]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4: Differentiates between TIDs being used in TCAM and HASH
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
812034f1
HS
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
01bcca68
VP
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
3a7f8554 84#define DRV_VERSION "2.0.0-ko"
812034f1 85const char cxgb4_driver_version[] = DRV_VERSION;
3a7f8554 86#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9 87
f2b7e78d
VP
88/* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110};
111
b8ff05a9
DM
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
3fedeab1
HS
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 119 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 121
3fedeab1
HS
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134#include "t4_pci_id_tbl.h"
b8ff05a9 135
16e47624 136#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 137#define FW5_FNAME "cxgb4/t5fw.bin"
3ccc6cf7 138#define FW6_FNAME "cxgb4/t6fw.bin"
16e47624 139#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 140#define FW5_CFNAME "cxgb4/t5-config.txt"
3ccc6cf7 141#define FW6_CFNAME "cxgb4/t6-config.txt"
01b69614
HS
142#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144#define PHY_AQ1202_DEVICEID 0x4409
145#define PHY_BCM84834_DEVICEID 0x4486
b8ff05a9
DM
146
147MODULE_DESCRIPTION(DRV_DESC);
148MODULE_AUTHOR("Chelsio Communications");
149MODULE_LICENSE("Dual BSD/GPL");
150MODULE_VERSION(DRV_VERSION);
151MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 152MODULE_FIRMWARE(FW4_FNAME);
0a57a536 153MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 154
636f9d37
VP
155/*
156 * Normally we're willing to become the firmware's Master PF but will be happy
157 * if another PF has already become the Master and initialized the adapter.
158 * Setting "force_init" will cause this driver to forcibly establish itself as
159 * the Master PF and initialize the adapter.
160 */
161static uint force_init;
162
163module_param(force_init, uint, 0644);
164MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
165
13ee15d3
VP
166/*
167 * Normally if the firmware we connect to has Configuration File support, we
168 * use that and only fall back to the old Driver-based initialization if the
169 * Configuration File fails for some reason. If force_old_init is set, then
170 * we'll always use the old Driver-based initialization sequence.
171 */
172static uint force_old_init;
173
174module_param(force_old_init, uint, 0644);
06640310
HS
175MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
176 " parameter");
13ee15d3 177
b8ff05a9
DM
178static int dflt_msg_enable = DFLT_MSG_ENABLE;
179
180module_param(dflt_msg_enable, int, 0644);
181MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
182
183/*
184 * The driver uses the best interrupt scheme available on a platform in the
185 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
186 * of these schemes the driver may consider as follows:
187 *
188 * msi = 2: choose from among all three options
189 * msi = 1: only consider MSI and INTx interrupts
190 * msi = 0: force INTx interrupts
191 */
192static int msi = 2;
193
194module_param(msi, int, 0644);
195MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
196
197/*
198 * Queue interrupt hold-off timer values. Queues default to the first of these
199 * upon creation.
200 */
201static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
202
203module_param_array(intr_holdoff, uint, NULL, 0644);
204MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 205 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
206
207static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
208
209module_param_array(intr_cnt, uint, NULL, 0644);
210MODULE_PARM_DESC(intr_cnt,
06640310
HS
211 "thresholds 1..3 for queue interrupt packet counters, "
212 "deprecated parameter");
b8ff05a9 213
636f9d37
VP
214/*
215 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
216 * offset by 2 bytes in order to have the IP headers line up on 4-byte
217 * boundaries. This is a requirement for many architectures which will throw
218 * a machine check fault if an attempt is made to access one of the 4-byte IP
219 * header fields on a non-4-byte boundary. And it's a major performance issue
220 * even on some architectures which allow it like some implementations of the
221 * x86 ISA. However, some architectures don't mind this and for some very
222 * edge-case performance sensitive applications (like forwarding large volumes
223 * of small packets), setting this DMA offset to 0 will decrease the number of
224 * PCI-E Bus transfers enough to measurably affect performance.
225 */
226static int rx_dma_offset = 2;
227
eb939922 228static bool vf_acls;
b8ff05a9
DM
229
230#ifdef CONFIG_PCI_IOV
231module_param(vf_acls, bool, 0644);
06640310
HS
232MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
233 "deprecated parameter");
b8ff05a9 234
7d6727cf
SR
235/* Configure the number of PCI-E Virtual Function which are to be instantiated
236 * on SR-IOV Capable Physical Functions.
0a57a536 237 */
7d6727cf 238static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
239
240module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 241MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
242#endif
243
688848b1
AB
244/* TX Queue select used to determine what algorithm to use for selecting TX
245 * queue. Select between the kernel provided function (select_queue=0) or user
246 * cxgb_select_queue function (select_queue=1)
247 *
248 * Default: select_queue=0
249 */
250static int select_queue;
251module_param(select_queue, int, 0644);
252MODULE_PARM_DESC(select_queue,
253 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
254
06640310 255static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 256
f2b7e78d 257module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
258MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
259 "deprecated parameter");
f2b7e78d 260
b8ff05a9
DM
261static struct dentry *cxgb4_debugfs_root;
262
263static LIST_HEAD(adapter_list);
264static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
265/* Adapter list to be accessed from atomic context */
266static LIST_HEAD(adap_rcu_list);
267static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
268static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
269static const char *uld_str[] = { "RDMA", "iSCSI" };
270
271static void link_report(struct net_device *dev)
272{
273 if (!netif_carrier_ok(dev))
274 netdev_info(dev, "link down\n");
275 else {
276 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
277
278 const char *s = "10Mbps";
279 const struct port_info *p = netdev_priv(dev);
280
281 switch (p->link_cfg.speed) {
e8b39015 282 case 10000:
b8ff05a9
DM
283 s = "10Gbps";
284 break;
e8b39015 285 case 1000:
b8ff05a9
DM
286 s = "1000Mbps";
287 break;
e8b39015 288 case 100:
b8ff05a9
DM
289 s = "100Mbps";
290 break;
e8b39015 291 case 40000:
72aca4bf
KS
292 s = "40Gbps";
293 break;
b8ff05a9
DM
294 }
295
296 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
297 fc[p->link_cfg.fc]);
298 }
299}
300
688848b1
AB
301#ifdef CONFIG_CHELSIO_T4_DCB
302/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
303static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
304{
305 struct port_info *pi = netdev_priv(dev);
306 struct adapter *adap = pi->adapter;
307 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
308 int i;
309
310 /* We use a simple mapping of Port TX Queue Index to DCB
311 * Priority when we're enabling DCB.
312 */
313 for (i = 0; i < pi->nqsets; i++, txq++) {
314 u32 name, value;
315 int err;
316
5167865a
HS
317 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
318 FW_PARAMS_PARAM_X_V(
319 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
320 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
321 value = enable ? i : 0xffffffff;
322
323 /* Since we can be called while atomic (from "interrupt
324 * level") we need to issue the Set Parameters Commannd
325 * without sleeping (timeout < 0).
326 */
b2612722 327 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
328 &name, &value,
329 -FW_CMD_MAX_TIMEOUT);
688848b1
AB
330
331 if (err)
332 dev_err(adap->pdev_dev,
333 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
334 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
335 else
336 txq->dcb_prio = value;
688848b1
AB
337 }
338}
339#endif /* CONFIG_CHELSIO_T4_DCB */
340
b8ff05a9
DM
341void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
342{
343 struct net_device *dev = adapter->port[port_id];
344
345 /* Skip changes from disabled ports. */
346 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
347 if (link_stat)
348 netif_carrier_on(dev);
688848b1
AB
349 else {
350#ifdef CONFIG_CHELSIO_T4_DCB
351 cxgb4_dcb_state_init(dev);
352 dcb_tx_queue_prio_enable(dev, false);
353#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 354 netif_carrier_off(dev);
688848b1 355 }
b8ff05a9
DM
356
357 link_report(dev);
358 }
359}
360
361void t4_os_portmod_changed(const struct adapter *adap, int port_id)
362{
363 static const char *mod_str[] = {
a0881cab 364 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
365 };
366
367 const struct net_device *dev = adap->port[port_id];
368 const struct port_info *pi = netdev_priv(dev);
369
370 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
371 netdev_info(dev, "port module unplugged\n");
a0881cab 372 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
373 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
374}
375
376/*
377 * Configure the exact and hash address filters to handle a port's multicast
378 * and secondary unicast MAC addresses.
379 */
380static int set_addr_filters(const struct net_device *dev, bool sleep)
381{
382 u64 mhash = 0;
383 u64 uhash = 0;
384 bool free = true;
385 u16 filt_idx[7];
386 const u8 *addr[7];
387 int ret, naddr = 0;
b8ff05a9
DM
388 const struct netdev_hw_addr *ha;
389 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 390 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 391 const struct port_info *pi = netdev_priv(dev);
b2612722 392 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
393
394 /* first do the secondary unicast addresses */
395 netdev_for_each_uc_addr(ha, dev) {
396 addr[naddr++] = ha->addr;
397 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 398 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
399 naddr, addr, filt_idx, &uhash, sleep);
400 if (ret < 0)
401 return ret;
402
403 free = false;
404 naddr = 0;
405 }
406 }
407
408 /* next set up the multicast addresses */
4a35ecf8
DM
409 netdev_for_each_mc_addr(ha, dev) {
410 addr[naddr++] = ha->addr;
411 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 412 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
413 naddr, addr, filt_idx, &mhash, sleep);
414 if (ret < 0)
415 return ret;
416
417 free = false;
418 naddr = 0;
419 }
420 }
421
060e0c75 422 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
423 uhash | mhash, sleep);
424}
425
3069ee9b
VP
426int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
427module_param(dbfifo_int_thresh, int, 0644);
428MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
429
404d9e3f
VP
430/*
431 * usecs to sleep while draining the dbfifo
432 */
433static int dbfifo_drain_delay = 1000;
3069ee9b
VP
434module_param(dbfifo_drain_delay, int, 0644);
435MODULE_PARM_DESC(dbfifo_drain_delay,
436 "usecs to sleep while draining the dbfifo");
437
b8ff05a9
DM
438/*
439 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
440 * If @mtu is -1 it is left unchanged.
441 */
442static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
443{
444 int ret;
445 struct port_info *pi = netdev_priv(dev);
446
447 ret = set_addr_filters(dev, sleep_ok);
448 if (ret == 0)
b2612722 449 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
b8ff05a9 450 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 451 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
452 sleep_ok);
453 return ret;
454}
455
456/**
457 * link_start - enable a port
458 * @dev: the port to enable
459 *
460 * Performs the MAC and PHY actions needed to enable a port.
461 */
462static int link_start(struct net_device *dev)
463{
464 int ret;
465 struct port_info *pi = netdev_priv(dev);
b2612722 466 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
467
468 /*
469 * We do not set address filters and promiscuity here, the stack does
470 * that step explicitly.
471 */
060e0c75 472 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 473 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 474 if (ret == 0) {
060e0c75 475 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 476 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 477 true);
b8ff05a9
DM
478 if (ret >= 0) {
479 pi->xact_addr_filt = ret;
480 ret = 0;
481 }
482 }
483 if (ret == 0)
4036da90 484 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
060e0c75 485 &pi->link_cfg);
30f00847
AB
486 if (ret == 0) {
487 local_bh_disable();
688848b1
AB
488 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
489 true, CXGB4_DCB_ENABLED);
30f00847
AB
490 local_bh_enable();
491 }
688848b1 492
b8ff05a9
DM
493 return ret;
494}
495
688848b1
AB
496int cxgb4_dcb_enabled(const struct net_device *dev)
497{
498#ifdef CONFIG_CHELSIO_T4_DCB
499 struct port_info *pi = netdev_priv(dev);
500
3bb06261
AB
501 if (!pi->dcb.enabled)
502 return 0;
503
504 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
505 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
506#else
507 return 0;
508#endif
509}
510EXPORT_SYMBOL(cxgb4_dcb_enabled);
511
512#ifdef CONFIG_CHELSIO_T4_DCB
513/* Handle a Data Center Bridging update message from the firmware. */
514static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
515{
2b5fb1f2 516 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
517 struct net_device *dev = adap->port[port];
518 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
519 int new_dcb_enabled;
520
521 cxgb4_dcb_handle_fw_update(adap, pcmd);
522 new_dcb_enabled = cxgb4_dcb_enabled(dev);
523
524 /* If the DCB has become enabled or disabled on the port then we're
525 * going to need to set up/tear down DCB Priority parameters for the
526 * TX Queues associated with the port.
527 */
528 if (new_dcb_enabled != old_dcb_enabled)
529 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
530}
531#endif /* CONFIG_CHELSIO_T4_DCB */
532
f2b7e78d
VP
533/* Clear a filter and release any of its resources that we own. This also
534 * clears the filter's "pending" status.
535 */
536static void clear_filter(struct adapter *adap, struct filter_entry *f)
537{
538 /* If the new or old filter have loopback rewriteing rules then we'll
539 * need to free any existing Layer Two Table (L2T) entries of the old
540 * filter rule. The firmware will handle freeing up any Source MAC
541 * Table (SMT) entries used for rewriting Source MAC Addresses in
542 * loopback rules.
543 */
544 if (f->l2t)
545 cxgb4_l2t_release(f->l2t);
546
547 /* The zeroing of the filter rule below clears the filter valid,
548 * pending, locked flags, l2t pointer, etc. so it's all we need for
549 * this operation.
550 */
551 memset(f, 0, sizeof(*f));
552}
553
554/* Handle a filter write/deletion reply.
555 */
556static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
557{
558 unsigned int idx = GET_TID(rpl);
559 unsigned int nidx = idx - adap->tids.ftid_base;
560 unsigned int ret;
561 struct filter_entry *f;
562
563 if (idx >= adap->tids.ftid_base && nidx <
564 (adap->tids.nftids + adap->tids.nsftids)) {
565 idx = nidx;
bdc590b9 566 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
567 f = &adap->tids.ftid_tab[idx];
568
569 if (ret == FW_FILTER_WR_FLT_DELETED) {
570 /* Clear the filter when we get confirmation from the
571 * hardware that the filter has been deleted.
572 */
573 clear_filter(adap, f);
574 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
575 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
576 idx);
577 clear_filter(adap, f);
578 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
579 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
580 f->pending = 0; /* asynchronous setup completed */
581 f->valid = 1;
582 } else {
583 /* Something went wrong. Issue a warning about the
584 * problem and clear everything out.
585 */
586 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
587 idx, ret);
588 clear_filter(adap, f);
589 }
590 }
591}
592
593/* Response queue handler for the FW event queue.
b8ff05a9
DM
594 */
595static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
596 const struct pkt_gl *gl)
597{
598 u8 opcode = ((const struct rss_header *)rsp)->opcode;
599
600 rsp++; /* skip RSS header */
b407a4a9
VP
601
602 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
603 */
604 if (unlikely(opcode == CPL_FW4_MSG &&
605 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
606 rsp++;
607 opcode = ((const struct rss_header *)rsp)->opcode;
608 rsp++;
609 if (opcode != CPL_SGE_EGR_UPDATE) {
610 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
611 , opcode);
612 goto out;
613 }
614 }
615
b8ff05a9
DM
616 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
617 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 618 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 619 struct sge_txq *txq;
b8ff05a9 620
e46dab4d 621 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 622 txq->restarts++;
e46dab4d 623 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
624 struct sge_eth_txq *eq;
625
626 eq = container_of(txq, struct sge_eth_txq, q);
627 netif_tx_wake_queue(eq->txq);
628 } else {
629 struct sge_ofld_txq *oq;
630
631 oq = container_of(txq, struct sge_ofld_txq, q);
632 tasklet_schedule(&oq->qresume_tsk);
633 }
634 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
635 const struct cpl_fw6_msg *p = (void *)rsp;
636
688848b1
AB
637#ifdef CONFIG_CHELSIO_T4_DCB
638 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 639 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 640 unsigned int action =
2b5fb1f2 641 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
642
643 if (cmd == FW_PORT_CMD &&
644 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 645 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
646 be32_to_cpu(pcmd->op_to_portid));
647 struct net_device *dev = q->adap->port[port];
648 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 649 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
650 ? CXGB4_DCB_INPUT_FW_DISABLED
651 : CXGB4_DCB_INPUT_FW_ENABLED);
652
653 cxgb4_dcb_state_fsm(dev, state_input);
654 }
655
656 if (cmd == FW_PORT_CMD &&
657 action == FW_PORT_ACTION_L2_DCB_CFG)
658 dcb_rpl(q->adap, pcmd);
659 else
660#endif
661 if (p->type == 0)
662 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
663 } else if (opcode == CPL_L2T_WRITE_RPL) {
664 const struct cpl_l2t_write_rpl *p = (void *)rsp;
665
666 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
667 } else if (opcode == CPL_SET_TCB_RPL) {
668 const struct cpl_set_tcb_rpl *p = (void *)rsp;
669
670 filter_rpl(q->adap, p);
b8ff05a9
DM
671 } else
672 dev_err(q->adap->pdev_dev,
673 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 674out:
b8ff05a9
DM
675 return 0;
676}
677
678/**
679 * uldrx_handler - response queue handler for ULD queues
680 * @q: the response queue that received the packet
681 * @rsp: the response queue descriptor holding the offload message
682 * @gl: the gather list of packet fragments
683 *
684 * Deliver an ingress offload packet to a ULD. All processing is done by
685 * the ULD, we just maintain statistics.
686 */
687static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
688 const struct pkt_gl *gl)
689{
690 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
691
b407a4a9
VP
692 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
693 */
694 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
695 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
696 rsp += 2;
697
b8ff05a9
DM
698 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
699 rxq->stats.nomem++;
700 return -1;
701 }
702 if (gl == NULL)
703 rxq->stats.imm++;
704 else if (gl == CXGB4_MSG_AN)
705 rxq->stats.an++;
706 else
707 rxq->stats.pkts++;
708 return 0;
709}
710
711static void disable_msi(struct adapter *adapter)
712{
713 if (adapter->flags & USING_MSIX) {
714 pci_disable_msix(adapter->pdev);
715 adapter->flags &= ~USING_MSIX;
716 } else if (adapter->flags & USING_MSI) {
717 pci_disable_msi(adapter->pdev);
718 adapter->flags &= ~USING_MSI;
719 }
720}
721
722/*
723 * Interrupt handler for non-data events used with MSI-X.
724 */
725static irqreturn_t t4_nondata_intr(int irq, void *cookie)
726{
727 struct adapter *adap = cookie;
0d804338 728 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 729
0d804338 730 if (v & PFSW_F) {
b8ff05a9 731 adap->swintr = 1;
0d804338 732 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 733 }
c3c7b121
HS
734 if (adap->flags & MASTER_PF)
735 t4_slow_intr_handler(adap);
b8ff05a9
DM
736 return IRQ_HANDLED;
737}
738
739/*
740 * Name the MSI-X interrupts.
741 */
742static void name_msix_vecs(struct adapter *adap)
743{
ba27816c 744 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
745
746 /* non-data interrupts */
b1a3c2b6 747 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
748
749 /* FW events */
b1a3c2b6
DM
750 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
751 adap->port[0]->name);
b8ff05a9
DM
752
753 /* Ethernet queues */
754 for_each_port(adap, j) {
755 struct net_device *d = adap->port[j];
756 const struct port_info *pi = netdev_priv(d);
757
ba27816c 758 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
759 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
760 d->name, i);
b8ff05a9
DM
761 }
762
763 /* offload queues */
ba27816c
DM
764 for_each_ofldrxq(&adap->sge, i)
765 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 766 adap->port[0]->name, i);
ba27816c
DM
767
768 for_each_rdmarxq(&adap->sge, i)
769 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 770 adap->port[0]->name, i);
cf38be6d
HS
771
772 for_each_rdmaciq(&adap->sge, i)
773 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
774 adap->port[0]->name, i);
b8ff05a9
DM
775}
776
777static int request_msix_queue_irqs(struct adapter *adap)
778{
779 struct sge *s = &adap->sge;
cf38be6d
HS
780 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
781 int msi_index = 2;
b8ff05a9
DM
782
783 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
784 adap->msix_info[1].desc, &s->fw_evtq);
785 if (err)
786 return err;
787
788 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
789 err = request_irq(adap->msix_info[msi_index].vec,
790 t4_sge_intr_msix, 0,
791 adap->msix_info[msi_index].desc,
b8ff05a9
DM
792 &s->ethrxq[ethqidx].rspq);
793 if (err)
794 goto unwind;
404d9e3f 795 msi_index++;
b8ff05a9
DM
796 }
797 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
798 err = request_irq(adap->msix_info[msi_index].vec,
799 t4_sge_intr_msix, 0,
800 adap->msix_info[msi_index].desc,
b8ff05a9
DM
801 &s->ofldrxq[ofldqidx].rspq);
802 if (err)
803 goto unwind;
404d9e3f 804 msi_index++;
b8ff05a9
DM
805 }
806 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
807 err = request_irq(adap->msix_info[msi_index].vec,
808 t4_sge_intr_msix, 0,
809 adap->msix_info[msi_index].desc,
b8ff05a9
DM
810 &s->rdmarxq[rdmaqidx].rspq);
811 if (err)
812 goto unwind;
404d9e3f 813 msi_index++;
b8ff05a9 814 }
cf38be6d
HS
815 for_each_rdmaciq(s, rdmaciqqidx) {
816 err = request_irq(adap->msix_info[msi_index].vec,
817 t4_sge_intr_msix, 0,
818 adap->msix_info[msi_index].desc,
819 &s->rdmaciq[rdmaciqqidx].rspq);
820 if (err)
821 goto unwind;
822 msi_index++;
823 }
b8ff05a9
DM
824 return 0;
825
826unwind:
cf38be6d
HS
827 while (--rdmaciqqidx >= 0)
828 free_irq(adap->msix_info[--msi_index].vec,
829 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 830 while (--rdmaqidx >= 0)
404d9e3f 831 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
832 &s->rdmarxq[rdmaqidx].rspq);
833 while (--ofldqidx >= 0)
404d9e3f 834 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
835 &s->ofldrxq[ofldqidx].rspq);
836 while (--ethqidx >= 0)
404d9e3f
VP
837 free_irq(adap->msix_info[--msi_index].vec,
838 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
839 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
840 return err;
841}
842
843static void free_msix_queue_irqs(struct adapter *adap)
844{
404d9e3f 845 int i, msi_index = 2;
b8ff05a9
DM
846 struct sge *s = &adap->sge;
847
848 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
849 for_each_ethrxq(s, i)
404d9e3f 850 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 851 for_each_ofldrxq(s, i)
404d9e3f 852 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 853 for_each_rdmarxq(s, i)
404d9e3f 854 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
855 for_each_rdmaciq(s, i)
856 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
857}
858
671b0060 859/**
812034f1 860 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
861 * @pi: the port
862 * @queues: array of queue indices for RSS
863 *
864 * Sets up the portion of the HW RSS table for the port's VI to distribute
865 * packets to the Rx queues in @queues.
c035e183 866 * Should never be called before setting up sge eth rx queues
671b0060 867 */
812034f1 868int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
869{
870 u16 *rss;
871 int i, err;
c035e183
HS
872 struct adapter *adapter = pi->adapter;
873 const struct sge_eth_rxq *rxq;
671b0060 874
c035e183 875 rxq = &adapter->sge.ethrxq[pi->first_qset];
671b0060
DM
876 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
877 if (!rss)
878 return -ENOMEM;
879
880 /* map the queue indices to queue ids */
881 for (i = 0; i < pi->rss_size; i++, queues++)
c035e183 882 rss[i] = rxq[*queues].rspq.abs_id;
671b0060 883
b2612722 884 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
060e0c75 885 pi->rss_size, rss, pi->rss_size);
c035e183
HS
886 /* If Tunnel All Lookup isn't specified in the global RSS
887 * Configuration, then we need to specify a default Ingress
888 * Queue for any ingress packets which aren't hashed. We'll
889 * use our first ingress queue ...
890 */
891 if (!err)
892 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
893 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
894 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
895 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
896 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
897 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
898 rss[0]);
671b0060
DM
899 kfree(rss);
900 return err;
901}
902
b8ff05a9
DM
903/**
904 * setup_rss - configure RSS
905 * @adap: the adapter
906 *
671b0060 907 * Sets up RSS for each port.
b8ff05a9
DM
908 */
909static int setup_rss(struct adapter *adap)
910{
c035e183 911 int i, j, err;
b8ff05a9
DM
912
913 for_each_port(adap, i) {
914 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 915
c035e183
HS
916 /* Fill default values with equal distribution */
917 for (j = 0; j < pi->rss_size; j++)
918 pi->rss[j] = j % pi->nqsets;
919
812034f1 920 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
921 if (err)
922 return err;
923 }
924 return 0;
925}
926
e46dab4d
DM
927/*
928 * Return the channel of the ingress queue with the given qid.
929 */
930static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
931{
932 qid -= p->ingr_start;
933 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
934}
935
b8ff05a9
DM
936/*
937 * Wait until all NAPI handlers are descheduled.
938 */
939static void quiesce_rx(struct adapter *adap)
940{
941 int i;
942
4b8e27a8 943 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
944 struct sge_rspq *q = adap->sge.ingr_map[i];
945
3a336cb1 946 if (q && q->handler) {
b8ff05a9 947 napi_disable(&q->napi);
3a336cb1
HS
948 local_bh_disable();
949 while (!cxgb_poll_lock_napi(q))
950 mdelay(1);
951 local_bh_enable();
952 }
953
b8ff05a9
DM
954 }
955}
956
b37987e8
HS
957/* Disable interrupt and napi handler */
958static void disable_interrupts(struct adapter *adap)
959{
960 if (adap->flags & FULL_INIT_DONE) {
961 t4_intr_disable(adap);
962 if (adap->flags & USING_MSIX) {
963 free_msix_queue_irqs(adap);
964 free_irq(adap->msix_info[0].vec, adap);
965 } else {
966 free_irq(adap->pdev->irq, adap);
967 }
968 quiesce_rx(adap);
969 }
970}
971
b8ff05a9
DM
972/*
973 * Enable NAPI scheduling and interrupt generation for all Rx queues.
974 */
975static void enable_rx(struct adapter *adap)
976{
977 int i;
978
4b8e27a8 979 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
980 struct sge_rspq *q = adap->sge.ingr_map[i];
981
982 if (!q)
983 continue;
3a336cb1
HS
984 if (q->handler) {
985 cxgb_busy_poll_init_lock(q);
b8ff05a9 986 napi_enable(&q->napi);
3a336cb1 987 }
b8ff05a9 988 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
989 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
990 SEINTARM_V(q->intr_params) |
991 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
992 }
993}
994
1c6a5b0e
HS
995static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
996 unsigned int nq, unsigned int per_chan, int msi_idx,
997 u16 *ids)
998{
999 int i, err;
1000
1001 for (i = 0; i < nq; i++, q++) {
1002 if (msi_idx > 0)
1003 msi_idx++;
1004 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1005 adap->port[i / per_chan],
1006 msi_idx, q->fl.size ? &q->fl : NULL,
145ef8a5 1007 uldrx_handler, 0);
1c6a5b0e
HS
1008 if (err)
1009 return err;
1010 memset(&q->stats, 0, sizeof(q->stats));
1011 if (ids)
1012 ids[i] = q->rspq.abs_id;
1013 }
1014 return 0;
1015}
1016
b8ff05a9
DM
1017/**
1018 * setup_sge_queues - configure SGE Tx/Rx/response queues
1019 * @adap: the adapter
1020 *
1021 * Determines how many sets of SGE queues to use and initializes them.
1022 * We support multiple queue sets per port if we have MSI-X, otherwise
1023 * just one queue set per port.
1024 */
1025static int setup_sge_queues(struct adapter *adap)
1026{
1027 int err, msi_idx, i, j;
1028 struct sge *s = &adap->sge;
1029
4b8e27a8
HS
1030 bitmap_zero(s->starving_fl, s->egr_sz);
1031 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1032
1033 if (adap->flags & USING_MSIX)
1034 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1035 else {
1036 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
145ef8a5 1037 NULL, NULL, -1);
b8ff05a9
DM
1038 if (err)
1039 return err;
1040 msi_idx = -((int)s->intrq.abs_id + 1);
1041 }
1042
4b8e27a8
HS
1043 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1044 * don't forget to update the following which need to be
1045 * synchronized to and changes here.
1046 *
1047 * 1. The calculations of MAX_INGQ in cxgb4.h.
1048 *
1049 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1050 * to accommodate any new/deleted Ingress Queues
1051 * which need MSI-X Vectors.
1052 *
1053 * 3. Update sge_qinfo_show() to include information on the
1054 * new/deleted queues.
1055 */
b8ff05a9 1056 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
145ef8a5 1057 msi_idx, NULL, fwevtq_handler, -1);
b8ff05a9
DM
1058 if (err) {
1059freeout: t4_free_sge_resources(adap);
1060 return err;
1061 }
1062
1063 for_each_port(adap, i) {
1064 struct net_device *dev = adap->port[i];
1065 struct port_info *pi = netdev_priv(dev);
1066 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1067 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1068
1069 for (j = 0; j < pi->nqsets; j++, q++) {
1070 if (msi_idx > 0)
1071 msi_idx++;
1072 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1073 msi_idx, &q->fl,
145ef8a5
HS
1074 t4_ethrx_handler,
1075 t4_get_mps_bg_map(adap,
1076 pi->tx_chan));
b8ff05a9
DM
1077 if (err)
1078 goto freeout;
1079 q->rspq.idx = j;
1080 memset(&q->stats, 0, sizeof(q->stats));
1081 }
1082 for (j = 0; j < pi->nqsets; j++, t++) {
1083 err = t4_sge_alloc_eth_txq(adap, t, dev,
1084 netdev_get_tx_queue(dev, j),
1085 s->fw_evtq.cntxt_id);
1086 if (err)
1087 goto freeout;
1088 }
1089 }
1090
1091 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1092 for_each_ofldrxq(s, i) {
1c6a5b0e
HS
1093 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1094 adap->port[i / j],
b8ff05a9
DM
1095 s->fw_evtq.cntxt_id);
1096 if (err)
1097 goto freeout;
1098 }
1099
1c6a5b0e
HS
1100#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1101 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1102 if (err) \
1103 goto freeout; \
1104 if (msi_idx > 0) \
1105 msi_idx += nq; \
1106} while (0)
b8ff05a9 1107
1c6a5b0e
HS
1108 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1109 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
f36e58e5
HS
1110 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1111 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
b8ff05a9 1112
1c6a5b0e 1113#undef ALLOC_OFLD_RXQS
cf38be6d 1114
b8ff05a9
DM
1115 for_each_port(adap, i) {
1116 /*
1117 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1118 * have RDMA queues, and that's the right value.
1119 */
1120 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1121 s->fw_evtq.cntxt_id,
1122 s->rdmarxq[i].rspq.cntxt_id);
1123 if (err)
1124 goto freeout;
1125 }
1126
9bb59b96 1127 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1128 MPS_TRC_RSS_CONTROL_A :
1129 MPS_T5_TRC_RSS_CONTROL_A,
1130 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1131 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1132 return 0;
1133}
1134
b8ff05a9
DM
1135/*
1136 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1137 * The allocated memory is cleared.
1138 */
1139void *t4_alloc_mem(size_t size)
1140{
8be04b93 1141 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1142
1143 if (!p)
89bf67f1 1144 p = vzalloc(size);
b8ff05a9
DM
1145 return p;
1146}
1147
1148/*
1149 * Free memory allocated through alloc_mem().
1150 */
fd88b31a 1151void t4_free_mem(void *addr)
b8ff05a9 1152{
d2fcb548 1153 kvfree(addr);
b8ff05a9
DM
1154}
1155
f2b7e78d
VP
1156/* Send a Work Request to write the filter at a specified index. We construct
1157 * a Firmware Filter Work Request to have the work done and put the indicated
1158 * filter into "pending" mode which will prevent any further actions against
1159 * it till we get a reply from the firmware on the completion status of the
1160 * request.
1161 */
1162static int set_filter_wr(struct adapter *adapter, int fidx)
1163{
1164 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1165 struct sk_buff *skb;
1166 struct fw_filter_wr *fwr;
1167 unsigned int ftid;
1168
f72f116a
MH
1169 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1170 if (!skb)
1171 return -ENOMEM;
1172
f2b7e78d
VP
1173 /* If the new filter requires loopback Destination MAC and/or VLAN
1174 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1175 * the filter.
1176 */
1177 if (f->fs.newdmac || f->fs.newvlan) {
1178 /* allocate L2T entry for new filter */
1179 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
f72f116a
MH
1180 if (f->l2t == NULL) {
1181 kfree_skb(skb);
f2b7e78d 1182 return -EAGAIN;
f72f116a 1183 }
f2b7e78d
VP
1184 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1185 f->fs.eport, f->fs.dmac)) {
1186 cxgb4_l2t_release(f->l2t);
1187 f->l2t = NULL;
f72f116a 1188 kfree_skb(skb);
f2b7e78d
VP
1189 return -ENOMEM;
1190 }
1191 }
1192
1193 ftid = adapter->tids.ftid_base + fidx;
1194
f2b7e78d
VP
1195 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1196 memset(fwr, 0, sizeof(*fwr));
1197
1198 /* It would be nice to put most of the following in t4_hw.c but most
1199 * of the work is translating the cxgbtool ch_filter_specification
1200 * into the Work Request and the definition of that structure is
1201 * currently in cxgbtool.h which isn't appropriate to pull into the
1202 * common code. We may eventually try to come up with a more neutral
1203 * filter specification structure but for now it's easiest to simply
1204 * put this fairly direct code in line ...
1205 */
e2ac9628
HS
1206 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1207 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1208 fwr->tid_to_iq =
77a80e23
HS
1209 htonl(FW_FILTER_WR_TID_V(ftid) |
1210 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1211 FW_FILTER_WR_NOREPLY_V(0) |
1212 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1213 fwr->del_filter_to_l2tix =
77a80e23
HS
1214 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1215 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1216 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1217 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1218 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1219 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1220 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1221 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1222 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1223 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1224 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1225 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1226 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1227 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1228 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1229 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1230 fwr->ethtype = htons(f->fs.val.ethtype);
1231 fwr->ethtypem = htons(f->fs.mask.ethtype);
1232 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1233 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1234 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1235 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1236 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1237 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1238 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1239 fwr->smac_sel = 0;
1240 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1241 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1242 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1243 fwr->maci_to_matchtypem =
77a80e23
HS
1244 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1245 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1246 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1247 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1248 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1249 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1250 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1251 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1252 fwr->ptcl = f->fs.val.proto;
1253 fwr->ptclm = f->fs.mask.proto;
1254 fwr->ttyp = f->fs.val.tos;
1255 fwr->ttypm = f->fs.mask.tos;
1256 fwr->ivlan = htons(f->fs.val.ivlan);
1257 fwr->ivlanm = htons(f->fs.mask.ivlan);
1258 fwr->ovlan = htons(f->fs.val.ovlan);
1259 fwr->ovlanm = htons(f->fs.mask.ovlan);
1260 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1261 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1262 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1263 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1264 fwr->lp = htons(f->fs.val.lport);
1265 fwr->lpm = htons(f->fs.mask.lport);
1266 fwr->fp = htons(f->fs.val.fport);
1267 fwr->fpm = htons(f->fs.mask.fport);
1268 if (f->fs.newsmac)
1269 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1270
1271 /* Mark the filter as "pending" and ship off the Filter Work Request.
1272 * When we get the Work Request Reply we'll clear the pending status.
1273 */
1274 f->pending = 1;
1275 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1276 t4_ofld_send(adapter, skb);
1277 return 0;
1278}
1279
1280/* Delete the filter at a specified index.
1281 */
1282static int del_filter_wr(struct adapter *adapter, int fidx)
1283{
1284 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1285 struct sk_buff *skb;
1286 struct fw_filter_wr *fwr;
1287 unsigned int len, ftid;
1288
1289 len = sizeof(*fwr);
1290 ftid = adapter->tids.ftid_base + fidx;
1291
f72f116a
MH
1292 skb = alloc_skb(len, GFP_KERNEL);
1293 if (!skb)
1294 return -ENOMEM;
1295
f2b7e78d
VP
1296 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1297 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1298
1299 /* Mark the filter as "pending" and ship off the Filter Work Request.
1300 * When we get the Work Request Reply we'll clear the pending status.
1301 */
1302 f->pending = 1;
1303 t4_mgmt_tx(adapter, skb);
1304 return 0;
1305}
1306
688848b1
AB
1307static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1308 void *accel_priv, select_queue_fallback_t fallback)
1309{
1310 int txq;
1311
1312#ifdef CONFIG_CHELSIO_T4_DCB
1313 /* If a Data Center Bridging has been successfully negotiated on this
1314 * link then we'll use the skb's priority to map it to a TX Queue.
1315 * The skb's priority is determined via the VLAN Tag Priority Code
1316 * Point field.
1317 */
1318 if (cxgb4_dcb_enabled(dev)) {
1319 u16 vlan_tci;
1320 int err;
1321
1322 err = vlan_get_tag(skb, &vlan_tci);
1323 if (unlikely(err)) {
1324 if (net_ratelimit())
1325 netdev_warn(dev,
1326 "TX Packet without VLAN Tag on DCB Link\n");
1327 txq = 0;
1328 } else {
1329 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1330#ifdef CONFIG_CHELSIO_T4_FCOE
1331 if (skb->protocol == htons(ETH_P_FCOE))
1332 txq = skb->priority & 0x7;
1333#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1334 }
1335 return txq;
1336 }
1337#endif /* CONFIG_CHELSIO_T4_DCB */
1338
1339 if (select_queue) {
1340 txq = (skb_rx_queue_recorded(skb)
1341 ? skb_get_rx_queue(skb)
1342 : smp_processor_id());
1343
1344 while (unlikely(txq >= dev->real_num_tx_queues))
1345 txq -= dev->real_num_tx_queues;
1346
1347 return txq;
1348 }
1349
1350 return fallback(dev, skb) % dev->real_num_tx_queues;
1351}
1352
b8ff05a9
DM
1353static int closest_timer(const struct sge *s, int time)
1354{
1355 int i, delta, match = 0, min_delta = INT_MAX;
1356
1357 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1358 delta = time - s->timer_val[i];
1359 if (delta < 0)
1360 delta = -delta;
1361 if (delta < min_delta) {
1362 min_delta = delta;
1363 match = i;
1364 }
1365 }
1366 return match;
1367}
1368
1369static int closest_thres(const struct sge *s, int thres)
1370{
1371 int i, delta, match = 0, min_delta = INT_MAX;
1372
1373 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1374 delta = thres - s->counter_val[i];
1375 if (delta < 0)
1376 delta = -delta;
1377 if (delta < min_delta) {
1378 min_delta = delta;
1379 match = i;
1380 }
1381 }
1382 return match;
1383}
1384
b8ff05a9 1385/**
812034f1 1386 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1387 * @q: the Rx queue
1388 * @us: the hold-off time in us, or 0 to disable timer
1389 * @cnt: the hold-off packet count, or 0 to disable counter
1390 *
1391 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1392 * one of the two needs to be enabled for the queue to generate interrupts.
1393 */
812034f1
HS
1394int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1395 unsigned int us, unsigned int cnt)
b8ff05a9 1396{
c887ad0e
HS
1397 struct adapter *adap = q->adap;
1398
b8ff05a9
DM
1399 if ((us | cnt) == 0)
1400 cnt = 1;
1401
1402 if (cnt) {
1403 int err;
1404 u32 v, new_idx;
1405
1406 new_idx = closest_thres(&adap->sge, cnt);
1407 if (q->desc && q->pktcnt_idx != new_idx) {
1408 /* the queue has already been created, update it */
5167865a
HS
1409 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1410 FW_PARAMS_PARAM_X_V(
1411 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1412 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
b2612722
HS
1413 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1414 &v, &new_idx);
b8ff05a9
DM
1415 if (err)
1416 return err;
1417 }
1418 q->pktcnt_idx = new_idx;
1419 }
1420
1421 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1ecc7b7a 1422 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
b8ff05a9
DM
1423 return 0;
1424}
1425
c8f44aff 1426static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1427{
2ed28baa 1428 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1429 netdev_features_t changed = dev->features ^ features;
19ecae2c 1430 int err;
19ecae2c 1431
f646968f 1432 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1433 return 0;
19ecae2c 1434
b2612722 1435 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
2ed28baa 1436 -1, -1, -1,
f646968f 1437 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1438 if (unlikely(err))
f646968f 1439 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1440 return err;
87b6cf51
DM
1441}
1442
91744948 1443static int setup_debugfs(struct adapter *adap)
b8ff05a9 1444{
b8ff05a9
DM
1445 if (IS_ERR_OR_NULL(adap->debugfs_root))
1446 return -1;
1447
fd88b31a
HS
1448#ifdef CONFIG_DEBUG_FS
1449 t4_setup_debugfs(adap);
1450#endif
b8ff05a9
DM
1451 return 0;
1452}
1453
1454/*
1455 * upper-layer driver support
1456 */
1457
1458/*
1459 * Allocate an active-open TID and set it to the supplied value.
1460 */
1461int cxgb4_alloc_atid(struct tid_info *t, void *data)
1462{
1463 int atid = -1;
1464
1465 spin_lock_bh(&t->atid_lock);
1466 if (t->afree) {
1467 union aopen_entry *p = t->afree;
1468
f2b7e78d 1469 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1470 t->afree = p->next;
1471 p->data = data;
1472 t->atids_in_use++;
1473 }
1474 spin_unlock_bh(&t->atid_lock);
1475 return atid;
1476}
1477EXPORT_SYMBOL(cxgb4_alloc_atid);
1478
1479/*
1480 * Release an active-open TID.
1481 */
1482void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1483{
f2b7e78d 1484 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1485
1486 spin_lock_bh(&t->atid_lock);
1487 p->next = t->afree;
1488 t->afree = p;
1489 t->atids_in_use--;
1490 spin_unlock_bh(&t->atid_lock);
1491}
1492EXPORT_SYMBOL(cxgb4_free_atid);
1493
1494/*
1495 * Allocate a server TID and set it to the supplied value.
1496 */
1497int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1498{
1499 int stid;
1500
1501 spin_lock_bh(&t->stid_lock);
1502 if (family == PF_INET) {
1503 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1504 if (stid < t->nstids)
1505 __set_bit(stid, t->stid_bmap);
1506 else
1507 stid = -1;
1508 } else {
1509 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1510 if (stid < 0)
1511 stid = -1;
1512 }
1513 if (stid >= 0) {
1514 t->stid_tab[stid].data = data;
1515 stid += t->stid_base;
15f63b74
KS
1516 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1517 * This is equivalent to 4 TIDs. With CLIP enabled it
1518 * needs 2 TIDs.
1519 */
1520 if (family == PF_INET)
1521 t->stids_in_use++;
1522 else
1523 t->stids_in_use += 4;
b8ff05a9
DM
1524 }
1525 spin_unlock_bh(&t->stid_lock);
1526 return stid;
1527}
1528EXPORT_SYMBOL(cxgb4_alloc_stid);
1529
dca4faeb
VP
1530/* Allocate a server filter TID and set it to the supplied value.
1531 */
1532int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1533{
1534 int stid;
1535
1536 spin_lock_bh(&t->stid_lock);
1537 if (family == PF_INET) {
1538 stid = find_next_zero_bit(t->stid_bmap,
1539 t->nstids + t->nsftids, t->nstids);
1540 if (stid < (t->nstids + t->nsftids))
1541 __set_bit(stid, t->stid_bmap);
1542 else
1543 stid = -1;
1544 } else {
1545 stid = -1;
1546 }
1547 if (stid >= 0) {
1548 t->stid_tab[stid].data = data;
470c60c4
KS
1549 stid -= t->nstids;
1550 stid += t->sftid_base;
dca4faeb
VP
1551 t->stids_in_use++;
1552 }
1553 spin_unlock_bh(&t->stid_lock);
1554 return stid;
1555}
1556EXPORT_SYMBOL(cxgb4_alloc_sftid);
1557
1558/* Release a server TID.
b8ff05a9
DM
1559 */
1560void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1561{
470c60c4
KS
1562 /* Is it a server filter TID? */
1563 if (t->nsftids && (stid >= t->sftid_base)) {
1564 stid -= t->sftid_base;
1565 stid += t->nstids;
1566 } else {
1567 stid -= t->stid_base;
1568 }
1569
b8ff05a9
DM
1570 spin_lock_bh(&t->stid_lock);
1571 if (family == PF_INET)
1572 __clear_bit(stid, t->stid_bmap);
1573 else
1574 bitmap_release_region(t->stid_bmap, stid, 2);
1575 t->stid_tab[stid].data = NULL;
15f63b74
KS
1576 if (family == PF_INET)
1577 t->stids_in_use--;
1578 else
1579 t->stids_in_use -= 4;
b8ff05a9
DM
1580 spin_unlock_bh(&t->stid_lock);
1581}
1582EXPORT_SYMBOL(cxgb4_free_stid);
1583
1584/*
1585 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1586 */
1587static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1588 unsigned int tid)
1589{
1590 struct cpl_tid_release *req;
1591
1592 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1593 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1594 INIT_TP_WR(req, tid);
1595 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1596}
1597
1598/*
1599 * Queue a TID release request and if necessary schedule a work queue to
1600 * process it.
1601 */
31b9c19b 1602static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1603 unsigned int tid)
b8ff05a9
DM
1604{
1605 void **p = &t->tid_tab[tid];
1606 struct adapter *adap = container_of(t, struct adapter, tids);
1607
1608 spin_lock_bh(&adap->tid_release_lock);
1609 *p = adap->tid_release_head;
1610 /* Low 2 bits encode the Tx channel number */
1611 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1612 if (!adap->tid_release_task_busy) {
1613 adap->tid_release_task_busy = true;
29aaee65 1614 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1615 }
1616 spin_unlock_bh(&adap->tid_release_lock);
1617}
b8ff05a9
DM
1618
1619/*
1620 * Process the list of pending TID release requests.
1621 */
1622static void process_tid_release_list(struct work_struct *work)
1623{
1624 struct sk_buff *skb;
1625 struct adapter *adap;
1626
1627 adap = container_of(work, struct adapter, tid_release_task);
1628
1629 spin_lock_bh(&adap->tid_release_lock);
1630 while (adap->tid_release_head) {
1631 void **p = adap->tid_release_head;
1632 unsigned int chan = (uintptr_t)p & 3;
1633 p = (void *)p - chan;
1634
1635 adap->tid_release_head = *p;
1636 *p = NULL;
1637 spin_unlock_bh(&adap->tid_release_lock);
1638
1639 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1640 GFP_KERNEL)))
1641 schedule_timeout_uninterruptible(1);
1642
1643 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1644 t4_ofld_send(adap, skb);
1645 spin_lock_bh(&adap->tid_release_lock);
1646 }
1647 adap->tid_release_task_busy = false;
1648 spin_unlock_bh(&adap->tid_release_lock);
1649}
1650
1651/*
1652 * Release a TID and inform HW. If we are unable to allocate the release
1653 * message we defer to a work queue.
1654 */
1655void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1656{
b8ff05a9
DM
1657 struct sk_buff *skb;
1658 struct adapter *adap = container_of(t, struct adapter, tids);
1659
9a1bb9f6
HS
1660 WARN_ON(tid >= t->ntids);
1661
1662 if (t->tid_tab[tid]) {
1663 t->tid_tab[tid] = NULL;
1664 if (t->hash_base && (tid >= t->hash_base))
1665 atomic_dec(&t->hash_tids_in_use);
1666 else
1667 atomic_dec(&t->tids_in_use);
1668 }
1669
b8ff05a9
DM
1670 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1671 if (likely(skb)) {
b8ff05a9
DM
1672 mk_tid_release(skb, chan, tid);
1673 t4_ofld_send(adap, skb);
1674 } else
1675 cxgb4_queue_tid_release(t, chan, tid);
b8ff05a9
DM
1676}
1677EXPORT_SYMBOL(cxgb4_remove_tid);
1678
1679/*
1680 * Allocate and initialize the TID tables. Returns 0 on success.
1681 */
1682static int tid_init(struct tid_info *t)
1683{
1684 size_t size;
f2b7e78d 1685 unsigned int stid_bmap_size;
b8ff05a9 1686 unsigned int natids = t->natids;
b6f8eaec 1687 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1688
dca4faeb 1689 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1690 size = t->ntids * sizeof(*t->tid_tab) +
1691 natids * sizeof(*t->atid_tab) +
b8ff05a9 1692 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1693 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1694 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1695 t->nftids * sizeof(*t->ftid_tab) +
1696 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1697
b8ff05a9
DM
1698 t->tid_tab = t4_alloc_mem(size);
1699 if (!t->tid_tab)
1700 return -ENOMEM;
1701
1702 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1703 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1704 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1705 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1706 spin_lock_init(&t->stid_lock);
1707 spin_lock_init(&t->atid_lock);
1708
1709 t->stids_in_use = 0;
1710 t->afree = NULL;
1711 t->atids_in_use = 0;
1712 atomic_set(&t->tids_in_use, 0);
9a1bb9f6 1713 atomic_set(&t->hash_tids_in_use, 0);
b8ff05a9
DM
1714
1715 /* Setup the free list for atid_tab and clear the stid bitmap. */
1716 if (natids) {
1717 while (--natids)
1718 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1719 t->afree = t->atid_tab;
1720 }
dca4faeb 1721 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1722 /* Reserve stid 0 for T4/T5 adapters */
1723 if (!t->stid_base &&
3ccc6cf7 1724 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
b6f8eaec
KS
1725 __set_bit(0, t->stid_bmap);
1726
b8ff05a9
DM
1727 return 0;
1728}
1729
1730/**
1731 * cxgb4_create_server - create an IP server
1732 * @dev: the device
1733 * @stid: the server TID
1734 * @sip: local IP address to bind server to
1735 * @sport: the server's TCP port
1736 * @queue: queue to direct messages from this server to
1737 *
1738 * Create an IP server for the given port and address.
1739 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1740 */
1741int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1742 __be32 sip, __be16 sport, __be16 vlan,
1743 unsigned int queue)
b8ff05a9
DM
1744{
1745 unsigned int chan;
1746 struct sk_buff *skb;
1747 struct adapter *adap;
1748 struct cpl_pass_open_req *req;
80f40c1f 1749 int ret;
b8ff05a9
DM
1750
1751 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1752 if (!skb)
1753 return -ENOMEM;
1754
1755 adap = netdev2adap(dev);
1756 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1757 INIT_TP_WR(req, 0);
1758 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1759 req->local_port = sport;
1760 req->peer_port = htons(0);
1761 req->local_ip = sip;
1762 req->peer_ip = htonl(0);
e46dab4d 1763 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1764 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1765 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1766 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1767 ret = t4_mgmt_tx(adap, skb);
1768 return net_xmit_eval(ret);
b8ff05a9
DM
1769}
1770EXPORT_SYMBOL(cxgb4_create_server);
1771
80f40c1f
VP
1772/* cxgb4_create_server6 - create an IPv6 server
1773 * @dev: the device
1774 * @stid: the server TID
1775 * @sip: local IPv6 address to bind server to
1776 * @sport: the server's TCP port
1777 * @queue: queue to direct messages from this server to
1778 *
1779 * Create an IPv6 server for the given port and address.
1780 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1781 */
1782int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1783 const struct in6_addr *sip, __be16 sport,
1784 unsigned int queue)
1785{
1786 unsigned int chan;
1787 struct sk_buff *skb;
1788 struct adapter *adap;
1789 struct cpl_pass_open_req6 *req;
1790 int ret;
1791
1792 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1793 if (!skb)
1794 return -ENOMEM;
1795
1796 adap = netdev2adap(dev);
1797 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1798 INIT_TP_WR(req, 0);
1799 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1800 req->local_port = sport;
1801 req->peer_port = htons(0);
1802 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1803 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1804 req->peer_ip_hi = cpu_to_be64(0);
1805 req->peer_ip_lo = cpu_to_be64(0);
1806 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1807 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1808 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1809 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1810 ret = t4_mgmt_tx(adap, skb);
1811 return net_xmit_eval(ret);
1812}
1813EXPORT_SYMBOL(cxgb4_create_server6);
1814
1815int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1816 unsigned int queue, bool ipv6)
1817{
1818 struct sk_buff *skb;
1819 struct adapter *adap;
1820 struct cpl_close_listsvr_req *req;
1821 int ret;
1822
1823 adap = netdev2adap(dev);
1824
1825 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1826 if (!skb)
1827 return -ENOMEM;
1828
1829 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1830 INIT_TP_WR(req, 0);
1831 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1832 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1833 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1834 ret = t4_mgmt_tx(adap, skb);
1835 return net_xmit_eval(ret);
1836}
1837EXPORT_SYMBOL(cxgb4_remove_server);
1838
b8ff05a9
DM
1839/**
1840 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1841 * @mtus: the HW MTU table
1842 * @mtu: the target MTU
1843 * @idx: index of selected entry in the MTU table
1844 *
1845 * Returns the index and the value in the HW MTU table that is closest to
1846 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1847 * table, in which case that smallest available value is selected.
1848 */
1849unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1850 unsigned int *idx)
1851{
1852 unsigned int i = 0;
1853
1854 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1855 ++i;
1856 if (idx)
1857 *idx = i;
1858 return mtus[i];
1859}
1860EXPORT_SYMBOL(cxgb4_best_mtu);
1861
92e7ae71
HS
1862/**
1863 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1864 * @mtus: the HW MTU table
1865 * @header_size: Header Size
1866 * @data_size_max: maximum Data Segment Size
1867 * @data_size_align: desired Data Segment Size Alignment (2^N)
1868 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1869 *
1870 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1871 * MTU Table based solely on a Maximum MTU parameter, we break that
1872 * parameter up into a Header Size and Maximum Data Segment Size, and
1873 * provide a desired Data Segment Size Alignment. If we find an MTU in
1874 * the Hardware MTU Table which will result in a Data Segment Size with
1875 * the requested alignment _and_ that MTU isn't "too far" from the
1876 * closest MTU, then we'll return that rather than the closest MTU.
1877 */
1878unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1879 unsigned short header_size,
1880 unsigned short data_size_max,
1881 unsigned short data_size_align,
1882 unsigned int *mtu_idxp)
1883{
1884 unsigned short max_mtu = header_size + data_size_max;
1885 unsigned short data_size_align_mask = data_size_align - 1;
1886 int mtu_idx, aligned_mtu_idx;
1887
1888 /* Scan the MTU Table till we find an MTU which is larger than our
1889 * Maximum MTU or we reach the end of the table. Along the way,
1890 * record the last MTU found, if any, which will result in a Data
1891 * Segment Length matching the requested alignment.
1892 */
1893 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1894 unsigned short data_size = mtus[mtu_idx] - header_size;
1895
1896 /* If this MTU minus the Header Size would result in a
1897 * Data Segment Size of the desired alignment, remember it.
1898 */
1899 if ((data_size & data_size_align_mask) == 0)
1900 aligned_mtu_idx = mtu_idx;
1901
1902 /* If we're not at the end of the Hardware MTU Table and the
1903 * next element is larger than our Maximum MTU, drop out of
1904 * the loop.
1905 */
1906 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1907 break;
1908 }
1909
1910 /* If we fell out of the loop because we ran to the end of the table,
1911 * then we just have to use the last [largest] entry.
1912 */
1913 if (mtu_idx == NMTUS)
1914 mtu_idx--;
1915
1916 /* If we found an MTU which resulted in the requested Data Segment
1917 * Length alignment and that's "not far" from the largest MTU which is
1918 * less than or equal to the maximum MTU, then use that.
1919 */
1920 if (aligned_mtu_idx >= 0 &&
1921 mtu_idx - aligned_mtu_idx <= 1)
1922 mtu_idx = aligned_mtu_idx;
1923
1924 /* If the caller has passed in an MTU Index pointer, pass the
1925 * MTU Index back. Return the MTU value.
1926 */
1927 if (mtu_idxp)
1928 *mtu_idxp = mtu_idx;
1929 return mtus[mtu_idx];
1930}
1931EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1932
b8ff05a9
DM
1933/**
1934 * cxgb4_port_chan - get the HW channel of a port
1935 * @dev: the net device for the port
1936 *
1937 * Return the HW Tx channel of the given port.
1938 */
1939unsigned int cxgb4_port_chan(const struct net_device *dev)
1940{
1941 return netdev2pinfo(dev)->tx_chan;
1942}
1943EXPORT_SYMBOL(cxgb4_port_chan);
1944
881806bc
VP
1945unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1946{
1947 struct adapter *adap = netdev2adap(dev);
2cc301d2 1948 u32 v1, v2, lp_count, hp_count;
881806bc 1949
f061de42
HS
1950 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1951 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 1952 if (is_t4(adap->params.chip)) {
f061de42
HS
1953 lp_count = LP_COUNT_G(v1);
1954 hp_count = HP_COUNT_G(v1);
2cc301d2 1955 } else {
f061de42
HS
1956 lp_count = LP_COUNT_T5_G(v1);
1957 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
1958 }
1959 return lpfifo ? lp_count : hp_count;
881806bc
VP
1960}
1961EXPORT_SYMBOL(cxgb4_dbfifo_count);
1962
b8ff05a9
DM
1963/**
1964 * cxgb4_port_viid - get the VI id of a port
1965 * @dev: the net device for the port
1966 *
1967 * Return the VI id of the given port.
1968 */
1969unsigned int cxgb4_port_viid(const struct net_device *dev)
1970{
1971 return netdev2pinfo(dev)->viid;
1972}
1973EXPORT_SYMBOL(cxgb4_port_viid);
1974
1975/**
1976 * cxgb4_port_idx - get the index of a port
1977 * @dev: the net device for the port
1978 *
1979 * Return the index of the given port.
1980 */
1981unsigned int cxgb4_port_idx(const struct net_device *dev)
1982{
1983 return netdev2pinfo(dev)->port_id;
1984}
1985EXPORT_SYMBOL(cxgb4_port_idx);
1986
b8ff05a9
DM
1987void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1988 struct tp_tcp_stats *v6)
1989{
1990 struct adapter *adap = pci_get_drvdata(pdev);
1991
1992 spin_lock(&adap->stats_lock);
1993 t4_tp_get_tcp_stats(adap, v4, v6);
1994 spin_unlock(&adap->stats_lock);
1995}
1996EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1997
1998void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1999 const unsigned int *pgsz_order)
2000{
2001 struct adapter *adap = netdev2adap(dev);
2002
0d804338
HS
2003 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2004 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2005 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2006 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
2007}
2008EXPORT_SYMBOL(cxgb4_iscsi_init);
2009
3069ee9b
VP
2010int cxgb4_flush_eq_cache(struct net_device *dev)
2011{
2012 struct adapter *adap = netdev2adap(dev);
3069ee9b 2013
5d700ecb 2014 return t4_sge_ctxt_flush(adap, adap->mbox);
3069ee9b
VP
2015}
2016EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2017
2018static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2019{
f061de42 2020 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
2021 __be64 indices;
2022 int ret;
2023
fc5ab020
HS
2024 spin_lock(&adap->win0_lock);
2025 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2026 sizeof(indices), (__be32 *)&indices,
2027 T4_MEMORY_READ);
2028 spin_unlock(&adap->win0_lock);
3069ee9b 2029 if (!ret) {
404d9e3f
VP
2030 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2031 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2032 }
2033 return ret;
2034}
2035
2036int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2037 u16 size)
2038{
2039 struct adapter *adap = netdev2adap(dev);
2040 u16 hw_pidx, hw_cidx;
2041 int ret;
2042
2043 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2044 if (ret)
2045 goto out;
2046
2047 if (pidx != hw_pidx) {
2048 u16 delta;
f612b815 2049 u32 val;
3069ee9b
VP
2050
2051 if (pidx >= hw_pidx)
2052 delta = pidx - hw_pidx;
2053 else
2054 delta = size - hw_pidx + pidx;
f612b815
HS
2055
2056 if (is_t4(adap->params.chip))
2057 val = PIDX_V(delta);
2058 else
2059 val = PIDX_T5_V(delta);
3069ee9b 2060 wmb();
f612b815
HS
2061 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2062 QID_V(qid) | val);
3069ee9b
VP
2063 }
2064out:
2065 return ret;
2066}
2067EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2068
031cf476
HS
2069int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2070{
2071 struct adapter *adap;
2072 u32 offset, memtype, memaddr;
6559a7e8 2073 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2074 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2075 int ret;
2076
2077 adap = netdev2adap(dev);
2078
2079 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2080
2081 /* Figure out where the offset lands in the Memory Type/Address scheme.
2082 * This code assumes that the memory is laid out starting at offset 0
2083 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2084 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2085 * MC0, and some have both MC0 and MC1.
2086 */
6559a7e8
HS
2087 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2088 edc0_size = EDRAM0_SIZE_G(size) << 20;
2089 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2090 edc1_size = EDRAM1_SIZE_G(size) << 20;
2091 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2092 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2093
2094 edc0_end = edc0_size;
2095 edc1_end = edc0_end + edc1_size;
2096 mc0_end = edc1_end + mc0_size;
2097
2098 if (offset < edc0_end) {
2099 memtype = MEM_EDC0;
2100 memaddr = offset;
2101 } else if (offset < edc1_end) {
2102 memtype = MEM_EDC1;
2103 memaddr = offset - edc0_end;
2104 } else {
2105 if (offset < mc0_end) {
2106 memtype = MEM_MC0;
2107 memaddr = offset - edc1_end;
3ccc6cf7 2108 } else if (is_t5(adap->params.chip)) {
6559a7e8
HS
2109 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2110 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2111 mc1_end = mc0_end + mc1_size;
2112 if (offset < mc1_end) {
2113 memtype = MEM_MC1;
2114 memaddr = offset - mc0_end;
2115 } else {
2116 /* offset beyond the end of any memory */
2117 goto err;
2118 }
3ccc6cf7
HS
2119 } else {
2120 /* T4/T6 only has a single memory channel */
2121 goto err;
031cf476
HS
2122 }
2123 }
2124
2125 spin_lock(&adap->win0_lock);
2126 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2127 spin_unlock(&adap->win0_lock);
2128 return ret;
2129
2130err:
2131 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2132 stag, offset);
2133 return -EINVAL;
2134}
2135EXPORT_SYMBOL(cxgb4_read_tpte);
2136
7730b4c7
HS
2137u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2138{
2139 u32 hi, lo;
2140 struct adapter *adap;
2141
2142 adap = netdev2adap(dev);
f612b815
HS
2143 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2144 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2145
2146 return ((u64)hi << 32) | (u64)lo;
2147}
2148EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2149
df64e4d3
HS
2150int cxgb4_bar2_sge_qregs(struct net_device *dev,
2151 unsigned int qid,
2152 enum cxgb4_bar2_qtype qtype,
66cf188e 2153 int user,
df64e4d3
HS
2154 u64 *pbar2_qoffset,
2155 unsigned int *pbar2_qid)
2156{
b2612722 2157 return t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2158 qid,
2159 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2160 ? T4_BAR2_QTYPE_EGRESS
2161 : T4_BAR2_QTYPE_INGRESS),
66cf188e 2162 user,
df64e4d3
HS
2163 pbar2_qoffset,
2164 pbar2_qid);
2165}
2166EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2167
b8ff05a9
DM
2168static struct pci_driver cxgb4_driver;
2169
2170static void check_neigh_update(struct neighbour *neigh)
2171{
2172 const struct device *parent;
2173 const struct net_device *netdev = neigh->dev;
2174
2175 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2176 netdev = vlan_dev_real_dev(netdev);
2177 parent = netdev->dev.parent;
2178 if (parent && parent->driver == &cxgb4_driver.driver)
2179 t4_l2t_update(dev_get_drvdata(parent), neigh);
2180}
2181
2182static int netevent_cb(struct notifier_block *nb, unsigned long event,
2183 void *data)
2184{
2185 switch (event) {
2186 case NETEVENT_NEIGH_UPDATE:
2187 check_neigh_update(data);
2188 break;
b8ff05a9
DM
2189 case NETEVENT_REDIRECT:
2190 default:
2191 break;
2192 }
2193 return 0;
2194}
2195
2196static bool netevent_registered;
2197static struct notifier_block cxgb4_netevent_nb = {
2198 .notifier_call = netevent_cb
2199};
2200
3069ee9b
VP
2201static void drain_db_fifo(struct adapter *adap, int usecs)
2202{
2cc301d2 2203 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2204
2205 do {
f061de42
HS
2206 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2207 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2208 if (is_t4(adap->params.chip)) {
f061de42
HS
2209 lp_count = LP_COUNT_G(v1);
2210 hp_count = HP_COUNT_G(v1);
2cc301d2 2211 } else {
f061de42
HS
2212 lp_count = LP_COUNT_T5_G(v1);
2213 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2214 }
2215
2216 if (lp_count == 0 && hp_count == 0)
2217 break;
3069ee9b
VP
2218 set_current_state(TASK_UNINTERRUPTIBLE);
2219 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2220 } while (1);
2221}
2222
2223static void disable_txq_db(struct sge_txq *q)
2224{
05eb2389
SW
2225 unsigned long flags;
2226
2227 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2228 q->db_disabled = 1;
05eb2389 2229 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2230}
2231
05eb2389 2232static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2233{
2234 spin_lock_irq(&q->db_lock);
05eb2389
SW
2235 if (q->db_pidx_inc) {
2236 /* Make sure that all writes to the TX descriptors
2237 * are committed before we tell HW about them.
2238 */
2239 wmb();
f612b815
HS
2240 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2241 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2242 q->db_pidx_inc = 0;
2243 }
3069ee9b
VP
2244 q->db_disabled = 0;
2245 spin_unlock_irq(&q->db_lock);
2246}
2247
2248static void disable_dbs(struct adapter *adap)
2249{
2250 int i;
2251
2252 for_each_ethrxq(&adap->sge, i)
2253 disable_txq_db(&adap->sge.ethtxq[i].q);
2254 for_each_ofldrxq(&adap->sge, i)
2255 disable_txq_db(&adap->sge.ofldtxq[i].q);
2256 for_each_port(adap, i)
2257 disable_txq_db(&adap->sge.ctrlq[i].q);
2258}
2259
2260static void enable_dbs(struct adapter *adap)
2261{
2262 int i;
2263
2264 for_each_ethrxq(&adap->sge, i)
05eb2389 2265 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 2266 for_each_ofldrxq(&adap->sge, i)
05eb2389 2267 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2268 for_each_port(adap, i)
05eb2389
SW
2269 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2270}
2271
2272static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2273{
2274 if (adap->uld_handle[CXGB4_ULD_RDMA])
2275 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2276 cmd);
2277}
2278
2279static void process_db_full(struct work_struct *work)
2280{
2281 struct adapter *adap;
2282
2283 adap = container_of(work, struct adapter, db_full_task);
2284
2285 drain_db_fifo(adap, dbfifo_drain_delay);
2286 enable_dbs(adap);
2287 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7
HS
2288 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2289 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2290 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2291 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2292 else
2293 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2294 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
3069ee9b
VP
2295}
2296
2297static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2298{
2299 u16 hw_pidx, hw_cidx;
2300 int ret;
2301
05eb2389 2302 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2303 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2304 if (ret)
2305 goto out;
2306 if (q->db_pidx != hw_pidx) {
2307 u16 delta;
f612b815 2308 u32 val;
3069ee9b
VP
2309
2310 if (q->db_pidx >= hw_pidx)
2311 delta = q->db_pidx - hw_pidx;
2312 else
2313 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2314
2315 if (is_t4(adap->params.chip))
2316 val = PIDX_V(delta);
2317 else
2318 val = PIDX_T5_V(delta);
3069ee9b 2319 wmb();
f612b815
HS
2320 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2321 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2322 }
2323out:
2324 q->db_disabled = 0;
05eb2389
SW
2325 q->db_pidx_inc = 0;
2326 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2327 if (ret)
2328 CH_WARN(adap, "DB drop recovery failed.\n");
2329}
2330static void recover_all_queues(struct adapter *adap)
2331{
2332 int i;
2333
2334 for_each_ethrxq(&adap->sge, i)
2335 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2336 for_each_ofldrxq(&adap->sge, i)
2337 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2338 for_each_port(adap, i)
2339 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2340}
2341
881806bc
VP
2342static void process_db_drop(struct work_struct *work)
2343{
2344 struct adapter *adap;
881806bc 2345
3069ee9b 2346 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2347
d14807dd 2348 if (is_t4(adap->params.chip)) {
05eb2389 2349 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2350 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2351 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2352 recover_all_queues(adap);
05eb2389 2353 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2354 enable_dbs(adap);
05eb2389 2355 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7 2356 } else if (is_t5(adap->params.chip)) {
2cc301d2
SR
2357 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2358 u16 qid = (dropped_db >> 15) & 0x1ffff;
2359 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2360 u64 bar2_qoffset;
2361 unsigned int bar2_qid;
2362 int ret;
2cc301d2 2363
b2612722 2364 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
e0456717 2365 0, &bar2_qoffset, &bar2_qid);
df64e4d3
HS
2366 if (ret)
2367 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2368 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2369 else
f612b815 2370 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2371 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2372
2373 /* Re-enable BAR2 WC */
2374 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2375 }
2376
3ccc6cf7
HS
2377 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2378 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2379}
2380
2381void t4_db_full(struct adapter *adap)
2382{
d14807dd 2383 if (is_t4(adap->params.chip)) {
05eb2389
SW
2384 disable_dbs(adap);
2385 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2386 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2387 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2388 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2389 }
881806bc
VP
2390}
2391
2392void t4_db_dropped(struct adapter *adap)
2393{
05eb2389
SW
2394 if (is_t4(adap->params.chip)) {
2395 disable_dbs(adap);
2396 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2397 }
29aaee65 2398 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2399}
2400
b8ff05a9
DM
2401static void uld_attach(struct adapter *adap, unsigned int uld)
2402{
2403 void *handle;
2404 struct cxgb4_lld_info lli;
dca4faeb 2405 unsigned short i;
b8ff05a9
DM
2406
2407 lli.pdev = adap->pdev;
b2612722 2408 lli.pf = adap->pf;
b8ff05a9
DM
2409 lli.l2t = adap->l2t;
2410 lli.tids = &adap->tids;
2411 lli.ports = adap->port;
2412 lli.vr = &adap->vres;
2413 lli.mtus = adap->params.mtus;
2414 if (uld == CXGB4_ULD_RDMA) {
2415 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2416 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2417 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2418 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
2419 } else if (uld == CXGB4_ULD_ISCSI) {
2420 lli.rxq_ids = adap->sge.ofld_rxq;
2421 lli.nrxq = adap->sge.ofldqsets;
2422 }
2423 lli.ntxq = adap->sge.ofldqsets;
2424 lli.nchan = adap->params.nports;
2425 lli.nports = adap->params.nports;
2426 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2427 lli.adapter_type = adap->params.chip;
837e4a42 2428 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 2429 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2430 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2431 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2432 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2433 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2434 for (i = 0; i < NCHAN; i++)
2435 lli.tx_modq[i] = i;
f612b815
HS
2436 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2437 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2438 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2439 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2440 lli.sge_ingpadboundary = adap->sge.fl_align;
2441 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2442 lli.sge_pktshift = adap->sge.pktshift;
2443 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2444 lli.max_ordird_qp = adap->params.max_ordird_qp;
2445 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2446 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2447 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2448
2449 handle = ulds[uld].add(&lli);
2450 if (IS_ERR(handle)) {
2451 dev_warn(adap->pdev_dev,
2452 "could not attach to the %s driver, error %ld\n",
2453 uld_str[uld], PTR_ERR(handle));
2454 return;
2455 }
2456
2457 adap->uld_handle[uld] = handle;
2458
2459 if (!netevent_registered) {
2460 register_netevent_notifier(&cxgb4_netevent_nb);
2461 netevent_registered = true;
2462 }
e29f5dbc
DM
2463
2464 if (adap->flags & FULL_INIT_DONE)
2465 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2466}
2467
2468static void attach_ulds(struct adapter *adap)
2469{
2470 unsigned int i;
2471
01bcca68
VP
2472 spin_lock(&adap_rcu_lock);
2473 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2474 spin_unlock(&adap_rcu_lock);
2475
b8ff05a9
DM
2476 mutex_lock(&uld_mutex);
2477 list_add_tail(&adap->list_node, &adapter_list);
2478 for (i = 0; i < CXGB4_ULD_MAX; i++)
2479 if (ulds[i].add)
2480 uld_attach(adap, i);
2481 mutex_unlock(&uld_mutex);
2482}
2483
2484static void detach_ulds(struct adapter *adap)
2485{
2486 unsigned int i;
2487
2488 mutex_lock(&uld_mutex);
2489 list_del(&adap->list_node);
2490 for (i = 0; i < CXGB4_ULD_MAX; i++)
2491 if (adap->uld_handle[i]) {
2492 ulds[i].state_change(adap->uld_handle[i],
2493 CXGB4_STATE_DETACH);
2494 adap->uld_handle[i] = NULL;
2495 }
2496 if (netevent_registered && list_empty(&adapter_list)) {
2497 unregister_netevent_notifier(&cxgb4_netevent_nb);
2498 netevent_registered = false;
2499 }
2500 mutex_unlock(&uld_mutex);
01bcca68
VP
2501
2502 spin_lock(&adap_rcu_lock);
2503 list_del_rcu(&adap->rcu_node);
2504 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2505}
2506
2507static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2508{
2509 unsigned int i;
2510
2511 mutex_lock(&uld_mutex);
2512 for (i = 0; i < CXGB4_ULD_MAX; i++)
2513 if (adap->uld_handle[i])
2514 ulds[i].state_change(adap->uld_handle[i], new_state);
2515 mutex_unlock(&uld_mutex);
2516}
2517
2518/**
2519 * cxgb4_register_uld - register an upper-layer driver
2520 * @type: the ULD type
2521 * @p: the ULD methods
2522 *
2523 * Registers an upper-layer driver with this driver and notifies the ULD
2524 * about any presently available devices that support its type. Returns
2525 * %-EBUSY if a ULD of the same type is already registered.
2526 */
2527int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2528{
2529 int ret = 0;
2530 struct adapter *adap;
2531
2532 if (type >= CXGB4_ULD_MAX)
2533 return -EINVAL;
2534 mutex_lock(&uld_mutex);
2535 if (ulds[type].add) {
2536 ret = -EBUSY;
2537 goto out;
2538 }
2539 ulds[type] = *p;
2540 list_for_each_entry(adap, &adapter_list, list_node)
2541 uld_attach(adap, type);
2542out: mutex_unlock(&uld_mutex);
2543 return ret;
2544}
2545EXPORT_SYMBOL(cxgb4_register_uld);
2546
2547/**
2548 * cxgb4_unregister_uld - unregister an upper-layer driver
2549 * @type: the ULD type
2550 *
2551 * Unregisters an existing upper-layer driver.
2552 */
2553int cxgb4_unregister_uld(enum cxgb4_uld type)
2554{
2555 struct adapter *adap;
2556
2557 if (type >= CXGB4_ULD_MAX)
2558 return -EINVAL;
2559 mutex_lock(&uld_mutex);
2560 list_for_each_entry(adap, &adapter_list, list_node)
2561 adap->uld_handle[type] = NULL;
2562 ulds[type].add = NULL;
2563 mutex_unlock(&uld_mutex);
2564 return 0;
2565}
2566EXPORT_SYMBOL(cxgb4_unregister_uld);
2567
1bb60376 2568#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2569static int cxgb4_inet6addr_handler(struct notifier_block *this,
2570 unsigned long event, void *data)
01bcca68 2571{
b5a02f50
AB
2572 struct inet6_ifaddr *ifa = data;
2573 struct net_device *event_dev = ifa->idev->dev;
2574 const struct device *parent = NULL;
2575#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2576 struct adapter *adap;
b5a02f50
AB
2577#endif
2578 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2579 event_dev = vlan_dev_real_dev(event_dev);
2580#if IS_ENABLED(CONFIG_BONDING)
2581 if (event_dev->flags & IFF_MASTER) {
2582 list_for_each_entry(adap, &adapter_list, list_node) {
2583 switch (event) {
2584 case NETDEV_UP:
2585 cxgb4_clip_get(adap->port[0],
2586 (const u32 *)ifa, 1);
2587 break;
2588 case NETDEV_DOWN:
2589 cxgb4_clip_release(adap->port[0],
2590 (const u32 *)ifa, 1);
2591 break;
2592 default:
2593 break;
2594 }
2595 }
2596 return NOTIFY_OK;
2597 }
2598#endif
01bcca68 2599
b5a02f50
AB
2600 if (event_dev)
2601 parent = event_dev->dev.parent;
01bcca68 2602
b5a02f50 2603 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2604 switch (event) {
2605 case NETDEV_UP:
b5a02f50 2606 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2607 break;
2608 case NETDEV_DOWN:
b5a02f50 2609 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2610 break;
2611 default:
2612 break;
2613 }
2614 }
b5a02f50 2615 return NOTIFY_OK;
01bcca68
VP
2616}
2617
b5a02f50 2618static bool inet6addr_registered;
01bcca68
VP
2619static struct notifier_block cxgb4_inet6addr_notifier = {
2620 .notifier_call = cxgb4_inet6addr_handler
2621};
2622
01bcca68
VP
2623static void update_clip(const struct adapter *adap)
2624{
2625 int i;
2626 struct net_device *dev;
2627 int ret;
2628
2629 rcu_read_lock();
2630
2631 for (i = 0; i < MAX_NPORTS; i++) {
2632 dev = adap->port[i];
2633 ret = 0;
2634
2635 if (dev)
b5a02f50 2636 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2637
2638 if (ret < 0)
2639 break;
2640 }
2641 rcu_read_unlock();
2642}
1bb60376 2643#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2644
b8ff05a9
DM
2645/**
2646 * cxgb_up - enable the adapter
2647 * @adap: adapter being enabled
2648 *
2649 * Called when the first port is enabled, this function performs the
2650 * actions necessary to make an adapter operational, such as completing
2651 * the initialization of HW modules, and enabling interrupts.
2652 *
2653 * Must be called with the rtnl lock held.
2654 */
2655static int cxgb_up(struct adapter *adap)
2656{
aaefae9b 2657 int err;
b8ff05a9 2658
aaefae9b
DM
2659 err = setup_sge_queues(adap);
2660 if (err)
2661 goto out;
2662 err = setup_rss(adap);
2663 if (err)
2664 goto freeq;
b8ff05a9
DM
2665
2666 if (adap->flags & USING_MSIX) {
aaefae9b 2667 name_msix_vecs(adap);
b8ff05a9
DM
2668 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2669 adap->msix_info[0].desc, adap);
2670 if (err)
2671 goto irq_err;
2672
2673 err = request_msix_queue_irqs(adap);
2674 if (err) {
2675 free_irq(adap->msix_info[0].vec, adap);
2676 goto irq_err;
2677 }
2678 } else {
2679 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2680 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2681 adap->port[0]->name, adap);
b8ff05a9
DM
2682 if (err)
2683 goto irq_err;
2684 }
2685 enable_rx(adap);
2686 t4_sge_start(adap);
2687 t4_intr_enable(adap);
aaefae9b 2688 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2689 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2690#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2691 update_clip(adap);
1bb60376 2692#endif
b8ff05a9
DM
2693 out:
2694 return err;
2695 irq_err:
2696 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2697 freeq:
2698 t4_free_sge_resources(adap);
b8ff05a9
DM
2699 goto out;
2700}
2701
2702static void cxgb_down(struct adapter *adapter)
2703{
b8ff05a9 2704 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2705 cancel_work_sync(&adapter->db_full_task);
2706 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2707 adapter->tid_release_task_busy = false;
204dc3c0 2708 adapter->tid_release_head = NULL;
b8ff05a9 2709
aaefae9b
DM
2710 t4_sge_stop(adapter);
2711 t4_free_sge_resources(adapter);
2712 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2713}
2714
2715/*
2716 * net_device operations
2717 */
2718static int cxgb_open(struct net_device *dev)
2719{
2720 int err;
2721 struct port_info *pi = netdev_priv(dev);
2722 struct adapter *adapter = pi->adapter;
2723
6a3c869a
DM
2724 netif_carrier_off(dev);
2725
aaefae9b
DM
2726 if (!(adapter->flags & FULL_INIT_DONE)) {
2727 err = cxgb_up(adapter);
2728 if (err < 0)
2729 return err;
2730 }
b8ff05a9 2731
f68707b8
DM
2732 err = link_start(dev);
2733 if (!err)
2734 netif_tx_start_all_queues(dev);
2735 return err;
b8ff05a9
DM
2736}
2737
2738static int cxgb_close(struct net_device *dev)
2739{
b8ff05a9
DM
2740 struct port_info *pi = netdev_priv(dev);
2741 struct adapter *adapter = pi->adapter;
2742
2743 netif_tx_stop_all_queues(dev);
2744 netif_carrier_off(dev);
b2612722 2745 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
b8ff05a9
DM
2746}
2747
f2b7e78d
VP
2748/* Return an error number if the indicated filter isn't writable ...
2749 */
2750static int writable_filter(struct filter_entry *f)
2751{
2752 if (f->locked)
2753 return -EPERM;
2754 if (f->pending)
2755 return -EBUSY;
2756
2757 return 0;
2758}
2759
2760/* Delete the filter at the specified index (if valid). The checks for all
2761 * the common problems with doing this like the filter being locked, currently
2762 * pending in another operation, etc.
2763 */
2764static int delete_filter(struct adapter *adapter, unsigned int fidx)
2765{
2766 struct filter_entry *f;
2767 int ret;
2768
dca4faeb 2769 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2770 return -EINVAL;
2771
2772 f = &adapter->tids.ftid_tab[fidx];
2773 ret = writable_filter(f);
2774 if (ret)
2775 return ret;
2776 if (f->valid)
2777 return del_filter_wr(adapter, fidx);
2778
2779 return 0;
2780}
2781
dca4faeb 2782int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2783 __be32 sip, __be16 sport, __be16 vlan,
2784 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2785{
2786 int ret;
2787 struct filter_entry *f;
2788 struct adapter *adap;
2789 int i;
2790 u8 *val;
2791
2792 adap = netdev2adap(dev);
2793
1cab775c 2794 /* Adjust stid to correct filter index */
470c60c4 2795 stid -= adap->tids.sftid_base;
1cab775c
VP
2796 stid += adap->tids.nftids;
2797
dca4faeb
VP
2798 /* Check to make sure the filter requested is writable ...
2799 */
2800 f = &adap->tids.ftid_tab[stid];
2801 ret = writable_filter(f);
2802 if (ret)
2803 return ret;
2804
2805 /* Clear out any old resources being used by the filter before
2806 * we start constructing the new filter.
2807 */
2808 if (f->valid)
2809 clear_filter(adap, f);
2810
2811 /* Clear out filter specifications */
2812 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2813 f->fs.val.lport = cpu_to_be16(sport);
2814 f->fs.mask.lport = ~0;
2815 val = (u8 *)&sip;
793dad94 2816 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2817 for (i = 0; i < 4; i++) {
2818 f->fs.val.lip[i] = val[i];
2819 f->fs.mask.lip[i] = ~0;
2820 }
0d804338 2821 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2822 f->fs.val.iport = port;
2823 f->fs.mask.iport = mask;
2824 }
2825 }
dca4faeb 2826
0d804338 2827 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2828 f->fs.val.proto = IPPROTO_TCP;
2829 f->fs.mask.proto = ~0;
2830 }
2831
dca4faeb
VP
2832 f->fs.dirsteer = 1;
2833 f->fs.iq = queue;
2834 /* Mark filter as locked */
2835 f->locked = 1;
2836 f->fs.rpttid = 1;
2837
2838 ret = set_filter_wr(adap, stid);
2839 if (ret) {
2840 clear_filter(adap, f);
2841 return ret;
2842 }
2843
2844 return 0;
2845}
2846EXPORT_SYMBOL(cxgb4_create_server_filter);
2847
2848int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2849 unsigned int queue, bool ipv6)
2850{
2851 int ret;
2852 struct filter_entry *f;
2853 struct adapter *adap;
2854
2855 adap = netdev2adap(dev);
1cab775c
VP
2856
2857 /* Adjust stid to correct filter index */
470c60c4 2858 stid -= adap->tids.sftid_base;
1cab775c
VP
2859 stid += adap->tids.nftids;
2860
dca4faeb
VP
2861 f = &adap->tids.ftid_tab[stid];
2862 /* Unlock the filter */
2863 f->locked = 0;
2864
2865 ret = delete_filter(adap, stid);
2866 if (ret)
2867 return ret;
2868
2869 return 0;
2870}
2871EXPORT_SYMBOL(cxgb4_remove_server_filter);
2872
f5152c90
DM
2873static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2874 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2875{
2876 struct port_stats stats;
2877 struct port_info *p = netdev_priv(dev);
2878 struct adapter *adapter = p->adapter;
b8ff05a9 2879
9fe6cb58
GS
2880 /* Block retrieving statistics during EEH error
2881 * recovery. Otherwise, the recovery might fail
2882 * and the PCI device will be removed permanently
2883 */
b8ff05a9 2884 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2885 if (!netif_device_present(dev)) {
2886 spin_unlock(&adapter->stats_lock);
2887 return ns;
2888 }
a4cfd929
HS
2889 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2890 &p->stats_base);
b8ff05a9
DM
2891 spin_unlock(&adapter->stats_lock);
2892
2893 ns->tx_bytes = stats.tx_octets;
2894 ns->tx_packets = stats.tx_frames;
2895 ns->rx_bytes = stats.rx_octets;
2896 ns->rx_packets = stats.rx_frames;
2897 ns->multicast = stats.rx_mcast_frames;
2898
2899 /* detailed rx_errors */
2900 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2901 stats.rx_runt;
2902 ns->rx_over_errors = 0;
2903 ns->rx_crc_errors = stats.rx_fcs_err;
2904 ns->rx_frame_errors = stats.rx_symbol_err;
2905 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2906 stats.rx_ovflow2 + stats.rx_ovflow3 +
2907 stats.rx_trunc0 + stats.rx_trunc1 +
2908 stats.rx_trunc2 + stats.rx_trunc3;
2909 ns->rx_missed_errors = 0;
2910
2911 /* detailed tx_errors */
2912 ns->tx_aborted_errors = 0;
2913 ns->tx_carrier_errors = 0;
2914 ns->tx_fifo_errors = 0;
2915 ns->tx_heartbeat_errors = 0;
2916 ns->tx_window_errors = 0;
2917
2918 ns->tx_errors = stats.tx_error_frames;
2919 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2920 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2921 return ns;
2922}
2923
2924static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2925{
060e0c75 2926 unsigned int mbox;
b8ff05a9
DM
2927 int ret = 0, prtad, devad;
2928 struct port_info *pi = netdev_priv(dev);
2929 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2930
2931 switch (cmd) {
2932 case SIOCGMIIPHY:
2933 if (pi->mdio_addr < 0)
2934 return -EOPNOTSUPP;
2935 data->phy_id = pi->mdio_addr;
2936 break;
2937 case SIOCGMIIREG:
2938 case SIOCSMIIREG:
2939 if (mdio_phy_id_is_c45(data->phy_id)) {
2940 prtad = mdio_phy_id_prtad(data->phy_id);
2941 devad = mdio_phy_id_devad(data->phy_id);
2942 } else if (data->phy_id < 32) {
2943 prtad = data->phy_id;
2944 devad = 0;
2945 data->reg_num &= 0x1f;
2946 } else
2947 return -EINVAL;
2948
b2612722 2949 mbox = pi->adapter->pf;
b8ff05a9 2950 if (cmd == SIOCGMIIREG)
060e0c75 2951 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2952 data->reg_num, &data->val_out);
2953 else
060e0c75 2954 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2955 data->reg_num, data->val_in);
2956 break;
2957 default:
2958 return -EOPNOTSUPP;
2959 }
2960 return ret;
2961}
2962
2963static void cxgb_set_rxmode(struct net_device *dev)
2964{
2965 /* unfortunately we can't return errors to the stack */
2966 set_rxmode(dev, -1, false);
2967}
2968
2969static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2970{
2971 int ret;
2972 struct port_info *pi = netdev_priv(dev);
2973
2974 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2975 return -EINVAL;
b2612722 2976 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
060e0c75 2977 -1, -1, -1, true);
b8ff05a9
DM
2978 if (!ret)
2979 dev->mtu = new_mtu;
2980 return ret;
2981}
2982
2983static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2984{
2985 int ret;
2986 struct sockaddr *addr = p;
2987 struct port_info *pi = netdev_priv(dev);
2988
2989 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 2990 return -EADDRNOTAVAIL;
b8ff05a9 2991
b2612722 2992 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
060e0c75 2993 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
2994 if (ret < 0)
2995 return ret;
2996
2997 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2998 pi->xact_addr_filt = ret;
2999 return 0;
3000}
3001
b8ff05a9
DM
3002#ifdef CONFIG_NET_POLL_CONTROLLER
3003static void cxgb_netpoll(struct net_device *dev)
3004{
3005 struct port_info *pi = netdev_priv(dev);
3006 struct adapter *adap = pi->adapter;
3007
3008 if (adap->flags & USING_MSIX) {
3009 int i;
3010 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3011
3012 for (i = pi->nqsets; i; i--, rx++)
3013 t4_sge_intr_msix(0, &rx->rspq);
3014 } else
3015 t4_intr_handler(adap)(0, adap);
3016}
3017#endif
3018
3019static const struct net_device_ops cxgb4_netdev_ops = {
3020 .ndo_open = cxgb_open,
3021 .ndo_stop = cxgb_close,
3022 .ndo_start_xmit = t4_eth_xmit,
688848b1 3023 .ndo_select_queue = cxgb_select_queue,
9be793bf 3024 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3025 .ndo_set_rx_mode = cxgb_set_rxmode,
3026 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3027 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3028 .ndo_validate_addr = eth_validate_addr,
3029 .ndo_do_ioctl = cxgb_ioctl,
3030 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3031#ifdef CONFIG_NET_POLL_CONTROLLER
3032 .ndo_poll_controller = cxgb_netpoll,
3033#endif
84a200b3
VP
3034#ifdef CONFIG_CHELSIO_T4_FCOE
3035 .ndo_fcoe_enable = cxgb_fcoe_enable,
3036 .ndo_fcoe_disable = cxgb_fcoe_disable,
3037#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3038#ifdef CONFIG_NET_RX_BUSY_POLL
3039 .ndo_busy_poll = cxgb_busy_poll,
3040#endif
3041
b8ff05a9
DM
3042};
3043
3044void t4_fatal_err(struct adapter *adap)
3045{
f612b815 3046 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3047 t4_intr_disable(adap);
3048 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3049}
3050
3051static void setup_memwin(struct adapter *adap)
3052{
b562fc37 3053 u32 nic_win_base = t4_get_util_window(adap);
b8ff05a9 3054
b562fc37 3055 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
636f9d37
VP
3056}
3057
3058static void setup_memwin_rdma(struct adapter *adap)
3059{
1ae970e0 3060 if (adap->vres.ocq.size) {
0abfd152
HS
3061 u32 start;
3062 unsigned int sz_kb;
1ae970e0 3063
0abfd152
HS
3064 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3065 start &= PCI_BASE_ADDRESS_MEM_MASK;
3066 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3067 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3068 t4_write_reg(adap,
f061de42
HS
3069 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3070 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3071 t4_write_reg(adap,
f061de42 3072 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3073 adap->vres.ocq.start);
3074 t4_read_reg(adap,
f061de42 3075 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3076 }
b8ff05a9
DM
3077}
3078
02b5fb8e
DM
3079static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3080{
3081 u32 v;
3082 int ret;
3083
3084 /* get device capabilities */
3085 memset(c, 0, sizeof(*c));
e2ac9628
HS
3086 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3087 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3088 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
b2612722 3089 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
02b5fb8e
DM
3090 if (ret < 0)
3091 return ret;
3092
3093 /* select capabilities we'll be using */
3094 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3095 if (!vf_acls)
3096 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3097 else
3098 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3099 } else if (vf_acls) {
3100 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3101 return ret;
3102 }
e2ac9628
HS
3103 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3104 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
b2612722 3105 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
02b5fb8e
DM
3106 if (ret < 0)
3107 return ret;
3108
b2612722 3109 ret = t4_config_glbl_rss(adap, adap->pf,
02b5fb8e 3110 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3111 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3112 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3113 if (ret < 0)
3114 return ret;
3115
b2612722 3116 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4b8e27a8
HS
3117 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3118 FW_CMD_CAP_PF);
02b5fb8e
DM
3119 if (ret < 0)
3120 return ret;
3121
3122 t4_sge_init(adap);
3123
02b5fb8e 3124 /* tweak some settings */
837e4a42 3125 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3126 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3127 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3128 v = t4_read_reg(adap, TP_PIO_DATA_A);
3129 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3130
dca4faeb
VP
3131 /* first 4 Tx modulation queues point to consecutive Tx channels */
3132 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3133 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3134 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3135
3136 /* associate each Tx modulation queue with consecutive Tx channels */
3137 v = 0x84218421;
837e4a42 3138 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3139 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3140 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3141 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3142 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3143 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3144
3145#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3146 if (is_offload(adap)) {
0d804338
HS
3147 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3148 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3149 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3150 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3151 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3152 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3153 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3154 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3155 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3156 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3157 }
3158
060e0c75 3159 /* get basic stuff going */
b2612722 3160 return t4_early_init(adap, adap->pf);
02b5fb8e
DM
3161}
3162
b8ff05a9
DM
3163/*
3164 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3165 */
3166#define MAX_ATIDS 8192U
3167
636f9d37
VP
3168/*
3169 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3170 *
3171 * If the firmware we're dealing with has Configuration File support, then
3172 * we use that to perform all configuration
3173 */
3174
3175/*
3176 * Tweak configuration based on module parameters, etc. Most of these have
3177 * defaults assigned to them by Firmware Configuration Files (if we're using
3178 * them) but need to be explicitly set if we're using hard-coded
3179 * initialization. But even in the case of using Firmware Configuration
3180 * Files, we'd like to expose the ability to change these via module
3181 * parameters so these are essentially common tweaks/settings for
3182 * Configuration Files and hard-coded initialization ...
3183 */
3184static int adap_init0_tweaks(struct adapter *adapter)
3185{
3186 /*
3187 * Fix up various Host-Dependent Parameters like Page Size, Cache
3188 * Line Size, etc. The firmware default is for a 4KB Page Size and
3189 * 64B Cache Line Size ...
3190 */
3191 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3192
3193 /*
3194 * Process module parameters which affect early initialization.
3195 */
3196 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3197 dev_err(&adapter->pdev->dev,
3198 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3199 rx_dma_offset);
3200 rx_dma_offset = 2;
3201 }
f612b815
HS
3202 t4_set_reg_field(adapter, SGE_CONTROL_A,
3203 PKTSHIFT_V(PKTSHIFT_M),
3204 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3205
3206 /*
3207 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3208 * adds the pseudo header itself.
3209 */
837e4a42
HS
3210 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3211 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3212
3213 return 0;
3214}
3215
01b69614
HS
3216/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3217 * unto themselves and they contain their own firmware to perform their
3218 * tasks ...
3219 */
3220static int phy_aq1202_version(const u8 *phy_fw_data,
3221 size_t phy_fw_size)
3222{
3223 int offset;
3224
3225 /* At offset 0x8 you're looking for the primary image's
3226 * starting offset which is 3 Bytes wide
3227 *
3228 * At offset 0xa of the primary image, you look for the offset
3229 * of the DRAM segment which is 3 Bytes wide.
3230 *
3231 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3232 * wide
3233 */
3234 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3235 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3236 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3237
3238 offset = le24(phy_fw_data + 0x8) << 12;
3239 offset = le24(phy_fw_data + offset + 0xa);
3240 return be16(phy_fw_data + offset + 0x27e);
3241
3242 #undef be16
3243 #undef le16
3244 #undef le24
3245}
3246
3247static struct info_10gbt_phy_fw {
3248 unsigned int phy_fw_id; /* PCI Device ID */
3249 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3250 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3251 int phy_flash; /* Has FLASH for PHY Firmware */
3252} phy_info_array[] = {
3253 {
3254 PHY_AQ1202_DEVICEID,
3255 PHY_AQ1202_FIRMWARE,
3256 phy_aq1202_version,
3257 1,
3258 },
3259 {
3260 PHY_BCM84834_DEVICEID,
3261 PHY_BCM84834_FIRMWARE,
3262 NULL,
3263 0,
3264 },
3265 { 0, NULL, NULL },
3266};
3267
3268static struct info_10gbt_phy_fw *find_phy_info(int devid)
3269{
3270 int i;
3271
3272 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3273 if (phy_info_array[i].phy_fw_id == devid)
3274 return &phy_info_array[i];
3275 }
3276 return NULL;
3277}
3278
3279/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3280 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3281 * we return a negative error number. If we transfer new firmware we return 1
3282 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3283 */
3284static int adap_init0_phy(struct adapter *adap)
3285{
3286 const struct firmware *phyf;
3287 int ret;
3288 struct info_10gbt_phy_fw *phy_info;
3289
3290 /* Use the device ID to determine which PHY file to flash.
3291 */
3292 phy_info = find_phy_info(adap->pdev->device);
3293 if (!phy_info) {
3294 dev_warn(adap->pdev_dev,
3295 "No PHY Firmware file found for this PHY\n");
3296 return -EOPNOTSUPP;
3297 }
3298
3299 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3300 * use that. The adapter firmware provides us with a memory buffer
3301 * where we can load a PHY firmware file from the host if we want to
3302 * override the PHY firmware File in flash.
3303 */
3304 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3305 adap->pdev_dev);
3306 if (ret < 0) {
3307 /* For adapters without FLASH attached to PHY for their
3308 * firmware, it's obviously a fatal error if we can't get the
3309 * firmware to the adapter. For adapters with PHY firmware
3310 * FLASH storage, it's worth a warning if we can't find the
3311 * PHY Firmware but we'll neuter the error ...
3312 */
3313 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3314 "/lib/firmware/%s, error %d\n",
3315 phy_info->phy_fw_file, -ret);
3316 if (phy_info->phy_flash) {
3317 int cur_phy_fw_ver = 0;
3318
3319 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3320 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3321 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3322 ret = 0;
3323 }
3324
3325 return ret;
3326 }
3327
3328 /* Load PHY Firmware onto adapter.
3329 */
3330 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3331 phy_info->phy_fw_version,
3332 (u8 *)phyf->data, phyf->size);
3333 if (ret < 0)
3334 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3335 -ret);
3336 else if (ret > 0) {
3337 int new_phy_fw_ver = 0;
3338
3339 if (phy_info->phy_fw_version)
3340 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3341 phyf->size);
3342 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3343 "Firmware /lib/firmware/%s, version %#x\n",
3344 phy_info->phy_fw_file, new_phy_fw_ver);
3345 }
3346
3347 release_firmware(phyf);
3348
3349 return ret;
3350}
3351
636f9d37
VP
3352/*
3353 * Attempt to initialize the adapter via a Firmware Configuration File.
3354 */
3355static int adap_init0_config(struct adapter *adapter, int reset)
3356{
3357 struct fw_caps_config_cmd caps_cmd;
3358 const struct firmware *cf;
3359 unsigned long mtype = 0, maddr = 0;
3360 u32 finiver, finicsum, cfcsum;
16e47624
HS
3361 int ret;
3362 int config_issued = 0;
0a57a536 3363 char *fw_config_file, fw_config_file_path[256];
16e47624 3364 char *config_name = NULL;
636f9d37
VP
3365
3366 /*
3367 * Reset device if necessary.
3368 */
3369 if (reset) {
3370 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3371 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3372 if (ret < 0)
3373 goto bye;
3374 }
3375
01b69614
HS
3376 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3377 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3378 * to be performed after any global adapter RESET above since some
3379 * PHYs only have local RAM copies of the PHY firmware.
3380 */
3381 if (is_10gbt_device(adapter->pdev->device)) {
3382 ret = adap_init0_phy(adapter);
3383 if (ret < 0)
3384 goto bye;
3385 }
636f9d37
VP
3386 /*
3387 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3388 * then use that. Otherwise, use the configuration file stored
3389 * in the adapter flash ...
3390 */
d14807dd 3391 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3392 case CHELSIO_T4:
16e47624 3393 fw_config_file = FW4_CFNAME;
0a57a536
SR
3394 break;
3395 case CHELSIO_T5:
3396 fw_config_file = FW5_CFNAME;
3397 break;
3ccc6cf7
HS
3398 case CHELSIO_T6:
3399 fw_config_file = FW6_CFNAME;
3400 break;
0a57a536
SR
3401 default:
3402 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3403 adapter->pdev->device);
3404 ret = -EINVAL;
3405 goto bye;
3406 }
3407
3408 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3409 if (ret < 0) {
16e47624 3410 config_name = "On FLASH";
636f9d37
VP
3411 mtype = FW_MEMTYPE_CF_FLASH;
3412 maddr = t4_flash_cfg_addr(adapter);
3413 } else {
3414 u32 params[7], val[7];
3415
16e47624
HS
3416 sprintf(fw_config_file_path,
3417 "/lib/firmware/%s", fw_config_file);
3418 config_name = fw_config_file_path;
3419
636f9d37
VP
3420 if (cf->size >= FLASH_CFG_MAX_SIZE)
3421 ret = -ENOMEM;
3422 else {
5167865a
HS
3423 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3424 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37 3425 ret = t4_query_params(adapter, adapter->mbox,
b2612722 3426 adapter->pf, 0, 1, params, val);
636f9d37
VP
3427 if (ret == 0) {
3428 /*
fc5ab020 3429 * For t4_memory_rw() below addresses and
636f9d37
VP
3430 * sizes have to be in terms of multiples of 4
3431 * bytes. So, if the Configuration File isn't
3432 * a multiple of 4 bytes in length we'll have
3433 * to write that out separately since we can't
3434 * guarantee that the bytes following the
3435 * residual byte in the buffer returned by
3436 * request_firmware() are zeroed out ...
3437 */
3438 size_t resid = cf->size & 0x3;
3439 size_t size = cf->size & ~0x3;
3440 __be32 *data = (__be32 *)cf->data;
3441
5167865a
HS
3442 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3443 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3444
fc5ab020
HS
3445 spin_lock(&adapter->win0_lock);
3446 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3447 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3448 if (ret == 0 && resid != 0) {
3449 union {
3450 __be32 word;
3451 char buf[4];
3452 } last;
3453 int i;
3454
3455 last.word = data[size >> 2];
3456 for (i = resid; i < 4; i++)
3457 last.buf[i] = 0;
fc5ab020
HS
3458 ret = t4_memory_rw(adapter, 0, mtype,
3459 maddr + size,
3460 4, &last.word,
3461 T4_MEMORY_WRITE);
636f9d37 3462 }
fc5ab020 3463 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3464 }
3465 }
3466
3467 release_firmware(cf);
3468 if (ret)
3469 goto bye;
3470 }
3471
3472 /*
3473 * Issue a Capability Configuration command to the firmware to get it
3474 * to parse the Configuration File. We don't use t4_fw_config_file()
3475 * because we want the ability to modify various features after we've
3476 * processed the configuration file ...
3477 */
3478 memset(&caps_cmd, 0, sizeof(caps_cmd));
3479 caps_cmd.op_to_write =
e2ac9628
HS
3480 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3481 FW_CMD_REQUEST_F |
3482 FW_CMD_READ_F);
ce91a923 3483 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3484 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3485 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3486 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3487 FW_LEN16(caps_cmd));
3488 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3489 &caps_cmd);
16e47624
HS
3490
3491 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3492 * Configuration File in FLASH), our last gasp effort is to use the
3493 * Firmware Configuration File which is embedded in the firmware. A
3494 * very few early versions of the firmware didn't have one embedded
3495 * but we can ignore those.
3496 */
3497 if (ret == -ENOENT) {
3498 memset(&caps_cmd, 0, sizeof(caps_cmd));
3499 caps_cmd.op_to_write =
e2ac9628
HS
3500 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3501 FW_CMD_REQUEST_F |
3502 FW_CMD_READ_F);
16e47624
HS
3503 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3504 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3505 sizeof(caps_cmd), &caps_cmd);
3506 config_name = "Firmware Default";
3507 }
3508
3509 config_issued = 1;
636f9d37
VP
3510 if (ret < 0)
3511 goto bye;
3512
3513 finiver = ntohl(caps_cmd.finiver);
3514 finicsum = ntohl(caps_cmd.finicsum);
3515 cfcsum = ntohl(caps_cmd.cfcsum);
3516 if (finicsum != cfcsum)
3517 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3518 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3519 finicsum, cfcsum);
3520
636f9d37
VP
3521 /*
3522 * And now tell the firmware to use the configuration we just loaded.
3523 */
3524 caps_cmd.op_to_write =
e2ac9628
HS
3525 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3526 FW_CMD_REQUEST_F |
3527 FW_CMD_WRITE_F);
ce91a923 3528 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3529 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3530 NULL);
3531 if (ret < 0)
3532 goto bye;
3533
3534 /*
3535 * Tweak configuration based on system architecture, module
3536 * parameters, etc.
3537 */
3538 ret = adap_init0_tweaks(adapter);
3539 if (ret < 0)
3540 goto bye;
3541
3542 /*
3543 * And finally tell the firmware to initialize itself using the
3544 * parameters from the Configuration File.
3545 */
3546 ret = t4_fw_initialize(adapter, adapter->mbox);
3547 if (ret < 0)
3548 goto bye;
3549
06640310
HS
3550 /* Emit Firmware Configuration File information and return
3551 * successfully.
636f9d37 3552 */
636f9d37 3553 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3554 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3555 config_name, finiver, cfcsum);
636f9d37
VP
3556 return 0;
3557
3558 /*
3559 * Something bad happened. Return the error ... (If the "error"
3560 * is that there's no Configuration File on the adapter we don't
3561 * want to issue a warning since this is fairly common.)
3562 */
3563bye:
16e47624
HS
3564 if (config_issued && ret != -ENOENT)
3565 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3566 config_name, -ret);
636f9d37
VP
3567 return ret;
3568}
3569
16e47624
HS
3570static struct fw_info fw_info_array[] = {
3571 {
3572 .chip = CHELSIO_T4,
3573 .fs_name = FW4_CFNAME,
3574 .fw_mod_name = FW4_FNAME,
3575 .fw_hdr = {
3576 .chip = FW_HDR_CHIP_T4,
3577 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3578 .intfver_nic = FW_INTFVER(T4, NIC),
3579 .intfver_vnic = FW_INTFVER(T4, VNIC),
3580 .intfver_ri = FW_INTFVER(T4, RI),
3581 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3582 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3583 },
3584 }, {
3585 .chip = CHELSIO_T5,
3586 .fs_name = FW5_CFNAME,
3587 .fw_mod_name = FW5_FNAME,
3588 .fw_hdr = {
3589 .chip = FW_HDR_CHIP_T5,
3590 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3591 .intfver_nic = FW_INTFVER(T5, NIC),
3592 .intfver_vnic = FW_INTFVER(T5, VNIC),
3593 .intfver_ri = FW_INTFVER(T5, RI),
3594 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3595 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3596 },
3ccc6cf7
HS
3597 }, {
3598 .chip = CHELSIO_T6,
3599 .fs_name = FW6_CFNAME,
3600 .fw_mod_name = FW6_FNAME,
3601 .fw_hdr = {
3602 .chip = FW_HDR_CHIP_T6,
3603 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3604 .intfver_nic = FW_INTFVER(T6, NIC),
3605 .intfver_vnic = FW_INTFVER(T6, VNIC),
3606 .intfver_ofld = FW_INTFVER(T6, OFLD),
3607 .intfver_ri = FW_INTFVER(T6, RI),
3608 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3609 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3610 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3611 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3612 },
16e47624 3613 }
3ccc6cf7 3614
16e47624
HS
3615};
3616
3617static struct fw_info *find_fw_info(int chip)
3618{
3619 int i;
3620
3621 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3622 if (fw_info_array[i].chip == chip)
3623 return &fw_info_array[i];
3624 }
3625 return NULL;
3626}
3627
b8ff05a9
DM
3628/*
3629 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3630 */
3631static int adap_init0(struct adapter *adap)
3632{
3633 int ret;
3634 u32 v, port_vec;
3635 enum dev_state state;
3636 u32 params[7], val[7];
9a4da2cd 3637 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3638 int reset = 1;
b8ff05a9 3639
ae469b68
HS
3640 /* Grab Firmware Device Log parameters as early as possible so we have
3641 * access to it for debugging, etc.
3642 */
3643 ret = t4_init_devlog_params(adap);
3644 if (ret < 0)
3645 return ret;
3646
666224d4
HS
3647 /* Contact FW, advertising Master capability */
3648 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
3649 if (ret < 0) {
3650 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3651 ret);
3652 return ret;
3653 }
636f9d37
VP
3654 if (ret == adap->mbox)
3655 adap->flags |= MASTER_PF;
b8ff05a9 3656
636f9d37
VP
3657 /*
3658 * If we're the Master PF Driver and the device is uninitialized,
3659 * then let's consider upgrading the firmware ... (We always want
3660 * to check the firmware version number in order to A. get it for
3661 * later reporting and B. to warn if the currently loaded firmware
3662 * is excessively mismatched relative to the driver.)
3663 */
16e47624
HS
3664 t4_get_fw_version(adap, &adap->params.fw_vers);
3665 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 3666 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3667 struct fw_info *fw_info;
3668 struct fw_hdr *card_fw;
3669 const struct firmware *fw;
3670 const u8 *fw_data = NULL;
3671 unsigned int fw_size = 0;
3672
3673 /* This is the firmware whose headers the driver was compiled
3674 * against
3675 */
3676 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3677 if (fw_info == NULL) {
3678 dev_err(adap->pdev_dev,
3679 "unable to get firmware info for chip %d.\n",
3680 CHELSIO_CHIP_VERSION(adap->params.chip));
3681 return -EINVAL;
636f9d37 3682 }
16e47624
HS
3683
3684 /* allocate memory to read the header of the firmware on the
3685 * card
3686 */
3687 card_fw = t4_alloc_mem(sizeof(*card_fw));
3688
3689 /* Get FW from from /lib/firmware/ */
3690 ret = request_firmware(&fw, fw_info->fw_mod_name,
3691 adap->pdev_dev);
3692 if (ret < 0) {
3693 dev_err(adap->pdev_dev,
3694 "unable to load firmware image %s, error %d\n",
3695 fw_info->fw_mod_name, ret);
3696 } else {
3697 fw_data = fw->data;
3698 fw_size = fw->size;
3699 }
3700
3701 /* upgrade FW logic */
3702 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3703 state, &reset);
3704
3705 /* Cleaning up */
0b5b6bee 3706 release_firmware(fw);
16e47624
HS
3707 t4_free_mem(card_fw);
3708
636f9d37 3709 if (ret < 0)
16e47624 3710 goto bye;
636f9d37 3711 }
b8ff05a9 3712
636f9d37
VP
3713 /*
3714 * Grab VPD parameters. This should be done after we establish a
3715 * connection to the firmware since some of the VPD parameters
3716 * (notably the Core Clock frequency) are retrieved via requests to
3717 * the firmware. On the other hand, we need these fairly early on
3718 * so we do this right after getting ahold of the firmware.
3719 */
098ef6c2 3720 ret = t4_get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3721 if (ret < 0)
3722 goto bye;
a0881cab 3723
636f9d37 3724 /*
13ee15d3
VP
3725 * Find out what ports are available to us. Note that we need to do
3726 * this before calling adap_init0_no_config() since it needs nports
3727 * and portvec ...
636f9d37
VP
3728 */
3729 v =
5167865a
HS
3730 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3731 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
b2612722 3732 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
a0881cab
DM
3733 if (ret < 0)
3734 goto bye;
3735
636f9d37
VP
3736 adap->params.nports = hweight32(port_vec);
3737 adap->params.portvec = port_vec;
3738
06640310
HS
3739 /* If the firmware is initialized already, emit a simply note to that
3740 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3741 */
3742 if (state == DEV_STATE_INIT) {
3743 dev_info(adap->pdev_dev, "Coming up as %s: "\
3744 "Adapter already initialized\n",
3745 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3746 } else {
3747 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3748 "Initializing adapter\n");
06640310
HS
3749
3750 /* Find out whether we're dealing with a version of the
3751 * firmware which has configuration file support.
636f9d37 3752 */
06640310
HS
3753 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3754 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
b2612722 3755 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
06640310 3756 params, val);
13ee15d3 3757
06640310
HS
3758 /* If the firmware doesn't support Configuration Files,
3759 * return an error.
3760 */
3761 if (ret < 0) {
3762 dev_err(adap->pdev_dev, "firmware doesn't support "
3763 "Firmware Configuration Files\n");
3764 goto bye;
3765 }
3766
3767 /* The firmware provides us with a memory buffer where we can
3768 * load a Configuration File from the host if we want to
3769 * override the Configuration File in flash.
3770 */
3771 ret = adap_init0_config(adap, reset);
3772 if (ret == -ENOENT) {
3773 dev_err(adap->pdev_dev, "no Configuration File "
3774 "present on adapter.\n");
3775 goto bye;
636f9d37
VP
3776 }
3777 if (ret < 0) {
06640310
HS
3778 dev_err(adap->pdev_dev, "could not initialize "
3779 "adapter, error %d\n", -ret);
636f9d37
VP
3780 goto bye;
3781 }
3782 }
3783
06640310
HS
3784 /* Give the SGE code a chance to pull in anything that it needs ...
3785 * Note that this must be called after we retrieve our VPD parameters
3786 * in order to know how to convert core ticks to seconds, etc.
636f9d37 3787 */
06640310
HS
3788 ret = t4_sge_init(adap);
3789 if (ret < 0)
3790 goto bye;
636f9d37 3791
9a4da2cd
VP
3792 if (is_bypass_device(adap->pdev->device))
3793 adap->params.bypass = 1;
3794
636f9d37
VP
3795 /*
3796 * Grab some of our basic fundamental operating parameters.
3797 */
3798#define FW_PARAM_DEV(param) \
5167865a
HS
3799 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3800 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 3801
b8ff05a9 3802#define FW_PARAM_PFVF(param) \
5167865a
HS
3803 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3804 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3805 FW_PARAMS_PARAM_Y_V(0) | \
3806 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 3807
636f9d37 3808 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
3809 params[1] = FW_PARAM_PFVF(L2T_START);
3810 params[2] = FW_PARAM_PFVF(L2T_END);
3811 params[3] = FW_PARAM_PFVF(FILTER_START);
3812 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 3813 params[5] = FW_PARAM_PFVF(IQFLINT_START);
b2612722 3814 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
b8ff05a9
DM
3815 if (ret < 0)
3816 goto bye;
636f9d37
VP
3817 adap->sge.egr_start = val[0];
3818 adap->l2t_start = val[1];
3819 adap->l2t_end = val[2];
b8ff05a9
DM
3820 adap->tids.ftid_base = val[3];
3821 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 3822 adap->sge.ingr_start = val[5];
b8ff05a9 3823
4b8e27a8
HS
3824 /* qids (ingress/egress) returned from firmware can be anywhere
3825 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3826 * Hence driver needs to allocate memory for this range to
3827 * store the queue info. Get the highest IQFLINT/EQ index returned
3828 * in FW_EQ_*_CMD.alloc command.
3829 */
3830 params[0] = FW_PARAM_PFVF(EQ_END);
3831 params[1] = FW_PARAM_PFVF(IQFLINT_END);
b2612722 3832 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4b8e27a8
HS
3833 if (ret < 0)
3834 goto bye;
3835 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3836 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3837
3838 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3839 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3840 if (!adap->sge.egr_map) {
3841 ret = -ENOMEM;
3842 goto bye;
3843 }
3844
3845 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3846 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3847 if (!adap->sge.ingr_map) {
3848 ret = -ENOMEM;
3849 goto bye;
3850 }
3851
3852 /* Allocate the memory for the vaious egress queue bitmaps
5b377d11 3853 * ie starving_fl, txq_maperr and blocked_fl.
4b8e27a8
HS
3854 */
3855 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3856 sizeof(long), GFP_KERNEL);
3857 if (!adap->sge.starving_fl) {
3858 ret = -ENOMEM;
3859 goto bye;
3860 }
3861
3862 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3863 sizeof(long), GFP_KERNEL);
3864 if (!adap->sge.txq_maperr) {
3865 ret = -ENOMEM;
3866 goto bye;
3867 }
3868
5b377d11
HS
3869#ifdef CONFIG_DEBUG_FS
3870 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3871 sizeof(long), GFP_KERNEL);
3872 if (!adap->sge.blocked_fl) {
3873 ret = -ENOMEM;
3874 goto bye;
3875 }
3876#endif
3877
b5a02f50
AB
3878 params[0] = FW_PARAM_PFVF(CLIP_START);
3879 params[1] = FW_PARAM_PFVF(CLIP_END);
b2612722 3880 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
b5a02f50
AB
3881 if (ret < 0)
3882 goto bye;
3883 adap->clipt_start = val[0];
3884 adap->clipt_end = val[1];
3885
636f9d37
VP
3886 /* query params related to active filter region */
3887 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3888 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
b2612722 3889 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
636f9d37
VP
3890 /* If Active filter size is set we enable establishing
3891 * offload connection through firmware work request
3892 */
3893 if ((val[0] != val[1]) && (ret >= 0)) {
3894 adap->flags |= FW_OFLD_CONN;
3895 adap->tids.aftid_base = val[0];
3896 adap->tids.aftid_end = val[1];
3897 }
3898
b407a4a9
VP
3899 /* If we're running on newer firmware, let it know that we're
3900 * prepared to deal with encapsulated CPL messages. Older
3901 * firmware won't understand this and we'll just get
3902 * unencapsulated messages ...
3903 */
3904 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3905 val[0] = 1;
b2612722 3906 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
b407a4a9 3907
1ac0f095
KS
3908 /*
3909 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3910 * capability. Earlier versions of the firmware didn't have the
3911 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3912 * permission to use ULPTX MEMWRITE DSGL.
3913 */
3914 if (is_t4(adap->params.chip)) {
3915 adap->params.ulptx_memwrite_dsgl = false;
3916 } else {
3917 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
b2612722 3918 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1ac0f095
KS
3919 1, params, val);
3920 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3921 }
3922
636f9d37
VP
3923 /*
3924 * Get device capabilities so we can determine what resources we need
3925 * to manage.
3926 */
3927 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
3928 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3929 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3930 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3931 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3932 &caps_cmd);
3933 if (ret < 0)
3934 goto bye;
3935
13ee15d3 3936 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
3937 /* query offload-related parameters */
3938 params[0] = FW_PARAM_DEV(NTID);
3939 params[1] = FW_PARAM_PFVF(SERVER_START);
3940 params[2] = FW_PARAM_PFVF(SERVER_END);
3941 params[3] = FW_PARAM_PFVF(TDDP_START);
3942 params[4] = FW_PARAM_PFVF(TDDP_END);
3943 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
b2612722 3944 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 3945 params, val);
b8ff05a9
DM
3946 if (ret < 0)
3947 goto bye;
3948 adap->tids.ntids = val[0];
3949 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3950 adap->tids.stid_base = val[1];
3951 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 3952 /*
dbedd44e 3953 * Setup server filter region. Divide the available filter
636f9d37
VP
3954 * region into two parts. Regular filters get 1/3rd and server
3955 * filters get 2/3rd part. This is only enabled if workarond
3956 * path is enabled.
3957 * 1. For regular filters.
3958 * 2. Server filter: This are special filters which are used
3959 * to redirect SYN packets to offload queue.
3960 */
3961 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3962 adap->tids.sftid_base = adap->tids.ftid_base +
3963 DIV_ROUND_UP(adap->tids.nftids, 3);
3964 adap->tids.nsftids = adap->tids.nftids -
3965 DIV_ROUND_UP(adap->tids.nftids, 3);
3966 adap->tids.nftids = adap->tids.sftid_base -
3967 adap->tids.ftid_base;
3968 }
b8ff05a9
DM
3969 adap->vres.ddp.start = val[3];
3970 adap->vres.ddp.size = val[4] - val[3] + 1;
3971 adap->params.ofldq_wr_cred = val[5];
636f9d37 3972
b8ff05a9
DM
3973 adap->params.offload = 1;
3974 }
636f9d37 3975 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
3976 params[0] = FW_PARAM_PFVF(STAG_START);
3977 params[1] = FW_PARAM_PFVF(STAG_END);
3978 params[2] = FW_PARAM_PFVF(RQ_START);
3979 params[3] = FW_PARAM_PFVF(RQ_END);
3980 params[4] = FW_PARAM_PFVF(PBL_START);
3981 params[5] = FW_PARAM_PFVF(PBL_END);
b2612722 3982 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 3983 params, val);
b8ff05a9
DM
3984 if (ret < 0)
3985 goto bye;
3986 adap->vres.stag.start = val[0];
3987 adap->vres.stag.size = val[1] - val[0] + 1;
3988 adap->vres.rq.start = val[2];
3989 adap->vres.rq.size = val[3] - val[2] + 1;
3990 adap->vres.pbl.start = val[4];
3991 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
3992
3993 params[0] = FW_PARAM_PFVF(SQRQ_START);
3994 params[1] = FW_PARAM_PFVF(SQRQ_END);
3995 params[2] = FW_PARAM_PFVF(CQ_START);
3996 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
3997 params[4] = FW_PARAM_PFVF(OCQ_START);
3998 params[5] = FW_PARAM_PFVF(OCQ_END);
b2612722 3999 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5c937dd3 4000 val);
a0881cab
DM
4001 if (ret < 0)
4002 goto bye;
4003 adap->vres.qp.start = val[0];
4004 adap->vres.qp.size = val[1] - val[0] + 1;
4005 adap->vres.cq.start = val[2];
4006 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
4007 adap->vres.ocq.start = val[4];
4008 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
4009
4010 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4011 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
b2612722 4012 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5c937dd3 4013 val);
4c2c5763
HS
4014 if (ret < 0) {
4015 adap->params.max_ordird_qp = 8;
4016 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4017 ret = 0;
4018 } else {
4019 adap->params.max_ordird_qp = val[0];
4020 adap->params.max_ird_adapter = val[1];
4021 }
4022 dev_info(adap->pdev_dev,
4023 "max_ordird_qp %d max_ird_adapter %d\n",
4024 adap->params.max_ordird_qp,
4025 adap->params.max_ird_adapter);
b8ff05a9 4026 }
636f9d37 4027 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
4028 params[0] = FW_PARAM_PFVF(ISCSI_START);
4029 params[1] = FW_PARAM_PFVF(ISCSI_END);
b2612722 4030 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
636f9d37 4031 params, val);
b8ff05a9
DM
4032 if (ret < 0)
4033 goto bye;
4034 adap->vres.iscsi.start = val[0];
4035 adap->vres.iscsi.size = val[1] - val[0] + 1;
4036 }
4037#undef FW_PARAM_PFVF
4038#undef FW_PARAM_DEV
4039
92e7ae71
HS
4040 /* The MTU/MSS Table is initialized by now, so load their values. If
4041 * we're initializing the adapter, then we'll make any modifications
4042 * we want to the MTU/MSS Table and also initialize the congestion
4043 * parameters.
636f9d37 4044 */
b8ff05a9 4045 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
4046 if (state != DEV_STATE_INIT) {
4047 int i;
4048
4049 /* The default MTU Table contains values 1492 and 1500.
4050 * However, for TCP, it's better to have two values which are
4051 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4052 * This allows us to have a TCP Data Payload which is a
4053 * multiple of 8 regardless of what combination of TCP Options
4054 * are in use (always a multiple of 4 bytes) which is
4055 * important for performance reasons. For instance, if no
4056 * options are in use, then we have a 20-byte IP header and a
4057 * 20-byte TCP header. In this case, a 1500-byte MSS would
4058 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4059 * which is not a multiple of 8. So using an MSS of 1488 in
4060 * this case results in a TCP Data Payload of 1448 bytes which
4061 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4062 * Stamps have been negotiated, then an MTU of 1500 bytes
4063 * results in a TCP Data Payload of 1448 bytes which, as
4064 * above, is a multiple of 8 bytes ...
4065 */
4066 for (i = 0; i < NMTUS; i++)
4067 if (adap->params.mtus[i] == 1492) {
4068 adap->params.mtus[i] = 1488;
4069 break;
4070 }
7ee9ff94 4071
92e7ae71
HS
4072 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4073 adap->params.b_wnd);
4074 }
df64e4d3 4075 t4_init_sge_params(adap);
636f9d37 4076 adap->flags |= FW_OK;
c1e9af0c 4077 t4_init_tp_params(adap);
b8ff05a9
DM
4078 return 0;
4079
4080 /*
636f9d37
VP
4081 * Something bad happened. If a command timed out or failed with EIO
4082 * FW does not operate within its spec or something catastrophic
4083 * happened to HW/FW, stop issuing commands.
b8ff05a9 4084 */
636f9d37 4085bye:
4b8e27a8
HS
4086 kfree(adap->sge.egr_map);
4087 kfree(adap->sge.ingr_map);
4088 kfree(adap->sge.starving_fl);
4089 kfree(adap->sge.txq_maperr);
5b377d11
HS
4090#ifdef CONFIG_DEBUG_FS
4091 kfree(adap->sge.blocked_fl);
4092#endif
636f9d37
VP
4093 if (ret != -ETIMEDOUT && ret != -EIO)
4094 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
4095 return ret;
4096}
4097
204dc3c0
DM
4098/* EEH callbacks */
4099
4100static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4101 pci_channel_state_t state)
4102{
4103 int i;
4104 struct adapter *adap = pci_get_drvdata(pdev);
4105
4106 if (!adap)
4107 goto out;
4108
4109 rtnl_lock();
4110 adap->flags &= ~FW_OK;
4111 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 4112 spin_lock(&adap->stats_lock);
204dc3c0
DM
4113 for_each_port(adap, i) {
4114 struct net_device *dev = adap->port[i];
4115
4116 netif_device_detach(dev);
4117 netif_carrier_off(dev);
4118 }
9fe6cb58 4119 spin_unlock(&adap->stats_lock);
b37987e8 4120 disable_interrupts(adap);
204dc3c0
DM
4121 if (adap->flags & FULL_INIT_DONE)
4122 cxgb_down(adap);
4123 rtnl_unlock();
144be3d9
GS
4124 if ((adap->flags & DEV_ENABLED)) {
4125 pci_disable_device(pdev);
4126 adap->flags &= ~DEV_ENABLED;
4127 }
204dc3c0
DM
4128out: return state == pci_channel_io_perm_failure ?
4129 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4130}
4131
4132static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4133{
4134 int i, ret;
4135 struct fw_caps_config_cmd c;
4136 struct adapter *adap = pci_get_drvdata(pdev);
4137
4138 if (!adap) {
4139 pci_restore_state(pdev);
4140 pci_save_state(pdev);
4141 return PCI_ERS_RESULT_RECOVERED;
4142 }
4143
144be3d9
GS
4144 if (!(adap->flags & DEV_ENABLED)) {
4145 if (pci_enable_device(pdev)) {
4146 dev_err(&pdev->dev, "Cannot reenable PCI "
4147 "device after reset\n");
4148 return PCI_ERS_RESULT_DISCONNECT;
4149 }
4150 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4151 }
4152
4153 pci_set_master(pdev);
4154 pci_restore_state(pdev);
4155 pci_save_state(pdev);
4156 pci_cleanup_aer_uncorrect_error_status(pdev);
4157
8203b509 4158 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4159 return PCI_ERS_RESULT_DISCONNECT;
b2612722 4160 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4161 return PCI_ERS_RESULT_DISCONNECT;
4162 adap->flags |= FW_OK;
4163 if (adap_init1(adap, &c))
4164 return PCI_ERS_RESULT_DISCONNECT;
4165
4166 for_each_port(adap, i) {
4167 struct port_info *p = adap2pinfo(adap, i);
4168
b2612722 4169 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
060e0c75 4170 NULL, NULL);
204dc3c0
DM
4171 if (ret < 0)
4172 return PCI_ERS_RESULT_DISCONNECT;
4173 p->viid = ret;
4174 p->xact_addr_filt = -1;
4175 }
4176
4177 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4178 adap->params.b_wnd);
1ae970e0 4179 setup_memwin(adap);
204dc3c0
DM
4180 if (cxgb_up(adap))
4181 return PCI_ERS_RESULT_DISCONNECT;
4182 return PCI_ERS_RESULT_RECOVERED;
4183}
4184
4185static void eeh_resume(struct pci_dev *pdev)
4186{
4187 int i;
4188 struct adapter *adap = pci_get_drvdata(pdev);
4189
4190 if (!adap)
4191 return;
4192
4193 rtnl_lock();
4194 for_each_port(adap, i) {
4195 struct net_device *dev = adap->port[i];
4196
4197 if (netif_running(dev)) {
4198 link_start(dev);
4199 cxgb_set_rxmode(dev);
4200 }
4201 netif_device_attach(dev);
4202 }
4203 rtnl_unlock();
4204}
4205
3646f0e5 4206static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4207 .error_detected = eeh_err_detected,
4208 .slot_reset = eeh_slot_reset,
4209 .resume = eeh_resume,
4210};
4211
57d8b764 4212static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4213{
57d8b764
KS
4214 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4215 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4216}
4217
c887ad0e
HS
4218static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4219 unsigned int us, unsigned int cnt,
b8ff05a9
DM
4220 unsigned int size, unsigned int iqe_size)
4221{
c887ad0e 4222 q->adap = adap;
812034f1 4223 cxgb4_set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
4224 q->iqe_len = iqe_size;
4225 q->size = size;
4226}
4227
4228/*
4229 * Perform default configuration of DMA queues depending on the number and type
4230 * of ports we found and the number of available CPUs. Most settings can be
4231 * modified by the admin prior to actual use.
4232 */
91744948 4233static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4234{
4235 struct sge *s = &adap->sge;
688848b1
AB
4236 int i, n10g = 0, qidx = 0;
4237#ifndef CONFIG_CHELSIO_T4_DCB
4238 int q10g = 0;
4239#endif
cf38be6d 4240 int ciq_size;
b8ff05a9
DM
4241
4242 for_each_port(adap, i)
57d8b764 4243 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4244#ifdef CONFIG_CHELSIO_T4_DCB
4245 /* For Data Center Bridging support we need to be able to support up
4246 * to 8 Traffic Priorities; each of which will be assigned to its
4247 * own TX Queue in order to prevent Head-Of-Line Blocking.
4248 */
4249 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4250 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4251 MAX_ETH_QSETS, adap->params.nports * 8);
4252 BUG_ON(1);
4253 }
b8ff05a9 4254
688848b1
AB
4255 for_each_port(adap, i) {
4256 struct port_info *pi = adap2pinfo(adap, i);
4257
4258 pi->first_qset = qidx;
4259 pi->nqsets = 8;
4260 qidx += pi->nqsets;
4261 }
4262#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4263 /*
4264 * We default to 1 queue per non-10G port and up to # of cores queues
4265 * per 10G port.
4266 */
4267 if (n10g)
4268 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4269 if (q10g > netif_get_num_default_rss_queues())
4270 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4271
4272 for_each_port(adap, i) {
4273 struct port_info *pi = adap2pinfo(adap, i);
4274
4275 pi->first_qset = qidx;
57d8b764 4276 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4277 qidx += pi->nqsets;
4278 }
688848b1 4279#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4280
4281 s->ethqsets = qidx;
4282 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4283
4284 if (is_offload(adap)) {
4285 /*
4286 * For offload we use 1 queue/channel if all ports are up to 1G,
4287 * otherwise we divide all available queues amongst the channels
4288 * capped by the number of available cores.
4289 */
4290 if (n10g) {
4291 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4292 num_online_cpus());
4293 s->ofldqsets = roundup(i, adap->params.nports);
4294 } else
4295 s->ofldqsets = adap->params.nports;
4296 /* For RDMA one Rx queue per channel suffices */
4297 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4298 /* Try and allow at least 1 CIQ per cpu rounding down
4299 * to the number of ports, with a minimum of 1 per port.
4300 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4301 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4302 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4303 */
4304 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4305 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4306 adap->params.nports;
4307 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
b8ff05a9
DM
4308 }
4309
4310 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4311 struct sge_eth_rxq *r = &s->ethrxq[i];
4312
c887ad0e 4313 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4314 r->fl.size = 72;
4315 }
4316
4317 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4318 s->ethtxq[i].q.size = 1024;
4319
4320 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4321 s->ctrlq[i].q.size = 512;
4322
4323 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4324 s->ofldtxq[i].q.size = 1024;
4325
4326 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4327 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4328
c887ad0e 4329 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4330 r->rspq.uld = CXGB4_ULD_ISCSI;
4331 r->fl.size = 72;
4332 }
4333
4334 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4335 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4336
c887ad0e 4337 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4338 r->rspq.uld = CXGB4_ULD_RDMA;
4339 r->fl.size = 72;
4340 }
4341
cf38be6d
HS
4342 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4343 if (ciq_size > SGE_MAX_IQ_SIZE) {
4344 CH_WARN(adap, "CIQ size too small for available IQs\n");
4345 ciq_size = SGE_MAX_IQ_SIZE;
4346 }
4347
4348 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4349 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4350
c887ad0e 4351 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4352 r->rspq.uld = CXGB4_ULD_RDMA;
4353 }
4354
c887ad0e
HS
4355 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4356 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4357}
4358
4359/*
4360 * Reduce the number of Ethernet queues across all ports to at most n.
4361 * n provides at least one queue per port.
4362 */
91744948 4363static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4364{
4365 int i;
4366 struct port_info *pi;
4367
4368 while (n < adap->sge.ethqsets)
4369 for_each_port(adap, i) {
4370 pi = adap2pinfo(adap, i);
4371 if (pi->nqsets > 1) {
4372 pi->nqsets--;
4373 adap->sge.ethqsets--;
4374 if (adap->sge.ethqsets <= n)
4375 break;
4376 }
4377 }
4378
4379 n = 0;
4380 for_each_port(adap, i) {
4381 pi = adap2pinfo(adap, i);
4382 pi->first_qset = n;
4383 n += pi->nqsets;
4384 }
4385}
4386
4387/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4388#define EXTRA_VECS 2
4389
91744948 4390static int enable_msix(struct adapter *adap)
b8ff05a9
DM
4391{
4392 int ofld_need = 0;
f36e58e5 4393 int i, want, need, allocated;
b8ff05a9
DM
4394 struct sge *s = &adap->sge;
4395 unsigned int nchan = adap->params.nports;
f36e58e5
HS
4396 struct msix_entry *entries;
4397
4398 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4399 GFP_KERNEL);
4400 if (!entries)
4401 return -ENOMEM;
b8ff05a9 4402
f36e58e5 4403 for (i = 0; i < MAX_INGQ + 1; ++i)
b8ff05a9
DM
4404 entries[i].entry = i;
4405
4406 want = s->max_ethqsets + EXTRA_VECS;
4407 if (is_offload(adap)) {
cf38be6d 4408 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 4409 /* need nchan for each possible ULD */
cf38be6d 4410 ofld_need = 3 * nchan;
b8ff05a9 4411 }
688848b1
AB
4412#ifdef CONFIG_CHELSIO_T4_DCB
4413 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4414 * each port.
4415 */
4416 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4417#else
b8ff05a9 4418 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 4419#endif
f36e58e5
HS
4420 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4421 if (allocated < 0) {
4422 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4423 " not using MSI-X\n");
4424 kfree(entries);
4425 return allocated;
4426 }
b8ff05a9 4427
f36e58e5 4428 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4429 * Every group gets its minimum requirement and NIC gets top
4430 * priority for leftovers.
4431 */
f36e58e5 4432 i = allocated - EXTRA_VECS - ofld_need;
c32ad224
AG
4433 if (i < s->max_ethqsets) {
4434 s->max_ethqsets = i;
4435 if (i < s->ethqsets)
4436 reduce_ethqs(adap, i);
4437 }
4438 if (is_offload(adap)) {
f36e58e5
HS
4439 if (allocated < want) {
4440 s->rdmaqs = nchan;
4441 s->rdmaciqs = nchan;
4442 }
4443
4444 /* leftovers go to OFLD */
4445 i = allocated - EXTRA_VECS - s->max_ethqsets -
4446 s->rdmaqs - s->rdmaciqs;
c32ad224
AG
4447 s->ofldqsets = (i / nchan) * nchan; /* round down */
4448 }
f36e58e5 4449 for (i = 0; i < allocated; ++i)
c32ad224
AG
4450 adap->msix_info[i].vec = entries[i].vector;
4451
f36e58e5 4452 kfree(entries);
c32ad224 4453 return 0;
b8ff05a9
DM
4454}
4455
4456#undef EXTRA_VECS
4457
91744948 4458static int init_rss(struct adapter *adap)
671b0060 4459{
c035e183
HS
4460 unsigned int i;
4461 int err;
4462
4463 err = t4_init_rss_mode(adap, adap->mbox);
4464 if (err)
4465 return err;
671b0060
DM
4466
4467 for_each_port(adap, i) {
4468 struct port_info *pi = adap2pinfo(adap, i);
4469
4470 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4471 if (!pi->rss)
4472 return -ENOMEM;
671b0060
DM
4473 }
4474 return 0;
4475}
4476
91744948 4477static void print_port_info(const struct net_device *dev)
b8ff05a9 4478{
b8ff05a9 4479 char buf[80];
118969ed 4480 char *bufp = buf;
f1a051b9 4481 const char *spd = "";
118969ed
DM
4482 const struct port_info *pi = netdev_priv(dev);
4483 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4484
4485 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4486 spd = " 2.5 GT/s";
4487 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4488 spd = " 5 GT/s";
d2e752db
RD
4489 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4490 spd = " 8 GT/s";
b8ff05a9 4491
118969ed
DM
4492 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4493 bufp += sprintf(bufp, "100/");
4494 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4495 bufp += sprintf(bufp, "1000/");
4496 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4497 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4498 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4499 bufp += sprintf(bufp, "40G/");
118969ed
DM
4500 if (bufp != buf)
4501 --bufp;
72aca4bf 4502 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
4503
4504 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 4505 adap->params.vpd.id,
d14807dd 4506 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
4507 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4508 (adap->flags & USING_MSIX) ? " MSI-X" :
4509 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
4510 netdev_info(dev, "S/N: %s, P/N: %s\n",
4511 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
4512}
4513
91744948 4514static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4515{
e5c8ae5f 4516 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4517}
4518
06546391
DM
4519/*
4520 * Free the following resources:
4521 * - memory used for tables
4522 * - MSI/MSI-X
4523 * - net devices
4524 * - resources FW is holding for us
4525 */
4526static void free_some_resources(struct adapter *adapter)
4527{
4528 unsigned int i;
4529
4530 t4_free_mem(adapter->l2t);
4531 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4532 kfree(adapter->sge.egr_map);
4533 kfree(adapter->sge.ingr_map);
4534 kfree(adapter->sge.starving_fl);
4535 kfree(adapter->sge.txq_maperr);
5b377d11
HS
4536#ifdef CONFIG_DEBUG_FS
4537 kfree(adapter->sge.blocked_fl);
4538#endif
06546391
DM
4539 disable_msi(adapter);
4540
4541 for_each_port(adapter, i)
671b0060 4542 if (adapter->port[i]) {
4f3a0fcf
HS
4543 struct port_info *pi = adap2pinfo(adapter, i);
4544
4545 if (pi->viid != 0)
4546 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4547 0, pi->viid);
671b0060 4548 kfree(adap2pinfo(adapter, i)->rss);
06546391 4549 free_netdev(adapter->port[i]);
671b0060 4550 }
06546391 4551 if (adapter->flags & FW_OK)
b2612722 4552 t4_fw_bye(adapter, adapter->pf);
06546391
DM
4553}
4554
2ed28baa 4555#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 4556#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 4557 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 4558#define SEGMENT_SIZE 128
b8ff05a9 4559
d86bd29e
HS
4560static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4561{
4562 int ver, chip;
4563 u16 device_id;
4564
4565 /* Retrieve adapter's device ID */
4566 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4567 ver = device_id >> 12;
4568 switch (ver) {
4569 case CHELSIO_T4:
4570 chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4571 break;
4572 case CHELSIO_T5:
4573 chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4574 break;
4575 case CHELSIO_T6:
4576 chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4577 break;
4578 default:
4579 dev_err(&pdev->dev, "Device %d is not supported\n",
4580 device_id);
4581 return -EINVAL;
4582 }
4583 return chip;
4584}
4585
1dd06ae8 4586static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 4587{
22adfe0a 4588 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 4589 struct port_info *pi;
c8f44aff 4590 bool highdma = false;
b8ff05a9 4591 struct adapter *adapter = NULL;
d6ce2628 4592 void __iomem *regs;
d86bd29e
HS
4593 u32 whoami, pl_rev;
4594 enum chip_type chip;
b8ff05a9
DM
4595
4596 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4597
4598 err = pci_request_regions(pdev, KBUILD_MODNAME);
4599 if (err) {
4600 /* Just info, some other driver may have claimed the device. */
4601 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4602 return err;
4603 }
4604
b8ff05a9
DM
4605 err = pci_enable_device(pdev);
4606 if (err) {
4607 dev_err(&pdev->dev, "cannot enable PCI device\n");
4608 goto out_release_regions;
4609 }
4610
d6ce2628
HS
4611 regs = pci_ioremap_bar(pdev, 0);
4612 if (!regs) {
4613 dev_err(&pdev->dev, "cannot map device registers\n");
4614 err = -ENOMEM;
4615 goto out_disable_device;
4616 }
4617
8203b509
HS
4618 err = t4_wait_dev_ready(regs);
4619 if (err < 0)
4620 goto out_unmap_bar0;
4621
d6ce2628 4622 /* We control everything through one PF */
d86bd29e
HS
4623 whoami = readl(regs + PL_WHOAMI_A);
4624 pl_rev = REV_G(readl(regs + PL_REV_A));
4625 chip = get_chip_type(pdev, pl_rev);
4626 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4627 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
d6ce2628
HS
4628 if (func != ent->driver_data) {
4629 iounmap(regs);
4630 pci_disable_device(pdev);
4631 pci_save_state(pdev); /* to restore SR-IOV later */
4632 goto sriov;
4633 }
4634
b8ff05a9 4635 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 4636 highdma = true;
b8ff05a9
DM
4637 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4638 if (err) {
4639 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4640 "coherent allocations\n");
d6ce2628 4641 goto out_unmap_bar0;
b8ff05a9
DM
4642 }
4643 } else {
4644 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4645 if (err) {
4646 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 4647 goto out_unmap_bar0;
b8ff05a9
DM
4648 }
4649 }
4650
4651 pci_enable_pcie_error_reporting(pdev);
ef306b50 4652 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
4653 pci_set_master(pdev);
4654 pci_save_state(pdev);
4655
4656 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4657 if (!adapter) {
4658 err = -ENOMEM;
d6ce2628 4659 goto out_unmap_bar0;
b8ff05a9
DM
4660 }
4661
29aaee65
AB
4662 adapter->workq = create_singlethread_workqueue("cxgb4");
4663 if (!adapter->workq) {
4664 err = -ENOMEM;
4665 goto out_free_adapter;
4666 }
4667
144be3d9
GS
4668 /* PCI device has been enabled */
4669 adapter->flags |= DEV_ENABLED;
4670
d6ce2628 4671 adapter->regs = regs;
b8ff05a9
DM
4672 adapter->pdev = pdev;
4673 adapter->pdev_dev = &pdev->dev;
3069ee9b 4674 adapter->mbox = func;
b2612722 4675 adapter->pf = func;
b8ff05a9
DM
4676 adapter->msg_enable = dflt_msg_enable;
4677 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4678
4679 spin_lock_init(&adapter->stats_lock);
4680 spin_lock_init(&adapter->tid_release_lock);
e327c225 4681 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
4682
4683 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
4684 INIT_WORK(&adapter->db_full_task, process_db_full);
4685 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
4686
4687 err = t4_prep_adapter(adapter);
4688 if (err)
d6ce2628
HS
4689 goto out_free_adapter;
4690
22adfe0a 4691
d14807dd 4692 if (!is_t4(adapter->params.chip)) {
f612b815
HS
4693 s_qpp = (QUEUESPERPAGEPF0_S +
4694 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
b2612722 4695 adapter->pf);
f612b815
HS
4696 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4697 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
4698 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4699
4700 /* Each segment size is 128B. Write coalescing is enabled only
4701 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4702 * queue is less no of segments that can be accommodated in
4703 * a page size.
4704 */
4705 if (qpp > num_seg) {
4706 dev_err(&pdev->dev,
4707 "Incorrect number of egress queues per page\n");
4708 err = -EINVAL;
d6ce2628 4709 goto out_free_adapter;
22adfe0a
SR
4710 }
4711 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4712 pci_resource_len(pdev, 2));
4713 if (!adapter->bar2) {
4714 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4715 err = -ENOMEM;
d6ce2628 4716 goto out_free_adapter;
22adfe0a 4717 }
a4cfd929
HS
4718 t4_write_reg(adapter, SGE_STAT_CFG_A,
4719 STATSOURCE_T5_V(7) | STATMODE_V(0));
22adfe0a
SR
4720 }
4721
636f9d37 4722 setup_memwin(adapter);
b8ff05a9 4723 err = adap_init0(adapter);
5b377d11
HS
4724#ifdef CONFIG_DEBUG_FS
4725 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4726#endif
636f9d37 4727 setup_memwin_rdma(adapter);
b8ff05a9
DM
4728 if (err)
4729 goto out_unmap_bar;
4730
4731 for_each_port(adapter, i) {
4732 struct net_device *netdev;
4733
4734 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4735 MAX_ETH_QSETS);
4736 if (!netdev) {
4737 err = -ENOMEM;
4738 goto out_free_dev;
4739 }
4740
4741 SET_NETDEV_DEV(netdev, &pdev->dev);
4742
4743 adapter->port[i] = netdev;
4744 pi = netdev_priv(netdev);
4745 pi->adapter = adapter;
4746 pi->xact_addr_filt = -1;
b8ff05a9 4747 pi->port_id = i;
b8ff05a9
DM
4748 netdev->irq = pdev->irq;
4749
2ed28baa
MM
4750 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4751 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4752 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 4753 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
4754 if (highdma)
4755 netdev->hw_features |= NETIF_F_HIGHDMA;
4756 netdev->features |= netdev->hw_features;
b8ff05a9
DM
4757 netdev->vlan_features = netdev->features & VLAN_FEAT;
4758
01789349
JP
4759 netdev->priv_flags |= IFF_UNICAST_FLT;
4760
b8ff05a9 4761 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
4762#ifdef CONFIG_CHELSIO_T4_DCB
4763 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4764 cxgb4_dcb_state_init(netdev);
4765#endif
812034f1 4766 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
4767 }
4768
4769 pci_set_drvdata(pdev, adapter);
4770
4771 if (adapter->flags & FW_OK) {
060e0c75 4772 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
4773 if (err)
4774 goto out_free_dev;
098ef6c2
HS
4775 } else if (adapter->params.nports == 1) {
4776 /* If we don't have a connection to the firmware -- possibly
4777 * because of an error -- grab the raw VPD parameters so we
4778 * can set the proper MAC Address on the debug network
4779 * interface that we've created.
4780 */
4781 u8 hw_addr[ETH_ALEN];
4782 u8 *na = adapter->params.vpd.na;
4783
4784 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4785 if (!err) {
4786 for (i = 0; i < ETH_ALEN; i++)
4787 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4788 hex2val(na[2 * i + 1]));
4789 t4_set_hw_addr(adapter, 0, hw_addr);
4790 }
b8ff05a9
DM
4791 }
4792
098ef6c2 4793 /* Configure queues and allocate tables now, they can be needed as
b8ff05a9
DM
4794 * soon as the first register_netdev completes.
4795 */
4796 cfg_queues(adapter);
4797
5be9ed8d 4798 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
b8ff05a9
DM
4799 if (!adapter->l2t) {
4800 /* We tolerate a lack of L2T, giving up some functionality */
4801 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4802 adapter->params.offload = 0;
4803 }
4804
b5a02f50
AB
4805#if IS_ENABLED(CONFIG_IPV6)
4806 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4807 adapter->clipt_end);
4808 if (!adapter->clipt) {
4809 /* We tolerate a lack of clip_table, giving up
4810 * some functionality
4811 */
4812 dev_warn(&pdev->dev,
4813 "could not allocate Clip table, continuing\n");
4814 adapter->params.offload = 0;
4815 }
4816#endif
b8ff05a9
DM
4817 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4818 dev_warn(&pdev->dev, "could not allocate TID table, "
4819 "continuing\n");
4820 adapter->params.offload = 0;
4821 }
4822
9a1bb9f6
HS
4823 if (is_offload(adapter)) {
4824 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4825 u32 hash_base, hash_reg;
4826
4827 if (chip <= CHELSIO_T5) {
4828 hash_reg = LE_DB_TID_HASHBASE_A;
4829 hash_base = t4_read_reg(adapter, hash_reg);
4830 adapter->tids.hash_base = hash_base / 4;
4831 } else {
4832 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4833 hash_base = t4_read_reg(adapter, hash_reg);
4834 adapter->tids.hash_base = hash_base;
4835 }
4836 }
4837 }
4838
f7cabcdd
DM
4839 /* See what interrupts we'll be using */
4840 if (msi > 1 && enable_msix(adapter) == 0)
4841 adapter->flags |= USING_MSIX;
4842 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4843 adapter->flags |= USING_MSI;
4844
671b0060
DM
4845 err = init_rss(adapter);
4846 if (err)
4847 goto out_free_dev;
4848
b8ff05a9
DM
4849 /*
4850 * The card is now ready to go. If any errors occur during device
4851 * registration we do not fail the whole card but rather proceed only
4852 * with the ports we manage to register successfully. However we must
4853 * register at least one net device.
4854 */
4855 for_each_port(adapter, i) {
a57cabe0
DM
4856 pi = adap2pinfo(adapter, i);
4857 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4858 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4859
b8ff05a9
DM
4860 err = register_netdev(adapter->port[i]);
4861 if (err)
b1a3c2b6 4862 break;
b1a3c2b6
DM
4863 adapter->chan_map[pi->tx_chan] = i;
4864 print_port_info(adapter->port[i]);
b8ff05a9 4865 }
b1a3c2b6 4866 if (i == 0) {
b8ff05a9
DM
4867 dev_err(&pdev->dev, "could not register any net devices\n");
4868 goto out_free_dev;
4869 }
b1a3c2b6
DM
4870 if (err) {
4871 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4872 err = 0;
6403eab1 4873 }
b8ff05a9
DM
4874
4875 if (cxgb4_debugfs_root) {
4876 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4877 cxgb4_debugfs_root);
4878 setup_debugfs(adapter);
4879 }
4880
6482aa7c
DLR
4881 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4882 pdev->needs_freset = 1;
4883
b8ff05a9
DM
4884 if (is_offload(adapter))
4885 attach_ulds(adapter);
4886
8e1e6059 4887sriov:
b8ff05a9 4888#ifdef CONFIG_PCI_IOV
7d6727cf 4889 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
4890 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4891 dev_info(&pdev->dev,
4892 "instantiated %u virtual functions\n",
4893 num_vf[func]);
4894#endif
4895 return 0;
4896
4897 out_free_dev:
06546391 4898 free_some_resources(adapter);
b8ff05a9 4899 out_unmap_bar:
d14807dd 4900 if (!is_t4(adapter->params.chip))
22adfe0a 4901 iounmap(adapter->bar2);
b8ff05a9 4902 out_free_adapter:
29aaee65
AB
4903 if (adapter->workq)
4904 destroy_workqueue(adapter->workq);
4905
b8ff05a9 4906 kfree(adapter);
d6ce2628
HS
4907 out_unmap_bar0:
4908 iounmap(regs);
b8ff05a9
DM
4909 out_disable_device:
4910 pci_disable_pcie_error_reporting(pdev);
4911 pci_disable_device(pdev);
4912 out_release_regions:
4913 pci_release_regions(pdev);
b8ff05a9
DM
4914 return err;
4915}
4916
91744948 4917static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
4918{
4919 struct adapter *adapter = pci_get_drvdata(pdev);
4920
636f9d37 4921#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
4922 pci_disable_sriov(pdev);
4923
636f9d37
VP
4924#endif
4925
b8ff05a9
DM
4926 if (adapter) {
4927 int i;
4928
29aaee65
AB
4929 /* Tear down per-adapter Work Queue first since it can contain
4930 * references to our adapter data structure.
4931 */
4932 destroy_workqueue(adapter->workq);
4933
b8ff05a9
DM
4934 if (is_offload(adapter))
4935 detach_ulds(adapter);
4936
b37987e8
HS
4937 disable_interrupts(adapter);
4938
b8ff05a9 4939 for_each_port(adapter, i)
8f3a7676 4940 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
4941 unregister_netdev(adapter->port[i]);
4942
9f16dc2e 4943 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 4944
f2b7e78d
VP
4945 /* If we allocated filters, free up state associated with any
4946 * valid filters ...
4947 */
4948 if (adapter->tids.ftid_tab) {
4949 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
4950 for (i = 0; i < (adapter->tids.nftids +
4951 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
4952 if (f->valid)
4953 clear_filter(adapter, f);
4954 }
4955
aaefae9b
DM
4956 if (adapter->flags & FULL_INIT_DONE)
4957 cxgb_down(adapter);
b8ff05a9 4958
06546391 4959 free_some_resources(adapter);
b5a02f50
AB
4960#if IS_ENABLED(CONFIG_IPV6)
4961 t4_cleanup_clip_tbl(adapter);
4962#endif
b8ff05a9 4963 iounmap(adapter->regs);
d14807dd 4964 if (!is_t4(adapter->params.chip))
22adfe0a 4965 iounmap(adapter->bar2);
b8ff05a9 4966 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
4967 if ((adapter->flags & DEV_ENABLED)) {
4968 pci_disable_device(pdev);
4969 adapter->flags &= ~DEV_ENABLED;
4970 }
b8ff05a9 4971 pci_release_regions(pdev);
ee9a33b2 4972 synchronize_rcu();
8b662fe7 4973 kfree(adapter);
a069ec91 4974 } else
b8ff05a9
DM
4975 pci_release_regions(pdev);
4976}
4977
4978static struct pci_driver cxgb4_driver = {
4979 .name = KBUILD_MODNAME,
4980 .id_table = cxgb4_pci_tbl,
4981 .probe = init_one,
91744948 4982 .remove = remove_one,
687d705c 4983 .shutdown = remove_one,
204dc3c0 4984 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
4985};
4986
4987static int __init cxgb4_init_module(void)
4988{
4989 int ret;
4990
4991 /* Debugfs support is optional, just warn if this fails */
4992 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4993 if (!cxgb4_debugfs_root)
428ac43f 4994 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
4995
4996 ret = pci_register_driver(&cxgb4_driver);
29aaee65 4997 if (ret < 0)
b8ff05a9 4998 debugfs_remove(cxgb4_debugfs_root);
01bcca68 4999
1bb60376 5000#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
5001 if (!inet6addr_registered) {
5002 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5003 inet6addr_registered = true;
5004 }
1bb60376 5005#endif
01bcca68 5006
b8ff05a9
DM
5007 return ret;
5008}
5009
5010static void __exit cxgb4_cleanup_module(void)
5011{
1bb60376 5012#if IS_ENABLED(CONFIG_IPV6)
1793c798 5013 if (inet6addr_registered) {
b5a02f50
AB
5014 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5015 inet6addr_registered = false;
5016 }
1bb60376 5017#endif
b8ff05a9
DM
5018 pci_unregister_driver(&cxgb4_driver);
5019 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5020}
5021
5022module_init(cxgb4_init_module);
5023module_exit(cxgb4_cleanup_module);