clears the filter's "pending" status.
540 */
541static void clear_filter(struct adapter *adap, struct filter_entry *f)
542{
543 /* If the new or old filter have loopback rewriteing rules then we'll
544 * need to free any existing Layer Two Table (L2T) entries of the old
545 * filter rule. The firmware will handle freeing up any Source MAC
546 * Table (SMT) entries used for rewriting Source MAC Addresses in
547 * loopback rules.
548 */
549 if (f->l2t)
550 cxgb4_l2t_release(f->l2t);
551
552 /* The zeroing of the filter rule below clears the filter valid,
553 * pending, locked flags, l2t pointer, etc. so it's all we need for
554 * this operation.
555 */
556 memset(f, 0, sizeof(*f));
557}
558
559/* Handle a filter write/deletion reply.
560 */
561static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
562{
563 unsigned int idx = GET_TID(rpl);
564 unsigned int nidx = idx - adap->tids.ftid_base;
565 unsigned int ret;
566 struct filter_entry *f;
567
568 if (idx >= adap->tids.ftid_base && nidx <
569 (adap->tids.nftids + adap->tids.nsftids)) {
570 idx = nidx;
bdc590b9 571 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
572 f = &adap->tids.ftid_tab[idx];
573
574 if (ret == FW_FILTER_WR_FLT_DELETED) {
575 /* Clear the filter when we get confirmation from the
576 * hardware that the filter has been deleted.
577 */
578 clear_filter(adap, f);
579 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
580 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
581 idx);
582 clear_filter(adap, f);
583 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
584 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
585 f->pending = 0; /* asynchronous setup completed */
586 f->valid = 1;
587 } else {
588 /* Something went wrong. Issue a warning about the
589 * problem and clear everything out.
590 */
591 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
592 idx, ret);
593 clear_filter(adap, f);
594 }
595 }
596}
597
598/* Response queue handler for the FW event queue.
b8ff05a9
DM
599 */
600static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
601 const struct pkt_gl *gl)
602{
603 u8 opcode = ((const struct rss_header *)rsp)->opcode;
604
605 rsp++; /* skip RSS header */
b407a4a9
VP
606
607 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
608 */
609 if (unlikely(opcode == CPL_FW4_MSG &&
610 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
611 rsp++;
612 opcode = ((const struct rss_header *)rsp)->opcode;
613 rsp++;
614 if (opcode != CPL_SGE_EGR_UPDATE) {
615 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
616 , opcode);
617 goto out;
618 }
619 }
620
b8ff05a9
DM
621 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
622 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 623 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 624 struct sge_txq *txq;
b8ff05a9 625
e46dab4d 626 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 627 txq->restarts++;
e46dab4d 628 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
629 struct sge_eth_txq *eq;
630
631 eq = container_of(txq, struct sge_eth_txq, q);
632 netif_tx_wake_queue(eq->txq);
633 } else {
634 struct sge_ofld_txq *oq;
635
636 oq = container_of(txq, struct sge_ofld_txq, q);
637 tasklet_schedule(&oq->qresume_tsk);
638 }
639 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
640 const struct cpl_fw6_msg *p = (void *)rsp;
641
688848b1
AB
642#ifdef CONFIG_CHELSIO_T4_DCB
643 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 644 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 645 unsigned int action =
2b5fb1f2 646 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
647
648 if (cmd == FW_PORT_CMD &&
649 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 650 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
651 be32_to_cpu(pcmd->op_to_portid));
652 struct net_device *dev = q->adap->port[port];
653 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 654 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
655 ? CXGB4_DCB_INPUT_FW_DISABLED
656 : CXGB4_DCB_INPUT_FW_ENABLED);
657
658 cxgb4_dcb_state_fsm(dev, state_input);
659 }
660
661 if (cmd == FW_PORT_CMD &&
662 action == FW_PORT_ACTION_L2_DCB_CFG)
663 dcb_rpl(q->adap, pcmd);
664 else
665#endif
666 if (p->type == 0)
667 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
668 } else if (opcode == CPL_L2T_WRITE_RPL) {
669 const struct cpl_l2t_write_rpl *p = (void *)rsp;
670
671 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
672 } else if (opcode == CPL_SET_TCB_RPL) {
673 const struct cpl_set_tcb_rpl *p = (void *)rsp;
674
675 filter_rpl(q->adap, p);
b8ff05a9
DM
676 } else
677 dev_err(q->adap->pdev_dev,
678 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 679out:
b8ff05a9
DM
680 return 0;
681}
682
683/**
684 * uldrx_handler - response queue handler for ULD queues
685 * @q: the response queue that received the packet
686 * @rsp: the response queue descriptor holding the offload message
687 * @gl: the gather list of packet fragments
688 *
689 * Deliver an ingress offload packet to a ULD. All processing is done by
690 * the ULD, we just maintain statistics.
691 */
692static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
693 const struct pkt_gl *gl)
694{
695 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
696
b407a4a9
VP
697 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
698 */
699 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
700 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
701 rsp += 2;
702
b8ff05a9
DM
703 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
704 rxq->stats.nomem++;
705 return -1;
706 }
707 if (gl == NULL)
708 rxq->stats.imm++;
709 else if (gl == CXGB4_MSG_AN)
710 rxq->stats.an++;
711 else
712 rxq->stats.pkts++;
713 return 0;
714}
715
716static void disable_msi(struct adapter *adapter)
717{
718 if (adapter->flags & USING_MSIX) {
719 pci_disable_msix(adapter->pdev);
720 adapter->flags &= ~USING_MSIX;
721 } else if (adapter->flags & USING_MSI) {
722 pci_disable_msi(adapter->pdev);
723 adapter->flags &= ~USING_MSI;
724 }
725}
726
727/*
728 * Interrupt handler for non-data events used with MSI-X.
729 */
730static irqreturn_t t4_nondata_intr(int irq, void *cookie)
731{
732 struct adapter *adap = cookie;
0d804338 733 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 734
0d804338 735 if (v & PFSW_F) {
b8ff05a9 736 adap->swintr = 1;
0d804338 737 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 738 }
c3c7b121
HS
739 if (adap->flags & MASTER_PF)
740 t4_slow_intr_handler(adap);
b8ff05a9
DM
741 return IRQ_HANDLED;
742}
743
744/*
745 * Name the MSI-X interrupts.
746 */
747static void name_msix_vecs(struct adapter *adap)
748{
ba27816c 749 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
750
751 /* non-data interrupts */
b1a3c2b6 752 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
753
754 /* FW events */
b1a3c2b6
DM
755 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
756 adap->port[0]->name);
b8ff05a9
DM
757
758 /* Ethernet queues */
759 for_each_port(adap, j) {
760 struct net_device *d = adap->port[j];
761 const struct port_info *pi = netdev_priv(d);
762
ba27816c 763 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
764 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
765 d->name, i);
b8ff05a9
DM
766 }
767
768 /* offload queues */
ba27816c
DM
769 for_each_ofldrxq(&adap->sge, i)
770 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 771 adap->port[0]->name, i);
ba27816c
DM
772
773 for_each_rdmarxq(&adap->sge, i)
774 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 775 adap->port[0]->name, i);
cf38be6d
HS
776
777 for_each_rdmaciq(&adap->sge, i)
778 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
779 adap->port[0]->name, i);
b8ff05a9
DM
780}
781
782static int request_msix_queue_irqs(struct adapter *adap)
783{
784 struct sge *s = &adap->sge;
cf38be6d
HS
785 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
786 int msi_index = 2;
b8ff05a9
DM
787
788 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
789 adap->msix_info[1].desc, &s->fw_evtq);
790 if (err)
791 return err;
792
793 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
794 err = request_irq(adap->msix_info[msi_index].vec,
795 t4_sge_intr_msix, 0,
796 adap->msix_info[msi_index].desc,
b8ff05a9
DM
797 &s->ethrxq[ethqidx].rspq);
798 if (err)
799 goto unwind;
404d9e3f 800 msi_index++;
b8ff05a9
DM
801 }
802 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
803 err = request_irq(adap->msix_info[msi_index].vec,
804 t4_sge_intr_msix, 0,
805 adap->msix_info[msi_index].desc,
b8ff05a9
DM
806 &s->ofldrxq[ofldqidx].rspq);
807 if (err)
808 goto unwind;
404d9e3f 809 msi_index++;
b8ff05a9
DM
810 }
811 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
812 err = request_irq(adap->msix_info[msi_index].vec,
813 t4_sge_intr_msix, 0,
814 adap->msix_info[msi_index].desc,
b8ff05a9
DM
815 &s->rdmarxq[rdmaqidx].rspq);
816 if (err)
817 goto unwind;
404d9e3f 818 msi_index++;
b8ff05a9 819 }
cf38be6d
HS
820 for_each_rdmaciq(s, rdmaciqqidx) {
821 err = request_irq(adap->msix_info[msi_index].vec,
822 t4_sge_intr_msix, 0,
823 adap->msix_info[msi_index].desc,
824 &s->rdmaciq[rdmaciqqidx].rspq);
825 if (err)
826 goto unwind;
827 msi_index++;
828 }
b8ff05a9
DM
829 return 0;
830
831unwind:
cf38be6d
HS
832 while (--rdmaciqqidx >= 0)
833 free_irq(adap->msix_info[--msi_index].vec,
834 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 835 while (--rdmaqidx >= 0)
404d9e3f 836 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
837 &s->rdmarxq[rdmaqidx].rspq);
838 while (--ofldqidx >= 0)
404d9e3f 839 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
840 &s->ofldrxq[ofldqidx].rspq);
841 while (--ethqidx >= 0)
404d9e3f
VP
842 free_irq(adap->msix_info[--msi_index].vec,
843 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
844 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
845 return err;
846}
847
848static void free_msix_queue_irqs(struct adapter *adap)
849{
404d9e3f 850 int i, msi_index = 2;
b8ff05a9
DM
851 struct sge *s = &adap->sge;
852
853 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
854 for_each_ethrxq(s, i)
404d9e3f 855 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 856 for_each_ofldrxq(s, i)
404d9e3f 857 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 858 for_each_rdmarxq(s, i)
404d9e3f 859 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
860 for_each_rdmaciq(s, i)
861 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
862}
863
671b0060 864/**
812034f1 865 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
866 * @pi: the port
867 * @queues: array of queue indices for RSS
868 *
869 * Sets up the portion of the HW RSS table for the port's VI to distribute
870 * packets to the Rx queues in @queues.
c035e183 871 * Should never be called before setting up sge eth rx queues
671b0060 872 */
812034f1 873int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
874{
875 u16 *rss;
876 int i, err;
c035e183
HS
877 struct adapter *adapter = pi->adapter;
878 const struct sge_eth_rxq *rxq;
671b0060 879
c035e183 880 rxq = &adapter->sge.ethrxq[pi->first_qset];
671b0060
DM
881 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
882 if (!rss)
883 return -ENOMEM;
884
885 /* map the queue indices to queue ids */
886 for (i = 0; i < pi->rss_size; i++, queues++)
c035e183 887 rss[i] = rxq[*queues].rspq.abs_id;
671b0060 888
b2612722 889 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
060e0c75 890 pi->rss_size, rss, pi->rss_size);
c035e183
HS
891 /* If Tunnel All Lookup isn't specified in the global RSS
892 * Configuration, then we need to specify a default Ingress
893 * Queue for any ingress packets which aren't hashed. We'll
894 * use our first ingress queue ...
895 */
896 if (!err)
897 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
898 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
899 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
900 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
901 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
902 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
903 rss[0]);
671b0060
DM
904 kfree(rss);
905 return err;
906}
907
b8ff05a9
DM
908/**
909 * setup_rss - configure RSS
910 * @adap: the adapter
911 *
671b0060 912 * Sets up RSS for each port.
b8ff05a9
DM
913 */
914static int setup_rss(struct adapter *adap)
915{
c035e183 916 int i, j, err;
b8ff05a9
DM
917
918 for_each_port(adap, i) {
919 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 920
c035e183
HS
921 /* Fill default values with equal distribution */
922 for (j = 0; j < pi->rss_size; j++)
923 pi->rss[j] = j % pi->nqsets;
924
812034f1 925 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
926 if (err)
927 return err;
928 }
929 return 0;
930}
931
e46dab4d
DM
932/*
933 * Return the channel of the ingress queue with the given qid.
934 */
935static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
936{
937 qid -= p->ingr_start;
938 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
939}
940
b8ff05a9
DM
941/*
942 * Wait until all NAPI handlers are descheduled.
943 */
944static void quiesce_rx(struct adapter *adap)
945{
946 int i;
947
4b8e27a8 948 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
949 struct sge_rspq *q = adap->sge.ingr_map[i];
950
3a336cb1 951 if (q && q->handler) {
b8ff05a9 952 napi_disable(&q->napi);
3a336cb1
HS
953 local_bh_disable();
954 while (!cxgb_poll_lock_napi(q))
955 mdelay(1);
956 local_bh_enable();
957 }
958
b8ff05a9
DM
959 }
960}
961
b37987e8
HS
962/* Disable interrupt and napi handler */
963static void disable_interrupts(struct adapter *adap)
964{
965 if (adap->flags & FULL_INIT_DONE) {
966 t4_intr_disable(adap);
967 if (adap->flags & USING_MSIX) {
968 free_msix_queue_irqs(adap);
969 free_irq(adap->msix_info[0].vec, adap);
970 } else {
971 free_irq(adap->pdev->irq, adap);
972 }
973 quiesce_rx(adap);
974 }
975}
976
b8ff05a9
DM
977/*
978 * Enable NAPI scheduling and interrupt generation for all Rx queues.
979 */
980static void enable_rx(struct adapter *adap)
981{
982 int i;
983
4b8e27a8 984 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
985 struct sge_rspq *q = adap->sge.ingr_map[i];
986
987 if (!q)
988 continue;
3a336cb1
HS
989 if (q->handler) {
990 cxgb_busy_poll_init_lock(q);
b8ff05a9 991 napi_enable(&q->napi);
3a336cb1 992 }
b8ff05a9 993 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
994 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
995 SEINTARM_V(q->intr_params) |
996 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
997 }
998}
999
1c6a5b0e
HS
1000static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1001 unsigned int nq, unsigned int per_chan, int msi_idx,
1002 u16 *ids)
1003{
1004 int i, err;
1005
1006 for (i = 0; i < nq; i++, q++) {
1007 if (msi_idx > 0)
1008 msi_idx++;
1009 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1010 adap->port[i / per_chan],
1011 msi_idx, q->fl.size ? &q->fl : NULL,
145ef8a5 1012 uldrx_handler, 0);
1c6a5b0e
HS
1013 if (err)
1014 return err;
1015 memset(&q->stats, 0, sizeof(q->stats));
1016 if (ids)
1017 ids[i] = q->rspq.abs_id;
1018 }
1019 return 0;
1020}
1021
b8ff05a9
DM
1022/**
1023 * setup_sge_queues - configure SGE Tx/Rx/response queues
1024 * @adap: the adapter
1025 *
1026 * Determines how many sets of SGE queues to use and initializes them.
1027 * We support multiple queue sets per port if we have MSI-X, otherwise
1028 * just one queue set per port.
1029 */
1030static int setup_sge_queues(struct adapter *adap)
1031{
1032 int err, msi_idx, i, j;
1033 struct sge *s = &adap->sge;
1034
4b8e27a8
HS
1035 bitmap_zero(s->starving_fl, s->egr_sz);
1036 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1037
1038 if (adap->flags & USING_MSIX)
1039 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1040 else {
1041 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
145ef8a5 1042 NULL, NULL, -1);
b8ff05a9
DM
1043 if (err)
1044 return err;
1045 msi_idx = -((int)s->intrq.abs_id + 1);
1046 }
1047
4b8e27a8
HS
1048 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1049 * don't forget to update the following which need to be
1050 * synchronized to and changes here.
1051 *
1052 * 1. The calculations of MAX_INGQ in cxgb4.h.
1053 *
1054 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1055 * to accommodate any new/deleted Ingress Queues
1056 * which need MSI-X Vectors.
1057 *
1058 * 3. Update sge_qinfo_show() to include information on the
1059 * new/deleted queues.
1060 */
b8ff05a9 1061 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
145ef8a5 1062 msi_idx, NULL, fwevtq_handler, -1);
b8ff05a9
DM
1063 if (err) {
1064freeout: t4_free_sge_resources(adap);
1065 return err;
1066 }
1067
1068 for_each_port(adap, i) {
1069 struct net_device *dev = adap->port[i];
1070 struct port_info *pi = netdev_priv(dev);
1071 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1072 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1073
1074 for (j = 0; j < pi->nqsets; j++, q++) {
1075 if (msi_idx > 0)
1076 msi_idx++;
1077 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1078 msi_idx, &q->fl,
145ef8a5
HS
1079 t4_ethrx_handler,
1080 t4_get_mps_bg_map(adap,
1081 pi->tx_chan));
b8ff05a9
DM
1082 if (err)
1083 goto freeout;
1084 q->rspq.idx = j;
1085 memset(&q->stats, 0, sizeof(q->stats));
1086 }
1087 for (j = 0; j < pi->nqsets; j++, t++) {
1088 err = t4_sge_alloc_eth_txq(adap, t, dev,
1089 netdev_get_tx_queue(dev, j),
1090 s->fw_evtq.cntxt_id);
1091 if (err)
1092 goto freeout;
1093 }
1094 }
1095
1096 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1097 for_each_ofldrxq(s, i) {
1c6a5b0e
HS
1098 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1099 adap->port[i / j],
b8ff05a9
DM
1100 s->fw_evtq.cntxt_id);
1101 if (err)
1102 goto freeout;
1103 }
1104
1c6a5b0e
HS
1105#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1106 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1107 if (err) \
1108 goto freeout; \
1109 if (msi_idx > 0) \
1110 msi_idx += nq; \
1111} while (0)
b8ff05a9 1112
1c6a5b0e
HS
1113 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1114 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
f36e58e5
HS
1115 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1116 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
b8ff05a9 1117
1c6a5b0e 1118#undef ALLOC_OFLD_RXQS
cf38be6d 1119
b8ff05a9
DM
1120 for_each_port(adap, i) {
1121 /*
1122 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1123 * have RDMA queues, and that's the right value.
1124 */
1125 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1126 s->fw_evtq.cntxt_id,
1127 s->rdmarxq[i].rspq.cntxt_id);
1128 if (err)
1129 goto freeout;
1130 }
1131
9bb59b96 1132 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1133 MPS_TRC_RSS_CONTROL_A :
1134 MPS_T5_TRC_RSS_CONTROL_A,
1135 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1136 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1137 return 0;
1138}
1139
b8ff05a9
DM
1140/*
1141 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1142 * The allocated memory is cleared.
1143 */
1144void *t4_alloc_mem(size_t size)
1145{
8be04b93 1146 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1147
1148 if (!p)
89bf67f1 1149 p = vzalloc(size);
b8ff05a9
DM
1150 return p;
1151}
1152
1153/*
1154 * Free memory allocated through alloc_mem().
1155 */
fd88b31a 1156void t4_free_mem(void *addr)
b8ff05a9 1157{
d2fcb548 1158 kvfree(addr);
b8ff05a9
DM
1159}
1160
f2b7e78d
VP
1161/* Send a Work Request to write the filter at a specified index. We construct
1162 * a Firmware Filter Work Request to have the work done and put the indicated
1163 * filter into "pending" mode which will prevent any further actions against
1164 * it till we get a reply from the firmware on the completion status of the
1165 * request.
1166 */
1167static int set_filter_wr(struct adapter *adapter, int fidx)
1168{
1169 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1170 struct sk_buff *skb;
1171 struct fw_filter_wr *fwr;
1172 unsigned int ftid;
1173
f72f116a
MH
1174 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1175 if (!skb)
1176 return -ENOMEM;
1177
f2b7e78d
VP
1178 /* If the new filter requires loopback Destination MAC and/or VLAN
1179 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1180 * the filter.
1181 */
1182 if (f->fs.newdmac || f->fs.newvlan) {
1183 /* allocate L2T entry for new filter */
f7502659
HS
1184 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1185 f->fs.eport, f->fs.dmac);
f72f116a 1186 if (f->l2t == NULL) {
f72f116a 1187 kfree_skb(skb);
f2b7e78d
VP
1188 return -ENOMEM;
1189 }
1190 }
1191
1192 ftid = adapter->tids.ftid_base + fidx;
1193
f2b7e78d
VP
1194 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1195 memset(fwr, 0, sizeof(*fwr));
1196
1197 /* It would be nice to put most of the following in t4_hw.c but most
1198 * of the work is translating the cxgbtool ch_filter_specification
1199 * into the Work Request and the definition of that structure is
1200 * currently in cxgbtool.h which isn't appropriate to pull into the
1201 * common code. We may eventually try to come up with a more neutral
1202 * filter specification structure but for now it's easiest to simply
1203 * put this fairly direct code in line ...
1204 */
e2ac9628
HS
1205 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1206 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1207 fwr->tid_to_iq =
77a80e23
HS
1208 htonl(FW_FILTER_WR_TID_V(ftid) |
1209 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1210 FW_FILTER_WR_NOREPLY_V(0) |
1211 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1212 fwr->del_filter_to_l2tix =
77a80e23
HS
1213 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1214 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1215 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1216 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1217 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1218 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1219 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1220 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1221 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1222 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1223 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1224 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1225 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1226 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1227 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1228 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1229 fwr->ethtype = htons(f->fs.val.ethtype);
1230 fwr->ethtypem = htons(f->fs.mask.ethtype);
1231 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1232 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1233 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1234 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1235 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1236 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1237 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1238 fwr->smac_sel = 0;
1239 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1240 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1241 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1242 fwr->maci_to_matchtypem =
77a80e23
HS
1243 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1244 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1245 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1246 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1247 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1248 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1249 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1250 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1251 fwr->ptcl = f->fs.val.proto;
1252 fwr->ptclm = f->fs.mask.proto;
1253 fwr->ttyp = f->fs.val.tos;
1254 fwr->ttypm = f->fs.mask.tos;
1255 fwr->ivlan = htons(f->fs.val.ivlan);
1256 fwr->ivlanm = htons(f->fs.mask.ivlan);
1257 fwr->ovlan = htons(f->fs.val.ovlan);
1258 fwr->ovlanm = htons(f->fs.mask.ovlan);
1259 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1260 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1261 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1262 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1263 fwr->lp = htons(f->fs.val.lport);
1264 fwr->lpm = htons(f->fs.mask.lport);
1265 fwr->fp = htons(f->fs.val.fport);
1266 fwr->fpm = htons(f->fs.mask.fport);
1267 if (f->fs.newsmac)
1268 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1269
1270 /* Mark the filter as "pending" and ship off the Filter Work Request.
1271 * When we get the Work Request Reply we'll clear the pending status.
1272 */
1273 f->pending = 1;
1274 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1275 t4_ofld_send(adapter, skb);
1276 return 0;
1277}
1278
1279/* Delete the filter at a specified index.
1280 */
1281static int del_filter_wr(struct adapter *adapter, int fidx)
1282{
1283 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1284 struct sk_buff *skb;
1285 struct fw_filter_wr *fwr;
1286 unsigned int len, ftid;
1287
1288 len = sizeof(*fwr);
1289 ftid = adapter->tids.ftid_base + fidx;
1290
f72f116a
MH
1291 skb = alloc_skb(len, GFP_KERNEL);
1292 if (!skb)
1293 return -ENOMEM;
1294
f2b7e78d
VP
1295 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1296 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1297
1298 /* Mark the filter as "pending" and ship off the Filter Work Request.
1299 * When we get the Work Request Reply we'll clear the pending status.
1300 */
1301 f->pending = 1;
1302 t4_mgmt_tx(adapter, skb);
1303 return 0;
1304}
1305
688848b1
AB
1306static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1307 void *accel_priv, select_queue_fallback_t fallback)
1308{
1309 int txq;
1310
1311#ifdef CONFIG_CHELSIO_T4_DCB
1312 /* If a Data Center Bridging has been successfully negotiated on this
1313 * link then we'll use the skb's priority to map it to a TX Queue.
1314 * The skb's priority is determined via the VLAN Tag Priority Code
1315 * Point field.
1316 */
1317 if (cxgb4_dcb_enabled(dev)) {
1318 u16 vlan_tci;
1319 int err;
1320
1321 err = vlan_get_tag(skb, &vlan_tci);
1322 if (unlikely(err)) {
1323 if (net_ratelimit())
1324 netdev_warn(dev,
1325 "TX Packet without VLAN Tag on DCB Link\n");
1326 txq = 0;
1327 } else {
1328 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1329#ifdef CONFIG_CHELSIO_T4_FCOE
1330 if (skb->protocol == htons(ETH_P_FCOE))
1331 txq = skb->priority & 0x7;
1332#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1333 }
1334 return txq;
1335 }
1336#endif /* CONFIG_CHELSIO_T4_DCB */
1337
1338 if (select_queue) {
1339 txq = (skb_rx_queue_recorded(skb)
1340 ? skb_get_rx_queue(skb)
1341 : smp_processor_id());
1342
1343 while (unlikely(txq >= dev->real_num_tx_queues))
1344 txq -= dev->real_num_tx_queues;
1345
1346 return txq;
1347 }
1348
1349 return fallback(dev, skb) % dev->real_num_tx_queues;
1350}
1351
b8ff05a9
DM
1352static int closest_timer(const struct sge *s, int time)
1353{
1354 int i, delta, match = 0, min_delta = INT_MAX;
1355
1356 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1357 delta = time - s->timer_val[i];
1358 if (delta < 0)
1359 delta = -delta;
1360 if (delta < min_delta) {
1361 min_delta = delta;
1362 match = i;
1363 }
1364 }
1365 return match;
1366}
1367
1368static int closest_thres(const struct sge *s, int thres)
1369{
1370 int i, delta, match = 0, min_delta = INT_MAX;
1371
1372 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1373 delta = thres - s->counter_val[i];
1374 if (delta < 0)
1375 delta = -delta;
1376 if (delta < min_delta) {
1377 min_delta = delta;
1378 match = i;
1379 }
1380 }
1381 return match;
1382}
1383
b8ff05a9 1384/**
812034f1 1385 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1386 * @q: the Rx queue
1387 * @us: the hold-off time in us, or 0 to disable timer
1388 * @cnt: the hold-off packet count, or 0 to disable counter
1389 *
1390 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1391 * one of the two needs to be enabled for the queue to generate interrupts.
1392 */
812034f1
HS
1393int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1394 unsigned int us, unsigned int cnt)
b8ff05a9 1395{
c887ad0e
HS
1396 struct adapter *adap = q->adap;
1397
b8ff05a9
DM
1398 if ((us | cnt) == 0)
1399 cnt = 1;
1400
1401 if (cnt) {
1402 int err;
1403 u32 v, new_idx;
1404
1405 new_idx = closest_thres(&adap->sge, cnt);
1406 if (q->desc && q->pktcnt_idx != new_idx) {
1407 /* the queue has already been created, update it */
5167865a
HS
1408 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1409 FW_PARAMS_PARAM_X_V(
1410 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1411 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
b2612722
HS
1412 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1413 &v, &new_idx);
b8ff05a9
DM
1414 if (err)
1415 return err;
1416 }
1417 q->pktcnt_idx = new_idx;
1418 }
1419
1420 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1ecc7b7a 1421 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
b8ff05a9
DM
1422 return 0;
1423}
1424
c8f44aff 1425static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1426{
2ed28baa 1427 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1428 netdev_features_t changed = dev->features ^ features;
19ecae2c 1429 int err;
19ecae2c 1430
f646968f 1431 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1432 return 0;
19ecae2c 1433
b2612722 1434 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
2ed28baa 1435 -1, -1, -1,
f646968f 1436 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1437 if (unlikely(err))
f646968f 1438 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1439 return err;
87b6cf51
DM
1440}
1441
91744948 1442static int setup_debugfs(struct adapter *adap)
b8ff05a9 1443{
b8ff05a9
DM
1444 if (IS_ERR_OR_NULL(adap->debugfs_root))
1445 return -1;
1446
fd88b31a
HS
1447#ifdef CONFIG_DEBUG_FS
1448 t4_setup_debugfs(adap);
1449#endif
b8ff05a9
DM
1450 return 0;
1451}
1452
1453/*
1454 * upper-layer driver support
1455 */
1456
1457/*
1458 * Allocate an active-open TID and set it to the supplied value.
1459 */
1460int cxgb4_alloc_atid(struct tid_info *t, void *data)
1461{
1462 int atid = -1;
1463
1464 spin_lock_bh(&t->atid_lock);
1465 if (t->afree) {
1466 union aopen_entry *p = t->afree;
1467
f2b7e78d 1468 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1469 t->afree = p->next;
1470 p->data = data;
1471 t->atids_in_use++;
1472 }
1473 spin_unlock_bh(&t->atid_lock);
1474 return atid;
1475}
1476EXPORT_SYMBOL(cxgb4_alloc_atid);
1477
1478/*
1479 * Release an active-open TID.
1480 */
1481void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1482{
f2b7e78d 1483 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1484
1485 spin_lock_bh(&t->atid_lock);
1486 p->next = t->afree;
1487 t->afree = p;
1488 t->atids_in_use--;
1489 spin_unlock_bh(&t->atid_lock);
1490}
1491EXPORT_SYMBOL(cxgb4_free_atid);
1492
1493/*
1494 * Allocate a server TID and set it to the supplied value.
1495 */
1496int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1497{
1498 int stid;
1499
1500 spin_lock_bh(&t->stid_lock);
1501 if (family == PF_INET) {
1502 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1503 if (stid < t->nstids)
1504 __set_bit(stid, t->stid_bmap);
1505 else
1506 stid = -1;
1507 } else {
1508 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1509 if (stid < 0)
1510 stid = -1;
1511 }
1512 if (stid >= 0) {
1513 t->stid_tab[stid].data = data;
1514 stid += t->stid_base;
15f63b74
KS
1515 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1516 * This is equivalent to 4 TIDs. With CLIP enabled it
1517 * needs 2 TIDs.
1518 */
1519 if (family == PF_INET)
1520 t->stids_in_use++;
1521 else
1522 t->stids_in_use += 4;
b8ff05a9
DM
1523 }
1524 spin_unlock_bh(&t->stid_lock);
1525 return stid;
1526}
1527EXPORT_SYMBOL(cxgb4_alloc_stid);
1528
dca4faeb
VP
1529/* Allocate a server filter TID and set it to the supplied value.
1530 */
1531int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1532{
1533 int stid;
1534
1535 spin_lock_bh(&t->stid_lock);
1536 if (family == PF_INET) {
1537 stid = find_next_zero_bit(t->stid_bmap,
1538 t->nstids + t->nsftids, t->nstids);
1539 if (stid < (t->nstids + t->nsftids))
1540 __set_bit(stid, t->stid_bmap);
1541 else
1542 stid = -1;
1543 } else {
1544 stid = -1;
1545 }
1546 if (stid >= 0) {
1547 t->stid_tab[stid].data = data;
470c60c4
KS
1548 stid -= t->nstids;
1549 stid += t->sftid_base;
2248b293 1550 t->sftids_in_use++;
dca4faeb
VP
1551 }
1552 spin_unlock_bh(&t->stid_lock);
1553 return stid;
1554}
1555EXPORT_SYMBOL(cxgb4_alloc_sftid);
1556
1557/* Release a server TID.
b8ff05a9
DM
1558 */
1559void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1560{
470c60c4
KS
1561 /* Is it a server filter TID? */
1562 if (t->nsftids && (stid >= t->sftid_base)) {
1563 stid -= t->sftid_base;
1564 stid += t->nstids;
1565 } else {
1566 stid -= t->stid_base;
1567 }
1568
b8ff05a9
DM
1569 spin_lock_bh(&t->stid_lock);
1570 if (family == PF_INET)
1571 __clear_bit(stid, t->stid_bmap);
1572 else
1573 bitmap_release_region(t->stid_bmap, stid, 2);
1574 t->stid_tab[stid].data = NULL;
2248b293
HS
1575 if (stid < t->nstids) {
1576 if (family == PF_INET)
1577 t->stids_in_use--;
1578 else
1579 t->stids_in_use -= 4;
1580 } else {
1581 t->sftids_in_use--;
1582 }
b8ff05a9
DM
1583 spin_unlock_bh(&t->stid_lock);
1584}
1585EXPORT_SYMBOL(cxgb4_free_stid);
1586
1587/*
1588 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1589 */
1590static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1591 unsigned int tid)
1592{
1593 struct cpl_tid_release *req;
1594
1595 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1596 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1597 INIT_TP_WR(req, tid);
1598 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1599}
1600
1601/*
1602 * Queue a TID release request and if necessary schedule a work queue to
1603 * process it.
1604 */
31b9c19b 1605static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1606 unsigned int tid)
b8ff05a9
DM
1607{
1608 void **p = &t->tid_tab[tid];
1609 struct adapter *adap = container_of(t, struct adapter, tids);
1610
1611 spin_lock_bh(&adap->tid_release_lock);
1612 *p = adap->tid_release_head;
1613 /* Low 2 bits encode the Tx channel number */
1614 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1615 if (!adap->tid_release_task_busy) {
1616 adap->tid_release_task_busy = true;
29aaee65 1617 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1618 }
1619 spin_unlock_bh(&adap->tid_release_lock);
1620}
b8ff05a9
DM
1621
1622/*
1623 * Process the list of pending TID release requests.
1624 */
1625static void process_tid_release_list(struct work_struct *work)
1626{
1627 struct sk_buff *skb;
1628 struct adapter *adap;
1629
1630 adap = container_of(work, struct adapter, tid_release_task);
1631
1632 spin_lock_bh(&adap->tid_release_lock);
1633 while (adap->tid_release_head) {
1634 void **p = adap->tid_release_head;
1635 unsigned int chan = (uintptr_t)p & 3;
1636 p = (void *)p - chan;
1637
1638 adap->tid_release_head = *p;
1639 *p = NULL;
1640 spin_unlock_bh(&adap->tid_release_lock);
1641
1642 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1643 GFP_KERNEL)))
1644 schedule_timeout_uninterruptible(1);
1645
1646 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1647 t4_ofld_send(adap, skb);
1648 spin_lock_bh(&adap->tid_release_lock);
1649 }
1650 adap->tid_release_task_busy = false;
1651 spin_unlock_bh(&adap->tid_release_lock);
1652}
1653
1654/*
1655 * Release a TID and inform HW. If we are unable to allocate the release
1656 * message we defer to a work queue.
1657 */
1658void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1659{
b8ff05a9
DM
1660 struct sk_buff *skb;
1661 struct adapter *adap = container_of(t, struct adapter, tids);
1662
9a1bb9f6
HS
1663 WARN_ON(tid >= t->ntids);
1664
1665 if (t->tid_tab[tid]) {
1666 t->tid_tab[tid] = NULL;
1667 if (t->hash_base && (tid >= t->hash_base))
1668 atomic_dec(&t->hash_tids_in_use);
1669 else
1670 atomic_dec(&t->tids_in_use);
1671 }
1672
b8ff05a9
DM
1673 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1674 if (likely(skb)) {
b8ff05a9
DM
1675 mk_tid_release(skb, chan, tid);
1676 t4_ofld_send(adap, skb);
1677 } else
1678 cxgb4_queue_tid_release(t, chan, tid);
b8ff05a9
DM
1679}
1680EXPORT_SYMBOL(cxgb4_remove_tid);
1681
1682/*
1683 * Allocate and initialize the TID tables. Returns 0 on success.
1684 */
1685static int tid_init(struct tid_info *t)
1686{
1687 size_t size;
f2b7e78d 1688 unsigned int stid_bmap_size;
b8ff05a9 1689 unsigned int natids = t->natids;
b6f8eaec 1690 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1691
dca4faeb 1692 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1693 size = t->ntids * sizeof(*t->tid_tab) +
1694 natids * sizeof(*t->atid_tab) +
b8ff05a9 1695 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1696 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1697 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1698 t->nftids * sizeof(*t->ftid_tab) +
1699 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1700
b8ff05a9
DM
1701 t->tid_tab = t4_alloc_mem(size);
1702 if (!t->tid_tab)
1703 return -ENOMEM;
1704
1705 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1706 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1707 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1708 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1709 spin_lock_init(&t->stid_lock);
1710 spin_lock_init(&t->atid_lock);
1711
1712 t->stids_in_use = 0;
2248b293 1713 t->sftids_in_use = 0;
b8ff05a9
DM
1714 t->afree = NULL;
1715 t->atids_in_use = 0;
1716 atomic_set(&t->tids_in_use, 0);
9a1bb9f6 1717 atomic_set(&t->hash_tids_in_use, 0);
b8ff05a9
DM
1718
1719 /* Setup the free list for atid_tab and clear the stid bitmap. */
1720 if (natids) {
1721 while (--natids)
1722 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1723 t->afree = t->atid_tab;
1724 }
dca4faeb 1725 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1726 /* Reserve stid 0 for T4/T5 adapters */
1727 if (!t->stid_base &&
3ccc6cf7 1728 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
b6f8eaec
KS
1729 __set_bit(0, t->stid_bmap);
1730
b8ff05a9
DM
1731 return 0;
1732}
1733
1734/**
1735 * cxgb4_create_server - create an IP server
1736 * @dev: the device
1737 * @stid: the server TID
1738 * @sip: local IP address to bind server to
1739 * @sport: the server's TCP port
1740 * @queue: queue to direct messages from this server to
1741 *
1742 * Create an IP server for the given port and address.
1743 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1744 */
1745int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1746 __be32 sip, __be16 sport, __be16 vlan,
1747 unsigned int queue)
b8ff05a9
DM
1748{
1749 unsigned int chan;
1750 struct sk_buff *skb;
1751 struct adapter *adap;
1752 struct cpl_pass_open_req *req;
80f40c1f 1753 int ret;
b8ff05a9
DM
1754
1755 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1756 if (!skb)
1757 return -ENOMEM;
1758
1759 adap = netdev2adap(dev);
1760 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1761 INIT_TP_WR(req, 0);
1762 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1763 req->local_port = sport;
1764 req->peer_port = htons(0);
1765 req->local_ip = sip;
1766 req->peer_ip = htonl(0);
e46dab4d 1767 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1768 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1769 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1770 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1771 ret = t4_mgmt_tx(adap, skb);
1772 return net_xmit_eval(ret);
b8ff05a9
DM
1773}
1774EXPORT_SYMBOL(cxgb4_create_server);
1775
80f40c1f
VP
1776/* cxgb4_create_server6 - create an IPv6 server
1777 * @dev: the device
1778 * @stid: the server TID
1779 * @sip: local IPv6 address to bind server to
1780 * @sport: the server's TCP port
1781 * @queue: queue to direct messages from this server to
1782 *
1783 * Create an IPv6 server for the given port and address.
1784 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1785 */
1786int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1787 const struct in6_addr *sip, __be16 sport,
1788 unsigned int queue)
1789{
1790 unsigned int chan;
1791 struct sk_buff *skb;
1792 struct adapter *adap;
1793 struct cpl_pass_open_req6 *req;
1794 int ret;
1795
1796 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1797 if (!skb)
1798 return -ENOMEM;
1799
1800 adap = netdev2adap(dev);
1801 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1802 INIT_TP_WR(req, 0);
1803 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1804 req->local_port = sport;
1805 req->peer_port = htons(0);
1806 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1807 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1808 req->peer_ip_hi = cpu_to_be64(0);
1809 req->peer_ip_lo = cpu_to_be64(0);
1810 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1811 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1812 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1813 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1814 ret = t4_mgmt_tx(adap, skb);
1815 return net_xmit_eval(ret);
1816}
1817EXPORT_SYMBOL(cxgb4_create_server6);
1818
1819int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1820 unsigned int queue, bool ipv6)
1821{
1822 struct sk_buff *skb;
1823 struct adapter *adap;
1824 struct cpl_close_listsvr_req *req;
1825 int ret;
1826
1827 adap = netdev2adap(dev);
1828
1829 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1830 if (!skb)
1831 return -ENOMEM;
1832
1833 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1834 INIT_TP_WR(req, 0);
1835 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1836 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1837 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1838 ret = t4_mgmt_tx(adap, skb);
1839 return net_xmit_eval(ret);
1840}
1841EXPORT_SYMBOL(cxgb4_remove_server);
1842
b8ff05a9
DM
1843/**
1844 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1845 * @mtus: the HW MTU table
1846 * @mtu: the target MTU
1847 * @idx: index of selected entry in the MTU table
1848 *
1849 * Returns the index and the value in the HW MTU table that is closest to
1850 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1851 * table, in which case that smallest available value is selected.
1852 */
1853unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1854 unsigned int *idx)
1855{
1856 unsigned int i = 0;
1857
1858 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1859 ++i;
1860 if (idx)
1861 *idx = i;
1862 return mtus[i];
1863}
1864EXPORT_SYMBOL(cxgb4_best_mtu);
1865
92e7ae71
HS
1866/**
1867 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1868 * @mtus: the HW MTU table
1869 * @header_size: Header Size
1870 * @data_size_max: maximum Data Segment Size
1871 * @data_size_align: desired Data Segment Size Alignment (2^N)
1872 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1873 *
1874 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1875 * MTU Table based solely on a Maximum MTU parameter, we break that
1876 * parameter up into a Header Size and Maximum Data Segment Size, and
1877 * provide a desired Data Segment Size Alignment. If we find an MTU in
1878 * the Hardware MTU Table which will result in a Data Segment Size with
1879 * the requested alignment _and_ that MTU isn't "too far" from the
1880 * closest MTU, then we'll return that rather than the closest MTU.
1881 */
1882unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1883 unsigned short header_size,
1884 unsigned short data_size_max,
1885 unsigned short data_size_align,
1886 unsigned int *mtu_idxp)
1887{
1888 unsigned short max_mtu = header_size + data_size_max;
1889 unsigned short data_size_align_mask = data_size_align - 1;
1890 int mtu_idx, aligned_mtu_idx;
1891
1892 /* Scan the MTU Table till we find an MTU which is larger than our
1893 * Maximum MTU or we reach the end of the table. Along the way,
1894 * record the last MTU found, if any, which will result in a Data
1895 * Segment Length matching the requested alignment.
1896 */
1897 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1898 unsigned short data_size = mtus[mtu_idx] - header_size;
1899
1900 /* If this MTU minus the Header Size would result in a
1901 * Data Segment Size of the desired alignment, remember it.
1902 */
1903 if ((data_size & data_size_align_mask) == 0)
1904 aligned_mtu_idx = mtu_idx;
1905
1906 /* If we're not at the end of the Hardware MTU Table and the
1907 * next element is larger than our Maximum MTU, drop out of
1908 * the loop.
1909 */
1910 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1911 break;
1912 }
1913
1914 /* If we fell out of the loop because we ran to the end of the table,
1915 * then we just have to use the last [largest] entry.
1916 */
1917 if (mtu_idx == NMTUS)
1918 mtu_idx--;
1919
1920 /* If we found an MTU which resulted in the requested Data Segment
1921 * Length alignment and that's "not far" from the largest MTU which is
1922 * less than or equal to the maximum MTU, then use that.
1923 */
1924 if (aligned_mtu_idx >= 0 &&
1925 mtu_idx - aligned_mtu_idx <= 1)
1926 mtu_idx = aligned_mtu_idx;
1927
1928 /* If the caller has passed in an MTU Index pointer, pass the
1929 * MTU Index back. Return the MTU value.
1930 */
1931 if (mtu_idxp)
1932 *mtu_idxp = mtu_idx;
1933 return mtus[mtu_idx];
1934}
1935EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1936
27999805
H
1937/**
1938 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1939 * @chip: chip type
1940 * @viid: VI id of the given port
1941 *
1942 * Return the SMT index for this VI.
1943 */
1944unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1945{
1946 /* In T4/T5, SMT contains 256 SMAC entries organized in
1947 * 128 rows of 2 entries each.
1948 * In T6, SMT contains 256 SMAC entries in 256 rows.
1949 * TODO: The below code needs to be updated when we add support
1950 * for 256 VFs.
1951 */
1952 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1953 return ((viid & 0x7f) << 1);
1954 else
1955 return (viid & 0x7f);
1956}
1957EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1958
b8ff05a9
DM
1959/**
1960 * cxgb4_port_chan - get the HW channel of a port
1961 * @dev: the net device for the port
1962 *
1963 * Return the HW Tx channel of the given port.
1964 */
1965unsigned int cxgb4_port_chan(const struct net_device *dev)
1966{
1967 return netdev2pinfo(dev)->tx_chan;
1968}
1969EXPORT_SYMBOL(cxgb4_port_chan);
1970
881806bc
VP
1971unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1972{
1973 struct adapter *adap = netdev2adap(dev);
2cc301d2 1974 u32 v1, v2, lp_count, hp_count;
881806bc 1975
f061de42
HS
1976 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1977 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 1978 if (is_t4(adap->params.chip)) {
f061de42
HS
1979 lp_count = LP_COUNT_G(v1);
1980 hp_count = HP_COUNT_G(v1);
2cc301d2 1981 } else {
f061de42
HS
1982 lp_count = LP_COUNT_T5_G(v1);
1983 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
1984 }
1985 return lpfifo ? lp_count : hp_count;
881806bc
VP
1986}
1987EXPORT_SYMBOL(cxgb4_dbfifo_count);
1988
b8ff05a9
DM
1989/**
1990 * cxgb4_port_viid - get the VI id of a port
1991 * @dev: the net device for the port
1992 *
1993 * Return the VI id of the given port.
1994 */
1995unsigned int cxgb4_port_viid(const struct net_device *dev)
1996{
1997 return netdev2pinfo(dev)->viid;
1998}
1999EXPORT_SYMBOL(cxgb4_port_viid);
2000
2001/**
2002 * cxgb4_port_idx - get the index of a port
2003 * @dev: the net device for the port
2004 *
2005 * Return the index of the given port.
2006 */
2007unsigned int cxgb4_port_idx(const struct net_device *dev)
2008{
2009 return netdev2pinfo(dev)->port_id;
2010}
2011EXPORT_SYMBOL(cxgb4_port_idx);
2012
b8ff05a9
DM
2013void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2014 struct tp_tcp_stats *v6)
2015{
2016 struct adapter *adap = pci_get_drvdata(pdev);
2017
2018 spin_lock(&adap->stats_lock);
2019 t4_tp_get_tcp_stats(adap, v4, v6);
2020 spin_unlock(&adap->stats_lock);
2021}
2022EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2023
2024void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2025 const unsigned int *pgsz_order)
2026{
2027 struct adapter *adap = netdev2adap(dev);
2028
0d804338
HS
2029 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2030 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2031 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2032 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
2033}
2034EXPORT_SYMBOL(cxgb4_iscsi_init);
2035
3069ee9b
VP
2036int cxgb4_flush_eq_cache(struct net_device *dev)
2037{
2038 struct adapter *adap = netdev2adap(dev);
3069ee9b 2039
5d700ecb 2040 return t4_sge_ctxt_flush(adap, adap->mbox);
3069ee9b
VP
2041}
2042EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2043
2044static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2045{
f061de42 2046 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
2047 __be64 indices;
2048 int ret;
2049
fc5ab020
HS
2050 spin_lock(&adap->win0_lock);
2051 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2052 sizeof(indices), (__be32 *)&indices,
2053 T4_MEMORY_READ);
2054 spin_unlock(&adap->win0_lock);
3069ee9b 2055 if (!ret) {
404d9e3f
VP
2056 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2057 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2058 }
2059 return ret;
2060}
2061
2062int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2063 u16 size)
2064{
2065 struct adapter *adap = netdev2adap(dev);
2066 u16 hw_pidx, hw_cidx;
2067 int ret;
2068
2069 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2070 if (ret)
2071 goto out;
2072
2073 if (pidx != hw_pidx) {
2074 u16 delta;
f612b815 2075 u32 val;
3069ee9b
VP
2076
2077 if (pidx >= hw_pidx)
2078 delta = pidx - hw_pidx;
2079 else
2080 delta = size - hw_pidx + pidx;
f612b815
HS
2081
2082 if (is_t4(adap->params.chip))
2083 val = PIDX_V(delta);
2084 else
2085 val = PIDX_T5_V(delta);
3069ee9b 2086 wmb();
f612b815
HS
2087 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2088 QID_V(qid) | val);
3069ee9b
VP
2089 }
2090out:
2091 return ret;
2092}
2093EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2094
031cf476
HS
2095int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2096{
2097 struct adapter *adap;
2098 u32 offset, memtype, memaddr;
6559a7e8 2099 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2100 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2101 int ret;
2102
2103 adap = netdev2adap(dev);
2104
2105 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2106
2107 /* Figure out where the offset lands in the Memory Type/Address scheme.
2108 * This code assumes that the memory is laid out starting at offset 0
2109 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2110 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2111 * MC0, and some have both MC0 and MC1.
2112 */
6559a7e8
HS
2113 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2114 edc0_size = EDRAM0_SIZE_G(size) << 20;
2115 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2116 edc1_size = EDRAM1_SIZE_G(size) << 20;
2117 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2118 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2119
2120 edc0_end = edc0_size;
2121 edc1_end = edc0_end + edc1_size;
2122 mc0_end = edc1_end + mc0_size;
2123
2124 if (offset < edc0_end) {
2125 memtype = MEM_EDC0;
2126 memaddr = offset;
2127 } else if (offset < edc1_end) {
2128 memtype = MEM_EDC1;
2129 memaddr = offset - edc0_end;
2130 } else {
2131 if (offset < mc0_end) {
2132 memtype = MEM_MC0;
2133 memaddr = offset - edc1_end;
3ccc6cf7 2134 } else if (is_t5(adap->params.chip)) {
6559a7e8
HS
2135 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2136 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2137 mc1_end = mc0_end + mc1_size;
2138 if (offset < mc1_end) {
2139 memtype = MEM_MC1;
2140 memaddr = offset - mc0_end;
2141 } else {
2142 /* offset beyond the end of any memory */
2143 goto err;
2144 }
3ccc6cf7
HS
2145 } else {
2146 /* T4/T6 only has a single memory channel */
2147 goto err;
031cf476
HS
2148 }
2149 }
2150
2151 spin_lock(&adap->win0_lock);
2152 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2153 spin_unlock(&adap->win0_lock);
2154 return ret;
2155
2156err:
2157 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2158 stag, offset);
2159 return -EINVAL;
2160}
2161EXPORT_SYMBOL(cxgb4_read_tpte);
2162
7730b4c7
HS
2163u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2164{
2165 u32 hi, lo;
2166 struct adapter *adap;
2167
2168 adap = netdev2adap(dev);
f612b815
HS
2169 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2170 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2171
2172 return ((u64)hi << 32) | (u64)lo;
2173}
2174EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2175
df64e4d3
HS
2176int cxgb4_bar2_sge_qregs(struct net_device *dev,
2177 unsigned int qid,
2178 enum cxgb4_bar2_qtype qtype,
66cf188e 2179 int user,
df64e4d3
HS
2180 u64 *pbar2_qoffset,
2181 unsigned int *pbar2_qid)
2182{
b2612722 2183 return t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2184 qid,
2185 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2186 ? T4_BAR2_QTYPE_EGRESS
2187 : T4_BAR2_QTYPE_INGRESS),
66cf188e 2188 user,
df64e4d3
HS
2189 pbar2_qoffset,
2190 pbar2_qid);
2191}
2192EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2193
b8ff05a9
DM
2194static struct pci_driver cxgb4_driver;
2195
2196static void check_neigh_update(struct neighbour *neigh)
2197{
2198 const struct device *parent;
2199 const struct net_device *netdev = neigh->dev;
2200
2201 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2202 netdev = vlan_dev_real_dev(netdev);
2203 parent = netdev->dev.parent;
2204 if (parent && parent->driver == &cxgb4_driver.driver)
2205 t4_l2t_update(dev_get_drvdata(parent), neigh);
2206}
2207
2208static int netevent_cb(struct notifier_block *nb, unsigned long event,
2209 void *data)
2210{
2211 switch (event) {
2212 case NETEVENT_NEIGH_UPDATE:
2213 check_neigh_update(data);
2214 break;
b8ff05a9
DM
2215 case NETEVENT_REDIRECT:
2216 default:
2217 break;
2218 }
2219 return 0;
2220}
2221
2222static bool netevent_registered;
2223static struct notifier_block cxgb4_netevent_nb = {
2224 .notifier_call = netevent_cb
2225};
2226
3069ee9b
VP
2227static void drain_db_fifo(struct adapter *adap, int usecs)
2228{
2cc301d2 2229 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2230
2231 do {
f061de42
HS
2232 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2233 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2234 if (is_t4(adap->params.chip)) {
f061de42
HS
2235 lp_count = LP_COUNT_G(v1);
2236 hp_count = HP_COUNT_G(v1);
2cc301d2 2237 } else {
f061de42
HS
2238 lp_count = LP_COUNT_T5_G(v1);
2239 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2240 }
2241
2242 if (lp_count == 0 && hp_count == 0)
2243 break;
3069ee9b
VP
2244 set_current_state(TASK_UNINTERRUPTIBLE);
2245 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2246 } while (1);
2247}
2248
2249static void disable_txq_db(struct sge_txq *q)
2250{
05eb2389
SW
2251 unsigned long flags;
2252
2253 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2254 q->db_disabled = 1;
05eb2389 2255 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2256}
2257
05eb2389 2258static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2259{
2260 spin_lock_irq(&q->db_lock);
05eb2389
SW
2261 if (q->db_pidx_inc) {
2262 /* Make sure that all writes to the TX descriptors
2263 * are committed before we tell HW about them.
2264 */
2265 wmb();
f612b815
HS
2266 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2267 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2268 q->db_pidx_inc = 0;
2269 }
3069ee9b
VP
2270 q->db_disabled = 0;
2271 spin_unlock_irq(&q->db_lock);
2272}
2273
2274static void disable_dbs(struct adapter *adap)
2275{
2276 int i;
2277
2278 for_each_ethrxq(&adap->sge, i)
2279 disable_txq_db(&adap->sge.ethtxq[i].q);
2280 for_each_ofldrxq(&adap->sge, i)
2281 disable_txq_db(&adap->sge.ofldtxq[i].q);
2282 for_each_port(adap, i)
2283 disable_txq_db(&adap->sge.ctrlq[i].q);
2284}
2285
2286static void enable_dbs(struct adapter *adap)
2287{
2288 int i;
2289
2290 for_each_ethrxq(&adap->sge, i)
05eb2389 2291 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 2292 for_each_ofldrxq(&adap->sge, i)
05eb2389 2293 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2294 for_each_port(adap, i)
05eb2389
SW
2295 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2296}
2297
2298static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2299{
2300 if (adap->uld_handle[CXGB4_ULD_RDMA])
2301 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2302 cmd);
2303}
2304
2305static void process_db_full(struct work_struct *work)
2306{
2307 struct adapter *adap;
2308
2309 adap = container_of(work, struct adapter, db_full_task);
2310
2311 drain_db_fifo(adap, dbfifo_drain_delay);
2312 enable_dbs(adap);
2313 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7
HS
2314 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2315 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2316 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2317 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2318 else
2319 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2320 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
3069ee9b
VP
2321}
2322
2323static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2324{
2325 u16 hw_pidx, hw_cidx;
2326 int ret;
2327
05eb2389 2328 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2329 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2330 if (ret)
2331 goto out;
2332 if (q->db_pidx != hw_pidx) {
2333 u16 delta;
f612b815 2334 u32 val;
3069ee9b
VP
2335
2336 if (q->db_pidx >= hw_pidx)
2337 delta = q->db_pidx - hw_pidx;
2338 else
2339 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2340
2341 if (is_t4(adap->params.chip))
2342 val = PIDX_V(delta);
2343 else
2344 val = PIDX_T5_V(delta);
3069ee9b 2345 wmb();
f612b815
HS
2346 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2347 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2348 }
2349out:
2350 q->db_disabled = 0;
05eb2389
SW
2351 q->db_pidx_inc = 0;
2352 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2353 if (ret)
2354 CH_WARN(adap, "DB drop recovery failed.\n");
2355}
2356static void recover_all_queues(struct adapter *adap)
2357{
2358 int i;
2359
2360 for_each_ethrxq(&adap->sge, i)
2361 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2362 for_each_ofldrxq(&adap->sge, i)
2363 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2364 for_each_port(adap, i)
2365 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2366}
2367
881806bc
VP
2368static void process_db_drop(struct work_struct *work)
2369{
2370 struct adapter *adap;
881806bc 2371
3069ee9b 2372 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2373
d14807dd 2374 if (is_t4(adap->params.chip)) {
05eb2389 2375 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2376 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2377 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2378 recover_all_queues(adap);
05eb2389 2379 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2380 enable_dbs(adap);
05eb2389 2381 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7 2382 } else if (is_t5(adap->params.chip)) {
2cc301d2
SR
2383 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2384 u16 qid = (dropped_db >> 15) & 0x1ffff;
2385 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2386 u64 bar2_qoffset;
2387 unsigned int bar2_qid;
2388 int ret;
2cc301d2 2389
b2612722 2390 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
e0456717 2391 0, &bar2_qoffset, &bar2_qid);
df64e4d3
HS
2392 if (ret)
2393 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2394 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2395 else
f612b815 2396 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2397 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2398
2399 /* Re-enable BAR2 WC */
2400 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2401 }
2402
3ccc6cf7
HS
2403 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2404 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2405}
2406
2407void t4_db_full(struct adapter *adap)
2408{
d14807dd 2409 if (is_t4(adap->params.chip)) {
05eb2389
SW
2410 disable_dbs(adap);
2411 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2412 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2413 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2414 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2415 }
881806bc
VP
2416}
2417
2418void t4_db_dropped(struct adapter *adap)
2419{
05eb2389
SW
2420 if (is_t4(adap->params.chip)) {
2421 disable_dbs(adap);
2422 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2423 }
29aaee65 2424 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2425}
2426
b8ff05a9
DM
2427static void uld_attach(struct adapter *adap, unsigned int uld)
2428{
2429 void *handle;
2430 struct cxgb4_lld_info lli;
dca4faeb 2431 unsigned short i;
b8ff05a9
DM
2432
2433 lli.pdev = adap->pdev;
b2612722 2434 lli.pf = adap->pf;
b8ff05a9
DM
2435 lli.l2t = adap->l2t;
2436 lli.tids = &adap->tids;
2437 lli.ports = adap->port;
2438 lli.vr = &adap->vres;
2439 lli.mtus = adap->params.mtus;
2440 if (uld == CXGB4_ULD_RDMA) {
2441 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2442 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2443 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2444 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
2445 } else if (uld == CXGB4_ULD_ISCSI) {
2446 lli.rxq_ids = adap->sge.ofld_rxq;
2447 lli.nrxq = adap->sge.ofldqsets;
2448 }
2449 lli.ntxq = adap->sge.ofldqsets;
2450 lli.nchan = adap->params.nports;
2451 lli.nports = adap->params.nports;
2452 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2453 lli.adapter_type = adap->params.chip;
837e4a42 2454 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 2455 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2456 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2457 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2458 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2459 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2460 for (i = 0; i < NCHAN; i++)
2461 lli.tx_modq[i] = i;
f612b815
HS
2462 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2463 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2464 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2465 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2466 lli.sge_ingpadboundary = adap->sge.fl_align;
2467 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2468 lli.sge_pktshift = adap->sge.pktshift;
2469 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2470 lli.max_ordird_qp = adap->params.max_ordird_qp;
2471 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2472 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2473 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2474
2475 handle = ulds[uld].add(&lli);
2476 if (IS_ERR(handle)) {
2477 dev_warn(adap->pdev_dev,
2478 "could not attach to the %s driver, error %ld\n",
2479 uld_str[uld], PTR_ERR(handle));
2480 return;
2481 }
2482
2483 adap->uld_handle[uld] = handle;
2484
2485 if (!netevent_registered) {
2486 register_netevent_notifier(&cxgb4_netevent_nb);
2487 netevent_registered = true;
2488 }
e29f5dbc
DM
2489
2490 if (adap->flags & FULL_INIT_DONE)
2491 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2492}
2493
2494static void attach_ulds(struct adapter *adap)
2495{
2496 unsigned int i;
2497
01bcca68
VP
2498 spin_lock(&adap_rcu_lock);
2499 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2500 spin_unlock(&adap_rcu_lock);
2501
b8ff05a9
DM
2502 mutex_lock(&uld_mutex);
2503 list_add_tail(&adap->list_node, &adapter_list);
2504 for (i = 0; i < CXGB4_ULD_MAX; i++)
2505 if (ulds[i].add)
2506 uld_attach(adap, i);
2507 mutex_unlock(&uld_mutex);
2508}
2509
2510static void detach_ulds(struct adapter *adap)
2511{
2512 unsigned int i;
2513
2514 mutex_lock(&uld_mutex);
2515 list_del(&adap->list_node);
2516 for (i = 0; i < CXGB4_ULD_MAX; i++)
2517 if (adap->uld_handle[i]) {
2518 ulds[i].state_change(adap->uld_handle[i],
2519 CXGB4_STATE_DETACH);
2520 adap->uld_handle[i] = NULL;
2521 }
2522 if (netevent_registered && list_empty(&adapter_list)) {
2523 unregister_netevent_notifier(&cxgb4_netevent_nb);
2524 netevent_registered = false;
2525 }
2526 mutex_unlock(&uld_mutex);
01bcca68
VP
2527
2528 spin_lock(&adap_rcu_lock);
2529 list_del_rcu(&adap->rcu_node);
2530 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2531}
2532
2533static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2534{
2535 unsigned int i;
2536
2537 mutex_lock(&uld_mutex);
2538 for (i = 0; i < CXGB4_ULD_MAX; i++)
2539 if (adap->uld_handle[i])
2540 ulds[i].state_change(adap->uld_handle[i], new_state);
2541 mutex_unlock(&uld_mutex);
2542}
2543
2544/**
2545 * cxgb4_register_uld - register an upper-layer driver
2546 * @type: the ULD type
2547 * @p: the ULD methods
2548 *
2549 * Registers an upper-layer driver with this driver and notifies the ULD
2550 * about any presently available devices that support its type. Returns
2551 * %-EBUSY if a ULD of the same type is already registered.
2552 */
2553int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2554{
2555 int ret = 0;
2556 struct adapter *adap;
2557
2558 if (type >= CXGB4_ULD_MAX)
2559 return -EINVAL;
2560 mutex_lock(&uld_mutex);
2561 if (ulds[type].add) {
2562 ret = -EBUSY;
2563 goto out;
2564 }
2565 ulds[type] = *p;
2566 list_for_each_entry(adap, &adapter_list, list_node)
2567 uld_attach(adap, type);
2568out: mutex_unlock(&uld_mutex);
2569 return ret;
2570}
2571EXPORT_SYMBOL(cxgb4_register_uld);
2572
2573/**
2574 * cxgb4_unregister_uld - unregister an upper-layer driver
2575 * @type: the ULD type
2576 *
2577 * Unregisters an existing upper-layer driver.
2578 */
2579int cxgb4_unregister_uld(enum cxgb4_uld type)
2580{
2581 struct adapter *adap;
2582
2583 if (type >= CXGB4_ULD_MAX)
2584 return -EINVAL;
2585 mutex_lock(&uld_mutex);
2586 list_for_each_entry(adap, &adapter_list, list_node)
2587 adap->uld_handle[type] = NULL;
2588 ulds[type].add = NULL;
2589 mutex_unlock(&uld_mutex);
2590 return 0;
2591}
2592EXPORT_SYMBOL(cxgb4_unregister_uld);
2593
1bb60376 2594#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2595static int cxgb4_inet6addr_handler(struct notifier_block *this,
2596 unsigned long event, void *data)
01bcca68 2597{
b5a02f50
AB
2598 struct inet6_ifaddr *ifa = data;
2599 struct net_device *event_dev = ifa->idev->dev;
2600 const struct device *parent = NULL;
2601#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2602 struct adapter *adap;
b5a02f50
AB
2603#endif
2604 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2605 event_dev = vlan_dev_real_dev(event_dev);
2606#if IS_ENABLED(CONFIG_BONDING)
2607 if (event_dev->flags & IFF_MASTER) {
2608 list_for_each_entry(adap, &adapter_list, list_node) {
2609 switch (event) {
2610 case NETDEV_UP:
2611 cxgb4_clip_get(adap->port[0],
2612 (const u32 *)ifa, 1);
2613 break;
2614 case NETDEV_DOWN:
2615 cxgb4_clip_release(adap->port[0],
2616 (const u32 *)ifa, 1);
2617 break;
2618 default:
2619 break;
2620 }
2621 }
2622 return NOTIFY_OK;
2623 }
2624#endif
01bcca68 2625
b5a02f50
AB
2626 if (event_dev)
2627 parent = event_dev->dev.parent;
01bcca68 2628
b5a02f50 2629 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2630 switch (event) {
2631 case NETDEV_UP:
b5a02f50 2632 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2633 break;
2634 case NETDEV_DOWN:
b5a02f50 2635 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2636 break;
2637 default:
2638 break;
2639 }
2640 }
b5a02f50 2641 return NOTIFY_OK;
01bcca68
VP
2642}
2643
b5a02f50 2644static bool inet6addr_registered;
01bcca68
VP
2645static struct notifier_block cxgb4_inet6addr_notifier = {
2646 .notifier_call = cxgb4_inet6addr_handler
2647};
2648
01bcca68
VP
2649static void update_clip(const struct adapter *adap)
2650{
2651 int i;
2652 struct net_device *dev;
2653 int ret;
2654
2655 rcu_read_lock();
2656
2657 for (i = 0; i < MAX_NPORTS; i++) {
2658 dev = adap->port[i];
2659 ret = 0;
2660
2661 if (dev)
b5a02f50 2662 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2663
2664 if (ret < 0)
2665 break;
2666 }
2667 rcu_read_unlock();
2668}
1bb60376 2669#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2670
b8ff05a9
DM
2671/**
2672 * cxgb_up - enable the adapter
2673 * @adap: adapter being enabled
2674 *
2675 * Called when the first port is enabled, this function performs the
2676 * actions necessary to make an adapter operational, such as completing
2677 * the initialization of HW modules, and enabling interrupts.
2678 *
2679 * Must be called with the rtnl lock held.
2680 */
2681static int cxgb_up(struct adapter *adap)
2682{
aaefae9b 2683 int err;
b8ff05a9 2684
aaefae9b
DM
2685 err = setup_sge_queues(adap);
2686 if (err)
2687 goto out;
2688 err = setup_rss(adap);
2689 if (err)
2690 goto freeq;
b8ff05a9
DM
2691
2692 if (adap->flags & USING_MSIX) {
aaefae9b 2693 name_msix_vecs(adap);
b8ff05a9
DM
2694 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2695 adap->msix_info[0].desc, adap);
2696 if (err)
2697 goto irq_err;
2698
2699 err = request_msix_queue_irqs(adap);
2700 if (err) {
2701 free_irq(adap->msix_info[0].vec, adap);
2702 goto irq_err;
2703 }
2704 } else {
2705 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2706 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2707 adap->port[0]->name, adap);
b8ff05a9
DM
2708 if (err)
2709 goto irq_err;
2710 }
2711 enable_rx(adap);
2712 t4_sge_start(adap);
2713 t4_intr_enable(adap);
aaefae9b 2714 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2715 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2716#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2717 update_clip(adap);
1bb60376 2718#endif
b8ff05a9
DM
2719 out:
2720 return err;
2721 irq_err:
2722 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2723 freeq:
2724 t4_free_sge_resources(adap);
b8ff05a9
DM
2725 goto out;
2726}
2727
2728static void cxgb_down(struct adapter *adapter)
2729{
b8ff05a9 2730 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2731 cancel_work_sync(&adapter->db_full_task);
2732 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2733 adapter->tid_release_task_busy = false;
204dc3c0 2734 adapter->tid_release_head = NULL;
b8ff05a9 2735
aaefae9b
DM
2736 t4_sge_stop(adapter);
2737 t4_free_sge_resources(adapter);
2738 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2739}
2740
2741/*
2742 * net_device operations
2743 */
2744static int cxgb_open(struct net_device *dev)
2745{
2746 int err;
2747 struct port_info *pi = netdev_priv(dev);
2748 struct adapter *adapter = pi->adapter;
2749
6a3c869a
DM
2750 netif_carrier_off(dev);
2751
aaefae9b
DM
2752 if (!(adapter->flags & FULL_INIT_DONE)) {
2753 err = cxgb_up(adapter);
2754 if (err < 0)
2755 return err;
2756 }
b8ff05a9 2757
f68707b8
DM
2758 err = link_start(dev);
2759 if (!err)
2760 netif_tx_start_all_queues(dev);
2761 return err;
b8ff05a9
DM
2762}
2763
2764static int cxgb_close(struct net_device *dev)
2765{
b8ff05a9
DM
2766 struct port_info *pi = netdev_priv(dev);
2767 struct adapter *adapter = pi->adapter;
2768
2769 netif_tx_stop_all_queues(dev);
2770 netif_carrier_off(dev);
b2612722 2771 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
b8ff05a9
DM
2772}
2773
f2b7e78d
VP
2774/* Return an error number if the indicated filter isn't writable ...
2775 */
2776static int writable_filter(struct filter_entry *f)
2777{
2778 if (f->locked)
2779 return -EPERM;
2780 if (f->pending)
2781 return -EBUSY;
2782
2783 return 0;
2784}
2785
2786/* Delete the filter at the specified index (if valid). The checks for all
2787 * the common problems with doing this like the filter being locked, currently
2788 * pending in another operation, etc.
2789 */
2790static int delete_filter(struct adapter *adapter, unsigned int fidx)
2791{
2792 struct filter_entry *f;
2793 int ret;
2794
dca4faeb 2795 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2796 return -EINVAL;
2797
2798 f = &adapter->tids.ftid_tab[fidx];
2799 ret = writable_filter(f);
2800 if (ret)
2801 return ret;
2802 if (f->valid)
2803 return del_filter_wr(adapter, fidx);
2804
2805 return 0;
2806}
2807
dca4faeb 2808int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2809 __be32 sip, __be16 sport, __be16 vlan,
2810 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2811{
2812 int ret;
2813 struct filter_entry *f;
2814 struct adapter *adap;
2815 int i;
2816 u8 *val;
2817
2818 adap = netdev2adap(dev);
2819
1cab775c 2820 /* Adjust stid to correct filter index */
470c60c4 2821 stid -= adap->tids.sftid_base;
1cab775c
VP
2822 stid += adap->tids.nftids;
2823
dca4faeb
VP
2824 /* Check to make sure the filter requested is writable ...
2825 */
2826 f = &adap->tids.ftid_tab[stid];
2827 ret = writable_filter(f);
2828 if (ret)
2829 return ret;
2830
2831 /* Clear out any old resources being used by the filter before
2832 * we start constructing the new filter.
2833 */
2834 if (f->valid)
2835 clear_filter(adap, f);
2836
2837 /* Clear out filter specifications */
2838 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2839 f->fs.val.lport = cpu_to_be16(sport);
2840 f->fs.mask.lport = ~0;
2841 val = (u8 *)&sip;
793dad94 2842 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2843 for (i = 0; i < 4; i++) {
2844 f->fs.val.lip[i] = val[i];
2845 f->fs.mask.lip[i] = ~0;
2846 }
0d804338 2847 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2848 f->fs.val.iport = port;
2849 f->fs.mask.iport = mask;
2850 }
2851 }
dca4faeb 2852
0d804338 2853 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2854 f->fs.val.proto = IPPROTO_TCP;
2855 f->fs.mask.proto = ~0;
2856 }
2857
dca4faeb
VP
2858 f->fs.dirsteer = 1;
2859 f->fs.iq = queue;
2860 /* Mark filter as locked */
2861 f->locked = 1;
2862 f->fs.rpttid = 1;
2863
2864 ret = set_filter_wr(adap, stid);
2865 if (ret) {
2866 clear_filter(adap, f);
2867 return ret;
2868 }
2869
2870 return 0;
2871}
2872EXPORT_SYMBOL(cxgb4_create_server_filter);
2873
2874int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2875 unsigned int queue, bool ipv6)
2876{
2877 int ret;
2878 struct filter_entry *f;
2879 struct adapter *adap;
2880
2881 adap = netdev2adap(dev);
1cab775c
VP
2882
2883 /* Adjust stid to correct filter index */
470c60c4 2884 stid -= adap->tids.sftid_base;
1cab775c
VP
2885 stid += adap->tids.nftids;
2886
dca4faeb
VP
2887 f = &adap->tids.ftid_tab[stid];
2888 /* Unlock the filter */
2889 f->locked = 0;
2890
2891 ret = delete_filter(adap, stid);
2892 if (ret)
2893 return ret;
2894
2895 return 0;
2896}
2897EXPORT_SYMBOL(cxgb4_remove_server_filter);
2898
f5152c90
DM
2899static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2900 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2901{
2902 struct port_stats stats;
2903 struct port_info *p = netdev_priv(dev);
2904 struct adapter *adapter = p->adapter;
b8ff05a9 2905
9fe6cb58
GS
2906 /* Block retrieving statistics during EEH error
2907 * recovery. Otherwise, the recovery might fail
2908 * and the PCI device will be removed permanently
2909 */
b8ff05a9 2910 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2911 if (!netif_device_present(dev)) {
2912 spin_unlock(&adapter->stats_lock);
2913 return ns;
2914 }
a4cfd929
HS
2915 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2916 &p->stats_base);
b8ff05a9
DM
2917 spin_unlock(&adapter->stats_lock);
2918
2919 ns->tx_bytes = stats.tx_octets;
2920 ns->tx_packets = stats.tx_frames;
2921 ns->rx_bytes = stats.rx_octets;
2922 ns->rx_packets = stats.rx_frames;
2923 ns->multicast = stats.rx_mcast_frames;
2924
2925 /* detailed rx_errors */
2926 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2927 stats.rx_runt;
2928 ns->rx_over_errors = 0;
2929 ns->rx_crc_errors = stats.rx_fcs_err;
2930 ns->rx_frame_errors = stats.rx_symbol_err;
2931 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2932 stats.rx_ovflow2 + stats.rx_ovflow3 +
2933 stats.rx_trunc0 + stats.rx_trunc1 +
2934 stats.rx_trunc2 + stats.rx_trunc3;
2935 ns->rx_missed_errors = 0;
2936
2937 /* detailed tx_errors */
2938 ns->tx_aborted_errors = 0;
2939 ns->tx_carrier_errors = 0;
2940 ns->tx_fifo_errors = 0;
2941 ns->tx_heartbeat_errors = 0;
2942 ns->tx_window_errors = 0;
2943
2944 ns->tx_errors = stats.tx_error_frames;
2945 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2946 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2947 return ns;
2948}
2949
2950static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2951{
060e0c75 2952 unsigned int mbox;
b8ff05a9
DM
2953 int ret = 0, prtad, devad;
2954 struct port_info *pi = netdev_priv(dev);
2955 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2956
2957 switch (cmd) {
2958 case SIOCGMIIPHY:
2959 if (pi->mdio_addr < 0)
2960 return -EOPNOTSUPP;
2961 data->phy_id = pi->mdio_addr;
2962 break;
2963 case SIOCGMIIREG:
2964 case SIOCSMIIREG:
2965 if (mdio_phy_id_is_c45(data->phy_id)) {
2966 prtad = mdio_phy_id_prtad(data->phy_id);
2967 devad = mdio_phy_id_devad(data->phy_id);
2968 } else if (data->phy_id < 32) {
2969 prtad = data->phy_id;
2970 devad = 0;
2971 data->reg_num &= 0x1f;
2972 } else
2973 return -EINVAL;
2974
b2612722 2975 mbox = pi->adapter->pf;
b8ff05a9 2976 if (cmd == SIOCGMIIREG)
060e0c75 2977 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2978 data->reg_num, &data->val_out);
2979 else
060e0c75 2980 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2981 data->reg_num, data->val_in);
2982 break;
5e2a5ebc
HS
2983 case SIOCGHWTSTAMP:
2984 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2985 sizeof(pi->tstamp_config)) ?
2986 -EFAULT : 0;
2987 case SIOCSHWTSTAMP:
2988 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2989 sizeof(pi->tstamp_config)))
2990 return -EFAULT;
2991
2992 switch (pi->tstamp_config.rx_filter) {
2993 case HWTSTAMP_FILTER_NONE:
2994 pi->rxtstamp = false;
2995 break;
2996 case HWTSTAMP_FILTER_ALL:
2997 pi->rxtstamp = true;
2998 break;
2999 default:
3000 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3001 return -ERANGE;
3002 }
3003
3004 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3005 sizeof(pi->tstamp_config)) ?
3006 -EFAULT : 0;
b8ff05a9
DM
3007 default:
3008 return -EOPNOTSUPP;
3009 }
3010 return ret;
3011}
3012
3013static void cxgb_set_rxmode(struct net_device *dev)
3014{
3015 /* unfortunately we can't return errors to the stack */
3016 set_rxmode(dev, -1, false);
3017}
3018
3019static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3020{
3021 int ret;
3022 struct port_info *pi = netdev_priv(dev);
3023
3024 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
3025 return -EINVAL;
b2612722 3026 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
060e0c75 3027 -1, -1, -1, true);
b8ff05a9
DM
3028 if (!ret)
3029 dev->mtu = new_mtu;
3030 return ret;
3031}
3032
3033static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3034{
3035 int ret;
3036 struct sockaddr *addr = p;
3037 struct port_info *pi = netdev_priv(dev);
3038
3039 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 3040 return -EADDRNOTAVAIL;
b8ff05a9 3041
b2612722 3042 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
060e0c75 3043 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
3044 if (ret < 0)
3045 return ret;
3046
3047 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3048 pi->xact_addr_filt = ret;
3049 return 0;
3050}
3051
b8ff05a9
DM
3052#ifdef CONFIG_NET_POLL_CONTROLLER
3053static void cxgb_netpoll(struct net_device *dev)
3054{
3055 struct port_info *pi = netdev_priv(dev);
3056 struct adapter *adap = pi->adapter;
3057
3058 if (adap->flags & USING_MSIX) {
3059 int i;
3060 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3061
3062 for (i = pi->nqsets; i; i--, rx++)
3063 t4_sge_intr_msix(0, &rx->rspq);
3064 } else
3065 t4_intr_handler(adap)(0, adap);
3066}
3067#endif
3068
3069static const struct net_device_ops cxgb4_netdev_ops = {
3070 .ndo_open = cxgb_open,
3071 .ndo_stop = cxgb_close,
3072 .ndo_start_xmit = t4_eth_xmit,
688848b1 3073 .ndo_select_queue = cxgb_select_queue,
9be793bf 3074 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3075 .ndo_set_rx_mode = cxgb_set_rxmode,
3076 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3077 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3078 .ndo_validate_addr = eth_validate_addr,
3079 .ndo_do_ioctl = cxgb_ioctl,
3080 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3081#ifdef CONFIG_NET_POLL_CONTROLLER
3082 .ndo_poll_controller = cxgb_netpoll,
3083#endif
84a200b3
VP
3084#ifdef CONFIG_CHELSIO_T4_FCOE
3085 .ndo_fcoe_enable = cxgb_fcoe_enable,
3086 .ndo_fcoe_disable = cxgb_fcoe_disable,
3087#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3088#ifdef CONFIG_NET_RX_BUSY_POLL
3089 .ndo_busy_poll = cxgb_busy_poll,
3090#endif
3091
b8ff05a9
DM
3092};
3093
3094void t4_fatal_err(struct adapter *adap)
3095{
f612b815 3096 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3097 t4_intr_disable(adap);
3098 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3099}
3100
3101static void setup_memwin(struct adapter *adap)
3102{
b562fc37 3103 u32 nic_win_base = t4_get_util_window(adap);
b8ff05a9 3104
b562fc37 3105 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
636f9d37
VP
3106}
3107
3108static void setup_memwin_rdma(struct adapter *adap)
3109{
1ae970e0 3110 if (adap->vres.ocq.size) {
0abfd152
HS
3111 u32 start;
3112 unsigned int sz_kb;
1ae970e0 3113
0abfd152
HS
3114 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3115 start &= PCI_BASE_ADDRESS_MEM_MASK;
3116 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3117 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3118 t4_write_reg(adap,
f061de42
HS
3119 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3120 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3121 t4_write_reg(adap,
f061de42 3122 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3123 adap->vres.ocq.start);
3124 t4_read_reg(adap,
f061de42 3125 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3126 }
b8ff05a9
DM
3127}
3128
02b5fb8e
DM
3129static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3130{
3131 u32 v;
3132 int ret;
3133
3134 /* get device capabilities */
3135 memset(c, 0, sizeof(*c));
e2ac9628
HS
3136 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3137 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3138 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
b2612722 3139 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
02b5fb8e
DM
3140 if (ret < 0)
3141 return ret;
3142
3143 /* select capabilities we'll be using */
3144 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3145 if (!vf_acls)
3146 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3147 else
3148 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3149 } else if (vf_acls) {
3150 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3151 return ret;
3152 }
e2ac9628
HS
3153 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3154 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
b2612722 3155 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
02b5fb8e
DM
3156 if (ret < 0)
3157 return ret;
3158
b2612722 3159 ret = t4_config_glbl_rss(adap, adap->pf,
02b5fb8e 3160 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3161 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3162 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3163 if (ret < 0)
3164 return ret;
3165
b2612722 3166 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4b8e27a8
HS
3167 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3168 FW_CMD_CAP_PF);
02b5fb8e
DM
3169 if (ret < 0)
3170 return ret;
3171
3172 t4_sge_init(adap);
3173
02b5fb8e 3174 /* tweak some settings */
837e4a42 3175 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3176 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3177 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3178 v = t4_read_reg(adap, TP_PIO_DATA_A);
3179 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3180
dca4faeb
VP
3181 /* first 4 Tx modulation queues point to consecutive Tx channels */
3182 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3183 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3184 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3185
3186 /* associate each Tx modulation queue with consecutive Tx channels */
3187 v = 0x84218421;
837e4a42 3188 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3189 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3190 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3191 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3192 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3193 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3194
3195#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3196 if (is_offload(adap)) {
0d804338
HS
3197 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3198 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3199 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3200 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3201 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3202 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3203 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3204 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3205 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3206 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3207 }
3208
060e0c75 3209 /* get basic stuff going */
b2612722 3210 return t4_early_init(adap, adap->pf);
02b5fb8e
DM
3211}
3212
b8ff05a9
DM
3213/*
3214 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3215 */
3216#define MAX_ATIDS 8192U
3217
636f9d37
VP
3218/*
3219 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3220 *
3221 * If the firmware we're dealing with has Configuration File support, then
3222 * we use that to perform all configuration
3223 */
3224
3225/*
3226 * Tweak configuration based on module parameters, etc. Most of these have
3227 * defaults assigned to them by Firmware Configuration Files (if we're using
3228 * them) but need to be explicitly set if we're using hard-coded
3229 * initialization. But even in the case of using Firmware Configuration
3230 * Files, we'd like to expose the ability to change these via module
3231 * parameters so these are essentially common tweaks/settings for
3232 * Configuration Files and hard-coded initialization ...
3233 */
3234static int adap_init0_tweaks(struct adapter *adapter)
3235{
3236 /*
3237 * Fix up various Host-Dependent Parameters like Page Size, Cache
3238 * Line Size, etc. The firmware default is for a 4KB Page Size and
3239 * 64B Cache Line Size ...
3240 */
3241 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3242
3243 /*
3244 * Process module parameters which affect early initialization.
3245 */
3246 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3247 dev_err(&adapter->pdev->dev,
3248 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3249 rx_dma_offset);
3250 rx_dma_offset = 2;
3251 }
f612b815
HS
3252 t4_set_reg_field(adapter, SGE_CONTROL_A,
3253 PKTSHIFT_V(PKTSHIFT_M),
3254 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3255
3256 /*
3257 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3258 * adds the pseudo header itself.
3259 */
837e4a42
HS
3260 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3261 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3262
3263 return 0;
3264}
3265
01b69614
HS
3266/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3267 * unto themselves and they contain their own firmware to perform their
3268 * tasks ...
3269 */
3270static int phy_aq1202_version(const u8 *phy_fw_data,
3271 size_t phy_fw_size)
3272{
3273 int offset;
3274
3275 /* At offset 0x8 you're looking for the primary image's
3276 * starting offset which is 3 Bytes wide
3277 *
3278 * At offset 0xa of the primary image, you look for the offset
3279 * of the DRAM segment which is 3 Bytes wide.
3280 *
3281 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3282 * wide
3283 */
3284 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3285 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3286 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3287
3288 offset = le24(phy_fw_data + 0x8) << 12;
3289 offset = le24(phy_fw_data + offset + 0xa);
3290 return be16(phy_fw_data + offset + 0x27e);
3291
3292 #undef be16
3293 #undef le16
3294 #undef le24
3295}
3296
3297static struct info_10gbt_phy_fw {
3298 unsigned int phy_fw_id; /* PCI Device ID */
3299 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3300 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3301 int phy_flash; /* Has FLASH for PHY Firmware */
3302} phy_info_array[] = {
3303 {
3304 PHY_AQ1202_DEVICEID,
3305 PHY_AQ1202_FIRMWARE,
3306 phy_aq1202_version,
3307 1,
3308 },
3309 {
3310 PHY_BCM84834_DEVICEID,
3311 PHY_BCM84834_FIRMWARE,
3312 NULL,
3313 0,
3314 },
3315 { 0, NULL, NULL },
3316};
3317
3318static struct info_10gbt_phy_fw *find_phy_info(int devid)
3319{
3320 int i;
3321
3322 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3323 if (phy_info_array[i].phy_fw_id == devid)
3324 return &phy_info_array[i];
3325 }
3326 return NULL;
3327}
3328
3329/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3330 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3331 * we return a negative error number. If we transfer new firmware we return 1
3332 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3333 */
3334static int adap_init0_phy(struct adapter *adap)
3335{
3336 const struct firmware *phyf;
3337 int ret;
3338 struct info_10gbt_phy_fw *phy_info;
3339
3340 /* Use the device ID to determine which PHY file to flash.
3341 */
3342 phy_info = find_phy_info(adap->pdev->device);
3343 if (!phy_info) {
3344 dev_warn(adap->pdev_dev,
3345 "No PHY Firmware file found for this PHY\n");
3346 return -EOPNOTSUPP;
3347 }
3348
3349 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3350 * use that. The adapter firmware provides us with a memory buffer
3351 * where we can load a PHY firmware file from the host if we want to
3352 * override the PHY firmware File in flash.
3353 */
3354 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3355 adap->pdev_dev);
3356 if (ret < 0) {
3357 /* For adapters without FLASH attached to PHY for their
3358 * firmware, it's obviously a fatal error if we can't get the
3359 * firmware to the adapter. For adapters with PHY firmware
3360 * FLASH storage, it's worth a warning if we can't find the
3361 * PHY Firmware but we'll neuter the error ...
3362 */
3363 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3364 "/lib/firmware/%s, error %d\n",
3365 phy_info->phy_fw_file, -ret);
3366 if (phy_info->phy_flash) {
3367 int cur_phy_fw_ver = 0;
3368
3369 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3370 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3371 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3372 ret = 0;
3373 }
3374
3375 return ret;
3376 }
3377
3378 /* Load PHY Firmware onto adapter.
3379 */
3380 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3381 phy_info->phy_fw_version,
3382 (u8 *)phyf->data, phyf->size);
3383 if (ret < 0)
3384 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3385 -ret);
3386 else if (ret > 0) {
3387 int new_phy_fw_ver = 0;
3388
3389 if (phy_info->phy_fw_version)
3390 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3391 phyf->size);
3392 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3393 "Firmware /lib/firmware/%s, version %#x\n",
3394 phy_info->phy_fw_file, new_phy_fw_ver);
3395 }
3396
3397 release_firmware(phyf);
3398
3399 return ret;
3400}
3401
636f9d37
VP
3402/*
3403 * Attempt to initialize the adapter via a Firmware Configuration File.
3404 */
3405static int adap_init0_config(struct adapter *adapter, int reset)
3406{
3407 struct fw_caps_config_cmd caps_cmd;
3408 const struct firmware *cf;
3409 unsigned long mtype = 0, maddr = 0;
3410 u32 finiver, finicsum, cfcsum;
16e47624
HS
3411 int ret;
3412 int config_issued = 0;
0a57a536 3413 char *fw_config_file, fw_config_file_path[256];
16e47624 3414 char *config_name = NULL;
636f9d37
VP
3415
3416 /*
3417 * Reset device if necessary.
3418 */
3419 if (reset) {
3420 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3421 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3422 if (ret < 0)
3423 goto bye;
3424 }
3425
01b69614
HS
3426 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3427 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3428 * to be performed after any global adapter RESET above since some
3429 * PHYs only have local RAM copies of the PHY firmware.
3430 */
3431 if (is_10gbt_device(adapter->pdev->device)) {
3432 ret = adap_init0_phy(adapter);
3433 if (ret < 0)
3434 goto bye;
3435 }
636f9d37
VP
3436 /*
3437 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3438 * then use that. Otherwise, use the configuration file stored
3439 * in the adapter flash ...
3440 */
d14807dd 3441 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3442 case CHELSIO_T4:
16e47624 3443 fw_config_file = FW4_CFNAME;
0a57a536
SR
3444 break;
3445 case CHELSIO_T5:
3446 fw_config_file = FW5_CFNAME;
3447 break;
3ccc6cf7
HS
3448 case CHELSIO_T6:
3449 fw_config_file = FW6_CFNAME;
3450 break;
0a57a536
SR
3451 default:
3452 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3453 adapter->pdev->device);
3454 ret = -EINVAL;
3455 goto bye;
3456 }
3457
3458 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3459 if (ret < 0) {
16e47624 3460 config_name = "On FLASH";
636f9d37
VP
3461 mtype = FW_MEMTYPE_CF_FLASH;
3462 maddr = t4_flash_cfg_addr(adapter);
3463 } else {
3464 u32 params[7], val[7];
3465
16e47624
HS
3466 sprintf(fw_config_file_path,
3467 "/lib/firmware/%s", fw_config_file);
3468 config_name = fw_config_file_path;
3469
636f9d37
VP
3470 if (cf->size >= FLASH_CFG_MAX_SIZE)
3471 ret = -ENOMEM;
3472 else {
5167865a
HS
3473 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3474 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37 3475 ret = t4_query_params(adapter, adapter->mbox,
b2612722 3476 adapter->pf, 0, 1, params, val);
636f9d37
VP
3477 if (ret == 0) {
3478 /*
fc5ab020 3479 * For t4_memory_rw() below addresses and
636f9d37
VP
3480 * sizes have to be in terms of multiples of 4
3481 * bytes. So, if the Configuration File isn't
3482 * a multiple of 4 bytes in length we'll have
3483 * to write that out separately since we can't
3484 * guarantee that the bytes following the
3485 * residual byte in the buffer returned by
3486 * request_firmware() are zeroed out ...
3487 */
3488 size_t resid = cf->size & 0x3;
3489 size_t size = cf->size & ~0x3;
3490 __be32 *data = (__be32 *)cf->data;
3491
5167865a
HS
3492 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3493 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3494
fc5ab020
HS
3495 spin_lock(&adapter->win0_lock);
3496 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3497 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3498 if (ret == 0 && resid != 0) {
3499 union {
3500 __be32 word;
3501 char buf[4];
3502 } last;
3503 int i;
3504
3505 last.word = data[size >> 2];
3506 for (i = resid; i < 4; i++)
3507 last.buf[i] = 0;
fc5ab020
HS
3508 ret = t4_memory_rw(adapter, 0, mtype,
3509 maddr + size,
3510 4, &last.word,
3511 T4_MEMORY_WRITE);
636f9d37 3512 }
fc5ab020 3513 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3514 }
3515 }
3516
3517 release_firmware(cf);
3518 if (ret)
3519 goto bye;
3520 }
3521
3522 /*
3523 * Issue a Capability Configuration command to the firmware to get it
3524 * to parse the Configuration File. We don't use t4_fw_config_file()
3525 * because we want the ability to modify various features after we've
3526 * processed the configuration file ...
3527 */
3528 memset(&caps_cmd, 0, sizeof(caps_cmd));
3529 caps_cmd.op_to_write =
e2ac9628
HS
3530 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3531 FW_CMD_REQUEST_F |
3532 FW_CMD_READ_F);
ce91a923 3533 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3534 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3535 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3536 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3537 FW_LEN16(caps_cmd));
3538 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3539 &caps_cmd);
16e47624
HS
3540
3541 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3542 * Configuration File in FLASH), our last gasp effort is to use the
3543 * Firmware Configuration File which is embedded in the firmware. A
3544 * very few early versions of the firmware didn't have one embedded
3545 * but we can ignore those.
3546 */
3547 if (ret == -ENOENT) {
3548 memset(&caps_cmd, 0, sizeof(caps_cmd));
3549 caps_cmd.op_to_write =
e2ac9628
HS
3550 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3551 FW_CMD_REQUEST_F |
3552 FW_CMD_READ_F);
16e47624
HS
3553 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3554 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3555 sizeof(caps_cmd), &caps_cmd);
3556 config_name = "Firmware Default";
3557 }
3558
3559 config_issued = 1;
636f9d37
VP
3560 if (ret < 0)
3561 goto bye;
3562
3563 finiver = ntohl(caps_cmd.finiver);
3564 finicsum = ntohl(caps_cmd.finicsum);
3565 cfcsum = ntohl(caps_cmd.cfcsum);
3566 if (finicsum != cfcsum)
3567 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3568 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3569 finicsum, cfcsum);
3570
636f9d37
VP
3571 /*
3572 * And now tell the firmware to use the configuration we just loaded.
3573 */
3574 caps_cmd.op_to_write =
e2ac9628
HS
3575 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3576 FW_CMD_REQUEST_F |
3577 FW_CMD_WRITE_F);
ce91a923 3578 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3579 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3580 NULL);
3581 if (ret < 0)
3582 goto bye;
3583
3584 /*
3585 * Tweak configuration based on system architecture, module
3586 * parameters, etc.
3587 */
3588 ret = adap_init0_tweaks(adapter);
3589 if (ret < 0)
3590 goto bye;
3591
3592 /*
3593 * And finally tell the firmware to initialize itself using the
3594 * parameters from the Configuration File.
3595 */
3596 ret = t4_fw_initialize(adapter, adapter->mbox);
3597 if (ret < 0)
3598 goto bye;
3599
06640310
HS
3600 /* Emit Firmware Configuration File information and return
3601 * successfully.
636f9d37 3602 */
636f9d37 3603 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3604 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3605 config_name, finiver, cfcsum);
636f9d37
VP
3606 return 0;
3607
3608 /*
3609 * Something bad happened. Return the error ... (If the "error"
3610 * is that there's no Configuration File on the adapter we don't
3611 * want to issue a warning since this is fairly common.)
3612 */
3613bye:
16e47624
HS
3614 if (config_issued && ret != -ENOENT)
3615 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3616 config_name, -ret);
636f9d37
VP
3617 return ret;
3618}
3619
16e47624
HS
3620static struct fw_info fw_info_array[] = {
3621 {
3622 .chip = CHELSIO_T4,
3623 .fs_name = FW4_CFNAME,
3624 .fw_mod_name = FW4_FNAME,
3625 .fw_hdr = {
3626 .chip = FW_HDR_CHIP_T4,
3627 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3628 .intfver_nic = FW_INTFVER(T4, NIC),
3629 .intfver_vnic = FW_INTFVER(T4, VNIC),
3630 .intfver_ri = FW_INTFVER(T4, RI),
3631 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3632 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3633 },
3634 }, {
3635 .chip = CHELSIO_T5,
3636 .fs_name = FW5_CFNAME,
3637 .fw_mod_name = FW5_FNAME,
3638 .fw_hdr = {
3639 .chip = FW_HDR_CHIP_T5,
3640 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3641 .intfver_nic = FW_INTFVER(T5, NIC),
3642 .intfver_vnic = FW_INTFVER(T5, VNIC),
3643 .intfver_ri = FW_INTFVER(T5, RI),
3644 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3645 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3646 },
3ccc6cf7
HS
3647 }, {
3648 .chip = CHELSIO_T6,
3649 .fs_name = FW6_CFNAME,
3650 .fw_mod_name = FW6_FNAME,
3651 .fw_hdr = {
3652 .chip = FW_HDR_CHIP_T6,
3653 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3654 .intfver_nic = FW_INTFVER(T6, NIC),
3655 .intfver_vnic = FW_INTFVER(T6, VNIC),
3656 .intfver_ofld = FW_INTFVER(T6, OFLD),
3657 .intfver_ri = FW_INTFVER(T6, RI),
3658 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3659 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3660 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3661 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3662 },
16e47624 3663 }
3ccc6cf7 3664
16e47624
HS
3665};
3666
3667static struct fw_info *find_fw_info(int chip)
3668{
3669 int i;
3670
3671 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3672 if (fw_info_array[i].chip == chip)
3673 return &fw_info_array[i];
3674 }
3675 return NULL;
3676}
3677
b8ff05a9
DM
3678/*
3679 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3680 */
3681static int adap_init0(struct adapter *adap)
3682{
3683 int ret;
3684 u32 v, port_vec;
3685 enum dev_state state;
3686 u32 params[7], val[7];
9a4da2cd 3687 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3688 int reset = 1;
b8ff05a9 3689
ae469b68
HS
3690 /* Grab Firmware Device Log parameters as early as possible so we have
3691 * access to it for debugging, etc.
3692 */
3693 ret = t4_init_devlog_params(adap);
3694 if (ret < 0)
3695 return ret;
3696
666224d4
HS
3697 /* Contact FW, advertising Master capability */
3698 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
3699 if (ret < 0) {
3700 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3701 ret);
3702 return ret;
3703 }
636f9d37
VP
3704 if (ret == adap->mbox)
3705 adap->flags |= MASTER_PF;
b8ff05a9 3706
636f9d37
VP
3707 /*
3708 * If we're the Master PF Driver and the device is uninitialized,
3709 * then let's consider upgrading the firmware ... (We always want
3710 * to check the firmware version number in order to A. get it for
3711 * later reporting and B. to warn if the currently loaded firmware
3712 * is excessively mismatched relative to the driver.)
3713 */
16e47624
HS
3714 t4_get_fw_version(adap, &adap->params.fw_vers);
3715 t4_get_tp_version(adap, &adap->params.tp_vers);
a69265e9
HS
3716 ret = t4_check_fw_version(adap);
3717 /* If firmware is too old (not supported by driver) force an update. */
21d11bd6 3718 if (ret)
a69265e9 3719 state = DEV_STATE_UNINIT;
636f9d37 3720 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3721 struct fw_info *fw_info;
3722 struct fw_hdr *card_fw;
3723 const struct firmware *fw;
3724 const u8 *fw_data = NULL;
3725 unsigned int fw_size = 0;
3726
3727 /* This is the firmware whose headers the driver was compiled
3728 * against
3729 */
3730 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3731 if (fw_info == NULL) {
3732 dev_err(adap->pdev_dev,
3733 "unable to get firmware info for chip %d.\n",
3734 CHELSIO_CHIP_VERSION(adap->params.chip));
3735 return -EINVAL;
636f9d37 3736 }
16e47624
HS
3737
3738 /* allocate memory to read the header of the firmware on the
3739 * card
3740 */
3741 card_fw = t4_alloc_mem(sizeof(*card_fw));
3742
3743 /* Get FW from from /lib/firmware/ */
3744 ret = request_firmware(&fw, fw_info->fw_mod_name,
3745 adap->pdev_dev);
3746 if (ret < 0) {
3747 dev_err(adap->pdev_dev,
3748 "unable to load firmware image %s, error %d\n",
3749 fw_info->fw_mod_name, ret);
3750 } else {
3751 fw_data = fw->data;
3752 fw_size = fw->size;
3753 }
3754
3755 /* upgrade FW logic */
3756 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3757 state, &reset);
3758
3759 /* Cleaning up */
0b5b6bee 3760 release_firmware(fw);
16e47624
HS
3761 t4_free_mem(card_fw);
3762
636f9d37 3763 if (ret < 0)
16e47624 3764 goto bye;
636f9d37 3765 }
b8ff05a9 3766
636f9d37
VP
3767 /*
3768 * Grab VPD parameters. This should be done after we establish a
3769 * connection to the firmware since some of the VPD parameters
3770 * (notably the Core Clock frequency) are retrieved via requests to
3771 * the firmware. On the other hand, we need these fairly early on
3772 * so we do this right after getting ahold of the firmware.
3773 */
098ef6c2 3774 ret = t4_get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3775 if (ret < 0)
3776 goto bye;
a0881cab 3777
636f9d37 3778 /*
13ee15d3
VP
3779 * Find out what ports are available to us. Note that we need to do
3780 * this before calling adap_init0_no_config() since it needs nports
3781 * and portvec ...
636f9d37
VP
3782 */
3783 v =
5167865a
HS
3784 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3785 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
b2612722 3786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
a0881cab
DM
3787 if (ret < 0)
3788 goto bye;
3789
636f9d37
VP
3790 adap->params.nports = hweight32(port_vec);
3791 adap->params.portvec = port_vec;
3792
06640310
HS
3793 /* If the firmware is initialized already, emit a simply note to that
3794 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3795 */
3796 if (state == DEV_STATE_INIT) {
3797 dev_info(adap->pdev_dev, "Coming up as %s: "\
3798 "Adapter already initialized\n",
3799 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3800 } else {
3801 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3802 "Initializing adapter\n");
06640310
HS
3803
3804 /* Find out whether we're dealing with a version of the
3805 * firmware which has configuration file support.
636f9d37 3806 */
06640310
HS
3807 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3808 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
b2612722 3809 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
06640310 3810 params, val);
13ee15d3 3811
06640310
HS
3812 /* If the firmware doesn't support Configuration Files,
3813 * return an error.
3814 */
3815 if (ret < 0) {
3816 dev_err(adap->pdev_dev, "firmware doesn't support "
3817 "Firmware Configuration Files\n");
3818 goto bye;
3819 }
3820
3821 /* The firmware provides us with a memory buffer where we can
3822 * load a Configuration File from the host if we want to
3823 * override the Configuration File in flash.
3824 */
3825 ret = adap_init0_config(adap, reset);
3826 if (ret == -ENOENT) {
3827 dev_err(adap->pdev_dev, "no Configuration File "
3828 "present on adapter.\n");
3829 goto bye;
636f9d37
VP
3830 }
3831 if (ret < 0) {
06640310
HS
3832 dev_err(adap->pdev_dev, "could not initialize "
3833 "adapter, error %d\n", -ret);
636f9d37
VP
3834 goto bye;
3835 }
3836 }
3837
06640310
HS
3838 /* Give the SGE code a chance to pull in anything that it needs ...
3839 * Note that this must be called after we retrieve our VPD parameters
3840 * in order to know how to convert core ticks to seconds, etc.
636f9d37 3841 */
06640310
HS
3842 ret = t4_sge_init(adap);
3843 if (ret < 0)
3844 goto bye;
636f9d37 3845
9a4da2cd
VP
3846 if (is_bypass_device(adap->pdev->device))
3847 adap->params.bypass = 1;
3848
636f9d37
VP
3849 /*
3850 * Grab some of our basic fundamental operating parameters.
3851 */
3852#define FW_PARAM_DEV(param) \
5167865a
HS
3853 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3854 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 3855
b8ff05a9 3856#define FW_PARAM_PFVF(param) \
5167865a
HS
3857 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3858 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3859 FW_PARAMS_PARAM_Y_V(0) | \
3860 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 3861
636f9d37 3862 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
3863 params[1] = FW_PARAM_PFVF(L2T_START);
3864 params[2] = FW_PARAM_PFVF(L2T_END);
3865 params[3] = FW_PARAM_PFVF(FILTER_START);
3866 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 3867 params[5] = FW_PARAM_PFVF(IQFLINT_START);
b2612722 3868 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
b8ff05a9
DM
3869 if (ret < 0)
3870 goto bye;
636f9d37
VP
3871 adap->sge.egr_start = val[0];
3872 adap->l2t_start = val[1];
3873 adap->l2t_end = val[2];
b8ff05a9
DM
3874 adap->tids.ftid_base = val[3];
3875 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 3876 adap->sge.ingr_start = val[5];
b8ff05a9 3877
4b8e27a8
HS
3878 /* qids (ingress/egress) returned from firmware can be anywhere
3879 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3880 * Hence driver needs to allocate memory for this range to
3881 * store the queue info. Get the highest IQFLINT/EQ index returned
3882 * in FW_EQ_*_CMD.alloc command.
3883 */
3884 params[0] = FW_PARAM_PFVF(EQ_END);
3885 params[1] = FW_PARAM_PFVF(IQFLINT_END);
b2612722 3886 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4b8e27a8
HS
3887 if (ret < 0)
3888 goto bye;
3889 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3890 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3891
3892 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3893 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3894 if (!adap->sge.egr_map) {
3895 ret = -ENOMEM;
3896 goto bye;
3897 }
3898
3899 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3900 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3901 if (!adap->sge.ingr_map) {
3902 ret = -ENOMEM;
3903 goto bye;
3904 }
3905
3906 /* Allocate the memory for the vaious egress queue bitmaps
5b377d11 3907 * ie starving_fl, txq_maperr and blocked_fl.
4b8e27a8
HS
3908 */
3909 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3910 sizeof(long), GFP_KERNEL);
3911 if (!adap->sge.starving_fl) {
3912 ret = -ENOMEM;
3913 goto bye;
3914 }
3915
3916 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3917 sizeof(long), GFP_KERNEL);
3918 if (!adap->sge.txq_maperr) {
3919 ret = -ENOMEM;
3920 goto bye;
3921 }
3922
5b377d11
HS
3923#ifdef CONFIG_DEBUG_FS
3924 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3925 sizeof(long), GFP_KERNEL);
3926 if (!adap->sge.blocked_fl) {
3927 ret = -ENOMEM;
3928 goto bye;
3929 }
3930#endif
3931
b5a02f50
AB
3932 params[0] = FW_PARAM_PFVF(CLIP_START);
3933 params[1] = FW_PARAM_PFVF(CLIP_END);
b2612722 3934 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
b5a02f50
AB
3935 if (ret < 0)
3936 goto bye;
3937 adap->clipt_start = val[0];
3938 adap->clipt_end = val[1];
3939
636f9d37
VP
3940 /* query params related to active filter region */
3941 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3942 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
b2612722 3943 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
636f9d37
VP
3944 /* If Active filter size is set we enable establishing
3945 * offload connection through firmware work request
3946 */
3947 if ((val[0] != val[1]) && (ret >= 0)) {
3948 adap->flags |= FW_OFLD_CONN;
3949 adap->tids.aftid_base = val[0];
3950 adap->tids.aftid_end = val[1];
3951 }
3952
b407a4a9
VP
3953 /* If we're running on newer firmware, let it know that we're
3954 * prepared to deal with encapsulated CPL messages. Older
3955 * firmware won't understand this and we'll just get
3956 * unencapsulated messages ...
3957 */
3958 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3959 val[0] = 1;
b2612722 3960 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
b407a4a9 3961
1ac0f095
KS
3962 /*
3963 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3964 * capability. Earlier versions of the firmware didn't have the
3965 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3966 * permission to use ULPTX MEMWRITE DSGL.
3967 */
3968 if (is_t4(adap->params.chip)) {
3969 adap->params.ulptx_memwrite_dsgl = false;
3970 } else {
3971 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
b2612722 3972 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1ac0f095
KS
3973 1, params, val);
3974 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3975 }
3976
636f9d37
VP
3977 /*
3978 * Get device capabilities so we can determine what resources we need
3979 * to manage.
3980 */
3981 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
3982 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3983 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3984 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3985 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3986 &caps_cmd);
3987 if (ret < 0)
3988 goto bye;
3989
13ee15d3 3990 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
3991 /* query offload-related parameters */
3992 params[0] = FW_PARAM_DEV(NTID);
3993 params[1] = FW_PARAM_PFVF(SERVER_START);
3994 params[2] = FW_PARAM_PFVF(SERVER_END);
3995 params[3] = FW_PARAM_PFVF(TDDP_START);
3996 params[4] = FW_PARAM_PFVF(TDDP_END);
3997 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
b2612722 3998 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 3999 params, val);
b8ff05a9
DM
4000 if (ret < 0)
4001 goto bye;
4002 adap->tids.ntids = val[0];
4003 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4004 adap->tids.stid_base = val[1];
4005 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 4006 /*
dbedd44e 4007 * Setup server filter region. Divide the available filter
636f9d37
VP
4008 * region into two parts. Regular filters get 1/3rd and server
4009 * filters get 2/3rd part. This is only enabled if workarond
4010 * path is enabled.
4011 * 1. For regular filters.
4012 * 2. Server filter: This are special filters which are used
4013 * to redirect SYN packets to offload queue.
4014 */
4015 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4016 adap->tids.sftid_base = adap->tids.ftid_base +
4017 DIV_ROUND_UP(adap->tids.nftids, 3);
4018 adap->tids.nsftids = adap->tids.nftids -
4019 DIV_ROUND_UP(adap->tids.nftids, 3);
4020 adap->tids.nftids = adap->tids.sftid_base -
4021 adap->tids.ftid_base;
4022 }
b8ff05a9
DM
4023 adap->vres.ddp.start = val[3];
4024 adap->vres.ddp.size = val[4] - val[3] + 1;
4025 adap->params.ofldq_wr_cred = val[5];
636f9d37 4026
b8ff05a9
DM
4027 adap->params.offload = 1;
4028 }
636f9d37 4029 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
4030 params[0] = FW_PARAM_PFVF(STAG_START);
4031 params[1] = FW_PARAM_PFVF(STAG_END);
4032 params[2] = FW_PARAM_PFVF(RQ_START);
4033 params[3] = FW_PARAM_PFVF(RQ_END);
4034 params[4] = FW_PARAM_PFVF(PBL_START);
4035 params[5] = FW_PARAM_PFVF(PBL_END);
b2612722 4036 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 4037 params, val);
b8ff05a9
DM
4038 if (ret < 0)
4039 goto bye;
4040 adap->vres.stag.start = val[0];
4041 adap->vres.stag.size = val[1] - val[0] + 1;
4042 adap->vres.rq.start = val[2];
4043 adap->vres.rq.size = val[3] - val[2] + 1;
4044 adap->vres.pbl.start = val[4];
4045 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
4046
4047 params[0] = FW_PARAM_PFVF(SQRQ_START);
4048 params[1] = FW_PARAM_PFVF(SQRQ_END);
4049 params[2] = FW_PARAM_PFVF(CQ_START);
4050 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
4051 params[4] = FW_PARAM_PFVF(OCQ_START);
4052 params[5] = FW_PARAM_PFVF(OCQ_END);
b2612722 4053 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5c937dd3 4054 val);
a0881cab
DM
4055 if (ret < 0)
4056 goto bye;
4057 adap->vres.qp.start = val[0];
4058 adap->vres.qp.size = val[1] - val[0] + 1;
4059 adap->vres.cq.start = val[2];
4060 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
4061 adap->vres.ocq.start = val[4];
4062 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
4063
4064 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4065 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
b2612722 4066 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5c937dd3 4067 val);
4c2c5763
HS
4068 if (ret < 0) {
4069 adap->params.max_ordird_qp = 8;
4070 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4071 ret = 0;
4072 } else {
4073 adap->params.max_ordird_qp = val[0];
4074 adap->params.max_ird_adapter = val[1];
4075 }
4076 dev_info(adap->pdev_dev,
4077 "max_ordird_qp %d max_ird_adapter %d\n",
4078 adap->params.max_ordird_qp,
4079 adap->params.max_ird_adapter);
b8ff05a9 4080 }
636f9d37 4081 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
4082 params[0] = FW_PARAM_PFVF(ISCSI_START);
4083 params[1] = FW_PARAM_PFVF(ISCSI_END);
b2612722 4084 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
636f9d37 4085 params, val);
b8ff05a9
DM
4086 if (ret < 0)
4087 goto bye;
4088 adap->vres.iscsi.start = val[0];
4089 adap->vres.iscsi.size = val[1] - val[0] + 1;
4090 }
4091#undef FW_PARAM_PFVF
4092#undef FW_PARAM_DEV
4093
92e7ae71
HS
4094 /* The MTU/MSS Table is initialized by now, so load their values. If
4095 * we're initializing the adapter, then we'll make any modifications
4096 * we want to the MTU/MSS Table and also initialize the congestion
4097 * parameters.
636f9d37 4098 */
b8ff05a9 4099 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
4100 if (state != DEV_STATE_INIT) {
4101 int i;
4102
4103 /* The default MTU Table contains values 1492 and 1500.
4104 * However, for TCP, it's better to have two values which are
4105 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4106 * This allows us to have a TCP Data Payload which is a
4107 * multiple of 8 regardless of what combination of TCP Options
4108 * are in use (always a multiple of 4 bytes) which is
4109 * important for performance reasons. For instance, if no
4110 * options are in use, then we have a 20-byte IP header and a
4111 * 20-byte TCP header. In this case, a 1500-byte MSS would
4112 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4113 * which is not a multiple of 8. So using an MSS of 1488 in
4114 * this case results in a TCP Data Payload of 1448 bytes which
4115 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4116 * Stamps have been negotiated, then an MTU of 1500 bytes
4117 * results in a TCP Data Payload of 1448 bytes which, as
4118 * above, is a multiple of 8 bytes ...
4119 */
4120 for (i = 0; i < NMTUS; i++)
4121 if (adap->params.mtus[i] == 1492) {
4122 adap->params.mtus[i] = 1488;
4123 break;
4124 }
7ee9ff94 4125
92e7ae71
HS
4126 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4127 adap->params.b_wnd);
4128 }
df64e4d3 4129 t4_init_sge_params(adap);
636f9d37 4130 adap->flags |= FW_OK;
c1e9af0c 4131 t4_init_tp_params(adap);
b8ff05a9
DM
4132 return 0;
4133
4134 /*
636f9d37
VP
4135 * Something bad happened. If a command timed out or failed with EIO
4136 * FW does not operate within its spec or something catastrophic
4137 * happened to HW/FW, stop issuing commands.
b8ff05a9 4138 */
636f9d37 4139bye:
4b8e27a8
HS
4140 kfree(adap->sge.egr_map);
4141 kfree(adap->sge.ingr_map);
4142 kfree(adap->sge.starving_fl);
4143 kfree(adap->sge.txq_maperr);
5b377d11
HS
4144#ifdef CONFIG_DEBUG_FS
4145 kfree(adap->sge.blocked_fl);
4146#endif
636f9d37
VP
4147 if (ret != -ETIMEDOUT && ret != -EIO)
4148 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
4149 return ret;
4150}
4151
204dc3c0
DM
4152/* EEH callbacks */
4153
4154static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4155 pci_channel_state_t state)
4156{
4157 int i;
4158 struct adapter *adap = pci_get_drvdata(pdev);
4159
4160 if (!adap)
4161 goto out;
4162
4163 rtnl_lock();
4164 adap->flags &= ~FW_OK;
4165 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 4166 spin_lock(&adap->stats_lock);
204dc3c0
DM
4167 for_each_port(adap, i) {
4168 struct net_device *dev = adap->port[i];
4169
4170 netif_device_detach(dev);
4171 netif_carrier_off(dev);
4172 }
9fe6cb58 4173 spin_unlock(&adap->stats_lock);
b37987e8 4174 disable_interrupts(adap);
204dc3c0
DM
4175 if (adap->flags & FULL_INIT_DONE)
4176 cxgb_down(adap);
4177 rtnl_unlock();
144be3d9
GS
4178 if ((adap->flags & DEV_ENABLED)) {
4179 pci_disable_device(pdev);
4180 adap->flags &= ~DEV_ENABLED;
4181 }
204dc3c0
DM
4182out: return state == pci_channel_io_perm_failure ?
4183 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4184}
4185
4186static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4187{
4188 int i, ret;
4189 struct fw_caps_config_cmd c;
4190 struct adapter *adap = pci_get_drvdata(pdev);
4191
4192 if (!adap) {
4193 pci_restore_state(pdev);
4194 pci_save_state(pdev);
4195 return PCI_ERS_RESULT_RECOVERED;
4196 }
4197
144be3d9
GS
4198 if (!(adap->flags & DEV_ENABLED)) {
4199 if (pci_enable_device(pdev)) {
4200 dev_err(&pdev->dev, "Cannot reenable PCI "
4201 "device after reset\n");
4202 return PCI_ERS_RESULT_DISCONNECT;
4203 }
4204 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4205 }
4206
4207 pci_set_master(pdev);
4208 pci_restore_state(pdev);
4209 pci_save_state(pdev);
4210 pci_cleanup_aer_uncorrect_error_status(pdev);
4211
8203b509 4212 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4213 return PCI_ERS_RESULT_DISCONNECT;
b2612722 4214 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4215 return PCI_ERS_RESULT_DISCONNECT;
4216 adap->flags |= FW_OK;
4217 if (adap_init1(adap, &c))
4218 return PCI_ERS_RESULT_DISCONNECT;
4219
4220 for_each_port(adap, i) {
4221 struct port_info *p = adap2pinfo(adap, i);
4222
b2612722 4223 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
060e0c75 4224 NULL, NULL);
204dc3c0
DM
4225 if (ret < 0)
4226 return PCI_ERS_RESULT_DISCONNECT;
4227 p->viid = ret;
4228 p->xact_addr_filt = -1;
4229 }
4230
4231 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4232 adap->params.b_wnd);
1ae970e0 4233 setup_memwin(adap);
204dc3c0
DM
4234 if (cxgb_up(adap))
4235 return PCI_ERS_RESULT_DISCONNECT;
4236 return PCI_ERS_RESULT_RECOVERED;
4237}
4238
4239static void eeh_resume(struct pci_dev *pdev)
4240{
4241 int i;
4242 struct adapter *adap = pci_get_drvdata(pdev);
4243
4244 if (!adap)
4245 return;
4246
4247 rtnl_lock();
4248 for_each_port(adap, i) {
4249 struct net_device *dev = adap->port[i];
4250
4251 if (netif_running(dev)) {
4252 link_start(dev);
4253 cxgb_set_rxmode(dev);
4254 }
4255 netif_device_attach(dev);
4256 }
4257 rtnl_unlock();
4258}
4259
3646f0e5 4260static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4261 .error_detected = eeh_err_detected,
4262 .slot_reset = eeh_slot_reset,
4263 .resume = eeh_resume,
4264};
4265
57d8b764 4266static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4267{
57d8b764
KS
4268 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4269 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4270}
4271
c887ad0e
HS
4272static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4273 unsigned int us, unsigned int cnt,
b8ff05a9
DM
4274 unsigned int size, unsigned int iqe_size)
4275{
c887ad0e 4276 q->adap = adap;
812034f1 4277 cxgb4_set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
4278 q->iqe_len = iqe_size;
4279 q->size = size;
4280}
4281
4282/*
4283 * Perform default configuration of DMA queues depending on the number and type
4284 * of ports we found and the number of available CPUs. Most settings can be
4285 * modified by the admin prior to actual use.
4286 */
91744948 4287static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4288{
4289 struct sge *s = &adap->sge;
688848b1
AB
4290 int i, n10g = 0, qidx = 0;
4291#ifndef CONFIG_CHELSIO_T4_DCB
4292 int q10g = 0;
4293#endif
cf38be6d 4294 int ciq_size;
b8ff05a9
DM
4295
4296 for_each_port(adap, i)
57d8b764 4297 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4298#ifdef CONFIG_CHELSIO_T4_DCB
4299 /* For Data Center Bridging support we need to be able to support up
4300 * to 8 Traffic Priorities; each of which will be assigned to its
4301 * own TX Queue in order to prevent Head-Of-Line Blocking.
4302 */
4303 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4304 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4305 MAX_ETH_QSETS, adap->params.nports * 8);
4306 BUG_ON(1);
4307 }
b8ff05a9 4308
688848b1
AB
4309 for_each_port(adap, i) {
4310 struct port_info *pi = adap2pinfo(adap, i);
4311
4312 pi->first_qset = qidx;
4313 pi->nqsets = 8;
4314 qidx += pi->nqsets;
4315 }
4316#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4317 /*
4318 * We default to 1 queue per non-10G port and up to # of cores queues
4319 * per 10G port.
4320 */
4321 if (n10g)
4322 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4323 if (q10g > netif_get_num_default_rss_queues())
4324 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4325
4326 for_each_port(adap, i) {
4327 struct port_info *pi = adap2pinfo(adap, i);
4328
4329 pi->first_qset = qidx;
57d8b764 4330 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4331 qidx += pi->nqsets;
4332 }
688848b1 4333#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4334
4335 s->ethqsets = qidx;
4336 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4337
4338 if (is_offload(adap)) {
4339 /*
4340 * For offload we use 1 queue/channel if all ports are up to 1G,
4341 * otherwise we divide all available queues amongst the channels
4342 * capped by the number of available cores.
4343 */
4344 if (n10g) {
4345 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4346 num_online_cpus());
4347 s->ofldqsets = roundup(i, adap->params.nports);
4348 } else
4349 s->ofldqsets = adap->params.nports;
4350 /* For RDMA one Rx queue per channel suffices */
4351 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4352 /* Try and allow at least 1 CIQ per cpu rounding down
4353 * to the number of ports, with a minimum of 1 per port.
4354 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4355 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4356 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4357 */
4358 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4359 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4360 adap->params.nports;
4361 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
b8ff05a9
DM
4362 }
4363
4364 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4365 struct sge_eth_rxq *r = &s->ethrxq[i];
4366
c887ad0e 4367 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4368 r->fl.size = 72;
4369 }
4370
4371 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4372 s->ethtxq[i].q.size = 1024;
4373
4374 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4375 s->ctrlq[i].q.size = 512;
4376
4377 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4378 s->ofldtxq[i].q.size = 1024;
4379
4380 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4381 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4382
c887ad0e 4383 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4384 r->rspq.uld = CXGB4_ULD_ISCSI;
4385 r->fl.size = 72;
4386 }
4387
4388 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4389 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4390
c887ad0e 4391 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4392 r->rspq.uld = CXGB4_ULD_RDMA;
4393 r->fl.size = 72;
4394 }
4395
cf38be6d
HS
4396 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4397 if (ciq_size > SGE_MAX_IQ_SIZE) {
4398 CH_WARN(adap, "CIQ size too small for available IQs\n");
4399 ciq_size = SGE_MAX_IQ_SIZE;
4400 }
4401
4402 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4403 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4404
c887ad0e 4405 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4406 r->rspq.uld = CXGB4_ULD_RDMA;
4407 }
4408
c887ad0e
HS
4409 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4410 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4411}
4412
4413/*
4414 * Reduce the number of Ethernet queues across all ports to at most n.
4415 * n provides at least one queue per port.
4416 */
91744948 4417static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4418{
4419 int i;
4420 struct port_info *pi;
4421
4422 while (n < adap->sge.ethqsets)
4423 for_each_port(adap, i) {
4424 pi = adap2pinfo(adap, i);
4425 if (pi->nqsets > 1) {
4426 pi->nqsets--;
4427 adap->sge.ethqsets--;
4428 if (adap->sge.ethqsets <= n)
4429 break;
4430 }
4431 }
4432
4433 n = 0;
4434 for_each_port(adap, i) {
4435 pi = adap2pinfo(adap, i);
4436 pi->first_qset = n;
4437 n += pi->nqsets;
4438 }
4439}
4440
4441/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4442#define EXTRA_VECS 2
4443
91744948 4444static int enable_msix(struct adapter *adap)
b8ff05a9
DM
4445{
4446 int ofld_need = 0;
f36e58e5 4447 int i, want, need, allocated;
b8ff05a9
DM
4448 struct sge *s = &adap->sge;
4449 unsigned int nchan = adap->params.nports;
f36e58e5
HS
4450 struct msix_entry *entries;
4451
4452 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4453 GFP_KERNEL);
4454 if (!entries)
4455 return -ENOMEM;
b8ff05a9 4456
f36e58e5 4457 for (i = 0; i < MAX_INGQ + 1; ++i)
b8ff05a9
DM
4458 entries[i].entry = i;
4459
4460 want = s->max_ethqsets + EXTRA_VECS;
4461 if (is_offload(adap)) {
cf38be6d 4462 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 4463 /* need nchan for each possible ULD */
cf38be6d 4464 ofld_need = 3 * nchan;
b8ff05a9 4465 }
688848b1
AB
4466#ifdef CONFIG_CHELSIO_T4_DCB
4467 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4468 * each port.
4469 */
4470 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4471#else
b8ff05a9 4472 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 4473#endif
f36e58e5
HS
4474 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4475 if (allocated < 0) {
4476 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4477 " not using MSI-X\n");
4478 kfree(entries);
4479 return allocated;
4480 }
b8ff05a9 4481
f36e58e5 4482 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4483 * Every group gets its minimum requirement and NIC gets top
4484 * priority for leftovers.
4485 */
f36e58e5 4486 i = allocated - EXTRA_VECS - ofld_need;
c32ad224
AG
4487 if (i < s->max_ethqsets) {
4488 s->max_ethqsets = i;
4489 if (i < s->ethqsets)
4490 reduce_ethqs(adap, i);
4491 }
4492 if (is_offload(adap)) {
f36e58e5
HS
4493 if (allocated < want) {
4494 s->rdmaqs = nchan;
4495 s->rdmaciqs = nchan;
4496 }
4497
4498 /* leftovers go to OFLD */
4499 i = allocated - EXTRA_VECS - s->max_ethqsets -
4500 s->rdmaqs - s->rdmaciqs;
c32ad224
AG
4501 s->ofldqsets = (i / nchan) * nchan; /* round down */
4502 }
f36e58e5 4503 for (i = 0; i < allocated; ++i)
c32ad224 4504 adap->msix_info[i].vec = entries[i].vector;
43eb4e82
HS
4505 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4506 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4507 allocated, s->max_ethqsets, s->ofldqsets, s->rdmaqs,
4508 s->rdmaciqs);
c32ad224 4509
f36e58e5 4510 kfree(entries);
c32ad224 4511 return 0;
b8ff05a9
DM
4512}
4513
4514#undef EXTRA_VECS
4515
91744948 4516static int init_rss(struct adapter *adap)
671b0060 4517{
c035e183
HS
4518 unsigned int i;
4519 int err;
4520
4521 err = t4_init_rss_mode(adap, adap->mbox);
4522 if (err)
4523 return err;
671b0060
DM
4524
4525 for_each_port(adap, i) {
4526 struct port_info *pi = adap2pinfo(adap, i);
4527
4528 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4529 if (!pi->rss)
4530 return -ENOMEM;
671b0060
DM
4531 }
4532 return 0;
4533}
4534
547fd272
HS
4535static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4536 enum pci_bus_speed *speed,
4537 enum pcie_link_width *width)
4538{
4539 u32 lnkcap1, lnkcap2;
4540 int err1, err2;
4541
4542#define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4543
4544 *speed = PCI_SPEED_UNKNOWN;
4545 *width = PCIE_LNK_WIDTH_UNKNOWN;
4546
4547 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4548 &lnkcap1);
4549 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4550 &lnkcap2);
4551 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4552 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4553 *speed = PCIE_SPEED_8_0GT;
4554 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4555 *speed = PCIE_SPEED_5_0GT;
4556 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4557 *speed = PCIE_SPEED_2_5GT;
4558 }
4559 if (!err1) {
4560 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4561 if (!lnkcap2) { /* pre-r3.0 */
4562 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4563 *speed = PCIE_SPEED_5_0GT;
4564 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4565 *speed = PCIE_SPEED_2_5GT;
4566 }
4567 }
4568
4569 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4570 return err1 ? err1 : err2 ? err2 : -EINVAL;
4571 return 0;
4572}
4573
4574static void cxgb4_check_pcie_caps(struct adapter *adap)
4575{
4576 enum pcie_link_width width, width_cap;
4577 enum pci_bus_speed speed, speed_cap;
4578
4579#define PCIE_SPEED_STR(speed) \
4580 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4581 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4582 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4583 "Unknown")
4584
4585 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4586 dev_warn(adap->pdev_dev,
4587 "Unable to determine PCIe device BW capabilities\n");
4588 return;
4589 }
4590
4591 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4592 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4593 dev_warn(adap->pdev_dev,
4594 "Unable to determine PCI Express bandwidth.\n");
4595 return;
4596 }
4597
4598 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4599 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4600 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4601 width, width_cap);
4602 if (speed < speed_cap || width < width_cap)
4603 dev_info(adap->pdev_dev,
4604 "A slot with more lanes and/or higher speed is "
4605 "suggested for optimal performance.\n");
4606}
4607
91744948 4608static void print_port_info(const struct net_device *dev)
b8ff05a9 4609{
b8ff05a9 4610 char buf[80];
118969ed 4611 char *bufp = buf;
f1a051b9 4612 const char *spd = "";
118969ed
DM
4613 const struct port_info *pi = netdev_priv(dev);
4614 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4615
4616 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4617 spd = " 2.5 GT/s";
4618 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4619 spd = " 5 GT/s";
d2e752db
RD
4620 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4621 spd = " 8 GT/s";
b8ff05a9 4622
118969ed
DM
4623 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4624 bufp += sprintf(bufp, "100/");
4625 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4626 bufp += sprintf(bufp, "1000/");
4627 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4628 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4629 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4630 bufp += sprintf(bufp, "40G/");
118969ed
DM
4631 if (bufp != buf)
4632 --bufp;
72aca4bf 4633 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed 4634
547fd272 4635 netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
0a57a536 4636 adap->params.vpd.id,
d14807dd 4637 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
547fd272 4638 is_offload(adap) ? "R" : "",
118969ed
DM
4639 (adap->flags & USING_MSIX) ? " MSI-X" :
4640 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
4641 netdev_info(dev, "S/N: %s, P/N: %s\n",
4642 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
4643}
4644
91744948 4645static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4646{
e5c8ae5f 4647 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4648}
4649
06546391
DM
4650/*
4651 * Free the following resources:
4652 * - memory used for tables
4653 * - MSI/MSI-X
4654 * - net devices
4655 * - resources FW is holding for us
4656 */
4657static void free_some_resources(struct adapter *adapter)
4658{
4659 unsigned int i;
4660
4661 t4_free_mem(adapter->l2t);
4662 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4663 kfree(adapter->sge.egr_map);
4664 kfree(adapter->sge.ingr_map);
4665 kfree(adapter->sge.starving_fl);
4666 kfree(adapter->sge.txq_maperr);
5b377d11
HS
4667#ifdef CONFIG_DEBUG_FS
4668 kfree(adapter->sge.blocked_fl);
4669#endif
06546391
DM
4670 disable_msi(adapter);
4671
4672 for_each_port(adapter, i)
671b0060 4673 if (adapter->port[i]) {
4f3a0fcf
HS
4674 struct port_info *pi = adap2pinfo(adapter, i);
4675
4676 if (pi->viid != 0)
4677 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4678 0, pi->viid);
671b0060 4679 kfree(adap2pinfo(adapter, i)->rss);
06546391 4680 free_netdev(adapter->port[i]);
671b0060 4681 }
06546391 4682 if (adapter->flags & FW_OK)
b2612722 4683 t4_fw_bye(adapter, adapter->pf);
06546391
DM
4684}
4685
2ed28baa 4686#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 4687#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 4688 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 4689#define SEGMENT_SIZE 128
b8ff05a9 4690
d86bd29e
HS
4691static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4692{
d86bd29e
HS
4693 u16 device_id;
4694
4695 /* Retrieve adapter's device ID */
4696 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
46cdc9be 4697
4698 switch (device_id >> 12) {
d86bd29e 4699 case CHELSIO_T4:
46cdc9be 4700 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
d86bd29e 4701 case CHELSIO_T5:
46cdc9be 4702 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
d86bd29e 4703 case CHELSIO_T6:
46cdc9be 4704 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
d86bd29e
HS
4705 default:
4706 dev_err(&pdev->dev, "Device %d is not supported\n",
4707 device_id);
d86bd29e 4708 }
46cdc9be 4709 return -EINVAL;
d86bd29e
HS
4710}
4711
1dd06ae8 4712static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 4713{
22adfe0a 4714 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 4715 struct port_info *pi;
c8f44aff 4716 bool highdma = false;
b8ff05a9 4717 struct adapter *adapter = NULL;
d6ce2628 4718 void __iomem *regs;
d86bd29e
HS
4719 u32 whoami, pl_rev;
4720 enum chip_type chip;
b8ff05a9
DM
4721
4722 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4723
4724 err = pci_request_regions(pdev, KBUILD_MODNAME);
4725 if (err) {
4726 /* Just info, some other driver may have claimed the device. */
4727 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4728 return err;
4729 }
4730
b8ff05a9
DM
4731 err = pci_enable_device(pdev);
4732 if (err) {
4733 dev_err(&pdev->dev, "cannot enable PCI device\n");
4734 goto out_release_regions;
4735 }
4736
d6ce2628
HS
4737 regs = pci_ioremap_bar(pdev, 0);
4738 if (!regs) {
4739 dev_err(&pdev->dev, "cannot map device registers\n");
4740 err = -ENOMEM;
4741 goto out_disable_device;
4742 }
4743
8203b509
HS
4744 err = t4_wait_dev_ready(regs);
4745 if (err < 0)
4746 goto out_unmap_bar0;
4747
d6ce2628 4748 /* We control everything through one PF */
d86bd29e
HS
4749 whoami = readl(regs + PL_WHOAMI_A);
4750 pl_rev = REV_G(readl(regs + PL_REV_A));
4751 chip = get_chip_type(pdev, pl_rev);
4752 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4753 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
d6ce2628
HS
4754 if (func != ent->driver_data) {
4755 iounmap(regs);
4756 pci_disable_device(pdev);
4757 pci_save_state(pdev); /* to restore SR-IOV later */
4758 goto sriov;
4759 }
4760
b8ff05a9 4761 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 4762 highdma = true;
b8ff05a9
DM
4763 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4764 if (err) {
4765 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4766 "coherent allocations\n");
d6ce2628 4767 goto out_unmap_bar0;
b8ff05a9
DM
4768 }
4769 } else {
4770 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4771 if (err) {
4772 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 4773 goto out_unmap_bar0;
b8ff05a9
DM
4774 }
4775 }
4776
4777 pci_enable_pcie_error_reporting(pdev);
ef306b50 4778 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
4779 pci_set_master(pdev);
4780 pci_save_state(pdev);
4781
4782 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4783 if (!adapter) {
4784 err = -ENOMEM;
d6ce2628 4785 goto out_unmap_bar0;
b8ff05a9
DM
4786 }
4787
29aaee65
AB
4788 adapter->workq = create_singlethread_workqueue("cxgb4");
4789 if (!adapter->workq) {
4790 err = -ENOMEM;
4791 goto out_free_adapter;
4792 }
4793
144be3d9
GS
4794 /* PCI device has been enabled */
4795 adapter->flags |= DEV_ENABLED;
4796
d6ce2628 4797 adapter->regs = regs;
b8ff05a9
DM
4798 adapter->pdev = pdev;
4799 adapter->pdev_dev = &pdev->dev;
3069ee9b 4800 adapter->mbox = func;
b2612722 4801 adapter->pf = func;
b8ff05a9
DM
4802 adapter->msg_enable = dflt_msg_enable;
4803 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4804
4805 spin_lock_init(&adapter->stats_lock);
4806 spin_lock_init(&adapter->tid_release_lock);
e327c225 4807 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
4808
4809 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
4810 INIT_WORK(&adapter->db_full_task, process_db_full);
4811 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
4812
4813 err = t4_prep_adapter(adapter);
4814 if (err)
d6ce2628
HS
4815 goto out_free_adapter;
4816
22adfe0a 4817
d14807dd 4818 if (!is_t4(adapter->params.chip)) {
f612b815
HS
4819 s_qpp = (QUEUESPERPAGEPF0_S +
4820 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
b2612722 4821 adapter->pf);
f612b815
HS
4822 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4823 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
4824 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4825
4826 /* Each segment size is 128B. Write coalescing is enabled only
4827 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4828 * queue is less no of segments that can be accommodated in
4829 * a page size.
4830 */
4831 if (qpp > num_seg) {
4832 dev_err(&pdev->dev,
4833 "Incorrect number of egress queues per page\n");
4834 err = -EINVAL;
d6ce2628 4835 goto out_free_adapter;
22adfe0a
SR
4836 }
4837 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4838 pci_resource_len(pdev, 2));
4839 if (!adapter->bar2) {
4840 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4841 err = -ENOMEM;
d6ce2628 4842 goto out_free_adapter;
22adfe0a
SR
4843 }
4844 }
4845
636f9d37 4846 setup_memwin(adapter);
b8ff05a9 4847 err = adap_init0(adapter);
5b377d11
HS
4848#ifdef CONFIG_DEBUG_FS
4849 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4850#endif
636f9d37 4851 setup_memwin_rdma(adapter);
b8ff05a9
DM
4852 if (err)
4853 goto out_unmap_bar;
4854
2a485cf7
HS
4855 /* configure SGE_STAT_CFG_A to read WC stats */
4856 if (!is_t4(adapter->params.chip))
4857 t4_write_reg(adapter, SGE_STAT_CFG_A,
4858 STATSOURCE_T5_V(7) | STATMODE_V(0));
4859
b8ff05a9
DM
4860 for_each_port(adapter, i) {
4861 struct net_device *netdev;
4862
4863 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4864 MAX_ETH_QSETS);
4865 if (!netdev) {
4866 err = -ENOMEM;
4867 goto out_free_dev;
4868 }
4869
4870 SET_NETDEV_DEV(netdev, &pdev->dev);
4871
4872 adapter->port[i] = netdev;
4873 pi = netdev_priv(netdev);
4874 pi->adapter = adapter;
4875 pi->xact_addr_filt = -1;
b8ff05a9 4876 pi->port_id = i;
b8ff05a9
DM
4877 netdev->irq = pdev->irq;
4878
2ed28baa
MM
4879 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4880 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4881 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 4882 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
4883 if (highdma)
4884 netdev->hw_features |= NETIF_F_HIGHDMA;
4885 netdev->features |= netdev->hw_features;
b8ff05a9
DM
4886 netdev->vlan_features = netdev->features & VLAN_FEAT;
4887
01789349
JP
4888 netdev->priv_flags |= IFF_UNICAST_FLT;
4889
b8ff05a9 4890 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
4891#ifdef CONFIG_CHELSIO_T4_DCB
4892 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4893 cxgb4_dcb_state_init(netdev);
4894#endif
812034f1 4895 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
4896 }
4897
4898 pci_set_drvdata(pdev, adapter);
4899
4900 if (adapter->flags & FW_OK) {
060e0c75 4901 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
4902 if (err)
4903 goto out_free_dev;
098ef6c2
HS
4904 } else if (adapter->params.nports == 1) {
4905 /* If we don't have a connection to the firmware -- possibly
4906 * because of an error -- grab the raw VPD parameters so we
4907 * can set the proper MAC Address on the debug network
4908 * interface that we've created.
4909 */
4910 u8 hw_addr[ETH_ALEN];
4911 u8 *na = adapter->params.vpd.na;
4912
4913 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4914 if (!err) {
4915 for (i = 0; i < ETH_ALEN; i++)
4916 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4917 hex2val(na[2 * i + 1]));
4918 t4_set_hw_addr(adapter, 0, hw_addr);
4919 }
b8ff05a9
DM
4920 }
4921
098ef6c2 4922 /* Configure queues and allocate tables now, they can be needed as
b8ff05a9
DM
4923 * soon as the first register_netdev completes.
4924 */
4925 cfg_queues(adapter);
4926
5be9ed8d 4927 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
b8ff05a9
DM
4928 if (!adapter->l2t) {
4929 /* We tolerate a lack of L2T, giving up some functionality */
4930 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4931 adapter->params.offload = 0;
4932 }
4933
b5a02f50 4934#if IS_ENABLED(CONFIG_IPV6)
eb72f74f
HS
4935 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4936 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4937 /* CLIP functionality is not present in hardware,
4938 * hence disable all offload features
b5a02f50
AB
4939 */
4940 dev_warn(&pdev->dev,
eb72f74f 4941 "CLIP not enabled in hardware, continuing\n");
b5a02f50 4942 adapter->params.offload = 0;
eb72f74f
HS
4943 } else {
4944 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4945 adapter->clipt_end);
4946 if (!adapter->clipt) {
4947 /* We tolerate a lack of clip_table, giving up
4948 * some functionality
4949 */
4950 dev_warn(&pdev->dev,
4951 "could not allocate Clip table, continuing\n");
4952 adapter->params.offload = 0;
4953 }
b5a02f50
AB
4954 }
4955#endif
b8ff05a9
DM
4956 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4957 dev_warn(&pdev->dev, "could not allocate TID table, "
4958 "continuing\n");
4959 adapter->params.offload = 0;
4960 }
4961
9a1bb9f6
HS
4962 if (is_offload(adapter)) {
4963 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4964 u32 hash_base, hash_reg;
4965
4966 if (chip <= CHELSIO_T5) {
4967 hash_reg = LE_DB_TID_HASHBASE_A;
4968 hash_base = t4_read_reg(adapter, hash_reg);
4969 adapter->tids.hash_base = hash_base / 4;
4970 } else {
4971 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4972 hash_base = t4_read_reg(adapter, hash_reg);
4973 adapter->tids.hash_base = hash_base;
4974 }
4975 }
4976 }
4977
f7cabcdd
DM
4978 /* See what interrupts we'll be using */
4979 if (msi > 1 && enable_msix(adapter) == 0)
4980 adapter->flags |= USING_MSIX;
4981 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4982 adapter->flags |= USING_MSI;
4983
547fd272
HS
4984 /* check for PCI Express bandwidth capabiltites */
4985 cxgb4_check_pcie_caps(adapter);
4986
671b0060
DM
4987 err = init_rss(adapter);
4988 if (err)
4989 goto out_free_dev;
4990
b8ff05a9
DM
4991 /*
4992 * The card is now ready to go. If any errors occur during device
4993 * registration we do not fail the whole card but rather proceed only
4994 * with the ports we manage to register successfully. However we must
4995 * register at least one net device.
4996 */
4997 for_each_port(adapter, i) {
a57cabe0
DM
4998 pi = adap2pinfo(adapter, i);
4999 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5000 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5001
b8ff05a9
DM
5002 err = register_netdev(adapter->port[i]);
5003 if (err)
b1a3c2b6 5004 break;
b1a3c2b6
DM
5005 adapter->chan_map[pi->tx_chan] = i;
5006 print_port_info(adapter->port[i]);
b8ff05a9 5007 }
b1a3c2b6 5008 if (i == 0) {
b8ff05a9
DM
5009 dev_err(&pdev->dev, "could not register any net devices\n");
5010 goto out_free_dev;
5011 }
b1a3c2b6
DM
5012 if (err) {
5013 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5014 err = 0;
6403eab1 5015 }
b8ff05a9
DM
5016
5017 if (cxgb4_debugfs_root) {
5018 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5019 cxgb4_debugfs_root);
5020 setup_debugfs(adapter);
5021 }
5022
6482aa7c
DLR
5023 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5024 pdev->needs_freset = 1;
5025
b8ff05a9
DM
5026 if (is_offload(adapter))
5027 attach_ulds(adapter);
5028
8e1e6059 5029sriov:
b8ff05a9 5030#ifdef CONFIG_PCI_IOV
7d6727cf 5031 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
5032 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5033 dev_info(&pdev->dev,
5034 "instantiated %u virtual functions\n",
5035 num_vf[func]);
5036#endif
5037 return 0;
5038
5039 out_free_dev:
06546391 5040 free_some_resources(adapter);
b8ff05a9 5041 out_unmap_bar:
d14807dd 5042 if (!is_t4(adapter->params.chip))
22adfe0a 5043 iounmap(adapter->bar2);
b8ff05a9 5044 out_free_adapter:
29aaee65
AB
5045 if (adapter->workq)
5046 destroy_workqueue(adapter->workq);
5047
b8ff05a9 5048 kfree(adapter);
d6ce2628
HS
5049 out_unmap_bar0:
5050 iounmap(regs);
b8ff05a9
DM
5051 out_disable_device:
5052 pci_disable_pcie_error_reporting(pdev);
5053 pci_disable_device(pdev);
5054 out_release_regions:
5055 pci_release_regions(pdev);
b8ff05a9
DM
5056 return err;
5057}
5058
91744948 5059static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
5060{
5061 struct adapter *adapter = pci_get_drvdata(pdev);
5062
636f9d37 5063#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
5064 pci_disable_sriov(pdev);
5065
636f9d37
VP
5066#endif
5067
b8ff05a9
DM
5068 if (adapter) {
5069 int i;
5070
29aaee65
AB
5071 /* Tear down per-adapter Work Queue first since it can contain
5072 * references to our adapter data structure.
5073 */
5074 destroy_workqueue(adapter->workq);
5075
b8ff05a9
DM
5076 if (is_offload(adapter))
5077 detach_ulds(adapter);
5078
b37987e8
HS
5079 disable_interrupts(adapter);
5080
b8ff05a9 5081 for_each_port(adapter, i)
8f3a7676 5082 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
5083 unregister_netdev(adapter->port[i]);
5084
9f16dc2e 5085 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 5086
f2b7e78d
VP
5087 /* If we allocated filters, free up state associated with any
5088 * valid filters ...
5089 */
5090 if (adapter->tids.ftid_tab) {
5091 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
5092 for (i = 0; i < (adapter->tids.nftids +
5093 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
5094 if (f->valid)
5095 clear_filter(adapter, f);
5096 }
5097
aaefae9b
DM
5098 if (adapter->flags & FULL_INIT_DONE)
5099 cxgb_down(adapter);
b8ff05a9 5100
06546391 5101 free_some_resources(adapter);
b5a02f50
AB
5102#if IS_ENABLED(CONFIG_IPV6)
5103 t4_cleanup_clip_tbl(adapter);
5104#endif
b8ff05a9 5105 iounmap(adapter->regs);
d14807dd 5106 if (!is_t4(adapter->params.chip))
22adfe0a 5107 iounmap(adapter->bar2);
b8ff05a9 5108 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
5109 if ((adapter->flags & DEV_ENABLED)) {
5110 pci_disable_device(pdev);
5111 adapter->flags &= ~DEV_ENABLED;
5112 }
b8ff05a9 5113 pci_release_regions(pdev);
ee9a33b2 5114 synchronize_rcu();
8b662fe7 5115 kfree(adapter);
a069ec91 5116 } else
b8ff05a9
DM
5117 pci_release_regions(pdev);
5118}
5119
5120static struct pci_driver cxgb4_driver = {
5121 .name = KBUILD_MODNAME,
5122 .id_table = cxgb4_pci_tbl,
5123 .probe = init_one,
91744948 5124 .remove = remove_one,
687d705c 5125 .shutdown = remove_one,
204dc3c0 5126 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
5127};
5128
5129static int __init cxgb4_init_module(void)
5130{
5131 int ret;
5132
5133 /* Debugfs support is optional, just warn if this fails */
5134 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5135 if (!cxgb4_debugfs_root)
428ac43f 5136 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
5137
5138 ret = pci_register_driver(&cxgb4_driver);
29aaee65 5139 if (ret < 0)
b8ff05a9 5140 debugfs_remove(cxgb4_debugfs_root);
01bcca68 5141
1bb60376 5142#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
5143 if (!inet6addr_registered) {
5144 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5145 inet6addr_registered = true;
5146 }
1bb60376 5147#endif
01bcca68 5148
b8ff05a9
DM
5149 return ret;
5150}
5151
5152static void __exit cxgb4_cleanup_module(void)
5153{
1bb60376 5154#if IS_ENABLED(CONFIG_IPV6)
1793c798 5155 if (inet6addr_registered) {
b5a02f50
AB
5156 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5157 inet6addr_registered = false;
5158 }
1bb60376 5159#endif
b8ff05a9
DM
5160 pci_unregister_driver(&cxgb4_driver);
5161 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5162}
5163
5164module_init(cxgb4_init_module);
5165module_exit(cxgb4_cleanup_module);