]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4: Add debugfs facility to inject FL starvation
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
812034f1
HS
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
01bcca68
VP
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
3a7f8554 84#define DRV_VERSION "2.0.0-ko"
812034f1 85const char cxgb4_driver_version[] = DRV_VERSION;
3a7f8554 86#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9 87
f2b7e78d
VP
88/* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110};
111
b8ff05a9
DM
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
3fedeab1
HS
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 119 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 121
3fedeab1
HS
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134#include "t4_pci_id_tbl.h"
b8ff05a9 135
16e47624 136#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 137#define FW5_FNAME "cxgb4/t5fw.bin"
16e47624 138#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 139#define FW5_CFNAME "cxgb4/t5-config.txt"
01b69614
HS
140#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
141#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
142#define PHY_AQ1202_DEVICEID 0x4409
143#define PHY_BCM84834_DEVICEID 0x4486
b8ff05a9
DM
144
145MODULE_DESCRIPTION(DRV_DESC);
146MODULE_AUTHOR("Chelsio Communications");
147MODULE_LICENSE("Dual BSD/GPL");
148MODULE_VERSION(DRV_VERSION);
149MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 150MODULE_FIRMWARE(FW4_FNAME);
0a57a536 151MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 152
636f9d37
VP
153/*
154 * Normally we're willing to become the firmware's Master PF but will be happy
155 * if another PF has already become the Master and initialized the adapter.
156 * Setting "force_init" will cause this driver to forcibly establish itself as
157 * the Master PF and initialize the adapter.
158 */
159static uint force_init;
160
161module_param(force_init, uint, 0644);
162MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
163
13ee15d3
VP
164/*
165 * Normally if the firmware we connect to has Configuration File support, we
166 * use that and only fall back to the old Driver-based initialization if the
167 * Configuration File fails for some reason. If force_old_init is set, then
168 * we'll always use the old Driver-based initialization sequence.
169 */
170static uint force_old_init;
171
172module_param(force_old_init, uint, 0644);
06640310
HS
173MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
174 " parameter");
13ee15d3 175
b8ff05a9
DM
176static int dflt_msg_enable = DFLT_MSG_ENABLE;
177
178module_param(dflt_msg_enable, int, 0644);
179MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
180
181/*
182 * The driver uses the best interrupt scheme available on a platform in the
183 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
184 * of these schemes the driver may consider as follows:
185 *
186 * msi = 2: choose from among all three options
187 * msi = 1: only consider MSI and INTx interrupts
188 * msi = 0: force INTx interrupts
189 */
190static int msi = 2;
191
192module_param(msi, int, 0644);
193MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
194
195/*
196 * Queue interrupt hold-off timer values. Queues default to the first of these
197 * upon creation.
198 */
199static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
200
201module_param_array(intr_holdoff, uint, NULL, 0644);
202MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 203 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
204
205static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
206
207module_param_array(intr_cnt, uint, NULL, 0644);
208MODULE_PARM_DESC(intr_cnt,
06640310
HS
209 "thresholds 1..3 for queue interrupt packet counters, "
210 "deprecated parameter");
b8ff05a9 211
636f9d37
VP
212/*
213 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
214 * offset by 2 bytes in order to have the IP headers line up on 4-byte
215 * boundaries. This is a requirement for many architectures which will throw
216 * a machine check fault if an attempt is made to access one of the 4-byte IP
217 * header fields on a non-4-byte boundary. And it's a major performance issue
218 * even on some architectures which allow it like some implementations of the
219 * x86 ISA. However, some architectures don't mind this and for some very
220 * edge-case performance sensitive applications (like forwarding large volumes
221 * of small packets), setting this DMA offset to 0 will decrease the number of
222 * PCI-E Bus transfers enough to measurably affect performance.
223 */
224static int rx_dma_offset = 2;
225
eb939922 226static bool vf_acls;
b8ff05a9
DM
227
228#ifdef CONFIG_PCI_IOV
229module_param(vf_acls, bool, 0644);
06640310
HS
230MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
231 "deprecated parameter");
b8ff05a9 232
7d6727cf
SR
233/* Configure the number of PCI-E Virtual Function which are to be instantiated
234 * on SR-IOV Capable Physical Functions.
0a57a536 235 */
7d6727cf 236static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
237
238module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 239MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
240#endif
241
688848b1
AB
242/* TX Queue select used to determine what algorithm to use for selecting TX
243 * queue. Select between the kernel provided function (select_queue=0) or user
244 * cxgb_select_queue function (select_queue=1)
245 *
246 * Default: select_queue=0
247 */
248static int select_queue;
249module_param(select_queue, int, 0644);
250MODULE_PARM_DESC(select_queue,
251 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
252
06640310 253static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 254
f2b7e78d 255module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
256MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
257 "deprecated parameter");
f2b7e78d 258
b8ff05a9
DM
259static struct dentry *cxgb4_debugfs_root;
260
261static LIST_HEAD(adapter_list);
262static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
263/* Adapter list to be accessed from atomic context */
264static LIST_HEAD(adap_rcu_list);
265static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
266static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
267static const char *uld_str[] = { "RDMA", "iSCSI" };
268
269static void link_report(struct net_device *dev)
270{
271 if (!netif_carrier_ok(dev))
272 netdev_info(dev, "link down\n");
273 else {
274 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
275
276 const char *s = "10Mbps";
277 const struct port_info *p = netdev_priv(dev);
278
279 switch (p->link_cfg.speed) {
e8b39015 280 case 10000:
b8ff05a9
DM
281 s = "10Gbps";
282 break;
e8b39015 283 case 1000:
b8ff05a9
DM
284 s = "1000Mbps";
285 break;
e8b39015 286 case 100:
b8ff05a9
DM
287 s = "100Mbps";
288 break;
e8b39015 289 case 40000:
72aca4bf
KS
290 s = "40Gbps";
291 break;
b8ff05a9
DM
292 }
293
294 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
295 fc[p->link_cfg.fc]);
296 }
297}
298
688848b1
AB
299#ifdef CONFIG_CHELSIO_T4_DCB
300/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
301static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
302{
303 struct port_info *pi = netdev_priv(dev);
304 struct adapter *adap = pi->adapter;
305 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
306 int i;
307
308 /* We use a simple mapping of Port TX Queue Index to DCB
309 * Priority when we're enabling DCB.
310 */
311 for (i = 0; i < pi->nqsets; i++, txq++) {
312 u32 name, value;
313 int err;
314
5167865a
HS
315 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
316 FW_PARAMS_PARAM_X_V(
317 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
318 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
319 value = enable ? i : 0xffffffff;
320
321 /* Since we can be called while atomic (from "interrupt
322 * level") we need to issue the Set Parameters Commannd
323 * without sleeping (timeout < 0).
324 */
01b69614
HS
325 err = t4_set_params_timeout(adap, adap->mbox, adap->fn, 0, 1,
326 &name, &value,
327 -FW_CMD_MAX_TIMEOUT);
688848b1
AB
328
329 if (err)
330 dev_err(adap->pdev_dev,
331 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
332 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
333 else
334 txq->dcb_prio = value;
688848b1
AB
335 }
336}
337#endif /* CONFIG_CHELSIO_T4_DCB */
338
b8ff05a9
DM
339void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
340{
341 struct net_device *dev = adapter->port[port_id];
342
343 /* Skip changes from disabled ports. */
344 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
345 if (link_stat)
346 netif_carrier_on(dev);
688848b1
AB
347 else {
348#ifdef CONFIG_CHELSIO_T4_DCB
349 cxgb4_dcb_state_init(dev);
350 dcb_tx_queue_prio_enable(dev, false);
351#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 352 netif_carrier_off(dev);
688848b1 353 }
b8ff05a9
DM
354
355 link_report(dev);
356 }
357}
358
359void t4_os_portmod_changed(const struct adapter *adap, int port_id)
360{
361 static const char *mod_str[] = {
a0881cab 362 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
363 };
364
365 const struct net_device *dev = adap->port[port_id];
366 const struct port_info *pi = netdev_priv(dev);
367
368 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
369 netdev_info(dev, "port module unplugged\n");
a0881cab 370 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
371 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
372}
373
374/*
375 * Configure the exact and hash address filters to handle a port's multicast
376 * and secondary unicast MAC addresses.
377 */
378static int set_addr_filters(const struct net_device *dev, bool sleep)
379{
380 u64 mhash = 0;
381 u64 uhash = 0;
382 bool free = true;
383 u16 filt_idx[7];
384 const u8 *addr[7];
385 int ret, naddr = 0;
b8ff05a9
DM
386 const struct netdev_hw_addr *ha;
387 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 388 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 389 const struct port_info *pi = netdev_priv(dev);
060e0c75 390 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
391
392 /* first do the secondary unicast addresses */
393 netdev_for_each_uc_addr(ha, dev) {
394 addr[naddr++] = ha->addr;
395 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 396 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
397 naddr, addr, filt_idx, &uhash, sleep);
398 if (ret < 0)
399 return ret;
400
401 free = false;
402 naddr = 0;
403 }
404 }
405
406 /* next set up the multicast addresses */
4a35ecf8
DM
407 netdev_for_each_mc_addr(ha, dev) {
408 addr[naddr++] = ha->addr;
409 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 410 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
411 naddr, addr, filt_idx, &mhash, sleep);
412 if (ret < 0)
413 return ret;
414
415 free = false;
416 naddr = 0;
417 }
418 }
419
060e0c75 420 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
421 uhash | mhash, sleep);
422}
423
3069ee9b
VP
424int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
425module_param(dbfifo_int_thresh, int, 0644);
426MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
427
404d9e3f
VP
428/*
429 * usecs to sleep while draining the dbfifo
430 */
431static int dbfifo_drain_delay = 1000;
3069ee9b
VP
432module_param(dbfifo_drain_delay, int, 0644);
433MODULE_PARM_DESC(dbfifo_drain_delay,
434 "usecs to sleep while draining the dbfifo");
435
b8ff05a9
DM
436/*
437 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
438 * If @mtu is -1 it is left unchanged.
439 */
440static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
441{
442 int ret;
443 struct port_info *pi = netdev_priv(dev);
444
445 ret = set_addr_filters(dev, sleep_ok);
446 if (ret == 0)
060e0c75 447 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
b8ff05a9 448 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 449 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
450 sleep_ok);
451 return ret;
452}
453
454/**
455 * link_start - enable a port
456 * @dev: the port to enable
457 *
458 * Performs the MAC and PHY actions needed to enable a port.
459 */
460static int link_start(struct net_device *dev)
461{
462 int ret;
463 struct port_info *pi = netdev_priv(dev);
060e0c75 464 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
465
466 /*
467 * We do not set address filters and promiscuity here, the stack does
468 * that step explicitly.
469 */
060e0c75 470 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 471 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 472 if (ret == 0) {
060e0c75 473 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 474 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 475 true);
b8ff05a9
DM
476 if (ret >= 0) {
477 pi->xact_addr_filt = ret;
478 ret = 0;
479 }
480 }
481 if (ret == 0)
060e0c75
DM
482 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
483 &pi->link_cfg);
30f00847
AB
484 if (ret == 0) {
485 local_bh_disable();
688848b1
AB
486 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
487 true, CXGB4_DCB_ENABLED);
30f00847
AB
488 local_bh_enable();
489 }
688848b1 490
b8ff05a9
DM
491 return ret;
492}
493
688848b1
AB
494int cxgb4_dcb_enabled(const struct net_device *dev)
495{
496#ifdef CONFIG_CHELSIO_T4_DCB
497 struct port_info *pi = netdev_priv(dev);
498
3bb06261
AB
499 if (!pi->dcb.enabled)
500 return 0;
501
502 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
503 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
504#else
505 return 0;
506#endif
507}
508EXPORT_SYMBOL(cxgb4_dcb_enabled);
509
510#ifdef CONFIG_CHELSIO_T4_DCB
511/* Handle a Data Center Bridging update message from the firmware. */
512static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
513{
2b5fb1f2 514 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
515 struct net_device *dev = adap->port[port];
516 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
517 int new_dcb_enabled;
518
519 cxgb4_dcb_handle_fw_update(adap, pcmd);
520 new_dcb_enabled = cxgb4_dcb_enabled(dev);
521
522 /* If the DCB has become enabled or disabled on the port then we're
523 * going to need to set up/tear down DCB Priority parameters for the
524 * TX Queues associated with the port.
525 */
526 if (new_dcb_enabled != old_dcb_enabled)
527 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
528}
529#endif /* CONFIG_CHELSIO_T4_DCB */
530
f2b7e78d
VP
531/* Clear a filter and release any of its resources that we own. This also
532 * clears the filter's "pending" status.
533 */
534static void clear_filter(struct adapter *adap, struct filter_entry *f)
535{
536 /* If the new or old filter have loopback rewriteing rules then we'll
537 * need to free any existing Layer Two Table (L2T) entries of the old
538 * filter rule. The firmware will handle freeing up any Source MAC
539 * Table (SMT) entries used for rewriting Source MAC Addresses in
540 * loopback rules.
541 */
542 if (f->l2t)
543 cxgb4_l2t_release(f->l2t);
544
545 /* The zeroing of the filter rule below clears the filter valid,
546 * pending, locked flags, l2t pointer, etc. so it's all we need for
547 * this operation.
548 */
549 memset(f, 0, sizeof(*f));
550}
551
552/* Handle a filter write/deletion reply.
553 */
554static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
555{
556 unsigned int idx = GET_TID(rpl);
557 unsigned int nidx = idx - adap->tids.ftid_base;
558 unsigned int ret;
559 struct filter_entry *f;
560
561 if (idx >= adap->tids.ftid_base && nidx <
562 (adap->tids.nftids + adap->tids.nsftids)) {
563 idx = nidx;
bdc590b9 564 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
565 f = &adap->tids.ftid_tab[idx];
566
567 if (ret == FW_FILTER_WR_FLT_DELETED) {
568 /* Clear the filter when we get confirmation from the
569 * hardware that the filter has been deleted.
570 */
571 clear_filter(adap, f);
572 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
573 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
574 idx);
575 clear_filter(adap, f);
576 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
577 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
578 f->pending = 0; /* asynchronous setup completed */
579 f->valid = 1;
580 } else {
581 /* Something went wrong. Issue a warning about the
582 * problem and clear everything out.
583 */
584 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
585 idx, ret);
586 clear_filter(adap, f);
587 }
588 }
589}
590
591/* Response queue handler for the FW event queue.
b8ff05a9
DM
592 */
593static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
594 const struct pkt_gl *gl)
595{
596 u8 opcode = ((const struct rss_header *)rsp)->opcode;
597
598 rsp++; /* skip RSS header */
b407a4a9
VP
599
600 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
601 */
602 if (unlikely(opcode == CPL_FW4_MSG &&
603 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
604 rsp++;
605 opcode = ((const struct rss_header *)rsp)->opcode;
606 rsp++;
607 if (opcode != CPL_SGE_EGR_UPDATE) {
608 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
609 , opcode);
610 goto out;
611 }
612 }
613
b8ff05a9
DM
614 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
615 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 616 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 617 struct sge_txq *txq;
b8ff05a9 618
e46dab4d 619 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 620 txq->restarts++;
e46dab4d 621 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
622 struct sge_eth_txq *eq;
623
624 eq = container_of(txq, struct sge_eth_txq, q);
625 netif_tx_wake_queue(eq->txq);
626 } else {
627 struct sge_ofld_txq *oq;
628
629 oq = container_of(txq, struct sge_ofld_txq, q);
630 tasklet_schedule(&oq->qresume_tsk);
631 }
632 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
633 const struct cpl_fw6_msg *p = (void *)rsp;
634
688848b1
AB
635#ifdef CONFIG_CHELSIO_T4_DCB
636 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 637 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 638 unsigned int action =
2b5fb1f2 639 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
640
641 if (cmd == FW_PORT_CMD &&
642 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 643 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
644 be32_to_cpu(pcmd->op_to_portid));
645 struct net_device *dev = q->adap->port[port];
646 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 647 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
648 ? CXGB4_DCB_INPUT_FW_DISABLED
649 : CXGB4_DCB_INPUT_FW_ENABLED);
650
651 cxgb4_dcb_state_fsm(dev, state_input);
652 }
653
654 if (cmd == FW_PORT_CMD &&
655 action == FW_PORT_ACTION_L2_DCB_CFG)
656 dcb_rpl(q->adap, pcmd);
657 else
658#endif
659 if (p->type == 0)
660 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
661 } else if (opcode == CPL_L2T_WRITE_RPL) {
662 const struct cpl_l2t_write_rpl *p = (void *)rsp;
663
664 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
665 } else if (opcode == CPL_SET_TCB_RPL) {
666 const struct cpl_set_tcb_rpl *p = (void *)rsp;
667
668 filter_rpl(q->adap, p);
b8ff05a9
DM
669 } else
670 dev_err(q->adap->pdev_dev,
671 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 672out:
b8ff05a9
DM
673 return 0;
674}
675
676/**
677 * uldrx_handler - response queue handler for ULD queues
678 * @q: the response queue that received the packet
679 * @rsp: the response queue descriptor holding the offload message
680 * @gl: the gather list of packet fragments
681 *
682 * Deliver an ingress offload packet to a ULD. All processing is done by
683 * the ULD, we just maintain statistics.
684 */
685static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
686 const struct pkt_gl *gl)
687{
688 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
689
b407a4a9
VP
690 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
691 */
692 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
693 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
694 rsp += 2;
695
b8ff05a9
DM
696 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
697 rxq->stats.nomem++;
698 return -1;
699 }
700 if (gl == NULL)
701 rxq->stats.imm++;
702 else if (gl == CXGB4_MSG_AN)
703 rxq->stats.an++;
704 else
705 rxq->stats.pkts++;
706 return 0;
707}
708
709static void disable_msi(struct adapter *adapter)
710{
711 if (adapter->flags & USING_MSIX) {
712 pci_disable_msix(adapter->pdev);
713 adapter->flags &= ~USING_MSIX;
714 } else if (adapter->flags & USING_MSI) {
715 pci_disable_msi(adapter->pdev);
716 adapter->flags &= ~USING_MSI;
717 }
718}
719
720/*
721 * Interrupt handler for non-data events used with MSI-X.
722 */
723static irqreturn_t t4_nondata_intr(int irq, void *cookie)
724{
725 struct adapter *adap = cookie;
0d804338 726 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 727
0d804338 728 if (v & PFSW_F) {
b8ff05a9 729 adap->swintr = 1;
0d804338 730 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 731 }
c3c7b121
HS
732 if (adap->flags & MASTER_PF)
733 t4_slow_intr_handler(adap);
b8ff05a9
DM
734 return IRQ_HANDLED;
735}
736
737/*
738 * Name the MSI-X interrupts.
739 */
740static void name_msix_vecs(struct adapter *adap)
741{
ba27816c 742 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
743
744 /* non-data interrupts */
b1a3c2b6 745 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
746
747 /* FW events */
b1a3c2b6
DM
748 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
749 adap->port[0]->name);
b8ff05a9
DM
750
751 /* Ethernet queues */
752 for_each_port(adap, j) {
753 struct net_device *d = adap->port[j];
754 const struct port_info *pi = netdev_priv(d);
755
ba27816c 756 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
757 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
758 d->name, i);
b8ff05a9
DM
759 }
760
761 /* offload queues */
ba27816c
DM
762 for_each_ofldrxq(&adap->sge, i)
763 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 764 adap->port[0]->name, i);
ba27816c
DM
765
766 for_each_rdmarxq(&adap->sge, i)
767 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 768 adap->port[0]->name, i);
cf38be6d
HS
769
770 for_each_rdmaciq(&adap->sge, i)
771 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
772 adap->port[0]->name, i);
b8ff05a9
DM
773}
774
775static int request_msix_queue_irqs(struct adapter *adap)
776{
777 struct sge *s = &adap->sge;
cf38be6d
HS
778 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
779 int msi_index = 2;
b8ff05a9
DM
780
781 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
782 adap->msix_info[1].desc, &s->fw_evtq);
783 if (err)
784 return err;
785
786 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
787 err = request_irq(adap->msix_info[msi_index].vec,
788 t4_sge_intr_msix, 0,
789 adap->msix_info[msi_index].desc,
b8ff05a9
DM
790 &s->ethrxq[ethqidx].rspq);
791 if (err)
792 goto unwind;
404d9e3f 793 msi_index++;
b8ff05a9
DM
794 }
795 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
796 err = request_irq(adap->msix_info[msi_index].vec,
797 t4_sge_intr_msix, 0,
798 adap->msix_info[msi_index].desc,
b8ff05a9
DM
799 &s->ofldrxq[ofldqidx].rspq);
800 if (err)
801 goto unwind;
404d9e3f 802 msi_index++;
b8ff05a9
DM
803 }
804 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
805 err = request_irq(adap->msix_info[msi_index].vec,
806 t4_sge_intr_msix, 0,
807 adap->msix_info[msi_index].desc,
b8ff05a9
DM
808 &s->rdmarxq[rdmaqidx].rspq);
809 if (err)
810 goto unwind;
404d9e3f 811 msi_index++;
b8ff05a9 812 }
cf38be6d
HS
813 for_each_rdmaciq(s, rdmaciqqidx) {
814 err = request_irq(adap->msix_info[msi_index].vec,
815 t4_sge_intr_msix, 0,
816 adap->msix_info[msi_index].desc,
817 &s->rdmaciq[rdmaciqqidx].rspq);
818 if (err)
819 goto unwind;
820 msi_index++;
821 }
b8ff05a9
DM
822 return 0;
823
824unwind:
cf38be6d
HS
825 while (--rdmaciqqidx >= 0)
826 free_irq(adap->msix_info[--msi_index].vec,
827 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 828 while (--rdmaqidx >= 0)
404d9e3f 829 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
830 &s->rdmarxq[rdmaqidx].rspq);
831 while (--ofldqidx >= 0)
404d9e3f 832 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
833 &s->ofldrxq[ofldqidx].rspq);
834 while (--ethqidx >= 0)
404d9e3f
VP
835 free_irq(adap->msix_info[--msi_index].vec,
836 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
837 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
838 return err;
839}
840
841static void free_msix_queue_irqs(struct adapter *adap)
842{
404d9e3f 843 int i, msi_index = 2;
b8ff05a9
DM
844 struct sge *s = &adap->sge;
845
846 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
847 for_each_ethrxq(s, i)
404d9e3f 848 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 849 for_each_ofldrxq(s, i)
404d9e3f 850 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 851 for_each_rdmarxq(s, i)
404d9e3f 852 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
853 for_each_rdmaciq(s, i)
854 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
855}
856
671b0060 857/**
812034f1 858 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
859 * @pi: the port
860 * @queues: array of queue indices for RSS
861 *
862 * Sets up the portion of the HW RSS table for the port's VI to distribute
863 * packets to the Rx queues in @queues.
c035e183 864 * Should never be called before setting up sge eth rx queues
671b0060 865 */
812034f1 866int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
867{
868 u16 *rss;
869 int i, err;
c035e183
HS
870 struct adapter *adapter = pi->adapter;
871 const struct sge_eth_rxq *rxq;
671b0060 872
c035e183 873 rxq = &adapter->sge.ethrxq[pi->first_qset];
671b0060
DM
874 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
875 if (!rss)
876 return -ENOMEM;
877
878 /* map the queue indices to queue ids */
879 for (i = 0; i < pi->rss_size; i++, queues++)
c035e183 880 rss[i] = rxq[*queues].rspq.abs_id;
671b0060 881
c035e183 882 err = t4_config_rss_range(adapter, adapter->fn, pi->viid, 0,
060e0c75 883 pi->rss_size, rss, pi->rss_size);
c035e183
HS
884 /* If Tunnel All Lookup isn't specified in the global RSS
885 * Configuration, then we need to specify a default Ingress
886 * Queue for any ingress packets which aren't hashed. We'll
887 * use our first ingress queue ...
888 */
889 if (!err)
890 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
891 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
892 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
893 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
894 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
895 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
896 rss[0]);
671b0060
DM
897 kfree(rss);
898 return err;
899}
900
b8ff05a9
DM
901/**
902 * setup_rss - configure RSS
903 * @adap: the adapter
904 *
671b0060 905 * Sets up RSS for each port.
b8ff05a9
DM
906 */
907static int setup_rss(struct adapter *adap)
908{
c035e183 909 int i, j, err;
b8ff05a9
DM
910
911 for_each_port(adap, i) {
912 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 913
c035e183
HS
914 /* Fill default values with equal distribution */
915 for (j = 0; j < pi->rss_size; j++)
916 pi->rss[j] = j % pi->nqsets;
917
812034f1 918 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
919 if (err)
920 return err;
921 }
922 return 0;
923}
924
e46dab4d
DM
925/*
926 * Return the channel of the ingress queue with the given qid.
927 */
928static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
929{
930 qid -= p->ingr_start;
931 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
932}
933
b8ff05a9
DM
934/*
935 * Wait until all NAPI handlers are descheduled.
936 */
937static void quiesce_rx(struct adapter *adap)
938{
939 int i;
940
4b8e27a8 941 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
942 struct sge_rspq *q = adap->sge.ingr_map[i];
943
3a336cb1 944 if (q && q->handler) {
b8ff05a9 945 napi_disable(&q->napi);
3a336cb1
HS
946 local_bh_disable();
947 while (!cxgb_poll_lock_napi(q))
948 mdelay(1);
949 local_bh_enable();
950 }
951
b8ff05a9
DM
952 }
953}
954
b37987e8
HS
955/* Disable interrupt and napi handler */
956static void disable_interrupts(struct adapter *adap)
957{
958 if (adap->flags & FULL_INIT_DONE) {
959 t4_intr_disable(adap);
960 if (adap->flags & USING_MSIX) {
961 free_msix_queue_irqs(adap);
962 free_irq(adap->msix_info[0].vec, adap);
963 } else {
964 free_irq(adap->pdev->irq, adap);
965 }
966 quiesce_rx(adap);
967 }
968}
969
b8ff05a9
DM
970/*
971 * Enable NAPI scheduling and interrupt generation for all Rx queues.
972 */
973static void enable_rx(struct adapter *adap)
974{
975 int i;
976
4b8e27a8 977 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
978 struct sge_rspq *q = adap->sge.ingr_map[i];
979
980 if (!q)
981 continue;
3a336cb1
HS
982 if (q->handler) {
983 cxgb_busy_poll_init_lock(q);
b8ff05a9 984 napi_enable(&q->napi);
3a336cb1 985 }
b8ff05a9 986 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
987 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
988 SEINTARM_V(q->intr_params) |
989 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
990 }
991}
992
1c6a5b0e
HS
993static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
994 unsigned int nq, unsigned int per_chan, int msi_idx,
995 u16 *ids)
996{
997 int i, err;
998
999 for (i = 0; i < nq; i++, q++) {
1000 if (msi_idx > 0)
1001 msi_idx++;
1002 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1003 adap->port[i / per_chan],
1004 msi_idx, q->fl.size ? &q->fl : NULL,
145ef8a5 1005 uldrx_handler, 0);
1c6a5b0e
HS
1006 if (err)
1007 return err;
1008 memset(&q->stats, 0, sizeof(q->stats));
1009 if (ids)
1010 ids[i] = q->rspq.abs_id;
1011 }
1012 return 0;
1013}
1014
b8ff05a9
DM
1015/**
1016 * setup_sge_queues - configure SGE Tx/Rx/response queues
1017 * @adap: the adapter
1018 *
1019 * Determines how many sets of SGE queues to use and initializes them.
1020 * We support multiple queue sets per port if we have MSI-X, otherwise
1021 * just one queue set per port.
1022 */
1023static int setup_sge_queues(struct adapter *adap)
1024{
1025 int err, msi_idx, i, j;
1026 struct sge *s = &adap->sge;
1027
4b8e27a8
HS
1028 bitmap_zero(s->starving_fl, s->egr_sz);
1029 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1030
1031 if (adap->flags & USING_MSIX)
1032 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1033 else {
1034 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
145ef8a5 1035 NULL, NULL, -1);
b8ff05a9
DM
1036 if (err)
1037 return err;
1038 msi_idx = -((int)s->intrq.abs_id + 1);
1039 }
1040
4b8e27a8
HS
1041 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1042 * don't forget to update the following which need to be
1043 * synchronized to and changes here.
1044 *
1045 * 1. The calculations of MAX_INGQ in cxgb4.h.
1046 *
1047 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1048 * to accommodate any new/deleted Ingress Queues
1049 * which need MSI-X Vectors.
1050 *
1051 * 3. Update sge_qinfo_show() to include information on the
1052 * new/deleted queues.
1053 */
b8ff05a9 1054 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
145ef8a5 1055 msi_idx, NULL, fwevtq_handler, -1);
b8ff05a9
DM
1056 if (err) {
1057freeout: t4_free_sge_resources(adap);
1058 return err;
1059 }
1060
1061 for_each_port(adap, i) {
1062 struct net_device *dev = adap->port[i];
1063 struct port_info *pi = netdev_priv(dev);
1064 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1065 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1066
1067 for (j = 0; j < pi->nqsets; j++, q++) {
1068 if (msi_idx > 0)
1069 msi_idx++;
1070 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1071 msi_idx, &q->fl,
145ef8a5
HS
1072 t4_ethrx_handler,
1073 t4_get_mps_bg_map(adap,
1074 pi->tx_chan));
b8ff05a9
DM
1075 if (err)
1076 goto freeout;
1077 q->rspq.idx = j;
1078 memset(&q->stats, 0, sizeof(q->stats));
1079 }
1080 for (j = 0; j < pi->nqsets; j++, t++) {
1081 err = t4_sge_alloc_eth_txq(adap, t, dev,
1082 netdev_get_tx_queue(dev, j),
1083 s->fw_evtq.cntxt_id);
1084 if (err)
1085 goto freeout;
1086 }
1087 }
1088
1089 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1090 for_each_ofldrxq(s, i) {
1c6a5b0e
HS
1091 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1092 adap->port[i / j],
b8ff05a9
DM
1093 s->fw_evtq.cntxt_id);
1094 if (err)
1095 goto freeout;
1096 }
1097
1c6a5b0e
HS
1098#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1099 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1100 if (err) \
1101 goto freeout; \
1102 if (msi_idx > 0) \
1103 msi_idx += nq; \
1104} while (0)
b8ff05a9 1105
1c6a5b0e
HS
1106 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1107 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
f36e58e5
HS
1108 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1109 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
b8ff05a9 1110
1c6a5b0e 1111#undef ALLOC_OFLD_RXQS
cf38be6d 1112
b8ff05a9
DM
1113 for_each_port(adap, i) {
1114 /*
1115 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1116 * have RDMA queues, and that's the right value.
1117 */
1118 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1119 s->fw_evtq.cntxt_id,
1120 s->rdmarxq[i].rspq.cntxt_id);
1121 if (err)
1122 goto freeout;
1123 }
1124
9bb59b96 1125 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1126 MPS_TRC_RSS_CONTROL_A :
1127 MPS_T5_TRC_RSS_CONTROL_A,
1128 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1129 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1130 return 0;
1131}
1132
b8ff05a9
DM
1133/*
1134 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1135 * The allocated memory is cleared.
1136 */
1137void *t4_alloc_mem(size_t size)
1138{
8be04b93 1139 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1140
1141 if (!p)
89bf67f1 1142 p = vzalloc(size);
b8ff05a9
DM
1143 return p;
1144}
1145
1146/*
1147 * Free memory allocated through alloc_mem().
1148 */
fd88b31a 1149void t4_free_mem(void *addr)
b8ff05a9
DM
1150{
1151 if (is_vmalloc_addr(addr))
1152 vfree(addr);
1153 else
1154 kfree(addr);
1155}
1156
f2b7e78d
VP
1157/* Send a Work Request to write the filter at a specified index. We construct
1158 * a Firmware Filter Work Request to have the work done and put the indicated
1159 * filter into "pending" mode which will prevent any further actions against
1160 * it till we get a reply from the firmware on the completion status of the
1161 * request.
1162 */
1163static int set_filter_wr(struct adapter *adapter, int fidx)
1164{
1165 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1166 struct sk_buff *skb;
1167 struct fw_filter_wr *fwr;
1168 unsigned int ftid;
1169
f72f116a
MH
1170 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1171 if (!skb)
1172 return -ENOMEM;
1173
f2b7e78d
VP
1174 /* If the new filter requires loopback Destination MAC and/or VLAN
1175 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1176 * the filter.
1177 */
1178 if (f->fs.newdmac || f->fs.newvlan) {
1179 /* allocate L2T entry for new filter */
1180 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
f72f116a
MH
1181 if (f->l2t == NULL) {
1182 kfree_skb(skb);
f2b7e78d 1183 return -EAGAIN;
f72f116a 1184 }
f2b7e78d
VP
1185 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1186 f->fs.eport, f->fs.dmac)) {
1187 cxgb4_l2t_release(f->l2t);
1188 f->l2t = NULL;
f72f116a 1189 kfree_skb(skb);
f2b7e78d
VP
1190 return -ENOMEM;
1191 }
1192 }
1193
1194 ftid = adapter->tids.ftid_base + fidx;
1195
f2b7e78d
VP
1196 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1197 memset(fwr, 0, sizeof(*fwr));
1198
1199 /* It would be nice to put most of the following in t4_hw.c but most
1200 * of the work is translating the cxgbtool ch_filter_specification
1201 * into the Work Request and the definition of that structure is
1202 * currently in cxgbtool.h which isn't appropriate to pull into the
1203 * common code. We may eventually try to come up with a more neutral
1204 * filter specification structure but for now it's easiest to simply
1205 * put this fairly direct code in line ...
1206 */
e2ac9628
HS
1207 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1208 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1209 fwr->tid_to_iq =
77a80e23
HS
1210 htonl(FW_FILTER_WR_TID_V(ftid) |
1211 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1212 FW_FILTER_WR_NOREPLY_V(0) |
1213 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1214 fwr->del_filter_to_l2tix =
77a80e23
HS
1215 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1216 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1217 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1218 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1219 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1220 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1221 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1222 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1223 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1224 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1225 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1226 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1227 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1228 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1229 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1230 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1231 fwr->ethtype = htons(f->fs.val.ethtype);
1232 fwr->ethtypem = htons(f->fs.mask.ethtype);
1233 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1234 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1235 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1236 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1237 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1238 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1239 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1240 fwr->smac_sel = 0;
1241 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1242 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1243 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1244 fwr->maci_to_matchtypem =
77a80e23
HS
1245 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1246 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1247 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1248 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1249 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1250 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1251 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1252 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1253 fwr->ptcl = f->fs.val.proto;
1254 fwr->ptclm = f->fs.mask.proto;
1255 fwr->ttyp = f->fs.val.tos;
1256 fwr->ttypm = f->fs.mask.tos;
1257 fwr->ivlan = htons(f->fs.val.ivlan);
1258 fwr->ivlanm = htons(f->fs.mask.ivlan);
1259 fwr->ovlan = htons(f->fs.val.ovlan);
1260 fwr->ovlanm = htons(f->fs.mask.ovlan);
1261 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1262 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1263 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1264 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1265 fwr->lp = htons(f->fs.val.lport);
1266 fwr->lpm = htons(f->fs.mask.lport);
1267 fwr->fp = htons(f->fs.val.fport);
1268 fwr->fpm = htons(f->fs.mask.fport);
1269 if (f->fs.newsmac)
1270 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1271
1272 /* Mark the filter as "pending" and ship off the Filter Work Request.
1273 * When we get the Work Request Reply we'll clear the pending status.
1274 */
1275 f->pending = 1;
1276 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1277 t4_ofld_send(adapter, skb);
1278 return 0;
1279}
1280
1281/* Delete the filter at a specified index.
1282 */
1283static int del_filter_wr(struct adapter *adapter, int fidx)
1284{
1285 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1286 struct sk_buff *skb;
1287 struct fw_filter_wr *fwr;
1288 unsigned int len, ftid;
1289
1290 len = sizeof(*fwr);
1291 ftid = adapter->tids.ftid_base + fidx;
1292
f72f116a
MH
1293 skb = alloc_skb(len, GFP_KERNEL);
1294 if (!skb)
1295 return -ENOMEM;
1296
f2b7e78d
VP
1297 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1298 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1299
1300 /* Mark the filter as "pending" and ship off the Filter Work Request.
1301 * When we get the Work Request Reply we'll clear the pending status.
1302 */
1303 f->pending = 1;
1304 t4_mgmt_tx(adapter, skb);
1305 return 0;
1306}
1307
688848b1
AB
1308static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1309 void *accel_priv, select_queue_fallback_t fallback)
1310{
1311 int txq;
1312
1313#ifdef CONFIG_CHELSIO_T4_DCB
1314 /* If a Data Center Bridging has been successfully negotiated on this
1315 * link then we'll use the skb's priority to map it to a TX Queue.
1316 * The skb's priority is determined via the VLAN Tag Priority Code
1317 * Point field.
1318 */
1319 if (cxgb4_dcb_enabled(dev)) {
1320 u16 vlan_tci;
1321 int err;
1322
1323 err = vlan_get_tag(skb, &vlan_tci);
1324 if (unlikely(err)) {
1325 if (net_ratelimit())
1326 netdev_warn(dev,
1327 "TX Packet without VLAN Tag on DCB Link\n");
1328 txq = 0;
1329 } else {
1330 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1331#ifdef CONFIG_CHELSIO_T4_FCOE
1332 if (skb->protocol == htons(ETH_P_FCOE))
1333 txq = skb->priority & 0x7;
1334#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1335 }
1336 return txq;
1337 }
1338#endif /* CONFIG_CHELSIO_T4_DCB */
1339
1340 if (select_queue) {
1341 txq = (skb_rx_queue_recorded(skb)
1342 ? skb_get_rx_queue(skb)
1343 : smp_processor_id());
1344
1345 while (unlikely(txq >= dev->real_num_tx_queues))
1346 txq -= dev->real_num_tx_queues;
1347
1348 return txq;
1349 }
1350
1351 return fallback(dev, skb) % dev->real_num_tx_queues;
1352}
1353
b8ff05a9
DM
1354static inline int is_offload(const struct adapter *adap)
1355{
1356 return adap->params.offload;
1357}
1358
b8ff05a9
DM
1359static int closest_timer(const struct sge *s, int time)
1360{
1361 int i, delta, match = 0, min_delta = INT_MAX;
1362
1363 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1364 delta = time - s->timer_val[i];
1365 if (delta < 0)
1366 delta = -delta;
1367 if (delta < min_delta) {
1368 min_delta = delta;
1369 match = i;
1370 }
1371 }
1372 return match;
1373}
1374
1375static int closest_thres(const struct sge *s, int thres)
1376{
1377 int i, delta, match = 0, min_delta = INT_MAX;
1378
1379 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1380 delta = thres - s->counter_val[i];
1381 if (delta < 0)
1382 delta = -delta;
1383 if (delta < min_delta) {
1384 min_delta = delta;
1385 match = i;
1386 }
1387 }
1388 return match;
1389}
1390
b8ff05a9 1391/**
812034f1 1392 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1393 * @q: the Rx queue
1394 * @us: the hold-off time in us, or 0 to disable timer
1395 * @cnt: the hold-off packet count, or 0 to disable counter
1396 *
1397 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1398 * one of the two needs to be enabled for the queue to generate interrupts.
1399 */
812034f1
HS
1400int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1401 unsigned int us, unsigned int cnt)
b8ff05a9 1402{
c887ad0e
HS
1403 struct adapter *adap = q->adap;
1404
b8ff05a9
DM
1405 if ((us | cnt) == 0)
1406 cnt = 1;
1407
1408 if (cnt) {
1409 int err;
1410 u32 v, new_idx;
1411
1412 new_idx = closest_thres(&adap->sge, cnt);
1413 if (q->desc && q->pktcnt_idx != new_idx) {
1414 /* the queue has already been created, update it */
5167865a
HS
1415 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1416 FW_PARAMS_PARAM_X_V(
1417 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1418 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
060e0c75
DM
1419 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1420 &new_idx);
b8ff05a9
DM
1421 if (err)
1422 return err;
1423 }
1424 q->pktcnt_idx = new_idx;
1425 }
1426
1427 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1ecc7b7a 1428 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
b8ff05a9
DM
1429 return 0;
1430}
1431
c8f44aff 1432static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1433{
2ed28baa 1434 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1435 netdev_features_t changed = dev->features ^ features;
19ecae2c 1436 int err;
19ecae2c 1437
f646968f 1438 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1439 return 0;
19ecae2c 1440
2ed28baa
MM
1441 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1442 -1, -1, -1,
f646968f 1443 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1444 if (unlikely(err))
f646968f 1445 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1446 return err;
87b6cf51
DM
1447}
1448
91744948 1449static int setup_debugfs(struct adapter *adap)
b8ff05a9 1450{
b8ff05a9
DM
1451 if (IS_ERR_OR_NULL(adap->debugfs_root))
1452 return -1;
1453
fd88b31a
HS
1454#ifdef CONFIG_DEBUG_FS
1455 t4_setup_debugfs(adap);
1456#endif
b8ff05a9
DM
1457 return 0;
1458}
1459
1460/*
1461 * upper-layer driver support
1462 */
1463
1464/*
1465 * Allocate an active-open TID and set it to the supplied value.
1466 */
1467int cxgb4_alloc_atid(struct tid_info *t, void *data)
1468{
1469 int atid = -1;
1470
1471 spin_lock_bh(&t->atid_lock);
1472 if (t->afree) {
1473 union aopen_entry *p = t->afree;
1474
f2b7e78d 1475 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1476 t->afree = p->next;
1477 p->data = data;
1478 t->atids_in_use++;
1479 }
1480 spin_unlock_bh(&t->atid_lock);
1481 return atid;
1482}
1483EXPORT_SYMBOL(cxgb4_alloc_atid);
1484
1485/*
1486 * Release an active-open TID.
1487 */
1488void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1489{
f2b7e78d 1490 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1491
1492 spin_lock_bh(&t->atid_lock);
1493 p->next = t->afree;
1494 t->afree = p;
1495 t->atids_in_use--;
1496 spin_unlock_bh(&t->atid_lock);
1497}
1498EXPORT_SYMBOL(cxgb4_free_atid);
1499
1500/*
1501 * Allocate a server TID and set it to the supplied value.
1502 */
1503int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1504{
1505 int stid;
1506
1507 spin_lock_bh(&t->stid_lock);
1508 if (family == PF_INET) {
1509 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1510 if (stid < t->nstids)
1511 __set_bit(stid, t->stid_bmap);
1512 else
1513 stid = -1;
1514 } else {
1515 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1516 if (stid < 0)
1517 stid = -1;
1518 }
1519 if (stid >= 0) {
1520 t->stid_tab[stid].data = data;
1521 stid += t->stid_base;
15f63b74
KS
1522 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1523 * This is equivalent to 4 TIDs. With CLIP enabled it
1524 * needs 2 TIDs.
1525 */
1526 if (family == PF_INET)
1527 t->stids_in_use++;
1528 else
1529 t->stids_in_use += 4;
b8ff05a9
DM
1530 }
1531 spin_unlock_bh(&t->stid_lock);
1532 return stid;
1533}
1534EXPORT_SYMBOL(cxgb4_alloc_stid);
1535
dca4faeb
VP
1536/* Allocate a server filter TID and set it to the supplied value.
1537 */
1538int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1539{
1540 int stid;
1541
1542 spin_lock_bh(&t->stid_lock);
1543 if (family == PF_INET) {
1544 stid = find_next_zero_bit(t->stid_bmap,
1545 t->nstids + t->nsftids, t->nstids);
1546 if (stid < (t->nstids + t->nsftids))
1547 __set_bit(stid, t->stid_bmap);
1548 else
1549 stid = -1;
1550 } else {
1551 stid = -1;
1552 }
1553 if (stid >= 0) {
1554 t->stid_tab[stid].data = data;
470c60c4
KS
1555 stid -= t->nstids;
1556 stid += t->sftid_base;
dca4faeb
VP
1557 t->stids_in_use++;
1558 }
1559 spin_unlock_bh(&t->stid_lock);
1560 return stid;
1561}
1562EXPORT_SYMBOL(cxgb4_alloc_sftid);
1563
1564/* Release a server TID.
b8ff05a9
DM
1565 */
1566void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1567{
470c60c4
KS
1568 /* Is it a server filter TID? */
1569 if (t->nsftids && (stid >= t->sftid_base)) {
1570 stid -= t->sftid_base;
1571 stid += t->nstids;
1572 } else {
1573 stid -= t->stid_base;
1574 }
1575
b8ff05a9
DM
1576 spin_lock_bh(&t->stid_lock);
1577 if (family == PF_INET)
1578 __clear_bit(stid, t->stid_bmap);
1579 else
1580 bitmap_release_region(t->stid_bmap, stid, 2);
1581 t->stid_tab[stid].data = NULL;
15f63b74
KS
1582 if (family == PF_INET)
1583 t->stids_in_use--;
1584 else
1585 t->stids_in_use -= 4;
b8ff05a9
DM
1586 spin_unlock_bh(&t->stid_lock);
1587}
1588EXPORT_SYMBOL(cxgb4_free_stid);
1589
1590/*
1591 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1592 */
1593static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1594 unsigned int tid)
1595{
1596 struct cpl_tid_release *req;
1597
1598 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1599 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1600 INIT_TP_WR(req, tid);
1601 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1602}
1603
1604/*
1605 * Queue a TID release request and if necessary schedule a work queue to
1606 * process it.
1607 */
31b9c19b 1608static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1609 unsigned int tid)
b8ff05a9
DM
1610{
1611 void **p = &t->tid_tab[tid];
1612 struct adapter *adap = container_of(t, struct adapter, tids);
1613
1614 spin_lock_bh(&adap->tid_release_lock);
1615 *p = adap->tid_release_head;
1616 /* Low 2 bits encode the Tx channel number */
1617 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1618 if (!adap->tid_release_task_busy) {
1619 adap->tid_release_task_busy = true;
29aaee65 1620 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1621 }
1622 spin_unlock_bh(&adap->tid_release_lock);
1623}
b8ff05a9
DM
1624
1625/*
1626 * Process the list of pending TID release requests.
1627 */
1628static void process_tid_release_list(struct work_struct *work)
1629{
1630 struct sk_buff *skb;
1631 struct adapter *adap;
1632
1633 adap = container_of(work, struct adapter, tid_release_task);
1634
1635 spin_lock_bh(&adap->tid_release_lock);
1636 while (adap->tid_release_head) {
1637 void **p = adap->tid_release_head;
1638 unsigned int chan = (uintptr_t)p & 3;
1639 p = (void *)p - chan;
1640
1641 adap->tid_release_head = *p;
1642 *p = NULL;
1643 spin_unlock_bh(&adap->tid_release_lock);
1644
1645 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1646 GFP_KERNEL)))
1647 schedule_timeout_uninterruptible(1);
1648
1649 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1650 t4_ofld_send(adap, skb);
1651 spin_lock_bh(&adap->tid_release_lock);
1652 }
1653 adap->tid_release_task_busy = false;
1654 spin_unlock_bh(&adap->tid_release_lock);
1655}
1656
1657/*
1658 * Release a TID and inform HW. If we are unable to allocate the release
1659 * message we defer to a work queue.
1660 */
1661void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1662{
1663 void *old;
1664 struct sk_buff *skb;
1665 struct adapter *adap = container_of(t, struct adapter, tids);
1666
1667 old = t->tid_tab[tid];
1668 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1669 if (likely(skb)) {
1670 t->tid_tab[tid] = NULL;
1671 mk_tid_release(skb, chan, tid);
1672 t4_ofld_send(adap, skb);
1673 } else
1674 cxgb4_queue_tid_release(t, chan, tid);
1675 if (old)
1676 atomic_dec(&t->tids_in_use);
1677}
1678EXPORT_SYMBOL(cxgb4_remove_tid);
1679
1680/*
1681 * Allocate and initialize the TID tables. Returns 0 on success.
1682 */
1683static int tid_init(struct tid_info *t)
1684{
1685 size_t size;
f2b7e78d 1686 unsigned int stid_bmap_size;
b8ff05a9 1687 unsigned int natids = t->natids;
b6f8eaec 1688 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1689
dca4faeb 1690 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1691 size = t->ntids * sizeof(*t->tid_tab) +
1692 natids * sizeof(*t->atid_tab) +
b8ff05a9 1693 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1694 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1695 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1696 t->nftids * sizeof(*t->ftid_tab) +
1697 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1698
b8ff05a9
DM
1699 t->tid_tab = t4_alloc_mem(size);
1700 if (!t->tid_tab)
1701 return -ENOMEM;
1702
1703 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1704 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1705 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1706 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1707 spin_lock_init(&t->stid_lock);
1708 spin_lock_init(&t->atid_lock);
1709
1710 t->stids_in_use = 0;
1711 t->afree = NULL;
1712 t->atids_in_use = 0;
1713 atomic_set(&t->tids_in_use, 0);
1714
1715 /* Setup the free list for atid_tab and clear the stid bitmap. */
1716 if (natids) {
1717 while (--natids)
1718 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1719 t->afree = t->atid_tab;
1720 }
dca4faeb 1721 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1722 /* Reserve stid 0 for T4/T5 adapters */
1723 if (!t->stid_base &&
1724 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1725 __set_bit(0, t->stid_bmap);
1726
b8ff05a9
DM
1727 return 0;
1728}
1729
1730/**
1731 * cxgb4_create_server - create an IP server
1732 * @dev: the device
1733 * @stid: the server TID
1734 * @sip: local IP address to bind server to
1735 * @sport: the server's TCP port
1736 * @queue: queue to direct messages from this server to
1737 *
1738 * Create an IP server for the given port and address.
1739 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1740 */
1741int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1742 __be32 sip, __be16 sport, __be16 vlan,
1743 unsigned int queue)
b8ff05a9
DM
1744{
1745 unsigned int chan;
1746 struct sk_buff *skb;
1747 struct adapter *adap;
1748 struct cpl_pass_open_req *req;
80f40c1f 1749 int ret;
b8ff05a9
DM
1750
1751 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1752 if (!skb)
1753 return -ENOMEM;
1754
1755 adap = netdev2adap(dev);
1756 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1757 INIT_TP_WR(req, 0);
1758 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1759 req->local_port = sport;
1760 req->peer_port = htons(0);
1761 req->local_ip = sip;
1762 req->peer_ip = htonl(0);
e46dab4d 1763 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1764 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1765 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1766 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1767 ret = t4_mgmt_tx(adap, skb);
1768 return net_xmit_eval(ret);
b8ff05a9
DM
1769}
1770EXPORT_SYMBOL(cxgb4_create_server);
1771
80f40c1f
VP
1772/* cxgb4_create_server6 - create an IPv6 server
1773 * @dev: the device
1774 * @stid: the server TID
1775 * @sip: local IPv6 address to bind server to
1776 * @sport: the server's TCP port
1777 * @queue: queue to direct messages from this server to
1778 *
1779 * Create an IPv6 server for the given port and address.
1780 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1781 */
1782int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1783 const struct in6_addr *sip, __be16 sport,
1784 unsigned int queue)
1785{
1786 unsigned int chan;
1787 struct sk_buff *skb;
1788 struct adapter *adap;
1789 struct cpl_pass_open_req6 *req;
1790 int ret;
1791
1792 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1793 if (!skb)
1794 return -ENOMEM;
1795
1796 adap = netdev2adap(dev);
1797 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1798 INIT_TP_WR(req, 0);
1799 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1800 req->local_port = sport;
1801 req->peer_port = htons(0);
1802 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1803 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1804 req->peer_ip_hi = cpu_to_be64(0);
1805 req->peer_ip_lo = cpu_to_be64(0);
1806 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1807 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1808 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1809 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1810 ret = t4_mgmt_tx(adap, skb);
1811 return net_xmit_eval(ret);
1812}
1813EXPORT_SYMBOL(cxgb4_create_server6);
1814
1815int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1816 unsigned int queue, bool ipv6)
1817{
1818 struct sk_buff *skb;
1819 struct adapter *adap;
1820 struct cpl_close_listsvr_req *req;
1821 int ret;
1822
1823 adap = netdev2adap(dev);
1824
1825 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1826 if (!skb)
1827 return -ENOMEM;
1828
1829 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1830 INIT_TP_WR(req, 0);
1831 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1832 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1833 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1834 ret = t4_mgmt_tx(adap, skb);
1835 return net_xmit_eval(ret);
1836}
1837EXPORT_SYMBOL(cxgb4_remove_server);
1838
b8ff05a9
DM
1839/**
1840 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1841 * @mtus: the HW MTU table
1842 * @mtu: the target MTU
1843 * @idx: index of selected entry in the MTU table
1844 *
1845 * Returns the index and the value in the HW MTU table that is closest to
1846 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1847 * table, in which case that smallest available value is selected.
1848 */
1849unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1850 unsigned int *idx)
1851{
1852 unsigned int i = 0;
1853
1854 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1855 ++i;
1856 if (idx)
1857 *idx = i;
1858 return mtus[i];
1859}
1860EXPORT_SYMBOL(cxgb4_best_mtu);
1861
92e7ae71
HS
1862/**
1863 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1864 * @mtus: the HW MTU table
1865 * @header_size: Header Size
1866 * @data_size_max: maximum Data Segment Size
1867 * @data_size_align: desired Data Segment Size Alignment (2^N)
1868 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1869 *
1870 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1871 * MTU Table based solely on a Maximum MTU parameter, we break that
1872 * parameter up into a Header Size and Maximum Data Segment Size, and
1873 * provide a desired Data Segment Size Alignment. If we find an MTU in
1874 * the Hardware MTU Table which will result in a Data Segment Size with
1875 * the requested alignment _and_ that MTU isn't "too far" from the
1876 * closest MTU, then we'll return that rather than the closest MTU.
1877 */
1878unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1879 unsigned short header_size,
1880 unsigned short data_size_max,
1881 unsigned short data_size_align,
1882 unsigned int *mtu_idxp)
1883{
1884 unsigned short max_mtu = header_size + data_size_max;
1885 unsigned short data_size_align_mask = data_size_align - 1;
1886 int mtu_idx, aligned_mtu_idx;
1887
1888 /* Scan the MTU Table till we find an MTU which is larger than our
1889 * Maximum MTU or we reach the end of the table. Along the way,
1890 * record the last MTU found, if any, which will result in a Data
1891 * Segment Length matching the requested alignment.
1892 */
1893 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1894 unsigned short data_size = mtus[mtu_idx] - header_size;
1895
1896 /* If this MTU minus the Header Size would result in a
1897 * Data Segment Size of the desired alignment, remember it.
1898 */
1899 if ((data_size & data_size_align_mask) == 0)
1900 aligned_mtu_idx = mtu_idx;
1901
1902 /* If we're not at the end of the Hardware MTU Table and the
1903 * next element is larger than our Maximum MTU, drop out of
1904 * the loop.
1905 */
1906 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1907 break;
1908 }
1909
1910 /* If we fell out of the loop because we ran to the end of the table,
1911 * then we just have to use the last [largest] entry.
1912 */
1913 if (mtu_idx == NMTUS)
1914 mtu_idx--;
1915
1916 /* If we found an MTU which resulted in the requested Data Segment
1917 * Length alignment and that's "not far" from the largest MTU which is
1918 * less than or equal to the maximum MTU, then use that.
1919 */
1920 if (aligned_mtu_idx >= 0 &&
1921 mtu_idx - aligned_mtu_idx <= 1)
1922 mtu_idx = aligned_mtu_idx;
1923
1924 /* If the caller has passed in an MTU Index pointer, pass the
1925 * MTU Index back. Return the MTU value.
1926 */
1927 if (mtu_idxp)
1928 *mtu_idxp = mtu_idx;
1929 return mtus[mtu_idx];
1930}
1931EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1932
b8ff05a9
DM
1933/**
1934 * cxgb4_port_chan - get the HW channel of a port
1935 * @dev: the net device for the port
1936 *
1937 * Return the HW Tx channel of the given port.
1938 */
1939unsigned int cxgb4_port_chan(const struct net_device *dev)
1940{
1941 return netdev2pinfo(dev)->tx_chan;
1942}
1943EXPORT_SYMBOL(cxgb4_port_chan);
1944
881806bc
VP
1945unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1946{
1947 struct adapter *adap = netdev2adap(dev);
2cc301d2 1948 u32 v1, v2, lp_count, hp_count;
881806bc 1949
f061de42
HS
1950 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1951 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 1952 if (is_t4(adap->params.chip)) {
f061de42
HS
1953 lp_count = LP_COUNT_G(v1);
1954 hp_count = HP_COUNT_G(v1);
2cc301d2 1955 } else {
f061de42
HS
1956 lp_count = LP_COUNT_T5_G(v1);
1957 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
1958 }
1959 return lpfifo ? lp_count : hp_count;
881806bc
VP
1960}
1961EXPORT_SYMBOL(cxgb4_dbfifo_count);
1962
b8ff05a9
DM
1963/**
1964 * cxgb4_port_viid - get the VI id of a port
1965 * @dev: the net device for the port
1966 *
1967 * Return the VI id of the given port.
1968 */
1969unsigned int cxgb4_port_viid(const struct net_device *dev)
1970{
1971 return netdev2pinfo(dev)->viid;
1972}
1973EXPORT_SYMBOL(cxgb4_port_viid);
1974
1975/**
1976 * cxgb4_port_idx - get the index of a port
1977 * @dev: the net device for the port
1978 *
1979 * Return the index of the given port.
1980 */
1981unsigned int cxgb4_port_idx(const struct net_device *dev)
1982{
1983 return netdev2pinfo(dev)->port_id;
1984}
1985EXPORT_SYMBOL(cxgb4_port_idx);
1986
b8ff05a9
DM
1987void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1988 struct tp_tcp_stats *v6)
1989{
1990 struct adapter *adap = pci_get_drvdata(pdev);
1991
1992 spin_lock(&adap->stats_lock);
1993 t4_tp_get_tcp_stats(adap, v4, v6);
1994 spin_unlock(&adap->stats_lock);
1995}
1996EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1997
1998void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1999 const unsigned int *pgsz_order)
2000{
2001 struct adapter *adap = netdev2adap(dev);
2002
0d804338
HS
2003 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2004 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2005 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2006 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
2007}
2008EXPORT_SYMBOL(cxgb4_iscsi_init);
2009
3069ee9b
VP
2010int cxgb4_flush_eq_cache(struct net_device *dev)
2011{
2012 struct adapter *adap = netdev2adap(dev);
2013 int ret;
2014
2015 ret = t4_fwaddrspace_write(adap, adap->mbox,
f061de42 2016 0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
3069ee9b
VP
2017 return ret;
2018}
2019EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2020
2021static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2022{
f061de42 2023 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
2024 __be64 indices;
2025 int ret;
2026
fc5ab020
HS
2027 spin_lock(&adap->win0_lock);
2028 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2029 sizeof(indices), (__be32 *)&indices,
2030 T4_MEMORY_READ);
2031 spin_unlock(&adap->win0_lock);
3069ee9b 2032 if (!ret) {
404d9e3f
VP
2033 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2034 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2035 }
2036 return ret;
2037}
2038
2039int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2040 u16 size)
2041{
2042 struct adapter *adap = netdev2adap(dev);
2043 u16 hw_pidx, hw_cidx;
2044 int ret;
2045
2046 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2047 if (ret)
2048 goto out;
2049
2050 if (pidx != hw_pidx) {
2051 u16 delta;
f612b815 2052 u32 val;
3069ee9b
VP
2053
2054 if (pidx >= hw_pidx)
2055 delta = pidx - hw_pidx;
2056 else
2057 delta = size - hw_pidx + pidx;
f612b815
HS
2058
2059 if (is_t4(adap->params.chip))
2060 val = PIDX_V(delta);
2061 else
2062 val = PIDX_T5_V(delta);
3069ee9b 2063 wmb();
f612b815
HS
2064 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2065 QID_V(qid) | val);
3069ee9b
VP
2066 }
2067out:
2068 return ret;
2069}
2070EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2071
3cbdb928
VP
2072void cxgb4_disable_db_coalescing(struct net_device *dev)
2073{
2074 struct adapter *adap;
2075
2076 adap = netdev2adap(dev);
f061de42 2077 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
f612b815 2078 NOCOALESCE_F);
3cbdb928
VP
2079}
2080EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2081
2082void cxgb4_enable_db_coalescing(struct net_device *dev)
2083{
2084 struct adapter *adap;
2085
2086 adap = netdev2adap(dev);
f061de42 2087 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
3cbdb928
VP
2088}
2089EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2090
031cf476
HS
2091int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2092{
2093 struct adapter *adap;
2094 u32 offset, memtype, memaddr;
6559a7e8 2095 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2096 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2097 int ret;
2098
2099 adap = netdev2adap(dev);
2100
2101 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2102
2103 /* Figure out where the offset lands in the Memory Type/Address scheme.
2104 * This code assumes that the memory is laid out starting at offset 0
2105 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2106 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2107 * MC0, and some have both MC0 and MC1.
2108 */
6559a7e8
HS
2109 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2110 edc0_size = EDRAM0_SIZE_G(size) << 20;
2111 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2112 edc1_size = EDRAM1_SIZE_G(size) << 20;
2113 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2114 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2115
2116 edc0_end = edc0_size;
2117 edc1_end = edc0_end + edc1_size;
2118 mc0_end = edc1_end + mc0_size;
2119
2120 if (offset < edc0_end) {
2121 memtype = MEM_EDC0;
2122 memaddr = offset;
2123 } else if (offset < edc1_end) {
2124 memtype = MEM_EDC1;
2125 memaddr = offset - edc0_end;
2126 } else {
2127 if (offset < mc0_end) {
2128 memtype = MEM_MC0;
2129 memaddr = offset - edc1_end;
2130 } else if (is_t4(adap->params.chip)) {
2131 /* T4 only has a single memory channel */
2132 goto err;
2133 } else {
6559a7e8
HS
2134 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2135 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2136 mc1_end = mc0_end + mc1_size;
2137 if (offset < mc1_end) {
2138 memtype = MEM_MC1;
2139 memaddr = offset - mc0_end;
2140 } else {
2141 /* offset beyond the end of any memory */
2142 goto err;
2143 }
2144 }
2145 }
2146
2147 spin_lock(&adap->win0_lock);
2148 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2149 spin_unlock(&adap->win0_lock);
2150 return ret;
2151
2152err:
2153 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2154 stag, offset);
2155 return -EINVAL;
2156}
2157EXPORT_SYMBOL(cxgb4_read_tpte);
2158
7730b4c7
HS
2159u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2160{
2161 u32 hi, lo;
2162 struct adapter *adap;
2163
2164 adap = netdev2adap(dev);
f612b815
HS
2165 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2166 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2167
2168 return ((u64)hi << 32) | (u64)lo;
2169}
2170EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2171
df64e4d3
HS
2172int cxgb4_bar2_sge_qregs(struct net_device *dev,
2173 unsigned int qid,
2174 enum cxgb4_bar2_qtype qtype,
2175 u64 *pbar2_qoffset,
2176 unsigned int *pbar2_qid)
2177{
dd0bcc0b 2178 return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2179 qid,
2180 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2181 ? T4_BAR2_QTYPE_EGRESS
2182 : T4_BAR2_QTYPE_INGRESS),
2183 pbar2_qoffset,
2184 pbar2_qid);
2185}
2186EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2187
b8ff05a9
DM
2188static struct pci_driver cxgb4_driver;
2189
2190static void check_neigh_update(struct neighbour *neigh)
2191{
2192 const struct device *parent;
2193 const struct net_device *netdev = neigh->dev;
2194
2195 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2196 netdev = vlan_dev_real_dev(netdev);
2197 parent = netdev->dev.parent;
2198 if (parent && parent->driver == &cxgb4_driver.driver)
2199 t4_l2t_update(dev_get_drvdata(parent), neigh);
2200}
2201
2202static int netevent_cb(struct notifier_block *nb, unsigned long event,
2203 void *data)
2204{
2205 switch (event) {
2206 case NETEVENT_NEIGH_UPDATE:
2207 check_neigh_update(data);
2208 break;
b8ff05a9
DM
2209 case NETEVENT_REDIRECT:
2210 default:
2211 break;
2212 }
2213 return 0;
2214}
2215
2216static bool netevent_registered;
2217static struct notifier_block cxgb4_netevent_nb = {
2218 .notifier_call = netevent_cb
2219};
2220
3069ee9b
VP
2221static void drain_db_fifo(struct adapter *adap, int usecs)
2222{
2cc301d2 2223 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2224
2225 do {
f061de42
HS
2226 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2227 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2228 if (is_t4(adap->params.chip)) {
f061de42
HS
2229 lp_count = LP_COUNT_G(v1);
2230 hp_count = HP_COUNT_G(v1);
2cc301d2 2231 } else {
f061de42
HS
2232 lp_count = LP_COUNT_T5_G(v1);
2233 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2234 }
2235
2236 if (lp_count == 0 && hp_count == 0)
2237 break;
3069ee9b
VP
2238 set_current_state(TASK_UNINTERRUPTIBLE);
2239 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2240 } while (1);
2241}
2242
2243static void disable_txq_db(struct sge_txq *q)
2244{
05eb2389
SW
2245 unsigned long flags;
2246
2247 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2248 q->db_disabled = 1;
05eb2389 2249 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2250}
2251
05eb2389 2252static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2253{
2254 spin_lock_irq(&q->db_lock);
05eb2389
SW
2255 if (q->db_pidx_inc) {
2256 /* Make sure that all writes to the TX descriptors
2257 * are committed before we tell HW about them.
2258 */
2259 wmb();
f612b815
HS
2260 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2261 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2262 q->db_pidx_inc = 0;
2263 }
3069ee9b
VP
2264 q->db_disabled = 0;
2265 spin_unlock_irq(&q->db_lock);
2266}
2267
2268static void disable_dbs(struct adapter *adap)
2269{
2270 int i;
2271
2272 for_each_ethrxq(&adap->sge, i)
2273 disable_txq_db(&adap->sge.ethtxq[i].q);
2274 for_each_ofldrxq(&adap->sge, i)
2275 disable_txq_db(&adap->sge.ofldtxq[i].q);
2276 for_each_port(adap, i)
2277 disable_txq_db(&adap->sge.ctrlq[i].q);
2278}
2279
2280static void enable_dbs(struct adapter *adap)
2281{
2282 int i;
2283
2284 for_each_ethrxq(&adap->sge, i)
05eb2389 2285 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 2286 for_each_ofldrxq(&adap->sge, i)
05eb2389 2287 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2288 for_each_port(adap, i)
05eb2389
SW
2289 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2290}
2291
2292static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2293{
2294 if (adap->uld_handle[CXGB4_ULD_RDMA])
2295 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2296 cmd);
2297}
2298
2299static void process_db_full(struct work_struct *work)
2300{
2301 struct adapter *adap;
2302
2303 adap = container_of(work, struct adapter, db_full_task);
2304
2305 drain_db_fifo(adap, dbfifo_drain_delay);
2306 enable_dbs(adap);
2307 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
f612b815
HS
2308 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2309 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2310 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
3069ee9b
VP
2311}
2312
2313static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2314{
2315 u16 hw_pidx, hw_cidx;
2316 int ret;
2317
05eb2389 2318 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2319 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2320 if (ret)
2321 goto out;
2322 if (q->db_pidx != hw_pidx) {
2323 u16 delta;
f612b815 2324 u32 val;
3069ee9b
VP
2325
2326 if (q->db_pidx >= hw_pidx)
2327 delta = q->db_pidx - hw_pidx;
2328 else
2329 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2330
2331 if (is_t4(adap->params.chip))
2332 val = PIDX_V(delta);
2333 else
2334 val = PIDX_T5_V(delta);
3069ee9b 2335 wmb();
f612b815
HS
2336 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2337 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2338 }
2339out:
2340 q->db_disabled = 0;
05eb2389
SW
2341 q->db_pidx_inc = 0;
2342 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2343 if (ret)
2344 CH_WARN(adap, "DB drop recovery failed.\n");
2345}
2346static void recover_all_queues(struct adapter *adap)
2347{
2348 int i;
2349
2350 for_each_ethrxq(&adap->sge, i)
2351 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2352 for_each_ofldrxq(&adap->sge, i)
2353 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2354 for_each_port(adap, i)
2355 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2356}
2357
881806bc
VP
2358static void process_db_drop(struct work_struct *work)
2359{
2360 struct adapter *adap;
881806bc 2361
3069ee9b 2362 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2363
d14807dd 2364 if (is_t4(adap->params.chip)) {
05eb2389 2365 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2366 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2367 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2368 recover_all_queues(adap);
05eb2389 2369 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2370 enable_dbs(adap);
05eb2389 2371 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2cc301d2
SR
2372 } else {
2373 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2374 u16 qid = (dropped_db >> 15) & 0x1ffff;
2375 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2376 u64 bar2_qoffset;
2377 unsigned int bar2_qid;
2378 int ret;
2cc301d2 2379
dd0bcc0b 2380 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
df64e4d3
HS
2381 &bar2_qoffset, &bar2_qid);
2382 if (ret)
2383 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2384 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2385 else
f612b815 2386 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2387 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2388
2389 /* Re-enable BAR2 WC */
2390 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2391 }
2392
f061de42 2393 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2394}
2395
2396void t4_db_full(struct adapter *adap)
2397{
d14807dd 2398 if (is_t4(adap->params.chip)) {
05eb2389
SW
2399 disable_dbs(adap);
2400 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2401 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2402 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2403 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2404 }
881806bc
VP
2405}
2406
2407void t4_db_dropped(struct adapter *adap)
2408{
05eb2389
SW
2409 if (is_t4(adap->params.chip)) {
2410 disable_dbs(adap);
2411 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2412 }
29aaee65 2413 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2414}
2415
b8ff05a9
DM
2416static void uld_attach(struct adapter *adap, unsigned int uld)
2417{
2418 void *handle;
2419 struct cxgb4_lld_info lli;
dca4faeb 2420 unsigned short i;
b8ff05a9
DM
2421
2422 lli.pdev = adap->pdev;
35b1de55 2423 lli.pf = adap->fn;
b8ff05a9
DM
2424 lli.l2t = adap->l2t;
2425 lli.tids = &adap->tids;
2426 lli.ports = adap->port;
2427 lli.vr = &adap->vres;
2428 lli.mtus = adap->params.mtus;
2429 if (uld == CXGB4_ULD_RDMA) {
2430 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2431 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2432 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2433 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
2434 } else if (uld == CXGB4_ULD_ISCSI) {
2435 lli.rxq_ids = adap->sge.ofld_rxq;
2436 lli.nrxq = adap->sge.ofldqsets;
2437 }
2438 lli.ntxq = adap->sge.ofldqsets;
2439 lli.nchan = adap->params.nports;
2440 lli.nports = adap->params.nports;
2441 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2442 lli.adapter_type = adap->params.chip;
837e4a42 2443 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 2444 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2445 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2446 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2447 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2448 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2449 for (i = 0; i < NCHAN; i++)
2450 lli.tx_modq[i] = i;
f612b815
HS
2451 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2452 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2453 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2454 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2455 lli.sge_ingpadboundary = adap->sge.fl_align;
2456 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2457 lli.sge_pktshift = adap->sge.pktshift;
2458 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2459 lli.max_ordird_qp = adap->params.max_ordird_qp;
2460 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2461 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2462 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2463
2464 handle = ulds[uld].add(&lli);
2465 if (IS_ERR(handle)) {
2466 dev_warn(adap->pdev_dev,
2467 "could not attach to the %s driver, error %ld\n",
2468 uld_str[uld], PTR_ERR(handle));
2469 return;
2470 }
2471
2472 adap->uld_handle[uld] = handle;
2473
2474 if (!netevent_registered) {
2475 register_netevent_notifier(&cxgb4_netevent_nb);
2476 netevent_registered = true;
2477 }
e29f5dbc
DM
2478
2479 if (adap->flags & FULL_INIT_DONE)
2480 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2481}
2482
2483static void attach_ulds(struct adapter *adap)
2484{
2485 unsigned int i;
2486
01bcca68
VP
2487 spin_lock(&adap_rcu_lock);
2488 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2489 spin_unlock(&adap_rcu_lock);
2490
b8ff05a9
DM
2491 mutex_lock(&uld_mutex);
2492 list_add_tail(&adap->list_node, &adapter_list);
2493 for (i = 0; i < CXGB4_ULD_MAX; i++)
2494 if (ulds[i].add)
2495 uld_attach(adap, i);
2496 mutex_unlock(&uld_mutex);
2497}
2498
2499static void detach_ulds(struct adapter *adap)
2500{
2501 unsigned int i;
2502
2503 mutex_lock(&uld_mutex);
2504 list_del(&adap->list_node);
2505 for (i = 0; i < CXGB4_ULD_MAX; i++)
2506 if (adap->uld_handle[i]) {
2507 ulds[i].state_change(adap->uld_handle[i],
2508 CXGB4_STATE_DETACH);
2509 adap->uld_handle[i] = NULL;
2510 }
2511 if (netevent_registered && list_empty(&adapter_list)) {
2512 unregister_netevent_notifier(&cxgb4_netevent_nb);
2513 netevent_registered = false;
2514 }
2515 mutex_unlock(&uld_mutex);
01bcca68
VP
2516
2517 spin_lock(&adap_rcu_lock);
2518 list_del_rcu(&adap->rcu_node);
2519 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2520}
2521
2522static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2523{
2524 unsigned int i;
2525
2526 mutex_lock(&uld_mutex);
2527 for (i = 0; i < CXGB4_ULD_MAX; i++)
2528 if (adap->uld_handle[i])
2529 ulds[i].state_change(adap->uld_handle[i], new_state);
2530 mutex_unlock(&uld_mutex);
2531}
2532
2533/**
2534 * cxgb4_register_uld - register an upper-layer driver
2535 * @type: the ULD type
2536 * @p: the ULD methods
2537 *
2538 * Registers an upper-layer driver with this driver and notifies the ULD
2539 * about any presently available devices that support its type. Returns
2540 * %-EBUSY if a ULD of the same type is already registered.
2541 */
2542int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2543{
2544 int ret = 0;
2545 struct adapter *adap;
2546
2547 if (type >= CXGB4_ULD_MAX)
2548 return -EINVAL;
2549 mutex_lock(&uld_mutex);
2550 if (ulds[type].add) {
2551 ret = -EBUSY;
2552 goto out;
2553 }
2554 ulds[type] = *p;
2555 list_for_each_entry(adap, &adapter_list, list_node)
2556 uld_attach(adap, type);
2557out: mutex_unlock(&uld_mutex);
2558 return ret;
2559}
2560EXPORT_SYMBOL(cxgb4_register_uld);
2561
2562/**
2563 * cxgb4_unregister_uld - unregister an upper-layer driver
2564 * @type: the ULD type
2565 *
2566 * Unregisters an existing upper-layer driver.
2567 */
2568int cxgb4_unregister_uld(enum cxgb4_uld type)
2569{
2570 struct adapter *adap;
2571
2572 if (type >= CXGB4_ULD_MAX)
2573 return -EINVAL;
2574 mutex_lock(&uld_mutex);
2575 list_for_each_entry(adap, &adapter_list, list_node)
2576 adap->uld_handle[type] = NULL;
2577 ulds[type].add = NULL;
2578 mutex_unlock(&uld_mutex);
2579 return 0;
2580}
2581EXPORT_SYMBOL(cxgb4_unregister_uld);
2582
1bb60376 2583#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2584static int cxgb4_inet6addr_handler(struct notifier_block *this,
2585 unsigned long event, void *data)
01bcca68 2586{
b5a02f50
AB
2587 struct inet6_ifaddr *ifa = data;
2588 struct net_device *event_dev = ifa->idev->dev;
2589 const struct device *parent = NULL;
2590#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2591 struct adapter *adap;
b5a02f50
AB
2592#endif
2593 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2594 event_dev = vlan_dev_real_dev(event_dev);
2595#if IS_ENABLED(CONFIG_BONDING)
2596 if (event_dev->flags & IFF_MASTER) {
2597 list_for_each_entry(adap, &adapter_list, list_node) {
2598 switch (event) {
2599 case NETDEV_UP:
2600 cxgb4_clip_get(adap->port[0],
2601 (const u32 *)ifa, 1);
2602 break;
2603 case NETDEV_DOWN:
2604 cxgb4_clip_release(adap->port[0],
2605 (const u32 *)ifa, 1);
2606 break;
2607 default:
2608 break;
2609 }
2610 }
2611 return NOTIFY_OK;
2612 }
2613#endif
01bcca68 2614
b5a02f50
AB
2615 if (event_dev)
2616 parent = event_dev->dev.parent;
01bcca68 2617
b5a02f50 2618 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2619 switch (event) {
2620 case NETDEV_UP:
b5a02f50 2621 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2622 break;
2623 case NETDEV_DOWN:
b5a02f50 2624 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2625 break;
2626 default:
2627 break;
2628 }
2629 }
b5a02f50 2630 return NOTIFY_OK;
01bcca68
VP
2631}
2632
b5a02f50 2633static bool inet6addr_registered;
01bcca68
VP
2634static struct notifier_block cxgb4_inet6addr_notifier = {
2635 .notifier_call = cxgb4_inet6addr_handler
2636};
2637
01bcca68
VP
2638static void update_clip(const struct adapter *adap)
2639{
2640 int i;
2641 struct net_device *dev;
2642 int ret;
2643
2644 rcu_read_lock();
2645
2646 for (i = 0; i < MAX_NPORTS; i++) {
2647 dev = adap->port[i];
2648 ret = 0;
2649
2650 if (dev)
b5a02f50 2651 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2652
2653 if (ret < 0)
2654 break;
2655 }
2656 rcu_read_unlock();
2657}
1bb60376 2658#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2659
b8ff05a9
DM
2660/**
2661 * cxgb_up - enable the adapter
2662 * @adap: adapter being enabled
2663 *
2664 * Called when the first port is enabled, this function performs the
2665 * actions necessary to make an adapter operational, such as completing
2666 * the initialization of HW modules, and enabling interrupts.
2667 *
2668 * Must be called with the rtnl lock held.
2669 */
2670static int cxgb_up(struct adapter *adap)
2671{
aaefae9b 2672 int err;
b8ff05a9 2673
aaefae9b
DM
2674 err = setup_sge_queues(adap);
2675 if (err)
2676 goto out;
2677 err = setup_rss(adap);
2678 if (err)
2679 goto freeq;
b8ff05a9
DM
2680
2681 if (adap->flags & USING_MSIX) {
aaefae9b 2682 name_msix_vecs(adap);
b8ff05a9
DM
2683 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2684 adap->msix_info[0].desc, adap);
2685 if (err)
2686 goto irq_err;
2687
2688 err = request_msix_queue_irqs(adap);
2689 if (err) {
2690 free_irq(adap->msix_info[0].vec, adap);
2691 goto irq_err;
2692 }
2693 } else {
2694 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2695 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2696 adap->port[0]->name, adap);
b8ff05a9
DM
2697 if (err)
2698 goto irq_err;
2699 }
2700 enable_rx(adap);
2701 t4_sge_start(adap);
2702 t4_intr_enable(adap);
aaefae9b 2703 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2704 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2705#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2706 update_clip(adap);
1bb60376 2707#endif
b8ff05a9
DM
2708 out:
2709 return err;
2710 irq_err:
2711 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2712 freeq:
2713 t4_free_sge_resources(adap);
b8ff05a9
DM
2714 goto out;
2715}
2716
2717static void cxgb_down(struct adapter *adapter)
2718{
b8ff05a9 2719 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2720 cancel_work_sync(&adapter->db_full_task);
2721 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2722 adapter->tid_release_task_busy = false;
204dc3c0 2723 adapter->tid_release_head = NULL;
b8ff05a9 2724
aaefae9b
DM
2725 t4_sge_stop(adapter);
2726 t4_free_sge_resources(adapter);
2727 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2728}
2729
2730/*
2731 * net_device operations
2732 */
2733static int cxgb_open(struct net_device *dev)
2734{
2735 int err;
2736 struct port_info *pi = netdev_priv(dev);
2737 struct adapter *adapter = pi->adapter;
2738
6a3c869a
DM
2739 netif_carrier_off(dev);
2740
aaefae9b
DM
2741 if (!(adapter->flags & FULL_INIT_DONE)) {
2742 err = cxgb_up(adapter);
2743 if (err < 0)
2744 return err;
2745 }
b8ff05a9 2746
f68707b8
DM
2747 err = link_start(dev);
2748 if (!err)
2749 netif_tx_start_all_queues(dev);
2750 return err;
b8ff05a9
DM
2751}
2752
2753static int cxgb_close(struct net_device *dev)
2754{
b8ff05a9
DM
2755 struct port_info *pi = netdev_priv(dev);
2756 struct adapter *adapter = pi->adapter;
2757
2758 netif_tx_stop_all_queues(dev);
2759 netif_carrier_off(dev);
060e0c75 2760 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
b8ff05a9
DM
2761}
2762
f2b7e78d
VP
2763/* Return an error number if the indicated filter isn't writable ...
2764 */
2765static int writable_filter(struct filter_entry *f)
2766{
2767 if (f->locked)
2768 return -EPERM;
2769 if (f->pending)
2770 return -EBUSY;
2771
2772 return 0;
2773}
2774
2775/* Delete the filter at the specified index (if valid). The checks for all
2776 * the common problems with doing this like the filter being locked, currently
2777 * pending in another operation, etc.
2778 */
2779static int delete_filter(struct adapter *adapter, unsigned int fidx)
2780{
2781 struct filter_entry *f;
2782 int ret;
2783
dca4faeb 2784 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2785 return -EINVAL;
2786
2787 f = &adapter->tids.ftid_tab[fidx];
2788 ret = writable_filter(f);
2789 if (ret)
2790 return ret;
2791 if (f->valid)
2792 return del_filter_wr(adapter, fidx);
2793
2794 return 0;
2795}
2796
dca4faeb 2797int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2798 __be32 sip, __be16 sport, __be16 vlan,
2799 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2800{
2801 int ret;
2802 struct filter_entry *f;
2803 struct adapter *adap;
2804 int i;
2805 u8 *val;
2806
2807 adap = netdev2adap(dev);
2808
1cab775c 2809 /* Adjust stid to correct filter index */
470c60c4 2810 stid -= adap->tids.sftid_base;
1cab775c
VP
2811 stid += adap->tids.nftids;
2812
dca4faeb
VP
2813 /* Check to make sure the filter requested is writable ...
2814 */
2815 f = &adap->tids.ftid_tab[stid];
2816 ret = writable_filter(f);
2817 if (ret)
2818 return ret;
2819
2820 /* Clear out any old resources being used by the filter before
2821 * we start constructing the new filter.
2822 */
2823 if (f->valid)
2824 clear_filter(adap, f);
2825
2826 /* Clear out filter specifications */
2827 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2828 f->fs.val.lport = cpu_to_be16(sport);
2829 f->fs.mask.lport = ~0;
2830 val = (u8 *)&sip;
793dad94 2831 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2832 for (i = 0; i < 4; i++) {
2833 f->fs.val.lip[i] = val[i];
2834 f->fs.mask.lip[i] = ~0;
2835 }
0d804338 2836 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2837 f->fs.val.iport = port;
2838 f->fs.mask.iport = mask;
2839 }
2840 }
dca4faeb 2841
0d804338 2842 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2843 f->fs.val.proto = IPPROTO_TCP;
2844 f->fs.mask.proto = ~0;
2845 }
2846
dca4faeb
VP
2847 f->fs.dirsteer = 1;
2848 f->fs.iq = queue;
2849 /* Mark filter as locked */
2850 f->locked = 1;
2851 f->fs.rpttid = 1;
2852
2853 ret = set_filter_wr(adap, stid);
2854 if (ret) {
2855 clear_filter(adap, f);
2856 return ret;
2857 }
2858
2859 return 0;
2860}
2861EXPORT_SYMBOL(cxgb4_create_server_filter);
2862
2863int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2864 unsigned int queue, bool ipv6)
2865{
2866 int ret;
2867 struct filter_entry *f;
2868 struct adapter *adap;
2869
2870 adap = netdev2adap(dev);
1cab775c
VP
2871
2872 /* Adjust stid to correct filter index */
470c60c4 2873 stid -= adap->tids.sftid_base;
1cab775c
VP
2874 stid += adap->tids.nftids;
2875
dca4faeb
VP
2876 f = &adap->tids.ftid_tab[stid];
2877 /* Unlock the filter */
2878 f->locked = 0;
2879
2880 ret = delete_filter(adap, stid);
2881 if (ret)
2882 return ret;
2883
2884 return 0;
2885}
2886EXPORT_SYMBOL(cxgb4_remove_server_filter);
2887
f5152c90
DM
2888static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2889 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2890{
2891 struct port_stats stats;
2892 struct port_info *p = netdev_priv(dev);
2893 struct adapter *adapter = p->adapter;
b8ff05a9 2894
9fe6cb58
GS
2895 /* Block retrieving statistics during EEH error
2896 * recovery. Otherwise, the recovery might fail
2897 * and the PCI device will be removed permanently
2898 */
b8ff05a9 2899 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2900 if (!netif_device_present(dev)) {
2901 spin_unlock(&adapter->stats_lock);
2902 return ns;
2903 }
b8ff05a9
DM
2904 t4_get_port_stats(adapter, p->tx_chan, &stats);
2905 spin_unlock(&adapter->stats_lock);
2906
2907 ns->tx_bytes = stats.tx_octets;
2908 ns->tx_packets = stats.tx_frames;
2909 ns->rx_bytes = stats.rx_octets;
2910 ns->rx_packets = stats.rx_frames;
2911 ns->multicast = stats.rx_mcast_frames;
2912
2913 /* detailed rx_errors */
2914 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2915 stats.rx_runt;
2916 ns->rx_over_errors = 0;
2917 ns->rx_crc_errors = stats.rx_fcs_err;
2918 ns->rx_frame_errors = stats.rx_symbol_err;
2919 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2920 stats.rx_ovflow2 + stats.rx_ovflow3 +
2921 stats.rx_trunc0 + stats.rx_trunc1 +
2922 stats.rx_trunc2 + stats.rx_trunc3;
2923 ns->rx_missed_errors = 0;
2924
2925 /* detailed tx_errors */
2926 ns->tx_aborted_errors = 0;
2927 ns->tx_carrier_errors = 0;
2928 ns->tx_fifo_errors = 0;
2929 ns->tx_heartbeat_errors = 0;
2930 ns->tx_window_errors = 0;
2931
2932 ns->tx_errors = stats.tx_error_frames;
2933 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2934 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2935 return ns;
2936}
2937
2938static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2939{
060e0c75 2940 unsigned int mbox;
b8ff05a9
DM
2941 int ret = 0, prtad, devad;
2942 struct port_info *pi = netdev_priv(dev);
2943 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2944
2945 switch (cmd) {
2946 case SIOCGMIIPHY:
2947 if (pi->mdio_addr < 0)
2948 return -EOPNOTSUPP;
2949 data->phy_id = pi->mdio_addr;
2950 break;
2951 case SIOCGMIIREG:
2952 case SIOCSMIIREG:
2953 if (mdio_phy_id_is_c45(data->phy_id)) {
2954 prtad = mdio_phy_id_prtad(data->phy_id);
2955 devad = mdio_phy_id_devad(data->phy_id);
2956 } else if (data->phy_id < 32) {
2957 prtad = data->phy_id;
2958 devad = 0;
2959 data->reg_num &= 0x1f;
2960 } else
2961 return -EINVAL;
2962
060e0c75 2963 mbox = pi->adapter->fn;
b8ff05a9 2964 if (cmd == SIOCGMIIREG)
060e0c75 2965 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2966 data->reg_num, &data->val_out);
2967 else
060e0c75 2968 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2969 data->reg_num, data->val_in);
2970 break;
2971 default:
2972 return -EOPNOTSUPP;
2973 }
2974 return ret;
2975}
2976
2977static void cxgb_set_rxmode(struct net_device *dev)
2978{
2979 /* unfortunately we can't return errors to the stack */
2980 set_rxmode(dev, -1, false);
2981}
2982
2983static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2984{
2985 int ret;
2986 struct port_info *pi = netdev_priv(dev);
2987
2988 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2989 return -EINVAL;
060e0c75
DM
2990 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2991 -1, -1, -1, true);
b8ff05a9
DM
2992 if (!ret)
2993 dev->mtu = new_mtu;
2994 return ret;
2995}
2996
2997static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2998{
2999 int ret;
3000 struct sockaddr *addr = p;
3001 struct port_info *pi = netdev_priv(dev);
3002
3003 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 3004 return -EADDRNOTAVAIL;
b8ff05a9 3005
060e0c75
DM
3006 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
3007 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
3008 if (ret < 0)
3009 return ret;
3010
3011 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3012 pi->xact_addr_filt = ret;
3013 return 0;
3014}
3015
b8ff05a9
DM
3016#ifdef CONFIG_NET_POLL_CONTROLLER
3017static void cxgb_netpoll(struct net_device *dev)
3018{
3019 struct port_info *pi = netdev_priv(dev);
3020 struct adapter *adap = pi->adapter;
3021
3022 if (adap->flags & USING_MSIX) {
3023 int i;
3024 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3025
3026 for (i = pi->nqsets; i; i--, rx++)
3027 t4_sge_intr_msix(0, &rx->rspq);
3028 } else
3029 t4_intr_handler(adap)(0, adap);
3030}
3031#endif
3032
3033static const struct net_device_ops cxgb4_netdev_ops = {
3034 .ndo_open = cxgb_open,
3035 .ndo_stop = cxgb_close,
3036 .ndo_start_xmit = t4_eth_xmit,
688848b1 3037 .ndo_select_queue = cxgb_select_queue,
9be793bf 3038 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3039 .ndo_set_rx_mode = cxgb_set_rxmode,
3040 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3041 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3042 .ndo_validate_addr = eth_validate_addr,
3043 .ndo_do_ioctl = cxgb_ioctl,
3044 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3045#ifdef CONFIG_NET_POLL_CONTROLLER
3046 .ndo_poll_controller = cxgb_netpoll,
3047#endif
84a200b3
VP
3048#ifdef CONFIG_CHELSIO_T4_FCOE
3049 .ndo_fcoe_enable = cxgb_fcoe_enable,
3050 .ndo_fcoe_disable = cxgb_fcoe_disable,
3051#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3052#ifdef CONFIG_NET_RX_BUSY_POLL
3053 .ndo_busy_poll = cxgb_busy_poll,
3054#endif
3055
b8ff05a9
DM
3056};
3057
3058void t4_fatal_err(struct adapter *adap)
3059{
f612b815 3060 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3061 t4_intr_disable(adap);
3062 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3063}
3064
3065static void setup_memwin(struct adapter *adap)
3066{
b562fc37 3067 u32 nic_win_base = t4_get_util_window(adap);
b8ff05a9 3068
b562fc37 3069 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
636f9d37
VP
3070}
3071
3072static void setup_memwin_rdma(struct adapter *adap)
3073{
1ae970e0 3074 if (adap->vres.ocq.size) {
0abfd152
HS
3075 u32 start;
3076 unsigned int sz_kb;
1ae970e0 3077
0abfd152
HS
3078 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3079 start &= PCI_BASE_ADDRESS_MEM_MASK;
3080 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3081 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3082 t4_write_reg(adap,
f061de42
HS
3083 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3084 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3085 t4_write_reg(adap,
f061de42 3086 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3087 adap->vres.ocq.start);
3088 t4_read_reg(adap,
f061de42 3089 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3090 }
b8ff05a9
DM
3091}
3092
02b5fb8e
DM
3093static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3094{
3095 u32 v;
3096 int ret;
3097
3098 /* get device capabilities */
3099 memset(c, 0, sizeof(*c));
e2ac9628
HS
3100 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3101 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3102 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
060e0c75 3103 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
02b5fb8e
DM
3104 if (ret < 0)
3105 return ret;
3106
3107 /* select capabilities we'll be using */
3108 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3109 if (!vf_acls)
3110 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3111 else
3112 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3113 } else if (vf_acls) {
3114 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3115 return ret;
3116 }
e2ac9628
HS
3117 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3118 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
060e0c75 3119 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
02b5fb8e
DM
3120 if (ret < 0)
3121 return ret;
3122
060e0c75 3123 ret = t4_config_glbl_rss(adap, adap->fn,
02b5fb8e 3124 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3125 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3126 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3127 if (ret < 0)
3128 return ret;
3129
4b8e27a8
HS
3130 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3131 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3132 FW_CMD_CAP_PF);
02b5fb8e
DM
3133 if (ret < 0)
3134 return ret;
3135
3136 t4_sge_init(adap);
3137
02b5fb8e 3138 /* tweak some settings */
837e4a42 3139 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3140 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3141 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3142 v = t4_read_reg(adap, TP_PIO_DATA_A);
3143 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3144
dca4faeb
VP
3145 /* first 4 Tx modulation queues point to consecutive Tx channels */
3146 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3147 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3148 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3149
3150 /* associate each Tx modulation queue with consecutive Tx channels */
3151 v = 0x84218421;
837e4a42 3152 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3153 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3154 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3155 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3156 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3157 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3158
3159#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3160 if (is_offload(adap)) {
0d804338
HS
3161 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3162 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3163 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3164 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3165 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3166 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3167 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3168 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3169 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3170 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3171 }
3172
060e0c75
DM
3173 /* get basic stuff going */
3174 return t4_early_init(adap, adap->fn);
02b5fb8e
DM
3175}
3176
b8ff05a9
DM
3177/*
3178 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3179 */
3180#define MAX_ATIDS 8192U
3181
636f9d37
VP
3182/*
3183 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3184 *
3185 * If the firmware we're dealing with has Configuration File support, then
3186 * we use that to perform all configuration
3187 */
3188
3189/*
3190 * Tweak configuration based on module parameters, etc. Most of these have
3191 * defaults assigned to them by Firmware Configuration Files (if we're using
3192 * them) but need to be explicitly set if we're using hard-coded
3193 * initialization. But even in the case of using Firmware Configuration
3194 * Files, we'd like to expose the ability to change these via module
3195 * parameters so these are essentially common tweaks/settings for
3196 * Configuration Files and hard-coded initialization ...
3197 */
3198static int adap_init0_tweaks(struct adapter *adapter)
3199{
3200 /*
3201 * Fix up various Host-Dependent Parameters like Page Size, Cache
3202 * Line Size, etc. The firmware default is for a 4KB Page Size and
3203 * 64B Cache Line Size ...
3204 */
3205 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3206
3207 /*
3208 * Process module parameters which affect early initialization.
3209 */
3210 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3211 dev_err(&adapter->pdev->dev,
3212 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3213 rx_dma_offset);
3214 rx_dma_offset = 2;
3215 }
f612b815
HS
3216 t4_set_reg_field(adapter, SGE_CONTROL_A,
3217 PKTSHIFT_V(PKTSHIFT_M),
3218 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3219
3220 /*
3221 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3222 * adds the pseudo header itself.
3223 */
837e4a42
HS
3224 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3225 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3226
3227 return 0;
3228}
3229
01b69614
HS
3230/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3231 * unto themselves and they contain their own firmware to perform their
3232 * tasks ...
3233 */
3234static int phy_aq1202_version(const u8 *phy_fw_data,
3235 size_t phy_fw_size)
3236{
3237 int offset;
3238
3239 /* At offset 0x8 you're looking for the primary image's
3240 * starting offset which is 3 Bytes wide
3241 *
3242 * At offset 0xa of the primary image, you look for the offset
3243 * of the DRAM segment which is 3 Bytes wide.
3244 *
3245 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3246 * wide
3247 */
3248 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3249 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3250 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3251
3252 offset = le24(phy_fw_data + 0x8) << 12;
3253 offset = le24(phy_fw_data + offset + 0xa);
3254 return be16(phy_fw_data + offset + 0x27e);
3255
3256 #undef be16
3257 #undef le16
3258 #undef le24
3259}
3260
3261static struct info_10gbt_phy_fw {
3262 unsigned int phy_fw_id; /* PCI Device ID */
3263 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3264 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3265 int phy_flash; /* Has FLASH for PHY Firmware */
3266} phy_info_array[] = {
3267 {
3268 PHY_AQ1202_DEVICEID,
3269 PHY_AQ1202_FIRMWARE,
3270 phy_aq1202_version,
3271 1,
3272 },
3273 {
3274 PHY_BCM84834_DEVICEID,
3275 PHY_BCM84834_FIRMWARE,
3276 NULL,
3277 0,
3278 },
3279 { 0, NULL, NULL },
3280};
3281
3282static struct info_10gbt_phy_fw *find_phy_info(int devid)
3283{
3284 int i;
3285
3286 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3287 if (phy_info_array[i].phy_fw_id == devid)
3288 return &phy_info_array[i];
3289 }
3290 return NULL;
3291}
3292
3293/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3294 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3295 * we return a negative error number. If we transfer new firmware we return 1
3296 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3297 */
3298static int adap_init0_phy(struct adapter *adap)
3299{
3300 const struct firmware *phyf;
3301 int ret;
3302 struct info_10gbt_phy_fw *phy_info;
3303
3304 /* Use the device ID to determine which PHY file to flash.
3305 */
3306 phy_info = find_phy_info(adap->pdev->device);
3307 if (!phy_info) {
3308 dev_warn(adap->pdev_dev,
3309 "No PHY Firmware file found for this PHY\n");
3310 return -EOPNOTSUPP;
3311 }
3312
3313 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3314 * use that. The adapter firmware provides us with a memory buffer
3315 * where we can load a PHY firmware file from the host if we want to
3316 * override the PHY firmware File in flash.
3317 */
3318 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3319 adap->pdev_dev);
3320 if (ret < 0) {
3321 /* For adapters without FLASH attached to PHY for their
3322 * firmware, it's obviously a fatal error if we can't get the
3323 * firmware to the adapter. For adapters with PHY firmware
3324 * FLASH storage, it's worth a warning if we can't find the
3325 * PHY Firmware but we'll neuter the error ...
3326 */
3327 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3328 "/lib/firmware/%s, error %d\n",
3329 phy_info->phy_fw_file, -ret);
3330 if (phy_info->phy_flash) {
3331 int cur_phy_fw_ver = 0;
3332
3333 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3334 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3335 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3336 ret = 0;
3337 }
3338
3339 return ret;
3340 }
3341
3342 /* Load PHY Firmware onto adapter.
3343 */
3344 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3345 phy_info->phy_fw_version,
3346 (u8 *)phyf->data, phyf->size);
3347 if (ret < 0)
3348 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3349 -ret);
3350 else if (ret > 0) {
3351 int new_phy_fw_ver = 0;
3352
3353 if (phy_info->phy_fw_version)
3354 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3355 phyf->size);
3356 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3357 "Firmware /lib/firmware/%s, version %#x\n",
3358 phy_info->phy_fw_file, new_phy_fw_ver);
3359 }
3360
3361 release_firmware(phyf);
3362
3363 return ret;
3364}
3365
636f9d37
VP
3366/*
3367 * Attempt to initialize the adapter via a Firmware Configuration File.
3368 */
3369static int adap_init0_config(struct adapter *adapter, int reset)
3370{
3371 struct fw_caps_config_cmd caps_cmd;
3372 const struct firmware *cf;
3373 unsigned long mtype = 0, maddr = 0;
3374 u32 finiver, finicsum, cfcsum;
16e47624
HS
3375 int ret;
3376 int config_issued = 0;
0a57a536 3377 char *fw_config_file, fw_config_file_path[256];
16e47624 3378 char *config_name = NULL;
636f9d37
VP
3379
3380 /*
3381 * Reset device if necessary.
3382 */
3383 if (reset) {
3384 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3385 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3386 if (ret < 0)
3387 goto bye;
3388 }
3389
01b69614
HS
3390 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3391 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3392 * to be performed after any global adapter RESET above since some
3393 * PHYs only have local RAM copies of the PHY firmware.
3394 */
3395 if (is_10gbt_device(adapter->pdev->device)) {
3396 ret = adap_init0_phy(adapter);
3397 if (ret < 0)
3398 goto bye;
3399 }
636f9d37
VP
3400 /*
3401 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3402 * then use that. Otherwise, use the configuration file stored
3403 * in the adapter flash ...
3404 */
d14807dd 3405 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3406 case CHELSIO_T4:
16e47624 3407 fw_config_file = FW4_CFNAME;
0a57a536
SR
3408 break;
3409 case CHELSIO_T5:
3410 fw_config_file = FW5_CFNAME;
3411 break;
3412 default:
3413 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3414 adapter->pdev->device);
3415 ret = -EINVAL;
3416 goto bye;
3417 }
3418
3419 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3420 if (ret < 0) {
16e47624 3421 config_name = "On FLASH";
636f9d37
VP
3422 mtype = FW_MEMTYPE_CF_FLASH;
3423 maddr = t4_flash_cfg_addr(adapter);
3424 } else {
3425 u32 params[7], val[7];
3426
16e47624
HS
3427 sprintf(fw_config_file_path,
3428 "/lib/firmware/%s", fw_config_file);
3429 config_name = fw_config_file_path;
3430
636f9d37
VP
3431 if (cf->size >= FLASH_CFG_MAX_SIZE)
3432 ret = -ENOMEM;
3433 else {
5167865a
HS
3434 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3435 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37
VP
3436 ret = t4_query_params(adapter, adapter->mbox,
3437 adapter->fn, 0, 1, params, val);
3438 if (ret == 0) {
3439 /*
fc5ab020 3440 * For t4_memory_rw() below addresses and
636f9d37
VP
3441 * sizes have to be in terms of multiples of 4
3442 * bytes. So, if the Configuration File isn't
3443 * a multiple of 4 bytes in length we'll have
3444 * to write that out separately since we can't
3445 * guarantee that the bytes following the
3446 * residual byte in the buffer returned by
3447 * request_firmware() are zeroed out ...
3448 */
3449 size_t resid = cf->size & 0x3;
3450 size_t size = cf->size & ~0x3;
3451 __be32 *data = (__be32 *)cf->data;
3452
5167865a
HS
3453 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3454 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3455
fc5ab020
HS
3456 spin_lock(&adapter->win0_lock);
3457 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3458 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3459 if (ret == 0 && resid != 0) {
3460 union {
3461 __be32 word;
3462 char buf[4];
3463 } last;
3464 int i;
3465
3466 last.word = data[size >> 2];
3467 for (i = resid; i < 4; i++)
3468 last.buf[i] = 0;
fc5ab020
HS
3469 ret = t4_memory_rw(adapter, 0, mtype,
3470 maddr + size,
3471 4, &last.word,
3472 T4_MEMORY_WRITE);
636f9d37 3473 }
fc5ab020 3474 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3475 }
3476 }
3477
3478 release_firmware(cf);
3479 if (ret)
3480 goto bye;
3481 }
3482
3483 /*
3484 * Issue a Capability Configuration command to the firmware to get it
3485 * to parse the Configuration File. We don't use t4_fw_config_file()
3486 * because we want the ability to modify various features after we've
3487 * processed the configuration file ...
3488 */
3489 memset(&caps_cmd, 0, sizeof(caps_cmd));
3490 caps_cmd.op_to_write =
e2ac9628
HS
3491 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3492 FW_CMD_REQUEST_F |
3493 FW_CMD_READ_F);
ce91a923 3494 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3495 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3496 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3497 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3498 FW_LEN16(caps_cmd));
3499 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3500 &caps_cmd);
16e47624
HS
3501
3502 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3503 * Configuration File in FLASH), our last gasp effort is to use the
3504 * Firmware Configuration File which is embedded in the firmware. A
3505 * very few early versions of the firmware didn't have one embedded
3506 * but we can ignore those.
3507 */
3508 if (ret == -ENOENT) {
3509 memset(&caps_cmd, 0, sizeof(caps_cmd));
3510 caps_cmd.op_to_write =
e2ac9628
HS
3511 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3512 FW_CMD_REQUEST_F |
3513 FW_CMD_READ_F);
16e47624
HS
3514 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3515 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3516 sizeof(caps_cmd), &caps_cmd);
3517 config_name = "Firmware Default";
3518 }
3519
3520 config_issued = 1;
636f9d37
VP
3521 if (ret < 0)
3522 goto bye;
3523
3524 finiver = ntohl(caps_cmd.finiver);
3525 finicsum = ntohl(caps_cmd.finicsum);
3526 cfcsum = ntohl(caps_cmd.cfcsum);
3527 if (finicsum != cfcsum)
3528 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3529 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3530 finicsum, cfcsum);
3531
636f9d37
VP
3532 /*
3533 * And now tell the firmware to use the configuration we just loaded.
3534 */
3535 caps_cmd.op_to_write =
e2ac9628
HS
3536 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3537 FW_CMD_REQUEST_F |
3538 FW_CMD_WRITE_F);
ce91a923 3539 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3540 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3541 NULL);
3542 if (ret < 0)
3543 goto bye;
3544
3545 /*
3546 * Tweak configuration based on system architecture, module
3547 * parameters, etc.
3548 */
3549 ret = adap_init0_tweaks(adapter);
3550 if (ret < 0)
3551 goto bye;
3552
3553 /*
3554 * And finally tell the firmware to initialize itself using the
3555 * parameters from the Configuration File.
3556 */
3557 ret = t4_fw_initialize(adapter, adapter->mbox);
3558 if (ret < 0)
3559 goto bye;
3560
06640310
HS
3561 /* Emit Firmware Configuration File information and return
3562 * successfully.
636f9d37 3563 */
636f9d37 3564 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3565 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3566 config_name, finiver, cfcsum);
636f9d37
VP
3567 return 0;
3568
3569 /*
3570 * Something bad happened. Return the error ... (If the "error"
3571 * is that there's no Configuration File on the adapter we don't
3572 * want to issue a warning since this is fairly common.)
3573 */
3574bye:
16e47624
HS
3575 if (config_issued && ret != -ENOENT)
3576 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3577 config_name, -ret);
636f9d37
VP
3578 return ret;
3579}
3580
16e47624
HS
3581static struct fw_info fw_info_array[] = {
3582 {
3583 .chip = CHELSIO_T4,
3584 .fs_name = FW4_CFNAME,
3585 .fw_mod_name = FW4_FNAME,
3586 .fw_hdr = {
3587 .chip = FW_HDR_CHIP_T4,
3588 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3589 .intfver_nic = FW_INTFVER(T4, NIC),
3590 .intfver_vnic = FW_INTFVER(T4, VNIC),
3591 .intfver_ri = FW_INTFVER(T4, RI),
3592 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3593 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3594 },
3595 }, {
3596 .chip = CHELSIO_T5,
3597 .fs_name = FW5_CFNAME,
3598 .fw_mod_name = FW5_FNAME,
3599 .fw_hdr = {
3600 .chip = FW_HDR_CHIP_T5,
3601 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3602 .intfver_nic = FW_INTFVER(T5, NIC),
3603 .intfver_vnic = FW_INTFVER(T5, VNIC),
3604 .intfver_ri = FW_INTFVER(T5, RI),
3605 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3606 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3607 },
3608 }
3609};
3610
3611static struct fw_info *find_fw_info(int chip)
3612{
3613 int i;
3614
3615 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3616 if (fw_info_array[i].chip == chip)
3617 return &fw_info_array[i];
3618 }
3619 return NULL;
3620}
3621
b8ff05a9
DM
3622/*
3623 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3624 */
3625static int adap_init0(struct adapter *adap)
3626{
3627 int ret;
3628 u32 v, port_vec;
3629 enum dev_state state;
3630 u32 params[7], val[7];
9a4da2cd 3631 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3632 int reset = 1;
b8ff05a9 3633
ae469b68
HS
3634 /* Grab Firmware Device Log parameters as early as possible so we have
3635 * access to it for debugging, etc.
3636 */
3637 ret = t4_init_devlog_params(adap);
3638 if (ret < 0)
3639 return ret;
3640
666224d4
HS
3641 /* Contact FW, advertising Master capability */
3642 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
3643 if (ret < 0) {
3644 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3645 ret);
3646 return ret;
3647 }
636f9d37
VP
3648 if (ret == adap->mbox)
3649 adap->flags |= MASTER_PF;
b8ff05a9 3650
636f9d37
VP
3651 /*
3652 * If we're the Master PF Driver and the device is uninitialized,
3653 * then let's consider upgrading the firmware ... (We always want
3654 * to check the firmware version number in order to A. get it for
3655 * later reporting and B. to warn if the currently loaded firmware
3656 * is excessively mismatched relative to the driver.)
3657 */
16e47624
HS
3658 t4_get_fw_version(adap, &adap->params.fw_vers);
3659 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 3660 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3661 struct fw_info *fw_info;
3662 struct fw_hdr *card_fw;
3663 const struct firmware *fw;
3664 const u8 *fw_data = NULL;
3665 unsigned int fw_size = 0;
3666
3667 /* This is the firmware whose headers the driver was compiled
3668 * against
3669 */
3670 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3671 if (fw_info == NULL) {
3672 dev_err(adap->pdev_dev,
3673 "unable to get firmware info for chip %d.\n",
3674 CHELSIO_CHIP_VERSION(adap->params.chip));
3675 return -EINVAL;
636f9d37 3676 }
16e47624
HS
3677
3678 /* allocate memory to read the header of the firmware on the
3679 * card
3680 */
3681 card_fw = t4_alloc_mem(sizeof(*card_fw));
3682
3683 /* Get FW from from /lib/firmware/ */
3684 ret = request_firmware(&fw, fw_info->fw_mod_name,
3685 adap->pdev_dev);
3686 if (ret < 0) {
3687 dev_err(adap->pdev_dev,
3688 "unable to load firmware image %s, error %d\n",
3689 fw_info->fw_mod_name, ret);
3690 } else {
3691 fw_data = fw->data;
3692 fw_size = fw->size;
3693 }
3694
3695 /* upgrade FW logic */
3696 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3697 state, &reset);
3698
3699 /* Cleaning up */
0b5b6bee 3700 release_firmware(fw);
16e47624
HS
3701 t4_free_mem(card_fw);
3702
636f9d37 3703 if (ret < 0)
16e47624 3704 goto bye;
636f9d37 3705 }
b8ff05a9 3706
636f9d37
VP
3707 /*
3708 * Grab VPD parameters. This should be done after we establish a
3709 * connection to the firmware since some of the VPD parameters
3710 * (notably the Core Clock frequency) are retrieved via requests to
3711 * the firmware. On the other hand, we need these fairly early on
3712 * so we do this right after getting ahold of the firmware.
3713 */
3714 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3715 if (ret < 0)
3716 goto bye;
a0881cab 3717
636f9d37 3718 /*
13ee15d3
VP
3719 * Find out what ports are available to us. Note that we need to do
3720 * this before calling adap_init0_no_config() since it needs nports
3721 * and portvec ...
636f9d37
VP
3722 */
3723 v =
5167865a
HS
3724 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3725 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
636f9d37 3726 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
a0881cab
DM
3727 if (ret < 0)
3728 goto bye;
3729
636f9d37
VP
3730 adap->params.nports = hweight32(port_vec);
3731 adap->params.portvec = port_vec;
3732
06640310
HS
3733 /* If the firmware is initialized already, emit a simply note to that
3734 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3735 */
3736 if (state == DEV_STATE_INIT) {
3737 dev_info(adap->pdev_dev, "Coming up as %s: "\
3738 "Adapter already initialized\n",
3739 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3740 } else {
3741 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3742 "Initializing adapter\n");
06640310
HS
3743
3744 /* Find out whether we're dealing with a version of the
3745 * firmware which has configuration file support.
636f9d37 3746 */
06640310
HS
3747 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3748 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3749 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3750 params, val);
13ee15d3 3751
06640310
HS
3752 /* If the firmware doesn't support Configuration Files,
3753 * return an error.
3754 */
3755 if (ret < 0) {
3756 dev_err(adap->pdev_dev, "firmware doesn't support "
3757 "Firmware Configuration Files\n");
3758 goto bye;
3759 }
3760
3761 /* The firmware provides us with a memory buffer where we can
3762 * load a Configuration File from the host if we want to
3763 * override the Configuration File in flash.
3764 */
3765 ret = adap_init0_config(adap, reset);
3766 if (ret == -ENOENT) {
3767 dev_err(adap->pdev_dev, "no Configuration File "
3768 "present on adapter.\n");
3769 goto bye;
636f9d37
VP
3770 }
3771 if (ret < 0) {
06640310
HS
3772 dev_err(adap->pdev_dev, "could not initialize "
3773 "adapter, error %d\n", -ret);
636f9d37
VP
3774 goto bye;
3775 }
3776 }
3777
06640310
HS
3778 /* Give the SGE code a chance to pull in anything that it needs ...
3779 * Note that this must be called after we retrieve our VPD parameters
3780 * in order to know how to convert core ticks to seconds, etc.
636f9d37 3781 */
06640310
HS
3782 ret = t4_sge_init(adap);
3783 if (ret < 0)
3784 goto bye;
636f9d37 3785
9a4da2cd
VP
3786 if (is_bypass_device(adap->pdev->device))
3787 adap->params.bypass = 1;
3788
636f9d37
VP
3789 /*
3790 * Grab some of our basic fundamental operating parameters.
3791 */
3792#define FW_PARAM_DEV(param) \
5167865a
HS
3793 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3794 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 3795
b8ff05a9 3796#define FW_PARAM_PFVF(param) \
5167865a
HS
3797 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3798 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3799 FW_PARAMS_PARAM_Y_V(0) | \
3800 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 3801
636f9d37 3802 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
3803 params[1] = FW_PARAM_PFVF(L2T_START);
3804 params[2] = FW_PARAM_PFVF(L2T_END);
3805 params[3] = FW_PARAM_PFVF(FILTER_START);
3806 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 3807 params[5] = FW_PARAM_PFVF(IQFLINT_START);
636f9d37 3808 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
b8ff05a9
DM
3809 if (ret < 0)
3810 goto bye;
636f9d37
VP
3811 adap->sge.egr_start = val[0];
3812 adap->l2t_start = val[1];
3813 adap->l2t_end = val[2];
b8ff05a9
DM
3814 adap->tids.ftid_base = val[3];
3815 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 3816 adap->sge.ingr_start = val[5];
b8ff05a9 3817
4b8e27a8
HS
3818 /* qids (ingress/egress) returned from firmware can be anywhere
3819 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3820 * Hence driver needs to allocate memory for this range to
3821 * store the queue info. Get the highest IQFLINT/EQ index returned
3822 * in FW_EQ_*_CMD.alloc command.
3823 */
3824 params[0] = FW_PARAM_PFVF(EQ_END);
3825 params[1] = FW_PARAM_PFVF(IQFLINT_END);
3826 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3827 if (ret < 0)
3828 goto bye;
3829 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3830 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3831
3832 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3833 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3834 if (!adap->sge.egr_map) {
3835 ret = -ENOMEM;
3836 goto bye;
3837 }
3838
3839 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3840 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3841 if (!adap->sge.ingr_map) {
3842 ret = -ENOMEM;
3843 goto bye;
3844 }
3845
3846 /* Allocate the memory for the vaious egress queue bitmaps
5b377d11 3847 * ie starving_fl, txq_maperr and blocked_fl.
4b8e27a8
HS
3848 */
3849 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3850 sizeof(long), GFP_KERNEL);
3851 if (!adap->sge.starving_fl) {
3852 ret = -ENOMEM;
3853 goto bye;
3854 }
3855
3856 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3857 sizeof(long), GFP_KERNEL);
3858 if (!adap->sge.txq_maperr) {
3859 ret = -ENOMEM;
3860 goto bye;
3861 }
3862
5b377d11
HS
3863#ifdef CONFIG_DEBUG_FS
3864 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3865 sizeof(long), GFP_KERNEL);
3866 if (!adap->sge.blocked_fl) {
3867 ret = -ENOMEM;
3868 goto bye;
3869 }
3870#endif
3871
b5a02f50
AB
3872 params[0] = FW_PARAM_PFVF(CLIP_START);
3873 params[1] = FW_PARAM_PFVF(CLIP_END);
3874 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3875 if (ret < 0)
3876 goto bye;
3877 adap->clipt_start = val[0];
3878 adap->clipt_end = val[1];
3879
636f9d37
VP
3880 /* query params related to active filter region */
3881 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3882 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3883 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3884 /* If Active filter size is set we enable establishing
3885 * offload connection through firmware work request
3886 */
3887 if ((val[0] != val[1]) && (ret >= 0)) {
3888 adap->flags |= FW_OFLD_CONN;
3889 adap->tids.aftid_base = val[0];
3890 adap->tids.aftid_end = val[1];
3891 }
3892
b407a4a9
VP
3893 /* If we're running on newer firmware, let it know that we're
3894 * prepared to deal with encapsulated CPL messages. Older
3895 * firmware won't understand this and we'll just get
3896 * unencapsulated messages ...
3897 */
3898 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3899 val[0] = 1;
3900 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3901
1ac0f095
KS
3902 /*
3903 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3904 * capability. Earlier versions of the firmware didn't have the
3905 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3906 * permission to use ULPTX MEMWRITE DSGL.
3907 */
3908 if (is_t4(adap->params.chip)) {
3909 adap->params.ulptx_memwrite_dsgl = false;
3910 } else {
3911 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3912 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3913 1, params, val);
3914 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3915 }
3916
636f9d37
VP
3917 /*
3918 * Get device capabilities so we can determine what resources we need
3919 * to manage.
3920 */
3921 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
3922 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3923 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3924 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3925 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3926 &caps_cmd);
3927 if (ret < 0)
3928 goto bye;
3929
13ee15d3 3930 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
3931 /* query offload-related parameters */
3932 params[0] = FW_PARAM_DEV(NTID);
3933 params[1] = FW_PARAM_PFVF(SERVER_START);
3934 params[2] = FW_PARAM_PFVF(SERVER_END);
3935 params[3] = FW_PARAM_PFVF(TDDP_START);
3936 params[4] = FW_PARAM_PFVF(TDDP_END);
3937 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
636f9d37
VP
3938 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3939 params, val);
b8ff05a9
DM
3940 if (ret < 0)
3941 goto bye;
3942 adap->tids.ntids = val[0];
3943 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3944 adap->tids.stid_base = val[1];
3945 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 3946 /*
dbedd44e 3947 * Setup server filter region. Divide the available filter
636f9d37
VP
3948 * region into two parts. Regular filters get 1/3rd and server
3949 * filters get 2/3rd part. This is only enabled if workarond
3950 * path is enabled.
3951 * 1. For regular filters.
3952 * 2. Server filter: This are special filters which are used
3953 * to redirect SYN packets to offload queue.
3954 */
3955 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3956 adap->tids.sftid_base = adap->tids.ftid_base +
3957 DIV_ROUND_UP(adap->tids.nftids, 3);
3958 adap->tids.nsftids = adap->tids.nftids -
3959 DIV_ROUND_UP(adap->tids.nftids, 3);
3960 adap->tids.nftids = adap->tids.sftid_base -
3961 adap->tids.ftid_base;
3962 }
b8ff05a9
DM
3963 adap->vres.ddp.start = val[3];
3964 adap->vres.ddp.size = val[4] - val[3] + 1;
3965 adap->params.ofldq_wr_cred = val[5];
636f9d37 3966
b8ff05a9
DM
3967 adap->params.offload = 1;
3968 }
636f9d37 3969 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
3970 params[0] = FW_PARAM_PFVF(STAG_START);
3971 params[1] = FW_PARAM_PFVF(STAG_END);
3972 params[2] = FW_PARAM_PFVF(RQ_START);
3973 params[3] = FW_PARAM_PFVF(RQ_END);
3974 params[4] = FW_PARAM_PFVF(PBL_START);
3975 params[5] = FW_PARAM_PFVF(PBL_END);
636f9d37
VP
3976 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3977 params, val);
b8ff05a9
DM
3978 if (ret < 0)
3979 goto bye;
3980 adap->vres.stag.start = val[0];
3981 adap->vres.stag.size = val[1] - val[0] + 1;
3982 adap->vres.rq.start = val[2];
3983 adap->vres.rq.size = val[3] - val[2] + 1;
3984 adap->vres.pbl.start = val[4];
3985 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
3986
3987 params[0] = FW_PARAM_PFVF(SQRQ_START);
3988 params[1] = FW_PARAM_PFVF(SQRQ_END);
3989 params[2] = FW_PARAM_PFVF(CQ_START);
3990 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
3991 params[4] = FW_PARAM_PFVF(OCQ_START);
3992 params[5] = FW_PARAM_PFVF(OCQ_END);
5c937dd3
HS
3993 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3994 val);
a0881cab
DM
3995 if (ret < 0)
3996 goto bye;
3997 adap->vres.qp.start = val[0];
3998 adap->vres.qp.size = val[1] - val[0] + 1;
3999 adap->vres.cq.start = val[2];
4000 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
4001 adap->vres.ocq.start = val[4];
4002 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
4003
4004 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4005 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5c937dd3
HS
4006 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
4007 val);
4c2c5763
HS
4008 if (ret < 0) {
4009 adap->params.max_ordird_qp = 8;
4010 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4011 ret = 0;
4012 } else {
4013 adap->params.max_ordird_qp = val[0];
4014 adap->params.max_ird_adapter = val[1];
4015 }
4016 dev_info(adap->pdev_dev,
4017 "max_ordird_qp %d max_ird_adapter %d\n",
4018 adap->params.max_ordird_qp,
4019 adap->params.max_ird_adapter);
b8ff05a9 4020 }
636f9d37 4021 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
4022 params[0] = FW_PARAM_PFVF(ISCSI_START);
4023 params[1] = FW_PARAM_PFVF(ISCSI_END);
636f9d37
VP
4024 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
4025 params, val);
b8ff05a9
DM
4026 if (ret < 0)
4027 goto bye;
4028 adap->vres.iscsi.start = val[0];
4029 adap->vres.iscsi.size = val[1] - val[0] + 1;
4030 }
4031#undef FW_PARAM_PFVF
4032#undef FW_PARAM_DEV
4033
92e7ae71
HS
4034 /* The MTU/MSS Table is initialized by now, so load their values. If
4035 * we're initializing the adapter, then we'll make any modifications
4036 * we want to the MTU/MSS Table and also initialize the congestion
4037 * parameters.
636f9d37 4038 */
b8ff05a9 4039 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
4040 if (state != DEV_STATE_INIT) {
4041 int i;
4042
4043 /* The default MTU Table contains values 1492 and 1500.
4044 * However, for TCP, it's better to have two values which are
4045 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4046 * This allows us to have a TCP Data Payload which is a
4047 * multiple of 8 regardless of what combination of TCP Options
4048 * are in use (always a multiple of 4 bytes) which is
4049 * important for performance reasons. For instance, if no
4050 * options are in use, then we have a 20-byte IP header and a
4051 * 20-byte TCP header. In this case, a 1500-byte MSS would
4052 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4053 * which is not a multiple of 8. So using an MSS of 1488 in
4054 * this case results in a TCP Data Payload of 1448 bytes which
4055 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4056 * Stamps have been negotiated, then an MTU of 1500 bytes
4057 * results in a TCP Data Payload of 1448 bytes which, as
4058 * above, is a multiple of 8 bytes ...
4059 */
4060 for (i = 0; i < NMTUS; i++)
4061 if (adap->params.mtus[i] == 1492) {
4062 adap->params.mtus[i] = 1488;
4063 break;
4064 }
7ee9ff94 4065
92e7ae71
HS
4066 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4067 adap->params.b_wnd);
4068 }
df64e4d3 4069 t4_init_sge_params(adap);
dcf7b6f5 4070 t4_init_tp_params(adap);
636f9d37 4071 adap->flags |= FW_OK;
b8ff05a9
DM
4072 return 0;
4073
4074 /*
636f9d37
VP
4075 * Something bad happened. If a command timed out or failed with EIO
4076 * FW does not operate within its spec or something catastrophic
4077 * happened to HW/FW, stop issuing commands.
b8ff05a9 4078 */
636f9d37 4079bye:
4b8e27a8
HS
4080 kfree(adap->sge.egr_map);
4081 kfree(adap->sge.ingr_map);
4082 kfree(adap->sge.starving_fl);
4083 kfree(adap->sge.txq_maperr);
5b377d11
HS
4084#ifdef CONFIG_DEBUG_FS
4085 kfree(adap->sge.blocked_fl);
4086#endif
636f9d37
VP
4087 if (ret != -ETIMEDOUT && ret != -EIO)
4088 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
4089 return ret;
4090}
4091
204dc3c0
DM
4092/* EEH callbacks */
4093
4094static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4095 pci_channel_state_t state)
4096{
4097 int i;
4098 struct adapter *adap = pci_get_drvdata(pdev);
4099
4100 if (!adap)
4101 goto out;
4102
4103 rtnl_lock();
4104 adap->flags &= ~FW_OK;
4105 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 4106 spin_lock(&adap->stats_lock);
204dc3c0
DM
4107 for_each_port(adap, i) {
4108 struct net_device *dev = adap->port[i];
4109
4110 netif_device_detach(dev);
4111 netif_carrier_off(dev);
4112 }
9fe6cb58 4113 spin_unlock(&adap->stats_lock);
b37987e8 4114 disable_interrupts(adap);
204dc3c0
DM
4115 if (adap->flags & FULL_INIT_DONE)
4116 cxgb_down(adap);
4117 rtnl_unlock();
144be3d9
GS
4118 if ((adap->flags & DEV_ENABLED)) {
4119 pci_disable_device(pdev);
4120 adap->flags &= ~DEV_ENABLED;
4121 }
204dc3c0
DM
4122out: return state == pci_channel_io_perm_failure ?
4123 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4124}
4125
4126static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4127{
4128 int i, ret;
4129 struct fw_caps_config_cmd c;
4130 struct adapter *adap = pci_get_drvdata(pdev);
4131
4132 if (!adap) {
4133 pci_restore_state(pdev);
4134 pci_save_state(pdev);
4135 return PCI_ERS_RESULT_RECOVERED;
4136 }
4137
144be3d9
GS
4138 if (!(adap->flags & DEV_ENABLED)) {
4139 if (pci_enable_device(pdev)) {
4140 dev_err(&pdev->dev, "Cannot reenable PCI "
4141 "device after reset\n");
4142 return PCI_ERS_RESULT_DISCONNECT;
4143 }
4144 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4145 }
4146
4147 pci_set_master(pdev);
4148 pci_restore_state(pdev);
4149 pci_save_state(pdev);
4150 pci_cleanup_aer_uncorrect_error_status(pdev);
4151
8203b509 4152 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4153 return PCI_ERS_RESULT_DISCONNECT;
777c2300 4154 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4155 return PCI_ERS_RESULT_DISCONNECT;
4156 adap->flags |= FW_OK;
4157 if (adap_init1(adap, &c))
4158 return PCI_ERS_RESULT_DISCONNECT;
4159
4160 for_each_port(adap, i) {
4161 struct port_info *p = adap2pinfo(adap, i);
4162
060e0c75
DM
4163 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4164 NULL, NULL);
204dc3c0
DM
4165 if (ret < 0)
4166 return PCI_ERS_RESULT_DISCONNECT;
4167 p->viid = ret;
4168 p->xact_addr_filt = -1;
4169 }
4170
4171 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4172 adap->params.b_wnd);
1ae970e0 4173 setup_memwin(adap);
204dc3c0
DM
4174 if (cxgb_up(adap))
4175 return PCI_ERS_RESULT_DISCONNECT;
4176 return PCI_ERS_RESULT_RECOVERED;
4177}
4178
4179static void eeh_resume(struct pci_dev *pdev)
4180{
4181 int i;
4182 struct adapter *adap = pci_get_drvdata(pdev);
4183
4184 if (!adap)
4185 return;
4186
4187 rtnl_lock();
4188 for_each_port(adap, i) {
4189 struct net_device *dev = adap->port[i];
4190
4191 if (netif_running(dev)) {
4192 link_start(dev);
4193 cxgb_set_rxmode(dev);
4194 }
4195 netif_device_attach(dev);
4196 }
4197 rtnl_unlock();
4198}
4199
3646f0e5 4200static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4201 .error_detected = eeh_err_detected,
4202 .slot_reset = eeh_slot_reset,
4203 .resume = eeh_resume,
4204};
4205
57d8b764 4206static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4207{
57d8b764
KS
4208 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4209 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4210}
4211
c887ad0e
HS
4212static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4213 unsigned int us, unsigned int cnt,
b8ff05a9
DM
4214 unsigned int size, unsigned int iqe_size)
4215{
c887ad0e 4216 q->adap = adap;
812034f1 4217 cxgb4_set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
4218 q->iqe_len = iqe_size;
4219 q->size = size;
4220}
4221
4222/*
4223 * Perform default configuration of DMA queues depending on the number and type
4224 * of ports we found and the number of available CPUs. Most settings can be
4225 * modified by the admin prior to actual use.
4226 */
91744948 4227static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4228{
4229 struct sge *s = &adap->sge;
688848b1
AB
4230 int i, n10g = 0, qidx = 0;
4231#ifndef CONFIG_CHELSIO_T4_DCB
4232 int q10g = 0;
4233#endif
cf38be6d 4234 int ciq_size;
b8ff05a9
DM
4235
4236 for_each_port(adap, i)
57d8b764 4237 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4238#ifdef CONFIG_CHELSIO_T4_DCB
4239 /* For Data Center Bridging support we need to be able to support up
4240 * to 8 Traffic Priorities; each of which will be assigned to its
4241 * own TX Queue in order to prevent Head-Of-Line Blocking.
4242 */
4243 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4244 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4245 MAX_ETH_QSETS, adap->params.nports * 8);
4246 BUG_ON(1);
4247 }
b8ff05a9 4248
688848b1
AB
4249 for_each_port(adap, i) {
4250 struct port_info *pi = adap2pinfo(adap, i);
4251
4252 pi->first_qset = qidx;
4253 pi->nqsets = 8;
4254 qidx += pi->nqsets;
4255 }
4256#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4257 /*
4258 * We default to 1 queue per non-10G port and up to # of cores queues
4259 * per 10G port.
4260 */
4261 if (n10g)
4262 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4263 if (q10g > netif_get_num_default_rss_queues())
4264 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4265
4266 for_each_port(adap, i) {
4267 struct port_info *pi = adap2pinfo(adap, i);
4268
4269 pi->first_qset = qidx;
57d8b764 4270 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4271 qidx += pi->nqsets;
4272 }
688848b1 4273#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4274
4275 s->ethqsets = qidx;
4276 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4277
4278 if (is_offload(adap)) {
4279 /*
4280 * For offload we use 1 queue/channel if all ports are up to 1G,
4281 * otherwise we divide all available queues amongst the channels
4282 * capped by the number of available cores.
4283 */
4284 if (n10g) {
4285 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4286 num_online_cpus());
4287 s->ofldqsets = roundup(i, adap->params.nports);
4288 } else
4289 s->ofldqsets = adap->params.nports;
4290 /* For RDMA one Rx queue per channel suffices */
4291 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4292 /* Try and allow at least 1 CIQ per cpu rounding down
4293 * to the number of ports, with a minimum of 1 per port.
4294 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4295 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4296 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4297 */
4298 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4299 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4300 adap->params.nports;
4301 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
b8ff05a9
DM
4302 }
4303
4304 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4305 struct sge_eth_rxq *r = &s->ethrxq[i];
4306
c887ad0e 4307 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4308 r->fl.size = 72;
4309 }
4310
4311 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4312 s->ethtxq[i].q.size = 1024;
4313
4314 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4315 s->ctrlq[i].q.size = 512;
4316
4317 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4318 s->ofldtxq[i].q.size = 1024;
4319
4320 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4321 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4322
c887ad0e 4323 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4324 r->rspq.uld = CXGB4_ULD_ISCSI;
4325 r->fl.size = 72;
4326 }
4327
4328 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4329 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4330
c887ad0e 4331 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4332 r->rspq.uld = CXGB4_ULD_RDMA;
4333 r->fl.size = 72;
4334 }
4335
cf38be6d
HS
4336 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4337 if (ciq_size > SGE_MAX_IQ_SIZE) {
4338 CH_WARN(adap, "CIQ size too small for available IQs\n");
4339 ciq_size = SGE_MAX_IQ_SIZE;
4340 }
4341
4342 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4343 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4344
c887ad0e 4345 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4346 r->rspq.uld = CXGB4_ULD_RDMA;
4347 }
4348
c887ad0e
HS
4349 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4350 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4351}
4352
4353/*
4354 * Reduce the number of Ethernet queues across all ports to at most n.
4355 * n provides at least one queue per port.
4356 */
91744948 4357static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4358{
4359 int i;
4360 struct port_info *pi;
4361
4362 while (n < adap->sge.ethqsets)
4363 for_each_port(adap, i) {
4364 pi = adap2pinfo(adap, i);
4365 if (pi->nqsets > 1) {
4366 pi->nqsets--;
4367 adap->sge.ethqsets--;
4368 if (adap->sge.ethqsets <= n)
4369 break;
4370 }
4371 }
4372
4373 n = 0;
4374 for_each_port(adap, i) {
4375 pi = adap2pinfo(adap, i);
4376 pi->first_qset = n;
4377 n += pi->nqsets;
4378 }
4379}
4380
4381/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4382#define EXTRA_VECS 2
4383
91744948 4384static int enable_msix(struct adapter *adap)
b8ff05a9
DM
4385{
4386 int ofld_need = 0;
f36e58e5 4387 int i, want, need, allocated;
b8ff05a9
DM
4388 struct sge *s = &adap->sge;
4389 unsigned int nchan = adap->params.nports;
f36e58e5
HS
4390 struct msix_entry *entries;
4391
4392 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4393 GFP_KERNEL);
4394 if (!entries)
4395 return -ENOMEM;
b8ff05a9 4396
f36e58e5 4397 for (i = 0; i < MAX_INGQ + 1; ++i)
b8ff05a9
DM
4398 entries[i].entry = i;
4399
4400 want = s->max_ethqsets + EXTRA_VECS;
4401 if (is_offload(adap)) {
cf38be6d 4402 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 4403 /* need nchan for each possible ULD */
cf38be6d 4404 ofld_need = 3 * nchan;
b8ff05a9 4405 }
688848b1
AB
4406#ifdef CONFIG_CHELSIO_T4_DCB
4407 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4408 * each port.
4409 */
4410 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4411#else
b8ff05a9 4412 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 4413#endif
f36e58e5
HS
4414 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4415 if (allocated < 0) {
4416 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4417 " not using MSI-X\n");
4418 kfree(entries);
4419 return allocated;
4420 }
b8ff05a9 4421
f36e58e5 4422 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4423 * Every group gets its minimum requirement and NIC gets top
4424 * priority for leftovers.
4425 */
f36e58e5 4426 i = allocated - EXTRA_VECS - ofld_need;
c32ad224
AG
4427 if (i < s->max_ethqsets) {
4428 s->max_ethqsets = i;
4429 if (i < s->ethqsets)
4430 reduce_ethqs(adap, i);
4431 }
4432 if (is_offload(adap)) {
f36e58e5
HS
4433 if (allocated < want) {
4434 s->rdmaqs = nchan;
4435 s->rdmaciqs = nchan;
4436 }
4437
4438 /* leftovers go to OFLD */
4439 i = allocated - EXTRA_VECS - s->max_ethqsets -
4440 s->rdmaqs - s->rdmaciqs;
c32ad224
AG
4441 s->ofldqsets = (i / nchan) * nchan; /* round down */
4442 }
f36e58e5 4443 for (i = 0; i < allocated; ++i)
c32ad224
AG
4444 adap->msix_info[i].vec = entries[i].vector;
4445
f36e58e5 4446 kfree(entries);
c32ad224 4447 return 0;
b8ff05a9
DM
4448}
4449
4450#undef EXTRA_VECS
4451
91744948 4452static int init_rss(struct adapter *adap)
671b0060 4453{
c035e183
HS
4454 unsigned int i;
4455 int err;
4456
4457 err = t4_init_rss_mode(adap, adap->mbox);
4458 if (err)
4459 return err;
671b0060
DM
4460
4461 for_each_port(adap, i) {
4462 struct port_info *pi = adap2pinfo(adap, i);
4463
4464 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4465 if (!pi->rss)
4466 return -ENOMEM;
671b0060
DM
4467 }
4468 return 0;
4469}
4470
91744948 4471static void print_port_info(const struct net_device *dev)
b8ff05a9 4472{
b8ff05a9 4473 char buf[80];
118969ed 4474 char *bufp = buf;
f1a051b9 4475 const char *spd = "";
118969ed
DM
4476 const struct port_info *pi = netdev_priv(dev);
4477 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4478
4479 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4480 spd = " 2.5 GT/s";
4481 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4482 spd = " 5 GT/s";
d2e752db
RD
4483 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4484 spd = " 8 GT/s";
b8ff05a9 4485
118969ed
DM
4486 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4487 bufp += sprintf(bufp, "100/");
4488 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4489 bufp += sprintf(bufp, "1000/");
4490 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4491 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4492 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4493 bufp += sprintf(bufp, "40G/");
118969ed
DM
4494 if (bufp != buf)
4495 --bufp;
72aca4bf 4496 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
4497
4498 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 4499 adap->params.vpd.id,
d14807dd 4500 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
4501 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4502 (adap->flags & USING_MSIX) ? " MSI-X" :
4503 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
4504 netdev_info(dev, "S/N: %s, P/N: %s\n",
4505 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
4506}
4507
91744948 4508static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4509{
e5c8ae5f 4510 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4511}
4512
06546391
DM
4513/*
4514 * Free the following resources:
4515 * - memory used for tables
4516 * - MSI/MSI-X
4517 * - net devices
4518 * - resources FW is holding for us
4519 */
4520static void free_some_resources(struct adapter *adapter)
4521{
4522 unsigned int i;
4523
4524 t4_free_mem(adapter->l2t);
4525 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4526 kfree(adapter->sge.egr_map);
4527 kfree(adapter->sge.ingr_map);
4528 kfree(adapter->sge.starving_fl);
4529 kfree(adapter->sge.txq_maperr);
5b377d11
HS
4530#ifdef CONFIG_DEBUG_FS
4531 kfree(adapter->sge.blocked_fl);
4532#endif
06546391
DM
4533 disable_msi(adapter);
4534
4535 for_each_port(adapter, i)
671b0060
DM
4536 if (adapter->port[i]) {
4537 kfree(adap2pinfo(adapter, i)->rss);
06546391 4538 free_netdev(adapter->port[i]);
671b0060 4539 }
06546391 4540 if (adapter->flags & FW_OK)
060e0c75 4541 t4_fw_bye(adapter, adapter->fn);
06546391
DM
4542}
4543
2ed28baa 4544#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 4545#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 4546 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 4547#define SEGMENT_SIZE 128
b8ff05a9 4548
1dd06ae8 4549static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 4550{
22adfe0a 4551 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 4552 struct port_info *pi;
c8f44aff 4553 bool highdma = false;
b8ff05a9 4554 struct adapter *adapter = NULL;
d6ce2628 4555 void __iomem *regs;
b8ff05a9
DM
4556
4557 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4558
4559 err = pci_request_regions(pdev, KBUILD_MODNAME);
4560 if (err) {
4561 /* Just info, some other driver may have claimed the device. */
4562 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4563 return err;
4564 }
4565
b8ff05a9
DM
4566 err = pci_enable_device(pdev);
4567 if (err) {
4568 dev_err(&pdev->dev, "cannot enable PCI device\n");
4569 goto out_release_regions;
4570 }
4571
d6ce2628
HS
4572 regs = pci_ioremap_bar(pdev, 0);
4573 if (!regs) {
4574 dev_err(&pdev->dev, "cannot map device registers\n");
4575 err = -ENOMEM;
4576 goto out_disable_device;
4577 }
4578
8203b509
HS
4579 err = t4_wait_dev_ready(regs);
4580 if (err < 0)
4581 goto out_unmap_bar0;
4582
d6ce2628 4583 /* We control everything through one PF */
0d804338 4584 func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
d6ce2628
HS
4585 if (func != ent->driver_data) {
4586 iounmap(regs);
4587 pci_disable_device(pdev);
4588 pci_save_state(pdev); /* to restore SR-IOV later */
4589 goto sriov;
4590 }
4591
b8ff05a9 4592 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 4593 highdma = true;
b8ff05a9
DM
4594 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4595 if (err) {
4596 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4597 "coherent allocations\n");
d6ce2628 4598 goto out_unmap_bar0;
b8ff05a9
DM
4599 }
4600 } else {
4601 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4602 if (err) {
4603 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 4604 goto out_unmap_bar0;
b8ff05a9
DM
4605 }
4606 }
4607
4608 pci_enable_pcie_error_reporting(pdev);
ef306b50 4609 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
4610 pci_set_master(pdev);
4611 pci_save_state(pdev);
4612
4613 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4614 if (!adapter) {
4615 err = -ENOMEM;
d6ce2628 4616 goto out_unmap_bar0;
b8ff05a9
DM
4617 }
4618
29aaee65
AB
4619 adapter->workq = create_singlethread_workqueue("cxgb4");
4620 if (!adapter->workq) {
4621 err = -ENOMEM;
4622 goto out_free_adapter;
4623 }
4624
144be3d9
GS
4625 /* PCI device has been enabled */
4626 adapter->flags |= DEV_ENABLED;
4627
d6ce2628 4628 adapter->regs = regs;
b8ff05a9
DM
4629 adapter->pdev = pdev;
4630 adapter->pdev_dev = &pdev->dev;
3069ee9b 4631 adapter->mbox = func;
060e0c75 4632 adapter->fn = func;
b8ff05a9
DM
4633 adapter->msg_enable = dflt_msg_enable;
4634 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4635
4636 spin_lock_init(&adapter->stats_lock);
4637 spin_lock_init(&adapter->tid_release_lock);
e327c225 4638 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
4639
4640 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
4641 INIT_WORK(&adapter->db_full_task, process_db_full);
4642 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
4643
4644 err = t4_prep_adapter(adapter);
4645 if (err)
d6ce2628
HS
4646 goto out_free_adapter;
4647
22adfe0a 4648
d14807dd 4649 if (!is_t4(adapter->params.chip)) {
f612b815
HS
4650 s_qpp = (QUEUESPERPAGEPF0_S +
4651 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4652 adapter->fn);
4653 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4654 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
4655 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4656
4657 /* Each segment size is 128B. Write coalescing is enabled only
4658 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4659 * queue is less no of segments that can be accommodated in
4660 * a page size.
4661 */
4662 if (qpp > num_seg) {
4663 dev_err(&pdev->dev,
4664 "Incorrect number of egress queues per page\n");
4665 err = -EINVAL;
d6ce2628 4666 goto out_free_adapter;
22adfe0a
SR
4667 }
4668 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4669 pci_resource_len(pdev, 2));
4670 if (!adapter->bar2) {
4671 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4672 err = -ENOMEM;
d6ce2628 4673 goto out_free_adapter;
22adfe0a
SR
4674 }
4675 }
4676
636f9d37 4677 setup_memwin(adapter);
b8ff05a9 4678 err = adap_init0(adapter);
5b377d11
HS
4679#ifdef CONFIG_DEBUG_FS
4680 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4681#endif
636f9d37 4682 setup_memwin_rdma(adapter);
b8ff05a9
DM
4683 if (err)
4684 goto out_unmap_bar;
4685
4686 for_each_port(adapter, i) {
4687 struct net_device *netdev;
4688
4689 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4690 MAX_ETH_QSETS);
4691 if (!netdev) {
4692 err = -ENOMEM;
4693 goto out_free_dev;
4694 }
4695
4696 SET_NETDEV_DEV(netdev, &pdev->dev);
4697
4698 adapter->port[i] = netdev;
4699 pi = netdev_priv(netdev);
4700 pi->adapter = adapter;
4701 pi->xact_addr_filt = -1;
b8ff05a9 4702 pi->port_id = i;
b8ff05a9
DM
4703 netdev->irq = pdev->irq;
4704
2ed28baa
MM
4705 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4706 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4707 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 4708 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
4709 if (highdma)
4710 netdev->hw_features |= NETIF_F_HIGHDMA;
4711 netdev->features |= netdev->hw_features;
b8ff05a9
DM
4712 netdev->vlan_features = netdev->features & VLAN_FEAT;
4713
01789349
JP
4714 netdev->priv_flags |= IFF_UNICAST_FLT;
4715
b8ff05a9 4716 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
4717#ifdef CONFIG_CHELSIO_T4_DCB
4718 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4719 cxgb4_dcb_state_init(netdev);
4720#endif
812034f1 4721 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
4722 }
4723
4724 pci_set_drvdata(pdev, adapter);
4725
4726 if (adapter->flags & FW_OK) {
060e0c75 4727 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
4728 if (err)
4729 goto out_free_dev;
4730 }
4731
4732 /*
4733 * Configure queues and allocate tables now, they can be needed as
4734 * soon as the first register_netdev completes.
4735 */
4736 cfg_queues(adapter);
4737
4738 adapter->l2t = t4_init_l2t();
4739 if (!adapter->l2t) {
4740 /* We tolerate a lack of L2T, giving up some functionality */
4741 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4742 adapter->params.offload = 0;
4743 }
4744
b5a02f50
AB
4745#if IS_ENABLED(CONFIG_IPV6)
4746 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4747 adapter->clipt_end);
4748 if (!adapter->clipt) {
4749 /* We tolerate a lack of clip_table, giving up
4750 * some functionality
4751 */
4752 dev_warn(&pdev->dev,
4753 "could not allocate Clip table, continuing\n");
4754 adapter->params.offload = 0;
4755 }
4756#endif
b8ff05a9
DM
4757 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4758 dev_warn(&pdev->dev, "could not allocate TID table, "
4759 "continuing\n");
4760 adapter->params.offload = 0;
4761 }
4762
f7cabcdd
DM
4763 /* See what interrupts we'll be using */
4764 if (msi > 1 && enable_msix(adapter) == 0)
4765 adapter->flags |= USING_MSIX;
4766 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4767 adapter->flags |= USING_MSI;
4768
671b0060
DM
4769 err = init_rss(adapter);
4770 if (err)
4771 goto out_free_dev;
4772
b8ff05a9
DM
4773 /*
4774 * The card is now ready to go. If any errors occur during device
4775 * registration we do not fail the whole card but rather proceed only
4776 * with the ports we manage to register successfully. However we must
4777 * register at least one net device.
4778 */
4779 for_each_port(adapter, i) {
a57cabe0
DM
4780 pi = adap2pinfo(adapter, i);
4781 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4782 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4783
b8ff05a9
DM
4784 err = register_netdev(adapter->port[i]);
4785 if (err)
b1a3c2b6 4786 break;
b1a3c2b6
DM
4787 adapter->chan_map[pi->tx_chan] = i;
4788 print_port_info(adapter->port[i]);
b8ff05a9 4789 }
b1a3c2b6 4790 if (i == 0) {
b8ff05a9
DM
4791 dev_err(&pdev->dev, "could not register any net devices\n");
4792 goto out_free_dev;
4793 }
b1a3c2b6
DM
4794 if (err) {
4795 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4796 err = 0;
6403eab1 4797 }
b8ff05a9
DM
4798
4799 if (cxgb4_debugfs_root) {
4800 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4801 cxgb4_debugfs_root);
4802 setup_debugfs(adapter);
4803 }
4804
6482aa7c
DLR
4805 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4806 pdev->needs_freset = 1;
4807
b8ff05a9
DM
4808 if (is_offload(adapter))
4809 attach_ulds(adapter);
4810
8e1e6059 4811sriov:
b8ff05a9 4812#ifdef CONFIG_PCI_IOV
7d6727cf 4813 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
4814 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4815 dev_info(&pdev->dev,
4816 "instantiated %u virtual functions\n",
4817 num_vf[func]);
4818#endif
4819 return 0;
4820
4821 out_free_dev:
06546391 4822 free_some_resources(adapter);
b8ff05a9 4823 out_unmap_bar:
d14807dd 4824 if (!is_t4(adapter->params.chip))
22adfe0a 4825 iounmap(adapter->bar2);
b8ff05a9 4826 out_free_adapter:
29aaee65
AB
4827 if (adapter->workq)
4828 destroy_workqueue(adapter->workq);
4829
b8ff05a9 4830 kfree(adapter);
d6ce2628
HS
4831 out_unmap_bar0:
4832 iounmap(regs);
b8ff05a9
DM
4833 out_disable_device:
4834 pci_disable_pcie_error_reporting(pdev);
4835 pci_disable_device(pdev);
4836 out_release_regions:
4837 pci_release_regions(pdev);
b8ff05a9
DM
4838 return err;
4839}
4840
91744948 4841static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
4842{
4843 struct adapter *adapter = pci_get_drvdata(pdev);
4844
636f9d37 4845#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
4846 pci_disable_sriov(pdev);
4847
636f9d37
VP
4848#endif
4849
b8ff05a9
DM
4850 if (adapter) {
4851 int i;
4852
29aaee65
AB
4853 /* Tear down per-adapter Work Queue first since it can contain
4854 * references to our adapter data structure.
4855 */
4856 destroy_workqueue(adapter->workq);
4857
b8ff05a9
DM
4858 if (is_offload(adapter))
4859 detach_ulds(adapter);
4860
b37987e8
HS
4861 disable_interrupts(adapter);
4862
b8ff05a9 4863 for_each_port(adapter, i)
8f3a7676 4864 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
4865 unregister_netdev(adapter->port[i]);
4866
9f16dc2e 4867 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 4868
f2b7e78d
VP
4869 /* If we allocated filters, free up state associated with any
4870 * valid filters ...
4871 */
4872 if (adapter->tids.ftid_tab) {
4873 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
4874 for (i = 0; i < (adapter->tids.nftids +
4875 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
4876 if (f->valid)
4877 clear_filter(adapter, f);
4878 }
4879
aaefae9b
DM
4880 if (adapter->flags & FULL_INIT_DONE)
4881 cxgb_down(adapter);
b8ff05a9 4882
06546391 4883 free_some_resources(adapter);
b5a02f50
AB
4884#if IS_ENABLED(CONFIG_IPV6)
4885 t4_cleanup_clip_tbl(adapter);
4886#endif
b8ff05a9 4887 iounmap(adapter->regs);
d14807dd 4888 if (!is_t4(adapter->params.chip))
22adfe0a 4889 iounmap(adapter->bar2);
b8ff05a9 4890 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
4891 if ((adapter->flags & DEV_ENABLED)) {
4892 pci_disable_device(pdev);
4893 adapter->flags &= ~DEV_ENABLED;
4894 }
b8ff05a9 4895 pci_release_regions(pdev);
ee9a33b2 4896 synchronize_rcu();
8b662fe7 4897 kfree(adapter);
a069ec91 4898 } else
b8ff05a9
DM
4899 pci_release_regions(pdev);
4900}
4901
4902static struct pci_driver cxgb4_driver = {
4903 .name = KBUILD_MODNAME,
4904 .id_table = cxgb4_pci_tbl,
4905 .probe = init_one,
91744948 4906 .remove = remove_one,
687d705c 4907 .shutdown = remove_one,
204dc3c0 4908 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
4909};
4910
4911static int __init cxgb4_init_module(void)
4912{
4913 int ret;
4914
4915 /* Debugfs support is optional, just warn if this fails */
4916 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4917 if (!cxgb4_debugfs_root)
428ac43f 4918 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
4919
4920 ret = pci_register_driver(&cxgb4_driver);
29aaee65 4921 if (ret < 0)
b8ff05a9 4922 debugfs_remove(cxgb4_debugfs_root);
01bcca68 4923
1bb60376 4924#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
4925 if (!inet6addr_registered) {
4926 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4927 inet6addr_registered = true;
4928 }
1bb60376 4929#endif
01bcca68 4930
b8ff05a9
DM
4931 return ret;
4932}
4933
4934static void __exit cxgb4_cleanup_module(void)
4935{
1bb60376 4936#if IS_ENABLED(CONFIG_IPV6)
1793c798 4937 if (inet6addr_registered) {
b5a02f50
AB
4938 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4939 inet6addr_registered = false;
4940 }
1bb60376 4941#endif
b8ff05a9
DM
4942 pci_unregister_driver(&cxgb4_driver);
4943 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
4944}
4945
4946module_init(cxgb4_init_module);
4947module_exit(cxgb4_cleanup_module);