]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4/cxgb4vf: Update Ingress padding boundary values for T6 adapter
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
812034f1
HS
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
01bcca68
VP
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
3a7f8554 84#define DRV_VERSION "2.0.0-ko"
812034f1 85const char cxgb4_driver_version[] = DRV_VERSION;
52a5f846 86#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
b8ff05a9 87
f2b7e78d
VP
88/* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110};
111
b8ff05a9
DM
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
3fedeab1
HS
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 119 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 121
3fedeab1
HS
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134#include "t4_pci_id_tbl.h"
b8ff05a9 135
16e47624 136#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 137#define FW5_FNAME "cxgb4/t5fw.bin"
3ccc6cf7 138#define FW6_FNAME "cxgb4/t6fw.bin"
16e47624 139#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 140#define FW5_CFNAME "cxgb4/t5-config.txt"
3ccc6cf7 141#define FW6_CFNAME "cxgb4/t6-config.txt"
01b69614
HS
142#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144#define PHY_AQ1202_DEVICEID 0x4409
145#define PHY_BCM84834_DEVICEID 0x4486
b8ff05a9
DM
146
147MODULE_DESCRIPTION(DRV_DESC);
148MODULE_AUTHOR("Chelsio Communications");
149MODULE_LICENSE("Dual BSD/GPL");
150MODULE_VERSION(DRV_VERSION);
151MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 152MODULE_FIRMWARE(FW4_FNAME);
0a57a536 153MODULE_FIRMWARE(FW5_FNAME);
52a5f846 154MODULE_FIRMWARE(FW6_FNAME);
b8ff05a9 155
636f9d37
VP
156/*
157 * Normally we're willing to become the firmware's Master PF but will be happy
158 * if another PF has already become the Master and initialized the adapter.
159 * Setting "force_init" will cause this driver to forcibly establish itself as
160 * the Master PF and initialize the adapter.
161 */
162static uint force_init;
163
164module_param(force_init, uint, 0644);
165MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
166
13ee15d3
VP
167/*
168 * Normally if the firmware we connect to has Configuration File support, we
169 * use that and only fall back to the old Driver-based initialization if the
170 * Configuration File fails for some reason. If force_old_init is set, then
171 * we'll always use the old Driver-based initialization sequence.
172 */
173static uint force_old_init;
174
175module_param(force_old_init, uint, 0644);
06640310
HS
176MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
177 " parameter");
13ee15d3 178
b8ff05a9
DM
179static int dflt_msg_enable = DFLT_MSG_ENABLE;
180
181module_param(dflt_msg_enable, int, 0644);
182MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
183
184/*
185 * The driver uses the best interrupt scheme available on a platform in the
186 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
187 * of these schemes the driver may consider as follows:
188 *
189 * msi = 2: choose from among all three options
190 * msi = 1: only consider MSI and INTx interrupts
191 * msi = 0: force INTx interrupts
192 */
193static int msi = 2;
194
195module_param(msi, int, 0644);
196MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
197
198/*
199 * Queue interrupt hold-off timer values. Queues default to the first of these
200 * upon creation.
201 */
202static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
203
204module_param_array(intr_holdoff, uint, NULL, 0644);
205MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 206 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
207
208static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
209
210module_param_array(intr_cnt, uint, NULL, 0644);
211MODULE_PARM_DESC(intr_cnt,
06640310
HS
212 "thresholds 1..3 for queue interrupt packet counters, "
213 "deprecated parameter");
b8ff05a9 214
636f9d37
VP
215/*
216 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
217 * offset by 2 bytes in order to have the IP headers line up on 4-byte
218 * boundaries. This is a requirement for many architectures which will throw
219 * a machine check fault if an attempt is made to access one of the 4-byte IP
220 * header fields on a non-4-byte boundary. And it's a major performance issue
221 * even on some architectures which allow it like some implementations of the
222 * x86 ISA. However, some architectures don't mind this and for some very
223 * edge-case performance sensitive applications (like forwarding large volumes
224 * of small packets), setting this DMA offset to 0 will decrease the number of
225 * PCI-E Bus transfers enough to measurably affect performance.
226 */
227static int rx_dma_offset = 2;
228
eb939922 229static bool vf_acls;
b8ff05a9
DM
230
231#ifdef CONFIG_PCI_IOV
232module_param(vf_acls, bool, 0644);
06640310
HS
233MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
234 "deprecated parameter");
b8ff05a9 235
7d6727cf
SR
236/* Configure the number of PCI-E Virtual Function which are to be instantiated
237 * on SR-IOV Capable Physical Functions.
0a57a536 238 */
7d6727cf 239static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
240
241module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 242MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
243#endif
244
688848b1
AB
245/* TX Queue select used to determine what algorithm to use for selecting TX
246 * queue. Select between the kernel provided function (select_queue=0) or user
247 * cxgb_select_queue function (select_queue=1)
248 *
249 * Default: select_queue=0
250 */
251static int select_queue;
252module_param(select_queue, int, 0644);
253MODULE_PARM_DESC(select_queue,
254 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
255
06640310 256static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 257
f2b7e78d 258module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
259MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
260 "deprecated parameter");
f2b7e78d 261
b8ff05a9
DM
262static struct dentry *cxgb4_debugfs_root;
263
264static LIST_HEAD(adapter_list);
265static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
266/* Adapter list to be accessed from atomic context */
267static LIST_HEAD(adap_rcu_list);
268static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
269static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
270static const char *uld_str[] = { "RDMA", "iSCSI" };
271
272static void link_report(struct net_device *dev)
273{
274 if (!netif_carrier_ok(dev))
275 netdev_info(dev, "link down\n");
276 else {
277 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
278
85412255 279 const char *s;
b8ff05a9
DM
280 const struct port_info *p = netdev_priv(dev);
281
282 switch (p->link_cfg.speed) {
e8b39015 283 case 10000:
b8ff05a9
DM
284 s = "10Gbps";
285 break;
e8b39015 286 case 1000:
b8ff05a9
DM
287 s = "1000Mbps";
288 break;
e8b39015 289 case 100:
b8ff05a9
DM
290 s = "100Mbps";
291 break;
e8b39015 292 case 40000:
72aca4bf
KS
293 s = "40Gbps";
294 break;
85412255
HS
295 default:
296 pr_info("%s: unsupported speed: %d\n",
297 dev->name, p->link_cfg.speed);
298 return;
b8ff05a9
DM
299 }
300
301 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
302 fc[p->link_cfg.fc]);
303 }
304}
305
688848b1
AB
306#ifdef CONFIG_CHELSIO_T4_DCB
307/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
308static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
309{
310 struct port_info *pi = netdev_priv(dev);
311 struct adapter *adap = pi->adapter;
312 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
313 int i;
314
315 /* We use a simple mapping of Port TX Queue Index to DCB
316 * Priority when we're enabling DCB.
317 */
318 for (i = 0; i < pi->nqsets; i++, txq++) {
319 u32 name, value;
320 int err;
321
5167865a
HS
322 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
323 FW_PARAMS_PARAM_X_V(
324 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
325 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
326 value = enable ? i : 0xffffffff;
327
328 /* Since we can be called while atomic (from "interrupt
329 * level") we need to issue the Set Parameters Commannd
330 * without sleeping (timeout < 0).
331 */
b2612722 332 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
333 &name, &value,
334 -FW_CMD_MAX_TIMEOUT);
688848b1
AB
335
336 if (err)
337 dev_err(adap->pdev_dev,
338 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
339 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
340 else
341 txq->dcb_prio = value;
688848b1
AB
342 }
343}
344#endif /* CONFIG_CHELSIO_T4_DCB */
345
b8ff05a9
DM
346void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
347{
348 struct net_device *dev = adapter->port[port_id];
349
350 /* Skip changes from disabled ports. */
351 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
352 if (link_stat)
353 netif_carrier_on(dev);
688848b1
AB
354 else {
355#ifdef CONFIG_CHELSIO_T4_DCB
356 cxgb4_dcb_state_init(dev);
357 dcb_tx_queue_prio_enable(dev, false);
358#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 359 netif_carrier_off(dev);
688848b1 360 }
b8ff05a9
DM
361
362 link_report(dev);
363 }
364}
365
366void t4_os_portmod_changed(const struct adapter *adap, int port_id)
367{
368 static const char *mod_str[] = {
a0881cab 369 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
370 };
371
372 const struct net_device *dev = adap->port[port_id];
373 const struct port_info *pi = netdev_priv(dev);
374
375 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
376 netdev_info(dev, "port module unplugged\n");
a0881cab 377 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
378 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
379}
380
381/*
382 * Configure the exact and hash address filters to handle a port's multicast
383 * and secondary unicast MAC addresses.
384 */
385static int set_addr_filters(const struct net_device *dev, bool sleep)
386{
387 u64 mhash = 0;
388 u64 uhash = 0;
389 bool free = true;
390 u16 filt_idx[7];
391 const u8 *addr[7];
392 int ret, naddr = 0;
b8ff05a9
DM
393 const struct netdev_hw_addr *ha;
394 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 395 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 396 const struct port_info *pi = netdev_priv(dev);
b2612722 397 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
398
399 /* first do the secondary unicast addresses */
400 netdev_for_each_uc_addr(ha, dev) {
401 addr[naddr++] = ha->addr;
402 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 403 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
404 naddr, addr, filt_idx, &uhash, sleep);
405 if (ret < 0)
406 return ret;
407
408 free = false;
409 naddr = 0;
410 }
411 }
412
413 /* next set up the multicast addresses */
4a35ecf8
DM
414 netdev_for_each_mc_addr(ha, dev) {
415 addr[naddr++] = ha->addr;
416 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 417 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
418 naddr, addr, filt_idx, &mhash, sleep);
419 if (ret < 0)
420 return ret;
421
422 free = false;
423 naddr = 0;
424 }
425 }
426
060e0c75 427 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
428 uhash | mhash, sleep);
429}
430
3069ee9b
VP
431int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
432module_param(dbfifo_int_thresh, int, 0644);
433MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
434
404d9e3f
VP
435/*
436 * usecs to sleep while draining the dbfifo
437 */
438static int dbfifo_drain_delay = 1000;
3069ee9b
VP
439module_param(dbfifo_drain_delay, int, 0644);
440MODULE_PARM_DESC(dbfifo_drain_delay,
441 "usecs to sleep while draining the dbfifo");
442
b8ff05a9
DM
443/*
444 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
445 * If @mtu is -1 it is left unchanged.
446 */
447static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
448{
449 int ret;
450 struct port_info *pi = netdev_priv(dev);
451
452 ret = set_addr_filters(dev, sleep_ok);
453 if (ret == 0)
b2612722 454 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
b8ff05a9 455 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 456 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
457 sleep_ok);
458 return ret;
459}
460
461/**
462 * link_start - enable a port
463 * @dev: the port to enable
464 *
465 * Performs the MAC and PHY actions needed to enable a port.
466 */
467static int link_start(struct net_device *dev)
468{
469 int ret;
470 struct port_info *pi = netdev_priv(dev);
b2612722 471 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
472
473 /*
474 * We do not set address filters and promiscuity here, the stack does
475 * that step explicitly.
476 */
060e0c75 477 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 478 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 479 if (ret == 0) {
060e0c75 480 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 481 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 482 true);
b8ff05a9
DM
483 if (ret >= 0) {
484 pi->xact_addr_filt = ret;
485 ret = 0;
486 }
487 }
488 if (ret == 0)
4036da90 489 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
060e0c75 490 &pi->link_cfg);
30f00847
AB
491 if (ret == 0) {
492 local_bh_disable();
688848b1
AB
493 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
494 true, CXGB4_DCB_ENABLED);
30f00847
AB
495 local_bh_enable();
496 }
688848b1 497
b8ff05a9
DM
498 return ret;
499}
500
688848b1
AB
501int cxgb4_dcb_enabled(const struct net_device *dev)
502{
503#ifdef CONFIG_CHELSIO_T4_DCB
504 struct port_info *pi = netdev_priv(dev);
505
3bb06261
AB
506 if (!pi->dcb.enabled)
507 return 0;
508
509 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
510 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
511#else
512 return 0;
513#endif
514}
515EXPORT_SYMBOL(cxgb4_dcb_enabled);
516
517#ifdef CONFIG_CHELSIO_T4_DCB
518/* Handle a Data Center Bridging update message from the firmware. */
519static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
520{
2b5fb1f2 521 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
522 struct net_device *dev = adap->port[port];
523 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
524 int new_dcb_enabled;
525
526 cxgb4_dcb_handle_fw_update(adap, pcmd);
527 new_dcb_enabled = cxgb4_dcb_enabled(dev);
528
529 /* If the DCB has become enabled or disabled on the port then we're
530 * going to need to set up/tear down DCB Priority parameters for the
531 * TX Queues associated with the port.
532 */
533 if (new_dcb_enabled != old_dcb_enabled)
534 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
535}
536#endif /* CONFIG_CHELSIO_T4_DCB */
537
f2b7e78d
VP
538/* Clear a filter and release any of its resources that we own. This also
539 * clears the filter's "pending" status.
540 */
541static void clear_filter(struct adapter *adap, struct filter_entry *f)
542{
543 /* If the new or old filter have loopback rewriteing rules then we'll
544 * need to free any existing Layer Two Table (L2T) entries of the old
545 * filter rule. The firmware will handle freeing up any Source MAC
546 * Table (SMT) entries used for rewriting Source MAC Addresses in
547 * loopback rules.
548 */
549 if (f->l2t)
550 cxgb4_l2t_release(f->l2t);
551
552 /* The zeroing of the filter rule below clears the filter valid,
553 * pending, locked flags, l2t pointer, etc. so it's all we need for
554 * this operation.
555 */
556 memset(f, 0, sizeof(*f));
557}
558
559/* Handle a filter write/deletion reply.
560 */
561static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
562{
563 unsigned int idx = GET_TID(rpl);
564 unsigned int nidx = idx - adap->tids.ftid_base;
565 unsigned int ret;
566 struct filter_entry *f;
567
568 if (idx >= adap->tids.ftid_base && nidx <
569 (adap->tids.nftids + adap->tids.nsftids)) {
570 idx = nidx;
bdc590b9 571 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
572 f = &adap->tids.ftid_tab[idx];
573
574 if (ret == FW_FILTER_WR_FLT_DELETED) {
575 /* Clear the filter when we get confirmation from the
576 * hardware that the filter has been deleted.
577 */
578 clear_filter(adap, f);
579 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
580 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
581 idx);
582 clear_filter(adap, f);
583 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
584 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
585 f->pending = 0; /* asynchronous setup completed */
586 f->valid = 1;
587 } else {
588 /* Something went wrong. Issue a warning about the
589 * problem and clear everything out.
590 */
591 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
592 idx, ret);
593 clear_filter(adap, f);
594 }
595 }
596}
597
598/* Response queue handler for the FW event queue.
b8ff05a9
DM
599 */
600static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
601 const struct pkt_gl *gl)
602{
603 u8 opcode = ((const struct rss_header *)rsp)->opcode;
604
605 rsp++; /* skip RSS header */
b407a4a9
VP
606
607 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
608 */
609 if (unlikely(opcode == CPL_FW4_MSG &&
610 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
611 rsp++;
612 opcode = ((const struct rss_header *)rsp)->opcode;
613 rsp++;
614 if (opcode != CPL_SGE_EGR_UPDATE) {
615 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
616 , opcode);
617 goto out;
618 }
619 }
620
b8ff05a9
DM
621 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
622 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 623 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 624 struct sge_txq *txq;
b8ff05a9 625
e46dab4d 626 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 627 txq->restarts++;
e46dab4d 628 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
629 struct sge_eth_txq *eq;
630
631 eq = container_of(txq, struct sge_eth_txq, q);
632 netif_tx_wake_queue(eq->txq);
633 } else {
634 struct sge_ofld_txq *oq;
635
636 oq = container_of(txq, struct sge_ofld_txq, q);
637 tasklet_schedule(&oq->qresume_tsk);
638 }
639 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
640 const struct cpl_fw6_msg *p = (void *)rsp;
641
688848b1
AB
642#ifdef CONFIG_CHELSIO_T4_DCB
643 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 644 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 645 unsigned int action =
2b5fb1f2 646 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
647
648 if (cmd == FW_PORT_CMD &&
649 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 650 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
651 be32_to_cpu(pcmd->op_to_portid));
652 struct net_device *dev = q->adap->port[port];
653 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 654 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
655 ? CXGB4_DCB_INPUT_FW_DISABLED
656 : CXGB4_DCB_INPUT_FW_ENABLED);
657
658 cxgb4_dcb_state_fsm(dev, state_input);
659 }
660
661 if (cmd == FW_PORT_CMD &&
662 action == FW_PORT_ACTION_L2_DCB_CFG)
663 dcb_rpl(q->adap, pcmd);
664 else
665#endif
666 if (p->type == 0)
667 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
668 } else if (opcode == CPL_L2T_WRITE_RPL) {
669 const struct cpl_l2t_write_rpl *p = (void *)rsp;
670
671 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
672 } else if (opcode == CPL_SET_TCB_RPL) {
673 const struct cpl_set_tcb_rpl *p = (void *)rsp;
674
675 filter_rpl(q->adap, p);
b8ff05a9
DM
676 } else
677 dev_err(q->adap->pdev_dev,
678 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 679out:
b8ff05a9
DM
680 return 0;
681}
682
683/**
684 * uldrx_handler - response queue handler for ULD queues
685 * @q: the response queue that received the packet
686 * @rsp: the response queue descriptor holding the offload message
687 * @gl: the gather list of packet fragments
688 *
689 * Deliver an ingress offload packet to a ULD. All processing is done by
690 * the ULD, we just maintain statistics.
691 */
692static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
693 const struct pkt_gl *gl)
694{
695 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
696
b407a4a9
VP
697 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
698 */
699 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
700 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
701 rsp += 2;
702
b8ff05a9
DM
703 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
704 rxq->stats.nomem++;
705 return -1;
706 }
707 if (gl == NULL)
708 rxq->stats.imm++;
709 else if (gl == CXGB4_MSG_AN)
710 rxq->stats.an++;
711 else
712 rxq->stats.pkts++;
713 return 0;
714}
715
716static void disable_msi(struct adapter *adapter)
717{
718 if (adapter->flags & USING_MSIX) {
719 pci_disable_msix(adapter->pdev);
720 adapter->flags &= ~USING_MSIX;
721 } else if (adapter->flags & USING_MSI) {
722 pci_disable_msi(adapter->pdev);
723 adapter->flags &= ~USING_MSI;
724 }
725}
726
727/*
728 * Interrupt handler for non-data events used with MSI-X.
729 */
730static irqreturn_t t4_nondata_intr(int irq, void *cookie)
731{
732 struct adapter *adap = cookie;
0d804338 733 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 734
0d804338 735 if (v & PFSW_F) {
b8ff05a9 736 adap->swintr = 1;
0d804338 737 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 738 }
c3c7b121
HS
739 if (adap->flags & MASTER_PF)
740 t4_slow_intr_handler(adap);
b8ff05a9
DM
741 return IRQ_HANDLED;
742}
743
744/*
745 * Name the MSI-X interrupts.
746 */
747static void name_msix_vecs(struct adapter *adap)
748{
ba27816c 749 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
750
751 /* non-data interrupts */
b1a3c2b6 752 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
753
754 /* FW events */
b1a3c2b6
DM
755 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
756 adap->port[0]->name);
b8ff05a9
DM
757
758 /* Ethernet queues */
759 for_each_port(adap, j) {
760 struct net_device *d = adap->port[j];
761 const struct port_info *pi = netdev_priv(d);
762
ba27816c 763 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
764 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
765 d->name, i);
b8ff05a9
DM
766 }
767
768 /* offload queues */
f90ce561
HS
769 for_each_iscsirxq(&adap->sge, i)
770 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
b1a3c2b6 771 adap->port[0]->name, i);
ba27816c
DM
772
773 for_each_rdmarxq(&adap->sge, i)
774 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 775 adap->port[0]->name, i);
cf38be6d
HS
776
777 for_each_rdmaciq(&adap->sge, i)
778 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
779 adap->port[0]->name, i);
b8ff05a9
DM
780}
781
782static int request_msix_queue_irqs(struct adapter *adap)
783{
784 struct sge *s = &adap->sge;
f90ce561 785 int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
cf38be6d 786 int msi_index = 2;
b8ff05a9
DM
787
788 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
789 adap->msix_info[1].desc, &s->fw_evtq);
790 if (err)
791 return err;
792
793 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
794 err = request_irq(adap->msix_info[msi_index].vec,
795 t4_sge_intr_msix, 0,
796 adap->msix_info[msi_index].desc,
b8ff05a9
DM
797 &s->ethrxq[ethqidx].rspq);
798 if (err)
799 goto unwind;
404d9e3f 800 msi_index++;
b8ff05a9 801 }
f90ce561 802 for_each_iscsirxq(s, iscsiqidx) {
404d9e3f
VP
803 err = request_irq(adap->msix_info[msi_index].vec,
804 t4_sge_intr_msix, 0,
805 adap->msix_info[msi_index].desc,
f90ce561 806 &s->iscsirxq[iscsiqidx].rspq);
b8ff05a9
DM
807 if (err)
808 goto unwind;
404d9e3f 809 msi_index++;
b8ff05a9
DM
810 }
811 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
812 err = request_irq(adap->msix_info[msi_index].vec,
813 t4_sge_intr_msix, 0,
814 adap->msix_info[msi_index].desc,
b8ff05a9
DM
815 &s->rdmarxq[rdmaqidx].rspq);
816 if (err)
817 goto unwind;
404d9e3f 818 msi_index++;
b8ff05a9 819 }
cf38be6d
HS
820 for_each_rdmaciq(s, rdmaciqqidx) {
821 err = request_irq(adap->msix_info[msi_index].vec,
822 t4_sge_intr_msix, 0,
823 adap->msix_info[msi_index].desc,
824 &s->rdmaciq[rdmaciqqidx].rspq);
825 if (err)
826 goto unwind;
827 msi_index++;
828 }
b8ff05a9
DM
829 return 0;
830
831unwind:
cf38be6d
HS
832 while (--rdmaciqqidx >= 0)
833 free_irq(adap->msix_info[--msi_index].vec,
834 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 835 while (--rdmaqidx >= 0)
404d9e3f 836 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9 837 &s->rdmarxq[rdmaqidx].rspq);
f90ce561 838 while (--iscsiqidx >= 0)
404d9e3f 839 free_irq(adap->msix_info[--msi_index].vec,
f90ce561 840 &s->iscsirxq[iscsiqidx].rspq);
b8ff05a9 841 while (--ethqidx >= 0)
404d9e3f
VP
842 free_irq(adap->msix_info[--msi_index].vec,
843 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
844 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
845 return err;
846}
847
848static void free_msix_queue_irqs(struct adapter *adap)
849{
404d9e3f 850 int i, msi_index = 2;
b8ff05a9
DM
851 struct sge *s = &adap->sge;
852
853 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
854 for_each_ethrxq(s, i)
404d9e3f 855 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
f90ce561
HS
856 for_each_iscsirxq(s, i)
857 free_irq(adap->msix_info[msi_index++].vec,
858 &s->iscsirxq[i].rspq);
b8ff05a9 859 for_each_rdmarxq(s, i)
404d9e3f 860 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
861 for_each_rdmaciq(s, i)
862 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
863}
864
671b0060 865/**
812034f1 866 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
867 * @pi: the port
868 * @queues: array of queue indices for RSS
869 *
870 * Sets up the portion of the HW RSS table for the port's VI to distribute
871 * packets to the Rx queues in @queues.
c035e183 872 * Should never be called before setting up sge eth rx queues
671b0060 873 */
812034f1 874int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
875{
876 u16 *rss;
877 int i, err;
c035e183
HS
878 struct adapter *adapter = pi->adapter;
879 const struct sge_eth_rxq *rxq;
671b0060 880
c035e183 881 rxq = &adapter->sge.ethrxq[pi->first_qset];
671b0060
DM
882 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
883 if (!rss)
884 return -ENOMEM;
885
886 /* map the queue indices to queue ids */
887 for (i = 0; i < pi->rss_size; i++, queues++)
c035e183 888 rss[i] = rxq[*queues].rspq.abs_id;
671b0060 889
b2612722 890 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
060e0c75 891 pi->rss_size, rss, pi->rss_size);
c035e183
HS
892 /* If Tunnel All Lookup isn't specified in the global RSS
893 * Configuration, then we need to specify a default Ingress
894 * Queue for any ingress packets which aren't hashed. We'll
895 * use our first ingress queue ...
896 */
897 if (!err)
898 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
899 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
900 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
901 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
902 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
903 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
904 rss[0]);
671b0060
DM
905 kfree(rss);
906 return err;
907}
908
b8ff05a9
DM
909/**
910 * setup_rss - configure RSS
911 * @adap: the adapter
912 *
671b0060 913 * Sets up RSS for each port.
b8ff05a9
DM
914 */
915static int setup_rss(struct adapter *adap)
916{
c035e183 917 int i, j, err;
b8ff05a9
DM
918
919 for_each_port(adap, i) {
920 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 921
c035e183
HS
922 /* Fill default values with equal distribution */
923 for (j = 0; j < pi->rss_size; j++)
924 pi->rss[j] = j % pi->nqsets;
925
812034f1 926 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
927 if (err)
928 return err;
929 }
930 return 0;
931}
932
e46dab4d
DM
933/*
934 * Return the channel of the ingress queue with the given qid.
935 */
936static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
937{
938 qid -= p->ingr_start;
939 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
940}
941
b8ff05a9
DM
942/*
943 * Wait until all NAPI handlers are descheduled.
944 */
945static void quiesce_rx(struct adapter *adap)
946{
947 int i;
948
4b8e27a8 949 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
950 struct sge_rspq *q = adap->sge.ingr_map[i];
951
3a336cb1 952 if (q && q->handler) {
b8ff05a9 953 napi_disable(&q->napi);
3a336cb1
HS
954 local_bh_disable();
955 while (!cxgb_poll_lock_napi(q))
956 mdelay(1);
957 local_bh_enable();
958 }
959
b8ff05a9
DM
960 }
961}
962
b37987e8
HS
963/* Disable interrupt and napi handler */
964static void disable_interrupts(struct adapter *adap)
965{
966 if (adap->flags & FULL_INIT_DONE) {
967 t4_intr_disable(adap);
968 if (adap->flags & USING_MSIX) {
969 free_msix_queue_irqs(adap);
970 free_irq(adap->msix_info[0].vec, adap);
971 } else {
972 free_irq(adap->pdev->irq, adap);
973 }
974 quiesce_rx(adap);
975 }
976}
977
b8ff05a9
DM
978/*
979 * Enable NAPI scheduling and interrupt generation for all Rx queues.
980 */
981static void enable_rx(struct adapter *adap)
982{
983 int i;
984
4b8e27a8 985 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
986 struct sge_rspq *q = adap->sge.ingr_map[i];
987
988 if (!q)
989 continue;
3a336cb1
HS
990 if (q->handler) {
991 cxgb_busy_poll_init_lock(q);
b8ff05a9 992 napi_enable(&q->napi);
3a336cb1 993 }
b8ff05a9 994 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
995 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
996 SEINTARM_V(q->intr_params) |
997 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
998 }
999}
1000
1c6a5b0e
HS
1001static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1002 unsigned int nq, unsigned int per_chan, int msi_idx,
1003 u16 *ids)
1004{
1005 int i, err;
1006
1007 for (i = 0; i < nq; i++, q++) {
1008 if (msi_idx > 0)
1009 msi_idx++;
1010 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1011 adap->port[i / per_chan],
1012 msi_idx, q->fl.size ? &q->fl : NULL,
145ef8a5 1013 uldrx_handler, 0);
1c6a5b0e
HS
1014 if (err)
1015 return err;
1016 memset(&q->stats, 0, sizeof(q->stats));
1017 if (ids)
1018 ids[i] = q->rspq.abs_id;
1019 }
1020 return 0;
1021}
1022
b8ff05a9
DM
1023/**
1024 * setup_sge_queues - configure SGE Tx/Rx/response queues
1025 * @adap: the adapter
1026 *
1027 * Determines how many sets of SGE queues to use and initializes them.
1028 * We support multiple queue sets per port if we have MSI-X, otherwise
1029 * just one queue set per port.
1030 */
1031static int setup_sge_queues(struct adapter *adap)
1032{
1033 int err, msi_idx, i, j;
1034 struct sge *s = &adap->sge;
1035
4b8e27a8
HS
1036 bitmap_zero(s->starving_fl, s->egr_sz);
1037 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1038
1039 if (adap->flags & USING_MSIX)
1040 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1041 else {
1042 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
145ef8a5 1043 NULL, NULL, -1);
b8ff05a9
DM
1044 if (err)
1045 return err;
1046 msi_idx = -((int)s->intrq.abs_id + 1);
1047 }
1048
4b8e27a8
HS
1049 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1050 * don't forget to update the following which need to be
1051 * synchronized to and changes here.
1052 *
1053 * 1. The calculations of MAX_INGQ in cxgb4.h.
1054 *
1055 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1056 * to accommodate any new/deleted Ingress Queues
1057 * which need MSI-X Vectors.
1058 *
1059 * 3. Update sge_qinfo_show() to include information on the
1060 * new/deleted queues.
1061 */
b8ff05a9 1062 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
145ef8a5 1063 msi_idx, NULL, fwevtq_handler, -1);
b8ff05a9
DM
1064 if (err) {
1065freeout: t4_free_sge_resources(adap);
1066 return err;
1067 }
1068
1069 for_each_port(adap, i) {
1070 struct net_device *dev = adap->port[i];
1071 struct port_info *pi = netdev_priv(dev);
1072 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1073 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1074
1075 for (j = 0; j < pi->nqsets; j++, q++) {
1076 if (msi_idx > 0)
1077 msi_idx++;
1078 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079 msi_idx, &q->fl,
145ef8a5
HS
1080 t4_ethrx_handler,
1081 t4_get_mps_bg_map(adap,
1082 pi->tx_chan));
b8ff05a9
DM
1083 if (err)
1084 goto freeout;
1085 q->rspq.idx = j;
1086 memset(&q->stats, 0, sizeof(q->stats));
1087 }
1088 for (j = 0; j < pi->nqsets; j++, t++) {
1089 err = t4_sge_alloc_eth_txq(adap, t, dev,
1090 netdev_get_tx_queue(dev, j),
1091 s->fw_evtq.cntxt_id);
1092 if (err)
1093 goto freeout;
1094 }
1095 }
1096
f90ce561
HS
1097 j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1098 for_each_iscsirxq(s, i) {
1c6a5b0e
HS
1099 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1100 adap->port[i / j],
b8ff05a9
DM
1101 s->fw_evtq.cntxt_id);
1102 if (err)
1103 goto freeout;
1104 }
1105
1c6a5b0e
HS
1106#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1107 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1108 if (err) \
1109 goto freeout; \
1110 if (msi_idx > 0) \
1111 msi_idx += nq; \
1112} while (0)
b8ff05a9 1113
f90ce561 1114 ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq);
1c6a5b0e 1115 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
f36e58e5
HS
1116 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1117 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
b8ff05a9 1118
1c6a5b0e 1119#undef ALLOC_OFLD_RXQS
cf38be6d 1120
b8ff05a9
DM
1121 for_each_port(adap, i) {
1122 /*
1123 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1124 * have RDMA queues, and that's the right value.
1125 */
1126 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1127 s->fw_evtq.cntxt_id,
1128 s->rdmarxq[i].rspq.cntxt_id);
1129 if (err)
1130 goto freeout;
1131 }
1132
9bb59b96 1133 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1134 MPS_TRC_RSS_CONTROL_A :
1135 MPS_T5_TRC_RSS_CONTROL_A,
1136 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1137 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1138 return 0;
1139}
1140
b8ff05a9
DM
1141/*
1142 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1143 * The allocated memory is cleared.
1144 */
1145void *t4_alloc_mem(size_t size)
1146{
8be04b93 1147 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1148
1149 if (!p)
89bf67f1 1150 p = vzalloc(size);
b8ff05a9
DM
1151 return p;
1152}
1153
1154/*
1155 * Free memory allocated through alloc_mem().
1156 */
fd88b31a 1157void t4_free_mem(void *addr)
b8ff05a9 1158{
d2fcb548 1159 kvfree(addr);
b8ff05a9
DM
1160}
1161
f2b7e78d
VP
1162/* Send a Work Request to write the filter at a specified index. We construct
1163 * a Firmware Filter Work Request to have the work done and put the indicated
1164 * filter into "pending" mode which will prevent any further actions against
1165 * it till we get a reply from the firmware on the completion status of the
1166 * request.
1167 */
1168static int set_filter_wr(struct adapter *adapter, int fidx)
1169{
1170 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1171 struct sk_buff *skb;
1172 struct fw_filter_wr *fwr;
1173 unsigned int ftid;
1174
f72f116a
MH
1175 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1176 if (!skb)
1177 return -ENOMEM;
1178
f2b7e78d
VP
1179 /* If the new filter requires loopback Destination MAC and/or VLAN
1180 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1181 * the filter.
1182 */
1183 if (f->fs.newdmac || f->fs.newvlan) {
1184 /* allocate L2T entry for new filter */
f7502659
HS
1185 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1186 f->fs.eport, f->fs.dmac);
f72f116a 1187 if (f->l2t == NULL) {
f72f116a 1188 kfree_skb(skb);
f2b7e78d
VP
1189 return -ENOMEM;
1190 }
1191 }
1192
1193 ftid = adapter->tids.ftid_base + fidx;
1194
f2b7e78d
VP
1195 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1196 memset(fwr, 0, sizeof(*fwr));
1197
1198 /* It would be nice to put most of the following in t4_hw.c but most
1199 * of the work is translating the cxgbtool ch_filter_specification
1200 * into the Work Request and the definition of that structure is
1201 * currently in cxgbtool.h which isn't appropriate to pull into the
1202 * common code. We may eventually try to come up with a more neutral
1203 * filter specification structure but for now it's easiest to simply
1204 * put this fairly direct code in line ...
1205 */
e2ac9628
HS
1206 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1207 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1208 fwr->tid_to_iq =
77a80e23
HS
1209 htonl(FW_FILTER_WR_TID_V(ftid) |
1210 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1211 FW_FILTER_WR_NOREPLY_V(0) |
1212 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1213 fwr->del_filter_to_l2tix =
77a80e23
HS
1214 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1215 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1216 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1217 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1218 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1219 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1220 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1221 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1222 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1223 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1224 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1225 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1226 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1227 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1228 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1229 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1230 fwr->ethtype = htons(f->fs.val.ethtype);
1231 fwr->ethtypem = htons(f->fs.mask.ethtype);
1232 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1233 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1234 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1235 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1236 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1237 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1238 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1239 fwr->smac_sel = 0;
1240 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1241 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1242 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1243 fwr->maci_to_matchtypem =
77a80e23
HS
1244 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1245 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1246 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1247 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1248 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1249 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1250 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1251 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1252 fwr->ptcl = f->fs.val.proto;
1253 fwr->ptclm = f->fs.mask.proto;
1254 fwr->ttyp = f->fs.val.tos;
1255 fwr->ttypm = f->fs.mask.tos;
1256 fwr->ivlan = htons(f->fs.val.ivlan);
1257 fwr->ivlanm = htons(f->fs.mask.ivlan);
1258 fwr->ovlan = htons(f->fs.val.ovlan);
1259 fwr->ovlanm = htons(f->fs.mask.ovlan);
1260 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1261 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1262 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1263 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1264 fwr->lp = htons(f->fs.val.lport);
1265 fwr->lpm = htons(f->fs.mask.lport);
1266 fwr->fp = htons(f->fs.val.fport);
1267 fwr->fpm = htons(f->fs.mask.fport);
1268 if (f->fs.newsmac)
1269 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1270
1271 /* Mark the filter as "pending" and ship off the Filter Work Request.
1272 * When we get the Work Request Reply we'll clear the pending status.
1273 */
1274 f->pending = 1;
1275 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1276 t4_ofld_send(adapter, skb);
1277 return 0;
1278}
1279
1280/* Delete the filter at a specified index.
1281 */
1282static int del_filter_wr(struct adapter *adapter, int fidx)
1283{
1284 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1285 struct sk_buff *skb;
1286 struct fw_filter_wr *fwr;
1287 unsigned int len, ftid;
1288
1289 len = sizeof(*fwr);
1290 ftid = adapter->tids.ftid_base + fidx;
1291
f72f116a
MH
1292 skb = alloc_skb(len, GFP_KERNEL);
1293 if (!skb)
1294 return -ENOMEM;
1295
f2b7e78d
VP
1296 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1297 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1298
1299 /* Mark the filter as "pending" and ship off the Filter Work Request.
1300 * When we get the Work Request Reply we'll clear the pending status.
1301 */
1302 f->pending = 1;
1303 t4_mgmt_tx(adapter, skb);
1304 return 0;
1305}
1306
688848b1
AB
1307static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1308 void *accel_priv, select_queue_fallback_t fallback)
1309{
1310 int txq;
1311
1312#ifdef CONFIG_CHELSIO_T4_DCB
1313 /* If a Data Center Bridging has been successfully negotiated on this
1314 * link then we'll use the skb's priority to map it to a TX Queue.
1315 * The skb's priority is determined via the VLAN Tag Priority Code
1316 * Point field.
1317 */
1318 if (cxgb4_dcb_enabled(dev)) {
1319 u16 vlan_tci;
1320 int err;
1321
1322 err = vlan_get_tag(skb, &vlan_tci);
1323 if (unlikely(err)) {
1324 if (net_ratelimit())
1325 netdev_warn(dev,
1326 "TX Packet without VLAN Tag on DCB Link\n");
1327 txq = 0;
1328 } else {
1329 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1330#ifdef CONFIG_CHELSIO_T4_FCOE
1331 if (skb->protocol == htons(ETH_P_FCOE))
1332 txq = skb->priority & 0x7;
1333#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1334 }
1335 return txq;
1336 }
1337#endif /* CONFIG_CHELSIO_T4_DCB */
1338
1339 if (select_queue) {
1340 txq = (skb_rx_queue_recorded(skb)
1341 ? skb_get_rx_queue(skb)
1342 : smp_processor_id());
1343
1344 while (unlikely(txq >= dev->real_num_tx_queues))
1345 txq -= dev->real_num_tx_queues;
1346
1347 return txq;
1348 }
1349
1350 return fallback(dev, skb) % dev->real_num_tx_queues;
1351}
1352
b8ff05a9
DM
1353static int closest_timer(const struct sge *s, int time)
1354{
1355 int i, delta, match = 0, min_delta = INT_MAX;
1356
1357 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1358 delta = time - s->timer_val[i];
1359 if (delta < 0)
1360 delta = -delta;
1361 if (delta < min_delta) {
1362 min_delta = delta;
1363 match = i;
1364 }
1365 }
1366 return match;
1367}
1368
1369static int closest_thres(const struct sge *s, int thres)
1370{
1371 int i, delta, match = 0, min_delta = INT_MAX;
1372
1373 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1374 delta = thres - s->counter_val[i];
1375 if (delta < 0)
1376 delta = -delta;
1377 if (delta < min_delta) {
1378 min_delta = delta;
1379 match = i;
1380 }
1381 }
1382 return match;
1383}
1384
b8ff05a9 1385/**
812034f1 1386 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1387 * @q: the Rx queue
1388 * @us: the hold-off time in us, or 0 to disable timer
1389 * @cnt: the hold-off packet count, or 0 to disable counter
1390 *
1391 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1392 * one of the two needs to be enabled for the queue to generate interrupts.
1393 */
812034f1
HS
1394int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1395 unsigned int us, unsigned int cnt)
b8ff05a9 1396{
c887ad0e
HS
1397 struct adapter *adap = q->adap;
1398
b8ff05a9
DM
1399 if ((us | cnt) == 0)
1400 cnt = 1;
1401
1402 if (cnt) {
1403 int err;
1404 u32 v, new_idx;
1405
1406 new_idx = closest_thres(&adap->sge, cnt);
1407 if (q->desc && q->pktcnt_idx != new_idx) {
1408 /* the queue has already been created, update it */
5167865a
HS
1409 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1410 FW_PARAMS_PARAM_X_V(
1411 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1412 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
b2612722
HS
1413 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1414 &v, &new_idx);
b8ff05a9
DM
1415 if (err)
1416 return err;
1417 }
1418 q->pktcnt_idx = new_idx;
1419 }
1420
1421 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1ecc7b7a 1422 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
b8ff05a9
DM
1423 return 0;
1424}
1425
c8f44aff 1426static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1427{
2ed28baa 1428 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1429 netdev_features_t changed = dev->features ^ features;
19ecae2c 1430 int err;
19ecae2c 1431
f646968f 1432 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1433 return 0;
19ecae2c 1434
b2612722 1435 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
2ed28baa 1436 -1, -1, -1,
f646968f 1437 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1438 if (unlikely(err))
f646968f 1439 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1440 return err;
87b6cf51
DM
1441}
1442
91744948 1443static int setup_debugfs(struct adapter *adap)
b8ff05a9 1444{
b8ff05a9
DM
1445 if (IS_ERR_OR_NULL(adap->debugfs_root))
1446 return -1;
1447
fd88b31a
HS
1448#ifdef CONFIG_DEBUG_FS
1449 t4_setup_debugfs(adap);
1450#endif
b8ff05a9
DM
1451 return 0;
1452}
1453
1454/*
1455 * upper-layer driver support
1456 */
1457
1458/*
1459 * Allocate an active-open TID and set it to the supplied value.
1460 */
1461int cxgb4_alloc_atid(struct tid_info *t, void *data)
1462{
1463 int atid = -1;
1464
1465 spin_lock_bh(&t->atid_lock);
1466 if (t->afree) {
1467 union aopen_entry *p = t->afree;
1468
f2b7e78d 1469 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1470 t->afree = p->next;
1471 p->data = data;
1472 t->atids_in_use++;
1473 }
1474 spin_unlock_bh(&t->atid_lock);
1475 return atid;
1476}
1477EXPORT_SYMBOL(cxgb4_alloc_atid);
1478
1479/*
1480 * Release an active-open TID.
1481 */
1482void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1483{
f2b7e78d 1484 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1485
1486 spin_lock_bh(&t->atid_lock);
1487 p->next = t->afree;
1488 t->afree = p;
1489 t->atids_in_use--;
1490 spin_unlock_bh(&t->atid_lock);
1491}
1492EXPORT_SYMBOL(cxgb4_free_atid);
1493
1494/*
1495 * Allocate a server TID and set it to the supplied value.
1496 */
1497int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1498{
1499 int stid;
1500
1501 spin_lock_bh(&t->stid_lock);
1502 if (family == PF_INET) {
1503 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1504 if (stid < t->nstids)
1505 __set_bit(stid, t->stid_bmap);
1506 else
1507 stid = -1;
1508 } else {
1509 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1510 if (stid < 0)
1511 stid = -1;
1512 }
1513 if (stid >= 0) {
1514 t->stid_tab[stid].data = data;
1515 stid += t->stid_base;
15f63b74
KS
1516 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1517 * This is equivalent to 4 TIDs. With CLIP enabled it
1518 * needs 2 TIDs.
1519 */
1520 if (family == PF_INET)
1521 t->stids_in_use++;
1522 else
1523 t->stids_in_use += 4;
b8ff05a9
DM
1524 }
1525 spin_unlock_bh(&t->stid_lock);
1526 return stid;
1527}
1528EXPORT_SYMBOL(cxgb4_alloc_stid);
1529
dca4faeb
VP
1530/* Allocate a server filter TID and set it to the supplied value.
1531 */
1532int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1533{
1534 int stid;
1535
1536 spin_lock_bh(&t->stid_lock);
1537 if (family == PF_INET) {
1538 stid = find_next_zero_bit(t->stid_bmap,
1539 t->nstids + t->nsftids, t->nstids);
1540 if (stid < (t->nstids + t->nsftids))
1541 __set_bit(stid, t->stid_bmap);
1542 else
1543 stid = -1;
1544 } else {
1545 stid = -1;
1546 }
1547 if (stid >= 0) {
1548 t->stid_tab[stid].data = data;
470c60c4
KS
1549 stid -= t->nstids;
1550 stid += t->sftid_base;
2248b293 1551 t->sftids_in_use++;
dca4faeb
VP
1552 }
1553 spin_unlock_bh(&t->stid_lock);
1554 return stid;
1555}
1556EXPORT_SYMBOL(cxgb4_alloc_sftid);
1557
1558/* Release a server TID.
b8ff05a9
DM
1559 */
1560void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1561{
470c60c4
KS
1562 /* Is it a server filter TID? */
1563 if (t->nsftids && (stid >= t->sftid_base)) {
1564 stid -= t->sftid_base;
1565 stid += t->nstids;
1566 } else {
1567 stid -= t->stid_base;
1568 }
1569
b8ff05a9
DM
1570 spin_lock_bh(&t->stid_lock);
1571 if (family == PF_INET)
1572 __clear_bit(stid, t->stid_bmap);
1573 else
1574 bitmap_release_region(t->stid_bmap, stid, 2);
1575 t->stid_tab[stid].data = NULL;
2248b293
HS
1576 if (stid < t->nstids) {
1577 if (family == PF_INET)
1578 t->stids_in_use--;
1579 else
1580 t->stids_in_use -= 4;
1581 } else {
1582 t->sftids_in_use--;
1583 }
b8ff05a9
DM
1584 spin_unlock_bh(&t->stid_lock);
1585}
1586EXPORT_SYMBOL(cxgb4_free_stid);
1587
1588/*
1589 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1590 */
1591static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1592 unsigned int tid)
1593{
1594 struct cpl_tid_release *req;
1595
1596 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1597 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1598 INIT_TP_WR(req, tid);
1599 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1600}
1601
1602/*
1603 * Queue a TID release request and if necessary schedule a work queue to
1604 * process it.
1605 */
31b9c19b 1606static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1607 unsigned int tid)
b8ff05a9
DM
1608{
1609 void **p = &t->tid_tab[tid];
1610 struct adapter *adap = container_of(t, struct adapter, tids);
1611
1612 spin_lock_bh(&adap->tid_release_lock);
1613 *p = adap->tid_release_head;
1614 /* Low 2 bits encode the Tx channel number */
1615 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1616 if (!adap->tid_release_task_busy) {
1617 adap->tid_release_task_busy = true;
29aaee65 1618 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1619 }
1620 spin_unlock_bh(&adap->tid_release_lock);
1621}
b8ff05a9
DM
1622
1623/*
1624 * Process the list of pending TID release requests.
1625 */
1626static void process_tid_release_list(struct work_struct *work)
1627{
1628 struct sk_buff *skb;
1629 struct adapter *adap;
1630
1631 adap = container_of(work, struct adapter, tid_release_task);
1632
1633 spin_lock_bh(&adap->tid_release_lock);
1634 while (adap->tid_release_head) {
1635 void **p = adap->tid_release_head;
1636 unsigned int chan = (uintptr_t)p & 3;
1637 p = (void *)p - chan;
1638
1639 adap->tid_release_head = *p;
1640 *p = NULL;
1641 spin_unlock_bh(&adap->tid_release_lock);
1642
1643 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1644 GFP_KERNEL)))
1645 schedule_timeout_uninterruptible(1);
1646
1647 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1648 t4_ofld_send(adap, skb);
1649 spin_lock_bh(&adap->tid_release_lock);
1650 }
1651 adap->tid_release_task_busy = false;
1652 spin_unlock_bh(&adap->tid_release_lock);
1653}
1654
1655/*
1656 * Release a TID and inform HW. If we are unable to allocate the release
1657 * message we defer to a work queue.
1658 */
1659void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1660{
b8ff05a9
DM
1661 struct sk_buff *skb;
1662 struct adapter *adap = container_of(t, struct adapter, tids);
1663
9a1bb9f6
HS
1664 WARN_ON(tid >= t->ntids);
1665
1666 if (t->tid_tab[tid]) {
1667 t->tid_tab[tid] = NULL;
1668 if (t->hash_base && (tid >= t->hash_base))
1669 atomic_dec(&t->hash_tids_in_use);
1670 else
1671 atomic_dec(&t->tids_in_use);
1672 }
1673
b8ff05a9
DM
1674 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1675 if (likely(skb)) {
b8ff05a9
DM
1676 mk_tid_release(skb, chan, tid);
1677 t4_ofld_send(adap, skb);
1678 } else
1679 cxgb4_queue_tid_release(t, chan, tid);
b8ff05a9
DM
1680}
1681EXPORT_SYMBOL(cxgb4_remove_tid);
1682
1683/*
1684 * Allocate and initialize the TID tables. Returns 0 on success.
1685 */
1686static int tid_init(struct tid_info *t)
1687{
1688 size_t size;
f2b7e78d 1689 unsigned int stid_bmap_size;
b8ff05a9 1690 unsigned int natids = t->natids;
b6f8eaec 1691 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1692
dca4faeb 1693 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1694 size = t->ntids * sizeof(*t->tid_tab) +
1695 natids * sizeof(*t->atid_tab) +
b8ff05a9 1696 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1697 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1698 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1699 t->nftids * sizeof(*t->ftid_tab) +
1700 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1701
b8ff05a9
DM
1702 t->tid_tab = t4_alloc_mem(size);
1703 if (!t->tid_tab)
1704 return -ENOMEM;
1705
1706 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1707 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1708 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1709 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1710 spin_lock_init(&t->stid_lock);
1711 spin_lock_init(&t->atid_lock);
1712
1713 t->stids_in_use = 0;
2248b293 1714 t->sftids_in_use = 0;
b8ff05a9
DM
1715 t->afree = NULL;
1716 t->atids_in_use = 0;
1717 atomic_set(&t->tids_in_use, 0);
9a1bb9f6 1718 atomic_set(&t->hash_tids_in_use, 0);
b8ff05a9
DM
1719
1720 /* Setup the free list for atid_tab and clear the stid bitmap. */
1721 if (natids) {
1722 while (--natids)
1723 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1724 t->afree = t->atid_tab;
1725 }
dca4faeb 1726 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1727 /* Reserve stid 0 for T4/T5 adapters */
1728 if (!t->stid_base &&
3ccc6cf7 1729 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
b6f8eaec
KS
1730 __set_bit(0, t->stid_bmap);
1731
b8ff05a9
DM
1732 return 0;
1733}
1734
1735/**
1736 * cxgb4_create_server - create an IP server
1737 * @dev: the device
1738 * @stid: the server TID
1739 * @sip: local IP address to bind server to
1740 * @sport: the server's TCP port
1741 * @queue: queue to direct messages from this server to
1742 *
1743 * Create an IP server for the given port and address.
1744 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1745 */
1746int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1747 __be32 sip, __be16 sport, __be16 vlan,
1748 unsigned int queue)
b8ff05a9
DM
1749{
1750 unsigned int chan;
1751 struct sk_buff *skb;
1752 struct adapter *adap;
1753 struct cpl_pass_open_req *req;
80f40c1f 1754 int ret;
b8ff05a9
DM
1755
1756 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1757 if (!skb)
1758 return -ENOMEM;
1759
1760 adap = netdev2adap(dev);
1761 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1762 INIT_TP_WR(req, 0);
1763 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1764 req->local_port = sport;
1765 req->peer_port = htons(0);
1766 req->local_ip = sip;
1767 req->peer_ip = htonl(0);
e46dab4d 1768 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1769 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1770 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1771 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1772 ret = t4_mgmt_tx(adap, skb);
1773 return net_xmit_eval(ret);
b8ff05a9
DM
1774}
1775EXPORT_SYMBOL(cxgb4_create_server);
1776
80f40c1f
VP
1777/* cxgb4_create_server6 - create an IPv6 server
1778 * @dev: the device
1779 * @stid: the server TID
1780 * @sip: local IPv6 address to bind server to
1781 * @sport: the server's TCP port
1782 * @queue: queue to direct messages from this server to
1783 *
1784 * Create an IPv6 server for the given port and address.
1785 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1786 */
1787int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1788 const struct in6_addr *sip, __be16 sport,
1789 unsigned int queue)
1790{
1791 unsigned int chan;
1792 struct sk_buff *skb;
1793 struct adapter *adap;
1794 struct cpl_pass_open_req6 *req;
1795 int ret;
1796
1797 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1798 if (!skb)
1799 return -ENOMEM;
1800
1801 adap = netdev2adap(dev);
1802 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1803 INIT_TP_WR(req, 0);
1804 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1805 req->local_port = sport;
1806 req->peer_port = htons(0);
1807 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1808 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1809 req->peer_ip_hi = cpu_to_be64(0);
1810 req->peer_ip_lo = cpu_to_be64(0);
1811 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1812 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1813 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1814 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1815 ret = t4_mgmt_tx(adap, skb);
1816 return net_xmit_eval(ret);
1817}
1818EXPORT_SYMBOL(cxgb4_create_server6);
1819
1820int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1821 unsigned int queue, bool ipv6)
1822{
1823 struct sk_buff *skb;
1824 struct adapter *adap;
1825 struct cpl_close_listsvr_req *req;
1826 int ret;
1827
1828 adap = netdev2adap(dev);
1829
1830 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1831 if (!skb)
1832 return -ENOMEM;
1833
1834 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1835 INIT_TP_WR(req, 0);
1836 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1837 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1838 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1839 ret = t4_mgmt_tx(adap, skb);
1840 return net_xmit_eval(ret);
1841}
1842EXPORT_SYMBOL(cxgb4_remove_server);
1843
b8ff05a9
DM
1844/**
1845 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1846 * @mtus: the HW MTU table
1847 * @mtu: the target MTU
1848 * @idx: index of selected entry in the MTU table
1849 *
1850 * Returns the index and the value in the HW MTU table that is closest to
1851 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1852 * table, in which case that smallest available value is selected.
1853 */
1854unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1855 unsigned int *idx)
1856{
1857 unsigned int i = 0;
1858
1859 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1860 ++i;
1861 if (idx)
1862 *idx = i;
1863 return mtus[i];
1864}
1865EXPORT_SYMBOL(cxgb4_best_mtu);
1866
92e7ae71
HS
1867/**
1868 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1869 * @mtus: the HW MTU table
1870 * @header_size: Header Size
1871 * @data_size_max: maximum Data Segment Size
1872 * @data_size_align: desired Data Segment Size Alignment (2^N)
1873 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1874 *
1875 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1876 * MTU Table based solely on a Maximum MTU parameter, we break that
1877 * parameter up into a Header Size and Maximum Data Segment Size, and
1878 * provide a desired Data Segment Size Alignment. If we find an MTU in
1879 * the Hardware MTU Table which will result in a Data Segment Size with
1880 * the requested alignment _and_ that MTU isn't "too far" from the
1881 * closest MTU, then we'll return that rather than the closest MTU.
1882 */
1883unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1884 unsigned short header_size,
1885 unsigned short data_size_max,
1886 unsigned short data_size_align,
1887 unsigned int *mtu_idxp)
1888{
1889 unsigned short max_mtu = header_size + data_size_max;
1890 unsigned short data_size_align_mask = data_size_align - 1;
1891 int mtu_idx, aligned_mtu_idx;
1892
1893 /* Scan the MTU Table till we find an MTU which is larger than our
1894 * Maximum MTU or we reach the end of the table. Along the way,
1895 * record the last MTU found, if any, which will result in a Data
1896 * Segment Length matching the requested alignment.
1897 */
1898 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1899 unsigned short data_size = mtus[mtu_idx] - header_size;
1900
1901 /* If this MTU minus the Header Size would result in a
1902 * Data Segment Size of the desired alignment, remember it.
1903 */
1904 if ((data_size & data_size_align_mask) == 0)
1905 aligned_mtu_idx = mtu_idx;
1906
1907 /* If we're not at the end of the Hardware MTU Table and the
1908 * next element is larger than our Maximum MTU, drop out of
1909 * the loop.
1910 */
1911 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1912 break;
1913 }
1914
1915 /* If we fell out of the loop because we ran to the end of the table,
1916 * then we just have to use the last [largest] entry.
1917 */
1918 if (mtu_idx == NMTUS)
1919 mtu_idx--;
1920
1921 /* If we found an MTU which resulted in the requested Data Segment
1922 * Length alignment and that's "not far" from the largest MTU which is
1923 * less than or equal to the maximum MTU, then use that.
1924 */
1925 if (aligned_mtu_idx >= 0 &&
1926 mtu_idx - aligned_mtu_idx <= 1)
1927 mtu_idx = aligned_mtu_idx;
1928
1929 /* If the caller has passed in an MTU Index pointer, pass the
1930 * MTU Index back. Return the MTU value.
1931 */
1932 if (mtu_idxp)
1933 *mtu_idxp = mtu_idx;
1934 return mtus[mtu_idx];
1935}
1936EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1937
27999805
H
1938/**
1939 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1940 * @chip: chip type
1941 * @viid: VI id of the given port
1942 *
1943 * Return the SMT index for this VI.
1944 */
1945unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1946{
1947 /* In T4/T5, SMT contains 256 SMAC entries organized in
1948 * 128 rows of 2 entries each.
1949 * In T6, SMT contains 256 SMAC entries in 256 rows.
1950 * TODO: The below code needs to be updated when we add support
1951 * for 256 VFs.
1952 */
1953 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1954 return ((viid & 0x7f) << 1);
1955 else
1956 return (viid & 0x7f);
1957}
1958EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1959
b8ff05a9
DM
1960/**
1961 * cxgb4_port_chan - get the HW channel of a port
1962 * @dev: the net device for the port
1963 *
1964 * Return the HW Tx channel of the given port.
1965 */
1966unsigned int cxgb4_port_chan(const struct net_device *dev)
1967{
1968 return netdev2pinfo(dev)->tx_chan;
1969}
1970EXPORT_SYMBOL(cxgb4_port_chan);
1971
881806bc
VP
1972unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1973{
1974 struct adapter *adap = netdev2adap(dev);
2cc301d2 1975 u32 v1, v2, lp_count, hp_count;
881806bc 1976
f061de42
HS
1977 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1978 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 1979 if (is_t4(adap->params.chip)) {
f061de42
HS
1980 lp_count = LP_COUNT_G(v1);
1981 hp_count = HP_COUNT_G(v1);
2cc301d2 1982 } else {
f061de42
HS
1983 lp_count = LP_COUNT_T5_G(v1);
1984 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
1985 }
1986 return lpfifo ? lp_count : hp_count;
881806bc
VP
1987}
1988EXPORT_SYMBOL(cxgb4_dbfifo_count);
1989
b8ff05a9
DM
1990/**
1991 * cxgb4_port_viid - get the VI id of a port
1992 * @dev: the net device for the port
1993 *
1994 * Return the VI id of the given port.
1995 */
1996unsigned int cxgb4_port_viid(const struct net_device *dev)
1997{
1998 return netdev2pinfo(dev)->viid;
1999}
2000EXPORT_SYMBOL(cxgb4_port_viid);
2001
2002/**
2003 * cxgb4_port_idx - get the index of a port
2004 * @dev: the net device for the port
2005 *
2006 * Return the index of the given port.
2007 */
2008unsigned int cxgb4_port_idx(const struct net_device *dev)
2009{
2010 return netdev2pinfo(dev)->port_id;
2011}
2012EXPORT_SYMBOL(cxgb4_port_idx);
2013
b8ff05a9
DM
2014void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2015 struct tp_tcp_stats *v6)
2016{
2017 struct adapter *adap = pci_get_drvdata(pdev);
2018
2019 spin_lock(&adap->stats_lock);
2020 t4_tp_get_tcp_stats(adap, v4, v6);
2021 spin_unlock(&adap->stats_lock);
2022}
2023EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2024
2025void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2026 const unsigned int *pgsz_order)
2027{
2028 struct adapter *adap = netdev2adap(dev);
2029
0d804338
HS
2030 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2031 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2032 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2033 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
2034}
2035EXPORT_SYMBOL(cxgb4_iscsi_init);
2036
3069ee9b
VP
2037int cxgb4_flush_eq_cache(struct net_device *dev)
2038{
2039 struct adapter *adap = netdev2adap(dev);
3069ee9b 2040
5d700ecb 2041 return t4_sge_ctxt_flush(adap, adap->mbox);
3069ee9b
VP
2042}
2043EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2044
2045static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2046{
f061de42 2047 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
2048 __be64 indices;
2049 int ret;
2050
fc5ab020
HS
2051 spin_lock(&adap->win0_lock);
2052 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2053 sizeof(indices), (__be32 *)&indices,
2054 T4_MEMORY_READ);
2055 spin_unlock(&adap->win0_lock);
3069ee9b 2056 if (!ret) {
404d9e3f
VP
2057 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2058 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2059 }
2060 return ret;
2061}
2062
2063int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2064 u16 size)
2065{
2066 struct adapter *adap = netdev2adap(dev);
2067 u16 hw_pidx, hw_cidx;
2068 int ret;
2069
2070 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2071 if (ret)
2072 goto out;
2073
2074 if (pidx != hw_pidx) {
2075 u16 delta;
f612b815 2076 u32 val;
3069ee9b
VP
2077
2078 if (pidx >= hw_pidx)
2079 delta = pidx - hw_pidx;
2080 else
2081 delta = size - hw_pidx + pidx;
f612b815
HS
2082
2083 if (is_t4(adap->params.chip))
2084 val = PIDX_V(delta);
2085 else
2086 val = PIDX_T5_V(delta);
3069ee9b 2087 wmb();
f612b815
HS
2088 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2089 QID_V(qid) | val);
3069ee9b
VP
2090 }
2091out:
2092 return ret;
2093}
2094EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2095
031cf476
HS
2096int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2097{
2098 struct adapter *adap;
2099 u32 offset, memtype, memaddr;
6559a7e8 2100 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2101 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2102 int ret;
2103
2104 adap = netdev2adap(dev);
2105
2106 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2107
2108 /* Figure out where the offset lands in the Memory Type/Address scheme.
2109 * This code assumes that the memory is laid out starting at offset 0
2110 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2111 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2112 * MC0, and some have both MC0 and MC1.
2113 */
6559a7e8
HS
2114 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2115 edc0_size = EDRAM0_SIZE_G(size) << 20;
2116 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2117 edc1_size = EDRAM1_SIZE_G(size) << 20;
2118 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2119 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2120
2121 edc0_end = edc0_size;
2122 edc1_end = edc0_end + edc1_size;
2123 mc0_end = edc1_end + mc0_size;
2124
2125 if (offset < edc0_end) {
2126 memtype = MEM_EDC0;
2127 memaddr = offset;
2128 } else if (offset < edc1_end) {
2129 memtype = MEM_EDC1;
2130 memaddr = offset - edc0_end;
2131 } else {
2132 if (offset < mc0_end) {
2133 memtype = MEM_MC0;
2134 memaddr = offset - edc1_end;
3ccc6cf7 2135 } else if (is_t5(adap->params.chip)) {
6559a7e8
HS
2136 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2137 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2138 mc1_end = mc0_end + mc1_size;
2139 if (offset < mc1_end) {
2140 memtype = MEM_MC1;
2141 memaddr = offset - mc0_end;
2142 } else {
2143 /* offset beyond the end of any memory */
2144 goto err;
2145 }
3ccc6cf7
HS
2146 } else {
2147 /* T4/T6 only has a single memory channel */
2148 goto err;
031cf476
HS
2149 }
2150 }
2151
2152 spin_lock(&adap->win0_lock);
2153 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2154 spin_unlock(&adap->win0_lock);
2155 return ret;
2156
2157err:
2158 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2159 stag, offset);
2160 return -EINVAL;
2161}
2162EXPORT_SYMBOL(cxgb4_read_tpte);
2163
7730b4c7
HS
2164u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2165{
2166 u32 hi, lo;
2167 struct adapter *adap;
2168
2169 adap = netdev2adap(dev);
f612b815
HS
2170 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2171 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2172
2173 return ((u64)hi << 32) | (u64)lo;
2174}
2175EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2176
df64e4d3
HS
2177int cxgb4_bar2_sge_qregs(struct net_device *dev,
2178 unsigned int qid,
2179 enum cxgb4_bar2_qtype qtype,
66cf188e 2180 int user,
df64e4d3
HS
2181 u64 *pbar2_qoffset,
2182 unsigned int *pbar2_qid)
2183{
b2612722 2184 return t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2185 qid,
2186 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2187 ? T4_BAR2_QTYPE_EGRESS
2188 : T4_BAR2_QTYPE_INGRESS),
66cf188e 2189 user,
df64e4d3
HS
2190 pbar2_qoffset,
2191 pbar2_qid);
2192}
2193EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2194
b8ff05a9
DM
2195static struct pci_driver cxgb4_driver;
2196
2197static void check_neigh_update(struct neighbour *neigh)
2198{
2199 const struct device *parent;
2200 const struct net_device *netdev = neigh->dev;
2201
2202 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2203 netdev = vlan_dev_real_dev(netdev);
2204 parent = netdev->dev.parent;
2205 if (parent && parent->driver == &cxgb4_driver.driver)
2206 t4_l2t_update(dev_get_drvdata(parent), neigh);
2207}
2208
2209static int netevent_cb(struct notifier_block *nb, unsigned long event,
2210 void *data)
2211{
2212 switch (event) {
2213 case NETEVENT_NEIGH_UPDATE:
2214 check_neigh_update(data);
2215 break;
b8ff05a9
DM
2216 case NETEVENT_REDIRECT:
2217 default:
2218 break;
2219 }
2220 return 0;
2221}
2222
2223static bool netevent_registered;
2224static struct notifier_block cxgb4_netevent_nb = {
2225 .notifier_call = netevent_cb
2226};
2227
3069ee9b
VP
2228static void drain_db_fifo(struct adapter *adap, int usecs)
2229{
2cc301d2 2230 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2231
2232 do {
f061de42
HS
2233 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2234 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2235 if (is_t4(adap->params.chip)) {
f061de42
HS
2236 lp_count = LP_COUNT_G(v1);
2237 hp_count = HP_COUNT_G(v1);
2cc301d2 2238 } else {
f061de42
HS
2239 lp_count = LP_COUNT_T5_G(v1);
2240 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2241 }
2242
2243 if (lp_count == 0 && hp_count == 0)
2244 break;
3069ee9b
VP
2245 set_current_state(TASK_UNINTERRUPTIBLE);
2246 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2247 } while (1);
2248}
2249
2250static void disable_txq_db(struct sge_txq *q)
2251{
05eb2389
SW
2252 unsigned long flags;
2253
2254 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2255 q->db_disabled = 1;
05eb2389 2256 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2257}
2258
05eb2389 2259static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2260{
2261 spin_lock_irq(&q->db_lock);
05eb2389
SW
2262 if (q->db_pidx_inc) {
2263 /* Make sure that all writes to the TX descriptors
2264 * are committed before we tell HW about them.
2265 */
2266 wmb();
f612b815
HS
2267 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2268 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2269 q->db_pidx_inc = 0;
2270 }
3069ee9b
VP
2271 q->db_disabled = 0;
2272 spin_unlock_irq(&q->db_lock);
2273}
2274
2275static void disable_dbs(struct adapter *adap)
2276{
2277 int i;
2278
2279 for_each_ethrxq(&adap->sge, i)
2280 disable_txq_db(&adap->sge.ethtxq[i].q);
f90ce561 2281 for_each_iscsirxq(&adap->sge, i)
3069ee9b
VP
2282 disable_txq_db(&adap->sge.ofldtxq[i].q);
2283 for_each_port(adap, i)
2284 disable_txq_db(&adap->sge.ctrlq[i].q);
2285}
2286
2287static void enable_dbs(struct adapter *adap)
2288{
2289 int i;
2290
2291 for_each_ethrxq(&adap->sge, i)
05eb2389 2292 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
f90ce561 2293 for_each_iscsirxq(&adap->sge, i)
05eb2389 2294 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2295 for_each_port(adap, i)
05eb2389
SW
2296 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2297}
2298
2299static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2300{
2301 if (adap->uld_handle[CXGB4_ULD_RDMA])
2302 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2303 cmd);
2304}
2305
2306static void process_db_full(struct work_struct *work)
2307{
2308 struct adapter *adap;
2309
2310 adap = container_of(work, struct adapter, db_full_task);
2311
2312 drain_db_fifo(adap, dbfifo_drain_delay);
2313 enable_dbs(adap);
2314 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7
HS
2315 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2316 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2317 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2318 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2319 else
2320 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2321 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
3069ee9b
VP
2322}
2323
2324static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2325{
2326 u16 hw_pidx, hw_cidx;
2327 int ret;
2328
05eb2389 2329 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2330 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2331 if (ret)
2332 goto out;
2333 if (q->db_pidx != hw_pidx) {
2334 u16 delta;
f612b815 2335 u32 val;
3069ee9b
VP
2336
2337 if (q->db_pidx >= hw_pidx)
2338 delta = q->db_pidx - hw_pidx;
2339 else
2340 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2341
2342 if (is_t4(adap->params.chip))
2343 val = PIDX_V(delta);
2344 else
2345 val = PIDX_T5_V(delta);
3069ee9b 2346 wmb();
f612b815
HS
2347 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2348 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2349 }
2350out:
2351 q->db_disabled = 0;
05eb2389
SW
2352 q->db_pidx_inc = 0;
2353 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2354 if (ret)
2355 CH_WARN(adap, "DB drop recovery failed.\n");
2356}
2357static void recover_all_queues(struct adapter *adap)
2358{
2359 int i;
2360
2361 for_each_ethrxq(&adap->sge, i)
2362 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
f90ce561 2363 for_each_iscsirxq(&adap->sge, i)
3069ee9b
VP
2364 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2365 for_each_port(adap, i)
2366 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2367}
2368
881806bc
VP
2369static void process_db_drop(struct work_struct *work)
2370{
2371 struct adapter *adap;
881806bc 2372
3069ee9b 2373 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2374
d14807dd 2375 if (is_t4(adap->params.chip)) {
05eb2389 2376 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2377 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2378 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2379 recover_all_queues(adap);
05eb2389 2380 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2381 enable_dbs(adap);
05eb2389 2382 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7 2383 } else if (is_t5(adap->params.chip)) {
2cc301d2
SR
2384 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2385 u16 qid = (dropped_db >> 15) & 0x1ffff;
2386 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2387 u64 bar2_qoffset;
2388 unsigned int bar2_qid;
2389 int ret;
2cc301d2 2390
b2612722 2391 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
e0456717 2392 0, &bar2_qoffset, &bar2_qid);
df64e4d3
HS
2393 if (ret)
2394 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2395 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2396 else
f612b815 2397 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2398 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2399
2400 /* Re-enable BAR2 WC */
2401 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2402 }
2403
3ccc6cf7
HS
2404 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2405 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2406}
2407
2408void t4_db_full(struct adapter *adap)
2409{
d14807dd 2410 if (is_t4(adap->params.chip)) {
05eb2389
SW
2411 disable_dbs(adap);
2412 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2413 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2414 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2415 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2416 }
881806bc
VP
2417}
2418
2419void t4_db_dropped(struct adapter *adap)
2420{
05eb2389
SW
2421 if (is_t4(adap->params.chip)) {
2422 disable_dbs(adap);
2423 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2424 }
29aaee65 2425 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2426}
2427
b8ff05a9
DM
2428static void uld_attach(struct adapter *adap, unsigned int uld)
2429{
2430 void *handle;
2431 struct cxgb4_lld_info lli;
dca4faeb 2432 unsigned short i;
b8ff05a9
DM
2433
2434 lli.pdev = adap->pdev;
b2612722 2435 lli.pf = adap->pf;
b8ff05a9
DM
2436 lli.l2t = adap->l2t;
2437 lli.tids = &adap->tids;
2438 lli.ports = adap->port;
2439 lli.vr = &adap->vres;
2440 lli.mtus = adap->params.mtus;
2441 if (uld == CXGB4_ULD_RDMA) {
2442 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2443 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2444 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2445 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9 2446 } else if (uld == CXGB4_ULD_ISCSI) {
f90ce561
HS
2447 lli.rxq_ids = adap->sge.iscsi_rxq;
2448 lli.nrxq = adap->sge.iscsiqsets;
b8ff05a9 2449 }
f90ce561 2450 lli.ntxq = adap->sge.iscsiqsets;
b8ff05a9
DM
2451 lli.nchan = adap->params.nports;
2452 lli.nports = adap->params.nports;
2453 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2454 lli.adapter_type = adap->params.chip;
837e4a42 2455 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 2456 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2457 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2458 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2459 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2460 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2461 for (i = 0; i < NCHAN; i++)
2462 lli.tx_modq[i] = i;
f612b815
HS
2463 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2464 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2465 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2466 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2467 lli.sge_ingpadboundary = adap->sge.fl_align;
2468 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2469 lli.sge_pktshift = adap->sge.pktshift;
2470 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2471 lli.max_ordird_qp = adap->params.max_ordird_qp;
2472 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2473 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2474 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2475
2476 handle = ulds[uld].add(&lli);
2477 if (IS_ERR(handle)) {
2478 dev_warn(adap->pdev_dev,
2479 "could not attach to the %s driver, error %ld\n",
2480 uld_str[uld], PTR_ERR(handle));
2481 return;
2482 }
2483
2484 adap->uld_handle[uld] = handle;
2485
2486 if (!netevent_registered) {
2487 register_netevent_notifier(&cxgb4_netevent_nb);
2488 netevent_registered = true;
2489 }
e29f5dbc
DM
2490
2491 if (adap->flags & FULL_INIT_DONE)
2492 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2493}
2494
2495static void attach_ulds(struct adapter *adap)
2496{
2497 unsigned int i;
2498
01bcca68
VP
2499 spin_lock(&adap_rcu_lock);
2500 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2501 spin_unlock(&adap_rcu_lock);
2502
b8ff05a9
DM
2503 mutex_lock(&uld_mutex);
2504 list_add_tail(&adap->list_node, &adapter_list);
2505 for (i = 0; i < CXGB4_ULD_MAX; i++)
2506 if (ulds[i].add)
2507 uld_attach(adap, i);
2508 mutex_unlock(&uld_mutex);
2509}
2510
2511static void detach_ulds(struct adapter *adap)
2512{
2513 unsigned int i;
2514
2515 mutex_lock(&uld_mutex);
2516 list_del(&adap->list_node);
2517 for (i = 0; i < CXGB4_ULD_MAX; i++)
2518 if (adap->uld_handle[i]) {
2519 ulds[i].state_change(adap->uld_handle[i],
2520 CXGB4_STATE_DETACH);
2521 adap->uld_handle[i] = NULL;
2522 }
2523 if (netevent_registered && list_empty(&adapter_list)) {
2524 unregister_netevent_notifier(&cxgb4_netevent_nb);
2525 netevent_registered = false;
2526 }
2527 mutex_unlock(&uld_mutex);
01bcca68
VP
2528
2529 spin_lock(&adap_rcu_lock);
2530 list_del_rcu(&adap->rcu_node);
2531 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2532}
2533
2534static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2535{
2536 unsigned int i;
2537
2538 mutex_lock(&uld_mutex);
2539 for (i = 0; i < CXGB4_ULD_MAX; i++)
2540 if (adap->uld_handle[i])
2541 ulds[i].state_change(adap->uld_handle[i], new_state);
2542 mutex_unlock(&uld_mutex);
2543}
2544
2545/**
2546 * cxgb4_register_uld - register an upper-layer driver
2547 * @type: the ULD type
2548 * @p: the ULD methods
2549 *
2550 * Registers an upper-layer driver with this driver and notifies the ULD
2551 * about any presently available devices that support its type. Returns
2552 * %-EBUSY if a ULD of the same type is already registered.
2553 */
2554int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2555{
2556 int ret = 0;
2557 struct adapter *adap;
2558
2559 if (type >= CXGB4_ULD_MAX)
2560 return -EINVAL;
2561 mutex_lock(&uld_mutex);
2562 if (ulds[type].add) {
2563 ret = -EBUSY;
2564 goto out;
2565 }
2566 ulds[type] = *p;
2567 list_for_each_entry(adap, &adapter_list, list_node)
2568 uld_attach(adap, type);
2569out: mutex_unlock(&uld_mutex);
2570 return ret;
2571}
2572EXPORT_SYMBOL(cxgb4_register_uld);
2573
2574/**
2575 * cxgb4_unregister_uld - unregister an upper-layer driver
2576 * @type: the ULD type
2577 *
2578 * Unregisters an existing upper-layer driver.
2579 */
2580int cxgb4_unregister_uld(enum cxgb4_uld type)
2581{
2582 struct adapter *adap;
2583
2584 if (type >= CXGB4_ULD_MAX)
2585 return -EINVAL;
2586 mutex_lock(&uld_mutex);
2587 list_for_each_entry(adap, &adapter_list, list_node)
2588 adap->uld_handle[type] = NULL;
2589 ulds[type].add = NULL;
2590 mutex_unlock(&uld_mutex);
2591 return 0;
2592}
2593EXPORT_SYMBOL(cxgb4_unregister_uld);
2594
1bb60376 2595#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2596static int cxgb4_inet6addr_handler(struct notifier_block *this,
2597 unsigned long event, void *data)
01bcca68 2598{
b5a02f50
AB
2599 struct inet6_ifaddr *ifa = data;
2600 struct net_device *event_dev = ifa->idev->dev;
2601 const struct device *parent = NULL;
2602#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2603 struct adapter *adap;
b5a02f50
AB
2604#endif
2605 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2606 event_dev = vlan_dev_real_dev(event_dev);
2607#if IS_ENABLED(CONFIG_BONDING)
2608 if (event_dev->flags & IFF_MASTER) {
2609 list_for_each_entry(adap, &adapter_list, list_node) {
2610 switch (event) {
2611 case NETDEV_UP:
2612 cxgb4_clip_get(adap->port[0],
2613 (const u32 *)ifa, 1);
2614 break;
2615 case NETDEV_DOWN:
2616 cxgb4_clip_release(adap->port[0],
2617 (const u32 *)ifa, 1);
2618 break;
2619 default:
2620 break;
2621 }
2622 }
2623 return NOTIFY_OK;
2624 }
2625#endif
01bcca68 2626
b5a02f50
AB
2627 if (event_dev)
2628 parent = event_dev->dev.parent;
01bcca68 2629
b5a02f50 2630 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2631 switch (event) {
2632 case NETDEV_UP:
b5a02f50 2633 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2634 break;
2635 case NETDEV_DOWN:
b5a02f50 2636 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2637 break;
2638 default:
2639 break;
2640 }
2641 }
b5a02f50 2642 return NOTIFY_OK;
01bcca68
VP
2643}
2644
b5a02f50 2645static bool inet6addr_registered;
01bcca68
VP
2646static struct notifier_block cxgb4_inet6addr_notifier = {
2647 .notifier_call = cxgb4_inet6addr_handler
2648};
2649
01bcca68
VP
2650static void update_clip(const struct adapter *adap)
2651{
2652 int i;
2653 struct net_device *dev;
2654 int ret;
2655
2656 rcu_read_lock();
2657
2658 for (i = 0; i < MAX_NPORTS; i++) {
2659 dev = adap->port[i];
2660 ret = 0;
2661
2662 if (dev)
b5a02f50 2663 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2664
2665 if (ret < 0)
2666 break;
2667 }
2668 rcu_read_unlock();
2669}
1bb60376 2670#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2671
b8ff05a9
DM
2672/**
2673 * cxgb_up - enable the adapter
2674 * @adap: adapter being enabled
2675 *
2676 * Called when the first port is enabled, this function performs the
2677 * actions necessary to make an adapter operational, such as completing
2678 * the initialization of HW modules, and enabling interrupts.
2679 *
2680 * Must be called with the rtnl lock held.
2681 */
2682static int cxgb_up(struct adapter *adap)
2683{
aaefae9b 2684 int err;
b8ff05a9 2685
aaefae9b
DM
2686 err = setup_sge_queues(adap);
2687 if (err)
2688 goto out;
2689 err = setup_rss(adap);
2690 if (err)
2691 goto freeq;
b8ff05a9
DM
2692
2693 if (adap->flags & USING_MSIX) {
aaefae9b 2694 name_msix_vecs(adap);
b8ff05a9
DM
2695 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2696 adap->msix_info[0].desc, adap);
2697 if (err)
2698 goto irq_err;
2699
2700 err = request_msix_queue_irqs(adap);
2701 if (err) {
2702 free_irq(adap->msix_info[0].vec, adap);
2703 goto irq_err;
2704 }
2705 } else {
2706 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2707 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2708 adap->port[0]->name, adap);
b8ff05a9
DM
2709 if (err)
2710 goto irq_err;
2711 }
2712 enable_rx(adap);
2713 t4_sge_start(adap);
2714 t4_intr_enable(adap);
aaefae9b 2715 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2716 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2717#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2718 update_clip(adap);
1bb60376 2719#endif
b8ff05a9
DM
2720 out:
2721 return err;
2722 irq_err:
2723 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2724 freeq:
2725 t4_free_sge_resources(adap);
b8ff05a9
DM
2726 goto out;
2727}
2728
2729static void cxgb_down(struct adapter *adapter)
2730{
b8ff05a9 2731 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2732 cancel_work_sync(&adapter->db_full_task);
2733 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2734 adapter->tid_release_task_busy = false;
204dc3c0 2735 adapter->tid_release_head = NULL;
b8ff05a9 2736
aaefae9b
DM
2737 t4_sge_stop(adapter);
2738 t4_free_sge_resources(adapter);
2739 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2740}
2741
2742/*
2743 * net_device operations
2744 */
2745static int cxgb_open(struct net_device *dev)
2746{
2747 int err;
2748 struct port_info *pi = netdev_priv(dev);
2749 struct adapter *adapter = pi->adapter;
2750
6a3c869a
DM
2751 netif_carrier_off(dev);
2752
aaefae9b
DM
2753 if (!(adapter->flags & FULL_INIT_DONE)) {
2754 err = cxgb_up(adapter);
2755 if (err < 0)
2756 return err;
2757 }
b8ff05a9 2758
f68707b8
DM
2759 err = link_start(dev);
2760 if (!err)
2761 netif_tx_start_all_queues(dev);
2762 return err;
b8ff05a9
DM
2763}
2764
2765static int cxgb_close(struct net_device *dev)
2766{
b8ff05a9
DM
2767 struct port_info *pi = netdev_priv(dev);
2768 struct adapter *adapter = pi->adapter;
2769
2770 netif_tx_stop_all_queues(dev);
2771 netif_carrier_off(dev);
b2612722 2772 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
b8ff05a9
DM
2773}
2774
f2b7e78d
VP
2775/* Return an error number if the indicated filter isn't writable ...
2776 */
2777static int writable_filter(struct filter_entry *f)
2778{
2779 if (f->locked)
2780 return -EPERM;
2781 if (f->pending)
2782 return -EBUSY;
2783
2784 return 0;
2785}
2786
2787/* Delete the filter at the specified index (if valid). The checks for all
2788 * the common problems with doing this like the filter being locked, currently
2789 * pending in another operation, etc.
2790 */
2791static int delete_filter(struct adapter *adapter, unsigned int fidx)
2792{
2793 struct filter_entry *f;
2794 int ret;
2795
dca4faeb 2796 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2797 return -EINVAL;
2798
2799 f = &adapter->tids.ftid_tab[fidx];
2800 ret = writable_filter(f);
2801 if (ret)
2802 return ret;
2803 if (f->valid)
2804 return del_filter_wr(adapter, fidx);
2805
2806 return 0;
2807}
2808
dca4faeb 2809int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2810 __be32 sip, __be16 sport, __be16 vlan,
2811 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2812{
2813 int ret;
2814 struct filter_entry *f;
2815 struct adapter *adap;
2816 int i;
2817 u8 *val;
2818
2819 adap = netdev2adap(dev);
2820
1cab775c 2821 /* Adjust stid to correct filter index */
470c60c4 2822 stid -= adap->tids.sftid_base;
1cab775c
VP
2823 stid += adap->tids.nftids;
2824
dca4faeb
VP
2825 /* Check to make sure the filter requested is writable ...
2826 */
2827 f = &adap->tids.ftid_tab[stid];
2828 ret = writable_filter(f);
2829 if (ret)
2830 return ret;
2831
2832 /* Clear out any old resources being used by the filter before
2833 * we start constructing the new filter.
2834 */
2835 if (f->valid)
2836 clear_filter(adap, f);
2837
2838 /* Clear out filter specifications */
2839 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2840 f->fs.val.lport = cpu_to_be16(sport);
2841 f->fs.mask.lport = ~0;
2842 val = (u8 *)&sip;
793dad94 2843 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2844 for (i = 0; i < 4; i++) {
2845 f->fs.val.lip[i] = val[i];
2846 f->fs.mask.lip[i] = ~0;
2847 }
0d804338 2848 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2849 f->fs.val.iport = port;
2850 f->fs.mask.iport = mask;
2851 }
2852 }
dca4faeb 2853
0d804338 2854 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2855 f->fs.val.proto = IPPROTO_TCP;
2856 f->fs.mask.proto = ~0;
2857 }
2858
dca4faeb
VP
2859 f->fs.dirsteer = 1;
2860 f->fs.iq = queue;
2861 /* Mark filter as locked */
2862 f->locked = 1;
2863 f->fs.rpttid = 1;
2864
2865 ret = set_filter_wr(adap, stid);
2866 if (ret) {
2867 clear_filter(adap, f);
2868 return ret;
2869 }
2870
2871 return 0;
2872}
2873EXPORT_SYMBOL(cxgb4_create_server_filter);
2874
2875int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2876 unsigned int queue, bool ipv6)
2877{
2878 int ret;
2879 struct filter_entry *f;
2880 struct adapter *adap;
2881
2882 adap = netdev2adap(dev);
1cab775c
VP
2883
2884 /* Adjust stid to correct filter index */
470c60c4 2885 stid -= adap->tids.sftid_base;
1cab775c
VP
2886 stid += adap->tids.nftids;
2887
dca4faeb
VP
2888 f = &adap->tids.ftid_tab[stid];
2889 /* Unlock the filter */
2890 f->locked = 0;
2891
2892 ret = delete_filter(adap, stid);
2893 if (ret)
2894 return ret;
2895
2896 return 0;
2897}
2898EXPORT_SYMBOL(cxgb4_remove_server_filter);
2899
f5152c90
DM
2900static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2901 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2902{
2903 struct port_stats stats;
2904 struct port_info *p = netdev_priv(dev);
2905 struct adapter *adapter = p->adapter;
b8ff05a9 2906
9fe6cb58
GS
2907 /* Block retrieving statistics during EEH error
2908 * recovery. Otherwise, the recovery might fail
2909 * and the PCI device will be removed permanently
2910 */
b8ff05a9 2911 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2912 if (!netif_device_present(dev)) {
2913 spin_unlock(&adapter->stats_lock);
2914 return ns;
2915 }
a4cfd929
HS
2916 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2917 &p->stats_base);
b8ff05a9
DM
2918 spin_unlock(&adapter->stats_lock);
2919
2920 ns->tx_bytes = stats.tx_octets;
2921 ns->tx_packets = stats.tx_frames;
2922 ns->rx_bytes = stats.rx_octets;
2923 ns->rx_packets = stats.rx_frames;
2924 ns->multicast = stats.rx_mcast_frames;
2925
2926 /* detailed rx_errors */
2927 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2928 stats.rx_runt;
2929 ns->rx_over_errors = 0;
2930 ns->rx_crc_errors = stats.rx_fcs_err;
2931 ns->rx_frame_errors = stats.rx_symbol_err;
2932 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2933 stats.rx_ovflow2 + stats.rx_ovflow3 +
2934 stats.rx_trunc0 + stats.rx_trunc1 +
2935 stats.rx_trunc2 + stats.rx_trunc3;
2936 ns->rx_missed_errors = 0;
2937
2938 /* detailed tx_errors */
2939 ns->tx_aborted_errors = 0;
2940 ns->tx_carrier_errors = 0;
2941 ns->tx_fifo_errors = 0;
2942 ns->tx_heartbeat_errors = 0;
2943 ns->tx_window_errors = 0;
2944
2945 ns->tx_errors = stats.tx_error_frames;
2946 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2947 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2948 return ns;
2949}
2950
2951static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2952{
060e0c75 2953 unsigned int mbox;
b8ff05a9
DM
2954 int ret = 0, prtad, devad;
2955 struct port_info *pi = netdev_priv(dev);
2956 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2957
2958 switch (cmd) {
2959 case SIOCGMIIPHY:
2960 if (pi->mdio_addr < 0)
2961 return -EOPNOTSUPP;
2962 data->phy_id = pi->mdio_addr;
2963 break;
2964 case SIOCGMIIREG:
2965 case SIOCSMIIREG:
2966 if (mdio_phy_id_is_c45(data->phy_id)) {
2967 prtad = mdio_phy_id_prtad(data->phy_id);
2968 devad = mdio_phy_id_devad(data->phy_id);
2969 } else if (data->phy_id < 32) {
2970 prtad = data->phy_id;
2971 devad = 0;
2972 data->reg_num &= 0x1f;
2973 } else
2974 return -EINVAL;
2975
b2612722 2976 mbox = pi->adapter->pf;
b8ff05a9 2977 if (cmd == SIOCGMIIREG)
060e0c75 2978 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2979 data->reg_num, &data->val_out);
2980 else
060e0c75 2981 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2982 data->reg_num, data->val_in);
2983 break;
5e2a5ebc
HS
2984 case SIOCGHWTSTAMP:
2985 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2986 sizeof(pi->tstamp_config)) ?
2987 -EFAULT : 0;
2988 case SIOCSHWTSTAMP:
2989 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2990 sizeof(pi->tstamp_config)))
2991 return -EFAULT;
2992
2993 switch (pi->tstamp_config.rx_filter) {
2994 case HWTSTAMP_FILTER_NONE:
2995 pi->rxtstamp = false;
2996 break;
2997 case HWTSTAMP_FILTER_ALL:
2998 pi->rxtstamp = true;
2999 break;
3000 default:
3001 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3002 return -ERANGE;
3003 }
3004
3005 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3006 sizeof(pi->tstamp_config)) ?
3007 -EFAULT : 0;
b8ff05a9
DM
3008 default:
3009 return -EOPNOTSUPP;
3010 }
3011 return ret;
3012}
3013
3014static void cxgb_set_rxmode(struct net_device *dev)
3015{
3016 /* unfortunately we can't return errors to the stack */
3017 set_rxmode(dev, -1, false);
3018}
3019
3020static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3021{
3022 int ret;
3023 struct port_info *pi = netdev_priv(dev);
3024
3025 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
3026 return -EINVAL;
b2612722 3027 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
060e0c75 3028 -1, -1, -1, true);
b8ff05a9
DM
3029 if (!ret)
3030 dev->mtu = new_mtu;
3031 return ret;
3032}
3033
3034static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3035{
3036 int ret;
3037 struct sockaddr *addr = p;
3038 struct port_info *pi = netdev_priv(dev);
3039
3040 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 3041 return -EADDRNOTAVAIL;
b8ff05a9 3042
b2612722 3043 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
060e0c75 3044 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
3045 if (ret < 0)
3046 return ret;
3047
3048 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3049 pi->xact_addr_filt = ret;
3050 return 0;
3051}
3052
b8ff05a9
DM
3053#ifdef CONFIG_NET_POLL_CONTROLLER
3054static void cxgb_netpoll(struct net_device *dev)
3055{
3056 struct port_info *pi = netdev_priv(dev);
3057 struct adapter *adap = pi->adapter;
3058
3059 if (adap->flags & USING_MSIX) {
3060 int i;
3061 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3062
3063 for (i = pi->nqsets; i; i--, rx++)
3064 t4_sge_intr_msix(0, &rx->rspq);
3065 } else
3066 t4_intr_handler(adap)(0, adap);
3067}
3068#endif
3069
3070static const struct net_device_ops cxgb4_netdev_ops = {
3071 .ndo_open = cxgb_open,
3072 .ndo_stop = cxgb_close,
3073 .ndo_start_xmit = t4_eth_xmit,
688848b1 3074 .ndo_select_queue = cxgb_select_queue,
9be793bf 3075 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3076 .ndo_set_rx_mode = cxgb_set_rxmode,
3077 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3078 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3079 .ndo_validate_addr = eth_validate_addr,
3080 .ndo_do_ioctl = cxgb_ioctl,
3081 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3082#ifdef CONFIG_NET_POLL_CONTROLLER
3083 .ndo_poll_controller = cxgb_netpoll,
3084#endif
84a200b3
VP
3085#ifdef CONFIG_CHELSIO_T4_FCOE
3086 .ndo_fcoe_enable = cxgb_fcoe_enable,
3087 .ndo_fcoe_disable = cxgb_fcoe_disable,
3088#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3089#ifdef CONFIG_NET_RX_BUSY_POLL
3090 .ndo_busy_poll = cxgb_busy_poll,
3091#endif
3092
b8ff05a9
DM
3093};
3094
3095void t4_fatal_err(struct adapter *adap)
3096{
f612b815 3097 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3098 t4_intr_disable(adap);
3099 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3100}
3101
3102static void setup_memwin(struct adapter *adap)
3103{
b562fc37 3104 u32 nic_win_base = t4_get_util_window(adap);
b8ff05a9 3105
b562fc37 3106 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
636f9d37
VP
3107}
3108
3109static void setup_memwin_rdma(struct adapter *adap)
3110{
1ae970e0 3111 if (adap->vres.ocq.size) {
0abfd152
HS
3112 u32 start;
3113 unsigned int sz_kb;
1ae970e0 3114
0abfd152
HS
3115 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3116 start &= PCI_BASE_ADDRESS_MEM_MASK;
3117 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3118 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3119 t4_write_reg(adap,
f061de42
HS
3120 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3121 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3122 t4_write_reg(adap,
f061de42 3123 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3124 adap->vres.ocq.start);
3125 t4_read_reg(adap,
f061de42 3126 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3127 }
b8ff05a9
DM
3128}
3129
02b5fb8e
DM
3130static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3131{
3132 u32 v;
3133 int ret;
3134
3135 /* get device capabilities */
3136 memset(c, 0, sizeof(*c));
e2ac9628
HS
3137 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3138 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3139 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
b2612722 3140 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
02b5fb8e
DM
3141 if (ret < 0)
3142 return ret;
3143
3144 /* select capabilities we'll be using */
3145 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3146 if (!vf_acls)
3147 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3148 else
3149 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3150 } else if (vf_acls) {
3151 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3152 return ret;
3153 }
e2ac9628
HS
3154 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3155 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
b2612722 3156 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
02b5fb8e
DM
3157 if (ret < 0)
3158 return ret;
3159
b2612722 3160 ret = t4_config_glbl_rss(adap, adap->pf,
02b5fb8e 3161 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3162 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3163 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3164 if (ret < 0)
3165 return ret;
3166
b2612722 3167 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4b8e27a8
HS
3168 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3169 FW_CMD_CAP_PF);
02b5fb8e
DM
3170 if (ret < 0)
3171 return ret;
3172
3173 t4_sge_init(adap);
3174
02b5fb8e 3175 /* tweak some settings */
837e4a42 3176 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3177 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3178 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3179 v = t4_read_reg(adap, TP_PIO_DATA_A);
3180 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3181
dca4faeb
VP
3182 /* first 4 Tx modulation queues point to consecutive Tx channels */
3183 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3184 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3185 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3186
3187 /* associate each Tx modulation queue with consecutive Tx channels */
3188 v = 0x84218421;
837e4a42 3189 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3190 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3191 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3192 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3193 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3194 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3195
3196#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3197 if (is_offload(adap)) {
0d804338
HS
3198 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3199 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3200 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3201 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3202 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3203 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3204 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3205 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3206 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3207 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3208 }
3209
060e0c75 3210 /* get basic stuff going */
b2612722 3211 return t4_early_init(adap, adap->pf);
02b5fb8e
DM
3212}
3213
b8ff05a9
DM
3214/*
3215 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3216 */
3217#define MAX_ATIDS 8192U
3218
636f9d37
VP
3219/*
3220 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3221 *
3222 * If the firmware we're dealing with has Configuration File support, then
3223 * we use that to perform all configuration
3224 */
3225
3226/*
3227 * Tweak configuration based on module parameters, etc. Most of these have
3228 * defaults assigned to them by Firmware Configuration Files (if we're using
3229 * them) but need to be explicitly set if we're using hard-coded
3230 * initialization. But even in the case of using Firmware Configuration
3231 * Files, we'd like to expose the ability to change these via module
3232 * parameters so these are essentially common tweaks/settings for
3233 * Configuration Files and hard-coded initialization ...
3234 */
3235static int adap_init0_tweaks(struct adapter *adapter)
3236{
3237 /*
3238 * Fix up various Host-Dependent Parameters like Page Size, Cache
3239 * Line Size, etc. The firmware default is for a 4KB Page Size and
3240 * 64B Cache Line Size ...
3241 */
3242 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3243
3244 /*
3245 * Process module parameters which affect early initialization.
3246 */
3247 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3248 dev_err(&adapter->pdev->dev,
3249 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3250 rx_dma_offset);
3251 rx_dma_offset = 2;
3252 }
f612b815
HS
3253 t4_set_reg_field(adapter, SGE_CONTROL_A,
3254 PKTSHIFT_V(PKTSHIFT_M),
3255 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3256
3257 /*
3258 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3259 * adds the pseudo header itself.
3260 */
837e4a42
HS
3261 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3262 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3263
3264 return 0;
3265}
3266
01b69614
HS
3267/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3268 * unto themselves and they contain their own firmware to perform their
3269 * tasks ...
3270 */
3271static int phy_aq1202_version(const u8 *phy_fw_data,
3272 size_t phy_fw_size)
3273{
3274 int offset;
3275
3276 /* At offset 0x8 you're looking for the primary image's
3277 * starting offset which is 3 Bytes wide
3278 *
3279 * At offset 0xa of the primary image, you look for the offset
3280 * of the DRAM segment which is 3 Bytes wide.
3281 *
3282 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3283 * wide
3284 */
3285 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3286 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3287 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3288
3289 offset = le24(phy_fw_data + 0x8) << 12;
3290 offset = le24(phy_fw_data + offset + 0xa);
3291 return be16(phy_fw_data + offset + 0x27e);
3292
3293 #undef be16
3294 #undef le16
3295 #undef le24
3296}
3297
3298static struct info_10gbt_phy_fw {
3299 unsigned int phy_fw_id; /* PCI Device ID */
3300 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3301 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3302 int phy_flash; /* Has FLASH for PHY Firmware */
3303} phy_info_array[] = {
3304 {
3305 PHY_AQ1202_DEVICEID,
3306 PHY_AQ1202_FIRMWARE,
3307 phy_aq1202_version,
3308 1,
3309 },
3310 {
3311 PHY_BCM84834_DEVICEID,
3312 PHY_BCM84834_FIRMWARE,
3313 NULL,
3314 0,
3315 },
3316 { 0, NULL, NULL },
3317};
3318
3319static struct info_10gbt_phy_fw *find_phy_info(int devid)
3320{
3321 int i;
3322
3323 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3324 if (phy_info_array[i].phy_fw_id == devid)
3325 return &phy_info_array[i];
3326 }
3327 return NULL;
3328}
3329
3330/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3331 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3332 * we return a negative error number. If we transfer new firmware we return 1
3333 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3334 */
3335static int adap_init0_phy(struct adapter *adap)
3336{
3337 const struct firmware *phyf;
3338 int ret;
3339 struct info_10gbt_phy_fw *phy_info;
3340
3341 /* Use the device ID to determine which PHY file to flash.
3342 */
3343 phy_info = find_phy_info(adap->pdev->device);
3344 if (!phy_info) {
3345 dev_warn(adap->pdev_dev,
3346 "No PHY Firmware file found for this PHY\n");
3347 return -EOPNOTSUPP;
3348 }
3349
3350 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3351 * use that. The adapter firmware provides us with a memory buffer
3352 * where we can load a PHY firmware file from the host if we want to
3353 * override the PHY firmware File in flash.
3354 */
3355 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3356 adap->pdev_dev);
3357 if (ret < 0) {
3358 /* For adapters without FLASH attached to PHY for their
3359 * firmware, it's obviously a fatal error if we can't get the
3360 * firmware to the adapter. For adapters with PHY firmware
3361 * FLASH storage, it's worth a warning if we can't find the
3362 * PHY Firmware but we'll neuter the error ...
3363 */
3364 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3365 "/lib/firmware/%s, error %d\n",
3366 phy_info->phy_fw_file, -ret);
3367 if (phy_info->phy_flash) {
3368 int cur_phy_fw_ver = 0;
3369
3370 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3371 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3372 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3373 ret = 0;
3374 }
3375
3376 return ret;
3377 }
3378
3379 /* Load PHY Firmware onto adapter.
3380 */
3381 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3382 phy_info->phy_fw_version,
3383 (u8 *)phyf->data, phyf->size);
3384 if (ret < 0)
3385 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3386 -ret);
3387 else if (ret > 0) {
3388 int new_phy_fw_ver = 0;
3389
3390 if (phy_info->phy_fw_version)
3391 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3392 phyf->size);
3393 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3394 "Firmware /lib/firmware/%s, version %#x\n",
3395 phy_info->phy_fw_file, new_phy_fw_ver);
3396 }
3397
3398 release_firmware(phyf);
3399
3400 return ret;
3401}
3402
636f9d37
VP
3403/*
3404 * Attempt to initialize the adapter via a Firmware Configuration File.
3405 */
3406static int adap_init0_config(struct adapter *adapter, int reset)
3407{
3408 struct fw_caps_config_cmd caps_cmd;
3409 const struct firmware *cf;
3410 unsigned long mtype = 0, maddr = 0;
3411 u32 finiver, finicsum, cfcsum;
16e47624
HS
3412 int ret;
3413 int config_issued = 0;
0a57a536 3414 char *fw_config_file, fw_config_file_path[256];
16e47624 3415 char *config_name = NULL;
636f9d37
VP
3416
3417 /*
3418 * Reset device if necessary.
3419 */
3420 if (reset) {
3421 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3422 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3423 if (ret < 0)
3424 goto bye;
3425 }
3426
01b69614
HS
3427 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3428 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3429 * to be performed after any global adapter RESET above since some
3430 * PHYs only have local RAM copies of the PHY firmware.
3431 */
3432 if (is_10gbt_device(adapter->pdev->device)) {
3433 ret = adap_init0_phy(adapter);
3434 if (ret < 0)
3435 goto bye;
3436 }
636f9d37
VP
3437 /*
3438 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3439 * then use that. Otherwise, use the configuration file stored
3440 * in the adapter flash ...
3441 */
d14807dd 3442 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3443 case CHELSIO_T4:
16e47624 3444 fw_config_file = FW4_CFNAME;
0a57a536
SR
3445 break;
3446 case CHELSIO_T5:
3447 fw_config_file = FW5_CFNAME;
3448 break;
3ccc6cf7
HS
3449 case CHELSIO_T6:
3450 fw_config_file = FW6_CFNAME;
3451 break;
0a57a536
SR
3452 default:
3453 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3454 adapter->pdev->device);
3455 ret = -EINVAL;
3456 goto bye;
3457 }
3458
3459 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3460 if (ret < 0) {
16e47624 3461 config_name = "On FLASH";
636f9d37
VP
3462 mtype = FW_MEMTYPE_CF_FLASH;
3463 maddr = t4_flash_cfg_addr(adapter);
3464 } else {
3465 u32 params[7], val[7];
3466
16e47624
HS
3467 sprintf(fw_config_file_path,
3468 "/lib/firmware/%s", fw_config_file);
3469 config_name = fw_config_file_path;
3470
636f9d37
VP
3471 if (cf->size >= FLASH_CFG_MAX_SIZE)
3472 ret = -ENOMEM;
3473 else {
5167865a
HS
3474 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3475 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37 3476 ret = t4_query_params(adapter, adapter->mbox,
b2612722 3477 adapter->pf, 0, 1, params, val);
636f9d37
VP
3478 if (ret == 0) {
3479 /*
fc5ab020 3480 * For t4_memory_rw() below addresses and
636f9d37
VP
3481 * sizes have to be in terms of multiples of 4
3482 * bytes. So, if the Configuration File isn't
3483 * a multiple of 4 bytes in length we'll have
3484 * to write that out separately since we can't
3485 * guarantee that the bytes following the
3486 * residual byte in the buffer returned by
3487 * request_firmware() are zeroed out ...
3488 */
3489 size_t resid = cf->size & 0x3;
3490 size_t size = cf->size & ~0x3;
3491 __be32 *data = (__be32 *)cf->data;
3492
5167865a
HS
3493 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3494 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3495
fc5ab020
HS
3496 spin_lock(&adapter->win0_lock);
3497 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3498 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3499 if (ret == 0 && resid != 0) {
3500 union {
3501 __be32 word;
3502 char buf[4];
3503 } last;
3504 int i;
3505
3506 last.word = data[size >> 2];
3507 for (i = resid; i < 4; i++)
3508 last.buf[i] = 0;
fc5ab020
HS
3509 ret = t4_memory_rw(adapter, 0, mtype,
3510 maddr + size,
3511 4, &last.word,
3512 T4_MEMORY_WRITE);
636f9d37 3513 }
fc5ab020 3514 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3515 }
3516 }
3517
3518 release_firmware(cf);
3519 if (ret)
3520 goto bye;
3521 }
3522
3523 /*
3524 * Issue a Capability Configuration command to the firmware to get it
3525 * to parse the Configuration File. We don't use t4_fw_config_file()
3526 * because we want the ability to modify various features after we've
3527 * processed the configuration file ...
3528 */
3529 memset(&caps_cmd, 0, sizeof(caps_cmd));
3530 caps_cmd.op_to_write =
e2ac9628
HS
3531 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3532 FW_CMD_REQUEST_F |
3533 FW_CMD_READ_F);
ce91a923 3534 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3535 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3536 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3537 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3538 FW_LEN16(caps_cmd));
3539 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3540 &caps_cmd);
16e47624
HS
3541
3542 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3543 * Configuration File in FLASH), our last gasp effort is to use the
3544 * Firmware Configuration File which is embedded in the firmware. A
3545 * very few early versions of the firmware didn't have one embedded
3546 * but we can ignore those.
3547 */
3548 if (ret == -ENOENT) {
3549 memset(&caps_cmd, 0, sizeof(caps_cmd));
3550 caps_cmd.op_to_write =
e2ac9628
HS
3551 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3552 FW_CMD_REQUEST_F |
3553 FW_CMD_READ_F);
16e47624
HS
3554 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3555 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3556 sizeof(caps_cmd), &caps_cmd);
3557 config_name = "Firmware Default";
3558 }
3559
3560 config_issued = 1;
636f9d37
VP
3561 if (ret < 0)
3562 goto bye;
3563
3564 finiver = ntohl(caps_cmd.finiver);
3565 finicsum = ntohl(caps_cmd.finicsum);
3566 cfcsum = ntohl(caps_cmd.cfcsum);
3567 if (finicsum != cfcsum)
3568 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3569 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3570 finicsum, cfcsum);
3571
636f9d37
VP
3572 /*
3573 * And now tell the firmware to use the configuration we just loaded.
3574 */
3575 caps_cmd.op_to_write =
e2ac9628
HS
3576 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3577 FW_CMD_REQUEST_F |
3578 FW_CMD_WRITE_F);
ce91a923 3579 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3580 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3581 NULL);
3582 if (ret < 0)
3583 goto bye;
3584
3585 /*
3586 * Tweak configuration based on system architecture, module
3587 * parameters, etc.
3588 */
3589 ret = adap_init0_tweaks(adapter);
3590 if (ret < 0)
3591 goto bye;
3592
3593 /*
3594 * And finally tell the firmware to initialize itself using the
3595 * parameters from the Configuration File.
3596 */
3597 ret = t4_fw_initialize(adapter, adapter->mbox);
3598 if (ret < 0)
3599 goto bye;
3600
06640310
HS
3601 /* Emit Firmware Configuration File information and return
3602 * successfully.
636f9d37 3603 */
636f9d37 3604 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3605 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3606 config_name, finiver, cfcsum);
636f9d37
VP
3607 return 0;
3608
3609 /*
3610 * Something bad happened. Return the error ... (If the "error"
3611 * is that there's no Configuration File on the adapter we don't
3612 * want to issue a warning since this is fairly common.)
3613 */
3614bye:
16e47624
HS
3615 if (config_issued && ret != -ENOENT)
3616 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3617 config_name, -ret);
636f9d37
VP
3618 return ret;
3619}
3620
16e47624
HS
3621static struct fw_info fw_info_array[] = {
3622 {
3623 .chip = CHELSIO_T4,
3624 .fs_name = FW4_CFNAME,
3625 .fw_mod_name = FW4_FNAME,
3626 .fw_hdr = {
3627 .chip = FW_HDR_CHIP_T4,
3628 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3629 .intfver_nic = FW_INTFVER(T4, NIC),
3630 .intfver_vnic = FW_INTFVER(T4, VNIC),
3631 .intfver_ri = FW_INTFVER(T4, RI),
3632 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3633 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3634 },
3635 }, {
3636 .chip = CHELSIO_T5,
3637 .fs_name = FW5_CFNAME,
3638 .fw_mod_name = FW5_FNAME,
3639 .fw_hdr = {
3640 .chip = FW_HDR_CHIP_T5,
3641 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3642 .intfver_nic = FW_INTFVER(T5, NIC),
3643 .intfver_vnic = FW_INTFVER(T5, VNIC),
3644 .intfver_ri = FW_INTFVER(T5, RI),
3645 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3646 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3647 },
3ccc6cf7
HS
3648 }, {
3649 .chip = CHELSIO_T6,
3650 .fs_name = FW6_CFNAME,
3651 .fw_mod_name = FW6_FNAME,
3652 .fw_hdr = {
3653 .chip = FW_HDR_CHIP_T6,
3654 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3655 .intfver_nic = FW_INTFVER(T6, NIC),
3656 .intfver_vnic = FW_INTFVER(T6, VNIC),
3657 .intfver_ofld = FW_INTFVER(T6, OFLD),
3658 .intfver_ri = FW_INTFVER(T6, RI),
3659 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3660 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3661 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3662 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3663 },
16e47624 3664 }
3ccc6cf7 3665
16e47624
HS
3666};
3667
3668static struct fw_info *find_fw_info(int chip)
3669{
3670 int i;
3671
3672 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3673 if (fw_info_array[i].chip == chip)
3674 return &fw_info_array[i];
3675 }
3676 return NULL;
3677}
3678
b8ff05a9
DM
3679/*
3680 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3681 */
3682static int adap_init0(struct adapter *adap)
3683{
3684 int ret;
3685 u32 v, port_vec;
3686 enum dev_state state;
3687 u32 params[7], val[7];
9a4da2cd 3688 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3689 int reset = 1;
b8ff05a9 3690
ae469b68
HS
3691 /* Grab Firmware Device Log parameters as early as possible so we have
3692 * access to it for debugging, etc.
3693 */
3694 ret = t4_init_devlog_params(adap);
3695 if (ret < 0)
3696 return ret;
3697
666224d4
HS
3698 /* Contact FW, advertising Master capability */
3699 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
3700 if (ret < 0) {
3701 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3702 ret);
3703 return ret;
3704 }
636f9d37
VP
3705 if (ret == adap->mbox)
3706 adap->flags |= MASTER_PF;
b8ff05a9 3707
636f9d37
VP
3708 /*
3709 * If we're the Master PF Driver and the device is uninitialized,
3710 * then let's consider upgrading the firmware ... (We always want
3711 * to check the firmware version number in order to A. get it for
3712 * later reporting and B. to warn if the currently loaded firmware
3713 * is excessively mismatched relative to the driver.)
3714 */
16e47624
HS
3715 t4_get_fw_version(adap, &adap->params.fw_vers);
3716 t4_get_tp_version(adap, &adap->params.tp_vers);
a69265e9
HS
3717 ret = t4_check_fw_version(adap);
3718 /* If firmware is too old (not supported by driver) force an update. */
21d11bd6 3719 if (ret)
a69265e9 3720 state = DEV_STATE_UNINIT;
636f9d37 3721 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3722 struct fw_info *fw_info;
3723 struct fw_hdr *card_fw;
3724 const struct firmware *fw;
3725 const u8 *fw_data = NULL;
3726 unsigned int fw_size = 0;
3727
3728 /* This is the firmware whose headers the driver was compiled
3729 * against
3730 */
3731 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3732 if (fw_info == NULL) {
3733 dev_err(adap->pdev_dev,
3734 "unable to get firmware info for chip %d.\n",
3735 CHELSIO_CHIP_VERSION(adap->params.chip));
3736 return -EINVAL;
636f9d37 3737 }
16e47624
HS
3738
3739 /* allocate memory to read the header of the firmware on the
3740 * card
3741 */
3742 card_fw = t4_alloc_mem(sizeof(*card_fw));
3743
3744 /* Get FW from from /lib/firmware/ */
3745 ret = request_firmware(&fw, fw_info->fw_mod_name,
3746 adap->pdev_dev);
3747 if (ret < 0) {
3748 dev_err(adap->pdev_dev,
3749 "unable to load firmware image %s, error %d\n",
3750 fw_info->fw_mod_name, ret);
3751 } else {
3752 fw_data = fw->data;
3753 fw_size = fw->size;
3754 }
3755
3756 /* upgrade FW logic */
3757 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3758 state, &reset);
3759
3760 /* Cleaning up */
0b5b6bee 3761 release_firmware(fw);
16e47624
HS
3762 t4_free_mem(card_fw);
3763
636f9d37 3764 if (ret < 0)
16e47624 3765 goto bye;
636f9d37 3766 }
b8ff05a9 3767
636f9d37
VP
3768 /*
3769 * Grab VPD parameters. This should be done after we establish a
3770 * connection to the firmware since some of the VPD parameters
3771 * (notably the Core Clock frequency) are retrieved via requests to
3772 * the firmware. On the other hand, we need these fairly early on
3773 * so we do this right after getting ahold of the firmware.
3774 */
098ef6c2 3775 ret = t4_get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3776 if (ret < 0)
3777 goto bye;
a0881cab 3778
636f9d37 3779 /*
13ee15d3
VP
3780 * Find out what ports are available to us. Note that we need to do
3781 * this before calling adap_init0_no_config() since it needs nports
3782 * and portvec ...
636f9d37
VP
3783 */
3784 v =
5167865a
HS
3785 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
b2612722 3787 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
a0881cab
DM
3788 if (ret < 0)
3789 goto bye;
3790
636f9d37
VP
3791 adap->params.nports = hweight32(port_vec);
3792 adap->params.portvec = port_vec;
3793
06640310
HS
3794 /* If the firmware is initialized already, emit a simply note to that
3795 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3796 */
3797 if (state == DEV_STATE_INIT) {
3798 dev_info(adap->pdev_dev, "Coming up as %s: "\
3799 "Adapter already initialized\n",
3800 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3801 } else {
3802 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3803 "Initializing adapter\n");
06640310
HS
3804
3805 /* Find out whether we're dealing with a version of the
3806 * firmware which has configuration file support.
636f9d37 3807 */
06640310
HS
3808 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3809 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
b2612722 3810 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
06640310 3811 params, val);
13ee15d3 3812
06640310
HS
3813 /* If the firmware doesn't support Configuration Files,
3814 * return an error.
3815 */
3816 if (ret < 0) {
3817 dev_err(adap->pdev_dev, "firmware doesn't support "
3818 "Firmware Configuration Files\n");
3819 goto bye;
3820 }
3821
3822 /* The firmware provides us with a memory buffer where we can
3823 * load a Configuration File from the host if we want to
3824 * override the Configuration File in flash.
3825 */
3826 ret = adap_init0_config(adap, reset);
3827 if (ret == -ENOENT) {
3828 dev_err(adap->pdev_dev, "no Configuration File "
3829 "present on adapter.\n");
3830 goto bye;
636f9d37
VP
3831 }
3832 if (ret < 0) {
06640310
HS
3833 dev_err(adap->pdev_dev, "could not initialize "
3834 "adapter, error %d\n", -ret);
636f9d37
VP
3835 goto bye;
3836 }
3837 }
3838
06640310
HS
3839 /* Give the SGE code a chance to pull in anything that it needs ...
3840 * Note that this must be called after we retrieve our VPD parameters
3841 * in order to know how to convert core ticks to seconds, etc.
636f9d37 3842 */
06640310
HS
3843 ret = t4_sge_init(adap);
3844 if (ret < 0)
3845 goto bye;
636f9d37 3846
9a4da2cd
VP
3847 if (is_bypass_device(adap->pdev->device))
3848 adap->params.bypass = 1;
3849
636f9d37
VP
3850 /*
3851 * Grab some of our basic fundamental operating parameters.
3852 */
3853#define FW_PARAM_DEV(param) \
5167865a
HS
3854 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3855 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 3856
b8ff05a9 3857#define FW_PARAM_PFVF(param) \
5167865a
HS
3858 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3859 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3860 FW_PARAMS_PARAM_Y_V(0) | \
3861 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 3862
636f9d37 3863 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
3864 params[1] = FW_PARAM_PFVF(L2T_START);
3865 params[2] = FW_PARAM_PFVF(L2T_END);
3866 params[3] = FW_PARAM_PFVF(FILTER_START);
3867 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 3868 params[5] = FW_PARAM_PFVF(IQFLINT_START);
b2612722 3869 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
b8ff05a9
DM
3870 if (ret < 0)
3871 goto bye;
636f9d37
VP
3872 adap->sge.egr_start = val[0];
3873 adap->l2t_start = val[1];
3874 adap->l2t_end = val[2];
b8ff05a9
DM
3875 adap->tids.ftid_base = val[3];
3876 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 3877 adap->sge.ingr_start = val[5];
b8ff05a9 3878
4b8e27a8
HS
3879 /* qids (ingress/egress) returned from firmware can be anywhere
3880 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3881 * Hence driver needs to allocate memory for this range to
3882 * store the queue info. Get the highest IQFLINT/EQ index returned
3883 * in FW_EQ_*_CMD.alloc command.
3884 */
3885 params[0] = FW_PARAM_PFVF(EQ_END);
3886 params[1] = FW_PARAM_PFVF(IQFLINT_END);
b2612722 3887 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4b8e27a8
HS
3888 if (ret < 0)
3889 goto bye;
3890 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3891 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3892
3893 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3894 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3895 if (!adap->sge.egr_map) {
3896 ret = -ENOMEM;
3897 goto bye;
3898 }
3899
3900 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3901 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3902 if (!adap->sge.ingr_map) {
3903 ret = -ENOMEM;
3904 goto bye;
3905 }
3906
3907 /* Allocate the memory for the vaious egress queue bitmaps
5b377d11 3908 * ie starving_fl, txq_maperr and blocked_fl.
4b8e27a8
HS
3909 */
3910 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3911 sizeof(long), GFP_KERNEL);
3912 if (!adap->sge.starving_fl) {
3913 ret = -ENOMEM;
3914 goto bye;
3915 }
3916
3917 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3918 sizeof(long), GFP_KERNEL);
3919 if (!adap->sge.txq_maperr) {
3920 ret = -ENOMEM;
3921 goto bye;
3922 }
3923
5b377d11
HS
3924#ifdef CONFIG_DEBUG_FS
3925 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3926 sizeof(long), GFP_KERNEL);
3927 if (!adap->sge.blocked_fl) {
3928 ret = -ENOMEM;
3929 goto bye;
3930 }
3931#endif
3932
b5a02f50
AB
3933 params[0] = FW_PARAM_PFVF(CLIP_START);
3934 params[1] = FW_PARAM_PFVF(CLIP_END);
b2612722 3935 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
b5a02f50
AB
3936 if (ret < 0)
3937 goto bye;
3938 adap->clipt_start = val[0];
3939 adap->clipt_end = val[1];
3940
636f9d37
VP
3941 /* query params related to active filter region */
3942 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3943 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
b2612722 3944 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
636f9d37
VP
3945 /* If Active filter size is set we enable establishing
3946 * offload connection through firmware work request
3947 */
3948 if ((val[0] != val[1]) && (ret >= 0)) {
3949 adap->flags |= FW_OFLD_CONN;
3950 adap->tids.aftid_base = val[0];
3951 adap->tids.aftid_end = val[1];
3952 }
3953
b407a4a9
VP
3954 /* If we're running on newer firmware, let it know that we're
3955 * prepared to deal with encapsulated CPL messages. Older
3956 * firmware won't understand this and we'll just get
3957 * unencapsulated messages ...
3958 */
3959 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3960 val[0] = 1;
b2612722 3961 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
b407a4a9 3962
1ac0f095
KS
3963 /*
3964 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3965 * capability. Earlier versions of the firmware didn't have the
3966 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3967 * permission to use ULPTX MEMWRITE DSGL.
3968 */
3969 if (is_t4(adap->params.chip)) {
3970 adap->params.ulptx_memwrite_dsgl = false;
3971 } else {
3972 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
b2612722 3973 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1ac0f095
KS
3974 1, params, val);
3975 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3976 }
3977
636f9d37
VP
3978 /*
3979 * Get device capabilities so we can determine what resources we need
3980 * to manage.
3981 */
3982 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
3983 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3984 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3985 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3986 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3987 &caps_cmd);
3988 if (ret < 0)
3989 goto bye;
3990
13ee15d3 3991 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
3992 /* query offload-related parameters */
3993 params[0] = FW_PARAM_DEV(NTID);
3994 params[1] = FW_PARAM_PFVF(SERVER_START);
3995 params[2] = FW_PARAM_PFVF(SERVER_END);
3996 params[3] = FW_PARAM_PFVF(TDDP_START);
3997 params[4] = FW_PARAM_PFVF(TDDP_END);
3998 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
b2612722 3999 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 4000 params, val);
b8ff05a9
DM
4001 if (ret < 0)
4002 goto bye;
4003 adap->tids.ntids = val[0];
4004 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4005 adap->tids.stid_base = val[1];
4006 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 4007 /*
dbedd44e 4008 * Setup server filter region. Divide the available filter
636f9d37
VP
4009 * region into two parts. Regular filters get 1/3rd and server
4010 * filters get 2/3rd part. This is only enabled if workarond
4011 * path is enabled.
4012 * 1. For regular filters.
4013 * 2. Server filter: This are special filters which are used
4014 * to redirect SYN packets to offload queue.
4015 */
4016 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4017 adap->tids.sftid_base = adap->tids.ftid_base +
4018 DIV_ROUND_UP(adap->tids.nftids, 3);
4019 adap->tids.nsftids = adap->tids.nftids -
4020 DIV_ROUND_UP(adap->tids.nftids, 3);
4021 adap->tids.nftids = adap->tids.sftid_base -
4022 adap->tids.ftid_base;
4023 }
b8ff05a9
DM
4024 adap->vres.ddp.start = val[3];
4025 adap->vres.ddp.size = val[4] - val[3] + 1;
4026 adap->params.ofldq_wr_cred = val[5];
636f9d37 4027
b8ff05a9
DM
4028 adap->params.offload = 1;
4029 }
636f9d37 4030 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
4031 params[0] = FW_PARAM_PFVF(STAG_START);
4032 params[1] = FW_PARAM_PFVF(STAG_END);
4033 params[2] = FW_PARAM_PFVF(RQ_START);
4034 params[3] = FW_PARAM_PFVF(RQ_END);
4035 params[4] = FW_PARAM_PFVF(PBL_START);
4036 params[5] = FW_PARAM_PFVF(PBL_END);
b2612722 4037 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 4038 params, val);
b8ff05a9
DM
4039 if (ret < 0)
4040 goto bye;
4041 adap->vres.stag.start = val[0];
4042 adap->vres.stag.size = val[1] - val[0] + 1;
4043 adap->vres.rq.start = val[2];
4044 adap->vres.rq.size = val[3] - val[2] + 1;
4045 adap->vres.pbl.start = val[4];
4046 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
4047
4048 params[0] = FW_PARAM_PFVF(SQRQ_START);
4049 params[1] = FW_PARAM_PFVF(SQRQ_END);
4050 params[2] = FW_PARAM_PFVF(CQ_START);
4051 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
4052 params[4] = FW_PARAM_PFVF(OCQ_START);
4053 params[5] = FW_PARAM_PFVF(OCQ_END);
b2612722 4054 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5c937dd3 4055 val);
a0881cab
DM
4056 if (ret < 0)
4057 goto bye;
4058 adap->vres.qp.start = val[0];
4059 adap->vres.qp.size = val[1] - val[0] + 1;
4060 adap->vres.cq.start = val[2];
4061 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
4062 adap->vres.ocq.start = val[4];
4063 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
4064
4065 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4066 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
b2612722 4067 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5c937dd3 4068 val);
4c2c5763
HS
4069 if (ret < 0) {
4070 adap->params.max_ordird_qp = 8;
4071 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4072 ret = 0;
4073 } else {
4074 adap->params.max_ordird_qp = val[0];
4075 adap->params.max_ird_adapter = val[1];
4076 }
4077 dev_info(adap->pdev_dev,
4078 "max_ordird_qp %d max_ird_adapter %d\n",
4079 adap->params.max_ordird_qp,
4080 adap->params.max_ird_adapter);
b8ff05a9 4081 }
636f9d37 4082 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
4083 params[0] = FW_PARAM_PFVF(ISCSI_START);
4084 params[1] = FW_PARAM_PFVF(ISCSI_END);
b2612722 4085 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
636f9d37 4086 params, val);
b8ff05a9
DM
4087 if (ret < 0)
4088 goto bye;
4089 adap->vres.iscsi.start = val[0];
4090 adap->vres.iscsi.size = val[1] - val[0] + 1;
4091 }
4092#undef FW_PARAM_PFVF
4093#undef FW_PARAM_DEV
4094
92e7ae71
HS
4095 /* The MTU/MSS Table is initialized by now, so load their values. If
4096 * we're initializing the adapter, then we'll make any modifications
4097 * we want to the MTU/MSS Table and also initialize the congestion
4098 * parameters.
636f9d37 4099 */
b8ff05a9 4100 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
4101 if (state != DEV_STATE_INIT) {
4102 int i;
4103
4104 /* The default MTU Table contains values 1492 and 1500.
4105 * However, for TCP, it's better to have two values which are
4106 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4107 * This allows us to have a TCP Data Payload which is a
4108 * multiple of 8 regardless of what combination of TCP Options
4109 * are in use (always a multiple of 4 bytes) which is
4110 * important for performance reasons. For instance, if no
4111 * options are in use, then we have a 20-byte IP header and a
4112 * 20-byte TCP header. In this case, a 1500-byte MSS would
4113 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4114 * which is not a multiple of 8. So using an MSS of 1488 in
4115 * this case results in a TCP Data Payload of 1448 bytes which
4116 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4117 * Stamps have been negotiated, then an MTU of 1500 bytes
4118 * results in a TCP Data Payload of 1448 bytes which, as
4119 * above, is a multiple of 8 bytes ...
4120 */
4121 for (i = 0; i < NMTUS; i++)
4122 if (adap->params.mtus[i] == 1492) {
4123 adap->params.mtus[i] = 1488;
4124 break;
4125 }
7ee9ff94 4126
92e7ae71
HS
4127 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4128 adap->params.b_wnd);
4129 }
df64e4d3 4130 t4_init_sge_params(adap);
636f9d37 4131 adap->flags |= FW_OK;
c1e9af0c 4132 t4_init_tp_params(adap);
b8ff05a9
DM
4133 return 0;
4134
4135 /*
636f9d37
VP
4136 * Something bad happened. If a command timed out or failed with EIO
4137 * FW does not operate within its spec or something catastrophic
4138 * happened to HW/FW, stop issuing commands.
b8ff05a9 4139 */
636f9d37 4140bye:
4b8e27a8
HS
4141 kfree(adap->sge.egr_map);
4142 kfree(adap->sge.ingr_map);
4143 kfree(adap->sge.starving_fl);
4144 kfree(adap->sge.txq_maperr);
5b377d11
HS
4145#ifdef CONFIG_DEBUG_FS
4146 kfree(adap->sge.blocked_fl);
4147#endif
636f9d37
VP
4148 if (ret != -ETIMEDOUT && ret != -EIO)
4149 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
4150 return ret;
4151}
4152
204dc3c0
DM
4153/* EEH callbacks */
4154
4155static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4156 pci_channel_state_t state)
4157{
4158 int i;
4159 struct adapter *adap = pci_get_drvdata(pdev);
4160
4161 if (!adap)
4162 goto out;
4163
4164 rtnl_lock();
4165 adap->flags &= ~FW_OK;
4166 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 4167 spin_lock(&adap->stats_lock);
204dc3c0
DM
4168 for_each_port(adap, i) {
4169 struct net_device *dev = adap->port[i];
4170
4171 netif_device_detach(dev);
4172 netif_carrier_off(dev);
4173 }
9fe6cb58 4174 spin_unlock(&adap->stats_lock);
b37987e8 4175 disable_interrupts(adap);
204dc3c0
DM
4176 if (adap->flags & FULL_INIT_DONE)
4177 cxgb_down(adap);
4178 rtnl_unlock();
144be3d9
GS
4179 if ((adap->flags & DEV_ENABLED)) {
4180 pci_disable_device(pdev);
4181 adap->flags &= ~DEV_ENABLED;
4182 }
204dc3c0
DM
4183out: return state == pci_channel_io_perm_failure ?
4184 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4185}
4186
4187static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4188{
4189 int i, ret;
4190 struct fw_caps_config_cmd c;
4191 struct adapter *adap = pci_get_drvdata(pdev);
4192
4193 if (!adap) {
4194 pci_restore_state(pdev);
4195 pci_save_state(pdev);
4196 return PCI_ERS_RESULT_RECOVERED;
4197 }
4198
144be3d9
GS
4199 if (!(adap->flags & DEV_ENABLED)) {
4200 if (pci_enable_device(pdev)) {
4201 dev_err(&pdev->dev, "Cannot reenable PCI "
4202 "device after reset\n");
4203 return PCI_ERS_RESULT_DISCONNECT;
4204 }
4205 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4206 }
4207
4208 pci_set_master(pdev);
4209 pci_restore_state(pdev);
4210 pci_save_state(pdev);
4211 pci_cleanup_aer_uncorrect_error_status(pdev);
4212
8203b509 4213 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4214 return PCI_ERS_RESULT_DISCONNECT;
b2612722 4215 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4216 return PCI_ERS_RESULT_DISCONNECT;
4217 adap->flags |= FW_OK;
4218 if (adap_init1(adap, &c))
4219 return PCI_ERS_RESULT_DISCONNECT;
4220
4221 for_each_port(adap, i) {
4222 struct port_info *p = adap2pinfo(adap, i);
4223
b2612722 4224 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
060e0c75 4225 NULL, NULL);
204dc3c0
DM
4226 if (ret < 0)
4227 return PCI_ERS_RESULT_DISCONNECT;
4228 p->viid = ret;
4229 p->xact_addr_filt = -1;
4230 }
4231
4232 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4233 adap->params.b_wnd);
1ae970e0 4234 setup_memwin(adap);
204dc3c0
DM
4235 if (cxgb_up(adap))
4236 return PCI_ERS_RESULT_DISCONNECT;
4237 return PCI_ERS_RESULT_RECOVERED;
4238}
4239
4240static void eeh_resume(struct pci_dev *pdev)
4241{
4242 int i;
4243 struct adapter *adap = pci_get_drvdata(pdev);
4244
4245 if (!adap)
4246 return;
4247
4248 rtnl_lock();
4249 for_each_port(adap, i) {
4250 struct net_device *dev = adap->port[i];
4251
4252 if (netif_running(dev)) {
4253 link_start(dev);
4254 cxgb_set_rxmode(dev);
4255 }
4256 netif_device_attach(dev);
4257 }
4258 rtnl_unlock();
4259}
4260
3646f0e5 4261static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4262 .error_detected = eeh_err_detected,
4263 .slot_reset = eeh_slot_reset,
4264 .resume = eeh_resume,
4265};
4266
57d8b764 4267static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4268{
57d8b764
KS
4269 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4270 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4271}
4272
c887ad0e
HS
4273static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4274 unsigned int us, unsigned int cnt,
b8ff05a9
DM
4275 unsigned int size, unsigned int iqe_size)
4276{
c887ad0e 4277 q->adap = adap;
812034f1 4278 cxgb4_set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
4279 q->iqe_len = iqe_size;
4280 q->size = size;
4281}
4282
4283/*
4284 * Perform default configuration of DMA queues depending on the number and type
4285 * of ports we found and the number of available CPUs. Most settings can be
4286 * modified by the admin prior to actual use.
4287 */
91744948 4288static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4289{
4290 struct sge *s = &adap->sge;
688848b1
AB
4291 int i, n10g = 0, qidx = 0;
4292#ifndef CONFIG_CHELSIO_T4_DCB
4293 int q10g = 0;
4294#endif
cf38be6d 4295 int ciq_size;
b8ff05a9
DM
4296
4297 for_each_port(adap, i)
57d8b764 4298 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4299#ifdef CONFIG_CHELSIO_T4_DCB
4300 /* For Data Center Bridging support we need to be able to support up
4301 * to 8 Traffic Priorities; each of which will be assigned to its
4302 * own TX Queue in order to prevent Head-Of-Line Blocking.
4303 */
4304 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4305 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4306 MAX_ETH_QSETS, adap->params.nports * 8);
4307 BUG_ON(1);
4308 }
b8ff05a9 4309
688848b1
AB
4310 for_each_port(adap, i) {
4311 struct port_info *pi = adap2pinfo(adap, i);
4312
4313 pi->first_qset = qidx;
4314 pi->nqsets = 8;
4315 qidx += pi->nqsets;
4316 }
4317#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4318 /*
4319 * We default to 1 queue per non-10G port and up to # of cores queues
4320 * per 10G port.
4321 */
4322 if (n10g)
4323 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4324 if (q10g > netif_get_num_default_rss_queues())
4325 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4326
4327 for_each_port(adap, i) {
4328 struct port_info *pi = adap2pinfo(adap, i);
4329
4330 pi->first_qset = qidx;
57d8b764 4331 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4332 qidx += pi->nqsets;
4333 }
688848b1 4334#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4335
4336 s->ethqsets = qidx;
4337 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4338
4339 if (is_offload(adap)) {
4340 /*
4341 * For offload we use 1 queue/channel if all ports are up to 1G,
4342 * otherwise we divide all available queues amongst the channels
4343 * capped by the number of available cores.
4344 */
4345 if (n10g) {
f90ce561 4346 i = min_t(int, ARRAY_SIZE(s->iscsirxq),
b8ff05a9 4347 num_online_cpus());
f90ce561 4348 s->iscsiqsets = roundup(i, adap->params.nports);
b8ff05a9 4349 } else
f90ce561 4350 s->iscsiqsets = adap->params.nports;
b8ff05a9
DM
4351 /* For RDMA one Rx queue per channel suffices */
4352 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4353 /* Try and allow at least 1 CIQ per cpu rounding down
4354 * to the number of ports, with a minimum of 1 per port.
4355 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4356 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4357 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4358 */
4359 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4360 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4361 adap->params.nports;
4362 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
b8ff05a9
DM
4363 }
4364
4365 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4366 struct sge_eth_rxq *r = &s->ethrxq[i];
4367
c887ad0e 4368 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4369 r->fl.size = 72;
4370 }
4371
4372 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4373 s->ethtxq[i].q.size = 1024;
4374
4375 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4376 s->ctrlq[i].q.size = 512;
4377
4378 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4379 s->ofldtxq[i].q.size = 1024;
4380
f90ce561
HS
4381 for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4382 struct sge_ofld_rxq *r = &s->iscsirxq[i];
b8ff05a9 4383
c887ad0e 4384 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4385 r->rspq.uld = CXGB4_ULD_ISCSI;
4386 r->fl.size = 72;
4387 }
4388
4389 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4390 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4391
c887ad0e 4392 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4393 r->rspq.uld = CXGB4_ULD_RDMA;
4394 r->fl.size = 72;
4395 }
4396
cf38be6d
HS
4397 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4398 if (ciq_size > SGE_MAX_IQ_SIZE) {
4399 CH_WARN(adap, "CIQ size too small for available IQs\n");
4400 ciq_size = SGE_MAX_IQ_SIZE;
4401 }
4402
4403 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4404 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4405
c887ad0e 4406 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4407 r->rspq.uld = CXGB4_ULD_RDMA;
4408 }
4409
c887ad0e
HS
4410 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4411 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4412}
4413
4414/*
4415 * Reduce the number of Ethernet queues across all ports to at most n.
4416 * n provides at least one queue per port.
4417 */
91744948 4418static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4419{
4420 int i;
4421 struct port_info *pi;
4422
4423 while (n < adap->sge.ethqsets)
4424 for_each_port(adap, i) {
4425 pi = adap2pinfo(adap, i);
4426 if (pi->nqsets > 1) {
4427 pi->nqsets--;
4428 adap->sge.ethqsets--;
4429 if (adap->sge.ethqsets <= n)
4430 break;
4431 }
4432 }
4433
4434 n = 0;
4435 for_each_port(adap, i) {
4436 pi = adap2pinfo(adap, i);
4437 pi->first_qset = n;
4438 n += pi->nqsets;
4439 }
4440}
4441
4442/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4443#define EXTRA_VECS 2
4444
91744948 4445static int enable_msix(struct adapter *adap)
b8ff05a9
DM
4446{
4447 int ofld_need = 0;
f36e58e5 4448 int i, want, need, allocated;
b8ff05a9
DM
4449 struct sge *s = &adap->sge;
4450 unsigned int nchan = adap->params.nports;
f36e58e5
HS
4451 struct msix_entry *entries;
4452
4453 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4454 GFP_KERNEL);
4455 if (!entries)
4456 return -ENOMEM;
b8ff05a9 4457
f36e58e5 4458 for (i = 0; i < MAX_INGQ + 1; ++i)
b8ff05a9
DM
4459 entries[i].entry = i;
4460
4461 want = s->max_ethqsets + EXTRA_VECS;
4462 if (is_offload(adap)) {
f90ce561 4463 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets;
b8ff05a9 4464 /* need nchan for each possible ULD */
cf38be6d 4465 ofld_need = 3 * nchan;
b8ff05a9 4466 }
688848b1
AB
4467#ifdef CONFIG_CHELSIO_T4_DCB
4468 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4469 * each port.
4470 */
4471 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4472#else
b8ff05a9 4473 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 4474#endif
f36e58e5
HS
4475 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4476 if (allocated < 0) {
4477 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4478 " not using MSI-X\n");
4479 kfree(entries);
4480 return allocated;
4481 }
b8ff05a9 4482
f36e58e5 4483 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4484 * Every group gets its minimum requirement and NIC gets top
4485 * priority for leftovers.
4486 */
f36e58e5 4487 i = allocated - EXTRA_VECS - ofld_need;
c32ad224
AG
4488 if (i < s->max_ethqsets) {
4489 s->max_ethqsets = i;
4490 if (i < s->ethqsets)
4491 reduce_ethqs(adap, i);
4492 }
4493 if (is_offload(adap)) {
f36e58e5
HS
4494 if (allocated < want) {
4495 s->rdmaqs = nchan;
4496 s->rdmaciqs = nchan;
4497 }
4498
4499 /* leftovers go to OFLD */
4500 i = allocated - EXTRA_VECS - s->max_ethqsets -
4501 s->rdmaqs - s->rdmaciqs;
f90ce561 4502 s->iscsiqsets = (i / nchan) * nchan; /* round down */
c32ad224 4503 }
f36e58e5 4504 for (i = 0; i < allocated; ++i)
c32ad224 4505 adap->msix_info[i].vec = entries[i].vector;
43eb4e82
HS
4506 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4507 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
f90ce561 4508 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
43eb4e82 4509 s->rdmaciqs);
c32ad224 4510
f36e58e5 4511 kfree(entries);
c32ad224 4512 return 0;
b8ff05a9
DM
4513}
4514
4515#undef EXTRA_VECS
4516
91744948 4517static int init_rss(struct adapter *adap)
671b0060 4518{
c035e183
HS
4519 unsigned int i;
4520 int err;
4521
4522 err = t4_init_rss_mode(adap, adap->mbox);
4523 if (err)
4524 return err;
671b0060
DM
4525
4526 for_each_port(adap, i) {
4527 struct port_info *pi = adap2pinfo(adap, i);
4528
4529 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4530 if (!pi->rss)
4531 return -ENOMEM;
671b0060
DM
4532 }
4533 return 0;
4534}
4535
547fd272
HS
4536static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4537 enum pci_bus_speed *speed,
4538 enum pcie_link_width *width)
4539{
4540 u32 lnkcap1, lnkcap2;
4541 int err1, err2;
4542
4543#define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4544
4545 *speed = PCI_SPEED_UNKNOWN;
4546 *width = PCIE_LNK_WIDTH_UNKNOWN;
4547
4548 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4549 &lnkcap1);
4550 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4551 &lnkcap2);
4552 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4553 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4554 *speed = PCIE_SPEED_8_0GT;
4555 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4556 *speed = PCIE_SPEED_5_0GT;
4557 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4558 *speed = PCIE_SPEED_2_5GT;
4559 }
4560 if (!err1) {
4561 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4562 if (!lnkcap2) { /* pre-r3.0 */
4563 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4564 *speed = PCIE_SPEED_5_0GT;
4565 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4566 *speed = PCIE_SPEED_2_5GT;
4567 }
4568 }
4569
4570 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4571 return err1 ? err1 : err2 ? err2 : -EINVAL;
4572 return 0;
4573}
4574
4575static void cxgb4_check_pcie_caps(struct adapter *adap)
4576{
4577 enum pcie_link_width width, width_cap;
4578 enum pci_bus_speed speed, speed_cap;
4579
4580#define PCIE_SPEED_STR(speed) \
4581 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4582 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4583 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4584 "Unknown")
4585
4586 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4587 dev_warn(adap->pdev_dev,
4588 "Unable to determine PCIe device BW capabilities\n");
4589 return;
4590 }
4591
4592 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4593 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4594 dev_warn(adap->pdev_dev,
4595 "Unable to determine PCI Express bandwidth.\n");
4596 return;
4597 }
4598
4599 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4600 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4601 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4602 width, width_cap);
4603 if (speed < speed_cap || width < width_cap)
4604 dev_info(adap->pdev_dev,
4605 "A slot with more lanes and/or higher speed is "
4606 "suggested for optimal performance.\n");
4607}
4608
91744948 4609static void print_port_info(const struct net_device *dev)
b8ff05a9 4610{
b8ff05a9 4611 char buf[80];
118969ed 4612 char *bufp = buf;
f1a051b9 4613 const char *spd = "";
118969ed
DM
4614 const struct port_info *pi = netdev_priv(dev);
4615 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4616
4617 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4618 spd = " 2.5 GT/s";
4619 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4620 spd = " 5 GT/s";
d2e752db
RD
4621 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4622 spd = " 8 GT/s";
b8ff05a9 4623
118969ed
DM
4624 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4625 bufp += sprintf(bufp, "100/");
4626 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4627 bufp += sprintf(bufp, "1000/");
4628 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4629 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4630 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4631 bufp += sprintf(bufp, "40G/");
118969ed
DM
4632 if (bufp != buf)
4633 --bufp;
72aca4bf 4634 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed 4635
547fd272 4636 netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
0a57a536 4637 adap->params.vpd.id,
d14807dd 4638 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
547fd272 4639 is_offload(adap) ? "R" : "",
118969ed
DM
4640 (adap->flags & USING_MSIX) ? " MSI-X" :
4641 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
4642 netdev_info(dev, "S/N: %s, P/N: %s\n",
4643 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
4644}
4645
91744948 4646static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4647{
e5c8ae5f 4648 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4649}
4650
06546391
DM
4651/*
4652 * Free the following resources:
4653 * - memory used for tables
4654 * - MSI/MSI-X
4655 * - net devices
4656 * - resources FW is holding for us
4657 */
4658static void free_some_resources(struct adapter *adapter)
4659{
4660 unsigned int i;
4661
4662 t4_free_mem(adapter->l2t);
4663 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4664 kfree(adapter->sge.egr_map);
4665 kfree(adapter->sge.ingr_map);
4666 kfree(adapter->sge.starving_fl);
4667 kfree(adapter->sge.txq_maperr);
5b377d11
HS
4668#ifdef CONFIG_DEBUG_FS
4669 kfree(adapter->sge.blocked_fl);
4670#endif
06546391
DM
4671 disable_msi(adapter);
4672
4673 for_each_port(adapter, i)
671b0060 4674 if (adapter->port[i]) {
4f3a0fcf
HS
4675 struct port_info *pi = adap2pinfo(adapter, i);
4676
4677 if (pi->viid != 0)
4678 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4679 0, pi->viid);
671b0060 4680 kfree(adap2pinfo(adapter, i)->rss);
06546391 4681 free_netdev(adapter->port[i]);
671b0060 4682 }
06546391 4683 if (adapter->flags & FW_OK)
b2612722 4684 t4_fw_bye(adapter, adapter->pf);
06546391
DM
4685}
4686
2ed28baa 4687#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 4688#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 4689 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 4690#define SEGMENT_SIZE 128
b8ff05a9 4691
d86bd29e
HS
4692static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4693{
d86bd29e
HS
4694 u16 device_id;
4695
4696 /* Retrieve adapter's device ID */
4697 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
46cdc9be 4698
4699 switch (device_id >> 12) {
d86bd29e 4700 case CHELSIO_T4:
46cdc9be 4701 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
d86bd29e 4702 case CHELSIO_T5:
46cdc9be 4703 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
d86bd29e 4704 case CHELSIO_T6:
46cdc9be 4705 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
d86bd29e
HS
4706 default:
4707 dev_err(&pdev->dev, "Device %d is not supported\n",
4708 device_id);
d86bd29e 4709 }
46cdc9be 4710 return -EINVAL;
d86bd29e
HS
4711}
4712
1dd06ae8 4713static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 4714{
22adfe0a 4715 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 4716 struct port_info *pi;
c8f44aff 4717 bool highdma = false;
b8ff05a9 4718 struct adapter *adapter = NULL;
d6ce2628 4719 void __iomem *regs;
d86bd29e
HS
4720 u32 whoami, pl_rev;
4721 enum chip_type chip;
b8ff05a9
DM
4722
4723 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4724
4725 err = pci_request_regions(pdev, KBUILD_MODNAME);
4726 if (err) {
4727 /* Just info, some other driver may have claimed the device. */
4728 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4729 return err;
4730 }
4731
b8ff05a9
DM
4732 err = pci_enable_device(pdev);
4733 if (err) {
4734 dev_err(&pdev->dev, "cannot enable PCI device\n");
4735 goto out_release_regions;
4736 }
4737
d6ce2628
HS
4738 regs = pci_ioremap_bar(pdev, 0);
4739 if (!regs) {
4740 dev_err(&pdev->dev, "cannot map device registers\n");
4741 err = -ENOMEM;
4742 goto out_disable_device;
4743 }
4744
8203b509
HS
4745 err = t4_wait_dev_ready(regs);
4746 if (err < 0)
4747 goto out_unmap_bar0;
4748
d6ce2628 4749 /* We control everything through one PF */
d86bd29e
HS
4750 whoami = readl(regs + PL_WHOAMI_A);
4751 pl_rev = REV_G(readl(regs + PL_REV_A));
4752 chip = get_chip_type(pdev, pl_rev);
4753 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4754 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
d6ce2628
HS
4755 if (func != ent->driver_data) {
4756 iounmap(regs);
4757 pci_disable_device(pdev);
4758 pci_save_state(pdev); /* to restore SR-IOV later */
4759 goto sriov;
4760 }
4761
b8ff05a9 4762 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 4763 highdma = true;
b8ff05a9
DM
4764 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4765 if (err) {
4766 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4767 "coherent allocations\n");
d6ce2628 4768 goto out_unmap_bar0;
b8ff05a9
DM
4769 }
4770 } else {
4771 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4772 if (err) {
4773 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 4774 goto out_unmap_bar0;
b8ff05a9
DM
4775 }
4776 }
4777
4778 pci_enable_pcie_error_reporting(pdev);
ef306b50 4779 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
4780 pci_set_master(pdev);
4781 pci_save_state(pdev);
4782
4783 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4784 if (!adapter) {
4785 err = -ENOMEM;
d6ce2628 4786 goto out_unmap_bar0;
b8ff05a9
DM
4787 }
4788
29aaee65
AB
4789 adapter->workq = create_singlethread_workqueue("cxgb4");
4790 if (!adapter->workq) {
4791 err = -ENOMEM;
4792 goto out_free_adapter;
4793 }
4794
144be3d9
GS
4795 /* PCI device has been enabled */
4796 adapter->flags |= DEV_ENABLED;
4797
d6ce2628 4798 adapter->regs = regs;
b8ff05a9
DM
4799 adapter->pdev = pdev;
4800 adapter->pdev_dev = &pdev->dev;
3069ee9b 4801 adapter->mbox = func;
b2612722 4802 adapter->pf = func;
b8ff05a9
DM
4803 adapter->msg_enable = dflt_msg_enable;
4804 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4805
4806 spin_lock_init(&adapter->stats_lock);
4807 spin_lock_init(&adapter->tid_release_lock);
e327c225 4808 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
4809
4810 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
4811 INIT_WORK(&adapter->db_full_task, process_db_full);
4812 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
4813
4814 err = t4_prep_adapter(adapter);
4815 if (err)
d6ce2628
HS
4816 goto out_free_adapter;
4817
22adfe0a 4818
d14807dd 4819 if (!is_t4(adapter->params.chip)) {
f612b815
HS
4820 s_qpp = (QUEUESPERPAGEPF0_S +
4821 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
b2612722 4822 adapter->pf);
f612b815
HS
4823 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4824 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
4825 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4826
4827 /* Each segment size is 128B. Write coalescing is enabled only
4828 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4829 * queue is less no of segments that can be accommodated in
4830 * a page size.
4831 */
4832 if (qpp > num_seg) {
4833 dev_err(&pdev->dev,
4834 "Incorrect number of egress queues per page\n");
4835 err = -EINVAL;
d6ce2628 4836 goto out_free_adapter;
22adfe0a
SR
4837 }
4838 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4839 pci_resource_len(pdev, 2));
4840 if (!adapter->bar2) {
4841 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4842 err = -ENOMEM;
d6ce2628 4843 goto out_free_adapter;
22adfe0a
SR
4844 }
4845 }
4846
636f9d37 4847 setup_memwin(adapter);
b8ff05a9 4848 err = adap_init0(adapter);
5b377d11
HS
4849#ifdef CONFIG_DEBUG_FS
4850 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4851#endif
636f9d37 4852 setup_memwin_rdma(adapter);
b8ff05a9
DM
4853 if (err)
4854 goto out_unmap_bar;
4855
2a485cf7
HS
4856 /* configure SGE_STAT_CFG_A to read WC stats */
4857 if (!is_t4(adapter->params.chip))
4858 t4_write_reg(adapter, SGE_STAT_CFG_A,
4859 STATSOURCE_T5_V(7) | STATMODE_V(0));
4860
b8ff05a9
DM
4861 for_each_port(adapter, i) {
4862 struct net_device *netdev;
4863
4864 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4865 MAX_ETH_QSETS);
4866 if (!netdev) {
4867 err = -ENOMEM;
4868 goto out_free_dev;
4869 }
4870
4871 SET_NETDEV_DEV(netdev, &pdev->dev);
4872
4873 adapter->port[i] = netdev;
4874 pi = netdev_priv(netdev);
4875 pi->adapter = adapter;
4876 pi->xact_addr_filt = -1;
b8ff05a9 4877 pi->port_id = i;
b8ff05a9
DM
4878 netdev->irq = pdev->irq;
4879
2ed28baa
MM
4880 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4881 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4882 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 4883 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
4884 if (highdma)
4885 netdev->hw_features |= NETIF_F_HIGHDMA;
4886 netdev->features |= netdev->hw_features;
b8ff05a9
DM
4887 netdev->vlan_features = netdev->features & VLAN_FEAT;
4888
01789349
JP
4889 netdev->priv_flags |= IFF_UNICAST_FLT;
4890
b8ff05a9 4891 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
4892#ifdef CONFIG_CHELSIO_T4_DCB
4893 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4894 cxgb4_dcb_state_init(netdev);
4895#endif
812034f1 4896 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
4897 }
4898
4899 pci_set_drvdata(pdev, adapter);
4900
4901 if (adapter->flags & FW_OK) {
060e0c75 4902 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
4903 if (err)
4904 goto out_free_dev;
098ef6c2
HS
4905 } else if (adapter->params.nports == 1) {
4906 /* If we don't have a connection to the firmware -- possibly
4907 * because of an error -- grab the raw VPD parameters so we
4908 * can set the proper MAC Address on the debug network
4909 * interface that we've created.
4910 */
4911 u8 hw_addr[ETH_ALEN];
4912 u8 *na = adapter->params.vpd.na;
4913
4914 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4915 if (!err) {
4916 for (i = 0; i < ETH_ALEN; i++)
4917 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4918 hex2val(na[2 * i + 1]));
4919 t4_set_hw_addr(adapter, 0, hw_addr);
4920 }
b8ff05a9
DM
4921 }
4922
098ef6c2 4923 /* Configure queues and allocate tables now, they can be needed as
b8ff05a9
DM
4924 * soon as the first register_netdev completes.
4925 */
4926 cfg_queues(adapter);
4927
5be9ed8d 4928 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
b8ff05a9
DM
4929 if (!adapter->l2t) {
4930 /* We tolerate a lack of L2T, giving up some functionality */
4931 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4932 adapter->params.offload = 0;
4933 }
4934
b5a02f50 4935#if IS_ENABLED(CONFIG_IPV6)
eb72f74f
HS
4936 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4937 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4938 /* CLIP functionality is not present in hardware,
4939 * hence disable all offload features
b5a02f50
AB
4940 */
4941 dev_warn(&pdev->dev,
eb72f74f 4942 "CLIP not enabled in hardware, continuing\n");
b5a02f50 4943 adapter->params.offload = 0;
eb72f74f
HS
4944 } else {
4945 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4946 adapter->clipt_end);
4947 if (!adapter->clipt) {
4948 /* We tolerate a lack of clip_table, giving up
4949 * some functionality
4950 */
4951 dev_warn(&pdev->dev,
4952 "could not allocate Clip table, continuing\n");
4953 adapter->params.offload = 0;
4954 }
b5a02f50
AB
4955 }
4956#endif
b8ff05a9
DM
4957 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4958 dev_warn(&pdev->dev, "could not allocate TID table, "
4959 "continuing\n");
4960 adapter->params.offload = 0;
4961 }
4962
9a1bb9f6
HS
4963 if (is_offload(adapter)) {
4964 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4965 u32 hash_base, hash_reg;
4966
4967 if (chip <= CHELSIO_T5) {
4968 hash_reg = LE_DB_TID_HASHBASE_A;
4969 hash_base = t4_read_reg(adapter, hash_reg);
4970 adapter->tids.hash_base = hash_base / 4;
4971 } else {
4972 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4973 hash_base = t4_read_reg(adapter, hash_reg);
4974 adapter->tids.hash_base = hash_base;
4975 }
4976 }
4977 }
4978
f7cabcdd
DM
4979 /* See what interrupts we'll be using */
4980 if (msi > 1 && enable_msix(adapter) == 0)
4981 adapter->flags |= USING_MSIX;
4982 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4983 adapter->flags |= USING_MSI;
4984
547fd272
HS
4985 /* check for PCI Express bandwidth capabiltites */
4986 cxgb4_check_pcie_caps(adapter);
4987
671b0060
DM
4988 err = init_rss(adapter);
4989 if (err)
4990 goto out_free_dev;
4991
b8ff05a9
DM
4992 /*
4993 * The card is now ready to go. If any errors occur during device
4994 * registration we do not fail the whole card but rather proceed only
4995 * with the ports we manage to register successfully. However we must
4996 * register at least one net device.
4997 */
4998 for_each_port(adapter, i) {
a57cabe0
DM
4999 pi = adap2pinfo(adapter, i);
5000 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5001 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5002
b8ff05a9
DM
5003 err = register_netdev(adapter->port[i]);
5004 if (err)
b1a3c2b6 5005 break;
b1a3c2b6
DM
5006 adapter->chan_map[pi->tx_chan] = i;
5007 print_port_info(adapter->port[i]);
b8ff05a9 5008 }
b1a3c2b6 5009 if (i == 0) {
b8ff05a9
DM
5010 dev_err(&pdev->dev, "could not register any net devices\n");
5011 goto out_free_dev;
5012 }
b1a3c2b6
DM
5013 if (err) {
5014 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5015 err = 0;
6403eab1 5016 }
b8ff05a9
DM
5017
5018 if (cxgb4_debugfs_root) {
5019 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5020 cxgb4_debugfs_root);
5021 setup_debugfs(adapter);
5022 }
5023
6482aa7c
DLR
5024 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5025 pdev->needs_freset = 1;
5026
b8ff05a9
DM
5027 if (is_offload(adapter))
5028 attach_ulds(adapter);
5029
8e1e6059 5030sriov:
b8ff05a9 5031#ifdef CONFIG_PCI_IOV
7d6727cf 5032 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
5033 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5034 dev_info(&pdev->dev,
5035 "instantiated %u virtual functions\n",
5036 num_vf[func]);
5037#endif
5038 return 0;
5039
5040 out_free_dev:
06546391 5041 free_some_resources(adapter);
b8ff05a9 5042 out_unmap_bar:
d14807dd 5043 if (!is_t4(adapter->params.chip))
22adfe0a 5044 iounmap(adapter->bar2);
b8ff05a9 5045 out_free_adapter:
29aaee65
AB
5046 if (adapter->workq)
5047 destroy_workqueue(adapter->workq);
5048
b8ff05a9 5049 kfree(adapter);
d6ce2628
HS
5050 out_unmap_bar0:
5051 iounmap(regs);
b8ff05a9
DM
5052 out_disable_device:
5053 pci_disable_pcie_error_reporting(pdev);
5054 pci_disable_device(pdev);
5055 out_release_regions:
5056 pci_release_regions(pdev);
b8ff05a9
DM
5057 return err;
5058}
5059
91744948 5060static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
5061{
5062 struct adapter *adapter = pci_get_drvdata(pdev);
5063
636f9d37 5064#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
5065 pci_disable_sriov(pdev);
5066
636f9d37
VP
5067#endif
5068
b8ff05a9
DM
5069 if (adapter) {
5070 int i;
5071
29aaee65
AB
5072 /* Tear down per-adapter Work Queue first since it can contain
5073 * references to our adapter data structure.
5074 */
5075 destroy_workqueue(adapter->workq);
5076
b8ff05a9
DM
5077 if (is_offload(adapter))
5078 detach_ulds(adapter);
5079
b37987e8
HS
5080 disable_interrupts(adapter);
5081
b8ff05a9 5082 for_each_port(adapter, i)
8f3a7676 5083 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
5084 unregister_netdev(adapter->port[i]);
5085
9f16dc2e 5086 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 5087
f2b7e78d
VP
5088 /* If we allocated filters, free up state associated with any
5089 * valid filters ...
5090 */
5091 if (adapter->tids.ftid_tab) {
5092 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
5093 for (i = 0; i < (adapter->tids.nftids +
5094 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
5095 if (f->valid)
5096 clear_filter(adapter, f);
5097 }
5098
aaefae9b
DM
5099 if (adapter->flags & FULL_INIT_DONE)
5100 cxgb_down(adapter);
b8ff05a9 5101
06546391 5102 free_some_resources(adapter);
b5a02f50
AB
5103#if IS_ENABLED(CONFIG_IPV6)
5104 t4_cleanup_clip_tbl(adapter);
5105#endif
b8ff05a9 5106 iounmap(adapter->regs);
d14807dd 5107 if (!is_t4(adapter->params.chip))
22adfe0a 5108 iounmap(adapter->bar2);
b8ff05a9 5109 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
5110 if ((adapter->flags & DEV_ENABLED)) {
5111 pci_disable_device(pdev);
5112 adapter->flags &= ~DEV_ENABLED;
5113 }
b8ff05a9 5114 pci_release_regions(pdev);
ee9a33b2 5115 synchronize_rcu();
8b662fe7 5116 kfree(adapter);
a069ec91 5117 } else
b8ff05a9
DM
5118 pci_release_regions(pdev);
5119}
5120
5121static struct pci_driver cxgb4_driver = {
5122 .name = KBUILD_MODNAME,
5123 .id_table = cxgb4_pci_tbl,
5124 .probe = init_one,
91744948 5125 .remove = remove_one,
687d705c 5126 .shutdown = remove_one,
204dc3c0 5127 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
5128};
5129
5130static int __init cxgb4_init_module(void)
5131{
5132 int ret;
5133
5134 /* Debugfs support is optional, just warn if this fails */
5135 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5136 if (!cxgb4_debugfs_root)
428ac43f 5137 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
5138
5139 ret = pci_register_driver(&cxgb4_driver);
29aaee65 5140 if (ret < 0)
b8ff05a9 5141 debugfs_remove(cxgb4_debugfs_root);
01bcca68 5142
1bb60376 5143#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
5144 if (!inet6addr_registered) {
5145 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5146 inet6addr_registered = true;
5147 }
1bb60376 5148#endif
01bcca68 5149
b8ff05a9
DM
5150 return ret;
5151}
5152
5153static void __exit cxgb4_cleanup_module(void)
5154{
1bb60376 5155#if IS_ENABLED(CONFIG_IPV6)
1793c798 5156 if (inet6addr_registered) {
b5a02f50
AB
5157 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5158 inet6addr_registered = false;
5159 }
1bb60376 5160#endif
b8ff05a9
DM
5161 pci_unregister_driver(&cxgb4_driver);
5162 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5163}
5164
5165module_init(cxgb4_init_module);
5166module_exit(cxgb4_cleanup_module);