]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
inet: move ipv6only in sock_common
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
b8ff05a9
DM
64#include <asm/uaccess.h>
65
66#include "cxgb4.h"
67#include "t4_regs.h"
68#include "t4_msg.h"
69#include "t4fw_api.h"
688848b1 70#include "cxgb4_dcb.h"
b8ff05a9
DM
71#include "l2t.h"
72
01bcca68
VP
73#include <../drivers/net/bonding/bonding.h>
74
75#ifdef DRV_VERSION
76#undef DRV_VERSION
77#endif
3a7f8554
SR
78#define DRV_VERSION "2.0.0-ko"
79#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9
DM
80
81/*
82 * Max interrupt hold-off timer value in us. Queues fall back to this value
83 * under extreme memory pressure so it's largish to give the system time to
84 * recover.
85 */
86#define MAX_SGE_TIMERVAL 200U
87
7ee9ff94 88enum {
13ee15d3
VP
89 /*
90 * Physical Function provisioning constants.
91 */
92 PFRES_NVI = 4, /* # of Virtual Interfaces */
93 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
94 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
95 */
96 PFRES_NEQ = 256, /* # of egress queues */
97 PFRES_NIQ = 0, /* # of ingress queues */
98 PFRES_TC = 0, /* PCI-E traffic class */
99 PFRES_NEXACTF = 128, /* # of exact MPS filters */
100
101 PFRES_R_CAPS = FW_CMD_CAP_PF,
102 PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104#ifdef CONFIG_PCI_IOV
105 /*
106 * Virtual Function provisioning constants. We need two extra Ingress
107 * Queues with Interrupt capability to serve as the VF's Firmware
108 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 * neither will have Free Lists associated with them). For each
110 * Ethernet/Control Egress Queue and for each Free List, we need an
111 * Egress Context.
112 */
7ee9ff94
CL
113 VFRES_NPORTS = 1, /* # of "ports" per VF */
114 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
115
116 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
117 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
118 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
7ee9ff94 119 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
13ee15d3 120 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
7ee9ff94
CL
121 VFRES_TC = 0, /* PCI-E traffic class */
122 VFRES_NEXACTF = 16, /* # of exact MPS filters */
123
124 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
13ee15d3 126#endif
7ee9ff94
CL
127};
128
129/*
130 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
131 * static and likely not to be useful in the long run. We really need to
132 * implement some form of persistent configuration which the firmware
133 * controls.
134 */
135static unsigned int pfvfres_pmask(struct adapter *adapter,
136 unsigned int pf, unsigned int vf)
137{
138 unsigned int portn, portvec;
139
140 /*
141 * Give PF's access to all of the ports.
142 */
143 if (vf == 0)
144 return FW_PFVF_CMD_PMASK_MASK;
145
146 /*
147 * For VFs, we'll assign them access to the ports based purely on the
148 * PF. We assign active ports in order, wrapping around if there are
149 * fewer active ports than PFs: e.g. active port[pf % nports].
150 * Unfortunately the adapter's port_info structs haven't been
151 * initialized yet so we have to compute this.
152 */
153 if (adapter->params.nports == 0)
154 return 0;
155
156 portn = pf % adapter->params.nports;
157 portvec = adapter->params.portvec;
158 for (;;) {
159 /*
160 * Isolate the lowest set bit in the port vector. If we're at
161 * the port number that we want, return that as the pmask.
162 * otherwise mask that bit out of the port vector and
163 * decrement our port number ...
164 */
165 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 if (portn == 0)
167 return pmask;
168 portn--;
169 portvec &= ~pmask;
170 }
171 /*NOTREACHED*/
172}
7ee9ff94 173
b8ff05a9
DM
174enum {
175 MAX_TXQ_ENTRIES = 16384,
176 MAX_CTRL_TXQ_ENTRIES = 1024,
177 MAX_RSPQ_ENTRIES = 16384,
178 MAX_RX_BUFFERS = 16384,
179 MIN_TXQ_ENTRIES = 32,
180 MIN_CTRL_TXQ_ENTRIES = 32,
181 MIN_RSPQ_ENTRIES = 128,
182 MIN_FL_ENTRIES = 16
183};
184
f2b7e78d
VP
185/* Host shadow copy of ingress filter entry. This is in host native format
186 * and doesn't match the ordering or bit order, etc. of the hardware of the
187 * firmware command. The use of bit-field structure elements is purely to
188 * remind ourselves of the field size limitations and save memory in the case
189 * where the filter table is large.
190 */
191struct filter_entry {
192 /* Administrative fields for filter.
193 */
194 u32 valid:1; /* filter allocated and valid */
195 u32 locked:1; /* filter is administratively locked */
196
197 u32 pending:1; /* filter action is pending firmware reply */
198 u32 smtidx:8; /* Source MAC Table index for smac */
199 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
200
201 /* The filter itself. Most of this is a straight copy of information
202 * provided by the extended ioctl(). Some fields are translated to
203 * internal forms -- for instance the Ingress Queue ID passed in from
204 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 */
206 struct ch_filter_specification fs;
207};
208
b8ff05a9
DM
209#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
060e0c75 213#define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
b8ff05a9
DM
214
215static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
060e0c75 216 CH_DEVICE(0xa000, 0), /* PE10K */
ccea790e
DM
217 CH_DEVICE(0x4001, -1),
218 CH_DEVICE(0x4002, -1),
219 CH_DEVICE(0x4003, -1),
220 CH_DEVICE(0x4004, -1),
221 CH_DEVICE(0x4005, -1),
222 CH_DEVICE(0x4006, -1),
223 CH_DEVICE(0x4007, -1),
224 CH_DEVICE(0x4008, -1),
225 CH_DEVICE(0x4009, -1),
226 CH_DEVICE(0x400a, -1),
fb1e933d
HS
227 CH_DEVICE(0x400d, -1),
228 CH_DEVICE(0x400e, -1),
229 CH_DEVICE(0x4080, -1),
230 CH_DEVICE(0x4081, -1),
231 CH_DEVICE(0x4082, -1),
232 CH_DEVICE(0x4083, -1),
233 CH_DEVICE(0x4084, -1),
234 CH_DEVICE(0x4085, -1),
235 CH_DEVICE(0x4086, -1),
236 CH_DEVICE(0x4087, -1),
237 CH_DEVICE(0x4088, -1),
ccea790e
DM
238 CH_DEVICE(0x4401, 4),
239 CH_DEVICE(0x4402, 4),
240 CH_DEVICE(0x4403, 4),
241 CH_DEVICE(0x4404, 4),
242 CH_DEVICE(0x4405, 4),
243 CH_DEVICE(0x4406, 4),
244 CH_DEVICE(0x4407, 4),
245 CH_DEVICE(0x4408, 4),
246 CH_DEVICE(0x4409, 4),
247 CH_DEVICE(0x440a, 4),
f637d577
VP
248 CH_DEVICE(0x440d, 4),
249 CH_DEVICE(0x440e, 4),
fb1e933d
HS
250 CH_DEVICE(0x4480, 4),
251 CH_DEVICE(0x4481, 4),
252 CH_DEVICE(0x4482, 4),
253 CH_DEVICE(0x4483, 4),
254 CH_DEVICE(0x4484, 4),
255 CH_DEVICE(0x4485, 4),
256 CH_DEVICE(0x4486, 4),
257 CH_DEVICE(0x4487, 4),
258 CH_DEVICE(0x4488, 4),
9ef603a0
VP
259 CH_DEVICE(0x5001, 4),
260 CH_DEVICE(0x5002, 4),
261 CH_DEVICE(0x5003, 4),
262 CH_DEVICE(0x5004, 4),
263 CH_DEVICE(0x5005, 4),
264 CH_DEVICE(0x5006, 4),
265 CH_DEVICE(0x5007, 4),
266 CH_DEVICE(0x5008, 4),
267 CH_DEVICE(0x5009, 4),
268 CH_DEVICE(0x500A, 4),
269 CH_DEVICE(0x500B, 4),
270 CH_DEVICE(0x500C, 4),
271 CH_DEVICE(0x500D, 4),
272 CH_DEVICE(0x500E, 4),
273 CH_DEVICE(0x500F, 4),
274 CH_DEVICE(0x5010, 4),
275 CH_DEVICE(0x5011, 4),
276 CH_DEVICE(0x5012, 4),
277 CH_DEVICE(0x5013, 4),
f0a8e6de
HS
278 CH_DEVICE(0x5014, 4),
279 CH_DEVICE(0x5015, 4),
0183aa62
HS
280 CH_DEVICE(0x5080, 4),
281 CH_DEVICE(0x5081, 4),
282 CH_DEVICE(0x5082, 4),
283 CH_DEVICE(0x5083, 4),
284 CH_DEVICE(0x5084, 4),
285 CH_DEVICE(0x5085, 4),
9ef603a0
VP
286 CH_DEVICE(0x5401, 4),
287 CH_DEVICE(0x5402, 4),
288 CH_DEVICE(0x5403, 4),
289 CH_DEVICE(0x5404, 4),
290 CH_DEVICE(0x5405, 4),
291 CH_DEVICE(0x5406, 4),
292 CH_DEVICE(0x5407, 4),
293 CH_DEVICE(0x5408, 4),
294 CH_DEVICE(0x5409, 4),
295 CH_DEVICE(0x540A, 4),
296 CH_DEVICE(0x540B, 4),
297 CH_DEVICE(0x540C, 4),
298 CH_DEVICE(0x540D, 4),
299 CH_DEVICE(0x540E, 4),
300 CH_DEVICE(0x540F, 4),
301 CH_DEVICE(0x5410, 4),
302 CH_DEVICE(0x5411, 4),
303 CH_DEVICE(0x5412, 4),
304 CH_DEVICE(0x5413, 4),
f0a8e6de
HS
305 CH_DEVICE(0x5414, 4),
306 CH_DEVICE(0x5415, 4),
0183aa62
HS
307 CH_DEVICE(0x5480, 4),
308 CH_DEVICE(0x5481, 4),
309 CH_DEVICE(0x5482, 4),
310 CH_DEVICE(0x5483, 4),
311 CH_DEVICE(0x5484, 4),
312 CH_DEVICE(0x5485, 4),
b8ff05a9
DM
313 { 0, }
314};
315
16e47624 316#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 317#define FW5_FNAME "cxgb4/t5fw.bin"
16e47624 318#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 319#define FW5_CFNAME "cxgb4/t5-config.txt"
b8ff05a9
DM
320
321MODULE_DESCRIPTION(DRV_DESC);
322MODULE_AUTHOR("Chelsio Communications");
323MODULE_LICENSE("Dual BSD/GPL");
324MODULE_VERSION(DRV_VERSION);
325MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 326MODULE_FIRMWARE(FW4_FNAME);
0a57a536 327MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 328
636f9d37
VP
329/*
330 * Normally we're willing to become the firmware's Master PF but will be happy
331 * if another PF has already become the Master and initialized the adapter.
332 * Setting "force_init" will cause this driver to forcibly establish itself as
333 * the Master PF and initialize the adapter.
334 */
335static uint force_init;
336
337module_param(force_init, uint, 0644);
338MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
339
13ee15d3
VP
340/*
341 * Normally if the firmware we connect to has Configuration File support, we
342 * use that and only fall back to the old Driver-based initialization if the
343 * Configuration File fails for some reason. If force_old_init is set, then
344 * we'll always use the old Driver-based initialization sequence.
345 */
346static uint force_old_init;
347
348module_param(force_old_init, uint, 0644);
349MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
350
b8ff05a9
DM
351static int dflt_msg_enable = DFLT_MSG_ENABLE;
352
353module_param(dflt_msg_enable, int, 0644);
354MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
355
356/*
357 * The driver uses the best interrupt scheme available on a platform in the
358 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
359 * of these schemes the driver may consider as follows:
360 *
361 * msi = 2: choose from among all three options
362 * msi = 1: only consider MSI and INTx interrupts
363 * msi = 0: force INTx interrupts
364 */
365static int msi = 2;
366
367module_param(msi, int, 0644);
368MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
369
370/*
371 * Queue interrupt hold-off timer values. Queues default to the first of these
372 * upon creation.
373 */
374static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
375
376module_param_array(intr_holdoff, uint, NULL, 0644);
377MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
378 "0..4 in microseconds");
379
380static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
381
382module_param_array(intr_cnt, uint, NULL, 0644);
383MODULE_PARM_DESC(intr_cnt,
384 "thresholds 1..3 for queue interrupt packet counters");
385
636f9d37
VP
386/*
387 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
388 * offset by 2 bytes in order to have the IP headers line up on 4-byte
389 * boundaries. This is a requirement for many architectures which will throw
390 * a machine check fault if an attempt is made to access one of the 4-byte IP
391 * header fields on a non-4-byte boundary. And it's a major performance issue
392 * even on some architectures which allow it like some implementations of the
393 * x86 ISA. However, some architectures don't mind this and for some very
394 * edge-case performance sensitive applications (like forwarding large volumes
395 * of small packets), setting this DMA offset to 0 will decrease the number of
396 * PCI-E Bus transfers enough to measurably affect performance.
397 */
398static int rx_dma_offset = 2;
399
eb939922 400static bool vf_acls;
b8ff05a9
DM
401
402#ifdef CONFIG_PCI_IOV
403module_param(vf_acls, bool, 0644);
404MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
405
7d6727cf
SR
406/* Configure the number of PCI-E Virtual Function which are to be instantiated
407 * on SR-IOV Capable Physical Functions.
0a57a536 408 */
7d6727cf 409static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
410
411module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 412MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
413#endif
414
688848b1
AB
415/* TX Queue select used to determine what algorithm to use for selecting TX
416 * queue. Select between the kernel provided function (select_queue=0) or user
417 * cxgb_select_queue function (select_queue=1)
418 *
419 * Default: select_queue=0
420 */
421static int select_queue;
422module_param(select_queue, int, 0644);
423MODULE_PARM_DESC(select_queue,
424 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
425
13ee15d3
VP
426/*
427 * The filter TCAM has a fixed portion and a variable portion. The fixed
428 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
429 * ports. The variable portion is 36 bits which can include things like Exact
430 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
431 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
432 * far exceed the 36-bit budget for this "compressed" header portion of the
433 * filter. Thus, we have a scarce resource which must be carefully managed.
434 *
435 * By default we set this up to mostly match the set of filter matching
436 * capabilities of T3 but with accommodations for some of T4's more
437 * interesting features:
438 *
439 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
440 * [Inner] VLAN (17), Port (3), FCoE (1) }
441 */
442enum {
443 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
444 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
445 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
446};
447
448static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
449
f2b7e78d
VP
450module_param(tp_vlan_pri_map, uint, 0644);
451MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
452
b8ff05a9
DM
453static struct dentry *cxgb4_debugfs_root;
454
455static LIST_HEAD(adapter_list);
456static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
457/* Adapter list to be accessed from atomic context */
458static LIST_HEAD(adap_rcu_list);
459static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
460static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
461static const char *uld_str[] = { "RDMA", "iSCSI" };
462
463static void link_report(struct net_device *dev)
464{
465 if (!netif_carrier_ok(dev))
466 netdev_info(dev, "link down\n");
467 else {
468 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
469
470 const char *s = "10Mbps";
471 const struct port_info *p = netdev_priv(dev);
472
473 switch (p->link_cfg.speed) {
e8b39015 474 case 10000:
b8ff05a9
DM
475 s = "10Gbps";
476 break;
e8b39015 477 case 1000:
b8ff05a9
DM
478 s = "1000Mbps";
479 break;
e8b39015 480 case 100:
b8ff05a9
DM
481 s = "100Mbps";
482 break;
e8b39015 483 case 40000:
72aca4bf
KS
484 s = "40Gbps";
485 break;
b8ff05a9
DM
486 }
487
488 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
489 fc[p->link_cfg.fc]);
490 }
491}
492
688848b1
AB
493#ifdef CONFIG_CHELSIO_T4_DCB
494/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
495static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
496{
497 struct port_info *pi = netdev_priv(dev);
498 struct adapter *adap = pi->adapter;
499 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
500 int i;
501
502 /* We use a simple mapping of Port TX Queue Index to DCB
503 * Priority when we're enabling DCB.
504 */
505 for (i = 0; i < pi->nqsets; i++, txq++) {
506 u32 name, value;
507 int err;
508
509 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
510 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
511 FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
512 value = enable ? i : 0xffffffff;
513
514 /* Since we can be called while atomic (from "interrupt
515 * level") we need to issue the Set Parameters Commannd
516 * without sleeping (timeout < 0).
517 */
518 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
519 &name, &value);
520
521 if (err)
522 dev_err(adap->pdev_dev,
523 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
524 enable ? "set" : "unset", pi->port_id, i, -err);
525 }
526}
527#endif /* CONFIG_CHELSIO_T4_DCB */
528
b8ff05a9
DM
529void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
530{
531 struct net_device *dev = adapter->port[port_id];
532
533 /* Skip changes from disabled ports. */
534 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
535 if (link_stat)
536 netif_carrier_on(dev);
688848b1
AB
537 else {
538#ifdef CONFIG_CHELSIO_T4_DCB
539 cxgb4_dcb_state_init(dev);
540 dcb_tx_queue_prio_enable(dev, false);
541#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 542 netif_carrier_off(dev);
688848b1 543 }
b8ff05a9
DM
544
545 link_report(dev);
546 }
547}
548
549void t4_os_portmod_changed(const struct adapter *adap, int port_id)
550{
551 static const char *mod_str[] = {
a0881cab 552 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
553 };
554
555 const struct net_device *dev = adap->port[port_id];
556 const struct port_info *pi = netdev_priv(dev);
557
558 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
559 netdev_info(dev, "port module unplugged\n");
a0881cab 560 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
561 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
562}
563
564/*
565 * Configure the exact and hash address filters to handle a port's multicast
566 * and secondary unicast MAC addresses.
567 */
568static int set_addr_filters(const struct net_device *dev, bool sleep)
569{
570 u64 mhash = 0;
571 u64 uhash = 0;
572 bool free = true;
573 u16 filt_idx[7];
574 const u8 *addr[7];
575 int ret, naddr = 0;
b8ff05a9
DM
576 const struct netdev_hw_addr *ha;
577 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 578 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 579 const struct port_info *pi = netdev_priv(dev);
060e0c75 580 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
581
582 /* first do the secondary unicast addresses */
583 netdev_for_each_uc_addr(ha, dev) {
584 addr[naddr++] = ha->addr;
585 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 586 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
587 naddr, addr, filt_idx, &uhash, sleep);
588 if (ret < 0)
589 return ret;
590
591 free = false;
592 naddr = 0;
593 }
594 }
595
596 /* next set up the multicast addresses */
4a35ecf8
DM
597 netdev_for_each_mc_addr(ha, dev) {
598 addr[naddr++] = ha->addr;
599 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 600 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
601 naddr, addr, filt_idx, &mhash, sleep);
602 if (ret < 0)
603 return ret;
604
605 free = false;
606 naddr = 0;
607 }
608 }
609
060e0c75 610 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
611 uhash | mhash, sleep);
612}
613
3069ee9b
VP
614int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
615module_param(dbfifo_int_thresh, int, 0644);
616MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
617
404d9e3f
VP
618/*
619 * usecs to sleep while draining the dbfifo
620 */
621static int dbfifo_drain_delay = 1000;
3069ee9b
VP
622module_param(dbfifo_drain_delay, int, 0644);
623MODULE_PARM_DESC(dbfifo_drain_delay,
624 "usecs to sleep while draining the dbfifo");
625
b8ff05a9
DM
626/*
627 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
628 * If @mtu is -1 it is left unchanged.
629 */
630static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
631{
632 int ret;
633 struct port_info *pi = netdev_priv(dev);
634
635 ret = set_addr_filters(dev, sleep_ok);
636 if (ret == 0)
060e0c75 637 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
b8ff05a9 638 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 639 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
640 sleep_ok);
641 return ret;
642}
643
3069ee9b
VP
644static struct workqueue_struct *workq;
645
b8ff05a9
DM
646/**
647 * link_start - enable a port
648 * @dev: the port to enable
649 *
650 * Performs the MAC and PHY actions needed to enable a port.
651 */
652static int link_start(struct net_device *dev)
653{
654 int ret;
655 struct port_info *pi = netdev_priv(dev);
060e0c75 656 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
657
658 /*
659 * We do not set address filters and promiscuity here, the stack does
660 * that step explicitly.
661 */
060e0c75 662 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 663 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 664 if (ret == 0) {
060e0c75 665 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 666 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 667 true);
b8ff05a9
DM
668 if (ret >= 0) {
669 pi->xact_addr_filt = ret;
670 ret = 0;
671 }
672 }
673 if (ret == 0)
060e0c75
DM
674 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
675 &pi->link_cfg);
b8ff05a9 676 if (ret == 0)
688848b1
AB
677 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
678 true, CXGB4_DCB_ENABLED);
679
b8ff05a9
DM
680 return ret;
681}
682
688848b1
AB
683int cxgb4_dcb_enabled(const struct net_device *dev)
684{
685#ifdef CONFIG_CHELSIO_T4_DCB
686 struct port_info *pi = netdev_priv(dev);
687
688 return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
689#else
690 return 0;
691#endif
692}
693EXPORT_SYMBOL(cxgb4_dcb_enabled);
694
695#ifdef CONFIG_CHELSIO_T4_DCB
696/* Handle a Data Center Bridging update message from the firmware. */
697static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
698{
699 int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
700 struct net_device *dev = adap->port[port];
701 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
702 int new_dcb_enabled;
703
704 cxgb4_dcb_handle_fw_update(adap, pcmd);
705 new_dcb_enabled = cxgb4_dcb_enabled(dev);
706
707 /* If the DCB has become enabled or disabled on the port then we're
708 * going to need to set up/tear down DCB Priority parameters for the
709 * TX Queues associated with the port.
710 */
711 if (new_dcb_enabled != old_dcb_enabled)
712 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
713}
714#endif /* CONFIG_CHELSIO_T4_DCB */
715
f2b7e78d
VP
716/* Clear a filter and release any of its resources that we own. This also
717 * clears the filter's "pending" status.
718 */
719static void clear_filter(struct adapter *adap, struct filter_entry *f)
720{
721 /* If the new or old filter have loopback rewriteing rules then we'll
722 * need to free any existing Layer Two Table (L2T) entries of the old
723 * filter rule. The firmware will handle freeing up any Source MAC
724 * Table (SMT) entries used for rewriting Source MAC Addresses in
725 * loopback rules.
726 */
727 if (f->l2t)
728 cxgb4_l2t_release(f->l2t);
729
730 /* The zeroing of the filter rule below clears the filter valid,
731 * pending, locked flags, l2t pointer, etc. so it's all we need for
732 * this operation.
733 */
734 memset(f, 0, sizeof(*f));
735}
736
737/* Handle a filter write/deletion reply.
738 */
739static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
740{
741 unsigned int idx = GET_TID(rpl);
742 unsigned int nidx = idx - adap->tids.ftid_base;
743 unsigned int ret;
744 struct filter_entry *f;
745
746 if (idx >= adap->tids.ftid_base && nidx <
747 (adap->tids.nftids + adap->tids.nsftids)) {
748 idx = nidx;
749 ret = GET_TCB_COOKIE(rpl->cookie);
750 f = &adap->tids.ftid_tab[idx];
751
752 if (ret == FW_FILTER_WR_FLT_DELETED) {
753 /* Clear the filter when we get confirmation from the
754 * hardware that the filter has been deleted.
755 */
756 clear_filter(adap, f);
757 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
758 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
759 idx);
760 clear_filter(adap, f);
761 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
762 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
763 f->pending = 0; /* asynchronous setup completed */
764 f->valid = 1;
765 } else {
766 /* Something went wrong. Issue a warning about the
767 * problem and clear everything out.
768 */
769 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
770 idx, ret);
771 clear_filter(adap, f);
772 }
773 }
774}
775
776/* Response queue handler for the FW event queue.
b8ff05a9
DM
777 */
778static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
779 const struct pkt_gl *gl)
780{
781 u8 opcode = ((const struct rss_header *)rsp)->opcode;
782
783 rsp++; /* skip RSS header */
b407a4a9
VP
784
785 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
786 */
787 if (unlikely(opcode == CPL_FW4_MSG &&
788 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
789 rsp++;
790 opcode = ((const struct rss_header *)rsp)->opcode;
791 rsp++;
792 if (opcode != CPL_SGE_EGR_UPDATE) {
793 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
794 , opcode);
795 goto out;
796 }
797 }
798
b8ff05a9
DM
799 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
800 const struct cpl_sge_egr_update *p = (void *)rsp;
801 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
e46dab4d 802 struct sge_txq *txq;
b8ff05a9 803
e46dab4d 804 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 805 txq->restarts++;
e46dab4d 806 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
807 struct sge_eth_txq *eq;
808
809 eq = container_of(txq, struct sge_eth_txq, q);
810 netif_tx_wake_queue(eq->txq);
811 } else {
812 struct sge_ofld_txq *oq;
813
814 oq = container_of(txq, struct sge_ofld_txq, q);
815 tasklet_schedule(&oq->qresume_tsk);
816 }
817 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
818 const struct cpl_fw6_msg *p = (void *)rsp;
819
688848b1
AB
820#ifdef CONFIG_CHELSIO_T4_DCB
821 const struct fw_port_cmd *pcmd = (const void *)p->data;
822 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
823 unsigned int action =
824 FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
825
826 if (cmd == FW_PORT_CMD &&
827 action == FW_PORT_ACTION_GET_PORT_INFO) {
828 int port = FW_PORT_CMD_PORTID_GET(
829 be32_to_cpu(pcmd->op_to_portid));
830 struct net_device *dev = q->adap->port[port];
831 int state_input = ((pcmd->u.info.dcbxdis_pkd &
832 FW_PORT_CMD_DCBXDIS)
833 ? CXGB4_DCB_INPUT_FW_DISABLED
834 : CXGB4_DCB_INPUT_FW_ENABLED);
835
836 cxgb4_dcb_state_fsm(dev, state_input);
837 }
838
839 if (cmd == FW_PORT_CMD &&
840 action == FW_PORT_ACTION_L2_DCB_CFG)
841 dcb_rpl(q->adap, pcmd);
842 else
843#endif
844 if (p->type == 0)
845 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
846 } else if (opcode == CPL_L2T_WRITE_RPL) {
847 const struct cpl_l2t_write_rpl *p = (void *)rsp;
848
849 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
850 } else if (opcode == CPL_SET_TCB_RPL) {
851 const struct cpl_set_tcb_rpl *p = (void *)rsp;
852
853 filter_rpl(q->adap, p);
b8ff05a9
DM
854 } else
855 dev_err(q->adap->pdev_dev,
856 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 857out:
b8ff05a9
DM
858 return 0;
859}
860
861/**
862 * uldrx_handler - response queue handler for ULD queues
863 * @q: the response queue that received the packet
864 * @rsp: the response queue descriptor holding the offload message
865 * @gl: the gather list of packet fragments
866 *
867 * Deliver an ingress offload packet to a ULD. All processing is done by
868 * the ULD, we just maintain statistics.
869 */
870static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
871 const struct pkt_gl *gl)
872{
873 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
874
b407a4a9
VP
875 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
876 */
877 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
878 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
879 rsp += 2;
880
b8ff05a9
DM
881 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
882 rxq->stats.nomem++;
883 return -1;
884 }
885 if (gl == NULL)
886 rxq->stats.imm++;
887 else if (gl == CXGB4_MSG_AN)
888 rxq->stats.an++;
889 else
890 rxq->stats.pkts++;
891 return 0;
892}
893
894static void disable_msi(struct adapter *adapter)
895{
896 if (adapter->flags & USING_MSIX) {
897 pci_disable_msix(adapter->pdev);
898 adapter->flags &= ~USING_MSIX;
899 } else if (adapter->flags & USING_MSI) {
900 pci_disable_msi(adapter->pdev);
901 adapter->flags &= ~USING_MSI;
902 }
903}
904
905/*
906 * Interrupt handler for non-data events used with MSI-X.
907 */
908static irqreturn_t t4_nondata_intr(int irq, void *cookie)
909{
910 struct adapter *adap = cookie;
911
912 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
913 if (v & PFSW) {
914 adap->swintr = 1;
915 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
916 }
917 t4_slow_intr_handler(adap);
918 return IRQ_HANDLED;
919}
920
921/*
922 * Name the MSI-X interrupts.
923 */
924static void name_msix_vecs(struct adapter *adap)
925{
ba27816c 926 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
927
928 /* non-data interrupts */
b1a3c2b6 929 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
930
931 /* FW events */
b1a3c2b6
DM
932 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
933 adap->port[0]->name);
b8ff05a9
DM
934
935 /* Ethernet queues */
936 for_each_port(adap, j) {
937 struct net_device *d = adap->port[j];
938 const struct port_info *pi = netdev_priv(d);
939
ba27816c 940 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
941 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
942 d->name, i);
b8ff05a9
DM
943 }
944
945 /* offload queues */
ba27816c
DM
946 for_each_ofldrxq(&adap->sge, i)
947 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 948 adap->port[0]->name, i);
ba27816c
DM
949
950 for_each_rdmarxq(&adap->sge, i)
951 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 952 adap->port[0]->name, i);
cf38be6d
HS
953
954 for_each_rdmaciq(&adap->sge, i)
955 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
956 adap->port[0]->name, i);
b8ff05a9
DM
957}
958
959static int request_msix_queue_irqs(struct adapter *adap)
960{
961 struct sge *s = &adap->sge;
cf38be6d
HS
962 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
963 int msi_index = 2;
b8ff05a9
DM
964
965 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
966 adap->msix_info[1].desc, &s->fw_evtq);
967 if (err)
968 return err;
969
970 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
971 err = request_irq(adap->msix_info[msi_index].vec,
972 t4_sge_intr_msix, 0,
973 adap->msix_info[msi_index].desc,
b8ff05a9
DM
974 &s->ethrxq[ethqidx].rspq);
975 if (err)
976 goto unwind;
404d9e3f 977 msi_index++;
b8ff05a9
DM
978 }
979 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
980 err = request_irq(adap->msix_info[msi_index].vec,
981 t4_sge_intr_msix, 0,
982 adap->msix_info[msi_index].desc,
b8ff05a9
DM
983 &s->ofldrxq[ofldqidx].rspq);
984 if (err)
985 goto unwind;
404d9e3f 986 msi_index++;
b8ff05a9
DM
987 }
988 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
989 err = request_irq(adap->msix_info[msi_index].vec,
990 t4_sge_intr_msix, 0,
991 adap->msix_info[msi_index].desc,
b8ff05a9
DM
992 &s->rdmarxq[rdmaqidx].rspq);
993 if (err)
994 goto unwind;
404d9e3f 995 msi_index++;
b8ff05a9 996 }
cf38be6d
HS
997 for_each_rdmaciq(s, rdmaciqqidx) {
998 err = request_irq(adap->msix_info[msi_index].vec,
999 t4_sge_intr_msix, 0,
1000 adap->msix_info[msi_index].desc,
1001 &s->rdmaciq[rdmaciqqidx].rspq);
1002 if (err)
1003 goto unwind;
1004 msi_index++;
1005 }
b8ff05a9
DM
1006 return 0;
1007
1008unwind:
cf38be6d
HS
1009 while (--rdmaciqqidx >= 0)
1010 free_irq(adap->msix_info[--msi_index].vec,
1011 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 1012 while (--rdmaqidx >= 0)
404d9e3f 1013 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
1014 &s->rdmarxq[rdmaqidx].rspq);
1015 while (--ofldqidx >= 0)
404d9e3f 1016 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
1017 &s->ofldrxq[ofldqidx].rspq);
1018 while (--ethqidx >= 0)
404d9e3f
VP
1019 free_irq(adap->msix_info[--msi_index].vec,
1020 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
1021 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1022 return err;
1023}
1024
1025static void free_msix_queue_irqs(struct adapter *adap)
1026{
404d9e3f 1027 int i, msi_index = 2;
b8ff05a9
DM
1028 struct sge *s = &adap->sge;
1029
1030 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1031 for_each_ethrxq(s, i)
404d9e3f 1032 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 1033 for_each_ofldrxq(s, i)
404d9e3f 1034 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 1035 for_each_rdmarxq(s, i)
404d9e3f 1036 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
1037 for_each_rdmaciq(s, i)
1038 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
1039}
1040
671b0060
DM
1041/**
1042 * write_rss - write the RSS table for a given port
1043 * @pi: the port
1044 * @queues: array of queue indices for RSS
1045 *
1046 * Sets up the portion of the HW RSS table for the port's VI to distribute
1047 * packets to the Rx queues in @queues.
1048 */
1049static int write_rss(const struct port_info *pi, const u16 *queues)
1050{
1051 u16 *rss;
1052 int i, err;
1053 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1054
1055 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1056 if (!rss)
1057 return -ENOMEM;
1058
1059 /* map the queue indices to queue ids */
1060 for (i = 0; i < pi->rss_size; i++, queues++)
1061 rss[i] = q[*queues].rspq.abs_id;
1062
060e0c75
DM
1063 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1064 pi->rss_size, rss, pi->rss_size);
671b0060
DM
1065 kfree(rss);
1066 return err;
1067}
1068
b8ff05a9
DM
1069/**
1070 * setup_rss - configure RSS
1071 * @adap: the adapter
1072 *
671b0060 1073 * Sets up RSS for each port.
b8ff05a9
DM
1074 */
1075static int setup_rss(struct adapter *adap)
1076{
671b0060 1077 int i, err;
b8ff05a9
DM
1078
1079 for_each_port(adap, i) {
1080 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 1081
671b0060 1082 err = write_rss(pi, pi->rss);
b8ff05a9
DM
1083 if (err)
1084 return err;
1085 }
1086 return 0;
1087}
1088
e46dab4d
DM
1089/*
1090 * Return the channel of the ingress queue with the given qid.
1091 */
1092static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1093{
1094 qid -= p->ingr_start;
1095 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1096}
1097
b8ff05a9
DM
1098/*
1099 * Wait until all NAPI handlers are descheduled.
1100 */
1101static void quiesce_rx(struct adapter *adap)
1102{
1103 int i;
1104
1105 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1106 struct sge_rspq *q = adap->sge.ingr_map[i];
1107
1108 if (q && q->handler)
1109 napi_disable(&q->napi);
1110 }
1111}
1112
1113/*
1114 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1115 */
1116static void enable_rx(struct adapter *adap)
1117{
1118 int i;
1119
1120 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1121 struct sge_rspq *q = adap->sge.ingr_map[i];
1122
1123 if (!q)
1124 continue;
1125 if (q->handler)
1126 napi_enable(&q->napi);
1127 /* 0-increment GTS to start the timer and enable interrupts */
1128 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1129 SEINTARM(q->intr_params) |
1130 INGRESSQID(q->cntxt_id));
1131 }
1132}
1133
1134/**
1135 * setup_sge_queues - configure SGE Tx/Rx/response queues
1136 * @adap: the adapter
1137 *
1138 * Determines how many sets of SGE queues to use and initializes them.
1139 * We support multiple queue sets per port if we have MSI-X, otherwise
1140 * just one queue set per port.
1141 */
1142static int setup_sge_queues(struct adapter *adap)
1143{
1144 int err, msi_idx, i, j;
1145 struct sge *s = &adap->sge;
1146
1147 bitmap_zero(s->starving_fl, MAX_EGRQ);
1148 bitmap_zero(s->txq_maperr, MAX_EGRQ);
1149
1150 if (adap->flags & USING_MSIX)
1151 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1152 else {
1153 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1154 NULL, NULL);
1155 if (err)
1156 return err;
1157 msi_idx = -((int)s->intrq.abs_id + 1);
1158 }
1159
1160 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1161 msi_idx, NULL, fwevtq_handler);
1162 if (err) {
1163freeout: t4_free_sge_resources(adap);
1164 return err;
1165 }
1166
1167 for_each_port(adap, i) {
1168 struct net_device *dev = adap->port[i];
1169 struct port_info *pi = netdev_priv(dev);
1170 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1171 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1172
1173 for (j = 0; j < pi->nqsets; j++, q++) {
1174 if (msi_idx > 0)
1175 msi_idx++;
1176 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1177 msi_idx, &q->fl,
1178 t4_ethrx_handler);
1179 if (err)
1180 goto freeout;
1181 q->rspq.idx = j;
1182 memset(&q->stats, 0, sizeof(q->stats));
1183 }
1184 for (j = 0; j < pi->nqsets; j++, t++) {
1185 err = t4_sge_alloc_eth_txq(adap, t, dev,
1186 netdev_get_tx_queue(dev, j),
1187 s->fw_evtq.cntxt_id);
1188 if (err)
1189 goto freeout;
1190 }
1191 }
1192
1193 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1194 for_each_ofldrxq(s, i) {
1195 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1196 struct net_device *dev = adap->port[i / j];
1197
1198 if (msi_idx > 0)
1199 msi_idx++;
1200 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
cf38be6d
HS
1201 q->fl.size ? &q->fl : NULL,
1202 uldrx_handler);
b8ff05a9
DM
1203 if (err)
1204 goto freeout;
1205 memset(&q->stats, 0, sizeof(q->stats));
1206 s->ofld_rxq[i] = q->rspq.abs_id;
1207 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1208 s->fw_evtq.cntxt_id);
1209 if (err)
1210 goto freeout;
1211 }
1212
1213 for_each_rdmarxq(s, i) {
1214 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1215
1216 if (msi_idx > 0)
1217 msi_idx++;
1218 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
cf38be6d
HS
1219 msi_idx, q->fl.size ? &q->fl : NULL,
1220 uldrx_handler);
b8ff05a9
DM
1221 if (err)
1222 goto freeout;
1223 memset(&q->stats, 0, sizeof(q->stats));
1224 s->rdma_rxq[i] = q->rspq.abs_id;
1225 }
1226
cf38be6d
HS
1227 for_each_rdmaciq(s, i) {
1228 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1229
1230 if (msi_idx > 0)
1231 msi_idx++;
1232 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1233 msi_idx, q->fl.size ? &q->fl : NULL,
1234 uldrx_handler);
1235 if (err)
1236 goto freeout;
1237 memset(&q->stats, 0, sizeof(q->stats));
1238 s->rdma_ciq[i] = q->rspq.abs_id;
1239 }
1240
b8ff05a9
DM
1241 for_each_port(adap, i) {
1242 /*
1243 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1244 * have RDMA queues, and that's the right value.
1245 */
1246 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1247 s->fw_evtq.cntxt_id,
1248 s->rdmarxq[i].rspq.cntxt_id);
1249 if (err)
1250 goto freeout;
1251 }
1252
1253 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1254 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1255 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1256 return 0;
1257}
1258
b8ff05a9
DM
1259/*
1260 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1261 * The allocated memory is cleared.
1262 */
1263void *t4_alloc_mem(size_t size)
1264{
8be04b93 1265 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1266
1267 if (!p)
89bf67f1 1268 p = vzalloc(size);
b8ff05a9
DM
1269 return p;
1270}
1271
1272/*
1273 * Free memory allocated through alloc_mem().
1274 */
31b9c19b 1275static void t4_free_mem(void *addr)
b8ff05a9
DM
1276{
1277 if (is_vmalloc_addr(addr))
1278 vfree(addr);
1279 else
1280 kfree(addr);
1281}
1282
f2b7e78d
VP
1283/* Send a Work Request to write the filter at a specified index. We construct
1284 * a Firmware Filter Work Request to have the work done and put the indicated
1285 * filter into "pending" mode which will prevent any further actions against
1286 * it till we get a reply from the firmware on the completion status of the
1287 * request.
1288 */
1289static int set_filter_wr(struct adapter *adapter, int fidx)
1290{
1291 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1292 struct sk_buff *skb;
1293 struct fw_filter_wr *fwr;
1294 unsigned int ftid;
1295
1296 /* If the new filter requires loopback Destination MAC and/or VLAN
1297 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1298 * the filter.
1299 */
1300 if (f->fs.newdmac || f->fs.newvlan) {
1301 /* allocate L2T entry for new filter */
1302 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1303 if (f->l2t == NULL)
1304 return -EAGAIN;
1305 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1306 f->fs.eport, f->fs.dmac)) {
1307 cxgb4_l2t_release(f->l2t);
1308 f->l2t = NULL;
1309 return -ENOMEM;
1310 }
1311 }
1312
1313 ftid = adapter->tids.ftid_base + fidx;
1314
1315 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1316 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1317 memset(fwr, 0, sizeof(*fwr));
1318
1319 /* It would be nice to put most of the following in t4_hw.c but most
1320 * of the work is translating the cxgbtool ch_filter_specification
1321 * into the Work Request and the definition of that structure is
1322 * currently in cxgbtool.h which isn't appropriate to pull into the
1323 * common code. We may eventually try to come up with a more neutral
1324 * filter specification structure but for now it's easiest to simply
1325 * put this fairly direct code in line ...
1326 */
1327 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1328 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1329 fwr->tid_to_iq =
1330 htonl(V_FW_FILTER_WR_TID(ftid) |
1331 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1332 V_FW_FILTER_WR_NOREPLY(0) |
1333 V_FW_FILTER_WR_IQ(f->fs.iq));
1334 fwr->del_filter_to_l2tix =
1335 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1336 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1337 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1338 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1339 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1340 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1341 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1342 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1343 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1344 f->fs.newvlan == VLAN_REWRITE) |
1345 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1346 f->fs.newvlan == VLAN_REWRITE) |
1347 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1348 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1349 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1350 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1351 fwr->ethtype = htons(f->fs.val.ethtype);
1352 fwr->ethtypem = htons(f->fs.mask.ethtype);
1353 fwr->frag_to_ovlan_vldm =
1354 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1355 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1356 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1357 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1358 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1359 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1360 fwr->smac_sel = 0;
1361 fwr->rx_chan_rx_rpl_iq =
1362 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1363 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1364 fwr->maci_to_matchtypem =
1365 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1366 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1367 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1368 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1369 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1370 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1371 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1372 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1373 fwr->ptcl = f->fs.val.proto;
1374 fwr->ptclm = f->fs.mask.proto;
1375 fwr->ttyp = f->fs.val.tos;
1376 fwr->ttypm = f->fs.mask.tos;
1377 fwr->ivlan = htons(f->fs.val.ivlan);
1378 fwr->ivlanm = htons(f->fs.mask.ivlan);
1379 fwr->ovlan = htons(f->fs.val.ovlan);
1380 fwr->ovlanm = htons(f->fs.mask.ovlan);
1381 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1382 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1383 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1384 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1385 fwr->lp = htons(f->fs.val.lport);
1386 fwr->lpm = htons(f->fs.mask.lport);
1387 fwr->fp = htons(f->fs.val.fport);
1388 fwr->fpm = htons(f->fs.mask.fport);
1389 if (f->fs.newsmac)
1390 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1391
1392 /* Mark the filter as "pending" and ship off the Filter Work Request.
1393 * When we get the Work Request Reply we'll clear the pending status.
1394 */
1395 f->pending = 1;
1396 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1397 t4_ofld_send(adapter, skb);
1398 return 0;
1399}
1400
1401/* Delete the filter at a specified index.
1402 */
1403static int del_filter_wr(struct adapter *adapter, int fidx)
1404{
1405 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1406 struct sk_buff *skb;
1407 struct fw_filter_wr *fwr;
1408 unsigned int len, ftid;
1409
1410 len = sizeof(*fwr);
1411 ftid = adapter->tids.ftid_base + fidx;
1412
1413 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1414 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1415 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1416
1417 /* Mark the filter as "pending" and ship off the Filter Work Request.
1418 * When we get the Work Request Reply we'll clear the pending status.
1419 */
1420 f->pending = 1;
1421 t4_mgmt_tx(adapter, skb);
1422 return 0;
1423}
1424
688848b1
AB
1425static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1426 void *accel_priv, select_queue_fallback_t fallback)
1427{
1428 int txq;
1429
1430#ifdef CONFIG_CHELSIO_T4_DCB
1431 /* If a Data Center Bridging has been successfully negotiated on this
1432 * link then we'll use the skb's priority to map it to a TX Queue.
1433 * The skb's priority is determined via the VLAN Tag Priority Code
1434 * Point field.
1435 */
1436 if (cxgb4_dcb_enabled(dev)) {
1437 u16 vlan_tci;
1438 int err;
1439
1440 err = vlan_get_tag(skb, &vlan_tci);
1441 if (unlikely(err)) {
1442 if (net_ratelimit())
1443 netdev_warn(dev,
1444 "TX Packet without VLAN Tag on DCB Link\n");
1445 txq = 0;
1446 } else {
1447 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1448 }
1449 return txq;
1450 }
1451#endif /* CONFIG_CHELSIO_T4_DCB */
1452
1453 if (select_queue) {
1454 txq = (skb_rx_queue_recorded(skb)
1455 ? skb_get_rx_queue(skb)
1456 : smp_processor_id());
1457
1458 while (unlikely(txq >= dev->real_num_tx_queues))
1459 txq -= dev->real_num_tx_queues;
1460
1461 return txq;
1462 }
1463
1464 return fallback(dev, skb) % dev->real_num_tx_queues;
1465}
1466
b8ff05a9
DM
1467static inline int is_offload(const struct adapter *adap)
1468{
1469 return adap->params.offload;
1470}
1471
1472/*
1473 * Implementation of ethtool operations.
1474 */
1475
1476static u32 get_msglevel(struct net_device *dev)
1477{
1478 return netdev2adap(dev)->msg_enable;
1479}
1480
1481static void set_msglevel(struct net_device *dev, u32 val)
1482{
1483 netdev2adap(dev)->msg_enable = val;
1484}
1485
1486static char stats_strings[][ETH_GSTRING_LEN] = {
1487 "TxOctetsOK ",
1488 "TxFramesOK ",
1489 "TxBroadcastFrames ",
1490 "TxMulticastFrames ",
1491 "TxUnicastFrames ",
1492 "TxErrorFrames ",
1493
1494 "TxFrames64 ",
1495 "TxFrames65To127 ",
1496 "TxFrames128To255 ",
1497 "TxFrames256To511 ",
1498 "TxFrames512To1023 ",
1499 "TxFrames1024To1518 ",
1500 "TxFrames1519ToMax ",
1501
1502 "TxFramesDropped ",
1503 "TxPauseFrames ",
1504 "TxPPP0Frames ",
1505 "TxPPP1Frames ",
1506 "TxPPP2Frames ",
1507 "TxPPP3Frames ",
1508 "TxPPP4Frames ",
1509 "TxPPP5Frames ",
1510 "TxPPP6Frames ",
1511 "TxPPP7Frames ",
1512
1513 "RxOctetsOK ",
1514 "RxFramesOK ",
1515 "RxBroadcastFrames ",
1516 "RxMulticastFrames ",
1517 "RxUnicastFrames ",
1518
1519 "RxFramesTooLong ",
1520 "RxJabberErrors ",
1521 "RxFCSErrors ",
1522 "RxLengthErrors ",
1523 "RxSymbolErrors ",
1524 "RxRuntFrames ",
1525
1526 "RxFrames64 ",
1527 "RxFrames65To127 ",
1528 "RxFrames128To255 ",
1529 "RxFrames256To511 ",
1530 "RxFrames512To1023 ",
1531 "RxFrames1024To1518 ",
1532 "RxFrames1519ToMax ",
1533
1534 "RxPauseFrames ",
1535 "RxPPP0Frames ",
1536 "RxPPP1Frames ",
1537 "RxPPP2Frames ",
1538 "RxPPP3Frames ",
1539 "RxPPP4Frames ",
1540 "RxPPP5Frames ",
1541 "RxPPP6Frames ",
1542 "RxPPP7Frames ",
1543
1544 "RxBG0FramesDropped ",
1545 "RxBG1FramesDropped ",
1546 "RxBG2FramesDropped ",
1547 "RxBG3FramesDropped ",
1548 "RxBG0FramesTrunc ",
1549 "RxBG1FramesTrunc ",
1550 "RxBG2FramesTrunc ",
1551 "RxBG3FramesTrunc ",
1552
1553 "TSO ",
1554 "TxCsumOffload ",
1555 "RxCsumGood ",
1556 "VLANextractions ",
1557 "VLANinsertions ",
4a6346d4
DM
1558 "GROpackets ",
1559 "GROmerged ",
22adfe0a
SR
1560 "WriteCoalSuccess ",
1561 "WriteCoalFail ",
b8ff05a9
DM
1562};
1563
1564static int get_sset_count(struct net_device *dev, int sset)
1565{
1566 switch (sset) {
1567 case ETH_SS_STATS:
1568 return ARRAY_SIZE(stats_strings);
1569 default:
1570 return -EOPNOTSUPP;
1571 }
1572}
1573
1574#define T4_REGMAP_SIZE (160 * 1024)
251f9e88 1575#define T5_REGMAP_SIZE (332 * 1024)
b8ff05a9
DM
1576
1577static int get_regs_len(struct net_device *dev)
1578{
251f9e88 1579 struct adapter *adap = netdev2adap(dev);
d14807dd 1580 if (is_t4(adap->params.chip))
251f9e88
SR
1581 return T4_REGMAP_SIZE;
1582 else
1583 return T5_REGMAP_SIZE;
b8ff05a9
DM
1584}
1585
1586static int get_eeprom_len(struct net_device *dev)
1587{
1588 return EEPROMSIZE;
1589}
1590
1591static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1592{
1593 struct adapter *adapter = netdev2adap(dev);
1594
23020ab3
RJ
1595 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1596 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1597 strlcpy(info->bus_info, pci_name(adapter->pdev),
1598 sizeof(info->bus_info));
b8ff05a9 1599
84b40501 1600 if (adapter->params.fw_vers)
b8ff05a9
DM
1601 snprintf(info->fw_version, sizeof(info->fw_version),
1602 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1603 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1604 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1605 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1606 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1607 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1608 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1609 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1610 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1611}
1612
1613static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1614{
1615 if (stringset == ETH_SS_STATS)
1616 memcpy(data, stats_strings, sizeof(stats_strings));
1617}
1618
1619/*
1620 * port stats maintained per queue of the port. They should be in the same
1621 * order as in stats_strings above.
1622 */
1623struct queue_port_stats {
1624 u64 tso;
1625 u64 tx_csum;
1626 u64 rx_csum;
1627 u64 vlan_ex;
1628 u64 vlan_ins;
4a6346d4
DM
1629 u64 gro_pkts;
1630 u64 gro_merged;
b8ff05a9
DM
1631};
1632
1633static void collect_sge_port_stats(const struct adapter *adap,
1634 const struct port_info *p, struct queue_port_stats *s)
1635{
1636 int i;
1637 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1638 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1639
1640 memset(s, 0, sizeof(*s));
1641 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1642 s->tso += tx->tso;
1643 s->tx_csum += tx->tx_cso;
1644 s->rx_csum += rx->stats.rx_cso;
1645 s->vlan_ex += rx->stats.vlan_ex;
1646 s->vlan_ins += tx->vlan_ins;
4a6346d4
DM
1647 s->gro_pkts += rx->stats.lro_pkts;
1648 s->gro_merged += rx->stats.lro_merged;
b8ff05a9
DM
1649 }
1650}
1651
1652static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1653 u64 *data)
1654{
1655 struct port_info *pi = netdev_priv(dev);
1656 struct adapter *adapter = pi->adapter;
22adfe0a 1657 u32 val1, val2;
b8ff05a9
DM
1658
1659 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1660
1661 data += sizeof(struct port_stats) / sizeof(u64);
1662 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
22adfe0a 1663 data += sizeof(struct queue_port_stats) / sizeof(u64);
d14807dd 1664 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
1665 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1666 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1667 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1668 *data = val1 - val2;
1669 data++;
1670 *data = val2;
1671 data++;
1672 } else {
1673 memset(data, 0, 2 * sizeof(u64));
1674 *data += 2;
1675 }
b8ff05a9
DM
1676}
1677
1678/*
1679 * Return a version number to identify the type of adapter. The scheme is:
1680 * - bits 0..9: chip version
1681 * - bits 10..15: chip revision
835bb606 1682 * - bits 16..23: register dump version
b8ff05a9
DM
1683 */
1684static inline unsigned int mk_adap_vers(const struct adapter *ap)
1685{
d14807dd
HS
1686 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1687 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
b8ff05a9
DM
1688}
1689
1690static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1691 unsigned int end)
1692{
1693 u32 *p = buf + start;
1694
1695 for ( ; start <= end; start += sizeof(u32))
1696 *p++ = t4_read_reg(ap, start);
1697}
1698
1699static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1700 void *buf)
1701{
251f9e88 1702 static const unsigned int t4_reg_ranges[] = {
b8ff05a9
DM
1703 0x1008, 0x1108,
1704 0x1180, 0x11b4,
1705 0x11fc, 0x123c,
1706 0x1300, 0x173c,
1707 0x1800, 0x18fc,
1708 0x3000, 0x30d8,
1709 0x30e0, 0x5924,
1710 0x5960, 0x59d4,
1711 0x5a00, 0x5af8,
1712 0x6000, 0x6098,
1713 0x6100, 0x6150,
1714 0x6200, 0x6208,
1715 0x6240, 0x6248,
1716 0x6280, 0x6338,
1717 0x6370, 0x638c,
1718 0x6400, 0x643c,
1719 0x6500, 0x6524,
1720 0x6a00, 0x6a38,
1721 0x6a60, 0x6a78,
1722 0x6b00, 0x6b84,
1723 0x6bf0, 0x6c84,
1724 0x6cf0, 0x6d84,
1725 0x6df0, 0x6e84,
1726 0x6ef0, 0x6f84,
1727 0x6ff0, 0x7084,
1728 0x70f0, 0x7184,
1729 0x71f0, 0x7284,
1730 0x72f0, 0x7384,
1731 0x73f0, 0x7450,
1732 0x7500, 0x7530,
1733 0x7600, 0x761c,
1734 0x7680, 0x76cc,
1735 0x7700, 0x7798,
1736 0x77c0, 0x77fc,
1737 0x7900, 0x79fc,
1738 0x7b00, 0x7c38,
1739 0x7d00, 0x7efc,
1740 0x8dc0, 0x8e1c,
1741 0x8e30, 0x8e78,
1742 0x8ea0, 0x8f6c,
1743 0x8fc0, 0x9074,
1744 0x90fc, 0x90fc,
1745 0x9400, 0x9458,
1746 0x9600, 0x96bc,
1747 0x9800, 0x9808,
1748 0x9820, 0x983c,
1749 0x9850, 0x9864,
1750 0x9c00, 0x9c6c,
1751 0x9c80, 0x9cec,
1752 0x9d00, 0x9d6c,
1753 0x9d80, 0x9dec,
1754 0x9e00, 0x9e6c,
1755 0x9e80, 0x9eec,
1756 0x9f00, 0x9f6c,
1757 0x9f80, 0x9fec,
1758 0xd004, 0xd03c,
1759 0xdfc0, 0xdfe0,
1760 0xe000, 0xea7c,
1761 0xf000, 0x11190,
835bb606
DM
1762 0x19040, 0x1906c,
1763 0x19078, 0x19080,
1764 0x1908c, 0x19124,
b8ff05a9
DM
1765 0x19150, 0x191b0,
1766 0x191d0, 0x191e8,
1767 0x19238, 0x1924c,
1768 0x193f8, 0x19474,
1769 0x19490, 0x194f8,
1770 0x19800, 0x19f30,
1771 0x1a000, 0x1a06c,
1772 0x1a0b0, 0x1a120,
1773 0x1a128, 0x1a138,
1774 0x1a190, 0x1a1c4,
1775 0x1a1fc, 0x1a1fc,
1776 0x1e040, 0x1e04c,
835bb606 1777 0x1e284, 0x1e28c,
b8ff05a9
DM
1778 0x1e2c0, 0x1e2c0,
1779 0x1e2e0, 0x1e2e0,
1780 0x1e300, 0x1e384,
1781 0x1e3c0, 0x1e3c8,
1782 0x1e440, 0x1e44c,
835bb606 1783 0x1e684, 0x1e68c,
b8ff05a9
DM
1784 0x1e6c0, 0x1e6c0,
1785 0x1e6e0, 0x1e6e0,
1786 0x1e700, 0x1e784,
1787 0x1e7c0, 0x1e7c8,
1788 0x1e840, 0x1e84c,
835bb606 1789 0x1ea84, 0x1ea8c,
b8ff05a9
DM
1790 0x1eac0, 0x1eac0,
1791 0x1eae0, 0x1eae0,
1792 0x1eb00, 0x1eb84,
1793 0x1ebc0, 0x1ebc8,
1794 0x1ec40, 0x1ec4c,
835bb606 1795 0x1ee84, 0x1ee8c,
b8ff05a9
DM
1796 0x1eec0, 0x1eec0,
1797 0x1eee0, 0x1eee0,
1798 0x1ef00, 0x1ef84,
1799 0x1efc0, 0x1efc8,
1800 0x1f040, 0x1f04c,
835bb606 1801 0x1f284, 0x1f28c,
b8ff05a9
DM
1802 0x1f2c0, 0x1f2c0,
1803 0x1f2e0, 0x1f2e0,
1804 0x1f300, 0x1f384,
1805 0x1f3c0, 0x1f3c8,
1806 0x1f440, 0x1f44c,
835bb606 1807 0x1f684, 0x1f68c,
b8ff05a9
DM
1808 0x1f6c0, 0x1f6c0,
1809 0x1f6e0, 0x1f6e0,
1810 0x1f700, 0x1f784,
1811 0x1f7c0, 0x1f7c8,
1812 0x1f840, 0x1f84c,
835bb606 1813 0x1fa84, 0x1fa8c,
b8ff05a9
DM
1814 0x1fac0, 0x1fac0,
1815 0x1fae0, 0x1fae0,
1816 0x1fb00, 0x1fb84,
1817 0x1fbc0, 0x1fbc8,
1818 0x1fc40, 0x1fc4c,
835bb606 1819 0x1fe84, 0x1fe8c,
b8ff05a9
DM
1820 0x1fec0, 0x1fec0,
1821 0x1fee0, 0x1fee0,
1822 0x1ff00, 0x1ff84,
1823 0x1ffc0, 0x1ffc8,
1824 0x20000, 0x2002c,
1825 0x20100, 0x2013c,
1826 0x20190, 0x201c8,
1827 0x20200, 0x20318,
1828 0x20400, 0x20528,
1829 0x20540, 0x20614,
1830 0x21000, 0x21040,
1831 0x2104c, 0x21060,
1832 0x210c0, 0x210ec,
1833 0x21200, 0x21268,
1834 0x21270, 0x21284,
1835 0x212fc, 0x21388,
1836 0x21400, 0x21404,
1837 0x21500, 0x21518,
1838 0x2152c, 0x2153c,
1839 0x21550, 0x21554,
1840 0x21600, 0x21600,
1841 0x21608, 0x21628,
1842 0x21630, 0x2163c,
1843 0x21700, 0x2171c,
1844 0x21780, 0x2178c,
1845 0x21800, 0x21c38,
1846 0x21c80, 0x21d7c,
1847 0x21e00, 0x21e04,
1848 0x22000, 0x2202c,
1849 0x22100, 0x2213c,
1850 0x22190, 0x221c8,
1851 0x22200, 0x22318,
1852 0x22400, 0x22528,
1853 0x22540, 0x22614,
1854 0x23000, 0x23040,
1855 0x2304c, 0x23060,
1856 0x230c0, 0x230ec,
1857 0x23200, 0x23268,
1858 0x23270, 0x23284,
1859 0x232fc, 0x23388,
1860 0x23400, 0x23404,
1861 0x23500, 0x23518,
1862 0x2352c, 0x2353c,
1863 0x23550, 0x23554,
1864 0x23600, 0x23600,
1865 0x23608, 0x23628,
1866 0x23630, 0x2363c,
1867 0x23700, 0x2371c,
1868 0x23780, 0x2378c,
1869 0x23800, 0x23c38,
1870 0x23c80, 0x23d7c,
1871 0x23e00, 0x23e04,
1872 0x24000, 0x2402c,
1873 0x24100, 0x2413c,
1874 0x24190, 0x241c8,
1875 0x24200, 0x24318,
1876 0x24400, 0x24528,
1877 0x24540, 0x24614,
1878 0x25000, 0x25040,
1879 0x2504c, 0x25060,
1880 0x250c0, 0x250ec,
1881 0x25200, 0x25268,
1882 0x25270, 0x25284,
1883 0x252fc, 0x25388,
1884 0x25400, 0x25404,
1885 0x25500, 0x25518,
1886 0x2552c, 0x2553c,
1887 0x25550, 0x25554,
1888 0x25600, 0x25600,
1889 0x25608, 0x25628,
1890 0x25630, 0x2563c,
1891 0x25700, 0x2571c,
1892 0x25780, 0x2578c,
1893 0x25800, 0x25c38,
1894 0x25c80, 0x25d7c,
1895 0x25e00, 0x25e04,
1896 0x26000, 0x2602c,
1897 0x26100, 0x2613c,
1898 0x26190, 0x261c8,
1899 0x26200, 0x26318,
1900 0x26400, 0x26528,
1901 0x26540, 0x26614,
1902 0x27000, 0x27040,
1903 0x2704c, 0x27060,
1904 0x270c0, 0x270ec,
1905 0x27200, 0x27268,
1906 0x27270, 0x27284,
1907 0x272fc, 0x27388,
1908 0x27400, 0x27404,
1909 0x27500, 0x27518,
1910 0x2752c, 0x2753c,
1911 0x27550, 0x27554,
1912 0x27600, 0x27600,
1913 0x27608, 0x27628,
1914 0x27630, 0x2763c,
1915 0x27700, 0x2771c,
1916 0x27780, 0x2778c,
1917 0x27800, 0x27c38,
1918 0x27c80, 0x27d7c,
1919 0x27e00, 0x27e04
1920 };
1921
251f9e88
SR
1922 static const unsigned int t5_reg_ranges[] = {
1923 0x1008, 0x1148,
1924 0x1180, 0x11b4,
1925 0x11fc, 0x123c,
1926 0x1280, 0x173c,
1927 0x1800, 0x18fc,
1928 0x3000, 0x3028,
1929 0x3060, 0x30d8,
1930 0x30e0, 0x30fc,
1931 0x3140, 0x357c,
1932 0x35a8, 0x35cc,
1933 0x35ec, 0x35ec,
1934 0x3600, 0x5624,
1935 0x56cc, 0x575c,
1936 0x580c, 0x5814,
1937 0x5890, 0x58bc,
1938 0x5940, 0x59dc,
1939 0x59fc, 0x5a18,
1940 0x5a60, 0x5a9c,
1941 0x5b9c, 0x5bfc,
1942 0x6000, 0x6040,
1943 0x6058, 0x614c,
1944 0x7700, 0x7798,
1945 0x77c0, 0x78fc,
1946 0x7b00, 0x7c54,
1947 0x7d00, 0x7efc,
1948 0x8dc0, 0x8de0,
1949 0x8df8, 0x8e84,
1950 0x8ea0, 0x8f84,
1951 0x8fc0, 0x90f8,
1952 0x9400, 0x9470,
1953 0x9600, 0x96f4,
1954 0x9800, 0x9808,
1955 0x9820, 0x983c,
1956 0x9850, 0x9864,
1957 0x9c00, 0x9c6c,
1958 0x9c80, 0x9cec,
1959 0x9d00, 0x9d6c,
1960 0x9d80, 0x9dec,
1961 0x9e00, 0x9e6c,
1962 0x9e80, 0x9eec,
1963 0x9f00, 0x9f6c,
1964 0x9f80, 0xa020,
1965 0xd004, 0xd03c,
1966 0xdfc0, 0xdfe0,
1967 0xe000, 0x11088,
1968 0x1109c, 0x1117c,
1969 0x11190, 0x11204,
1970 0x19040, 0x1906c,
1971 0x19078, 0x19080,
1972 0x1908c, 0x19124,
1973 0x19150, 0x191b0,
1974 0x191d0, 0x191e8,
1975 0x19238, 0x19290,
1976 0x193f8, 0x19474,
1977 0x19490, 0x194cc,
1978 0x194f0, 0x194f8,
1979 0x19c00, 0x19c60,
1980 0x19c94, 0x19e10,
1981 0x19e50, 0x19f34,
1982 0x19f40, 0x19f50,
1983 0x19f90, 0x19fe4,
1984 0x1a000, 0x1a06c,
1985 0x1a0b0, 0x1a120,
1986 0x1a128, 0x1a138,
1987 0x1a190, 0x1a1c4,
1988 0x1a1fc, 0x1a1fc,
1989 0x1e008, 0x1e00c,
1990 0x1e040, 0x1e04c,
1991 0x1e284, 0x1e290,
1992 0x1e2c0, 0x1e2c0,
1993 0x1e2e0, 0x1e2e0,
1994 0x1e300, 0x1e384,
1995 0x1e3c0, 0x1e3c8,
1996 0x1e408, 0x1e40c,
1997 0x1e440, 0x1e44c,
1998 0x1e684, 0x1e690,
1999 0x1e6c0, 0x1e6c0,
2000 0x1e6e0, 0x1e6e0,
2001 0x1e700, 0x1e784,
2002 0x1e7c0, 0x1e7c8,
2003 0x1e808, 0x1e80c,
2004 0x1e840, 0x1e84c,
2005 0x1ea84, 0x1ea90,
2006 0x1eac0, 0x1eac0,
2007 0x1eae0, 0x1eae0,
2008 0x1eb00, 0x1eb84,
2009 0x1ebc0, 0x1ebc8,
2010 0x1ec08, 0x1ec0c,
2011 0x1ec40, 0x1ec4c,
2012 0x1ee84, 0x1ee90,
2013 0x1eec0, 0x1eec0,
2014 0x1eee0, 0x1eee0,
2015 0x1ef00, 0x1ef84,
2016 0x1efc0, 0x1efc8,
2017 0x1f008, 0x1f00c,
2018 0x1f040, 0x1f04c,
2019 0x1f284, 0x1f290,
2020 0x1f2c0, 0x1f2c0,
2021 0x1f2e0, 0x1f2e0,
2022 0x1f300, 0x1f384,
2023 0x1f3c0, 0x1f3c8,
2024 0x1f408, 0x1f40c,
2025 0x1f440, 0x1f44c,
2026 0x1f684, 0x1f690,
2027 0x1f6c0, 0x1f6c0,
2028 0x1f6e0, 0x1f6e0,
2029 0x1f700, 0x1f784,
2030 0x1f7c0, 0x1f7c8,
2031 0x1f808, 0x1f80c,
2032 0x1f840, 0x1f84c,
2033 0x1fa84, 0x1fa90,
2034 0x1fac0, 0x1fac0,
2035 0x1fae0, 0x1fae0,
2036 0x1fb00, 0x1fb84,
2037 0x1fbc0, 0x1fbc8,
2038 0x1fc08, 0x1fc0c,
2039 0x1fc40, 0x1fc4c,
2040 0x1fe84, 0x1fe90,
2041 0x1fec0, 0x1fec0,
2042 0x1fee0, 0x1fee0,
2043 0x1ff00, 0x1ff84,
2044 0x1ffc0, 0x1ffc8,
2045 0x30000, 0x30030,
2046 0x30100, 0x30144,
2047 0x30190, 0x301d0,
2048 0x30200, 0x30318,
2049 0x30400, 0x3052c,
2050 0x30540, 0x3061c,
2051 0x30800, 0x30834,
2052 0x308c0, 0x30908,
2053 0x30910, 0x309ac,
2054 0x30a00, 0x30a04,
2055 0x30a0c, 0x30a2c,
2056 0x30a44, 0x30a50,
2057 0x30a74, 0x30c24,
2058 0x30d08, 0x30d14,
2059 0x30d1c, 0x30d20,
2060 0x30d3c, 0x30d50,
2061 0x31200, 0x3120c,
2062 0x31220, 0x31220,
2063 0x31240, 0x31240,
2064 0x31600, 0x31600,
2065 0x31608, 0x3160c,
2066 0x31a00, 0x31a1c,
2067 0x31e04, 0x31e20,
2068 0x31e38, 0x31e3c,
2069 0x31e80, 0x31e80,
2070 0x31e88, 0x31ea8,
2071 0x31eb0, 0x31eb4,
2072 0x31ec8, 0x31ed4,
2073 0x31fb8, 0x32004,
2074 0x32208, 0x3223c,
2075 0x32600, 0x32630,
2076 0x32a00, 0x32abc,
2077 0x32b00, 0x32b70,
2078 0x33000, 0x33048,
2079 0x33060, 0x3309c,
2080 0x330f0, 0x33148,
2081 0x33160, 0x3319c,
2082 0x331f0, 0x332e4,
2083 0x332f8, 0x333e4,
2084 0x333f8, 0x33448,
2085 0x33460, 0x3349c,
2086 0x334f0, 0x33548,
2087 0x33560, 0x3359c,
2088 0x335f0, 0x336e4,
2089 0x336f8, 0x337e4,
2090 0x337f8, 0x337fc,
2091 0x33814, 0x33814,
2092 0x3382c, 0x3382c,
2093 0x33880, 0x3388c,
2094 0x338e8, 0x338ec,
2095 0x33900, 0x33948,
2096 0x33960, 0x3399c,
2097 0x339f0, 0x33ae4,
2098 0x33af8, 0x33b10,
2099 0x33b28, 0x33b28,
2100 0x33b3c, 0x33b50,
2101 0x33bf0, 0x33c10,
2102 0x33c28, 0x33c28,
2103 0x33c3c, 0x33c50,
2104 0x33cf0, 0x33cfc,
2105 0x34000, 0x34030,
2106 0x34100, 0x34144,
2107 0x34190, 0x341d0,
2108 0x34200, 0x34318,
2109 0x34400, 0x3452c,
2110 0x34540, 0x3461c,
2111 0x34800, 0x34834,
2112 0x348c0, 0x34908,
2113 0x34910, 0x349ac,
2114 0x34a00, 0x34a04,
2115 0x34a0c, 0x34a2c,
2116 0x34a44, 0x34a50,
2117 0x34a74, 0x34c24,
2118 0x34d08, 0x34d14,
2119 0x34d1c, 0x34d20,
2120 0x34d3c, 0x34d50,
2121 0x35200, 0x3520c,
2122 0x35220, 0x35220,
2123 0x35240, 0x35240,
2124 0x35600, 0x35600,
2125 0x35608, 0x3560c,
2126 0x35a00, 0x35a1c,
2127 0x35e04, 0x35e20,
2128 0x35e38, 0x35e3c,
2129 0x35e80, 0x35e80,
2130 0x35e88, 0x35ea8,
2131 0x35eb0, 0x35eb4,
2132 0x35ec8, 0x35ed4,
2133 0x35fb8, 0x36004,
2134 0x36208, 0x3623c,
2135 0x36600, 0x36630,
2136 0x36a00, 0x36abc,
2137 0x36b00, 0x36b70,
2138 0x37000, 0x37048,
2139 0x37060, 0x3709c,
2140 0x370f0, 0x37148,
2141 0x37160, 0x3719c,
2142 0x371f0, 0x372e4,
2143 0x372f8, 0x373e4,
2144 0x373f8, 0x37448,
2145 0x37460, 0x3749c,
2146 0x374f0, 0x37548,
2147 0x37560, 0x3759c,
2148 0x375f0, 0x376e4,
2149 0x376f8, 0x377e4,
2150 0x377f8, 0x377fc,
2151 0x37814, 0x37814,
2152 0x3782c, 0x3782c,
2153 0x37880, 0x3788c,
2154 0x378e8, 0x378ec,
2155 0x37900, 0x37948,
2156 0x37960, 0x3799c,
2157 0x379f0, 0x37ae4,
2158 0x37af8, 0x37b10,
2159 0x37b28, 0x37b28,
2160 0x37b3c, 0x37b50,
2161 0x37bf0, 0x37c10,
2162 0x37c28, 0x37c28,
2163 0x37c3c, 0x37c50,
2164 0x37cf0, 0x37cfc,
2165 0x38000, 0x38030,
2166 0x38100, 0x38144,
2167 0x38190, 0x381d0,
2168 0x38200, 0x38318,
2169 0x38400, 0x3852c,
2170 0x38540, 0x3861c,
2171 0x38800, 0x38834,
2172 0x388c0, 0x38908,
2173 0x38910, 0x389ac,
2174 0x38a00, 0x38a04,
2175 0x38a0c, 0x38a2c,
2176 0x38a44, 0x38a50,
2177 0x38a74, 0x38c24,
2178 0x38d08, 0x38d14,
2179 0x38d1c, 0x38d20,
2180 0x38d3c, 0x38d50,
2181 0x39200, 0x3920c,
2182 0x39220, 0x39220,
2183 0x39240, 0x39240,
2184 0x39600, 0x39600,
2185 0x39608, 0x3960c,
2186 0x39a00, 0x39a1c,
2187 0x39e04, 0x39e20,
2188 0x39e38, 0x39e3c,
2189 0x39e80, 0x39e80,
2190 0x39e88, 0x39ea8,
2191 0x39eb0, 0x39eb4,
2192 0x39ec8, 0x39ed4,
2193 0x39fb8, 0x3a004,
2194 0x3a208, 0x3a23c,
2195 0x3a600, 0x3a630,
2196 0x3aa00, 0x3aabc,
2197 0x3ab00, 0x3ab70,
2198 0x3b000, 0x3b048,
2199 0x3b060, 0x3b09c,
2200 0x3b0f0, 0x3b148,
2201 0x3b160, 0x3b19c,
2202 0x3b1f0, 0x3b2e4,
2203 0x3b2f8, 0x3b3e4,
2204 0x3b3f8, 0x3b448,
2205 0x3b460, 0x3b49c,
2206 0x3b4f0, 0x3b548,
2207 0x3b560, 0x3b59c,
2208 0x3b5f0, 0x3b6e4,
2209 0x3b6f8, 0x3b7e4,
2210 0x3b7f8, 0x3b7fc,
2211 0x3b814, 0x3b814,
2212 0x3b82c, 0x3b82c,
2213 0x3b880, 0x3b88c,
2214 0x3b8e8, 0x3b8ec,
2215 0x3b900, 0x3b948,
2216 0x3b960, 0x3b99c,
2217 0x3b9f0, 0x3bae4,
2218 0x3baf8, 0x3bb10,
2219 0x3bb28, 0x3bb28,
2220 0x3bb3c, 0x3bb50,
2221 0x3bbf0, 0x3bc10,
2222 0x3bc28, 0x3bc28,
2223 0x3bc3c, 0x3bc50,
2224 0x3bcf0, 0x3bcfc,
2225 0x3c000, 0x3c030,
2226 0x3c100, 0x3c144,
2227 0x3c190, 0x3c1d0,
2228 0x3c200, 0x3c318,
2229 0x3c400, 0x3c52c,
2230 0x3c540, 0x3c61c,
2231 0x3c800, 0x3c834,
2232 0x3c8c0, 0x3c908,
2233 0x3c910, 0x3c9ac,
2234 0x3ca00, 0x3ca04,
2235 0x3ca0c, 0x3ca2c,
2236 0x3ca44, 0x3ca50,
2237 0x3ca74, 0x3cc24,
2238 0x3cd08, 0x3cd14,
2239 0x3cd1c, 0x3cd20,
2240 0x3cd3c, 0x3cd50,
2241 0x3d200, 0x3d20c,
2242 0x3d220, 0x3d220,
2243 0x3d240, 0x3d240,
2244 0x3d600, 0x3d600,
2245 0x3d608, 0x3d60c,
2246 0x3da00, 0x3da1c,
2247 0x3de04, 0x3de20,
2248 0x3de38, 0x3de3c,
2249 0x3de80, 0x3de80,
2250 0x3de88, 0x3dea8,
2251 0x3deb0, 0x3deb4,
2252 0x3dec8, 0x3ded4,
2253 0x3dfb8, 0x3e004,
2254 0x3e208, 0x3e23c,
2255 0x3e600, 0x3e630,
2256 0x3ea00, 0x3eabc,
2257 0x3eb00, 0x3eb70,
2258 0x3f000, 0x3f048,
2259 0x3f060, 0x3f09c,
2260 0x3f0f0, 0x3f148,
2261 0x3f160, 0x3f19c,
2262 0x3f1f0, 0x3f2e4,
2263 0x3f2f8, 0x3f3e4,
2264 0x3f3f8, 0x3f448,
2265 0x3f460, 0x3f49c,
2266 0x3f4f0, 0x3f548,
2267 0x3f560, 0x3f59c,
2268 0x3f5f0, 0x3f6e4,
2269 0x3f6f8, 0x3f7e4,
2270 0x3f7f8, 0x3f7fc,
2271 0x3f814, 0x3f814,
2272 0x3f82c, 0x3f82c,
2273 0x3f880, 0x3f88c,
2274 0x3f8e8, 0x3f8ec,
2275 0x3f900, 0x3f948,
2276 0x3f960, 0x3f99c,
2277 0x3f9f0, 0x3fae4,
2278 0x3faf8, 0x3fb10,
2279 0x3fb28, 0x3fb28,
2280 0x3fb3c, 0x3fb50,
2281 0x3fbf0, 0x3fc10,
2282 0x3fc28, 0x3fc28,
2283 0x3fc3c, 0x3fc50,
2284 0x3fcf0, 0x3fcfc,
2285 0x40000, 0x4000c,
2286 0x40040, 0x40068,
2287 0x40080, 0x40144,
2288 0x40180, 0x4018c,
2289 0x40200, 0x40298,
2290 0x402ac, 0x4033c,
2291 0x403f8, 0x403fc,
c1f49e3e 2292 0x41304, 0x413c4,
251f9e88
SR
2293 0x41400, 0x4141c,
2294 0x41480, 0x414d0,
2295 0x44000, 0x44078,
2296 0x440c0, 0x44278,
2297 0x442c0, 0x44478,
2298 0x444c0, 0x44678,
2299 0x446c0, 0x44878,
2300 0x448c0, 0x449fc,
2301 0x45000, 0x45068,
2302 0x45080, 0x45084,
2303 0x450a0, 0x450b0,
2304 0x45200, 0x45268,
2305 0x45280, 0x45284,
2306 0x452a0, 0x452b0,
2307 0x460c0, 0x460e4,
2308 0x47000, 0x4708c,
2309 0x47200, 0x47250,
2310 0x47400, 0x47420,
2311 0x47600, 0x47618,
2312 0x47800, 0x47814,
2313 0x48000, 0x4800c,
2314 0x48040, 0x48068,
2315 0x48080, 0x48144,
2316 0x48180, 0x4818c,
2317 0x48200, 0x48298,
2318 0x482ac, 0x4833c,
2319 0x483f8, 0x483fc,
c1f49e3e 2320 0x49304, 0x493c4,
251f9e88
SR
2321 0x49400, 0x4941c,
2322 0x49480, 0x494d0,
2323 0x4c000, 0x4c078,
2324 0x4c0c0, 0x4c278,
2325 0x4c2c0, 0x4c478,
2326 0x4c4c0, 0x4c678,
2327 0x4c6c0, 0x4c878,
2328 0x4c8c0, 0x4c9fc,
2329 0x4d000, 0x4d068,
2330 0x4d080, 0x4d084,
2331 0x4d0a0, 0x4d0b0,
2332 0x4d200, 0x4d268,
2333 0x4d280, 0x4d284,
2334 0x4d2a0, 0x4d2b0,
2335 0x4e0c0, 0x4e0e4,
2336 0x4f000, 0x4f08c,
2337 0x4f200, 0x4f250,
2338 0x4f400, 0x4f420,
2339 0x4f600, 0x4f618,
2340 0x4f800, 0x4f814,
2341 0x50000, 0x500cc,
2342 0x50400, 0x50400,
2343 0x50800, 0x508cc,
2344 0x50c00, 0x50c00,
2345 0x51000, 0x5101c,
2346 0x51300, 0x51308,
2347 };
2348
b8ff05a9
DM
2349 int i;
2350 struct adapter *ap = netdev2adap(dev);
251f9e88
SR
2351 static const unsigned int *reg_ranges;
2352 int arr_size = 0, buf_size = 0;
2353
d14807dd 2354 if (is_t4(ap->params.chip)) {
251f9e88
SR
2355 reg_ranges = &t4_reg_ranges[0];
2356 arr_size = ARRAY_SIZE(t4_reg_ranges);
2357 buf_size = T4_REGMAP_SIZE;
2358 } else {
2359 reg_ranges = &t5_reg_ranges[0];
2360 arr_size = ARRAY_SIZE(t5_reg_ranges);
2361 buf_size = T5_REGMAP_SIZE;
2362 }
b8ff05a9
DM
2363
2364 regs->version = mk_adap_vers(ap);
2365
251f9e88
SR
2366 memset(buf, 0, buf_size);
2367 for (i = 0; i < arr_size; i += 2)
b8ff05a9
DM
2368 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2369}
2370
2371static int restart_autoneg(struct net_device *dev)
2372{
2373 struct port_info *p = netdev_priv(dev);
2374
2375 if (!netif_running(dev))
2376 return -EAGAIN;
2377 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2378 return -EINVAL;
060e0c75 2379 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
b8ff05a9
DM
2380 return 0;
2381}
2382
c5e06360
DM
2383static int identify_port(struct net_device *dev,
2384 enum ethtool_phys_id_state state)
b8ff05a9 2385{
c5e06360 2386 unsigned int val;
060e0c75
DM
2387 struct adapter *adap = netdev2adap(dev);
2388
c5e06360
DM
2389 if (state == ETHTOOL_ID_ACTIVE)
2390 val = 0xffff;
2391 else if (state == ETHTOOL_ID_INACTIVE)
2392 val = 0;
2393 else
2394 return -EINVAL;
b8ff05a9 2395
c5e06360 2396 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
b8ff05a9
DM
2397}
2398
2399static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2400{
2401 unsigned int v = 0;
2402
a0881cab
DM
2403 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2404 type == FW_PORT_TYPE_BT_XAUI) {
b8ff05a9
DM
2405 v |= SUPPORTED_TP;
2406 if (caps & FW_PORT_CAP_SPEED_100M)
2407 v |= SUPPORTED_100baseT_Full;
2408 if (caps & FW_PORT_CAP_SPEED_1G)
2409 v |= SUPPORTED_1000baseT_Full;
2410 if (caps & FW_PORT_CAP_SPEED_10G)
2411 v |= SUPPORTED_10000baseT_Full;
2412 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2413 v |= SUPPORTED_Backplane;
2414 if (caps & FW_PORT_CAP_SPEED_1G)
2415 v |= SUPPORTED_1000baseKX_Full;
2416 if (caps & FW_PORT_CAP_SPEED_10G)
2417 v |= SUPPORTED_10000baseKX4_Full;
2418 } else if (type == FW_PORT_TYPE_KR)
2419 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
a0881cab 2420 else if (type == FW_PORT_TYPE_BP_AP)
7d5e77aa
DM
2421 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2422 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2423 else if (type == FW_PORT_TYPE_BP4_AP)
2424 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2425 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2426 SUPPORTED_10000baseKX4_Full;
a0881cab
DM
2427 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2428 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
b8ff05a9 2429 v |= SUPPORTED_FIBRE;
72aca4bf
KS
2430 else if (type == FW_PORT_TYPE_BP40_BA)
2431 v |= SUPPORTED_40000baseSR4_Full;
b8ff05a9
DM
2432
2433 if (caps & FW_PORT_CAP_ANEG)
2434 v |= SUPPORTED_Autoneg;
2435 return v;
2436}
2437
2438static unsigned int to_fw_linkcaps(unsigned int caps)
2439{
2440 unsigned int v = 0;
2441
2442 if (caps & ADVERTISED_100baseT_Full)
2443 v |= FW_PORT_CAP_SPEED_100M;
2444 if (caps & ADVERTISED_1000baseT_Full)
2445 v |= FW_PORT_CAP_SPEED_1G;
2446 if (caps & ADVERTISED_10000baseT_Full)
2447 v |= FW_PORT_CAP_SPEED_10G;
72aca4bf
KS
2448 if (caps & ADVERTISED_40000baseSR4_Full)
2449 v |= FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2450 return v;
2451}
2452
2453static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2454{
2455 const struct port_info *p = netdev_priv(dev);
2456
2457 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
a0881cab 2458 p->port_type == FW_PORT_TYPE_BT_XFI ||
b8ff05a9
DM
2459 p->port_type == FW_PORT_TYPE_BT_XAUI)
2460 cmd->port = PORT_TP;
a0881cab
DM
2461 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2462 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
b8ff05a9 2463 cmd->port = PORT_FIBRE;
3e00a509
HS
2464 else if (p->port_type == FW_PORT_TYPE_SFP ||
2465 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2466 p->port_type == FW_PORT_TYPE_QSFP) {
2467 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2468 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2469 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2470 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2471 cmd->port = PORT_FIBRE;
2472 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2473 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
a0881cab
DM
2474 cmd->port = PORT_DA;
2475 else
3e00a509 2476 cmd->port = PORT_OTHER;
a0881cab 2477 } else
b8ff05a9
DM
2478 cmd->port = PORT_OTHER;
2479
2480 if (p->mdio_addr >= 0) {
2481 cmd->phy_address = p->mdio_addr;
2482 cmd->transceiver = XCVR_EXTERNAL;
2483 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2484 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2485 } else {
2486 cmd->phy_address = 0; /* not really, but no better option */
2487 cmd->transceiver = XCVR_INTERNAL;
2488 cmd->mdio_support = 0;
2489 }
2490
2491 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2492 cmd->advertising = from_fw_linkcaps(p->port_type,
2493 p->link_cfg.advertising);
70739497
DD
2494 ethtool_cmd_speed_set(cmd,
2495 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
b8ff05a9
DM
2496 cmd->duplex = DUPLEX_FULL;
2497 cmd->autoneg = p->link_cfg.autoneg;
2498 cmd->maxtxpkt = 0;
2499 cmd->maxrxpkt = 0;
2500 return 0;
2501}
2502
2503static unsigned int speed_to_caps(int speed)
2504{
e8b39015 2505 if (speed == 100)
b8ff05a9 2506 return FW_PORT_CAP_SPEED_100M;
e8b39015 2507 if (speed == 1000)
b8ff05a9 2508 return FW_PORT_CAP_SPEED_1G;
e8b39015 2509 if (speed == 10000)
b8ff05a9 2510 return FW_PORT_CAP_SPEED_10G;
e8b39015 2511 if (speed == 40000)
72aca4bf 2512 return FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2513 return 0;
2514}
2515
2516static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2517{
2518 unsigned int cap;
2519 struct port_info *p = netdev_priv(dev);
2520 struct link_config *lc = &p->link_cfg;
25db0338 2521 u32 speed = ethtool_cmd_speed(cmd);
b8ff05a9
DM
2522
2523 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2524 return -EINVAL;
2525
2526 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2527 /*
2528 * PHY offers a single speed. See if that's what's
2529 * being requested.
2530 */
2531 if (cmd->autoneg == AUTONEG_DISABLE &&
25db0338
DD
2532 (lc->supported & speed_to_caps(speed)))
2533 return 0;
b8ff05a9
DM
2534 return -EINVAL;
2535 }
2536
2537 if (cmd->autoneg == AUTONEG_DISABLE) {
25db0338 2538 cap = speed_to_caps(speed);
b8ff05a9 2539
72aca4bf 2540 if (!(lc->supported & cap) ||
e8b39015
BH
2541 (speed == 1000) ||
2542 (speed == 10000) ||
72aca4bf 2543 (speed == 40000))
b8ff05a9
DM
2544 return -EINVAL;
2545 lc->requested_speed = cap;
2546 lc->advertising = 0;
2547 } else {
2548 cap = to_fw_linkcaps(cmd->advertising);
2549 if (!(lc->supported & cap))
2550 return -EINVAL;
2551 lc->requested_speed = 0;
2552 lc->advertising = cap | FW_PORT_CAP_ANEG;
2553 }
2554 lc->autoneg = cmd->autoneg;
2555
2556 if (netif_running(dev))
060e0c75
DM
2557 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2558 lc);
b8ff05a9
DM
2559 return 0;
2560}
2561
2562static void get_pauseparam(struct net_device *dev,
2563 struct ethtool_pauseparam *epause)
2564{
2565 struct port_info *p = netdev_priv(dev);
2566
2567 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2568 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2569 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2570}
2571
2572static int set_pauseparam(struct net_device *dev,
2573 struct ethtool_pauseparam *epause)
2574{
2575 struct port_info *p = netdev_priv(dev);
2576 struct link_config *lc = &p->link_cfg;
2577
2578 if (epause->autoneg == AUTONEG_DISABLE)
2579 lc->requested_fc = 0;
2580 else if (lc->supported & FW_PORT_CAP_ANEG)
2581 lc->requested_fc = PAUSE_AUTONEG;
2582 else
2583 return -EINVAL;
2584
2585 if (epause->rx_pause)
2586 lc->requested_fc |= PAUSE_RX;
2587 if (epause->tx_pause)
2588 lc->requested_fc |= PAUSE_TX;
2589 if (netif_running(dev))
060e0c75
DM
2590 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2591 lc);
b8ff05a9
DM
2592 return 0;
2593}
2594
b8ff05a9
DM
2595static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2596{
2597 const struct port_info *pi = netdev_priv(dev);
2598 const struct sge *s = &pi->adapter->sge;
2599
2600 e->rx_max_pending = MAX_RX_BUFFERS;
2601 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2602 e->rx_jumbo_max_pending = 0;
2603 e->tx_max_pending = MAX_TXQ_ENTRIES;
2604
2605 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2606 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2607 e->rx_jumbo_pending = 0;
2608 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2609}
2610
2611static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2612{
2613 int i;
2614 const struct port_info *pi = netdev_priv(dev);
2615 struct adapter *adapter = pi->adapter;
2616 struct sge *s = &adapter->sge;
2617
2618 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2619 e->tx_pending > MAX_TXQ_ENTRIES ||
2620 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2621 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2622 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2623 return -EINVAL;
2624
2625 if (adapter->flags & FULL_INIT_DONE)
2626 return -EBUSY;
2627
2628 for (i = 0; i < pi->nqsets; ++i) {
2629 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2630 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2631 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2632 }
2633 return 0;
2634}
2635
2636static int closest_timer(const struct sge *s, int time)
2637{
2638 int i, delta, match = 0, min_delta = INT_MAX;
2639
2640 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2641 delta = time - s->timer_val[i];
2642 if (delta < 0)
2643 delta = -delta;
2644 if (delta < min_delta) {
2645 min_delta = delta;
2646 match = i;
2647 }
2648 }
2649 return match;
2650}
2651
2652static int closest_thres(const struct sge *s, int thres)
2653{
2654 int i, delta, match = 0, min_delta = INT_MAX;
2655
2656 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2657 delta = thres - s->counter_val[i];
2658 if (delta < 0)
2659 delta = -delta;
2660 if (delta < min_delta) {
2661 min_delta = delta;
2662 match = i;
2663 }
2664 }
2665 return match;
2666}
2667
2668/*
2669 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2670 */
2671static unsigned int qtimer_val(const struct adapter *adap,
2672 const struct sge_rspq *q)
2673{
2674 unsigned int idx = q->intr_params >> 1;
2675
2676 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2677}
2678
2679/**
c887ad0e 2680 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
2681 * @q: the Rx queue
2682 * @us: the hold-off time in us, or 0 to disable timer
2683 * @cnt: the hold-off packet count, or 0 to disable counter
2684 *
2685 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2686 * one of the two needs to be enabled for the queue to generate interrupts.
2687 */
c887ad0e
HS
2688static int set_rspq_intr_params(struct sge_rspq *q,
2689 unsigned int us, unsigned int cnt)
b8ff05a9 2690{
c887ad0e
HS
2691 struct adapter *adap = q->adap;
2692
b8ff05a9
DM
2693 if ((us | cnt) == 0)
2694 cnt = 1;
2695
2696 if (cnt) {
2697 int err;
2698 u32 v, new_idx;
2699
2700 new_idx = closest_thres(&adap->sge, cnt);
2701 if (q->desc && q->pktcnt_idx != new_idx) {
2702 /* the queue has already been created, update it */
2703 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2704 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2705 FW_PARAMS_PARAM_YZ(q->cntxt_id);
060e0c75
DM
2706 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2707 &new_idx);
b8ff05a9
DM
2708 if (err)
2709 return err;
2710 }
2711 q->pktcnt_idx = new_idx;
2712 }
2713
2714 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2715 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2716 return 0;
2717}
2718
c887ad0e
HS
2719/**
2720 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2721 * @dev: the network device
2722 * @us: the hold-off time in us, or 0 to disable timer
2723 * @cnt: the hold-off packet count, or 0 to disable counter
2724 *
2725 * Set the RX interrupt hold-off parameters for a network device.
2726 */
2727static int set_rx_intr_params(struct net_device *dev,
2728 unsigned int us, unsigned int cnt)
b8ff05a9 2729{
c887ad0e
HS
2730 int i, err;
2731 struct port_info *pi = netdev_priv(dev);
b8ff05a9 2732 struct adapter *adap = pi->adapter;
c887ad0e
HS
2733 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2734
2735 for (i = 0; i < pi->nqsets; i++, q++) {
2736 err = set_rspq_intr_params(&q->rspq, us, cnt);
2737 if (err)
2738 return err;
d4fc9dc2 2739 }
c887ad0e
HS
2740 return 0;
2741}
2742
2743static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2744{
2745 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2746 c->rx_max_coalesced_frames);
b8ff05a9
DM
2747}
2748
2749static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2750{
2751 const struct port_info *pi = netdev_priv(dev);
2752 const struct adapter *adap = pi->adapter;
2753 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2754
2755 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2756 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2757 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2758 return 0;
2759}
2760
1478b3ee
DM
2761/**
2762 * eeprom_ptov - translate a physical EEPROM address to virtual
2763 * @phys_addr: the physical EEPROM address
2764 * @fn: the PCI function number
2765 * @sz: size of function-specific area
2766 *
2767 * Translate a physical EEPROM address to virtual. The first 1K is
2768 * accessed through virtual addresses starting at 31K, the rest is
2769 * accessed through virtual addresses starting at 0.
2770 *
2771 * The mapping is as follows:
2772 * [0..1K) -> [31K..32K)
2773 * [1K..1K+A) -> [31K-A..31K)
2774 * [1K+A..ES) -> [0..ES-A-1K)
2775 *
2776 * where A = @fn * @sz, and ES = EEPROM size.
b8ff05a9 2777 */
1478b3ee 2778static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
b8ff05a9 2779{
1478b3ee 2780 fn *= sz;
b8ff05a9
DM
2781 if (phys_addr < 1024)
2782 return phys_addr + (31 << 10);
1478b3ee
DM
2783 if (phys_addr < 1024 + fn)
2784 return 31744 - fn + phys_addr - 1024;
b8ff05a9 2785 if (phys_addr < EEPROMSIZE)
1478b3ee 2786 return phys_addr - 1024 - fn;
b8ff05a9
DM
2787 return -EINVAL;
2788}
2789
2790/*
2791 * The next two routines implement eeprom read/write from physical addresses.
b8ff05a9
DM
2792 */
2793static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2794{
1478b3ee 2795 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2796
2797 if (vaddr >= 0)
2798 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2799 return vaddr < 0 ? vaddr : 0;
2800}
2801
2802static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2803{
1478b3ee 2804 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2805
2806 if (vaddr >= 0)
2807 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2808 return vaddr < 0 ? vaddr : 0;
2809}
2810
2811#define EEPROM_MAGIC 0x38E2F10C
2812
2813static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2814 u8 *data)
2815{
2816 int i, err = 0;
2817 struct adapter *adapter = netdev2adap(dev);
2818
2819 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2820 if (!buf)
2821 return -ENOMEM;
2822
2823 e->magic = EEPROM_MAGIC;
2824 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2825 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2826
2827 if (!err)
2828 memcpy(data, buf + e->offset, e->len);
2829 kfree(buf);
2830 return err;
2831}
2832
2833static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2834 u8 *data)
2835{
2836 u8 *buf;
2837 int err = 0;
2838 u32 aligned_offset, aligned_len, *p;
2839 struct adapter *adapter = netdev2adap(dev);
2840
2841 if (eeprom->magic != EEPROM_MAGIC)
2842 return -EINVAL;
2843
2844 aligned_offset = eeprom->offset & ~3;
2845 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2846
1478b3ee
DM
2847 if (adapter->fn > 0) {
2848 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2849
2850 if (aligned_offset < start ||
2851 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2852 return -EPERM;
2853 }
2854
b8ff05a9
DM
2855 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2856 /*
2857 * RMW possibly needed for first or last words.
2858 */
2859 buf = kmalloc(aligned_len, GFP_KERNEL);
2860 if (!buf)
2861 return -ENOMEM;
2862 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2863 if (!err && aligned_len > 4)
2864 err = eeprom_rd_phys(adapter,
2865 aligned_offset + aligned_len - 4,
2866 (u32 *)&buf[aligned_len - 4]);
2867 if (err)
2868 goto out;
2869 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2870 } else
2871 buf = data;
2872
2873 err = t4_seeprom_wp(adapter, false);
2874 if (err)
2875 goto out;
2876
2877 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2878 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2879 aligned_offset += 4;
2880 }
2881
2882 if (!err)
2883 err = t4_seeprom_wp(adapter, true);
2884out:
2885 if (buf != data)
2886 kfree(buf);
2887 return err;
2888}
2889
2890static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2891{
2892 int ret;
2893 const struct firmware *fw;
2894 struct adapter *adap = netdev2adap(netdev);
2895
2896 ef->data[sizeof(ef->data) - 1] = '\0';
2897 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2898 if (ret < 0)
2899 return ret;
2900
2901 ret = t4_load_fw(adap, fw->data, fw->size);
2902 release_firmware(fw);
2903 if (!ret)
2904 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2905 return ret;
2906}
2907
2908#define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2909#define BCAST_CRC 0xa0ccc1a6
2910
2911static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2912{
2913 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2914 wol->wolopts = netdev2adap(dev)->wol;
2915 memset(&wol->sopass, 0, sizeof(wol->sopass));
2916}
2917
2918static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2919{
2920 int err = 0;
2921 struct port_info *pi = netdev_priv(dev);
2922
2923 if (wol->wolopts & ~WOL_SUPPORTED)
2924 return -EINVAL;
2925 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2926 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2927 if (wol->wolopts & WAKE_BCAST) {
2928 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2929 ~0ULL, 0, false);
2930 if (!err)
2931 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2932 ~6ULL, ~0ULL, BCAST_CRC, true);
2933 } else
2934 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2935 return err;
2936}
2937
c8f44aff 2938static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 2939{
2ed28baa 2940 const struct port_info *pi = netdev_priv(dev);
c8f44aff 2941 netdev_features_t changed = dev->features ^ features;
19ecae2c 2942 int err;
19ecae2c 2943
f646968f 2944 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 2945 return 0;
19ecae2c 2946
2ed28baa
MM
2947 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2948 -1, -1, -1,
f646968f 2949 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 2950 if (unlikely(err))
f646968f 2951 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 2952 return err;
87b6cf51
DM
2953}
2954
7850f63f 2955static u32 get_rss_table_size(struct net_device *dev)
671b0060
DM
2956{
2957 const struct port_info *pi = netdev_priv(dev);
671b0060 2958
7850f63f
BH
2959 return pi->rss_size;
2960}
2961
fe62d001 2962static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
7850f63f
BH
2963{
2964 const struct port_info *pi = netdev_priv(dev);
2965 unsigned int n = pi->rss_size;
2966
671b0060 2967 while (n--)
7850f63f 2968 p[n] = pi->rss[n];
671b0060
DM
2969 return 0;
2970}
2971
fe62d001 2972static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
671b0060
DM
2973{
2974 unsigned int i;
2975 struct port_info *pi = netdev_priv(dev);
2976
7850f63f
BH
2977 for (i = 0; i < pi->rss_size; i++)
2978 pi->rss[i] = p[i];
671b0060
DM
2979 if (pi->adapter->flags & FULL_INIT_DONE)
2980 return write_rss(pi, pi->rss);
2981 return 0;
2982}
2983
2984static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
815c7db5 2985 u32 *rules)
671b0060 2986{
f796564a
DM
2987 const struct port_info *pi = netdev_priv(dev);
2988
671b0060 2989 switch (info->cmd) {
f796564a
DM
2990 case ETHTOOL_GRXFH: {
2991 unsigned int v = pi->rss_mode;
2992
2993 info->data = 0;
2994 switch (info->flow_type) {
2995 case TCP_V4_FLOW:
2996 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2997 info->data = RXH_IP_SRC | RXH_IP_DST |
2998 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2999 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3000 info->data = RXH_IP_SRC | RXH_IP_DST;
3001 break;
3002 case UDP_V4_FLOW:
3003 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3004 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3005 info->data = RXH_IP_SRC | RXH_IP_DST |
3006 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3007 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3008 info->data = RXH_IP_SRC | RXH_IP_DST;
3009 break;
3010 case SCTP_V4_FLOW:
3011 case AH_ESP_V4_FLOW:
3012 case IPV4_FLOW:
3013 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3014 info->data = RXH_IP_SRC | RXH_IP_DST;
3015 break;
3016 case TCP_V6_FLOW:
3017 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3018 info->data = RXH_IP_SRC | RXH_IP_DST |
3019 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3020 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3021 info->data = RXH_IP_SRC | RXH_IP_DST;
3022 break;
3023 case UDP_V6_FLOW:
3024 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3025 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3026 info->data = RXH_IP_SRC | RXH_IP_DST |
3027 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3028 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3029 info->data = RXH_IP_SRC | RXH_IP_DST;
3030 break;
3031 case SCTP_V6_FLOW:
3032 case AH_ESP_V6_FLOW:
3033 case IPV6_FLOW:
3034 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3035 info->data = RXH_IP_SRC | RXH_IP_DST;
3036 break;
3037 }
3038 return 0;
3039 }
671b0060 3040 case ETHTOOL_GRXRINGS:
f796564a 3041 info->data = pi->nqsets;
671b0060
DM
3042 return 0;
3043 }
3044 return -EOPNOTSUPP;
3045}
3046
9b07be4b 3047static const struct ethtool_ops cxgb_ethtool_ops = {
b8ff05a9
DM
3048 .get_settings = get_settings,
3049 .set_settings = set_settings,
3050 .get_drvinfo = get_drvinfo,
3051 .get_msglevel = get_msglevel,
3052 .set_msglevel = set_msglevel,
3053 .get_ringparam = get_sge_param,
3054 .set_ringparam = set_sge_param,
3055 .get_coalesce = get_coalesce,
3056 .set_coalesce = set_coalesce,
3057 .get_eeprom_len = get_eeprom_len,
3058 .get_eeprom = get_eeprom,
3059 .set_eeprom = set_eeprom,
3060 .get_pauseparam = get_pauseparam,
3061 .set_pauseparam = set_pauseparam,
b8ff05a9
DM
3062 .get_link = ethtool_op_get_link,
3063 .get_strings = get_strings,
c5e06360 3064 .set_phys_id = identify_port,
b8ff05a9
DM
3065 .nway_reset = restart_autoneg,
3066 .get_sset_count = get_sset_count,
3067 .get_ethtool_stats = get_stats,
3068 .get_regs_len = get_regs_len,
3069 .get_regs = get_regs,
3070 .get_wol = get_wol,
3071 .set_wol = set_wol,
671b0060 3072 .get_rxnfc = get_rxnfc,
7850f63f 3073 .get_rxfh_indir_size = get_rss_table_size,
fe62d001
BH
3074 .get_rxfh = get_rss_table,
3075 .set_rxfh = set_rss_table,
b8ff05a9
DM
3076 .flash_device = set_flash,
3077};
3078
3079/*
3080 * debugfs support
3081 */
b8ff05a9
DM
3082static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3083 loff_t *ppos)
3084{
3085 loff_t pos = *ppos;
496ad9aa 3086 loff_t avail = file_inode(file)->i_size;
b8ff05a9
DM
3087 unsigned int mem = (uintptr_t)file->private_data & 3;
3088 struct adapter *adap = file->private_data - mem;
fc5ab020
HS
3089 __be32 *data;
3090 int ret;
b8ff05a9
DM
3091
3092 if (pos < 0)
3093 return -EINVAL;
3094 if (pos >= avail)
3095 return 0;
3096 if (count > avail - pos)
3097 count = avail - pos;
3098
fc5ab020
HS
3099 data = t4_alloc_mem(count);
3100 if (!data)
3101 return -ENOMEM;
b8ff05a9 3102
fc5ab020
HS
3103 spin_lock(&adap->win0_lock);
3104 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3105 spin_unlock(&adap->win0_lock);
3106 if (ret) {
3107 t4_free_mem(data);
3108 return ret;
3109 }
3110 ret = copy_to_user(buf, data, count);
b8ff05a9 3111
fc5ab020
HS
3112 t4_free_mem(data);
3113 if (ret)
3114 return -EFAULT;
b8ff05a9 3115
fc5ab020 3116 *ppos = pos + count;
b8ff05a9
DM
3117 return count;
3118}
3119
3120static const struct file_operations mem_debugfs_fops = {
3121 .owner = THIS_MODULE,
234e3405 3122 .open = simple_open,
b8ff05a9 3123 .read = mem_read,
6038f373 3124 .llseek = default_llseek,
b8ff05a9
DM
3125};
3126
91744948 3127static void add_debugfs_mem(struct adapter *adap, const char *name,
1dd06ae8 3128 unsigned int idx, unsigned int size_mb)
b8ff05a9
DM
3129{
3130 struct dentry *de;
3131
3132 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3133 (void *)adap + idx, &mem_debugfs_fops);
3134 if (de && de->d_inode)
3135 de->d_inode->i_size = size_mb << 20;
3136}
3137
91744948 3138static int setup_debugfs(struct adapter *adap)
b8ff05a9
DM
3139{
3140 int i;
19dd37ba 3141 u32 size;
b8ff05a9
DM
3142
3143 if (IS_ERR_OR_NULL(adap->debugfs_root))
3144 return -1;
3145
3146 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
19dd37ba
SR
3147 if (i & EDRAM0_ENABLE) {
3148 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3149 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3150 }
3151 if (i & EDRAM1_ENABLE) {
3152 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3153 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3154 }
d14807dd 3155 if (is_t4(adap->params.chip)) {
19dd37ba
SR
3156 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3157 if (i & EXT_MEM_ENABLE)
3158 add_debugfs_mem(adap, "mc", MEM_MC,
3159 EXT_MEM_SIZE_GET(size));
3160 } else {
3161 if (i & EXT_MEM_ENABLE) {
3162 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3163 add_debugfs_mem(adap, "mc0", MEM_MC0,
3164 EXT_MEM_SIZE_GET(size));
3165 }
3166 if (i & EXT_MEM1_ENABLE) {
3167 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3168 add_debugfs_mem(adap, "mc1", MEM_MC1,
3169 EXT_MEM_SIZE_GET(size));
3170 }
3171 }
b8ff05a9
DM
3172 if (adap->l2t)
3173 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3174 &t4_l2t_fops);
3175 return 0;
3176}
3177
3178/*
3179 * upper-layer driver support
3180 */
3181
3182/*
3183 * Allocate an active-open TID and set it to the supplied value.
3184 */
3185int cxgb4_alloc_atid(struct tid_info *t, void *data)
3186{
3187 int atid = -1;
3188
3189 spin_lock_bh(&t->atid_lock);
3190 if (t->afree) {
3191 union aopen_entry *p = t->afree;
3192
f2b7e78d 3193 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
3194 t->afree = p->next;
3195 p->data = data;
3196 t->atids_in_use++;
3197 }
3198 spin_unlock_bh(&t->atid_lock);
3199 return atid;
3200}
3201EXPORT_SYMBOL(cxgb4_alloc_atid);
3202
3203/*
3204 * Release an active-open TID.
3205 */
3206void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3207{
f2b7e78d 3208 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
3209
3210 spin_lock_bh(&t->atid_lock);
3211 p->next = t->afree;
3212 t->afree = p;
3213 t->atids_in_use--;
3214 spin_unlock_bh(&t->atid_lock);
3215}
3216EXPORT_SYMBOL(cxgb4_free_atid);
3217
3218/*
3219 * Allocate a server TID and set it to the supplied value.
3220 */
3221int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3222{
3223 int stid;
3224
3225 spin_lock_bh(&t->stid_lock);
3226 if (family == PF_INET) {
3227 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3228 if (stid < t->nstids)
3229 __set_bit(stid, t->stid_bmap);
3230 else
3231 stid = -1;
3232 } else {
3233 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3234 if (stid < 0)
3235 stid = -1;
3236 }
3237 if (stid >= 0) {
3238 t->stid_tab[stid].data = data;
3239 stid += t->stid_base;
15f63b74
KS
3240 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3241 * This is equivalent to 4 TIDs. With CLIP enabled it
3242 * needs 2 TIDs.
3243 */
3244 if (family == PF_INET)
3245 t->stids_in_use++;
3246 else
3247 t->stids_in_use += 4;
b8ff05a9
DM
3248 }
3249 spin_unlock_bh(&t->stid_lock);
3250 return stid;
3251}
3252EXPORT_SYMBOL(cxgb4_alloc_stid);
3253
dca4faeb
VP
3254/* Allocate a server filter TID and set it to the supplied value.
3255 */
3256int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3257{
3258 int stid;
3259
3260 spin_lock_bh(&t->stid_lock);
3261 if (family == PF_INET) {
3262 stid = find_next_zero_bit(t->stid_bmap,
3263 t->nstids + t->nsftids, t->nstids);
3264 if (stid < (t->nstids + t->nsftids))
3265 __set_bit(stid, t->stid_bmap);
3266 else
3267 stid = -1;
3268 } else {
3269 stid = -1;
3270 }
3271 if (stid >= 0) {
3272 t->stid_tab[stid].data = data;
470c60c4
KS
3273 stid -= t->nstids;
3274 stid += t->sftid_base;
dca4faeb
VP
3275 t->stids_in_use++;
3276 }
3277 spin_unlock_bh(&t->stid_lock);
3278 return stid;
3279}
3280EXPORT_SYMBOL(cxgb4_alloc_sftid);
3281
3282/* Release a server TID.
b8ff05a9
DM
3283 */
3284void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3285{
470c60c4
KS
3286 /* Is it a server filter TID? */
3287 if (t->nsftids && (stid >= t->sftid_base)) {
3288 stid -= t->sftid_base;
3289 stid += t->nstids;
3290 } else {
3291 stid -= t->stid_base;
3292 }
3293
b8ff05a9
DM
3294 spin_lock_bh(&t->stid_lock);
3295 if (family == PF_INET)
3296 __clear_bit(stid, t->stid_bmap);
3297 else
3298 bitmap_release_region(t->stid_bmap, stid, 2);
3299 t->stid_tab[stid].data = NULL;
15f63b74
KS
3300 if (family == PF_INET)
3301 t->stids_in_use--;
3302 else
3303 t->stids_in_use -= 4;
b8ff05a9
DM
3304 spin_unlock_bh(&t->stid_lock);
3305}
3306EXPORT_SYMBOL(cxgb4_free_stid);
3307
3308/*
3309 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3310 */
3311static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3312 unsigned int tid)
3313{
3314 struct cpl_tid_release *req;
3315
3316 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3317 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3318 INIT_TP_WR(req, tid);
3319 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3320}
3321
3322/*
3323 * Queue a TID release request and if necessary schedule a work queue to
3324 * process it.
3325 */
31b9c19b 3326static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3327 unsigned int tid)
b8ff05a9
DM
3328{
3329 void **p = &t->tid_tab[tid];
3330 struct adapter *adap = container_of(t, struct adapter, tids);
3331
3332 spin_lock_bh(&adap->tid_release_lock);
3333 *p = adap->tid_release_head;
3334 /* Low 2 bits encode the Tx channel number */
3335 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3336 if (!adap->tid_release_task_busy) {
3337 adap->tid_release_task_busy = true;
3069ee9b 3338 queue_work(workq, &adap->tid_release_task);
b8ff05a9
DM
3339 }
3340 spin_unlock_bh(&adap->tid_release_lock);
3341}
b8ff05a9
DM
3342
3343/*
3344 * Process the list of pending TID release requests.
3345 */
3346static void process_tid_release_list(struct work_struct *work)
3347{
3348 struct sk_buff *skb;
3349 struct adapter *adap;
3350
3351 adap = container_of(work, struct adapter, tid_release_task);
3352
3353 spin_lock_bh(&adap->tid_release_lock);
3354 while (adap->tid_release_head) {
3355 void **p = adap->tid_release_head;
3356 unsigned int chan = (uintptr_t)p & 3;
3357 p = (void *)p - chan;
3358
3359 adap->tid_release_head = *p;
3360 *p = NULL;
3361 spin_unlock_bh(&adap->tid_release_lock);
3362
3363 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3364 GFP_KERNEL)))
3365 schedule_timeout_uninterruptible(1);
3366
3367 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3368 t4_ofld_send(adap, skb);
3369 spin_lock_bh(&adap->tid_release_lock);
3370 }
3371 adap->tid_release_task_busy = false;
3372 spin_unlock_bh(&adap->tid_release_lock);
3373}
3374
3375/*
3376 * Release a TID and inform HW. If we are unable to allocate the release
3377 * message we defer to a work queue.
3378 */
3379void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3380{
3381 void *old;
3382 struct sk_buff *skb;
3383 struct adapter *adap = container_of(t, struct adapter, tids);
3384
3385 old = t->tid_tab[tid];
3386 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3387 if (likely(skb)) {
3388 t->tid_tab[tid] = NULL;
3389 mk_tid_release(skb, chan, tid);
3390 t4_ofld_send(adap, skb);
3391 } else
3392 cxgb4_queue_tid_release(t, chan, tid);
3393 if (old)
3394 atomic_dec(&t->tids_in_use);
3395}
3396EXPORT_SYMBOL(cxgb4_remove_tid);
3397
3398/*
3399 * Allocate and initialize the TID tables. Returns 0 on success.
3400 */
3401static int tid_init(struct tid_info *t)
3402{
3403 size_t size;
f2b7e78d 3404 unsigned int stid_bmap_size;
b8ff05a9 3405 unsigned int natids = t->natids;
b6f8eaec 3406 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 3407
dca4faeb 3408 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
3409 size = t->ntids * sizeof(*t->tid_tab) +
3410 natids * sizeof(*t->atid_tab) +
b8ff05a9 3411 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 3412 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 3413 stid_bmap_size * sizeof(long) +
dca4faeb
VP
3414 t->nftids * sizeof(*t->ftid_tab) +
3415 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 3416
b8ff05a9
DM
3417 t->tid_tab = t4_alloc_mem(size);
3418 if (!t->tid_tab)
3419 return -ENOMEM;
3420
3421 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3422 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 3423 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 3424 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
3425 spin_lock_init(&t->stid_lock);
3426 spin_lock_init(&t->atid_lock);
3427
3428 t->stids_in_use = 0;
3429 t->afree = NULL;
3430 t->atids_in_use = 0;
3431 atomic_set(&t->tids_in_use, 0);
3432
3433 /* Setup the free list for atid_tab and clear the stid bitmap. */
3434 if (natids) {
3435 while (--natids)
3436 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3437 t->afree = t->atid_tab;
3438 }
dca4faeb 3439 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
3440 /* Reserve stid 0 for T4/T5 adapters */
3441 if (!t->stid_base &&
3442 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3443 __set_bit(0, t->stid_bmap);
3444
b8ff05a9
DM
3445 return 0;
3446}
3447
01bcca68
VP
3448static int cxgb4_clip_get(const struct net_device *dev,
3449 const struct in6_addr *lip)
3450{
3451 struct adapter *adap;
3452 struct fw_clip_cmd c;
3453
3454 adap = netdev2adap(dev);
3455 memset(&c, 0, sizeof(c));
3456 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3457 FW_CMD_REQUEST | FW_CMD_WRITE);
3458 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
12f2a479
JP
3459 c.ip_hi = *(__be64 *)(lip->s6_addr);
3460 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3461 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3462}
3463
3464static int cxgb4_clip_release(const struct net_device *dev,
3465 const struct in6_addr *lip)
3466{
3467 struct adapter *adap;
3468 struct fw_clip_cmd c;
3469
3470 adap = netdev2adap(dev);
3471 memset(&c, 0, sizeof(c));
3472 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3473 FW_CMD_REQUEST | FW_CMD_READ);
3474 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
12f2a479
JP
3475 c.ip_hi = *(__be64 *)(lip->s6_addr);
3476 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3477 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3478}
3479
b8ff05a9
DM
3480/**
3481 * cxgb4_create_server - create an IP server
3482 * @dev: the device
3483 * @stid: the server TID
3484 * @sip: local IP address to bind server to
3485 * @sport: the server's TCP port
3486 * @queue: queue to direct messages from this server to
3487 *
3488 * Create an IP server for the given port and address.
3489 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3490 */
3491int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
3492 __be32 sip, __be16 sport, __be16 vlan,
3493 unsigned int queue)
b8ff05a9
DM
3494{
3495 unsigned int chan;
3496 struct sk_buff *skb;
3497 struct adapter *adap;
3498 struct cpl_pass_open_req *req;
80f40c1f 3499 int ret;
b8ff05a9
DM
3500
3501 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3502 if (!skb)
3503 return -ENOMEM;
3504
3505 adap = netdev2adap(dev);
3506 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3507 INIT_TP_WR(req, 0);
3508 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3509 req->local_port = sport;
3510 req->peer_port = htons(0);
3511 req->local_ip = sip;
3512 req->peer_ip = htonl(0);
e46dab4d 3513 chan = rxq_to_chan(&adap->sge, queue);
b8ff05a9
DM
3514 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3515 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3516 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
80f40c1f
VP
3517 ret = t4_mgmt_tx(adap, skb);
3518 return net_xmit_eval(ret);
b8ff05a9
DM
3519}
3520EXPORT_SYMBOL(cxgb4_create_server);
3521
80f40c1f
VP
3522/* cxgb4_create_server6 - create an IPv6 server
3523 * @dev: the device
3524 * @stid: the server TID
3525 * @sip: local IPv6 address to bind server to
3526 * @sport: the server's TCP port
3527 * @queue: queue to direct messages from this server to
3528 *
3529 * Create an IPv6 server for the given port and address.
3530 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3531 */
3532int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3533 const struct in6_addr *sip, __be16 sport,
3534 unsigned int queue)
3535{
3536 unsigned int chan;
3537 struct sk_buff *skb;
3538 struct adapter *adap;
3539 struct cpl_pass_open_req6 *req;
3540 int ret;
3541
3542 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3543 if (!skb)
3544 return -ENOMEM;
3545
3546 adap = netdev2adap(dev);
3547 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3548 INIT_TP_WR(req, 0);
3549 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3550 req->local_port = sport;
3551 req->peer_port = htons(0);
3552 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3553 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3554 req->peer_ip_hi = cpu_to_be64(0);
3555 req->peer_ip_lo = cpu_to_be64(0);
3556 chan = rxq_to_chan(&adap->sge, queue);
3557 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3558 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3559 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3560 ret = t4_mgmt_tx(adap, skb);
3561 return net_xmit_eval(ret);
3562}
3563EXPORT_SYMBOL(cxgb4_create_server6);
3564
3565int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3566 unsigned int queue, bool ipv6)
3567{
3568 struct sk_buff *skb;
3569 struct adapter *adap;
3570 struct cpl_close_listsvr_req *req;
3571 int ret;
3572
3573 adap = netdev2adap(dev);
3574
3575 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3576 if (!skb)
3577 return -ENOMEM;
3578
3579 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3580 INIT_TP_WR(req, 0);
3581 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3582 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3583 LISTSVR_IPV6(0)) | QUEUENO(queue));
3584 ret = t4_mgmt_tx(adap, skb);
3585 return net_xmit_eval(ret);
3586}
3587EXPORT_SYMBOL(cxgb4_remove_server);
3588
b8ff05a9
DM
3589/**
3590 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3591 * @mtus: the HW MTU table
3592 * @mtu: the target MTU
3593 * @idx: index of selected entry in the MTU table
3594 *
3595 * Returns the index and the value in the HW MTU table that is closest to
3596 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3597 * table, in which case that smallest available value is selected.
3598 */
3599unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3600 unsigned int *idx)
3601{
3602 unsigned int i = 0;
3603
3604 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3605 ++i;
3606 if (idx)
3607 *idx = i;
3608 return mtus[i];
3609}
3610EXPORT_SYMBOL(cxgb4_best_mtu);
3611
92e7ae71
HS
3612/**
3613 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3614 * @mtus: the HW MTU table
3615 * @header_size: Header Size
3616 * @data_size_max: maximum Data Segment Size
3617 * @data_size_align: desired Data Segment Size Alignment (2^N)
3618 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3619 *
3620 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3621 * MTU Table based solely on a Maximum MTU parameter, we break that
3622 * parameter up into a Header Size and Maximum Data Segment Size, and
3623 * provide a desired Data Segment Size Alignment. If we find an MTU in
3624 * the Hardware MTU Table which will result in a Data Segment Size with
3625 * the requested alignment _and_ that MTU isn't "too far" from the
3626 * closest MTU, then we'll return that rather than the closest MTU.
3627 */
3628unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3629 unsigned short header_size,
3630 unsigned short data_size_max,
3631 unsigned short data_size_align,
3632 unsigned int *mtu_idxp)
3633{
3634 unsigned short max_mtu = header_size + data_size_max;
3635 unsigned short data_size_align_mask = data_size_align - 1;
3636 int mtu_idx, aligned_mtu_idx;
3637
3638 /* Scan the MTU Table till we find an MTU which is larger than our
3639 * Maximum MTU or we reach the end of the table. Along the way,
3640 * record the last MTU found, if any, which will result in a Data
3641 * Segment Length matching the requested alignment.
3642 */
3643 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3644 unsigned short data_size = mtus[mtu_idx] - header_size;
3645
3646 /* If this MTU minus the Header Size would result in a
3647 * Data Segment Size of the desired alignment, remember it.
3648 */
3649 if ((data_size & data_size_align_mask) == 0)
3650 aligned_mtu_idx = mtu_idx;
3651
3652 /* If we're not at the end of the Hardware MTU Table and the
3653 * next element is larger than our Maximum MTU, drop out of
3654 * the loop.
3655 */
3656 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3657 break;
3658 }
3659
3660 /* If we fell out of the loop because we ran to the end of the table,
3661 * then we just have to use the last [largest] entry.
3662 */
3663 if (mtu_idx == NMTUS)
3664 mtu_idx--;
3665
3666 /* If we found an MTU which resulted in the requested Data Segment
3667 * Length alignment and that's "not far" from the largest MTU which is
3668 * less than or equal to the maximum MTU, then use that.
3669 */
3670 if (aligned_mtu_idx >= 0 &&
3671 mtu_idx - aligned_mtu_idx <= 1)
3672 mtu_idx = aligned_mtu_idx;
3673
3674 /* If the caller has passed in an MTU Index pointer, pass the
3675 * MTU Index back. Return the MTU value.
3676 */
3677 if (mtu_idxp)
3678 *mtu_idxp = mtu_idx;
3679 return mtus[mtu_idx];
3680}
3681EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3682
b8ff05a9
DM
3683/**
3684 * cxgb4_port_chan - get the HW channel of a port
3685 * @dev: the net device for the port
3686 *
3687 * Return the HW Tx channel of the given port.
3688 */
3689unsigned int cxgb4_port_chan(const struct net_device *dev)
3690{
3691 return netdev2pinfo(dev)->tx_chan;
3692}
3693EXPORT_SYMBOL(cxgb4_port_chan);
3694
881806bc
VP
3695unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3696{
3697 struct adapter *adap = netdev2adap(dev);
2cc301d2 3698 u32 v1, v2, lp_count, hp_count;
881806bc 3699
2cc301d2
SR
3700 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3701 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3702 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3703 lp_count = G_LP_COUNT(v1);
3704 hp_count = G_HP_COUNT(v1);
3705 } else {
3706 lp_count = G_LP_COUNT_T5(v1);
3707 hp_count = G_HP_COUNT_T5(v2);
3708 }
3709 return lpfifo ? lp_count : hp_count;
881806bc
VP
3710}
3711EXPORT_SYMBOL(cxgb4_dbfifo_count);
3712
b8ff05a9
DM
3713/**
3714 * cxgb4_port_viid - get the VI id of a port
3715 * @dev: the net device for the port
3716 *
3717 * Return the VI id of the given port.
3718 */
3719unsigned int cxgb4_port_viid(const struct net_device *dev)
3720{
3721 return netdev2pinfo(dev)->viid;
3722}
3723EXPORT_SYMBOL(cxgb4_port_viid);
3724
3725/**
3726 * cxgb4_port_idx - get the index of a port
3727 * @dev: the net device for the port
3728 *
3729 * Return the index of the given port.
3730 */
3731unsigned int cxgb4_port_idx(const struct net_device *dev)
3732{
3733 return netdev2pinfo(dev)->port_id;
3734}
3735EXPORT_SYMBOL(cxgb4_port_idx);
3736
b8ff05a9
DM
3737void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3738 struct tp_tcp_stats *v6)
3739{
3740 struct adapter *adap = pci_get_drvdata(pdev);
3741
3742 spin_lock(&adap->stats_lock);
3743 t4_tp_get_tcp_stats(adap, v4, v6);
3744 spin_unlock(&adap->stats_lock);
3745}
3746EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3747
3748void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3749 const unsigned int *pgsz_order)
3750{
3751 struct adapter *adap = netdev2adap(dev);
3752
3753 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3754 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3755 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3756 HPZ3(pgsz_order[3]));
3757}
3758EXPORT_SYMBOL(cxgb4_iscsi_init);
3759
3069ee9b
VP
3760int cxgb4_flush_eq_cache(struct net_device *dev)
3761{
3762 struct adapter *adap = netdev2adap(dev);
3763 int ret;
3764
3765 ret = t4_fwaddrspace_write(adap, adap->mbox,
3766 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3767 return ret;
3768}
3769EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3770
3771static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3772{
3773 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3774 __be64 indices;
3775 int ret;
3776
fc5ab020
HS
3777 spin_lock(&adap->win0_lock);
3778 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3779 sizeof(indices), (__be32 *)&indices,
3780 T4_MEMORY_READ);
3781 spin_unlock(&adap->win0_lock);
3069ee9b 3782 if (!ret) {
404d9e3f
VP
3783 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3784 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
3785 }
3786 return ret;
3787}
3788
3789int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3790 u16 size)
3791{
3792 struct adapter *adap = netdev2adap(dev);
3793 u16 hw_pidx, hw_cidx;
3794 int ret;
3795
3796 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3797 if (ret)
3798 goto out;
3799
3800 if (pidx != hw_pidx) {
3801 u16 delta;
3802
3803 if (pidx >= hw_pidx)
3804 delta = pidx - hw_pidx;
3805 else
3806 delta = size - hw_pidx + pidx;
3807 wmb();
840f3000
VP
3808 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3809 QID(qid) | PIDX(delta));
3069ee9b
VP
3810 }
3811out:
3812 return ret;
3813}
3814EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3815
3cbdb928
VP
3816void cxgb4_disable_db_coalescing(struct net_device *dev)
3817{
3818 struct adapter *adap;
3819
3820 adap = netdev2adap(dev);
3821 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3822 F_NOCOALESCE);
3823}
3824EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3825
3826void cxgb4_enable_db_coalescing(struct net_device *dev)
3827{
3828 struct adapter *adap;
3829
3830 adap = netdev2adap(dev);
3831 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3832}
3833EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3834
b8ff05a9
DM
3835static struct pci_driver cxgb4_driver;
3836
3837static void check_neigh_update(struct neighbour *neigh)
3838{
3839 const struct device *parent;
3840 const struct net_device *netdev = neigh->dev;
3841
3842 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3843 netdev = vlan_dev_real_dev(netdev);
3844 parent = netdev->dev.parent;
3845 if (parent && parent->driver == &cxgb4_driver.driver)
3846 t4_l2t_update(dev_get_drvdata(parent), neigh);
3847}
3848
3849static int netevent_cb(struct notifier_block *nb, unsigned long event,
3850 void *data)
3851{
3852 switch (event) {
3853 case NETEVENT_NEIGH_UPDATE:
3854 check_neigh_update(data);
3855 break;
b8ff05a9
DM
3856 case NETEVENT_REDIRECT:
3857 default:
3858 break;
3859 }
3860 return 0;
3861}
3862
3863static bool netevent_registered;
3864static struct notifier_block cxgb4_netevent_nb = {
3865 .notifier_call = netevent_cb
3866};
3867
3069ee9b
VP
3868static void drain_db_fifo(struct adapter *adap, int usecs)
3869{
2cc301d2 3870 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
3871
3872 do {
2cc301d2
SR
3873 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3874 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3875 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3876 lp_count = G_LP_COUNT(v1);
3877 hp_count = G_HP_COUNT(v1);
3878 } else {
3879 lp_count = G_LP_COUNT_T5(v1);
3880 hp_count = G_HP_COUNT_T5(v2);
3881 }
3882
3883 if (lp_count == 0 && hp_count == 0)
3884 break;
3069ee9b
VP
3885 set_current_state(TASK_UNINTERRUPTIBLE);
3886 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
3887 } while (1);
3888}
3889
3890static void disable_txq_db(struct sge_txq *q)
3891{
05eb2389
SW
3892 unsigned long flags;
3893
3894 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 3895 q->db_disabled = 1;
05eb2389 3896 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
3897}
3898
05eb2389 3899static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
3900{
3901 spin_lock_irq(&q->db_lock);
05eb2389
SW
3902 if (q->db_pidx_inc) {
3903 /* Make sure that all writes to the TX descriptors
3904 * are committed before we tell HW about them.
3905 */
3906 wmb();
3907 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3908 QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3909 q->db_pidx_inc = 0;
3910 }
3069ee9b
VP
3911 q->db_disabled = 0;
3912 spin_unlock_irq(&q->db_lock);
3913}
3914
3915static void disable_dbs(struct adapter *adap)
3916{
3917 int i;
3918
3919 for_each_ethrxq(&adap->sge, i)
3920 disable_txq_db(&adap->sge.ethtxq[i].q);
3921 for_each_ofldrxq(&adap->sge, i)
3922 disable_txq_db(&adap->sge.ofldtxq[i].q);
3923 for_each_port(adap, i)
3924 disable_txq_db(&adap->sge.ctrlq[i].q);
3925}
3926
3927static void enable_dbs(struct adapter *adap)
3928{
3929 int i;
3930
3931 for_each_ethrxq(&adap->sge, i)
05eb2389 3932 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 3933 for_each_ofldrxq(&adap->sge, i)
05eb2389 3934 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 3935 for_each_port(adap, i)
05eb2389
SW
3936 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3937}
3938
3939static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3940{
3941 if (adap->uld_handle[CXGB4_ULD_RDMA])
3942 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3943 cmd);
3944}
3945
3946static void process_db_full(struct work_struct *work)
3947{
3948 struct adapter *adap;
3949
3950 adap = container_of(work, struct adapter, db_full_task);
3951
3952 drain_db_fifo(adap, dbfifo_drain_delay);
3953 enable_dbs(adap);
3954 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3955 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3956 DBFIFO_HP_INT | DBFIFO_LP_INT,
3957 DBFIFO_HP_INT | DBFIFO_LP_INT);
3069ee9b
VP
3958}
3959
3960static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3961{
3962 u16 hw_pidx, hw_cidx;
3963 int ret;
3964
05eb2389 3965 spin_lock_irq(&q->db_lock);
3069ee9b
VP
3966 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3967 if (ret)
3968 goto out;
3969 if (q->db_pidx != hw_pidx) {
3970 u16 delta;
3971
3972 if (q->db_pidx >= hw_pidx)
3973 delta = q->db_pidx - hw_pidx;
3974 else
3975 delta = q->size - hw_pidx + q->db_pidx;
3976 wmb();
840f3000
VP
3977 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3978 QID(q->cntxt_id) | PIDX(delta));
3069ee9b
VP
3979 }
3980out:
3981 q->db_disabled = 0;
05eb2389
SW
3982 q->db_pidx_inc = 0;
3983 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
3984 if (ret)
3985 CH_WARN(adap, "DB drop recovery failed.\n");
3986}
3987static void recover_all_queues(struct adapter *adap)
3988{
3989 int i;
3990
3991 for_each_ethrxq(&adap->sge, i)
3992 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3993 for_each_ofldrxq(&adap->sge, i)
3994 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3995 for_each_port(adap, i)
3996 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3997}
3998
881806bc
VP
3999static void process_db_drop(struct work_struct *work)
4000{
4001 struct adapter *adap;
881806bc 4002
3069ee9b 4003 adap = container_of(work, struct adapter, db_drop_task);
881806bc 4004
d14807dd 4005 if (is_t4(adap->params.chip)) {
05eb2389 4006 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 4007 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 4008 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 4009 recover_all_queues(adap);
05eb2389 4010 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 4011 enable_dbs(adap);
05eb2389 4012 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2cc301d2
SR
4013 } else {
4014 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4015 u16 qid = (dropped_db >> 15) & 0x1ffff;
4016 u16 pidx_inc = dropped_db & 0x1fff;
4017 unsigned int s_qpp;
4018 unsigned short udb_density;
4019 unsigned long qpshift;
4020 int page;
4021 u32 udb;
4022
4023 dev_warn(adap->pdev_dev,
4024 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4025 dropped_db, qid,
4026 (dropped_db >> 14) & 1,
4027 (dropped_db >> 13) & 1,
4028 pidx_inc);
4029
4030 drain_db_fifo(adap, 1);
4031
4032 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4033 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4034 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4035 qpshift = PAGE_SHIFT - ilog2(udb_density);
4036 udb = qid << qpshift;
4037 udb &= PAGE_MASK;
4038 page = udb / PAGE_SIZE;
4039 udb += (qid - (page * udb_density)) * 128;
4040
4041 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
4042
4043 /* Re-enable BAR2 WC */
4044 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4045 }
4046
3069ee9b 4047 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
881806bc
VP
4048}
4049
4050void t4_db_full(struct adapter *adap)
4051{
d14807dd 4052 if (is_t4(adap->params.chip)) {
05eb2389
SW
4053 disable_dbs(adap);
4054 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2cc301d2
SR
4055 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4056 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4057 queue_work(workq, &adap->db_full_task);
4058 }
881806bc
VP
4059}
4060
4061void t4_db_dropped(struct adapter *adap)
4062{
05eb2389
SW
4063 if (is_t4(adap->params.chip)) {
4064 disable_dbs(adap);
4065 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4066 }
4067 queue_work(workq, &adap->db_drop_task);
881806bc
VP
4068}
4069
b8ff05a9
DM
4070static void uld_attach(struct adapter *adap, unsigned int uld)
4071{
4072 void *handle;
4073 struct cxgb4_lld_info lli;
dca4faeb 4074 unsigned short i;
b8ff05a9
DM
4075
4076 lli.pdev = adap->pdev;
35b1de55 4077 lli.pf = adap->fn;
b8ff05a9
DM
4078 lli.l2t = adap->l2t;
4079 lli.tids = &adap->tids;
4080 lli.ports = adap->port;
4081 lli.vr = &adap->vres;
4082 lli.mtus = adap->params.mtus;
4083 if (uld == CXGB4_ULD_RDMA) {
4084 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 4085 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 4086 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 4087 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
4088 } else if (uld == CXGB4_ULD_ISCSI) {
4089 lli.rxq_ids = adap->sge.ofld_rxq;
4090 lli.nrxq = adap->sge.ofldqsets;
4091 }
4092 lli.ntxq = adap->sge.ofldqsets;
4093 lli.nchan = adap->params.nports;
4094 lli.nports = adap->params.nports;
4095 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 4096 lli.adapter_type = adap->params.chip;
b8ff05a9
DM
4097 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4098 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4099 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4100 (adap->fn * 4));
b8ff05a9 4101 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4102 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4103 (adap->fn * 4));
dcf7b6f5 4104 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
4105 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4106 for (i = 0; i < NCHAN; i++)
4107 lli.tx_modq[i] = i;
b8ff05a9
DM
4108 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4109 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4110 lli.fw_vers = adap->params.fw_vers;
3069ee9b 4111 lli.dbfifo_int_thresh = dbfifo_int_thresh;
dca4faeb
VP
4112 lli.sge_pktshift = adap->sge.pktshift;
4113 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
1ac0f095 4114 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
b8ff05a9
DM
4115
4116 handle = ulds[uld].add(&lli);
4117 if (IS_ERR(handle)) {
4118 dev_warn(adap->pdev_dev,
4119 "could not attach to the %s driver, error %ld\n",
4120 uld_str[uld], PTR_ERR(handle));
4121 return;
4122 }
4123
4124 adap->uld_handle[uld] = handle;
4125
4126 if (!netevent_registered) {
4127 register_netevent_notifier(&cxgb4_netevent_nb);
4128 netevent_registered = true;
4129 }
e29f5dbc
DM
4130
4131 if (adap->flags & FULL_INIT_DONE)
4132 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
4133}
4134
4135static void attach_ulds(struct adapter *adap)
4136{
4137 unsigned int i;
4138
01bcca68
VP
4139 spin_lock(&adap_rcu_lock);
4140 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4141 spin_unlock(&adap_rcu_lock);
4142
b8ff05a9
DM
4143 mutex_lock(&uld_mutex);
4144 list_add_tail(&adap->list_node, &adapter_list);
4145 for (i = 0; i < CXGB4_ULD_MAX; i++)
4146 if (ulds[i].add)
4147 uld_attach(adap, i);
4148 mutex_unlock(&uld_mutex);
4149}
4150
4151static void detach_ulds(struct adapter *adap)
4152{
4153 unsigned int i;
4154
4155 mutex_lock(&uld_mutex);
4156 list_del(&adap->list_node);
4157 for (i = 0; i < CXGB4_ULD_MAX; i++)
4158 if (adap->uld_handle[i]) {
4159 ulds[i].state_change(adap->uld_handle[i],
4160 CXGB4_STATE_DETACH);
4161 adap->uld_handle[i] = NULL;
4162 }
4163 if (netevent_registered && list_empty(&adapter_list)) {
4164 unregister_netevent_notifier(&cxgb4_netevent_nb);
4165 netevent_registered = false;
4166 }
4167 mutex_unlock(&uld_mutex);
01bcca68
VP
4168
4169 spin_lock(&adap_rcu_lock);
4170 list_del_rcu(&adap->rcu_node);
4171 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
4172}
4173
4174static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4175{
4176 unsigned int i;
4177
4178 mutex_lock(&uld_mutex);
4179 for (i = 0; i < CXGB4_ULD_MAX; i++)
4180 if (adap->uld_handle[i])
4181 ulds[i].state_change(adap->uld_handle[i], new_state);
4182 mutex_unlock(&uld_mutex);
4183}
4184
4185/**
4186 * cxgb4_register_uld - register an upper-layer driver
4187 * @type: the ULD type
4188 * @p: the ULD methods
4189 *
4190 * Registers an upper-layer driver with this driver and notifies the ULD
4191 * about any presently available devices that support its type. Returns
4192 * %-EBUSY if a ULD of the same type is already registered.
4193 */
4194int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4195{
4196 int ret = 0;
4197 struct adapter *adap;
4198
4199 if (type >= CXGB4_ULD_MAX)
4200 return -EINVAL;
4201 mutex_lock(&uld_mutex);
4202 if (ulds[type].add) {
4203 ret = -EBUSY;
4204 goto out;
4205 }
4206 ulds[type] = *p;
4207 list_for_each_entry(adap, &adapter_list, list_node)
4208 uld_attach(adap, type);
4209out: mutex_unlock(&uld_mutex);
4210 return ret;
4211}
4212EXPORT_SYMBOL(cxgb4_register_uld);
4213
4214/**
4215 * cxgb4_unregister_uld - unregister an upper-layer driver
4216 * @type: the ULD type
4217 *
4218 * Unregisters an existing upper-layer driver.
4219 */
4220int cxgb4_unregister_uld(enum cxgb4_uld type)
4221{
4222 struct adapter *adap;
4223
4224 if (type >= CXGB4_ULD_MAX)
4225 return -EINVAL;
4226 mutex_lock(&uld_mutex);
4227 list_for_each_entry(adap, &adapter_list, list_node)
4228 adap->uld_handle[type] = NULL;
4229 ulds[type].add = NULL;
4230 mutex_unlock(&uld_mutex);
4231 return 0;
4232}
4233EXPORT_SYMBOL(cxgb4_unregister_uld);
4234
01bcca68 4235/* Check if netdev on which event is occured belongs to us or not. Return
ee9a33b2
LR
4236 * success (true) if it belongs otherwise failure (false).
4237 * Called with rcu_read_lock() held.
01bcca68 4238 */
ee9a33b2 4239static bool cxgb4_netdev(const struct net_device *netdev)
01bcca68
VP
4240{
4241 struct adapter *adap;
4242 int i;
4243
01bcca68
VP
4244 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4245 for (i = 0; i < MAX_NPORTS; i++)
ee9a33b2
LR
4246 if (adap->port[i] == netdev)
4247 return true;
4248 return false;
01bcca68
VP
4249}
4250
4251static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4252 unsigned long event)
4253{
4254 int ret = NOTIFY_DONE;
4255
4256 rcu_read_lock();
4257 if (cxgb4_netdev(event_dev)) {
4258 switch (event) {
4259 case NETDEV_UP:
4260 ret = cxgb4_clip_get(event_dev,
4261 (const struct in6_addr *)ifa->addr.s6_addr);
4262 if (ret < 0) {
4263 rcu_read_unlock();
4264 return ret;
4265 }
4266 ret = NOTIFY_OK;
4267 break;
4268 case NETDEV_DOWN:
4269 cxgb4_clip_release(event_dev,
4270 (const struct in6_addr *)ifa->addr.s6_addr);
4271 ret = NOTIFY_OK;
4272 break;
4273 default:
4274 break;
4275 }
4276 }
4277 rcu_read_unlock();
4278 return ret;
4279}
4280
4281static int cxgb4_inet6addr_handler(struct notifier_block *this,
4282 unsigned long event, void *data)
4283{
4284 struct inet6_ifaddr *ifa = data;
4285 struct net_device *event_dev;
4286 int ret = NOTIFY_DONE;
01bcca68 4287 struct bonding *bond = netdev_priv(ifa->idev->dev);
9caff1e7 4288 struct list_head *iter;
01bcca68
VP
4289 struct slave *slave;
4290 struct pci_dev *first_pdev = NULL;
4291
4292 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4293 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4294 ret = clip_add(event_dev, ifa, event);
4295 } else if (ifa->idev->dev->flags & IFF_MASTER) {
4296 /* It is possible that two different adapters are bonded in one
4297 * bond. We need to find such different adapters and add clip
4298 * in all of them only once.
4299 */
4300 read_lock(&bond->lock);
9caff1e7 4301 bond_for_each_slave(bond, slave, iter) {
01bcca68
VP
4302 if (!first_pdev) {
4303 ret = clip_add(slave->dev, ifa, event);
4304 /* If clip_add is success then only initialize
4305 * first_pdev since it means it is our device
4306 */
4307 if (ret == NOTIFY_OK)
4308 first_pdev = to_pci_dev(
4309 slave->dev->dev.parent);
4310 } else if (first_pdev !=
4311 to_pci_dev(slave->dev->dev.parent))
4312 ret = clip_add(slave->dev, ifa, event);
4313 }
4314 read_unlock(&bond->lock);
4315 } else
4316 ret = clip_add(ifa->idev->dev, ifa, event);
4317
4318 return ret;
4319}
4320
4321static struct notifier_block cxgb4_inet6addr_notifier = {
4322 .notifier_call = cxgb4_inet6addr_handler
4323};
4324
4325/* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4326 * a physical device.
4327 * The physical device reference is needed to send the actul CLIP command.
4328 */
4329static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4330{
4331 struct inet6_dev *idev = NULL;
4332 struct inet6_ifaddr *ifa;
4333 int ret = 0;
4334
4335 idev = __in6_dev_get(root_dev);
4336 if (!idev)
4337 return ret;
4338
4339 read_lock_bh(&idev->lock);
4340 list_for_each_entry(ifa, &idev->addr_list, if_list) {
4341 ret = cxgb4_clip_get(dev,
4342 (const struct in6_addr *)ifa->addr.s6_addr);
4343 if (ret < 0)
4344 break;
4345 }
4346 read_unlock_bh(&idev->lock);
4347
4348 return ret;
4349}
4350
4351static int update_root_dev_clip(struct net_device *dev)
4352{
4353 struct net_device *root_dev = NULL;
4354 int i, ret = 0;
4355
4356 /* First populate the real net device's IPv6 addresses */
4357 ret = update_dev_clip(dev, dev);
4358 if (ret)
4359 return ret;
4360
4361 /* Parse all bond and vlan devices layered on top of the physical dev */
4362 for (i = 0; i < VLAN_N_VID; i++) {
f06c7f9f 4363 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
01bcca68
VP
4364 if (!root_dev)
4365 continue;
4366
4367 ret = update_dev_clip(root_dev, dev);
4368 if (ret)
4369 break;
4370 }
4371 return ret;
4372}
4373
4374static void update_clip(const struct adapter *adap)
4375{
4376 int i;
4377 struct net_device *dev;
4378 int ret;
4379
4380 rcu_read_lock();
4381
4382 for (i = 0; i < MAX_NPORTS; i++) {
4383 dev = adap->port[i];
4384 ret = 0;
4385
4386 if (dev)
4387 ret = update_root_dev_clip(dev);
4388
4389 if (ret < 0)
4390 break;
4391 }
4392 rcu_read_unlock();
4393}
4394
b8ff05a9
DM
4395/**
4396 * cxgb_up - enable the adapter
4397 * @adap: adapter being enabled
4398 *
4399 * Called when the first port is enabled, this function performs the
4400 * actions necessary to make an adapter operational, such as completing
4401 * the initialization of HW modules, and enabling interrupts.
4402 *
4403 * Must be called with the rtnl lock held.
4404 */
4405static int cxgb_up(struct adapter *adap)
4406{
aaefae9b 4407 int err;
b8ff05a9 4408
aaefae9b
DM
4409 err = setup_sge_queues(adap);
4410 if (err)
4411 goto out;
4412 err = setup_rss(adap);
4413 if (err)
4414 goto freeq;
b8ff05a9
DM
4415
4416 if (adap->flags & USING_MSIX) {
aaefae9b 4417 name_msix_vecs(adap);
b8ff05a9
DM
4418 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4419 adap->msix_info[0].desc, adap);
4420 if (err)
4421 goto irq_err;
4422
4423 err = request_msix_queue_irqs(adap);
4424 if (err) {
4425 free_irq(adap->msix_info[0].vec, adap);
4426 goto irq_err;
4427 }
4428 } else {
4429 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4430 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 4431 adap->port[0]->name, adap);
b8ff05a9
DM
4432 if (err)
4433 goto irq_err;
4434 }
4435 enable_rx(adap);
4436 t4_sge_start(adap);
4437 t4_intr_enable(adap);
aaefae9b 4438 adap->flags |= FULL_INIT_DONE;
b8ff05a9 4439 notify_ulds(adap, CXGB4_STATE_UP);
01bcca68 4440 update_clip(adap);
b8ff05a9
DM
4441 out:
4442 return err;
4443 irq_err:
4444 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
4445 freeq:
4446 t4_free_sge_resources(adap);
b8ff05a9
DM
4447 goto out;
4448}
4449
4450static void cxgb_down(struct adapter *adapter)
4451{
4452 t4_intr_disable(adapter);
4453 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
4454 cancel_work_sync(&adapter->db_full_task);
4455 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 4456 adapter->tid_release_task_busy = false;
204dc3c0 4457 adapter->tid_release_head = NULL;
b8ff05a9
DM
4458
4459 if (adapter->flags & USING_MSIX) {
4460 free_msix_queue_irqs(adapter);
4461 free_irq(adapter->msix_info[0].vec, adapter);
4462 } else
4463 free_irq(adapter->pdev->irq, adapter);
4464 quiesce_rx(adapter);
aaefae9b
DM
4465 t4_sge_stop(adapter);
4466 t4_free_sge_resources(adapter);
4467 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
4468}
4469
4470/*
4471 * net_device operations
4472 */
4473static int cxgb_open(struct net_device *dev)
4474{
4475 int err;
4476 struct port_info *pi = netdev_priv(dev);
4477 struct adapter *adapter = pi->adapter;
4478
6a3c869a
DM
4479 netif_carrier_off(dev);
4480
aaefae9b
DM
4481 if (!(adapter->flags & FULL_INIT_DONE)) {
4482 err = cxgb_up(adapter);
4483 if (err < 0)
4484 return err;
4485 }
b8ff05a9 4486
f68707b8
DM
4487 err = link_start(dev);
4488 if (!err)
4489 netif_tx_start_all_queues(dev);
4490 return err;
b8ff05a9
DM
4491}
4492
4493static int cxgb_close(struct net_device *dev)
4494{
b8ff05a9
DM
4495 struct port_info *pi = netdev_priv(dev);
4496 struct adapter *adapter = pi->adapter;
4497
4498 netif_tx_stop_all_queues(dev);
4499 netif_carrier_off(dev);
060e0c75 4500 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
b8ff05a9
DM
4501}
4502
f2b7e78d
VP
4503/* Return an error number if the indicated filter isn't writable ...
4504 */
4505static int writable_filter(struct filter_entry *f)
4506{
4507 if (f->locked)
4508 return -EPERM;
4509 if (f->pending)
4510 return -EBUSY;
4511
4512 return 0;
4513}
4514
4515/* Delete the filter at the specified index (if valid). The checks for all
4516 * the common problems with doing this like the filter being locked, currently
4517 * pending in another operation, etc.
4518 */
4519static int delete_filter(struct adapter *adapter, unsigned int fidx)
4520{
4521 struct filter_entry *f;
4522 int ret;
4523
dca4faeb 4524 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
4525 return -EINVAL;
4526
4527 f = &adapter->tids.ftid_tab[fidx];
4528 ret = writable_filter(f);
4529 if (ret)
4530 return ret;
4531 if (f->valid)
4532 return del_filter_wr(adapter, fidx);
4533
4534 return 0;
4535}
4536
dca4faeb 4537int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
4538 __be32 sip, __be16 sport, __be16 vlan,
4539 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
4540{
4541 int ret;
4542 struct filter_entry *f;
4543 struct adapter *adap;
4544 int i;
4545 u8 *val;
4546
4547 adap = netdev2adap(dev);
4548
1cab775c 4549 /* Adjust stid to correct filter index */
470c60c4 4550 stid -= adap->tids.sftid_base;
1cab775c
VP
4551 stid += adap->tids.nftids;
4552
dca4faeb
VP
4553 /* Check to make sure the filter requested is writable ...
4554 */
4555 f = &adap->tids.ftid_tab[stid];
4556 ret = writable_filter(f);
4557 if (ret)
4558 return ret;
4559
4560 /* Clear out any old resources being used by the filter before
4561 * we start constructing the new filter.
4562 */
4563 if (f->valid)
4564 clear_filter(adap, f);
4565
4566 /* Clear out filter specifications */
4567 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4568 f->fs.val.lport = cpu_to_be16(sport);
4569 f->fs.mask.lport = ~0;
4570 val = (u8 *)&sip;
793dad94 4571 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
4572 for (i = 0; i < 4; i++) {
4573 f->fs.val.lip[i] = val[i];
4574 f->fs.mask.lip[i] = ~0;
4575 }
dcf7b6f5 4576 if (adap->params.tp.vlan_pri_map & F_PORT) {
793dad94
VP
4577 f->fs.val.iport = port;
4578 f->fs.mask.iport = mask;
4579 }
4580 }
dca4faeb 4581
dcf7b6f5 4582 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
7c89e555
KS
4583 f->fs.val.proto = IPPROTO_TCP;
4584 f->fs.mask.proto = ~0;
4585 }
4586
dca4faeb
VP
4587 f->fs.dirsteer = 1;
4588 f->fs.iq = queue;
4589 /* Mark filter as locked */
4590 f->locked = 1;
4591 f->fs.rpttid = 1;
4592
4593 ret = set_filter_wr(adap, stid);
4594 if (ret) {
4595 clear_filter(adap, f);
4596 return ret;
4597 }
4598
4599 return 0;
4600}
4601EXPORT_SYMBOL(cxgb4_create_server_filter);
4602
4603int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4604 unsigned int queue, bool ipv6)
4605{
4606 int ret;
4607 struct filter_entry *f;
4608 struct adapter *adap;
4609
4610 adap = netdev2adap(dev);
1cab775c
VP
4611
4612 /* Adjust stid to correct filter index */
470c60c4 4613 stid -= adap->tids.sftid_base;
1cab775c
VP
4614 stid += adap->tids.nftids;
4615
dca4faeb
VP
4616 f = &adap->tids.ftid_tab[stid];
4617 /* Unlock the filter */
4618 f->locked = 0;
4619
4620 ret = delete_filter(adap, stid);
4621 if (ret)
4622 return ret;
4623
4624 return 0;
4625}
4626EXPORT_SYMBOL(cxgb4_remove_server_filter);
4627
f5152c90
DM
4628static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4629 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
4630{
4631 struct port_stats stats;
4632 struct port_info *p = netdev_priv(dev);
4633 struct adapter *adapter = p->adapter;
b8ff05a9 4634
9fe6cb58
GS
4635 /* Block retrieving statistics during EEH error
4636 * recovery. Otherwise, the recovery might fail
4637 * and the PCI device will be removed permanently
4638 */
b8ff05a9 4639 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
4640 if (!netif_device_present(dev)) {
4641 spin_unlock(&adapter->stats_lock);
4642 return ns;
4643 }
b8ff05a9
DM
4644 t4_get_port_stats(adapter, p->tx_chan, &stats);
4645 spin_unlock(&adapter->stats_lock);
4646
4647 ns->tx_bytes = stats.tx_octets;
4648 ns->tx_packets = stats.tx_frames;
4649 ns->rx_bytes = stats.rx_octets;
4650 ns->rx_packets = stats.rx_frames;
4651 ns->multicast = stats.rx_mcast_frames;
4652
4653 /* detailed rx_errors */
4654 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4655 stats.rx_runt;
4656 ns->rx_over_errors = 0;
4657 ns->rx_crc_errors = stats.rx_fcs_err;
4658 ns->rx_frame_errors = stats.rx_symbol_err;
4659 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4660 stats.rx_ovflow2 + stats.rx_ovflow3 +
4661 stats.rx_trunc0 + stats.rx_trunc1 +
4662 stats.rx_trunc2 + stats.rx_trunc3;
4663 ns->rx_missed_errors = 0;
4664
4665 /* detailed tx_errors */
4666 ns->tx_aborted_errors = 0;
4667 ns->tx_carrier_errors = 0;
4668 ns->tx_fifo_errors = 0;
4669 ns->tx_heartbeat_errors = 0;
4670 ns->tx_window_errors = 0;
4671
4672 ns->tx_errors = stats.tx_error_frames;
4673 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4674 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4675 return ns;
4676}
4677
4678static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4679{
060e0c75 4680 unsigned int mbox;
b8ff05a9
DM
4681 int ret = 0, prtad, devad;
4682 struct port_info *pi = netdev_priv(dev);
4683 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4684
4685 switch (cmd) {
4686 case SIOCGMIIPHY:
4687 if (pi->mdio_addr < 0)
4688 return -EOPNOTSUPP;
4689 data->phy_id = pi->mdio_addr;
4690 break;
4691 case SIOCGMIIREG:
4692 case SIOCSMIIREG:
4693 if (mdio_phy_id_is_c45(data->phy_id)) {
4694 prtad = mdio_phy_id_prtad(data->phy_id);
4695 devad = mdio_phy_id_devad(data->phy_id);
4696 } else if (data->phy_id < 32) {
4697 prtad = data->phy_id;
4698 devad = 0;
4699 data->reg_num &= 0x1f;
4700 } else
4701 return -EINVAL;
4702
060e0c75 4703 mbox = pi->adapter->fn;
b8ff05a9 4704 if (cmd == SIOCGMIIREG)
060e0c75 4705 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4706 data->reg_num, &data->val_out);
4707 else
060e0c75 4708 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4709 data->reg_num, data->val_in);
4710 break;
4711 default:
4712 return -EOPNOTSUPP;
4713 }
4714 return ret;
4715}
4716
4717static void cxgb_set_rxmode(struct net_device *dev)
4718{
4719 /* unfortunately we can't return errors to the stack */
4720 set_rxmode(dev, -1, false);
4721}
4722
4723static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4724{
4725 int ret;
4726 struct port_info *pi = netdev_priv(dev);
4727
4728 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4729 return -EINVAL;
060e0c75
DM
4730 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4731 -1, -1, -1, true);
b8ff05a9
DM
4732 if (!ret)
4733 dev->mtu = new_mtu;
4734 return ret;
4735}
4736
4737static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4738{
4739 int ret;
4740 struct sockaddr *addr = p;
4741 struct port_info *pi = netdev_priv(dev);
4742
4743 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 4744 return -EADDRNOTAVAIL;
b8ff05a9 4745
060e0c75
DM
4746 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4747 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
4748 if (ret < 0)
4749 return ret;
4750
4751 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4752 pi->xact_addr_filt = ret;
4753 return 0;
4754}
4755
b8ff05a9
DM
4756#ifdef CONFIG_NET_POLL_CONTROLLER
4757static void cxgb_netpoll(struct net_device *dev)
4758{
4759 struct port_info *pi = netdev_priv(dev);
4760 struct adapter *adap = pi->adapter;
4761
4762 if (adap->flags & USING_MSIX) {
4763 int i;
4764 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4765
4766 for (i = pi->nqsets; i; i--, rx++)
4767 t4_sge_intr_msix(0, &rx->rspq);
4768 } else
4769 t4_intr_handler(adap)(0, adap);
4770}
4771#endif
4772
4773static const struct net_device_ops cxgb4_netdev_ops = {
4774 .ndo_open = cxgb_open,
4775 .ndo_stop = cxgb_close,
4776 .ndo_start_xmit = t4_eth_xmit,
688848b1 4777 .ndo_select_queue = cxgb_select_queue,
9be793bf 4778 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
4779 .ndo_set_rx_mode = cxgb_set_rxmode,
4780 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 4781 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
4782 .ndo_validate_addr = eth_validate_addr,
4783 .ndo_do_ioctl = cxgb_ioctl,
4784 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
4785#ifdef CONFIG_NET_POLL_CONTROLLER
4786 .ndo_poll_controller = cxgb_netpoll,
4787#endif
4788};
4789
4790void t4_fatal_err(struct adapter *adap)
4791{
4792 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4793 t4_intr_disable(adap);
4794 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4795}
4796
0abfd152
HS
4797/* Return the specified PCI-E Configuration Space register from our Physical
4798 * Function. We try first via a Firmware LDST Command since we prefer to let
4799 * the firmware own all of these registers, but if that fails we go for it
4800 * directly ourselves.
4801 */
4802static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4803{
4804 struct fw_ldst_cmd ldst_cmd;
4805 u32 val;
4806 int ret;
4807
4808 /* Construct and send the Firmware LDST Command to retrieve the
4809 * specified PCI-E Configuration Space register.
4810 */
4811 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4812 ldst_cmd.op_to_addrspace =
4813 htonl(FW_CMD_OP(FW_LDST_CMD) |
4814 FW_CMD_REQUEST |
4815 FW_CMD_READ |
4816 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4817 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4818 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4819 ldst_cmd.u.pcie.ctrl_to_fn =
4820 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4821 ldst_cmd.u.pcie.r = reg;
4822 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4823 &ldst_cmd);
4824
4825 /* If the LDST Command suucceeded, exctract the returned register
4826 * value. Otherwise read it directly ourself.
4827 */
4828 if (ret == 0)
4829 val = ntohl(ldst_cmd.u.pcie.data[0]);
4830 else
4831 t4_hw_pci_read_cfg4(adap, reg, &val);
4832
4833 return val;
4834}
4835
b8ff05a9
DM
4836static void setup_memwin(struct adapter *adap)
4837{
0abfd152 4838 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
b8ff05a9 4839
d14807dd 4840 if (is_t4(adap->params.chip)) {
0abfd152
HS
4841 u32 bar0;
4842
4843 /* Truncation intentional: we only read the bottom 32-bits of
4844 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
4845 * mechanism to read BAR0 instead of using
4846 * pci_resource_start() because we could be operating from
4847 * within a Virtual Machine which is trapping our accesses to
4848 * our Configuration Space and we need to set up the PCI-E
4849 * Memory Window decoders with the actual addresses which will
4850 * be coming across the PCI-E link.
4851 */
4852 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4853 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4854 adap->t4_bar0 = bar0;
4855
19dd37ba
SR
4856 mem_win0_base = bar0 + MEMWIN0_BASE;
4857 mem_win1_base = bar0 + MEMWIN1_BASE;
4858 mem_win2_base = bar0 + MEMWIN2_BASE;
0abfd152 4859 mem_win2_aperture = MEMWIN2_APERTURE;
19dd37ba
SR
4860 } else {
4861 /* For T5, only relative offset inside the PCIe BAR is passed */
4862 mem_win0_base = MEMWIN0_BASE;
0abfd152 4863 mem_win1_base = MEMWIN1_BASE;
19dd37ba 4864 mem_win2_base = MEMWIN2_BASE_T5;
0abfd152 4865 mem_win2_aperture = MEMWIN2_APERTURE_T5;
19dd37ba 4866 }
b8ff05a9 4867 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
19dd37ba 4868 mem_win0_base | BIR(0) |
b8ff05a9
DM
4869 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4870 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
19dd37ba 4871 mem_win1_base | BIR(0) |
b8ff05a9
DM
4872 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4873 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
19dd37ba 4874 mem_win2_base | BIR(0) |
0abfd152
HS
4875 WINDOW(ilog2(mem_win2_aperture) - 10));
4876 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
636f9d37
VP
4877}
4878
4879static void setup_memwin_rdma(struct adapter *adap)
4880{
1ae970e0 4881 if (adap->vres.ocq.size) {
0abfd152
HS
4882 u32 start;
4883 unsigned int sz_kb;
1ae970e0 4884
0abfd152
HS
4885 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4886 start &= PCI_BASE_ADDRESS_MEM_MASK;
4887 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
4888 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4889 t4_write_reg(adap,
4890 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4891 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4892 t4_write_reg(adap,
4893 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4894 adap->vres.ocq.start);
4895 t4_read_reg(adap,
4896 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4897 }
b8ff05a9
DM
4898}
4899
02b5fb8e
DM
4900static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4901{
4902 u32 v;
4903 int ret;
4904
4905 /* get device capabilities */
4906 memset(c, 0, sizeof(*c));
4907 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4908 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 4909 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
060e0c75 4910 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
02b5fb8e
DM
4911 if (ret < 0)
4912 return ret;
4913
4914 /* select capabilities we'll be using */
4915 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4916 if (!vf_acls)
4917 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4918 else
4919 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4920 } else if (vf_acls) {
4921 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4922 return ret;
4923 }
4924 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4925 FW_CMD_REQUEST | FW_CMD_WRITE);
060e0c75 4926 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
02b5fb8e
DM
4927 if (ret < 0)
4928 return ret;
4929
060e0c75 4930 ret = t4_config_glbl_rss(adap, adap->fn,
02b5fb8e
DM
4931 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4932 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4933 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4934 if (ret < 0)
4935 return ret;
4936
060e0c75
DM
4937 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4938 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
02b5fb8e
DM
4939 if (ret < 0)
4940 return ret;
4941
4942 t4_sge_init(adap);
4943
02b5fb8e
DM
4944 /* tweak some settings */
4945 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4946 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4947 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4948 v = t4_read_reg(adap, TP_PIO_DATA);
4949 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
060e0c75 4950
dca4faeb
VP
4951 /* first 4 Tx modulation queues point to consecutive Tx channels */
4952 adap->params.tp.tx_modq_map = 0xE4;
4953 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4954 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4955
4956 /* associate each Tx modulation queue with consecutive Tx channels */
4957 v = 0x84218421;
4958 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4959 &v, 1, A_TP_TX_SCHED_HDR);
4960 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4961 &v, 1, A_TP_TX_SCHED_FIFO);
4962 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4963 &v, 1, A_TP_TX_SCHED_PCMD);
4964
4965#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4966 if (is_offload(adap)) {
4967 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4968 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4969 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4970 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4971 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4972 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4973 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4974 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4975 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4976 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4977 }
4978
060e0c75
DM
4979 /* get basic stuff going */
4980 return t4_early_init(adap, adap->fn);
02b5fb8e
DM
4981}
4982
b8ff05a9
DM
4983/*
4984 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4985 */
4986#define MAX_ATIDS 8192U
4987
636f9d37
VP
4988/*
4989 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4990 *
4991 * If the firmware we're dealing with has Configuration File support, then
4992 * we use that to perform all configuration
4993 */
4994
4995/*
4996 * Tweak configuration based on module parameters, etc. Most of these have
4997 * defaults assigned to them by Firmware Configuration Files (if we're using
4998 * them) but need to be explicitly set if we're using hard-coded
4999 * initialization. But even in the case of using Firmware Configuration
5000 * Files, we'd like to expose the ability to change these via module
5001 * parameters so these are essentially common tweaks/settings for
5002 * Configuration Files and hard-coded initialization ...
5003 */
5004static int adap_init0_tweaks(struct adapter *adapter)
5005{
5006 /*
5007 * Fix up various Host-Dependent Parameters like Page Size, Cache
5008 * Line Size, etc. The firmware default is for a 4KB Page Size and
5009 * 64B Cache Line Size ...
5010 */
5011 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5012
5013 /*
5014 * Process module parameters which affect early initialization.
5015 */
5016 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5017 dev_err(&adapter->pdev->dev,
5018 "Ignoring illegal rx_dma_offset=%d, using 2\n",
5019 rx_dma_offset);
5020 rx_dma_offset = 2;
5021 }
5022 t4_set_reg_field(adapter, SGE_CONTROL,
5023 PKTSHIFT_MASK,
5024 PKTSHIFT(rx_dma_offset));
5025
5026 /*
5027 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5028 * adds the pseudo header itself.
5029 */
5030 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5031 CSUM_HAS_PSEUDO_HDR, 0);
5032
5033 return 0;
5034}
5035
5036/*
5037 * Attempt to initialize the adapter via a Firmware Configuration File.
5038 */
5039static int adap_init0_config(struct adapter *adapter, int reset)
5040{
5041 struct fw_caps_config_cmd caps_cmd;
5042 const struct firmware *cf;
5043 unsigned long mtype = 0, maddr = 0;
5044 u32 finiver, finicsum, cfcsum;
16e47624
HS
5045 int ret;
5046 int config_issued = 0;
0a57a536 5047 char *fw_config_file, fw_config_file_path[256];
16e47624 5048 char *config_name = NULL;
636f9d37
VP
5049
5050 /*
5051 * Reset device if necessary.
5052 */
5053 if (reset) {
5054 ret = t4_fw_reset(adapter, adapter->mbox,
5055 PIORSTMODE | PIORST);
5056 if (ret < 0)
5057 goto bye;
5058 }
5059
5060 /*
5061 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5062 * then use that. Otherwise, use the configuration file stored
5063 * in the adapter flash ...
5064 */
d14807dd 5065 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 5066 case CHELSIO_T4:
16e47624 5067 fw_config_file = FW4_CFNAME;
0a57a536
SR
5068 break;
5069 case CHELSIO_T5:
5070 fw_config_file = FW5_CFNAME;
5071 break;
5072 default:
5073 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5074 adapter->pdev->device);
5075 ret = -EINVAL;
5076 goto bye;
5077 }
5078
5079 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 5080 if (ret < 0) {
16e47624 5081 config_name = "On FLASH";
636f9d37
VP
5082 mtype = FW_MEMTYPE_CF_FLASH;
5083 maddr = t4_flash_cfg_addr(adapter);
5084 } else {
5085 u32 params[7], val[7];
5086
16e47624
HS
5087 sprintf(fw_config_file_path,
5088 "/lib/firmware/%s", fw_config_file);
5089 config_name = fw_config_file_path;
5090
636f9d37
VP
5091 if (cf->size >= FLASH_CFG_MAX_SIZE)
5092 ret = -ENOMEM;
5093 else {
5094 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5095 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5096 ret = t4_query_params(adapter, adapter->mbox,
5097 adapter->fn, 0, 1, params, val);
5098 if (ret == 0) {
5099 /*
fc5ab020 5100 * For t4_memory_rw() below addresses and
636f9d37
VP
5101 * sizes have to be in terms of multiples of 4
5102 * bytes. So, if the Configuration File isn't
5103 * a multiple of 4 bytes in length we'll have
5104 * to write that out separately since we can't
5105 * guarantee that the bytes following the
5106 * residual byte in the buffer returned by
5107 * request_firmware() are zeroed out ...
5108 */
5109 size_t resid = cf->size & 0x3;
5110 size_t size = cf->size & ~0x3;
5111 __be32 *data = (__be32 *)cf->data;
5112
5113 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5114 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5115
fc5ab020
HS
5116 spin_lock(&adapter->win0_lock);
5117 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5118 size, data, T4_MEMORY_WRITE);
636f9d37
VP
5119 if (ret == 0 && resid != 0) {
5120 union {
5121 __be32 word;
5122 char buf[4];
5123 } last;
5124 int i;
5125
5126 last.word = data[size >> 2];
5127 for (i = resid; i < 4; i++)
5128 last.buf[i] = 0;
fc5ab020
HS
5129 ret = t4_memory_rw(adapter, 0, mtype,
5130 maddr + size,
5131 4, &last.word,
5132 T4_MEMORY_WRITE);
636f9d37 5133 }
fc5ab020 5134 spin_unlock(&adapter->win0_lock);
636f9d37
VP
5135 }
5136 }
5137
5138 release_firmware(cf);
5139 if (ret)
5140 goto bye;
5141 }
5142
5143 /*
5144 * Issue a Capability Configuration command to the firmware to get it
5145 * to parse the Configuration File. We don't use t4_fw_config_file()
5146 * because we want the ability to modify various features after we've
5147 * processed the configuration file ...
5148 */
5149 memset(&caps_cmd, 0, sizeof(caps_cmd));
5150 caps_cmd.op_to_write =
5151 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5152 FW_CMD_REQUEST |
5153 FW_CMD_READ);
ce91a923 5154 caps_cmd.cfvalid_to_len16 =
636f9d37
VP
5155 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5156 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5157 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5158 FW_LEN16(caps_cmd));
5159 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5160 &caps_cmd);
16e47624
HS
5161
5162 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5163 * Configuration File in FLASH), our last gasp effort is to use the
5164 * Firmware Configuration File which is embedded in the firmware. A
5165 * very few early versions of the firmware didn't have one embedded
5166 * but we can ignore those.
5167 */
5168 if (ret == -ENOENT) {
5169 memset(&caps_cmd, 0, sizeof(caps_cmd));
5170 caps_cmd.op_to_write =
5171 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5172 FW_CMD_REQUEST |
5173 FW_CMD_READ);
5174 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5175 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5176 sizeof(caps_cmd), &caps_cmd);
5177 config_name = "Firmware Default";
5178 }
5179
5180 config_issued = 1;
636f9d37
VP
5181 if (ret < 0)
5182 goto bye;
5183
5184 finiver = ntohl(caps_cmd.finiver);
5185 finicsum = ntohl(caps_cmd.finicsum);
5186 cfcsum = ntohl(caps_cmd.cfcsum);
5187 if (finicsum != cfcsum)
5188 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5189 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5190 finicsum, cfcsum);
5191
636f9d37
VP
5192 /*
5193 * And now tell the firmware to use the configuration we just loaded.
5194 */
5195 caps_cmd.op_to_write =
5196 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5197 FW_CMD_REQUEST |
5198 FW_CMD_WRITE);
ce91a923 5199 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5200 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5201 NULL);
5202 if (ret < 0)
5203 goto bye;
5204
5205 /*
5206 * Tweak configuration based on system architecture, module
5207 * parameters, etc.
5208 */
5209 ret = adap_init0_tweaks(adapter);
5210 if (ret < 0)
5211 goto bye;
5212
5213 /*
5214 * And finally tell the firmware to initialize itself using the
5215 * parameters from the Configuration File.
5216 */
5217 ret = t4_fw_initialize(adapter, adapter->mbox);
5218 if (ret < 0)
5219 goto bye;
5220
5221 /*
5222 * Return successfully and note that we're operating with parameters
5223 * not supplied by the driver, rather than from hard-wired
5224 * initialization constants burried in the driver.
5225 */
5226 adapter->flags |= USING_SOFT_PARAMS;
5227 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
5228 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5229 config_name, finiver, cfcsum);
636f9d37
VP
5230 return 0;
5231
5232 /*
5233 * Something bad happened. Return the error ... (If the "error"
5234 * is that there's no Configuration File on the adapter we don't
5235 * want to issue a warning since this is fairly common.)
5236 */
5237bye:
16e47624
HS
5238 if (config_issued && ret != -ENOENT)
5239 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5240 config_name, -ret);
636f9d37
VP
5241 return ret;
5242}
5243
13ee15d3
VP
5244/*
5245 * Attempt to initialize the adapter via hard-coded, driver supplied
5246 * parameters ...
5247 */
5248static int adap_init0_no_config(struct adapter *adapter, int reset)
5249{
5250 struct sge *s = &adapter->sge;
5251 struct fw_caps_config_cmd caps_cmd;
5252 u32 v;
5253 int i, ret;
5254
5255 /*
5256 * Reset device if necessary
5257 */
5258 if (reset) {
5259 ret = t4_fw_reset(adapter, adapter->mbox,
5260 PIORSTMODE | PIORST);
5261 if (ret < 0)
5262 goto bye;
5263 }
5264
5265 /*
5266 * Get device capabilities and select which we'll be using.
5267 */
5268 memset(&caps_cmd, 0, sizeof(caps_cmd));
5269 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5270 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5271 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
13ee15d3
VP
5272 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5273 &caps_cmd);
5274 if (ret < 0)
5275 goto bye;
5276
13ee15d3
VP
5277 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5278 if (!vf_acls)
5279 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5280 else
5281 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5282 } else if (vf_acls) {
5283 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5284 goto bye;
5285 }
5286 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5287 FW_CMD_REQUEST | FW_CMD_WRITE);
5288 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5289 NULL);
5290 if (ret < 0)
5291 goto bye;
5292
5293 /*
5294 * Tweak configuration based on system architecture, module
5295 * parameters, etc.
5296 */
5297 ret = adap_init0_tweaks(adapter);
5298 if (ret < 0)
5299 goto bye;
5300
5301 /*
5302 * Select RSS Global Mode we want to use. We use "Basic Virtual"
5303 * mode which maps each Virtual Interface to its own section of
5304 * the RSS Table and we turn on all map and hash enables ...
5305 */
5306 adapter->flags |= RSS_TNLALLLOOKUP;
5307 ret = t4_config_glbl_rss(adapter, adapter->mbox,
5308 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5309 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5310 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5311 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5312 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5313 if (ret < 0)
5314 goto bye;
5315
5316 /*
5317 * Set up our own fundamental resource provisioning ...
5318 */
5319 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5320 PFRES_NEQ, PFRES_NETHCTRL,
5321 PFRES_NIQFLINT, PFRES_NIQ,
5322 PFRES_TC, PFRES_NVI,
5323 FW_PFVF_CMD_CMASK_MASK,
5324 pfvfres_pmask(adapter, adapter->fn, 0),
5325 PFRES_NEXACTF,
5326 PFRES_R_CAPS, PFRES_WX_CAPS);
5327 if (ret < 0)
5328 goto bye;
5329
5330 /*
5331 * Perform low level SGE initialization. We need to do this before we
5332 * send the firmware the INITIALIZE command because that will cause
5333 * any other PF Drivers which are waiting for the Master
5334 * Initialization to proceed forward.
5335 */
5336 for (i = 0; i < SGE_NTIMERS - 1; i++)
5337 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5338 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5339 s->counter_val[0] = 1;
5340 for (i = 1; i < SGE_NCOUNTERS; i++)
5341 s->counter_val[i] = min(intr_cnt[i - 1],
5342 THRESHOLD_0_GET(THRESHOLD_0_MASK));
5343 t4_sge_init(adapter);
5344
5345#ifdef CONFIG_PCI_IOV
5346 /*
5347 * Provision resource limits for Virtual Functions. We currently
5348 * grant them all the same static resource limits except for the Port
5349 * Access Rights Mask which we're assigning based on the PF. All of
5350 * the static provisioning stuff for both the PF and VF really needs
5351 * to be managed in a persistent manner for each device which the
5352 * firmware controls.
5353 */
5354 {
5355 int pf, vf;
5356
7d6727cf 5357 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
13ee15d3
VP
5358 if (num_vf[pf] <= 0)
5359 continue;
5360
5361 /* VF numbering starts at 1! */
5362 for (vf = 1; vf <= num_vf[pf]; vf++) {
5363 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5364 pf, vf,
5365 VFRES_NEQ, VFRES_NETHCTRL,
5366 VFRES_NIQFLINT, VFRES_NIQ,
5367 VFRES_TC, VFRES_NVI,
1f1e4958 5368 FW_PFVF_CMD_CMASK_MASK,
13ee15d3
VP
5369 pfvfres_pmask(
5370 adapter, pf, vf),
5371 VFRES_NEXACTF,
5372 VFRES_R_CAPS, VFRES_WX_CAPS);
5373 if (ret < 0)
5374 dev_warn(adapter->pdev_dev,
5375 "failed to "\
5376 "provision pf/vf=%d/%d; "
5377 "err=%d\n", pf, vf, ret);
5378 }
5379 }
5380 }
5381#endif
5382
5383 /*
5384 * Set up the default filter mode. Later we'll want to implement this
5385 * via a firmware command, etc. ... This needs to be done before the
5386 * firmare initialization command ... If the selected set of fields
5387 * isn't equal to the default value, we'll need to make sure that the
5388 * field selections will fit in the 36-bit budget.
5389 */
5390 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
404d9e3f 5391 int j, bits = 0;
13ee15d3 5392
404d9e3f
VP
5393 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5394 switch (tp_vlan_pri_map & (1 << j)) {
13ee15d3
VP
5395 case 0:
5396 /* compressed filter field not enabled */
5397 break;
5398 case FCOE_MASK:
5399 bits += 1;
5400 break;
5401 case PORT_MASK:
5402 bits += 3;
5403 break;
5404 case VNIC_ID_MASK:
5405 bits += 17;
5406 break;
5407 case VLAN_MASK:
5408 bits += 17;
5409 break;
5410 case TOS_MASK:
5411 bits += 8;
5412 break;
5413 case PROTOCOL_MASK:
5414 bits += 8;
5415 break;
5416 case ETHERTYPE_MASK:
5417 bits += 16;
5418 break;
5419 case MACMATCH_MASK:
5420 bits += 9;
5421 break;
5422 case MPSHITTYPE_MASK:
5423 bits += 3;
5424 break;
5425 case FRAGMENTATION_MASK:
5426 bits += 1;
5427 break;
5428 }
5429
5430 if (bits > 36) {
5431 dev_err(adapter->pdev_dev,
5432 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5433 " using %#x\n", tp_vlan_pri_map, bits,
5434 TP_VLAN_PRI_MAP_DEFAULT);
5435 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5436 }
5437 }
5438 v = tp_vlan_pri_map;
5439 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5440 &v, 1, TP_VLAN_PRI_MAP);
5441
5442 /*
5443 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5444 * to support any of the compressed filter fields above. Newer
5445 * versions of the firmware do this automatically but it doesn't hurt
5446 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5447 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5448 * since the firmware automatically turns this on and off when we have
5449 * a non-zero number of filters active (since it does have a
5450 * performance impact).
5451 */
5452 if (tp_vlan_pri_map)
5453 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5454 FIVETUPLELOOKUP_MASK,
5455 FIVETUPLELOOKUP_MASK);
5456
5457 /*
5458 * Tweak some settings.
5459 */
5460 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5461 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5462 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5463 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5464
5465 /*
5466 * Get basic stuff going by issuing the Firmware Initialize command.
5467 * Note that this _must_ be after all PFVF commands ...
5468 */
5469 ret = t4_fw_initialize(adapter, adapter->mbox);
5470 if (ret < 0)
5471 goto bye;
5472
5473 /*
5474 * Return successfully!
5475 */
5476 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5477 "driver parameters\n");
5478 return 0;
5479
5480 /*
5481 * Something bad happened. Return the error ...
5482 */
5483bye:
5484 return ret;
5485}
5486
16e47624
HS
5487static struct fw_info fw_info_array[] = {
5488 {
5489 .chip = CHELSIO_T4,
5490 .fs_name = FW4_CFNAME,
5491 .fw_mod_name = FW4_FNAME,
5492 .fw_hdr = {
5493 .chip = FW_HDR_CHIP_T4,
5494 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5495 .intfver_nic = FW_INTFVER(T4, NIC),
5496 .intfver_vnic = FW_INTFVER(T4, VNIC),
5497 .intfver_ri = FW_INTFVER(T4, RI),
5498 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5499 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5500 },
5501 }, {
5502 .chip = CHELSIO_T5,
5503 .fs_name = FW5_CFNAME,
5504 .fw_mod_name = FW5_FNAME,
5505 .fw_hdr = {
5506 .chip = FW_HDR_CHIP_T5,
5507 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5508 .intfver_nic = FW_INTFVER(T5, NIC),
5509 .intfver_vnic = FW_INTFVER(T5, VNIC),
5510 .intfver_ri = FW_INTFVER(T5, RI),
5511 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5512 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5513 },
5514 }
5515};
5516
5517static struct fw_info *find_fw_info(int chip)
5518{
5519 int i;
5520
5521 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5522 if (fw_info_array[i].chip == chip)
5523 return &fw_info_array[i];
5524 }
5525 return NULL;
5526}
5527
b8ff05a9
DM
5528/*
5529 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5530 */
5531static int adap_init0(struct adapter *adap)
5532{
5533 int ret;
5534 u32 v, port_vec;
5535 enum dev_state state;
5536 u32 params[7], val[7];
9a4da2cd 5537 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 5538 int reset = 1;
b8ff05a9 5539
636f9d37
VP
5540 /*
5541 * Contact FW, advertising Master capability (and potentially forcing
5542 * ourselves as the Master PF if our module parameter force_init is
5543 * set).
5544 */
5545 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5546 force_init ? MASTER_MUST : MASTER_MAY,
5547 &state);
b8ff05a9
DM
5548 if (ret < 0) {
5549 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5550 ret);
5551 return ret;
5552 }
636f9d37
VP
5553 if (ret == adap->mbox)
5554 adap->flags |= MASTER_PF;
5555 if (force_init && state == DEV_STATE_INIT)
5556 state = DEV_STATE_UNINIT;
b8ff05a9 5557
636f9d37
VP
5558 /*
5559 * If we're the Master PF Driver and the device is uninitialized,
5560 * then let's consider upgrading the firmware ... (We always want
5561 * to check the firmware version number in order to A. get it for
5562 * later reporting and B. to warn if the currently loaded firmware
5563 * is excessively mismatched relative to the driver.)
5564 */
16e47624
HS
5565 t4_get_fw_version(adap, &adap->params.fw_vers);
5566 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 5567 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
5568 struct fw_info *fw_info;
5569 struct fw_hdr *card_fw;
5570 const struct firmware *fw;
5571 const u8 *fw_data = NULL;
5572 unsigned int fw_size = 0;
5573
5574 /* This is the firmware whose headers the driver was compiled
5575 * against
5576 */
5577 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5578 if (fw_info == NULL) {
5579 dev_err(adap->pdev_dev,
5580 "unable to get firmware info for chip %d.\n",
5581 CHELSIO_CHIP_VERSION(adap->params.chip));
5582 return -EINVAL;
636f9d37 5583 }
16e47624
HS
5584
5585 /* allocate memory to read the header of the firmware on the
5586 * card
5587 */
5588 card_fw = t4_alloc_mem(sizeof(*card_fw));
5589
5590 /* Get FW from from /lib/firmware/ */
5591 ret = request_firmware(&fw, fw_info->fw_mod_name,
5592 adap->pdev_dev);
5593 if (ret < 0) {
5594 dev_err(adap->pdev_dev,
5595 "unable to load firmware image %s, error %d\n",
5596 fw_info->fw_mod_name, ret);
5597 } else {
5598 fw_data = fw->data;
5599 fw_size = fw->size;
5600 }
5601
5602 /* upgrade FW logic */
5603 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5604 state, &reset);
5605
5606 /* Cleaning up */
5607 if (fw != NULL)
5608 release_firmware(fw);
5609 t4_free_mem(card_fw);
5610
636f9d37 5611 if (ret < 0)
16e47624 5612 goto bye;
636f9d37 5613 }
b8ff05a9 5614
636f9d37
VP
5615 /*
5616 * Grab VPD parameters. This should be done after we establish a
5617 * connection to the firmware since some of the VPD parameters
5618 * (notably the Core Clock frequency) are retrieved via requests to
5619 * the firmware. On the other hand, we need these fairly early on
5620 * so we do this right after getting ahold of the firmware.
5621 */
5622 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
5623 if (ret < 0)
5624 goto bye;
a0881cab 5625
636f9d37 5626 /*
13ee15d3
VP
5627 * Find out what ports are available to us. Note that we need to do
5628 * this before calling adap_init0_no_config() since it needs nports
5629 * and portvec ...
636f9d37
VP
5630 */
5631 v =
5632 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5633 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5634 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
a0881cab
DM
5635 if (ret < 0)
5636 goto bye;
5637
636f9d37
VP
5638 adap->params.nports = hweight32(port_vec);
5639 adap->params.portvec = port_vec;
5640
5641 /*
5642 * If the firmware is initialized already (and we're not forcing a
5643 * master initialization), note that we're living with existing
5644 * adapter parameters. Otherwise, it's time to try initializing the
5645 * adapter ...
5646 */
5647 if (state == DEV_STATE_INIT) {
5648 dev_info(adap->pdev_dev, "Coming up as %s: "\
5649 "Adapter already initialized\n",
5650 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5651 adap->flags |= USING_SOFT_PARAMS;
5652 } else {
5653 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5654 "Initializing adapter\n");
636f9d37
VP
5655
5656 /*
5657 * If the firmware doesn't support Configuration
5658 * Files warn user and exit,
5659 */
5660 if (ret < 0)
13ee15d3 5661 dev_warn(adap->pdev_dev, "Firmware doesn't support "
636f9d37 5662 "configuration file.\n");
13ee15d3
VP
5663 if (force_old_init)
5664 ret = adap_init0_no_config(adap, reset);
636f9d37
VP
5665 else {
5666 /*
13ee15d3
VP
5667 * Find out whether we're dealing with a version of
5668 * the firmware which has configuration file support.
636f9d37 5669 */
13ee15d3
VP
5670 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5671 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5672 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5673 params, val);
636f9d37 5674
13ee15d3
VP
5675 /*
5676 * If the firmware doesn't support Configuration
5677 * Files, use the old Driver-based, hard-wired
5678 * initialization. Otherwise, try using the
5679 * Configuration File support and fall back to the
5680 * Driver-based initialization if there's no
5681 * Configuration File found.
5682 */
5683 if (ret < 0)
5684 ret = adap_init0_no_config(adap, reset);
5685 else {
5686 /*
5687 * The firmware provides us with a memory
5688 * buffer where we can load a Configuration
5689 * File from the host if we want to override
5690 * the Configuration File in flash.
5691 */
5692
5693 ret = adap_init0_config(adap, reset);
5694 if (ret == -ENOENT) {
5695 dev_info(adap->pdev_dev,
5696 "No Configuration File present "
16e47624 5697 "on adapter. Using hard-wired "
13ee15d3
VP
5698 "configuration parameters.\n");
5699 ret = adap_init0_no_config(adap, reset);
5700 }
636f9d37
VP
5701 }
5702 }
5703 if (ret < 0) {
5704 dev_err(adap->pdev_dev,
5705 "could not initialize adapter, error %d\n",
5706 -ret);
5707 goto bye;
5708 }
5709 }
5710
5711 /*
5712 * If we're living with non-hard-coded parameters (either from a
5713 * Firmware Configuration File or values programmed by a different PF
5714 * Driver), give the SGE code a chance to pull in anything that it
5715 * needs ... Note that this must be called after we retrieve our VPD
5716 * parameters in order to know how to convert core ticks to seconds.
5717 */
5718 if (adap->flags & USING_SOFT_PARAMS) {
5719 ret = t4_sge_init(adap);
5720 if (ret < 0)
5721 goto bye;
5722 }
5723
9a4da2cd
VP
5724 if (is_bypass_device(adap->pdev->device))
5725 adap->params.bypass = 1;
5726
636f9d37
VP
5727 /*
5728 * Grab some of our basic fundamental operating parameters.
5729 */
5730#define FW_PARAM_DEV(param) \
5731 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5732 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5733
b8ff05a9 5734#define FW_PARAM_PFVF(param) \
636f9d37
VP
5735 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5736 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5737 FW_PARAMS_PARAM_Y(0) | \
5738 FW_PARAMS_PARAM_Z(0)
b8ff05a9 5739
636f9d37 5740 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
5741 params[1] = FW_PARAM_PFVF(L2T_START);
5742 params[2] = FW_PARAM_PFVF(L2T_END);
5743 params[3] = FW_PARAM_PFVF(FILTER_START);
5744 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 5745 params[5] = FW_PARAM_PFVF(IQFLINT_START);
636f9d37 5746 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
b8ff05a9
DM
5747 if (ret < 0)
5748 goto bye;
636f9d37
VP
5749 adap->sge.egr_start = val[0];
5750 adap->l2t_start = val[1];
5751 adap->l2t_end = val[2];
b8ff05a9
DM
5752 adap->tids.ftid_base = val[3];
5753 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 5754 adap->sge.ingr_start = val[5];
b8ff05a9 5755
636f9d37
VP
5756 /* query params related to active filter region */
5757 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5758 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5759 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5760 /* If Active filter size is set we enable establishing
5761 * offload connection through firmware work request
5762 */
5763 if ((val[0] != val[1]) && (ret >= 0)) {
5764 adap->flags |= FW_OFLD_CONN;
5765 adap->tids.aftid_base = val[0];
5766 adap->tids.aftid_end = val[1];
5767 }
5768
b407a4a9
VP
5769 /* If we're running on newer firmware, let it know that we're
5770 * prepared to deal with encapsulated CPL messages. Older
5771 * firmware won't understand this and we'll just get
5772 * unencapsulated messages ...
5773 */
5774 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5775 val[0] = 1;
5776 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5777
1ac0f095
KS
5778 /*
5779 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5780 * capability. Earlier versions of the firmware didn't have the
5781 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5782 * permission to use ULPTX MEMWRITE DSGL.
5783 */
5784 if (is_t4(adap->params.chip)) {
5785 adap->params.ulptx_memwrite_dsgl = false;
5786 } else {
5787 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5788 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5789 1, params, val);
5790 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5791 }
5792
636f9d37
VP
5793 /*
5794 * Get device capabilities so we can determine what resources we need
5795 * to manage.
5796 */
5797 memset(&caps_cmd, 0, sizeof(caps_cmd));
9a4da2cd 5798 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
13ee15d3 5799 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5800 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5801 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5802 &caps_cmd);
5803 if (ret < 0)
5804 goto bye;
5805
13ee15d3 5806 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
5807 /* query offload-related parameters */
5808 params[0] = FW_PARAM_DEV(NTID);
5809 params[1] = FW_PARAM_PFVF(SERVER_START);
5810 params[2] = FW_PARAM_PFVF(SERVER_END);
5811 params[3] = FW_PARAM_PFVF(TDDP_START);
5812 params[4] = FW_PARAM_PFVF(TDDP_END);
5813 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
636f9d37
VP
5814 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5815 params, val);
b8ff05a9
DM
5816 if (ret < 0)
5817 goto bye;
5818 adap->tids.ntids = val[0];
5819 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5820 adap->tids.stid_base = val[1];
5821 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37
VP
5822 /*
5823 * Setup server filter region. Divide the availble filter
5824 * region into two parts. Regular filters get 1/3rd and server
5825 * filters get 2/3rd part. This is only enabled if workarond
5826 * path is enabled.
5827 * 1. For regular filters.
5828 * 2. Server filter: This are special filters which are used
5829 * to redirect SYN packets to offload queue.
5830 */
5831 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5832 adap->tids.sftid_base = adap->tids.ftid_base +
5833 DIV_ROUND_UP(adap->tids.nftids, 3);
5834 adap->tids.nsftids = adap->tids.nftids -
5835 DIV_ROUND_UP(adap->tids.nftids, 3);
5836 adap->tids.nftids = adap->tids.sftid_base -
5837 adap->tids.ftid_base;
5838 }
b8ff05a9
DM
5839 adap->vres.ddp.start = val[3];
5840 adap->vres.ddp.size = val[4] - val[3] + 1;
5841 adap->params.ofldq_wr_cred = val[5];
636f9d37 5842
b8ff05a9
DM
5843 adap->params.offload = 1;
5844 }
636f9d37 5845 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
5846 params[0] = FW_PARAM_PFVF(STAG_START);
5847 params[1] = FW_PARAM_PFVF(STAG_END);
5848 params[2] = FW_PARAM_PFVF(RQ_START);
5849 params[3] = FW_PARAM_PFVF(RQ_END);
5850 params[4] = FW_PARAM_PFVF(PBL_START);
5851 params[5] = FW_PARAM_PFVF(PBL_END);
636f9d37
VP
5852 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5853 params, val);
b8ff05a9
DM
5854 if (ret < 0)
5855 goto bye;
5856 adap->vres.stag.start = val[0];
5857 adap->vres.stag.size = val[1] - val[0] + 1;
5858 adap->vres.rq.start = val[2];
5859 adap->vres.rq.size = val[3] - val[2] + 1;
5860 adap->vres.pbl.start = val[4];
5861 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
5862
5863 params[0] = FW_PARAM_PFVF(SQRQ_START);
5864 params[1] = FW_PARAM_PFVF(SQRQ_END);
5865 params[2] = FW_PARAM_PFVF(CQ_START);
5866 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
5867 params[4] = FW_PARAM_PFVF(OCQ_START);
5868 params[5] = FW_PARAM_PFVF(OCQ_END);
636f9d37 5869 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
a0881cab
DM
5870 if (ret < 0)
5871 goto bye;
5872 adap->vres.qp.start = val[0];
5873 adap->vres.qp.size = val[1] - val[0] + 1;
5874 adap->vres.cq.start = val[2];
5875 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
5876 adap->vres.ocq.start = val[4];
5877 adap->vres.ocq.size = val[5] - val[4] + 1;
b8ff05a9 5878 }
636f9d37 5879 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
5880 params[0] = FW_PARAM_PFVF(ISCSI_START);
5881 params[1] = FW_PARAM_PFVF(ISCSI_END);
636f9d37
VP
5882 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5883 params, val);
b8ff05a9
DM
5884 if (ret < 0)
5885 goto bye;
5886 adap->vres.iscsi.start = val[0];
5887 adap->vres.iscsi.size = val[1] - val[0] + 1;
5888 }
5889#undef FW_PARAM_PFVF
5890#undef FW_PARAM_DEV
5891
92e7ae71
HS
5892 /* The MTU/MSS Table is initialized by now, so load their values. If
5893 * we're initializing the adapter, then we'll make any modifications
5894 * we want to the MTU/MSS Table and also initialize the congestion
5895 * parameters.
636f9d37 5896 */
b8ff05a9 5897 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
5898 if (state != DEV_STATE_INIT) {
5899 int i;
5900
5901 /* The default MTU Table contains values 1492 and 1500.
5902 * However, for TCP, it's better to have two values which are
5903 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5904 * This allows us to have a TCP Data Payload which is a
5905 * multiple of 8 regardless of what combination of TCP Options
5906 * are in use (always a multiple of 4 bytes) which is
5907 * important for performance reasons. For instance, if no
5908 * options are in use, then we have a 20-byte IP header and a
5909 * 20-byte TCP header. In this case, a 1500-byte MSS would
5910 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5911 * which is not a multiple of 8. So using an MSS of 1488 in
5912 * this case results in a TCP Data Payload of 1448 bytes which
5913 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5914 * Stamps have been negotiated, then an MTU of 1500 bytes
5915 * results in a TCP Data Payload of 1448 bytes which, as
5916 * above, is a multiple of 8 bytes ...
5917 */
5918 for (i = 0; i < NMTUS; i++)
5919 if (adap->params.mtus[i] == 1492) {
5920 adap->params.mtus[i] = 1488;
5921 break;
5922 }
7ee9ff94 5923
92e7ae71
HS
5924 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5925 adap->params.b_wnd);
5926 }
dcf7b6f5 5927 t4_init_tp_params(adap);
636f9d37 5928 adap->flags |= FW_OK;
b8ff05a9
DM
5929 return 0;
5930
5931 /*
636f9d37
VP
5932 * Something bad happened. If a command timed out or failed with EIO
5933 * FW does not operate within its spec or something catastrophic
5934 * happened to HW/FW, stop issuing commands.
b8ff05a9 5935 */
636f9d37
VP
5936bye:
5937 if (ret != -ETIMEDOUT && ret != -EIO)
5938 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
5939 return ret;
5940}
5941
204dc3c0
DM
5942/* EEH callbacks */
5943
5944static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5945 pci_channel_state_t state)
5946{
5947 int i;
5948 struct adapter *adap = pci_get_drvdata(pdev);
5949
5950 if (!adap)
5951 goto out;
5952
5953 rtnl_lock();
5954 adap->flags &= ~FW_OK;
5955 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 5956 spin_lock(&adap->stats_lock);
204dc3c0
DM
5957 for_each_port(adap, i) {
5958 struct net_device *dev = adap->port[i];
5959
5960 netif_device_detach(dev);
5961 netif_carrier_off(dev);
5962 }
9fe6cb58 5963 spin_unlock(&adap->stats_lock);
204dc3c0
DM
5964 if (adap->flags & FULL_INIT_DONE)
5965 cxgb_down(adap);
5966 rtnl_unlock();
144be3d9
GS
5967 if ((adap->flags & DEV_ENABLED)) {
5968 pci_disable_device(pdev);
5969 adap->flags &= ~DEV_ENABLED;
5970 }
204dc3c0
DM
5971out: return state == pci_channel_io_perm_failure ?
5972 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5973}
5974
5975static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5976{
5977 int i, ret;
5978 struct fw_caps_config_cmd c;
5979 struct adapter *adap = pci_get_drvdata(pdev);
5980
5981 if (!adap) {
5982 pci_restore_state(pdev);
5983 pci_save_state(pdev);
5984 return PCI_ERS_RESULT_RECOVERED;
5985 }
5986
144be3d9
GS
5987 if (!(adap->flags & DEV_ENABLED)) {
5988 if (pci_enable_device(pdev)) {
5989 dev_err(&pdev->dev, "Cannot reenable PCI "
5990 "device after reset\n");
5991 return PCI_ERS_RESULT_DISCONNECT;
5992 }
5993 adap->flags |= DEV_ENABLED;
204dc3c0
DM
5994 }
5995
5996 pci_set_master(pdev);
5997 pci_restore_state(pdev);
5998 pci_save_state(pdev);
5999 pci_cleanup_aer_uncorrect_error_status(pdev);
6000
6001 if (t4_wait_dev_ready(adap) < 0)
6002 return PCI_ERS_RESULT_DISCONNECT;
777c2300 6003 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
204dc3c0
DM
6004 return PCI_ERS_RESULT_DISCONNECT;
6005 adap->flags |= FW_OK;
6006 if (adap_init1(adap, &c))
6007 return PCI_ERS_RESULT_DISCONNECT;
6008
6009 for_each_port(adap, i) {
6010 struct port_info *p = adap2pinfo(adap, i);
6011
060e0c75
DM
6012 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6013 NULL, NULL);
204dc3c0
DM
6014 if (ret < 0)
6015 return PCI_ERS_RESULT_DISCONNECT;
6016 p->viid = ret;
6017 p->xact_addr_filt = -1;
6018 }
6019
6020 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6021 adap->params.b_wnd);
1ae970e0 6022 setup_memwin(adap);
204dc3c0
DM
6023 if (cxgb_up(adap))
6024 return PCI_ERS_RESULT_DISCONNECT;
6025 return PCI_ERS_RESULT_RECOVERED;
6026}
6027
6028static void eeh_resume(struct pci_dev *pdev)
6029{
6030 int i;
6031 struct adapter *adap = pci_get_drvdata(pdev);
6032
6033 if (!adap)
6034 return;
6035
6036 rtnl_lock();
6037 for_each_port(adap, i) {
6038 struct net_device *dev = adap->port[i];
6039
6040 if (netif_running(dev)) {
6041 link_start(dev);
6042 cxgb_set_rxmode(dev);
6043 }
6044 netif_device_attach(dev);
6045 }
6046 rtnl_unlock();
6047}
6048
3646f0e5 6049static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
6050 .error_detected = eeh_err_detected,
6051 .slot_reset = eeh_slot_reset,
6052 .resume = eeh_resume,
6053};
6054
57d8b764 6055static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 6056{
57d8b764
KS
6057 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6058 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
6059}
6060
c887ad0e
HS
6061static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6062 unsigned int us, unsigned int cnt,
b8ff05a9
DM
6063 unsigned int size, unsigned int iqe_size)
6064{
c887ad0e
HS
6065 q->adap = adap;
6066 set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
6067 q->iqe_len = iqe_size;
6068 q->size = size;
6069}
6070
6071/*
6072 * Perform default configuration of DMA queues depending on the number and type
6073 * of ports we found and the number of available CPUs. Most settings can be
6074 * modified by the admin prior to actual use.
6075 */
91744948 6076static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
6077{
6078 struct sge *s = &adap->sge;
688848b1
AB
6079 int i, n10g = 0, qidx = 0;
6080#ifndef CONFIG_CHELSIO_T4_DCB
6081 int q10g = 0;
6082#endif
cf38be6d 6083 int ciq_size;
b8ff05a9
DM
6084
6085 for_each_port(adap, i)
57d8b764 6086 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
6087#ifdef CONFIG_CHELSIO_T4_DCB
6088 /* For Data Center Bridging support we need to be able to support up
6089 * to 8 Traffic Priorities; each of which will be assigned to its
6090 * own TX Queue in order to prevent Head-Of-Line Blocking.
6091 */
6092 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6093 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6094 MAX_ETH_QSETS, adap->params.nports * 8);
6095 BUG_ON(1);
6096 }
b8ff05a9 6097
688848b1
AB
6098 for_each_port(adap, i) {
6099 struct port_info *pi = adap2pinfo(adap, i);
6100
6101 pi->first_qset = qidx;
6102 pi->nqsets = 8;
6103 qidx += pi->nqsets;
6104 }
6105#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6106 /*
6107 * We default to 1 queue per non-10G port and up to # of cores queues
6108 * per 10G port.
6109 */
6110 if (n10g)
6111 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
6112 if (q10g > netif_get_num_default_rss_queues())
6113 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
6114
6115 for_each_port(adap, i) {
6116 struct port_info *pi = adap2pinfo(adap, i);
6117
6118 pi->first_qset = qidx;
57d8b764 6119 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
6120 qidx += pi->nqsets;
6121 }
688848b1 6122#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6123
6124 s->ethqsets = qidx;
6125 s->max_ethqsets = qidx; /* MSI-X may lower it later */
6126
6127 if (is_offload(adap)) {
6128 /*
6129 * For offload we use 1 queue/channel if all ports are up to 1G,
6130 * otherwise we divide all available queues amongst the channels
6131 * capped by the number of available cores.
6132 */
6133 if (n10g) {
6134 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6135 num_online_cpus());
6136 s->ofldqsets = roundup(i, adap->params.nports);
6137 } else
6138 s->ofldqsets = adap->params.nports;
6139 /* For RDMA one Rx queue per channel suffices */
6140 s->rdmaqs = adap->params.nports;
cf38be6d 6141 s->rdmaciqs = adap->params.nports;
b8ff05a9
DM
6142 }
6143
6144 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6145 struct sge_eth_rxq *r = &s->ethrxq[i];
6146
c887ad0e 6147 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
6148 r->fl.size = 72;
6149 }
6150
6151 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6152 s->ethtxq[i].q.size = 1024;
6153
6154 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6155 s->ctrlq[i].q.size = 512;
6156
6157 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6158 s->ofldtxq[i].q.size = 1024;
6159
6160 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6161 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6162
c887ad0e 6163 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
6164 r->rspq.uld = CXGB4_ULD_ISCSI;
6165 r->fl.size = 72;
6166 }
6167
6168 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6169 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6170
c887ad0e 6171 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
6172 r->rspq.uld = CXGB4_ULD_RDMA;
6173 r->fl.size = 72;
6174 }
6175
cf38be6d
HS
6176 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6177 if (ciq_size > SGE_MAX_IQ_SIZE) {
6178 CH_WARN(adap, "CIQ size too small for available IQs\n");
6179 ciq_size = SGE_MAX_IQ_SIZE;
6180 }
6181
6182 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6183 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6184
c887ad0e 6185 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
6186 r->rspq.uld = CXGB4_ULD_RDMA;
6187 }
6188
c887ad0e
HS
6189 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6190 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
6191}
6192
6193/*
6194 * Reduce the number of Ethernet queues across all ports to at most n.
6195 * n provides at least one queue per port.
6196 */
91744948 6197static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
6198{
6199 int i;
6200 struct port_info *pi;
6201
6202 while (n < adap->sge.ethqsets)
6203 for_each_port(adap, i) {
6204 pi = adap2pinfo(adap, i);
6205 if (pi->nqsets > 1) {
6206 pi->nqsets--;
6207 adap->sge.ethqsets--;
6208 if (adap->sge.ethqsets <= n)
6209 break;
6210 }
6211 }
6212
6213 n = 0;
6214 for_each_port(adap, i) {
6215 pi = adap2pinfo(adap, i);
6216 pi->first_qset = n;
6217 n += pi->nqsets;
6218 }
6219}
6220
6221/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6222#define EXTRA_VECS 2
6223
91744948 6224static int enable_msix(struct adapter *adap)
b8ff05a9
DM
6225{
6226 int ofld_need = 0;
c32ad224 6227 int i, want, need;
b8ff05a9
DM
6228 struct sge *s = &adap->sge;
6229 unsigned int nchan = adap->params.nports;
6230 struct msix_entry entries[MAX_INGQ + 1];
6231
6232 for (i = 0; i < ARRAY_SIZE(entries); ++i)
6233 entries[i].entry = i;
6234
6235 want = s->max_ethqsets + EXTRA_VECS;
6236 if (is_offload(adap)) {
cf38be6d 6237 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 6238 /* need nchan for each possible ULD */
cf38be6d 6239 ofld_need = 3 * nchan;
b8ff05a9 6240 }
688848b1
AB
6241#ifdef CONFIG_CHELSIO_T4_DCB
6242 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6243 * each port.
6244 */
6245 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6246#else
b8ff05a9 6247 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 6248#endif
c32ad224
AG
6249 want = pci_enable_msix_range(adap->pdev, entries, need, want);
6250 if (want < 0)
6251 return want;
b8ff05a9 6252
c32ad224
AG
6253 /*
6254 * Distribute available vectors to the various queue groups.
6255 * Every group gets its minimum requirement and NIC gets top
6256 * priority for leftovers.
6257 */
6258 i = want - EXTRA_VECS - ofld_need;
6259 if (i < s->max_ethqsets) {
6260 s->max_ethqsets = i;
6261 if (i < s->ethqsets)
6262 reduce_ethqs(adap, i);
6263 }
6264 if (is_offload(adap)) {
6265 i = want - EXTRA_VECS - s->max_ethqsets;
6266 i -= ofld_need - nchan;
6267 s->ofldqsets = (i / nchan) * nchan; /* round down */
6268 }
6269 for (i = 0; i < want; ++i)
6270 adap->msix_info[i].vec = entries[i].vector;
6271
6272 return 0;
b8ff05a9
DM
6273}
6274
6275#undef EXTRA_VECS
6276
91744948 6277static int init_rss(struct adapter *adap)
671b0060
DM
6278{
6279 unsigned int i, j;
6280
6281 for_each_port(adap, i) {
6282 struct port_info *pi = adap2pinfo(adap, i);
6283
6284 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6285 if (!pi->rss)
6286 return -ENOMEM;
6287 for (j = 0; j < pi->rss_size; j++)
278bc429 6288 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
671b0060
DM
6289 }
6290 return 0;
6291}
6292
91744948 6293static void print_port_info(const struct net_device *dev)
b8ff05a9 6294{
b8ff05a9 6295 char buf[80];
118969ed 6296 char *bufp = buf;
f1a051b9 6297 const char *spd = "";
118969ed
DM
6298 const struct port_info *pi = netdev_priv(dev);
6299 const struct adapter *adap = pi->adapter;
f1a051b9
DM
6300
6301 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6302 spd = " 2.5 GT/s";
6303 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6304 spd = " 5 GT/s";
d2e752db
RD
6305 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6306 spd = " 8 GT/s";
b8ff05a9 6307
118969ed
DM
6308 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6309 bufp += sprintf(bufp, "100/");
6310 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6311 bufp += sprintf(bufp, "1000/");
6312 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6313 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
6314 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6315 bufp += sprintf(bufp, "40G/");
118969ed
DM
6316 if (bufp != buf)
6317 --bufp;
72aca4bf 6318 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
6319
6320 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 6321 adap->params.vpd.id,
d14807dd 6322 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
6323 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6324 (adap->flags & USING_MSIX) ? " MSI-X" :
6325 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
6326 netdev_info(dev, "S/N: %s, P/N: %s\n",
6327 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
6328}
6329
91744948 6330static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 6331{
e5c8ae5f 6332 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
6333}
6334
06546391
DM
6335/*
6336 * Free the following resources:
6337 * - memory used for tables
6338 * - MSI/MSI-X
6339 * - net devices
6340 * - resources FW is holding for us
6341 */
6342static void free_some_resources(struct adapter *adapter)
6343{
6344 unsigned int i;
6345
6346 t4_free_mem(adapter->l2t);
6347 t4_free_mem(adapter->tids.tid_tab);
6348 disable_msi(adapter);
6349
6350 for_each_port(adapter, i)
671b0060
DM
6351 if (adapter->port[i]) {
6352 kfree(adap2pinfo(adapter, i)->rss);
06546391 6353 free_netdev(adapter->port[i]);
671b0060 6354 }
06546391 6355 if (adapter->flags & FW_OK)
060e0c75 6356 t4_fw_bye(adapter, adapter->fn);
06546391
DM
6357}
6358
2ed28baa 6359#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 6360#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 6361 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 6362#define SEGMENT_SIZE 128
b8ff05a9 6363
1dd06ae8 6364static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 6365{
22adfe0a 6366 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 6367 struct port_info *pi;
c8f44aff 6368 bool highdma = false;
b8ff05a9
DM
6369 struct adapter *adapter = NULL;
6370
6371 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6372
6373 err = pci_request_regions(pdev, KBUILD_MODNAME);
6374 if (err) {
6375 /* Just info, some other driver may have claimed the device. */
6376 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6377 return err;
6378 }
6379
b8ff05a9
DM
6380 err = pci_enable_device(pdev);
6381 if (err) {
6382 dev_err(&pdev->dev, "cannot enable PCI device\n");
6383 goto out_release_regions;
6384 }
6385
6386 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 6387 highdma = true;
b8ff05a9
DM
6388 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6389 if (err) {
6390 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6391 "coherent allocations\n");
6392 goto out_disable_device;
6393 }
6394 } else {
6395 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6396 if (err) {
6397 dev_err(&pdev->dev, "no usable DMA configuration\n");
6398 goto out_disable_device;
6399 }
6400 }
6401
6402 pci_enable_pcie_error_reporting(pdev);
ef306b50 6403 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
6404 pci_set_master(pdev);
6405 pci_save_state(pdev);
6406
6407 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6408 if (!adapter) {
6409 err = -ENOMEM;
6410 goto out_disable_device;
6411 }
6412
144be3d9
GS
6413 /* PCI device has been enabled */
6414 adapter->flags |= DEV_ENABLED;
6415
b8ff05a9
DM
6416 adapter->regs = pci_ioremap_bar(pdev, 0);
6417 if (!adapter->regs) {
6418 dev_err(&pdev->dev, "cannot map device registers\n");
6419 err = -ENOMEM;
6420 goto out_free_adapter;
6421 }
6422
35b1de55
HS
6423 /* We control everything through one PF */
6424 func = SOURCEPF_GET(readl(adapter->regs + PL_WHOAMI));
6425 if ((pdev->device == 0xa000 && func != 0) ||
6426 func != ent->driver_data) {
6427 pci_save_state(pdev); /* to restore SR-IOV later */
6428 err = 0;
6429 goto out_unmap_bar0;
6430 }
6431
b8ff05a9
DM
6432 adapter->pdev = pdev;
6433 adapter->pdev_dev = &pdev->dev;
3069ee9b 6434 adapter->mbox = func;
060e0c75 6435 adapter->fn = func;
b8ff05a9
DM
6436 adapter->msg_enable = dflt_msg_enable;
6437 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6438
6439 spin_lock_init(&adapter->stats_lock);
6440 spin_lock_init(&adapter->tid_release_lock);
6441
6442 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
6443 INIT_WORK(&adapter->db_full_task, process_db_full);
6444 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
6445
6446 err = t4_prep_adapter(adapter);
6447 if (err)
22adfe0a
SR
6448 goto out_unmap_bar0;
6449
d14807dd 6450 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
6451 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6452 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6453 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6454 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6455
6456 /* Each segment size is 128B. Write coalescing is enabled only
6457 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6458 * queue is less no of segments that can be accommodated in
6459 * a page size.
6460 */
6461 if (qpp > num_seg) {
6462 dev_err(&pdev->dev,
6463 "Incorrect number of egress queues per page\n");
6464 err = -EINVAL;
6465 goto out_unmap_bar0;
6466 }
6467 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6468 pci_resource_len(pdev, 2));
6469 if (!adapter->bar2) {
6470 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6471 err = -ENOMEM;
6472 goto out_unmap_bar0;
6473 }
6474 }
6475
636f9d37 6476 setup_memwin(adapter);
b8ff05a9 6477 err = adap_init0(adapter);
636f9d37 6478 setup_memwin_rdma(adapter);
b8ff05a9
DM
6479 if (err)
6480 goto out_unmap_bar;
6481
6482 for_each_port(adapter, i) {
6483 struct net_device *netdev;
6484
6485 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6486 MAX_ETH_QSETS);
6487 if (!netdev) {
6488 err = -ENOMEM;
6489 goto out_free_dev;
6490 }
6491
6492 SET_NETDEV_DEV(netdev, &pdev->dev);
6493
6494 adapter->port[i] = netdev;
6495 pi = netdev_priv(netdev);
6496 pi->adapter = adapter;
6497 pi->xact_addr_filt = -1;
b8ff05a9 6498 pi->port_id = i;
b8ff05a9
DM
6499 netdev->irq = pdev->irq;
6500
2ed28baa
MM
6501 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6502 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6503 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 6504 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
6505 if (highdma)
6506 netdev->hw_features |= NETIF_F_HIGHDMA;
6507 netdev->features |= netdev->hw_features;
b8ff05a9
DM
6508 netdev->vlan_features = netdev->features & VLAN_FEAT;
6509
01789349
JP
6510 netdev->priv_flags |= IFF_UNICAST_FLT;
6511
b8ff05a9 6512 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
6513#ifdef CONFIG_CHELSIO_T4_DCB
6514 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6515 cxgb4_dcb_state_init(netdev);
6516#endif
7ad24ea4 6517 netdev->ethtool_ops = &cxgb_ethtool_ops;
b8ff05a9
DM
6518 }
6519
6520 pci_set_drvdata(pdev, adapter);
6521
6522 if (adapter->flags & FW_OK) {
060e0c75 6523 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
6524 if (err)
6525 goto out_free_dev;
6526 }
6527
6528 /*
6529 * Configure queues and allocate tables now, they can be needed as
6530 * soon as the first register_netdev completes.
6531 */
6532 cfg_queues(adapter);
6533
6534 adapter->l2t = t4_init_l2t();
6535 if (!adapter->l2t) {
6536 /* We tolerate a lack of L2T, giving up some functionality */
6537 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6538 adapter->params.offload = 0;
6539 }
6540
6541 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6542 dev_warn(&pdev->dev, "could not allocate TID table, "
6543 "continuing\n");
6544 adapter->params.offload = 0;
6545 }
6546
f7cabcdd
DM
6547 /* See what interrupts we'll be using */
6548 if (msi > 1 && enable_msix(adapter) == 0)
6549 adapter->flags |= USING_MSIX;
6550 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6551 adapter->flags |= USING_MSI;
6552
671b0060
DM
6553 err = init_rss(adapter);
6554 if (err)
6555 goto out_free_dev;
6556
b8ff05a9
DM
6557 /*
6558 * The card is now ready to go. If any errors occur during device
6559 * registration we do not fail the whole card but rather proceed only
6560 * with the ports we manage to register successfully. However we must
6561 * register at least one net device.
6562 */
6563 for_each_port(adapter, i) {
a57cabe0
DM
6564 pi = adap2pinfo(adapter, i);
6565 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6566 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6567
b8ff05a9
DM
6568 err = register_netdev(adapter->port[i]);
6569 if (err)
b1a3c2b6 6570 break;
b1a3c2b6
DM
6571 adapter->chan_map[pi->tx_chan] = i;
6572 print_port_info(adapter->port[i]);
b8ff05a9 6573 }
b1a3c2b6 6574 if (i == 0) {
b8ff05a9
DM
6575 dev_err(&pdev->dev, "could not register any net devices\n");
6576 goto out_free_dev;
6577 }
b1a3c2b6
DM
6578 if (err) {
6579 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6580 err = 0;
6403eab1 6581 }
b8ff05a9
DM
6582
6583 if (cxgb4_debugfs_root) {
6584 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6585 cxgb4_debugfs_root);
6586 setup_debugfs(adapter);
6587 }
6588
6482aa7c
DLR
6589 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6590 pdev->needs_freset = 1;
6591
b8ff05a9
DM
6592 if (is_offload(adapter))
6593 attach_ulds(adapter);
6594
b8ff05a9 6595#ifdef CONFIG_PCI_IOV
7d6727cf 6596 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
6597 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6598 dev_info(&pdev->dev,
6599 "instantiated %u virtual functions\n",
6600 num_vf[func]);
6601#endif
6602 return 0;
6603
6604 out_free_dev:
06546391 6605 free_some_resources(adapter);
b8ff05a9 6606 out_unmap_bar:
d14807dd 6607 if (!is_t4(adapter->params.chip))
22adfe0a
SR
6608 iounmap(adapter->bar2);
6609 out_unmap_bar0:
b8ff05a9
DM
6610 iounmap(adapter->regs);
6611 out_free_adapter:
6612 kfree(adapter);
6613 out_disable_device:
6614 pci_disable_pcie_error_reporting(pdev);
6615 pci_disable_device(pdev);
6616 out_release_regions:
6617 pci_release_regions(pdev);
b8ff05a9
DM
6618 return err;
6619}
6620
91744948 6621static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
6622{
6623 struct adapter *adapter = pci_get_drvdata(pdev);
6624
636f9d37 6625#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
6626 pci_disable_sriov(pdev);
6627
636f9d37
VP
6628#endif
6629
b8ff05a9
DM
6630 if (adapter) {
6631 int i;
6632
6633 if (is_offload(adapter))
6634 detach_ulds(adapter);
6635
6636 for_each_port(adapter, i)
8f3a7676 6637 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
6638 unregister_netdev(adapter->port[i]);
6639
6640 if (adapter->debugfs_root)
6641 debugfs_remove_recursive(adapter->debugfs_root);
6642
f2b7e78d
VP
6643 /* If we allocated filters, free up state associated with any
6644 * valid filters ...
6645 */
6646 if (adapter->tids.ftid_tab) {
6647 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
6648 for (i = 0; i < (adapter->tids.nftids +
6649 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
6650 if (f->valid)
6651 clear_filter(adapter, f);
6652 }
6653
aaefae9b
DM
6654 if (adapter->flags & FULL_INIT_DONE)
6655 cxgb_down(adapter);
b8ff05a9 6656
06546391 6657 free_some_resources(adapter);
b8ff05a9 6658 iounmap(adapter->regs);
d14807dd 6659 if (!is_t4(adapter->params.chip))
22adfe0a 6660 iounmap(adapter->bar2);
b8ff05a9 6661 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
6662 if ((adapter->flags & DEV_ENABLED)) {
6663 pci_disable_device(pdev);
6664 adapter->flags &= ~DEV_ENABLED;
6665 }
b8ff05a9 6666 pci_release_regions(pdev);
ee9a33b2 6667 synchronize_rcu();
8b662fe7 6668 kfree(adapter);
a069ec91 6669 } else
b8ff05a9
DM
6670 pci_release_regions(pdev);
6671}
6672
6673static struct pci_driver cxgb4_driver = {
6674 .name = KBUILD_MODNAME,
6675 .id_table = cxgb4_pci_tbl,
6676 .probe = init_one,
91744948 6677 .remove = remove_one,
687d705c 6678 .shutdown = remove_one,
204dc3c0 6679 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
6680};
6681
6682static int __init cxgb4_init_module(void)
6683{
6684 int ret;
6685
3069ee9b
VP
6686 workq = create_singlethread_workqueue("cxgb4");
6687 if (!workq)
6688 return -ENOMEM;
6689
b8ff05a9
DM
6690 /* Debugfs support is optional, just warn if this fails */
6691 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6692 if (!cxgb4_debugfs_root)
428ac43f 6693 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
6694
6695 ret = pci_register_driver(&cxgb4_driver);
73a695f8 6696 if (ret < 0) {
b8ff05a9 6697 debugfs_remove(cxgb4_debugfs_root);
73a695f8
WY
6698 destroy_workqueue(workq);
6699 }
01bcca68
VP
6700
6701 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6702
b8ff05a9
DM
6703 return ret;
6704}
6705
6706static void __exit cxgb4_cleanup_module(void)
6707{
01bcca68 6708 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
b8ff05a9
DM
6709 pci_unregister_driver(&cxgb4_driver);
6710 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
3069ee9b
VP
6711 flush_workqueue(workq);
6712 destroy_workqueue(workq);
b8ff05a9
DM
6713}
6714
6715module_init(cxgb4_init_module);
6716module_exit(cxgb4_cleanup_module);