]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge branch 'be2net'
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
812034f1
HS
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
01bcca68
VP
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
3a7f8554 84#define DRV_VERSION "2.0.0-ko"
812034f1 85const char cxgb4_driver_version[] = DRV_VERSION;
3a7f8554 86#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9 87
f2b7e78d
VP
88/* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110};
111
b8ff05a9
DM
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
3fedeab1
HS
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 119 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 121
3fedeab1
HS
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134#include "t4_pci_id_tbl.h"
b8ff05a9 135
16e47624 136#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 137#define FW5_FNAME "cxgb4/t5fw.bin"
16e47624 138#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 139#define FW5_CFNAME "cxgb4/t5-config.txt"
b8ff05a9
DM
140
141MODULE_DESCRIPTION(DRV_DESC);
142MODULE_AUTHOR("Chelsio Communications");
143MODULE_LICENSE("Dual BSD/GPL");
144MODULE_VERSION(DRV_VERSION);
145MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 146MODULE_FIRMWARE(FW4_FNAME);
0a57a536 147MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 148
636f9d37
VP
149/*
150 * Normally we're willing to become the firmware's Master PF but will be happy
151 * if another PF has already become the Master and initialized the adapter.
152 * Setting "force_init" will cause this driver to forcibly establish itself as
153 * the Master PF and initialize the adapter.
154 */
155static uint force_init;
156
157module_param(force_init, uint, 0644);
158MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
159
13ee15d3
VP
160/*
161 * Normally if the firmware we connect to has Configuration File support, we
162 * use that and only fall back to the old Driver-based initialization if the
163 * Configuration File fails for some reason. If force_old_init is set, then
164 * we'll always use the old Driver-based initialization sequence.
165 */
166static uint force_old_init;
167
168module_param(force_old_init, uint, 0644);
06640310
HS
169MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
170 " parameter");
13ee15d3 171
b8ff05a9
DM
172static int dflt_msg_enable = DFLT_MSG_ENABLE;
173
174module_param(dflt_msg_enable, int, 0644);
175MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
176
177/*
178 * The driver uses the best interrupt scheme available on a platform in the
179 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
180 * of these schemes the driver may consider as follows:
181 *
182 * msi = 2: choose from among all three options
183 * msi = 1: only consider MSI and INTx interrupts
184 * msi = 0: force INTx interrupts
185 */
186static int msi = 2;
187
188module_param(msi, int, 0644);
189MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
190
191/*
192 * Queue interrupt hold-off timer values. Queues default to the first of these
193 * upon creation.
194 */
195static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
196
197module_param_array(intr_holdoff, uint, NULL, 0644);
198MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 199 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
200
201static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
202
203module_param_array(intr_cnt, uint, NULL, 0644);
204MODULE_PARM_DESC(intr_cnt,
06640310
HS
205 "thresholds 1..3 for queue interrupt packet counters, "
206 "deprecated parameter");
b8ff05a9 207
636f9d37
VP
208/*
209 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
210 * offset by 2 bytes in order to have the IP headers line up on 4-byte
211 * boundaries. This is a requirement for many architectures which will throw
212 * a machine check fault if an attempt is made to access one of the 4-byte IP
213 * header fields on a non-4-byte boundary. And it's a major performance issue
214 * even on some architectures which allow it like some implementations of the
215 * x86 ISA. However, some architectures don't mind this and for some very
216 * edge-case performance sensitive applications (like forwarding large volumes
217 * of small packets), setting this DMA offset to 0 will decrease the number of
218 * PCI-E Bus transfers enough to measurably affect performance.
219 */
220static int rx_dma_offset = 2;
221
eb939922 222static bool vf_acls;
b8ff05a9
DM
223
224#ifdef CONFIG_PCI_IOV
225module_param(vf_acls, bool, 0644);
06640310
HS
226MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
227 "deprecated parameter");
b8ff05a9 228
7d6727cf
SR
229/* Configure the number of PCI-E Virtual Function which are to be instantiated
230 * on SR-IOV Capable Physical Functions.
0a57a536 231 */
7d6727cf 232static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
233
234module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 235MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
236#endif
237
688848b1
AB
238/* TX Queue select used to determine what algorithm to use for selecting TX
239 * queue. Select between the kernel provided function (select_queue=0) or user
240 * cxgb_select_queue function (select_queue=1)
241 *
242 * Default: select_queue=0
243 */
244static int select_queue;
245module_param(select_queue, int, 0644);
246MODULE_PARM_DESC(select_queue,
247 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
248
06640310 249static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 250
f2b7e78d 251module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
252MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
253 "deprecated parameter");
f2b7e78d 254
b8ff05a9
DM
255static struct dentry *cxgb4_debugfs_root;
256
257static LIST_HEAD(adapter_list);
258static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
259/* Adapter list to be accessed from atomic context */
260static LIST_HEAD(adap_rcu_list);
261static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
262static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
263static const char *uld_str[] = { "RDMA", "iSCSI" };
264
265static void link_report(struct net_device *dev)
266{
267 if (!netif_carrier_ok(dev))
268 netdev_info(dev, "link down\n");
269 else {
270 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
271
272 const char *s = "10Mbps";
273 const struct port_info *p = netdev_priv(dev);
274
275 switch (p->link_cfg.speed) {
e8b39015 276 case 10000:
b8ff05a9
DM
277 s = "10Gbps";
278 break;
e8b39015 279 case 1000:
b8ff05a9
DM
280 s = "1000Mbps";
281 break;
e8b39015 282 case 100:
b8ff05a9
DM
283 s = "100Mbps";
284 break;
e8b39015 285 case 40000:
72aca4bf
KS
286 s = "40Gbps";
287 break;
b8ff05a9
DM
288 }
289
290 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
291 fc[p->link_cfg.fc]);
292 }
293}
294
688848b1
AB
295#ifdef CONFIG_CHELSIO_T4_DCB
296/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
297static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
298{
299 struct port_info *pi = netdev_priv(dev);
300 struct adapter *adap = pi->adapter;
301 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
302 int i;
303
304 /* We use a simple mapping of Port TX Queue Index to DCB
305 * Priority when we're enabling DCB.
306 */
307 for (i = 0; i < pi->nqsets; i++, txq++) {
308 u32 name, value;
309 int err;
310
5167865a
HS
311 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
312 FW_PARAMS_PARAM_X_V(
313 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
314 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
315 value = enable ? i : 0xffffffff;
316
317 /* Since we can be called while atomic (from "interrupt
318 * level") we need to issue the Set Parameters Commannd
319 * without sleeping (timeout < 0).
320 */
321 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
322 &name, &value);
323
324 if (err)
325 dev_err(adap->pdev_dev,
326 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
327 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
328 else
329 txq->dcb_prio = value;
688848b1
AB
330 }
331}
332#endif /* CONFIG_CHELSIO_T4_DCB */
333
b8ff05a9
DM
334void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
335{
336 struct net_device *dev = adapter->port[port_id];
337
338 /* Skip changes from disabled ports. */
339 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
340 if (link_stat)
341 netif_carrier_on(dev);
688848b1
AB
342 else {
343#ifdef CONFIG_CHELSIO_T4_DCB
344 cxgb4_dcb_state_init(dev);
345 dcb_tx_queue_prio_enable(dev, false);
346#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 347 netif_carrier_off(dev);
688848b1 348 }
b8ff05a9
DM
349
350 link_report(dev);
351 }
352}
353
354void t4_os_portmod_changed(const struct adapter *adap, int port_id)
355{
356 static const char *mod_str[] = {
a0881cab 357 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
358 };
359
360 const struct net_device *dev = adap->port[port_id];
361 const struct port_info *pi = netdev_priv(dev);
362
363 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
364 netdev_info(dev, "port module unplugged\n");
a0881cab 365 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
366 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
367}
368
369/*
370 * Configure the exact and hash address filters to handle a port's multicast
371 * and secondary unicast MAC addresses.
372 */
373static int set_addr_filters(const struct net_device *dev, bool sleep)
374{
375 u64 mhash = 0;
376 u64 uhash = 0;
377 bool free = true;
378 u16 filt_idx[7];
379 const u8 *addr[7];
380 int ret, naddr = 0;
b8ff05a9
DM
381 const struct netdev_hw_addr *ha;
382 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 383 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 384 const struct port_info *pi = netdev_priv(dev);
060e0c75 385 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
386
387 /* first do the secondary unicast addresses */
388 netdev_for_each_uc_addr(ha, dev) {
389 addr[naddr++] = ha->addr;
390 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 391 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
392 naddr, addr, filt_idx, &uhash, sleep);
393 if (ret < 0)
394 return ret;
395
396 free = false;
397 naddr = 0;
398 }
399 }
400
401 /* next set up the multicast addresses */
4a35ecf8
DM
402 netdev_for_each_mc_addr(ha, dev) {
403 addr[naddr++] = ha->addr;
404 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 405 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
406 naddr, addr, filt_idx, &mhash, sleep);
407 if (ret < 0)
408 return ret;
409
410 free = false;
411 naddr = 0;
412 }
413 }
414
060e0c75 415 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
416 uhash | mhash, sleep);
417}
418
3069ee9b
VP
419int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
420module_param(dbfifo_int_thresh, int, 0644);
421MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
422
404d9e3f
VP
423/*
424 * usecs to sleep while draining the dbfifo
425 */
426static int dbfifo_drain_delay = 1000;
3069ee9b
VP
427module_param(dbfifo_drain_delay, int, 0644);
428MODULE_PARM_DESC(dbfifo_drain_delay,
429 "usecs to sleep while draining the dbfifo");
430
b8ff05a9
DM
431/*
432 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
433 * If @mtu is -1 it is left unchanged.
434 */
435static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
436{
437 int ret;
438 struct port_info *pi = netdev_priv(dev);
439
440 ret = set_addr_filters(dev, sleep_ok);
441 if (ret == 0)
060e0c75 442 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
b8ff05a9 443 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 444 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
445 sleep_ok);
446 return ret;
447}
448
449/**
450 * link_start - enable a port
451 * @dev: the port to enable
452 *
453 * Performs the MAC and PHY actions needed to enable a port.
454 */
455static int link_start(struct net_device *dev)
456{
457 int ret;
458 struct port_info *pi = netdev_priv(dev);
060e0c75 459 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
460
461 /*
462 * We do not set address filters and promiscuity here, the stack does
463 * that step explicitly.
464 */
060e0c75 465 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 466 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 467 if (ret == 0) {
060e0c75 468 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 469 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 470 true);
b8ff05a9
DM
471 if (ret >= 0) {
472 pi->xact_addr_filt = ret;
473 ret = 0;
474 }
475 }
476 if (ret == 0)
060e0c75
DM
477 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
478 &pi->link_cfg);
30f00847
AB
479 if (ret == 0) {
480 local_bh_disable();
688848b1
AB
481 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
482 true, CXGB4_DCB_ENABLED);
30f00847
AB
483 local_bh_enable();
484 }
688848b1 485
b8ff05a9
DM
486 return ret;
487}
488
688848b1
AB
489int cxgb4_dcb_enabled(const struct net_device *dev)
490{
491#ifdef CONFIG_CHELSIO_T4_DCB
492 struct port_info *pi = netdev_priv(dev);
493
3bb06261
AB
494 if (!pi->dcb.enabled)
495 return 0;
496
497 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
498 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
499#else
500 return 0;
501#endif
502}
503EXPORT_SYMBOL(cxgb4_dcb_enabled);
504
505#ifdef CONFIG_CHELSIO_T4_DCB
506/* Handle a Data Center Bridging update message from the firmware. */
507static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
508{
2b5fb1f2 509 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
510 struct net_device *dev = adap->port[port];
511 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
512 int new_dcb_enabled;
513
514 cxgb4_dcb_handle_fw_update(adap, pcmd);
515 new_dcb_enabled = cxgb4_dcb_enabled(dev);
516
517 /* If the DCB has become enabled or disabled on the port then we're
518 * going to need to set up/tear down DCB Priority parameters for the
519 * TX Queues associated with the port.
520 */
521 if (new_dcb_enabled != old_dcb_enabled)
522 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
523}
524#endif /* CONFIG_CHELSIO_T4_DCB */
525
f2b7e78d
VP
526/* Clear a filter and release any of its resources that we own. This also
527 * clears the filter's "pending" status.
528 */
529static void clear_filter(struct adapter *adap, struct filter_entry *f)
530{
531 /* If the new or old filter have loopback rewriteing rules then we'll
532 * need to free any existing Layer Two Table (L2T) entries of the old
533 * filter rule. The firmware will handle freeing up any Source MAC
534 * Table (SMT) entries used for rewriting Source MAC Addresses in
535 * loopback rules.
536 */
537 if (f->l2t)
538 cxgb4_l2t_release(f->l2t);
539
540 /* The zeroing of the filter rule below clears the filter valid,
541 * pending, locked flags, l2t pointer, etc. so it's all we need for
542 * this operation.
543 */
544 memset(f, 0, sizeof(*f));
545}
546
547/* Handle a filter write/deletion reply.
548 */
549static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
550{
551 unsigned int idx = GET_TID(rpl);
552 unsigned int nidx = idx - adap->tids.ftid_base;
553 unsigned int ret;
554 struct filter_entry *f;
555
556 if (idx >= adap->tids.ftid_base && nidx <
557 (adap->tids.nftids + adap->tids.nsftids)) {
558 idx = nidx;
bdc590b9 559 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
560 f = &adap->tids.ftid_tab[idx];
561
562 if (ret == FW_FILTER_WR_FLT_DELETED) {
563 /* Clear the filter when we get confirmation from the
564 * hardware that the filter has been deleted.
565 */
566 clear_filter(adap, f);
567 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
568 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
569 idx);
570 clear_filter(adap, f);
571 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
572 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
573 f->pending = 0; /* asynchronous setup completed */
574 f->valid = 1;
575 } else {
576 /* Something went wrong. Issue a warning about the
577 * problem and clear everything out.
578 */
579 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
580 idx, ret);
581 clear_filter(adap, f);
582 }
583 }
584}
585
586/* Response queue handler for the FW event queue.
b8ff05a9
DM
587 */
588static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
589 const struct pkt_gl *gl)
590{
591 u8 opcode = ((const struct rss_header *)rsp)->opcode;
592
593 rsp++; /* skip RSS header */
b407a4a9
VP
594
595 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
596 */
597 if (unlikely(opcode == CPL_FW4_MSG &&
598 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
599 rsp++;
600 opcode = ((const struct rss_header *)rsp)->opcode;
601 rsp++;
602 if (opcode != CPL_SGE_EGR_UPDATE) {
603 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
604 , opcode);
605 goto out;
606 }
607 }
608
b8ff05a9
DM
609 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
610 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 611 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 612 struct sge_txq *txq;
b8ff05a9 613
e46dab4d 614 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 615 txq->restarts++;
e46dab4d 616 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
617 struct sge_eth_txq *eq;
618
619 eq = container_of(txq, struct sge_eth_txq, q);
620 netif_tx_wake_queue(eq->txq);
621 } else {
622 struct sge_ofld_txq *oq;
623
624 oq = container_of(txq, struct sge_ofld_txq, q);
625 tasklet_schedule(&oq->qresume_tsk);
626 }
627 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
628 const struct cpl_fw6_msg *p = (void *)rsp;
629
688848b1
AB
630#ifdef CONFIG_CHELSIO_T4_DCB
631 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 632 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 633 unsigned int action =
2b5fb1f2 634 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
635
636 if (cmd == FW_PORT_CMD &&
637 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 638 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
639 be32_to_cpu(pcmd->op_to_portid));
640 struct net_device *dev = q->adap->port[port];
641 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 642 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
643 ? CXGB4_DCB_INPUT_FW_DISABLED
644 : CXGB4_DCB_INPUT_FW_ENABLED);
645
646 cxgb4_dcb_state_fsm(dev, state_input);
647 }
648
649 if (cmd == FW_PORT_CMD &&
650 action == FW_PORT_ACTION_L2_DCB_CFG)
651 dcb_rpl(q->adap, pcmd);
652 else
653#endif
654 if (p->type == 0)
655 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
656 } else if (opcode == CPL_L2T_WRITE_RPL) {
657 const struct cpl_l2t_write_rpl *p = (void *)rsp;
658
659 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
660 } else if (opcode == CPL_SET_TCB_RPL) {
661 const struct cpl_set_tcb_rpl *p = (void *)rsp;
662
663 filter_rpl(q->adap, p);
b8ff05a9
DM
664 } else
665 dev_err(q->adap->pdev_dev,
666 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 667out:
b8ff05a9
DM
668 return 0;
669}
670
671/**
672 * uldrx_handler - response queue handler for ULD queues
673 * @q: the response queue that received the packet
674 * @rsp: the response queue descriptor holding the offload message
675 * @gl: the gather list of packet fragments
676 *
677 * Deliver an ingress offload packet to a ULD. All processing is done by
678 * the ULD, we just maintain statistics.
679 */
680static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
681 const struct pkt_gl *gl)
682{
683 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
684
b407a4a9
VP
685 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
686 */
687 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
688 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
689 rsp += 2;
690
b8ff05a9
DM
691 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
692 rxq->stats.nomem++;
693 return -1;
694 }
695 if (gl == NULL)
696 rxq->stats.imm++;
697 else if (gl == CXGB4_MSG_AN)
698 rxq->stats.an++;
699 else
700 rxq->stats.pkts++;
701 return 0;
702}
703
704static void disable_msi(struct adapter *adapter)
705{
706 if (adapter->flags & USING_MSIX) {
707 pci_disable_msix(adapter->pdev);
708 adapter->flags &= ~USING_MSIX;
709 } else if (adapter->flags & USING_MSI) {
710 pci_disable_msi(adapter->pdev);
711 adapter->flags &= ~USING_MSI;
712 }
713}
714
715/*
716 * Interrupt handler for non-data events used with MSI-X.
717 */
718static irqreturn_t t4_nondata_intr(int irq, void *cookie)
719{
720 struct adapter *adap = cookie;
0d804338 721 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 722
0d804338 723 if (v & PFSW_F) {
b8ff05a9 724 adap->swintr = 1;
0d804338 725 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 726 }
c3c7b121
HS
727 if (adap->flags & MASTER_PF)
728 t4_slow_intr_handler(adap);
b8ff05a9
DM
729 return IRQ_HANDLED;
730}
731
732/*
733 * Name the MSI-X interrupts.
734 */
735static void name_msix_vecs(struct adapter *adap)
736{
ba27816c 737 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
738
739 /* non-data interrupts */
b1a3c2b6 740 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
741
742 /* FW events */
b1a3c2b6
DM
743 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
744 adap->port[0]->name);
b8ff05a9
DM
745
746 /* Ethernet queues */
747 for_each_port(adap, j) {
748 struct net_device *d = adap->port[j];
749 const struct port_info *pi = netdev_priv(d);
750
ba27816c 751 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
752 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
753 d->name, i);
b8ff05a9
DM
754 }
755
756 /* offload queues */
ba27816c
DM
757 for_each_ofldrxq(&adap->sge, i)
758 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 759 adap->port[0]->name, i);
ba27816c
DM
760
761 for_each_rdmarxq(&adap->sge, i)
762 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 763 adap->port[0]->name, i);
cf38be6d
HS
764
765 for_each_rdmaciq(&adap->sge, i)
766 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
767 adap->port[0]->name, i);
b8ff05a9
DM
768}
769
770static int request_msix_queue_irqs(struct adapter *adap)
771{
772 struct sge *s = &adap->sge;
cf38be6d
HS
773 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
774 int msi_index = 2;
b8ff05a9
DM
775
776 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
777 adap->msix_info[1].desc, &s->fw_evtq);
778 if (err)
779 return err;
780
781 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
782 err = request_irq(adap->msix_info[msi_index].vec,
783 t4_sge_intr_msix, 0,
784 adap->msix_info[msi_index].desc,
b8ff05a9
DM
785 &s->ethrxq[ethqidx].rspq);
786 if (err)
787 goto unwind;
404d9e3f 788 msi_index++;
b8ff05a9
DM
789 }
790 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
791 err = request_irq(adap->msix_info[msi_index].vec,
792 t4_sge_intr_msix, 0,
793 adap->msix_info[msi_index].desc,
b8ff05a9
DM
794 &s->ofldrxq[ofldqidx].rspq);
795 if (err)
796 goto unwind;
404d9e3f 797 msi_index++;
b8ff05a9
DM
798 }
799 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
800 err = request_irq(adap->msix_info[msi_index].vec,
801 t4_sge_intr_msix, 0,
802 adap->msix_info[msi_index].desc,
b8ff05a9
DM
803 &s->rdmarxq[rdmaqidx].rspq);
804 if (err)
805 goto unwind;
404d9e3f 806 msi_index++;
b8ff05a9 807 }
cf38be6d
HS
808 for_each_rdmaciq(s, rdmaciqqidx) {
809 err = request_irq(adap->msix_info[msi_index].vec,
810 t4_sge_intr_msix, 0,
811 adap->msix_info[msi_index].desc,
812 &s->rdmaciq[rdmaciqqidx].rspq);
813 if (err)
814 goto unwind;
815 msi_index++;
816 }
b8ff05a9
DM
817 return 0;
818
819unwind:
cf38be6d
HS
820 while (--rdmaciqqidx >= 0)
821 free_irq(adap->msix_info[--msi_index].vec,
822 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 823 while (--rdmaqidx >= 0)
404d9e3f 824 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
825 &s->rdmarxq[rdmaqidx].rspq);
826 while (--ofldqidx >= 0)
404d9e3f 827 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
828 &s->ofldrxq[ofldqidx].rspq);
829 while (--ethqidx >= 0)
404d9e3f
VP
830 free_irq(adap->msix_info[--msi_index].vec,
831 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
832 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
833 return err;
834}
835
836static void free_msix_queue_irqs(struct adapter *adap)
837{
404d9e3f 838 int i, msi_index = 2;
b8ff05a9
DM
839 struct sge *s = &adap->sge;
840
841 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
842 for_each_ethrxq(s, i)
404d9e3f 843 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 844 for_each_ofldrxq(s, i)
404d9e3f 845 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 846 for_each_rdmarxq(s, i)
404d9e3f 847 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
848 for_each_rdmaciq(s, i)
849 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
850}
851
671b0060 852/**
812034f1 853 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
854 * @pi: the port
855 * @queues: array of queue indices for RSS
856 *
857 * Sets up the portion of the HW RSS table for the port's VI to distribute
858 * packets to the Rx queues in @queues.
859 */
812034f1 860int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
861{
862 u16 *rss;
863 int i, err;
864 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
865
866 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
867 if (!rss)
868 return -ENOMEM;
869
870 /* map the queue indices to queue ids */
871 for (i = 0; i < pi->rss_size; i++, queues++)
872 rss[i] = q[*queues].rspq.abs_id;
873
060e0c75
DM
874 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
875 pi->rss_size, rss, pi->rss_size);
671b0060
DM
876 kfree(rss);
877 return err;
878}
879
b8ff05a9
DM
880/**
881 * setup_rss - configure RSS
882 * @adap: the adapter
883 *
671b0060 884 * Sets up RSS for each port.
b8ff05a9
DM
885 */
886static int setup_rss(struct adapter *adap)
887{
671b0060 888 int i, err;
b8ff05a9
DM
889
890 for_each_port(adap, i) {
891 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 892
812034f1 893 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
894 if (err)
895 return err;
896 }
897 return 0;
898}
899
e46dab4d
DM
900/*
901 * Return the channel of the ingress queue with the given qid.
902 */
903static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
904{
905 qid -= p->ingr_start;
906 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
907}
908
b8ff05a9
DM
909/*
910 * Wait until all NAPI handlers are descheduled.
911 */
912static void quiesce_rx(struct adapter *adap)
913{
914 int i;
915
4b8e27a8 916 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
917 struct sge_rspq *q = adap->sge.ingr_map[i];
918
3a336cb1 919 if (q && q->handler) {
b8ff05a9 920 napi_disable(&q->napi);
3a336cb1
HS
921 local_bh_disable();
922 while (!cxgb_poll_lock_napi(q))
923 mdelay(1);
924 local_bh_enable();
925 }
926
b8ff05a9
DM
927 }
928}
929
b37987e8
HS
930/* Disable interrupt and napi handler */
931static void disable_interrupts(struct adapter *adap)
932{
933 if (adap->flags & FULL_INIT_DONE) {
934 t4_intr_disable(adap);
935 if (adap->flags & USING_MSIX) {
936 free_msix_queue_irqs(adap);
937 free_irq(adap->msix_info[0].vec, adap);
938 } else {
939 free_irq(adap->pdev->irq, adap);
940 }
941 quiesce_rx(adap);
942 }
943}
944
b8ff05a9
DM
945/*
946 * Enable NAPI scheduling and interrupt generation for all Rx queues.
947 */
948static void enable_rx(struct adapter *adap)
949{
950 int i;
951
4b8e27a8 952 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
953 struct sge_rspq *q = adap->sge.ingr_map[i];
954
955 if (!q)
956 continue;
3a336cb1
HS
957 if (q->handler) {
958 cxgb_busy_poll_init_lock(q);
b8ff05a9 959 napi_enable(&q->napi);
3a336cb1 960 }
b8ff05a9 961 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
962 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
963 SEINTARM_V(q->intr_params) |
964 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
965 }
966}
967
1c6a5b0e
HS
968static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
969 unsigned int nq, unsigned int per_chan, int msi_idx,
970 u16 *ids)
971{
972 int i, err;
973
974 for (i = 0; i < nq; i++, q++) {
975 if (msi_idx > 0)
976 msi_idx++;
977 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
978 adap->port[i / per_chan],
979 msi_idx, q->fl.size ? &q->fl : NULL,
145ef8a5 980 uldrx_handler, 0);
1c6a5b0e
HS
981 if (err)
982 return err;
983 memset(&q->stats, 0, sizeof(q->stats));
984 if (ids)
985 ids[i] = q->rspq.abs_id;
986 }
987 return 0;
988}
989
b8ff05a9
DM
990/**
991 * setup_sge_queues - configure SGE Tx/Rx/response queues
992 * @adap: the adapter
993 *
994 * Determines how many sets of SGE queues to use and initializes them.
995 * We support multiple queue sets per port if we have MSI-X, otherwise
996 * just one queue set per port.
997 */
998static int setup_sge_queues(struct adapter *adap)
999{
1000 int err, msi_idx, i, j;
1001 struct sge *s = &adap->sge;
1002
4b8e27a8
HS
1003 bitmap_zero(s->starving_fl, s->egr_sz);
1004 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1005
1006 if (adap->flags & USING_MSIX)
1007 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1008 else {
1009 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
145ef8a5 1010 NULL, NULL, -1);
b8ff05a9
DM
1011 if (err)
1012 return err;
1013 msi_idx = -((int)s->intrq.abs_id + 1);
1014 }
1015
4b8e27a8
HS
1016 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1017 * don't forget to update the following which need to be
1018 * synchronized to and changes here.
1019 *
1020 * 1. The calculations of MAX_INGQ in cxgb4.h.
1021 *
1022 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1023 * to accommodate any new/deleted Ingress Queues
1024 * which need MSI-X Vectors.
1025 *
1026 * 3. Update sge_qinfo_show() to include information on the
1027 * new/deleted queues.
1028 */
b8ff05a9 1029 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
145ef8a5 1030 msi_idx, NULL, fwevtq_handler, -1);
b8ff05a9
DM
1031 if (err) {
1032freeout: t4_free_sge_resources(adap);
1033 return err;
1034 }
1035
1036 for_each_port(adap, i) {
1037 struct net_device *dev = adap->port[i];
1038 struct port_info *pi = netdev_priv(dev);
1039 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1040 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1041
1042 for (j = 0; j < pi->nqsets; j++, q++) {
1043 if (msi_idx > 0)
1044 msi_idx++;
1045 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1046 msi_idx, &q->fl,
145ef8a5
HS
1047 t4_ethrx_handler,
1048 t4_get_mps_bg_map(adap,
1049 pi->tx_chan));
b8ff05a9
DM
1050 if (err)
1051 goto freeout;
1052 q->rspq.idx = j;
1053 memset(&q->stats, 0, sizeof(q->stats));
1054 }
1055 for (j = 0; j < pi->nqsets; j++, t++) {
1056 err = t4_sge_alloc_eth_txq(adap, t, dev,
1057 netdev_get_tx_queue(dev, j),
1058 s->fw_evtq.cntxt_id);
1059 if (err)
1060 goto freeout;
1061 }
1062 }
1063
1064 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1065 for_each_ofldrxq(s, i) {
1c6a5b0e
HS
1066 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1067 adap->port[i / j],
b8ff05a9
DM
1068 s->fw_evtq.cntxt_id);
1069 if (err)
1070 goto freeout;
1071 }
1072
1c6a5b0e
HS
1073#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1074 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1075 if (err) \
1076 goto freeout; \
1077 if (msi_idx > 0) \
1078 msi_idx += nq; \
1079} while (0)
b8ff05a9 1080
1c6a5b0e
HS
1081 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1082 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
f36e58e5
HS
1083 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1084 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
b8ff05a9 1085
1c6a5b0e 1086#undef ALLOC_OFLD_RXQS
cf38be6d 1087
b8ff05a9
DM
1088 for_each_port(adap, i) {
1089 /*
1090 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1091 * have RDMA queues, and that's the right value.
1092 */
1093 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1094 s->fw_evtq.cntxt_id,
1095 s->rdmarxq[i].rspq.cntxt_id);
1096 if (err)
1097 goto freeout;
1098 }
1099
9bb59b96 1100 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1101 MPS_TRC_RSS_CONTROL_A :
1102 MPS_T5_TRC_RSS_CONTROL_A,
1103 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1104 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1105 return 0;
1106}
1107
b8ff05a9
DM
1108/*
1109 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1110 * The allocated memory is cleared.
1111 */
1112void *t4_alloc_mem(size_t size)
1113{
8be04b93 1114 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1115
1116 if (!p)
89bf67f1 1117 p = vzalloc(size);
b8ff05a9
DM
1118 return p;
1119}
1120
1121/*
1122 * Free memory allocated through alloc_mem().
1123 */
fd88b31a 1124void t4_free_mem(void *addr)
b8ff05a9
DM
1125{
1126 if (is_vmalloc_addr(addr))
1127 vfree(addr);
1128 else
1129 kfree(addr);
1130}
1131
f2b7e78d
VP
1132/* Send a Work Request to write the filter at a specified index. We construct
1133 * a Firmware Filter Work Request to have the work done and put the indicated
1134 * filter into "pending" mode which will prevent any further actions against
1135 * it till we get a reply from the firmware on the completion status of the
1136 * request.
1137 */
1138static int set_filter_wr(struct adapter *adapter, int fidx)
1139{
1140 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1141 struct sk_buff *skb;
1142 struct fw_filter_wr *fwr;
1143 unsigned int ftid;
1144
f72f116a
MH
1145 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1146 if (!skb)
1147 return -ENOMEM;
1148
f2b7e78d
VP
1149 /* If the new filter requires loopback Destination MAC and/or VLAN
1150 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1151 * the filter.
1152 */
1153 if (f->fs.newdmac || f->fs.newvlan) {
1154 /* allocate L2T entry for new filter */
1155 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
f72f116a
MH
1156 if (f->l2t == NULL) {
1157 kfree_skb(skb);
f2b7e78d 1158 return -EAGAIN;
f72f116a 1159 }
f2b7e78d
VP
1160 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1161 f->fs.eport, f->fs.dmac)) {
1162 cxgb4_l2t_release(f->l2t);
1163 f->l2t = NULL;
f72f116a 1164 kfree_skb(skb);
f2b7e78d
VP
1165 return -ENOMEM;
1166 }
1167 }
1168
1169 ftid = adapter->tids.ftid_base + fidx;
1170
f2b7e78d
VP
1171 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1172 memset(fwr, 0, sizeof(*fwr));
1173
1174 /* It would be nice to put most of the following in t4_hw.c but most
1175 * of the work is translating the cxgbtool ch_filter_specification
1176 * into the Work Request and the definition of that structure is
1177 * currently in cxgbtool.h which isn't appropriate to pull into the
1178 * common code. We may eventually try to come up with a more neutral
1179 * filter specification structure but for now it's easiest to simply
1180 * put this fairly direct code in line ...
1181 */
e2ac9628
HS
1182 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1183 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1184 fwr->tid_to_iq =
77a80e23
HS
1185 htonl(FW_FILTER_WR_TID_V(ftid) |
1186 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1187 FW_FILTER_WR_NOREPLY_V(0) |
1188 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1189 fwr->del_filter_to_l2tix =
77a80e23
HS
1190 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1191 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1192 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1193 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1194 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1195 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1196 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1197 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1198 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1199 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1200 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1201 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1202 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1203 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1204 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1205 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1206 fwr->ethtype = htons(f->fs.val.ethtype);
1207 fwr->ethtypem = htons(f->fs.mask.ethtype);
1208 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1209 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1210 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1211 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1212 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1213 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1214 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1215 fwr->smac_sel = 0;
1216 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1217 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1218 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1219 fwr->maci_to_matchtypem =
77a80e23
HS
1220 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1221 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1222 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1223 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1224 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1225 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1226 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1227 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1228 fwr->ptcl = f->fs.val.proto;
1229 fwr->ptclm = f->fs.mask.proto;
1230 fwr->ttyp = f->fs.val.tos;
1231 fwr->ttypm = f->fs.mask.tos;
1232 fwr->ivlan = htons(f->fs.val.ivlan);
1233 fwr->ivlanm = htons(f->fs.mask.ivlan);
1234 fwr->ovlan = htons(f->fs.val.ovlan);
1235 fwr->ovlanm = htons(f->fs.mask.ovlan);
1236 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1237 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1238 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1239 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1240 fwr->lp = htons(f->fs.val.lport);
1241 fwr->lpm = htons(f->fs.mask.lport);
1242 fwr->fp = htons(f->fs.val.fport);
1243 fwr->fpm = htons(f->fs.mask.fport);
1244 if (f->fs.newsmac)
1245 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1246
1247 /* Mark the filter as "pending" and ship off the Filter Work Request.
1248 * When we get the Work Request Reply we'll clear the pending status.
1249 */
1250 f->pending = 1;
1251 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1252 t4_ofld_send(adapter, skb);
1253 return 0;
1254}
1255
1256/* Delete the filter at a specified index.
1257 */
1258static int del_filter_wr(struct adapter *adapter, int fidx)
1259{
1260 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1261 struct sk_buff *skb;
1262 struct fw_filter_wr *fwr;
1263 unsigned int len, ftid;
1264
1265 len = sizeof(*fwr);
1266 ftid = adapter->tids.ftid_base + fidx;
1267
f72f116a
MH
1268 skb = alloc_skb(len, GFP_KERNEL);
1269 if (!skb)
1270 return -ENOMEM;
1271
f2b7e78d
VP
1272 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1273 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1274
1275 /* Mark the filter as "pending" and ship off the Filter Work Request.
1276 * When we get the Work Request Reply we'll clear the pending status.
1277 */
1278 f->pending = 1;
1279 t4_mgmt_tx(adapter, skb);
1280 return 0;
1281}
1282
688848b1
AB
1283static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1284 void *accel_priv, select_queue_fallback_t fallback)
1285{
1286 int txq;
1287
1288#ifdef CONFIG_CHELSIO_T4_DCB
1289 /* If a Data Center Bridging has been successfully negotiated on this
1290 * link then we'll use the skb's priority to map it to a TX Queue.
1291 * The skb's priority is determined via the VLAN Tag Priority Code
1292 * Point field.
1293 */
1294 if (cxgb4_dcb_enabled(dev)) {
1295 u16 vlan_tci;
1296 int err;
1297
1298 err = vlan_get_tag(skb, &vlan_tci);
1299 if (unlikely(err)) {
1300 if (net_ratelimit())
1301 netdev_warn(dev,
1302 "TX Packet without VLAN Tag on DCB Link\n");
1303 txq = 0;
1304 } else {
1305 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1306#ifdef CONFIG_CHELSIO_T4_FCOE
1307 if (skb->protocol == htons(ETH_P_FCOE))
1308 txq = skb->priority & 0x7;
1309#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1310 }
1311 return txq;
1312 }
1313#endif /* CONFIG_CHELSIO_T4_DCB */
1314
1315 if (select_queue) {
1316 txq = (skb_rx_queue_recorded(skb)
1317 ? skb_get_rx_queue(skb)
1318 : smp_processor_id());
1319
1320 while (unlikely(txq >= dev->real_num_tx_queues))
1321 txq -= dev->real_num_tx_queues;
1322
1323 return txq;
1324 }
1325
1326 return fallback(dev, skb) % dev->real_num_tx_queues;
1327}
1328
b8ff05a9
DM
1329static inline int is_offload(const struct adapter *adap)
1330{
1331 return adap->params.offload;
1332}
1333
b8ff05a9
DM
1334static int closest_timer(const struct sge *s, int time)
1335{
1336 int i, delta, match = 0, min_delta = INT_MAX;
1337
1338 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1339 delta = time - s->timer_val[i];
1340 if (delta < 0)
1341 delta = -delta;
1342 if (delta < min_delta) {
1343 min_delta = delta;
1344 match = i;
1345 }
1346 }
1347 return match;
1348}
1349
1350static int closest_thres(const struct sge *s, int thres)
1351{
1352 int i, delta, match = 0, min_delta = INT_MAX;
1353
1354 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1355 delta = thres - s->counter_val[i];
1356 if (delta < 0)
1357 delta = -delta;
1358 if (delta < min_delta) {
1359 min_delta = delta;
1360 match = i;
1361 }
1362 }
1363 return match;
1364}
1365
b8ff05a9 1366/**
812034f1 1367 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1368 * @q: the Rx queue
1369 * @us: the hold-off time in us, or 0 to disable timer
1370 * @cnt: the hold-off packet count, or 0 to disable counter
1371 *
1372 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1373 * one of the two needs to be enabled for the queue to generate interrupts.
1374 */
812034f1
HS
1375int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1376 unsigned int us, unsigned int cnt)
b8ff05a9 1377{
c887ad0e
HS
1378 struct adapter *adap = q->adap;
1379
b8ff05a9
DM
1380 if ((us | cnt) == 0)
1381 cnt = 1;
1382
1383 if (cnt) {
1384 int err;
1385 u32 v, new_idx;
1386
1387 new_idx = closest_thres(&adap->sge, cnt);
1388 if (q->desc && q->pktcnt_idx != new_idx) {
1389 /* the queue has already been created, update it */
5167865a
HS
1390 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1391 FW_PARAMS_PARAM_X_V(
1392 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1393 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
060e0c75
DM
1394 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1395 &new_idx);
b8ff05a9
DM
1396 if (err)
1397 return err;
1398 }
1399 q->pktcnt_idx = new_idx;
1400 }
1401
1402 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1403 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1404 return 0;
1405}
1406
c8f44aff 1407static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1408{
2ed28baa 1409 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1410 netdev_features_t changed = dev->features ^ features;
19ecae2c 1411 int err;
19ecae2c 1412
f646968f 1413 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1414 return 0;
19ecae2c 1415
2ed28baa
MM
1416 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1417 -1, -1, -1,
f646968f 1418 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1419 if (unlikely(err))
f646968f 1420 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1421 return err;
87b6cf51
DM
1422}
1423
91744948 1424static int setup_debugfs(struct adapter *adap)
b8ff05a9 1425{
b8ff05a9
DM
1426 if (IS_ERR_OR_NULL(adap->debugfs_root))
1427 return -1;
1428
fd88b31a
HS
1429#ifdef CONFIG_DEBUG_FS
1430 t4_setup_debugfs(adap);
1431#endif
b8ff05a9
DM
1432 return 0;
1433}
1434
1435/*
1436 * upper-layer driver support
1437 */
1438
1439/*
1440 * Allocate an active-open TID and set it to the supplied value.
1441 */
1442int cxgb4_alloc_atid(struct tid_info *t, void *data)
1443{
1444 int atid = -1;
1445
1446 spin_lock_bh(&t->atid_lock);
1447 if (t->afree) {
1448 union aopen_entry *p = t->afree;
1449
f2b7e78d 1450 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1451 t->afree = p->next;
1452 p->data = data;
1453 t->atids_in_use++;
1454 }
1455 spin_unlock_bh(&t->atid_lock);
1456 return atid;
1457}
1458EXPORT_SYMBOL(cxgb4_alloc_atid);
1459
1460/*
1461 * Release an active-open TID.
1462 */
1463void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1464{
f2b7e78d 1465 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1466
1467 spin_lock_bh(&t->atid_lock);
1468 p->next = t->afree;
1469 t->afree = p;
1470 t->atids_in_use--;
1471 spin_unlock_bh(&t->atid_lock);
1472}
1473EXPORT_SYMBOL(cxgb4_free_atid);
1474
1475/*
1476 * Allocate a server TID and set it to the supplied value.
1477 */
1478int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1479{
1480 int stid;
1481
1482 spin_lock_bh(&t->stid_lock);
1483 if (family == PF_INET) {
1484 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1485 if (stid < t->nstids)
1486 __set_bit(stid, t->stid_bmap);
1487 else
1488 stid = -1;
1489 } else {
1490 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1491 if (stid < 0)
1492 stid = -1;
1493 }
1494 if (stid >= 0) {
1495 t->stid_tab[stid].data = data;
1496 stid += t->stid_base;
15f63b74
KS
1497 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1498 * This is equivalent to 4 TIDs. With CLIP enabled it
1499 * needs 2 TIDs.
1500 */
1501 if (family == PF_INET)
1502 t->stids_in_use++;
1503 else
1504 t->stids_in_use += 4;
b8ff05a9
DM
1505 }
1506 spin_unlock_bh(&t->stid_lock);
1507 return stid;
1508}
1509EXPORT_SYMBOL(cxgb4_alloc_stid);
1510
dca4faeb
VP
1511/* Allocate a server filter TID and set it to the supplied value.
1512 */
1513int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1514{
1515 int stid;
1516
1517 spin_lock_bh(&t->stid_lock);
1518 if (family == PF_INET) {
1519 stid = find_next_zero_bit(t->stid_bmap,
1520 t->nstids + t->nsftids, t->nstids);
1521 if (stid < (t->nstids + t->nsftids))
1522 __set_bit(stid, t->stid_bmap);
1523 else
1524 stid = -1;
1525 } else {
1526 stid = -1;
1527 }
1528 if (stid >= 0) {
1529 t->stid_tab[stid].data = data;
470c60c4
KS
1530 stid -= t->nstids;
1531 stid += t->sftid_base;
dca4faeb
VP
1532 t->stids_in_use++;
1533 }
1534 spin_unlock_bh(&t->stid_lock);
1535 return stid;
1536}
1537EXPORT_SYMBOL(cxgb4_alloc_sftid);
1538
1539/* Release a server TID.
b8ff05a9
DM
1540 */
1541void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1542{
470c60c4
KS
1543 /* Is it a server filter TID? */
1544 if (t->nsftids && (stid >= t->sftid_base)) {
1545 stid -= t->sftid_base;
1546 stid += t->nstids;
1547 } else {
1548 stid -= t->stid_base;
1549 }
1550
b8ff05a9
DM
1551 spin_lock_bh(&t->stid_lock);
1552 if (family == PF_INET)
1553 __clear_bit(stid, t->stid_bmap);
1554 else
1555 bitmap_release_region(t->stid_bmap, stid, 2);
1556 t->stid_tab[stid].data = NULL;
15f63b74
KS
1557 if (family == PF_INET)
1558 t->stids_in_use--;
1559 else
1560 t->stids_in_use -= 4;
b8ff05a9
DM
1561 spin_unlock_bh(&t->stid_lock);
1562}
1563EXPORT_SYMBOL(cxgb4_free_stid);
1564
1565/*
1566 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1567 */
1568static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1569 unsigned int tid)
1570{
1571 struct cpl_tid_release *req;
1572
1573 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1574 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1575 INIT_TP_WR(req, tid);
1576 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1577}
1578
1579/*
1580 * Queue a TID release request and if necessary schedule a work queue to
1581 * process it.
1582 */
31b9c19b 1583static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1584 unsigned int tid)
b8ff05a9
DM
1585{
1586 void **p = &t->tid_tab[tid];
1587 struct adapter *adap = container_of(t, struct adapter, tids);
1588
1589 spin_lock_bh(&adap->tid_release_lock);
1590 *p = adap->tid_release_head;
1591 /* Low 2 bits encode the Tx channel number */
1592 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1593 if (!adap->tid_release_task_busy) {
1594 adap->tid_release_task_busy = true;
29aaee65 1595 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1596 }
1597 spin_unlock_bh(&adap->tid_release_lock);
1598}
b8ff05a9
DM
1599
1600/*
1601 * Process the list of pending TID release requests.
1602 */
1603static void process_tid_release_list(struct work_struct *work)
1604{
1605 struct sk_buff *skb;
1606 struct adapter *adap;
1607
1608 adap = container_of(work, struct adapter, tid_release_task);
1609
1610 spin_lock_bh(&adap->tid_release_lock);
1611 while (adap->tid_release_head) {
1612 void **p = adap->tid_release_head;
1613 unsigned int chan = (uintptr_t)p & 3;
1614 p = (void *)p - chan;
1615
1616 adap->tid_release_head = *p;
1617 *p = NULL;
1618 spin_unlock_bh(&adap->tid_release_lock);
1619
1620 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1621 GFP_KERNEL)))
1622 schedule_timeout_uninterruptible(1);
1623
1624 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1625 t4_ofld_send(adap, skb);
1626 spin_lock_bh(&adap->tid_release_lock);
1627 }
1628 adap->tid_release_task_busy = false;
1629 spin_unlock_bh(&adap->tid_release_lock);
1630}
1631
1632/*
1633 * Release a TID and inform HW. If we are unable to allocate the release
1634 * message we defer to a work queue.
1635 */
1636void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1637{
1638 void *old;
1639 struct sk_buff *skb;
1640 struct adapter *adap = container_of(t, struct adapter, tids);
1641
1642 old = t->tid_tab[tid];
1643 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1644 if (likely(skb)) {
1645 t->tid_tab[tid] = NULL;
1646 mk_tid_release(skb, chan, tid);
1647 t4_ofld_send(adap, skb);
1648 } else
1649 cxgb4_queue_tid_release(t, chan, tid);
1650 if (old)
1651 atomic_dec(&t->tids_in_use);
1652}
1653EXPORT_SYMBOL(cxgb4_remove_tid);
1654
1655/*
1656 * Allocate and initialize the TID tables. Returns 0 on success.
1657 */
1658static int tid_init(struct tid_info *t)
1659{
1660 size_t size;
f2b7e78d 1661 unsigned int stid_bmap_size;
b8ff05a9 1662 unsigned int natids = t->natids;
b6f8eaec 1663 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1664
dca4faeb 1665 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1666 size = t->ntids * sizeof(*t->tid_tab) +
1667 natids * sizeof(*t->atid_tab) +
b8ff05a9 1668 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1669 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1670 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1671 t->nftids * sizeof(*t->ftid_tab) +
1672 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1673
b8ff05a9
DM
1674 t->tid_tab = t4_alloc_mem(size);
1675 if (!t->tid_tab)
1676 return -ENOMEM;
1677
1678 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1679 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1680 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1681 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1682 spin_lock_init(&t->stid_lock);
1683 spin_lock_init(&t->atid_lock);
1684
1685 t->stids_in_use = 0;
1686 t->afree = NULL;
1687 t->atids_in_use = 0;
1688 atomic_set(&t->tids_in_use, 0);
1689
1690 /* Setup the free list for atid_tab and clear the stid bitmap. */
1691 if (natids) {
1692 while (--natids)
1693 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1694 t->afree = t->atid_tab;
1695 }
dca4faeb 1696 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1697 /* Reserve stid 0 for T4/T5 adapters */
1698 if (!t->stid_base &&
1699 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1700 __set_bit(0, t->stid_bmap);
1701
b8ff05a9
DM
1702 return 0;
1703}
1704
1705/**
1706 * cxgb4_create_server - create an IP server
1707 * @dev: the device
1708 * @stid: the server TID
1709 * @sip: local IP address to bind server to
1710 * @sport: the server's TCP port
1711 * @queue: queue to direct messages from this server to
1712 *
1713 * Create an IP server for the given port and address.
1714 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1715 */
1716int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1717 __be32 sip, __be16 sport, __be16 vlan,
1718 unsigned int queue)
b8ff05a9
DM
1719{
1720 unsigned int chan;
1721 struct sk_buff *skb;
1722 struct adapter *adap;
1723 struct cpl_pass_open_req *req;
80f40c1f 1724 int ret;
b8ff05a9
DM
1725
1726 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1727 if (!skb)
1728 return -ENOMEM;
1729
1730 adap = netdev2adap(dev);
1731 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1732 INIT_TP_WR(req, 0);
1733 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1734 req->local_port = sport;
1735 req->peer_port = htons(0);
1736 req->local_ip = sip;
1737 req->peer_ip = htonl(0);
e46dab4d 1738 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1739 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1740 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1741 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1742 ret = t4_mgmt_tx(adap, skb);
1743 return net_xmit_eval(ret);
b8ff05a9
DM
1744}
1745EXPORT_SYMBOL(cxgb4_create_server);
1746
80f40c1f
VP
1747/* cxgb4_create_server6 - create an IPv6 server
1748 * @dev: the device
1749 * @stid: the server TID
1750 * @sip: local IPv6 address to bind server to
1751 * @sport: the server's TCP port
1752 * @queue: queue to direct messages from this server to
1753 *
1754 * Create an IPv6 server for the given port and address.
1755 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1756 */
1757int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1758 const struct in6_addr *sip, __be16 sport,
1759 unsigned int queue)
1760{
1761 unsigned int chan;
1762 struct sk_buff *skb;
1763 struct adapter *adap;
1764 struct cpl_pass_open_req6 *req;
1765 int ret;
1766
1767 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1768 if (!skb)
1769 return -ENOMEM;
1770
1771 adap = netdev2adap(dev);
1772 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1773 INIT_TP_WR(req, 0);
1774 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1775 req->local_port = sport;
1776 req->peer_port = htons(0);
1777 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1778 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1779 req->peer_ip_hi = cpu_to_be64(0);
1780 req->peer_ip_lo = cpu_to_be64(0);
1781 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1782 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1783 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1784 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1785 ret = t4_mgmt_tx(adap, skb);
1786 return net_xmit_eval(ret);
1787}
1788EXPORT_SYMBOL(cxgb4_create_server6);
1789
1790int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1791 unsigned int queue, bool ipv6)
1792{
1793 struct sk_buff *skb;
1794 struct adapter *adap;
1795 struct cpl_close_listsvr_req *req;
1796 int ret;
1797
1798 adap = netdev2adap(dev);
1799
1800 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1801 if (!skb)
1802 return -ENOMEM;
1803
1804 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1805 INIT_TP_WR(req, 0);
1806 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1807 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1808 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1809 ret = t4_mgmt_tx(adap, skb);
1810 return net_xmit_eval(ret);
1811}
1812EXPORT_SYMBOL(cxgb4_remove_server);
1813
b8ff05a9
DM
1814/**
1815 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1816 * @mtus: the HW MTU table
1817 * @mtu: the target MTU
1818 * @idx: index of selected entry in the MTU table
1819 *
1820 * Returns the index and the value in the HW MTU table that is closest to
1821 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1822 * table, in which case that smallest available value is selected.
1823 */
1824unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1825 unsigned int *idx)
1826{
1827 unsigned int i = 0;
1828
1829 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1830 ++i;
1831 if (idx)
1832 *idx = i;
1833 return mtus[i];
1834}
1835EXPORT_SYMBOL(cxgb4_best_mtu);
1836
92e7ae71
HS
1837/**
1838 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1839 * @mtus: the HW MTU table
1840 * @header_size: Header Size
1841 * @data_size_max: maximum Data Segment Size
1842 * @data_size_align: desired Data Segment Size Alignment (2^N)
1843 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1844 *
1845 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1846 * MTU Table based solely on a Maximum MTU parameter, we break that
1847 * parameter up into a Header Size and Maximum Data Segment Size, and
1848 * provide a desired Data Segment Size Alignment. If we find an MTU in
1849 * the Hardware MTU Table which will result in a Data Segment Size with
1850 * the requested alignment _and_ that MTU isn't "too far" from the
1851 * closest MTU, then we'll return that rather than the closest MTU.
1852 */
1853unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1854 unsigned short header_size,
1855 unsigned short data_size_max,
1856 unsigned short data_size_align,
1857 unsigned int *mtu_idxp)
1858{
1859 unsigned short max_mtu = header_size + data_size_max;
1860 unsigned short data_size_align_mask = data_size_align - 1;
1861 int mtu_idx, aligned_mtu_idx;
1862
1863 /* Scan the MTU Table till we find an MTU which is larger than our
1864 * Maximum MTU or we reach the end of the table. Along the way,
1865 * record the last MTU found, if any, which will result in a Data
1866 * Segment Length matching the requested alignment.
1867 */
1868 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1869 unsigned short data_size = mtus[mtu_idx] - header_size;
1870
1871 /* If this MTU minus the Header Size would result in a
1872 * Data Segment Size of the desired alignment, remember it.
1873 */
1874 if ((data_size & data_size_align_mask) == 0)
1875 aligned_mtu_idx = mtu_idx;
1876
1877 /* If we're not at the end of the Hardware MTU Table and the
1878 * next element is larger than our Maximum MTU, drop out of
1879 * the loop.
1880 */
1881 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1882 break;
1883 }
1884
1885 /* If we fell out of the loop because we ran to the end of the table,
1886 * then we just have to use the last [largest] entry.
1887 */
1888 if (mtu_idx == NMTUS)
1889 mtu_idx--;
1890
1891 /* If we found an MTU which resulted in the requested Data Segment
1892 * Length alignment and that's "not far" from the largest MTU which is
1893 * less than or equal to the maximum MTU, then use that.
1894 */
1895 if (aligned_mtu_idx >= 0 &&
1896 mtu_idx - aligned_mtu_idx <= 1)
1897 mtu_idx = aligned_mtu_idx;
1898
1899 /* If the caller has passed in an MTU Index pointer, pass the
1900 * MTU Index back. Return the MTU value.
1901 */
1902 if (mtu_idxp)
1903 *mtu_idxp = mtu_idx;
1904 return mtus[mtu_idx];
1905}
1906EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1907
b8ff05a9
DM
1908/**
1909 * cxgb4_port_chan - get the HW channel of a port
1910 * @dev: the net device for the port
1911 *
1912 * Return the HW Tx channel of the given port.
1913 */
1914unsigned int cxgb4_port_chan(const struct net_device *dev)
1915{
1916 return netdev2pinfo(dev)->tx_chan;
1917}
1918EXPORT_SYMBOL(cxgb4_port_chan);
1919
881806bc
VP
1920unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1921{
1922 struct adapter *adap = netdev2adap(dev);
2cc301d2 1923 u32 v1, v2, lp_count, hp_count;
881806bc 1924
f061de42
HS
1925 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1926 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 1927 if (is_t4(adap->params.chip)) {
f061de42
HS
1928 lp_count = LP_COUNT_G(v1);
1929 hp_count = HP_COUNT_G(v1);
2cc301d2 1930 } else {
f061de42
HS
1931 lp_count = LP_COUNT_T5_G(v1);
1932 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
1933 }
1934 return lpfifo ? lp_count : hp_count;
881806bc
VP
1935}
1936EXPORT_SYMBOL(cxgb4_dbfifo_count);
1937
b8ff05a9
DM
1938/**
1939 * cxgb4_port_viid - get the VI id of a port
1940 * @dev: the net device for the port
1941 *
1942 * Return the VI id of the given port.
1943 */
1944unsigned int cxgb4_port_viid(const struct net_device *dev)
1945{
1946 return netdev2pinfo(dev)->viid;
1947}
1948EXPORT_SYMBOL(cxgb4_port_viid);
1949
1950/**
1951 * cxgb4_port_idx - get the index of a port
1952 * @dev: the net device for the port
1953 *
1954 * Return the index of the given port.
1955 */
1956unsigned int cxgb4_port_idx(const struct net_device *dev)
1957{
1958 return netdev2pinfo(dev)->port_id;
1959}
1960EXPORT_SYMBOL(cxgb4_port_idx);
1961
b8ff05a9
DM
1962void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1963 struct tp_tcp_stats *v6)
1964{
1965 struct adapter *adap = pci_get_drvdata(pdev);
1966
1967 spin_lock(&adap->stats_lock);
1968 t4_tp_get_tcp_stats(adap, v4, v6);
1969 spin_unlock(&adap->stats_lock);
1970}
1971EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1972
1973void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1974 const unsigned int *pgsz_order)
1975{
1976 struct adapter *adap = netdev2adap(dev);
1977
0d804338
HS
1978 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1979 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1980 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1981 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
1982}
1983EXPORT_SYMBOL(cxgb4_iscsi_init);
1984
3069ee9b
VP
1985int cxgb4_flush_eq_cache(struct net_device *dev)
1986{
1987 struct adapter *adap = netdev2adap(dev);
1988 int ret;
1989
1990 ret = t4_fwaddrspace_write(adap, adap->mbox,
f061de42 1991 0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
3069ee9b
VP
1992 return ret;
1993}
1994EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1995
1996static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1997{
f061de42 1998 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
1999 __be64 indices;
2000 int ret;
2001
fc5ab020
HS
2002 spin_lock(&adap->win0_lock);
2003 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2004 sizeof(indices), (__be32 *)&indices,
2005 T4_MEMORY_READ);
2006 spin_unlock(&adap->win0_lock);
3069ee9b 2007 if (!ret) {
404d9e3f
VP
2008 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2009 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2010 }
2011 return ret;
2012}
2013
2014int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2015 u16 size)
2016{
2017 struct adapter *adap = netdev2adap(dev);
2018 u16 hw_pidx, hw_cidx;
2019 int ret;
2020
2021 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2022 if (ret)
2023 goto out;
2024
2025 if (pidx != hw_pidx) {
2026 u16 delta;
f612b815 2027 u32 val;
3069ee9b
VP
2028
2029 if (pidx >= hw_pidx)
2030 delta = pidx - hw_pidx;
2031 else
2032 delta = size - hw_pidx + pidx;
f612b815
HS
2033
2034 if (is_t4(adap->params.chip))
2035 val = PIDX_V(delta);
2036 else
2037 val = PIDX_T5_V(delta);
3069ee9b 2038 wmb();
f612b815
HS
2039 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2040 QID_V(qid) | val);
3069ee9b
VP
2041 }
2042out:
2043 return ret;
2044}
2045EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2046
3cbdb928
VP
2047void cxgb4_disable_db_coalescing(struct net_device *dev)
2048{
2049 struct adapter *adap;
2050
2051 adap = netdev2adap(dev);
f061de42 2052 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
f612b815 2053 NOCOALESCE_F);
3cbdb928
VP
2054}
2055EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2056
2057void cxgb4_enable_db_coalescing(struct net_device *dev)
2058{
2059 struct adapter *adap;
2060
2061 adap = netdev2adap(dev);
f061de42 2062 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
3cbdb928
VP
2063}
2064EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2065
031cf476
HS
2066int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2067{
2068 struct adapter *adap;
2069 u32 offset, memtype, memaddr;
6559a7e8 2070 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2071 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2072 int ret;
2073
2074 adap = netdev2adap(dev);
2075
2076 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2077
2078 /* Figure out where the offset lands in the Memory Type/Address scheme.
2079 * This code assumes that the memory is laid out starting at offset 0
2080 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2081 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2082 * MC0, and some have both MC0 and MC1.
2083 */
6559a7e8
HS
2084 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2085 edc0_size = EDRAM0_SIZE_G(size) << 20;
2086 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2087 edc1_size = EDRAM1_SIZE_G(size) << 20;
2088 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2089 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2090
2091 edc0_end = edc0_size;
2092 edc1_end = edc0_end + edc1_size;
2093 mc0_end = edc1_end + mc0_size;
2094
2095 if (offset < edc0_end) {
2096 memtype = MEM_EDC0;
2097 memaddr = offset;
2098 } else if (offset < edc1_end) {
2099 memtype = MEM_EDC1;
2100 memaddr = offset - edc0_end;
2101 } else {
2102 if (offset < mc0_end) {
2103 memtype = MEM_MC0;
2104 memaddr = offset - edc1_end;
2105 } else if (is_t4(adap->params.chip)) {
2106 /* T4 only has a single memory channel */
2107 goto err;
2108 } else {
6559a7e8
HS
2109 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2110 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2111 mc1_end = mc0_end + mc1_size;
2112 if (offset < mc1_end) {
2113 memtype = MEM_MC1;
2114 memaddr = offset - mc0_end;
2115 } else {
2116 /* offset beyond the end of any memory */
2117 goto err;
2118 }
2119 }
2120 }
2121
2122 spin_lock(&adap->win0_lock);
2123 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2124 spin_unlock(&adap->win0_lock);
2125 return ret;
2126
2127err:
2128 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2129 stag, offset);
2130 return -EINVAL;
2131}
2132EXPORT_SYMBOL(cxgb4_read_tpte);
2133
7730b4c7
HS
2134u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2135{
2136 u32 hi, lo;
2137 struct adapter *adap;
2138
2139 adap = netdev2adap(dev);
f612b815
HS
2140 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2141 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2142
2143 return ((u64)hi << 32) | (u64)lo;
2144}
2145EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2146
df64e4d3
HS
2147int cxgb4_bar2_sge_qregs(struct net_device *dev,
2148 unsigned int qid,
2149 enum cxgb4_bar2_qtype qtype,
2150 u64 *pbar2_qoffset,
2151 unsigned int *pbar2_qid)
2152{
dd0bcc0b 2153 return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2154 qid,
2155 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2156 ? T4_BAR2_QTYPE_EGRESS
2157 : T4_BAR2_QTYPE_INGRESS),
2158 pbar2_qoffset,
2159 pbar2_qid);
2160}
2161EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2162
b8ff05a9
DM
2163static struct pci_driver cxgb4_driver;
2164
2165static void check_neigh_update(struct neighbour *neigh)
2166{
2167 const struct device *parent;
2168 const struct net_device *netdev = neigh->dev;
2169
2170 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2171 netdev = vlan_dev_real_dev(netdev);
2172 parent = netdev->dev.parent;
2173 if (parent && parent->driver == &cxgb4_driver.driver)
2174 t4_l2t_update(dev_get_drvdata(parent), neigh);
2175}
2176
2177static int netevent_cb(struct notifier_block *nb, unsigned long event,
2178 void *data)
2179{
2180 switch (event) {
2181 case NETEVENT_NEIGH_UPDATE:
2182 check_neigh_update(data);
2183 break;
b8ff05a9
DM
2184 case NETEVENT_REDIRECT:
2185 default:
2186 break;
2187 }
2188 return 0;
2189}
2190
2191static bool netevent_registered;
2192static struct notifier_block cxgb4_netevent_nb = {
2193 .notifier_call = netevent_cb
2194};
2195
3069ee9b
VP
2196static void drain_db_fifo(struct adapter *adap, int usecs)
2197{
2cc301d2 2198 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2199
2200 do {
f061de42
HS
2201 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2202 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2203 if (is_t4(adap->params.chip)) {
f061de42
HS
2204 lp_count = LP_COUNT_G(v1);
2205 hp_count = HP_COUNT_G(v1);
2cc301d2 2206 } else {
f061de42
HS
2207 lp_count = LP_COUNT_T5_G(v1);
2208 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2209 }
2210
2211 if (lp_count == 0 && hp_count == 0)
2212 break;
3069ee9b
VP
2213 set_current_state(TASK_UNINTERRUPTIBLE);
2214 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2215 } while (1);
2216}
2217
2218static void disable_txq_db(struct sge_txq *q)
2219{
05eb2389
SW
2220 unsigned long flags;
2221
2222 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2223 q->db_disabled = 1;
05eb2389 2224 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2225}
2226
05eb2389 2227static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2228{
2229 spin_lock_irq(&q->db_lock);
05eb2389
SW
2230 if (q->db_pidx_inc) {
2231 /* Make sure that all writes to the TX descriptors
2232 * are committed before we tell HW about them.
2233 */
2234 wmb();
f612b815
HS
2235 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2236 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2237 q->db_pidx_inc = 0;
2238 }
3069ee9b
VP
2239 q->db_disabled = 0;
2240 spin_unlock_irq(&q->db_lock);
2241}
2242
2243static void disable_dbs(struct adapter *adap)
2244{
2245 int i;
2246
2247 for_each_ethrxq(&adap->sge, i)
2248 disable_txq_db(&adap->sge.ethtxq[i].q);
2249 for_each_ofldrxq(&adap->sge, i)
2250 disable_txq_db(&adap->sge.ofldtxq[i].q);
2251 for_each_port(adap, i)
2252 disable_txq_db(&adap->sge.ctrlq[i].q);
2253}
2254
2255static void enable_dbs(struct adapter *adap)
2256{
2257 int i;
2258
2259 for_each_ethrxq(&adap->sge, i)
05eb2389 2260 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 2261 for_each_ofldrxq(&adap->sge, i)
05eb2389 2262 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2263 for_each_port(adap, i)
05eb2389
SW
2264 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2265}
2266
2267static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2268{
2269 if (adap->uld_handle[CXGB4_ULD_RDMA])
2270 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2271 cmd);
2272}
2273
2274static void process_db_full(struct work_struct *work)
2275{
2276 struct adapter *adap;
2277
2278 adap = container_of(work, struct adapter, db_full_task);
2279
2280 drain_db_fifo(adap, dbfifo_drain_delay);
2281 enable_dbs(adap);
2282 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
f612b815
HS
2283 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2284 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2285 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
3069ee9b
VP
2286}
2287
2288static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2289{
2290 u16 hw_pidx, hw_cidx;
2291 int ret;
2292
05eb2389 2293 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2294 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2295 if (ret)
2296 goto out;
2297 if (q->db_pidx != hw_pidx) {
2298 u16 delta;
f612b815 2299 u32 val;
3069ee9b
VP
2300
2301 if (q->db_pidx >= hw_pidx)
2302 delta = q->db_pidx - hw_pidx;
2303 else
2304 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2305
2306 if (is_t4(adap->params.chip))
2307 val = PIDX_V(delta);
2308 else
2309 val = PIDX_T5_V(delta);
3069ee9b 2310 wmb();
f612b815
HS
2311 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2312 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2313 }
2314out:
2315 q->db_disabled = 0;
05eb2389
SW
2316 q->db_pidx_inc = 0;
2317 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2318 if (ret)
2319 CH_WARN(adap, "DB drop recovery failed.\n");
2320}
2321static void recover_all_queues(struct adapter *adap)
2322{
2323 int i;
2324
2325 for_each_ethrxq(&adap->sge, i)
2326 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2327 for_each_ofldrxq(&adap->sge, i)
2328 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2329 for_each_port(adap, i)
2330 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2331}
2332
881806bc
VP
2333static void process_db_drop(struct work_struct *work)
2334{
2335 struct adapter *adap;
881806bc 2336
3069ee9b 2337 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2338
d14807dd 2339 if (is_t4(adap->params.chip)) {
05eb2389 2340 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2341 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2342 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2343 recover_all_queues(adap);
05eb2389 2344 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2345 enable_dbs(adap);
05eb2389 2346 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2cc301d2
SR
2347 } else {
2348 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2349 u16 qid = (dropped_db >> 15) & 0x1ffff;
2350 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2351 u64 bar2_qoffset;
2352 unsigned int bar2_qid;
2353 int ret;
2cc301d2 2354
dd0bcc0b 2355 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
df64e4d3
HS
2356 &bar2_qoffset, &bar2_qid);
2357 if (ret)
2358 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2359 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2360 else
f612b815 2361 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2362 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2363
2364 /* Re-enable BAR2 WC */
2365 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2366 }
2367
f061de42 2368 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2369}
2370
2371void t4_db_full(struct adapter *adap)
2372{
d14807dd 2373 if (is_t4(adap->params.chip)) {
05eb2389
SW
2374 disable_dbs(adap);
2375 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2376 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2377 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2378 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2379 }
881806bc
VP
2380}
2381
2382void t4_db_dropped(struct adapter *adap)
2383{
05eb2389
SW
2384 if (is_t4(adap->params.chip)) {
2385 disable_dbs(adap);
2386 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2387 }
29aaee65 2388 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2389}
2390
b8ff05a9
DM
2391static void uld_attach(struct adapter *adap, unsigned int uld)
2392{
2393 void *handle;
2394 struct cxgb4_lld_info lli;
dca4faeb 2395 unsigned short i;
b8ff05a9
DM
2396
2397 lli.pdev = adap->pdev;
35b1de55 2398 lli.pf = adap->fn;
b8ff05a9
DM
2399 lli.l2t = adap->l2t;
2400 lli.tids = &adap->tids;
2401 lli.ports = adap->port;
2402 lli.vr = &adap->vres;
2403 lli.mtus = adap->params.mtus;
2404 if (uld == CXGB4_ULD_RDMA) {
2405 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2406 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2407 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2408 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
2409 } else if (uld == CXGB4_ULD_ISCSI) {
2410 lli.rxq_ids = adap->sge.ofld_rxq;
2411 lli.nrxq = adap->sge.ofldqsets;
2412 }
2413 lli.ntxq = adap->sge.ofldqsets;
2414 lli.nchan = adap->params.nports;
2415 lli.nports = adap->params.nports;
2416 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2417 lli.adapter_type = adap->params.chip;
837e4a42 2418 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 2419 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2420 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2421 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2422 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2423 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2424 for (i = 0; i < NCHAN; i++)
2425 lli.tx_modq[i] = i;
f612b815
HS
2426 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2427 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2428 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2429 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2430 lli.sge_ingpadboundary = adap->sge.fl_align;
2431 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2432 lli.sge_pktshift = adap->sge.pktshift;
2433 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2434 lli.max_ordird_qp = adap->params.max_ordird_qp;
2435 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2436 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2437 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2438
2439 handle = ulds[uld].add(&lli);
2440 if (IS_ERR(handle)) {
2441 dev_warn(adap->pdev_dev,
2442 "could not attach to the %s driver, error %ld\n",
2443 uld_str[uld], PTR_ERR(handle));
2444 return;
2445 }
2446
2447 adap->uld_handle[uld] = handle;
2448
2449 if (!netevent_registered) {
2450 register_netevent_notifier(&cxgb4_netevent_nb);
2451 netevent_registered = true;
2452 }
e29f5dbc
DM
2453
2454 if (adap->flags & FULL_INIT_DONE)
2455 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2456}
2457
2458static void attach_ulds(struct adapter *adap)
2459{
2460 unsigned int i;
2461
01bcca68
VP
2462 spin_lock(&adap_rcu_lock);
2463 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2464 spin_unlock(&adap_rcu_lock);
2465
b8ff05a9
DM
2466 mutex_lock(&uld_mutex);
2467 list_add_tail(&adap->list_node, &adapter_list);
2468 for (i = 0; i < CXGB4_ULD_MAX; i++)
2469 if (ulds[i].add)
2470 uld_attach(adap, i);
2471 mutex_unlock(&uld_mutex);
2472}
2473
2474static void detach_ulds(struct adapter *adap)
2475{
2476 unsigned int i;
2477
2478 mutex_lock(&uld_mutex);
2479 list_del(&adap->list_node);
2480 for (i = 0; i < CXGB4_ULD_MAX; i++)
2481 if (adap->uld_handle[i]) {
2482 ulds[i].state_change(adap->uld_handle[i],
2483 CXGB4_STATE_DETACH);
2484 adap->uld_handle[i] = NULL;
2485 }
2486 if (netevent_registered && list_empty(&adapter_list)) {
2487 unregister_netevent_notifier(&cxgb4_netevent_nb);
2488 netevent_registered = false;
2489 }
2490 mutex_unlock(&uld_mutex);
01bcca68
VP
2491
2492 spin_lock(&adap_rcu_lock);
2493 list_del_rcu(&adap->rcu_node);
2494 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2495}
2496
2497static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2498{
2499 unsigned int i;
2500
2501 mutex_lock(&uld_mutex);
2502 for (i = 0; i < CXGB4_ULD_MAX; i++)
2503 if (adap->uld_handle[i])
2504 ulds[i].state_change(adap->uld_handle[i], new_state);
2505 mutex_unlock(&uld_mutex);
2506}
2507
2508/**
2509 * cxgb4_register_uld - register an upper-layer driver
2510 * @type: the ULD type
2511 * @p: the ULD methods
2512 *
2513 * Registers an upper-layer driver with this driver and notifies the ULD
2514 * about any presently available devices that support its type. Returns
2515 * %-EBUSY if a ULD of the same type is already registered.
2516 */
2517int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2518{
2519 int ret = 0;
2520 struct adapter *adap;
2521
2522 if (type >= CXGB4_ULD_MAX)
2523 return -EINVAL;
2524 mutex_lock(&uld_mutex);
2525 if (ulds[type].add) {
2526 ret = -EBUSY;
2527 goto out;
2528 }
2529 ulds[type] = *p;
2530 list_for_each_entry(adap, &adapter_list, list_node)
2531 uld_attach(adap, type);
2532out: mutex_unlock(&uld_mutex);
2533 return ret;
2534}
2535EXPORT_SYMBOL(cxgb4_register_uld);
2536
2537/**
2538 * cxgb4_unregister_uld - unregister an upper-layer driver
2539 * @type: the ULD type
2540 *
2541 * Unregisters an existing upper-layer driver.
2542 */
2543int cxgb4_unregister_uld(enum cxgb4_uld type)
2544{
2545 struct adapter *adap;
2546
2547 if (type >= CXGB4_ULD_MAX)
2548 return -EINVAL;
2549 mutex_lock(&uld_mutex);
2550 list_for_each_entry(adap, &adapter_list, list_node)
2551 adap->uld_handle[type] = NULL;
2552 ulds[type].add = NULL;
2553 mutex_unlock(&uld_mutex);
2554 return 0;
2555}
2556EXPORT_SYMBOL(cxgb4_unregister_uld);
2557
1bb60376 2558#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2559static int cxgb4_inet6addr_handler(struct notifier_block *this,
2560 unsigned long event, void *data)
01bcca68 2561{
b5a02f50
AB
2562 struct inet6_ifaddr *ifa = data;
2563 struct net_device *event_dev = ifa->idev->dev;
2564 const struct device *parent = NULL;
2565#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2566 struct adapter *adap;
b5a02f50
AB
2567#endif
2568 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2569 event_dev = vlan_dev_real_dev(event_dev);
2570#if IS_ENABLED(CONFIG_BONDING)
2571 if (event_dev->flags & IFF_MASTER) {
2572 list_for_each_entry(adap, &adapter_list, list_node) {
2573 switch (event) {
2574 case NETDEV_UP:
2575 cxgb4_clip_get(adap->port[0],
2576 (const u32 *)ifa, 1);
2577 break;
2578 case NETDEV_DOWN:
2579 cxgb4_clip_release(adap->port[0],
2580 (const u32 *)ifa, 1);
2581 break;
2582 default:
2583 break;
2584 }
2585 }
2586 return NOTIFY_OK;
2587 }
2588#endif
01bcca68 2589
b5a02f50
AB
2590 if (event_dev)
2591 parent = event_dev->dev.parent;
01bcca68 2592
b5a02f50 2593 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2594 switch (event) {
2595 case NETDEV_UP:
b5a02f50 2596 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2597 break;
2598 case NETDEV_DOWN:
b5a02f50 2599 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2600 break;
2601 default:
2602 break;
2603 }
2604 }
b5a02f50 2605 return NOTIFY_OK;
01bcca68
VP
2606}
2607
b5a02f50 2608static bool inet6addr_registered;
01bcca68
VP
2609static struct notifier_block cxgb4_inet6addr_notifier = {
2610 .notifier_call = cxgb4_inet6addr_handler
2611};
2612
01bcca68
VP
2613static void update_clip(const struct adapter *adap)
2614{
2615 int i;
2616 struct net_device *dev;
2617 int ret;
2618
2619 rcu_read_lock();
2620
2621 for (i = 0; i < MAX_NPORTS; i++) {
2622 dev = adap->port[i];
2623 ret = 0;
2624
2625 if (dev)
b5a02f50 2626 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2627
2628 if (ret < 0)
2629 break;
2630 }
2631 rcu_read_unlock();
2632}
1bb60376 2633#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2634
b8ff05a9
DM
2635/**
2636 * cxgb_up - enable the adapter
2637 * @adap: adapter being enabled
2638 *
2639 * Called when the first port is enabled, this function performs the
2640 * actions necessary to make an adapter operational, such as completing
2641 * the initialization of HW modules, and enabling interrupts.
2642 *
2643 * Must be called with the rtnl lock held.
2644 */
2645static int cxgb_up(struct adapter *adap)
2646{
aaefae9b 2647 int err;
b8ff05a9 2648
aaefae9b
DM
2649 err = setup_sge_queues(adap);
2650 if (err)
2651 goto out;
2652 err = setup_rss(adap);
2653 if (err)
2654 goto freeq;
b8ff05a9
DM
2655
2656 if (adap->flags & USING_MSIX) {
aaefae9b 2657 name_msix_vecs(adap);
b8ff05a9
DM
2658 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2659 adap->msix_info[0].desc, adap);
2660 if (err)
2661 goto irq_err;
2662
2663 err = request_msix_queue_irqs(adap);
2664 if (err) {
2665 free_irq(adap->msix_info[0].vec, adap);
2666 goto irq_err;
2667 }
2668 } else {
2669 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2670 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2671 adap->port[0]->name, adap);
b8ff05a9
DM
2672 if (err)
2673 goto irq_err;
2674 }
2675 enable_rx(adap);
2676 t4_sge_start(adap);
2677 t4_intr_enable(adap);
aaefae9b 2678 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2679 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2680#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2681 update_clip(adap);
1bb60376 2682#endif
b8ff05a9
DM
2683 out:
2684 return err;
2685 irq_err:
2686 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2687 freeq:
2688 t4_free_sge_resources(adap);
b8ff05a9
DM
2689 goto out;
2690}
2691
2692static void cxgb_down(struct adapter *adapter)
2693{
b8ff05a9 2694 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2695 cancel_work_sync(&adapter->db_full_task);
2696 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2697 adapter->tid_release_task_busy = false;
204dc3c0 2698 adapter->tid_release_head = NULL;
b8ff05a9 2699
aaefae9b
DM
2700 t4_sge_stop(adapter);
2701 t4_free_sge_resources(adapter);
2702 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2703}
2704
2705/*
2706 * net_device operations
2707 */
2708static int cxgb_open(struct net_device *dev)
2709{
2710 int err;
2711 struct port_info *pi = netdev_priv(dev);
2712 struct adapter *adapter = pi->adapter;
2713
6a3c869a
DM
2714 netif_carrier_off(dev);
2715
aaefae9b
DM
2716 if (!(adapter->flags & FULL_INIT_DONE)) {
2717 err = cxgb_up(adapter);
2718 if (err < 0)
2719 return err;
2720 }
b8ff05a9 2721
f68707b8
DM
2722 err = link_start(dev);
2723 if (!err)
2724 netif_tx_start_all_queues(dev);
2725 return err;
b8ff05a9
DM
2726}
2727
2728static int cxgb_close(struct net_device *dev)
2729{
b8ff05a9
DM
2730 struct port_info *pi = netdev_priv(dev);
2731 struct adapter *adapter = pi->adapter;
2732
2733 netif_tx_stop_all_queues(dev);
2734 netif_carrier_off(dev);
060e0c75 2735 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
b8ff05a9
DM
2736}
2737
f2b7e78d
VP
2738/* Return an error number if the indicated filter isn't writable ...
2739 */
2740static int writable_filter(struct filter_entry *f)
2741{
2742 if (f->locked)
2743 return -EPERM;
2744 if (f->pending)
2745 return -EBUSY;
2746
2747 return 0;
2748}
2749
2750/* Delete the filter at the specified index (if valid). The checks for all
2751 * the common problems with doing this like the filter being locked, currently
2752 * pending in another operation, etc.
2753 */
2754static int delete_filter(struct adapter *adapter, unsigned int fidx)
2755{
2756 struct filter_entry *f;
2757 int ret;
2758
dca4faeb 2759 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2760 return -EINVAL;
2761
2762 f = &adapter->tids.ftid_tab[fidx];
2763 ret = writable_filter(f);
2764 if (ret)
2765 return ret;
2766 if (f->valid)
2767 return del_filter_wr(adapter, fidx);
2768
2769 return 0;
2770}
2771
dca4faeb 2772int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2773 __be32 sip, __be16 sport, __be16 vlan,
2774 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2775{
2776 int ret;
2777 struct filter_entry *f;
2778 struct adapter *adap;
2779 int i;
2780 u8 *val;
2781
2782 adap = netdev2adap(dev);
2783
1cab775c 2784 /* Adjust stid to correct filter index */
470c60c4 2785 stid -= adap->tids.sftid_base;
1cab775c
VP
2786 stid += adap->tids.nftids;
2787
dca4faeb
VP
2788 /* Check to make sure the filter requested is writable ...
2789 */
2790 f = &adap->tids.ftid_tab[stid];
2791 ret = writable_filter(f);
2792 if (ret)
2793 return ret;
2794
2795 /* Clear out any old resources being used by the filter before
2796 * we start constructing the new filter.
2797 */
2798 if (f->valid)
2799 clear_filter(adap, f);
2800
2801 /* Clear out filter specifications */
2802 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2803 f->fs.val.lport = cpu_to_be16(sport);
2804 f->fs.mask.lport = ~0;
2805 val = (u8 *)&sip;
793dad94 2806 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2807 for (i = 0; i < 4; i++) {
2808 f->fs.val.lip[i] = val[i];
2809 f->fs.mask.lip[i] = ~0;
2810 }
0d804338 2811 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2812 f->fs.val.iport = port;
2813 f->fs.mask.iport = mask;
2814 }
2815 }
dca4faeb 2816
0d804338 2817 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2818 f->fs.val.proto = IPPROTO_TCP;
2819 f->fs.mask.proto = ~0;
2820 }
2821
dca4faeb
VP
2822 f->fs.dirsteer = 1;
2823 f->fs.iq = queue;
2824 /* Mark filter as locked */
2825 f->locked = 1;
2826 f->fs.rpttid = 1;
2827
2828 ret = set_filter_wr(adap, stid);
2829 if (ret) {
2830 clear_filter(adap, f);
2831 return ret;
2832 }
2833
2834 return 0;
2835}
2836EXPORT_SYMBOL(cxgb4_create_server_filter);
2837
2838int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2839 unsigned int queue, bool ipv6)
2840{
2841 int ret;
2842 struct filter_entry *f;
2843 struct adapter *adap;
2844
2845 adap = netdev2adap(dev);
1cab775c
VP
2846
2847 /* Adjust stid to correct filter index */
470c60c4 2848 stid -= adap->tids.sftid_base;
1cab775c
VP
2849 stid += adap->tids.nftids;
2850
dca4faeb
VP
2851 f = &adap->tids.ftid_tab[stid];
2852 /* Unlock the filter */
2853 f->locked = 0;
2854
2855 ret = delete_filter(adap, stid);
2856 if (ret)
2857 return ret;
2858
2859 return 0;
2860}
2861EXPORT_SYMBOL(cxgb4_remove_server_filter);
2862
f5152c90
DM
2863static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2864 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2865{
2866 struct port_stats stats;
2867 struct port_info *p = netdev_priv(dev);
2868 struct adapter *adapter = p->adapter;
b8ff05a9 2869
9fe6cb58
GS
2870 /* Block retrieving statistics during EEH error
2871 * recovery. Otherwise, the recovery might fail
2872 * and the PCI device will be removed permanently
2873 */
b8ff05a9 2874 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2875 if (!netif_device_present(dev)) {
2876 spin_unlock(&adapter->stats_lock);
2877 return ns;
2878 }
b8ff05a9
DM
2879 t4_get_port_stats(adapter, p->tx_chan, &stats);
2880 spin_unlock(&adapter->stats_lock);
2881
2882 ns->tx_bytes = stats.tx_octets;
2883 ns->tx_packets = stats.tx_frames;
2884 ns->rx_bytes = stats.rx_octets;
2885 ns->rx_packets = stats.rx_frames;
2886 ns->multicast = stats.rx_mcast_frames;
2887
2888 /* detailed rx_errors */
2889 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2890 stats.rx_runt;
2891 ns->rx_over_errors = 0;
2892 ns->rx_crc_errors = stats.rx_fcs_err;
2893 ns->rx_frame_errors = stats.rx_symbol_err;
2894 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2895 stats.rx_ovflow2 + stats.rx_ovflow3 +
2896 stats.rx_trunc0 + stats.rx_trunc1 +
2897 stats.rx_trunc2 + stats.rx_trunc3;
2898 ns->rx_missed_errors = 0;
2899
2900 /* detailed tx_errors */
2901 ns->tx_aborted_errors = 0;
2902 ns->tx_carrier_errors = 0;
2903 ns->tx_fifo_errors = 0;
2904 ns->tx_heartbeat_errors = 0;
2905 ns->tx_window_errors = 0;
2906
2907 ns->tx_errors = stats.tx_error_frames;
2908 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2909 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2910 return ns;
2911}
2912
2913static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2914{
060e0c75 2915 unsigned int mbox;
b8ff05a9
DM
2916 int ret = 0, prtad, devad;
2917 struct port_info *pi = netdev_priv(dev);
2918 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2919
2920 switch (cmd) {
2921 case SIOCGMIIPHY:
2922 if (pi->mdio_addr < 0)
2923 return -EOPNOTSUPP;
2924 data->phy_id = pi->mdio_addr;
2925 break;
2926 case SIOCGMIIREG:
2927 case SIOCSMIIREG:
2928 if (mdio_phy_id_is_c45(data->phy_id)) {
2929 prtad = mdio_phy_id_prtad(data->phy_id);
2930 devad = mdio_phy_id_devad(data->phy_id);
2931 } else if (data->phy_id < 32) {
2932 prtad = data->phy_id;
2933 devad = 0;
2934 data->reg_num &= 0x1f;
2935 } else
2936 return -EINVAL;
2937
060e0c75 2938 mbox = pi->adapter->fn;
b8ff05a9 2939 if (cmd == SIOCGMIIREG)
060e0c75 2940 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2941 data->reg_num, &data->val_out);
2942 else
060e0c75 2943 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2944 data->reg_num, data->val_in);
2945 break;
2946 default:
2947 return -EOPNOTSUPP;
2948 }
2949 return ret;
2950}
2951
2952static void cxgb_set_rxmode(struct net_device *dev)
2953{
2954 /* unfortunately we can't return errors to the stack */
2955 set_rxmode(dev, -1, false);
2956}
2957
2958static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2959{
2960 int ret;
2961 struct port_info *pi = netdev_priv(dev);
2962
2963 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2964 return -EINVAL;
060e0c75
DM
2965 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2966 -1, -1, -1, true);
b8ff05a9
DM
2967 if (!ret)
2968 dev->mtu = new_mtu;
2969 return ret;
2970}
2971
2972static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2973{
2974 int ret;
2975 struct sockaddr *addr = p;
2976 struct port_info *pi = netdev_priv(dev);
2977
2978 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 2979 return -EADDRNOTAVAIL;
b8ff05a9 2980
060e0c75
DM
2981 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2982 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
2983 if (ret < 0)
2984 return ret;
2985
2986 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2987 pi->xact_addr_filt = ret;
2988 return 0;
2989}
2990
b8ff05a9
DM
2991#ifdef CONFIG_NET_POLL_CONTROLLER
2992static void cxgb_netpoll(struct net_device *dev)
2993{
2994 struct port_info *pi = netdev_priv(dev);
2995 struct adapter *adap = pi->adapter;
2996
2997 if (adap->flags & USING_MSIX) {
2998 int i;
2999 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3000
3001 for (i = pi->nqsets; i; i--, rx++)
3002 t4_sge_intr_msix(0, &rx->rspq);
3003 } else
3004 t4_intr_handler(adap)(0, adap);
3005}
3006#endif
3007
3008static const struct net_device_ops cxgb4_netdev_ops = {
3009 .ndo_open = cxgb_open,
3010 .ndo_stop = cxgb_close,
3011 .ndo_start_xmit = t4_eth_xmit,
688848b1 3012 .ndo_select_queue = cxgb_select_queue,
9be793bf 3013 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3014 .ndo_set_rx_mode = cxgb_set_rxmode,
3015 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3016 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3017 .ndo_validate_addr = eth_validate_addr,
3018 .ndo_do_ioctl = cxgb_ioctl,
3019 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3020#ifdef CONFIG_NET_POLL_CONTROLLER
3021 .ndo_poll_controller = cxgb_netpoll,
3022#endif
84a200b3
VP
3023#ifdef CONFIG_CHELSIO_T4_FCOE
3024 .ndo_fcoe_enable = cxgb_fcoe_enable,
3025 .ndo_fcoe_disable = cxgb_fcoe_disable,
3026#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3027#ifdef CONFIG_NET_RX_BUSY_POLL
3028 .ndo_busy_poll = cxgb_busy_poll,
3029#endif
3030
b8ff05a9
DM
3031};
3032
3033void t4_fatal_err(struct adapter *adap)
3034{
f612b815 3035 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3036 t4_intr_disable(adap);
3037 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3038}
3039
0abfd152
HS
3040/* Return the specified PCI-E Configuration Space register from our Physical
3041 * Function. We try first via a Firmware LDST Command since we prefer to let
3042 * the firmware own all of these registers, but if that fails we go for it
3043 * directly ourselves.
3044 */
3045static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
3046{
3047 struct fw_ldst_cmd ldst_cmd;
3048 u32 val;
3049 int ret;
3050
3051 /* Construct and send the Firmware LDST Command to retrieve the
3052 * specified PCI-E Configuration Space register.
3053 */
3054 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
3055 ldst_cmd.op_to_addrspace =
e2ac9628
HS
3056 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
3057 FW_CMD_REQUEST_F |
3058 FW_CMD_READ_F |
5167865a 3059 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
0abfd152 3060 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
5167865a 3061 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
0abfd152 3062 ldst_cmd.u.pcie.ctrl_to_fn =
5167865a 3063 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
0abfd152
HS
3064 ldst_cmd.u.pcie.r = reg;
3065 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
3066 &ldst_cmd);
3067
3068 /* If the LDST Command suucceeded, exctract the returned register
3069 * value. Otherwise read it directly ourself.
3070 */
3071 if (ret == 0)
3072 val = ntohl(ldst_cmd.u.pcie.data[0]);
3073 else
3074 t4_hw_pci_read_cfg4(adap, reg, &val);
3075
3076 return val;
3077}
3078
b8ff05a9
DM
3079static void setup_memwin(struct adapter *adap)
3080{
0abfd152 3081 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
b8ff05a9 3082
d14807dd 3083 if (is_t4(adap->params.chip)) {
0abfd152
HS
3084 u32 bar0;
3085
3086 /* Truncation intentional: we only read the bottom 32-bits of
3087 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
3088 * mechanism to read BAR0 instead of using
3089 * pci_resource_start() because we could be operating from
3090 * within a Virtual Machine which is trapping our accesses to
3091 * our Configuration Space and we need to set up the PCI-E
3092 * Memory Window decoders with the actual addresses which will
3093 * be coming across the PCI-E link.
3094 */
3095 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
3096 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
3097 adap->t4_bar0 = bar0;
3098
19dd37ba
SR
3099 mem_win0_base = bar0 + MEMWIN0_BASE;
3100 mem_win1_base = bar0 + MEMWIN1_BASE;
3101 mem_win2_base = bar0 + MEMWIN2_BASE;
0abfd152 3102 mem_win2_aperture = MEMWIN2_APERTURE;
19dd37ba
SR
3103 } else {
3104 /* For T5, only relative offset inside the PCIe BAR is passed */
3105 mem_win0_base = MEMWIN0_BASE;
0abfd152 3106 mem_win1_base = MEMWIN1_BASE;
19dd37ba 3107 mem_win2_base = MEMWIN2_BASE_T5;
0abfd152 3108 mem_win2_aperture = MEMWIN2_APERTURE_T5;
19dd37ba 3109 }
f061de42
HS
3110 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
3111 mem_win0_base | BIR_V(0) |
3112 WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
3113 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
3114 mem_win1_base | BIR_V(0) |
3115 WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
3116 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
3117 mem_win2_base | BIR_V(0) |
3118 WINDOW_V(ilog2(mem_win2_aperture) - 10));
3119 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
636f9d37
VP
3120}
3121
3122static void setup_memwin_rdma(struct adapter *adap)
3123{
1ae970e0 3124 if (adap->vres.ocq.size) {
0abfd152
HS
3125 u32 start;
3126 unsigned int sz_kb;
1ae970e0 3127
0abfd152
HS
3128 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3129 start &= PCI_BASE_ADDRESS_MEM_MASK;
3130 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3131 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3132 t4_write_reg(adap,
f061de42
HS
3133 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3134 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3135 t4_write_reg(adap,
f061de42 3136 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3137 adap->vres.ocq.start);
3138 t4_read_reg(adap,
f061de42 3139 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3140 }
b8ff05a9
DM
3141}
3142
02b5fb8e
DM
3143static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3144{
3145 u32 v;
3146 int ret;
3147
3148 /* get device capabilities */
3149 memset(c, 0, sizeof(*c));
e2ac9628
HS
3150 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3151 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3152 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
060e0c75 3153 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
02b5fb8e
DM
3154 if (ret < 0)
3155 return ret;
3156
3157 /* select capabilities we'll be using */
3158 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3159 if (!vf_acls)
3160 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3161 else
3162 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3163 } else if (vf_acls) {
3164 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3165 return ret;
3166 }
e2ac9628
HS
3167 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3168 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
060e0c75 3169 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
02b5fb8e
DM
3170 if (ret < 0)
3171 return ret;
3172
060e0c75 3173 ret = t4_config_glbl_rss(adap, adap->fn,
02b5fb8e 3174 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3175 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3176 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3177 if (ret < 0)
3178 return ret;
3179
4b8e27a8
HS
3180 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3181 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3182 FW_CMD_CAP_PF);
02b5fb8e
DM
3183 if (ret < 0)
3184 return ret;
3185
3186 t4_sge_init(adap);
3187
02b5fb8e 3188 /* tweak some settings */
837e4a42 3189 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3190 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3191 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3192 v = t4_read_reg(adap, TP_PIO_DATA_A);
3193 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3194
dca4faeb
VP
3195 /* first 4 Tx modulation queues point to consecutive Tx channels */
3196 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3197 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3198 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3199
3200 /* associate each Tx modulation queue with consecutive Tx channels */
3201 v = 0x84218421;
837e4a42 3202 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3203 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3204 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3205 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3206 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3207 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3208
3209#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3210 if (is_offload(adap)) {
0d804338
HS
3211 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3212 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3213 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3214 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3215 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3216 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3217 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3218 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3219 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3220 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3221 }
3222
060e0c75
DM
3223 /* get basic stuff going */
3224 return t4_early_init(adap, adap->fn);
02b5fb8e
DM
3225}
3226
b8ff05a9
DM
3227/*
3228 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3229 */
3230#define MAX_ATIDS 8192U
3231
636f9d37
VP
3232/*
3233 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3234 *
3235 * If the firmware we're dealing with has Configuration File support, then
3236 * we use that to perform all configuration
3237 */
3238
3239/*
3240 * Tweak configuration based on module parameters, etc. Most of these have
3241 * defaults assigned to them by Firmware Configuration Files (if we're using
3242 * them) but need to be explicitly set if we're using hard-coded
3243 * initialization. But even in the case of using Firmware Configuration
3244 * Files, we'd like to expose the ability to change these via module
3245 * parameters so these are essentially common tweaks/settings for
3246 * Configuration Files and hard-coded initialization ...
3247 */
3248static int adap_init0_tweaks(struct adapter *adapter)
3249{
3250 /*
3251 * Fix up various Host-Dependent Parameters like Page Size, Cache
3252 * Line Size, etc. The firmware default is for a 4KB Page Size and
3253 * 64B Cache Line Size ...
3254 */
3255 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3256
3257 /*
3258 * Process module parameters which affect early initialization.
3259 */
3260 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3261 dev_err(&adapter->pdev->dev,
3262 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3263 rx_dma_offset);
3264 rx_dma_offset = 2;
3265 }
f612b815
HS
3266 t4_set_reg_field(adapter, SGE_CONTROL_A,
3267 PKTSHIFT_V(PKTSHIFT_M),
3268 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3269
3270 /*
3271 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3272 * adds the pseudo header itself.
3273 */
837e4a42
HS
3274 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3275 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3276
3277 return 0;
3278}
3279
3280/*
3281 * Attempt to initialize the adapter via a Firmware Configuration File.
3282 */
3283static int adap_init0_config(struct adapter *adapter, int reset)
3284{
3285 struct fw_caps_config_cmd caps_cmd;
3286 const struct firmware *cf;
3287 unsigned long mtype = 0, maddr = 0;
3288 u32 finiver, finicsum, cfcsum;
16e47624
HS
3289 int ret;
3290 int config_issued = 0;
0a57a536 3291 char *fw_config_file, fw_config_file_path[256];
16e47624 3292 char *config_name = NULL;
636f9d37
VP
3293
3294 /*
3295 * Reset device if necessary.
3296 */
3297 if (reset) {
3298 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3299 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3300 if (ret < 0)
3301 goto bye;
3302 }
3303
3304 /*
3305 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3306 * then use that. Otherwise, use the configuration file stored
3307 * in the adapter flash ...
3308 */
d14807dd 3309 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3310 case CHELSIO_T4:
16e47624 3311 fw_config_file = FW4_CFNAME;
0a57a536
SR
3312 break;
3313 case CHELSIO_T5:
3314 fw_config_file = FW5_CFNAME;
3315 break;
3316 default:
3317 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3318 adapter->pdev->device);
3319 ret = -EINVAL;
3320 goto bye;
3321 }
3322
3323 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3324 if (ret < 0) {
16e47624 3325 config_name = "On FLASH";
636f9d37
VP
3326 mtype = FW_MEMTYPE_CF_FLASH;
3327 maddr = t4_flash_cfg_addr(adapter);
3328 } else {
3329 u32 params[7], val[7];
3330
16e47624
HS
3331 sprintf(fw_config_file_path,
3332 "/lib/firmware/%s", fw_config_file);
3333 config_name = fw_config_file_path;
3334
636f9d37
VP
3335 if (cf->size >= FLASH_CFG_MAX_SIZE)
3336 ret = -ENOMEM;
3337 else {
5167865a
HS
3338 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3339 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37
VP
3340 ret = t4_query_params(adapter, adapter->mbox,
3341 adapter->fn, 0, 1, params, val);
3342 if (ret == 0) {
3343 /*
fc5ab020 3344 * For t4_memory_rw() below addresses and
636f9d37
VP
3345 * sizes have to be in terms of multiples of 4
3346 * bytes. So, if the Configuration File isn't
3347 * a multiple of 4 bytes in length we'll have
3348 * to write that out separately since we can't
3349 * guarantee that the bytes following the
3350 * residual byte in the buffer returned by
3351 * request_firmware() are zeroed out ...
3352 */
3353 size_t resid = cf->size & 0x3;
3354 size_t size = cf->size & ~0x3;
3355 __be32 *data = (__be32 *)cf->data;
3356
5167865a
HS
3357 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3358 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3359
fc5ab020
HS
3360 spin_lock(&adapter->win0_lock);
3361 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3362 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3363 if (ret == 0 && resid != 0) {
3364 union {
3365 __be32 word;
3366 char buf[4];
3367 } last;
3368 int i;
3369
3370 last.word = data[size >> 2];
3371 for (i = resid; i < 4; i++)
3372 last.buf[i] = 0;
fc5ab020
HS
3373 ret = t4_memory_rw(adapter, 0, mtype,
3374 maddr + size,
3375 4, &last.word,
3376 T4_MEMORY_WRITE);
636f9d37 3377 }
fc5ab020 3378 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3379 }
3380 }
3381
3382 release_firmware(cf);
3383 if (ret)
3384 goto bye;
3385 }
3386
3387 /*
3388 * Issue a Capability Configuration command to the firmware to get it
3389 * to parse the Configuration File. We don't use t4_fw_config_file()
3390 * because we want the ability to modify various features after we've
3391 * processed the configuration file ...
3392 */
3393 memset(&caps_cmd, 0, sizeof(caps_cmd));
3394 caps_cmd.op_to_write =
e2ac9628
HS
3395 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3396 FW_CMD_REQUEST_F |
3397 FW_CMD_READ_F);
ce91a923 3398 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3399 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3400 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3401 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3402 FW_LEN16(caps_cmd));
3403 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3404 &caps_cmd);
16e47624
HS
3405
3406 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3407 * Configuration File in FLASH), our last gasp effort is to use the
3408 * Firmware Configuration File which is embedded in the firmware. A
3409 * very few early versions of the firmware didn't have one embedded
3410 * but we can ignore those.
3411 */
3412 if (ret == -ENOENT) {
3413 memset(&caps_cmd, 0, sizeof(caps_cmd));
3414 caps_cmd.op_to_write =
e2ac9628
HS
3415 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3416 FW_CMD_REQUEST_F |
3417 FW_CMD_READ_F);
16e47624
HS
3418 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3419 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3420 sizeof(caps_cmd), &caps_cmd);
3421 config_name = "Firmware Default";
3422 }
3423
3424 config_issued = 1;
636f9d37
VP
3425 if (ret < 0)
3426 goto bye;
3427
3428 finiver = ntohl(caps_cmd.finiver);
3429 finicsum = ntohl(caps_cmd.finicsum);
3430 cfcsum = ntohl(caps_cmd.cfcsum);
3431 if (finicsum != cfcsum)
3432 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3433 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3434 finicsum, cfcsum);
3435
636f9d37
VP
3436 /*
3437 * And now tell the firmware to use the configuration we just loaded.
3438 */
3439 caps_cmd.op_to_write =
e2ac9628
HS
3440 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3441 FW_CMD_REQUEST_F |
3442 FW_CMD_WRITE_F);
ce91a923 3443 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3444 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3445 NULL);
3446 if (ret < 0)
3447 goto bye;
3448
3449 /*
3450 * Tweak configuration based on system architecture, module
3451 * parameters, etc.
3452 */
3453 ret = adap_init0_tweaks(adapter);
3454 if (ret < 0)
3455 goto bye;
3456
3457 /*
3458 * And finally tell the firmware to initialize itself using the
3459 * parameters from the Configuration File.
3460 */
3461 ret = t4_fw_initialize(adapter, adapter->mbox);
3462 if (ret < 0)
3463 goto bye;
3464
06640310
HS
3465 /* Emit Firmware Configuration File information and return
3466 * successfully.
636f9d37 3467 */
636f9d37 3468 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3469 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3470 config_name, finiver, cfcsum);
636f9d37
VP
3471 return 0;
3472
3473 /*
3474 * Something bad happened. Return the error ... (If the "error"
3475 * is that there's no Configuration File on the adapter we don't
3476 * want to issue a warning since this is fairly common.)
3477 */
3478bye:
16e47624
HS
3479 if (config_issued && ret != -ENOENT)
3480 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3481 config_name, -ret);
636f9d37
VP
3482 return ret;
3483}
3484
16e47624
HS
3485static struct fw_info fw_info_array[] = {
3486 {
3487 .chip = CHELSIO_T4,
3488 .fs_name = FW4_CFNAME,
3489 .fw_mod_name = FW4_FNAME,
3490 .fw_hdr = {
3491 .chip = FW_HDR_CHIP_T4,
3492 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3493 .intfver_nic = FW_INTFVER(T4, NIC),
3494 .intfver_vnic = FW_INTFVER(T4, VNIC),
3495 .intfver_ri = FW_INTFVER(T4, RI),
3496 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3497 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3498 },
3499 }, {
3500 .chip = CHELSIO_T5,
3501 .fs_name = FW5_CFNAME,
3502 .fw_mod_name = FW5_FNAME,
3503 .fw_hdr = {
3504 .chip = FW_HDR_CHIP_T5,
3505 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3506 .intfver_nic = FW_INTFVER(T5, NIC),
3507 .intfver_vnic = FW_INTFVER(T5, VNIC),
3508 .intfver_ri = FW_INTFVER(T5, RI),
3509 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3510 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3511 },
3512 }
3513};
3514
3515static struct fw_info *find_fw_info(int chip)
3516{
3517 int i;
3518
3519 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3520 if (fw_info_array[i].chip == chip)
3521 return &fw_info_array[i];
3522 }
3523 return NULL;
3524}
3525
b8ff05a9
DM
3526/*
3527 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3528 */
3529static int adap_init0(struct adapter *adap)
3530{
3531 int ret;
3532 u32 v, port_vec;
3533 enum dev_state state;
3534 u32 params[7], val[7];
9a4da2cd 3535 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3536 int reset = 1;
b8ff05a9 3537
ae469b68
HS
3538 /* Grab Firmware Device Log parameters as early as possible so we have
3539 * access to it for debugging, etc.
3540 */
3541 ret = t4_init_devlog_params(adap);
3542 if (ret < 0)
3543 return ret;
3544
666224d4
HS
3545 /* Contact FW, advertising Master capability */
3546 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
3547 if (ret < 0) {
3548 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3549 ret);
3550 return ret;
3551 }
636f9d37
VP
3552 if (ret == adap->mbox)
3553 adap->flags |= MASTER_PF;
b8ff05a9 3554
636f9d37
VP
3555 /*
3556 * If we're the Master PF Driver and the device is uninitialized,
3557 * then let's consider upgrading the firmware ... (We always want
3558 * to check the firmware version number in order to A. get it for
3559 * later reporting and B. to warn if the currently loaded firmware
3560 * is excessively mismatched relative to the driver.)
3561 */
16e47624
HS
3562 t4_get_fw_version(adap, &adap->params.fw_vers);
3563 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 3564 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3565 struct fw_info *fw_info;
3566 struct fw_hdr *card_fw;
3567 const struct firmware *fw;
3568 const u8 *fw_data = NULL;
3569 unsigned int fw_size = 0;
3570
3571 /* This is the firmware whose headers the driver was compiled
3572 * against
3573 */
3574 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3575 if (fw_info == NULL) {
3576 dev_err(adap->pdev_dev,
3577 "unable to get firmware info for chip %d.\n",
3578 CHELSIO_CHIP_VERSION(adap->params.chip));
3579 return -EINVAL;
636f9d37 3580 }
16e47624
HS
3581
3582 /* allocate memory to read the header of the firmware on the
3583 * card
3584 */
3585 card_fw = t4_alloc_mem(sizeof(*card_fw));
3586
3587 /* Get FW from from /lib/firmware/ */
3588 ret = request_firmware(&fw, fw_info->fw_mod_name,
3589 adap->pdev_dev);
3590 if (ret < 0) {
3591 dev_err(adap->pdev_dev,
3592 "unable to load firmware image %s, error %d\n",
3593 fw_info->fw_mod_name, ret);
3594 } else {
3595 fw_data = fw->data;
3596 fw_size = fw->size;
3597 }
3598
3599 /* upgrade FW logic */
3600 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3601 state, &reset);
3602
3603 /* Cleaning up */
0b5b6bee 3604 release_firmware(fw);
16e47624
HS
3605 t4_free_mem(card_fw);
3606
636f9d37 3607 if (ret < 0)
16e47624 3608 goto bye;
636f9d37 3609 }
b8ff05a9 3610
636f9d37
VP
3611 /*
3612 * Grab VPD parameters. This should be done after we establish a
3613 * connection to the firmware since some of the VPD parameters
3614 * (notably the Core Clock frequency) are retrieved via requests to
3615 * the firmware. On the other hand, we need these fairly early on
3616 * so we do this right after getting ahold of the firmware.
3617 */
3618 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3619 if (ret < 0)
3620 goto bye;
a0881cab 3621
636f9d37 3622 /*
13ee15d3
VP
3623 * Find out what ports are available to us. Note that we need to do
3624 * this before calling adap_init0_no_config() since it needs nports
3625 * and portvec ...
636f9d37
VP
3626 */
3627 v =
5167865a
HS
3628 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3629 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
636f9d37 3630 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
a0881cab
DM
3631 if (ret < 0)
3632 goto bye;
3633
636f9d37
VP
3634 adap->params.nports = hweight32(port_vec);
3635 adap->params.portvec = port_vec;
3636
06640310
HS
3637 /* If the firmware is initialized already, emit a simply note to that
3638 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3639 */
3640 if (state == DEV_STATE_INIT) {
3641 dev_info(adap->pdev_dev, "Coming up as %s: "\
3642 "Adapter already initialized\n",
3643 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3644 } else {
3645 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3646 "Initializing adapter\n");
06640310
HS
3647
3648 /* Find out whether we're dealing with a version of the
3649 * firmware which has configuration file support.
636f9d37 3650 */
06640310
HS
3651 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3652 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3653 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3654 params, val);
13ee15d3 3655
06640310
HS
3656 /* If the firmware doesn't support Configuration Files,
3657 * return an error.
3658 */
3659 if (ret < 0) {
3660 dev_err(adap->pdev_dev, "firmware doesn't support "
3661 "Firmware Configuration Files\n");
3662 goto bye;
3663 }
3664
3665 /* The firmware provides us with a memory buffer where we can
3666 * load a Configuration File from the host if we want to
3667 * override the Configuration File in flash.
3668 */
3669 ret = adap_init0_config(adap, reset);
3670 if (ret == -ENOENT) {
3671 dev_err(adap->pdev_dev, "no Configuration File "
3672 "present on adapter.\n");
3673 goto bye;
636f9d37
VP
3674 }
3675 if (ret < 0) {
06640310
HS
3676 dev_err(adap->pdev_dev, "could not initialize "
3677 "adapter, error %d\n", -ret);
636f9d37
VP
3678 goto bye;
3679 }
3680 }
3681
06640310
HS
3682 /* Give the SGE code a chance to pull in anything that it needs ...
3683 * Note that this must be called after we retrieve our VPD parameters
3684 * in order to know how to convert core ticks to seconds, etc.
636f9d37 3685 */
06640310
HS
3686 ret = t4_sge_init(adap);
3687 if (ret < 0)
3688 goto bye;
636f9d37 3689
9a4da2cd
VP
3690 if (is_bypass_device(adap->pdev->device))
3691 adap->params.bypass = 1;
3692
636f9d37
VP
3693 /*
3694 * Grab some of our basic fundamental operating parameters.
3695 */
3696#define FW_PARAM_DEV(param) \
5167865a
HS
3697 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3698 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 3699
b8ff05a9 3700#define FW_PARAM_PFVF(param) \
5167865a
HS
3701 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3702 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3703 FW_PARAMS_PARAM_Y_V(0) | \
3704 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 3705
636f9d37 3706 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
3707 params[1] = FW_PARAM_PFVF(L2T_START);
3708 params[2] = FW_PARAM_PFVF(L2T_END);
3709 params[3] = FW_PARAM_PFVF(FILTER_START);
3710 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 3711 params[5] = FW_PARAM_PFVF(IQFLINT_START);
636f9d37 3712 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
b8ff05a9
DM
3713 if (ret < 0)
3714 goto bye;
636f9d37
VP
3715 adap->sge.egr_start = val[0];
3716 adap->l2t_start = val[1];
3717 adap->l2t_end = val[2];
b8ff05a9
DM
3718 adap->tids.ftid_base = val[3];
3719 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 3720 adap->sge.ingr_start = val[5];
b8ff05a9 3721
4b8e27a8
HS
3722 /* qids (ingress/egress) returned from firmware can be anywhere
3723 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3724 * Hence driver needs to allocate memory for this range to
3725 * store the queue info. Get the highest IQFLINT/EQ index returned
3726 * in FW_EQ_*_CMD.alloc command.
3727 */
3728 params[0] = FW_PARAM_PFVF(EQ_END);
3729 params[1] = FW_PARAM_PFVF(IQFLINT_END);
3730 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3731 if (ret < 0)
3732 goto bye;
3733 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3734 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3735
3736 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3737 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3738 if (!adap->sge.egr_map) {
3739 ret = -ENOMEM;
3740 goto bye;
3741 }
3742
3743 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3744 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3745 if (!adap->sge.ingr_map) {
3746 ret = -ENOMEM;
3747 goto bye;
3748 }
3749
3750 /* Allocate the memory for the vaious egress queue bitmaps
3751 * ie starving_fl and txq_maperr.
3752 */
3753 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3754 sizeof(long), GFP_KERNEL);
3755 if (!adap->sge.starving_fl) {
3756 ret = -ENOMEM;
3757 goto bye;
3758 }
3759
3760 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3761 sizeof(long), GFP_KERNEL);
3762 if (!adap->sge.txq_maperr) {
3763 ret = -ENOMEM;
3764 goto bye;
3765 }
3766
b5a02f50
AB
3767 params[0] = FW_PARAM_PFVF(CLIP_START);
3768 params[1] = FW_PARAM_PFVF(CLIP_END);
3769 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3770 if (ret < 0)
3771 goto bye;
3772 adap->clipt_start = val[0];
3773 adap->clipt_end = val[1];
3774
636f9d37
VP
3775 /* query params related to active filter region */
3776 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3777 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3778 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3779 /* If Active filter size is set we enable establishing
3780 * offload connection through firmware work request
3781 */
3782 if ((val[0] != val[1]) && (ret >= 0)) {
3783 adap->flags |= FW_OFLD_CONN;
3784 adap->tids.aftid_base = val[0];
3785 adap->tids.aftid_end = val[1];
3786 }
3787
b407a4a9
VP
3788 /* If we're running on newer firmware, let it know that we're
3789 * prepared to deal with encapsulated CPL messages. Older
3790 * firmware won't understand this and we'll just get
3791 * unencapsulated messages ...
3792 */
3793 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3794 val[0] = 1;
3795 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3796
1ac0f095
KS
3797 /*
3798 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3799 * capability. Earlier versions of the firmware didn't have the
3800 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3801 * permission to use ULPTX MEMWRITE DSGL.
3802 */
3803 if (is_t4(adap->params.chip)) {
3804 adap->params.ulptx_memwrite_dsgl = false;
3805 } else {
3806 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3807 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3808 1, params, val);
3809 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3810 }
3811
636f9d37
VP
3812 /*
3813 * Get device capabilities so we can determine what resources we need
3814 * to manage.
3815 */
3816 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
3817 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3818 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3819 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3820 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3821 &caps_cmd);
3822 if (ret < 0)
3823 goto bye;
3824
13ee15d3 3825 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
3826 /* query offload-related parameters */
3827 params[0] = FW_PARAM_DEV(NTID);
3828 params[1] = FW_PARAM_PFVF(SERVER_START);
3829 params[2] = FW_PARAM_PFVF(SERVER_END);
3830 params[3] = FW_PARAM_PFVF(TDDP_START);
3831 params[4] = FW_PARAM_PFVF(TDDP_END);
3832 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
636f9d37
VP
3833 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3834 params, val);
b8ff05a9
DM
3835 if (ret < 0)
3836 goto bye;
3837 adap->tids.ntids = val[0];
3838 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3839 adap->tids.stid_base = val[1];
3840 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 3841 /*
dbedd44e 3842 * Setup server filter region. Divide the available filter
636f9d37
VP
3843 * region into two parts. Regular filters get 1/3rd and server
3844 * filters get 2/3rd part. This is only enabled if workarond
3845 * path is enabled.
3846 * 1. For regular filters.
3847 * 2. Server filter: This are special filters which are used
3848 * to redirect SYN packets to offload queue.
3849 */
3850 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3851 adap->tids.sftid_base = adap->tids.ftid_base +
3852 DIV_ROUND_UP(adap->tids.nftids, 3);
3853 adap->tids.nsftids = adap->tids.nftids -
3854 DIV_ROUND_UP(adap->tids.nftids, 3);
3855 adap->tids.nftids = adap->tids.sftid_base -
3856 adap->tids.ftid_base;
3857 }
b8ff05a9
DM
3858 adap->vres.ddp.start = val[3];
3859 adap->vres.ddp.size = val[4] - val[3] + 1;
3860 adap->params.ofldq_wr_cred = val[5];
636f9d37 3861
b8ff05a9
DM
3862 adap->params.offload = 1;
3863 }
636f9d37 3864 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
3865 params[0] = FW_PARAM_PFVF(STAG_START);
3866 params[1] = FW_PARAM_PFVF(STAG_END);
3867 params[2] = FW_PARAM_PFVF(RQ_START);
3868 params[3] = FW_PARAM_PFVF(RQ_END);
3869 params[4] = FW_PARAM_PFVF(PBL_START);
3870 params[5] = FW_PARAM_PFVF(PBL_END);
636f9d37
VP
3871 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3872 params, val);
b8ff05a9
DM
3873 if (ret < 0)
3874 goto bye;
3875 adap->vres.stag.start = val[0];
3876 adap->vres.stag.size = val[1] - val[0] + 1;
3877 adap->vres.rq.start = val[2];
3878 adap->vres.rq.size = val[3] - val[2] + 1;
3879 adap->vres.pbl.start = val[4];
3880 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
3881
3882 params[0] = FW_PARAM_PFVF(SQRQ_START);
3883 params[1] = FW_PARAM_PFVF(SQRQ_END);
3884 params[2] = FW_PARAM_PFVF(CQ_START);
3885 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
3886 params[4] = FW_PARAM_PFVF(OCQ_START);
3887 params[5] = FW_PARAM_PFVF(OCQ_END);
5c937dd3
HS
3888 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3889 val);
a0881cab
DM
3890 if (ret < 0)
3891 goto bye;
3892 adap->vres.qp.start = val[0];
3893 adap->vres.qp.size = val[1] - val[0] + 1;
3894 adap->vres.cq.start = val[2];
3895 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
3896 adap->vres.ocq.start = val[4];
3897 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
3898
3899 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3900 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5c937dd3
HS
3901 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3902 val);
4c2c5763
HS
3903 if (ret < 0) {
3904 adap->params.max_ordird_qp = 8;
3905 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3906 ret = 0;
3907 } else {
3908 adap->params.max_ordird_qp = val[0];
3909 adap->params.max_ird_adapter = val[1];
3910 }
3911 dev_info(adap->pdev_dev,
3912 "max_ordird_qp %d max_ird_adapter %d\n",
3913 adap->params.max_ordird_qp,
3914 adap->params.max_ird_adapter);
b8ff05a9 3915 }
636f9d37 3916 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
3917 params[0] = FW_PARAM_PFVF(ISCSI_START);
3918 params[1] = FW_PARAM_PFVF(ISCSI_END);
636f9d37
VP
3919 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3920 params, val);
b8ff05a9
DM
3921 if (ret < 0)
3922 goto bye;
3923 adap->vres.iscsi.start = val[0];
3924 adap->vres.iscsi.size = val[1] - val[0] + 1;
3925 }
3926#undef FW_PARAM_PFVF
3927#undef FW_PARAM_DEV
3928
92e7ae71
HS
3929 /* The MTU/MSS Table is initialized by now, so load their values. If
3930 * we're initializing the adapter, then we'll make any modifications
3931 * we want to the MTU/MSS Table and also initialize the congestion
3932 * parameters.
636f9d37 3933 */
b8ff05a9 3934 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
3935 if (state != DEV_STATE_INIT) {
3936 int i;
3937
3938 /* The default MTU Table contains values 1492 and 1500.
3939 * However, for TCP, it's better to have two values which are
3940 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3941 * This allows us to have a TCP Data Payload which is a
3942 * multiple of 8 regardless of what combination of TCP Options
3943 * are in use (always a multiple of 4 bytes) which is
3944 * important for performance reasons. For instance, if no
3945 * options are in use, then we have a 20-byte IP header and a
3946 * 20-byte TCP header. In this case, a 1500-byte MSS would
3947 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3948 * which is not a multiple of 8. So using an MSS of 1488 in
3949 * this case results in a TCP Data Payload of 1448 bytes which
3950 * is a multiple of 8. On the other hand, if 12-byte TCP Time
3951 * Stamps have been negotiated, then an MTU of 1500 bytes
3952 * results in a TCP Data Payload of 1448 bytes which, as
3953 * above, is a multiple of 8 bytes ...
3954 */
3955 for (i = 0; i < NMTUS; i++)
3956 if (adap->params.mtus[i] == 1492) {
3957 adap->params.mtus[i] = 1488;
3958 break;
3959 }
7ee9ff94 3960
92e7ae71
HS
3961 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3962 adap->params.b_wnd);
3963 }
df64e4d3 3964 t4_init_sge_params(adap);
dcf7b6f5 3965 t4_init_tp_params(adap);
636f9d37 3966 adap->flags |= FW_OK;
b8ff05a9
DM
3967 return 0;
3968
3969 /*
636f9d37
VP
3970 * Something bad happened. If a command timed out or failed with EIO
3971 * FW does not operate within its spec or something catastrophic
3972 * happened to HW/FW, stop issuing commands.
b8ff05a9 3973 */
636f9d37 3974bye:
4b8e27a8
HS
3975 kfree(adap->sge.egr_map);
3976 kfree(adap->sge.ingr_map);
3977 kfree(adap->sge.starving_fl);
3978 kfree(adap->sge.txq_maperr);
636f9d37
VP
3979 if (ret != -ETIMEDOUT && ret != -EIO)
3980 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
3981 return ret;
3982}
3983
204dc3c0
DM
3984/* EEH callbacks */
3985
3986static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3987 pci_channel_state_t state)
3988{
3989 int i;
3990 struct adapter *adap = pci_get_drvdata(pdev);
3991
3992 if (!adap)
3993 goto out;
3994
3995 rtnl_lock();
3996 adap->flags &= ~FW_OK;
3997 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 3998 spin_lock(&adap->stats_lock);
204dc3c0
DM
3999 for_each_port(adap, i) {
4000 struct net_device *dev = adap->port[i];
4001
4002 netif_device_detach(dev);
4003 netif_carrier_off(dev);
4004 }
9fe6cb58 4005 spin_unlock(&adap->stats_lock);
b37987e8 4006 disable_interrupts(adap);
204dc3c0
DM
4007 if (adap->flags & FULL_INIT_DONE)
4008 cxgb_down(adap);
4009 rtnl_unlock();
144be3d9
GS
4010 if ((adap->flags & DEV_ENABLED)) {
4011 pci_disable_device(pdev);
4012 adap->flags &= ~DEV_ENABLED;
4013 }
204dc3c0
DM
4014out: return state == pci_channel_io_perm_failure ?
4015 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4016}
4017
4018static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4019{
4020 int i, ret;
4021 struct fw_caps_config_cmd c;
4022 struct adapter *adap = pci_get_drvdata(pdev);
4023
4024 if (!adap) {
4025 pci_restore_state(pdev);
4026 pci_save_state(pdev);
4027 return PCI_ERS_RESULT_RECOVERED;
4028 }
4029
144be3d9
GS
4030 if (!(adap->flags & DEV_ENABLED)) {
4031 if (pci_enable_device(pdev)) {
4032 dev_err(&pdev->dev, "Cannot reenable PCI "
4033 "device after reset\n");
4034 return PCI_ERS_RESULT_DISCONNECT;
4035 }
4036 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4037 }
4038
4039 pci_set_master(pdev);
4040 pci_restore_state(pdev);
4041 pci_save_state(pdev);
4042 pci_cleanup_aer_uncorrect_error_status(pdev);
4043
8203b509 4044 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4045 return PCI_ERS_RESULT_DISCONNECT;
777c2300 4046 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4047 return PCI_ERS_RESULT_DISCONNECT;
4048 adap->flags |= FW_OK;
4049 if (adap_init1(adap, &c))
4050 return PCI_ERS_RESULT_DISCONNECT;
4051
4052 for_each_port(adap, i) {
4053 struct port_info *p = adap2pinfo(adap, i);
4054
060e0c75
DM
4055 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4056 NULL, NULL);
204dc3c0
DM
4057 if (ret < 0)
4058 return PCI_ERS_RESULT_DISCONNECT;
4059 p->viid = ret;
4060 p->xact_addr_filt = -1;
4061 }
4062
4063 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4064 adap->params.b_wnd);
1ae970e0 4065 setup_memwin(adap);
204dc3c0
DM
4066 if (cxgb_up(adap))
4067 return PCI_ERS_RESULT_DISCONNECT;
4068 return PCI_ERS_RESULT_RECOVERED;
4069}
4070
4071static void eeh_resume(struct pci_dev *pdev)
4072{
4073 int i;
4074 struct adapter *adap = pci_get_drvdata(pdev);
4075
4076 if (!adap)
4077 return;
4078
4079 rtnl_lock();
4080 for_each_port(adap, i) {
4081 struct net_device *dev = adap->port[i];
4082
4083 if (netif_running(dev)) {
4084 link_start(dev);
4085 cxgb_set_rxmode(dev);
4086 }
4087 netif_device_attach(dev);
4088 }
4089 rtnl_unlock();
4090}
4091
3646f0e5 4092static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4093 .error_detected = eeh_err_detected,
4094 .slot_reset = eeh_slot_reset,
4095 .resume = eeh_resume,
4096};
4097
57d8b764 4098static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4099{
57d8b764
KS
4100 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4101 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4102}
4103
c887ad0e
HS
4104static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4105 unsigned int us, unsigned int cnt,
b8ff05a9
DM
4106 unsigned int size, unsigned int iqe_size)
4107{
c887ad0e 4108 q->adap = adap;
812034f1 4109 cxgb4_set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
4110 q->iqe_len = iqe_size;
4111 q->size = size;
4112}
4113
4114/*
4115 * Perform default configuration of DMA queues depending on the number and type
4116 * of ports we found and the number of available CPUs. Most settings can be
4117 * modified by the admin prior to actual use.
4118 */
91744948 4119static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4120{
4121 struct sge *s = &adap->sge;
688848b1
AB
4122 int i, n10g = 0, qidx = 0;
4123#ifndef CONFIG_CHELSIO_T4_DCB
4124 int q10g = 0;
4125#endif
cf38be6d 4126 int ciq_size;
b8ff05a9
DM
4127
4128 for_each_port(adap, i)
57d8b764 4129 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4130#ifdef CONFIG_CHELSIO_T4_DCB
4131 /* For Data Center Bridging support we need to be able to support up
4132 * to 8 Traffic Priorities; each of which will be assigned to its
4133 * own TX Queue in order to prevent Head-Of-Line Blocking.
4134 */
4135 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4136 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4137 MAX_ETH_QSETS, adap->params.nports * 8);
4138 BUG_ON(1);
4139 }
b8ff05a9 4140
688848b1
AB
4141 for_each_port(adap, i) {
4142 struct port_info *pi = adap2pinfo(adap, i);
4143
4144 pi->first_qset = qidx;
4145 pi->nqsets = 8;
4146 qidx += pi->nqsets;
4147 }
4148#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4149 /*
4150 * We default to 1 queue per non-10G port and up to # of cores queues
4151 * per 10G port.
4152 */
4153 if (n10g)
4154 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4155 if (q10g > netif_get_num_default_rss_queues())
4156 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4157
4158 for_each_port(adap, i) {
4159 struct port_info *pi = adap2pinfo(adap, i);
4160
4161 pi->first_qset = qidx;
57d8b764 4162 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4163 qidx += pi->nqsets;
4164 }
688848b1 4165#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4166
4167 s->ethqsets = qidx;
4168 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4169
4170 if (is_offload(adap)) {
4171 /*
4172 * For offload we use 1 queue/channel if all ports are up to 1G,
4173 * otherwise we divide all available queues amongst the channels
4174 * capped by the number of available cores.
4175 */
4176 if (n10g) {
4177 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4178 num_online_cpus());
4179 s->ofldqsets = roundup(i, adap->params.nports);
4180 } else
4181 s->ofldqsets = adap->params.nports;
4182 /* For RDMA one Rx queue per channel suffices */
4183 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4184 /* Try and allow at least 1 CIQ per cpu rounding down
4185 * to the number of ports, with a minimum of 1 per port.
4186 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4187 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4188 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4189 */
4190 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4191 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4192 adap->params.nports;
4193 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
b8ff05a9
DM
4194 }
4195
4196 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4197 struct sge_eth_rxq *r = &s->ethrxq[i];
4198
c887ad0e 4199 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4200 r->fl.size = 72;
4201 }
4202
4203 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4204 s->ethtxq[i].q.size = 1024;
4205
4206 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4207 s->ctrlq[i].q.size = 512;
4208
4209 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4210 s->ofldtxq[i].q.size = 1024;
4211
4212 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4213 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4214
c887ad0e 4215 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4216 r->rspq.uld = CXGB4_ULD_ISCSI;
4217 r->fl.size = 72;
4218 }
4219
4220 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4221 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4222
c887ad0e 4223 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4224 r->rspq.uld = CXGB4_ULD_RDMA;
4225 r->fl.size = 72;
4226 }
4227
cf38be6d
HS
4228 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4229 if (ciq_size > SGE_MAX_IQ_SIZE) {
4230 CH_WARN(adap, "CIQ size too small for available IQs\n");
4231 ciq_size = SGE_MAX_IQ_SIZE;
4232 }
4233
4234 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4235 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4236
c887ad0e 4237 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4238 r->rspq.uld = CXGB4_ULD_RDMA;
4239 }
4240
c887ad0e
HS
4241 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4242 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4243}
4244
4245/*
4246 * Reduce the number of Ethernet queues across all ports to at most n.
4247 * n provides at least one queue per port.
4248 */
91744948 4249static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4250{
4251 int i;
4252 struct port_info *pi;
4253
4254 while (n < adap->sge.ethqsets)
4255 for_each_port(adap, i) {
4256 pi = adap2pinfo(adap, i);
4257 if (pi->nqsets > 1) {
4258 pi->nqsets--;
4259 adap->sge.ethqsets--;
4260 if (adap->sge.ethqsets <= n)
4261 break;
4262 }
4263 }
4264
4265 n = 0;
4266 for_each_port(adap, i) {
4267 pi = adap2pinfo(adap, i);
4268 pi->first_qset = n;
4269 n += pi->nqsets;
4270 }
4271}
4272
4273/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4274#define EXTRA_VECS 2
4275
91744948 4276static int enable_msix(struct adapter *adap)
b8ff05a9
DM
4277{
4278 int ofld_need = 0;
f36e58e5 4279 int i, want, need, allocated;
b8ff05a9
DM
4280 struct sge *s = &adap->sge;
4281 unsigned int nchan = adap->params.nports;
f36e58e5
HS
4282 struct msix_entry *entries;
4283
4284 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4285 GFP_KERNEL);
4286 if (!entries)
4287 return -ENOMEM;
b8ff05a9 4288
f36e58e5 4289 for (i = 0; i < MAX_INGQ + 1; ++i)
b8ff05a9
DM
4290 entries[i].entry = i;
4291
4292 want = s->max_ethqsets + EXTRA_VECS;
4293 if (is_offload(adap)) {
cf38be6d 4294 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 4295 /* need nchan for each possible ULD */
cf38be6d 4296 ofld_need = 3 * nchan;
b8ff05a9 4297 }
688848b1
AB
4298#ifdef CONFIG_CHELSIO_T4_DCB
4299 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4300 * each port.
4301 */
4302 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4303#else
b8ff05a9 4304 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 4305#endif
f36e58e5
HS
4306 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4307 if (allocated < 0) {
4308 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4309 " not using MSI-X\n");
4310 kfree(entries);
4311 return allocated;
4312 }
b8ff05a9 4313
f36e58e5 4314 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4315 * Every group gets its minimum requirement and NIC gets top
4316 * priority for leftovers.
4317 */
f36e58e5 4318 i = allocated - EXTRA_VECS - ofld_need;
c32ad224
AG
4319 if (i < s->max_ethqsets) {
4320 s->max_ethqsets = i;
4321 if (i < s->ethqsets)
4322 reduce_ethqs(adap, i);
4323 }
4324 if (is_offload(adap)) {
f36e58e5
HS
4325 if (allocated < want) {
4326 s->rdmaqs = nchan;
4327 s->rdmaciqs = nchan;
4328 }
4329
4330 /* leftovers go to OFLD */
4331 i = allocated - EXTRA_VECS - s->max_ethqsets -
4332 s->rdmaqs - s->rdmaciqs;
c32ad224
AG
4333 s->ofldqsets = (i / nchan) * nchan; /* round down */
4334 }
f36e58e5 4335 for (i = 0; i < allocated; ++i)
c32ad224
AG
4336 adap->msix_info[i].vec = entries[i].vector;
4337
f36e58e5 4338 kfree(entries);
c32ad224 4339 return 0;
b8ff05a9
DM
4340}
4341
4342#undef EXTRA_VECS
4343
91744948 4344static int init_rss(struct adapter *adap)
671b0060
DM
4345{
4346 unsigned int i, j;
4347
4348 for_each_port(adap, i) {
4349 struct port_info *pi = adap2pinfo(adap, i);
4350
4351 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4352 if (!pi->rss)
4353 return -ENOMEM;
4354 for (j = 0; j < pi->rss_size; j++)
278bc429 4355 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
671b0060
DM
4356 }
4357 return 0;
4358}
4359
91744948 4360static void print_port_info(const struct net_device *dev)
b8ff05a9 4361{
b8ff05a9 4362 char buf[80];
118969ed 4363 char *bufp = buf;
f1a051b9 4364 const char *spd = "";
118969ed
DM
4365 const struct port_info *pi = netdev_priv(dev);
4366 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4367
4368 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4369 spd = " 2.5 GT/s";
4370 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4371 spd = " 5 GT/s";
d2e752db
RD
4372 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4373 spd = " 8 GT/s";
b8ff05a9 4374
118969ed
DM
4375 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4376 bufp += sprintf(bufp, "100/");
4377 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4378 bufp += sprintf(bufp, "1000/");
4379 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4380 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4381 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4382 bufp += sprintf(bufp, "40G/");
118969ed
DM
4383 if (bufp != buf)
4384 --bufp;
72aca4bf 4385 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
4386
4387 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 4388 adap->params.vpd.id,
d14807dd 4389 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
4390 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4391 (adap->flags & USING_MSIX) ? " MSI-X" :
4392 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
4393 netdev_info(dev, "S/N: %s, P/N: %s\n",
4394 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
4395}
4396
91744948 4397static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4398{
e5c8ae5f 4399 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4400}
4401
06546391
DM
4402/*
4403 * Free the following resources:
4404 * - memory used for tables
4405 * - MSI/MSI-X
4406 * - net devices
4407 * - resources FW is holding for us
4408 */
4409static void free_some_resources(struct adapter *adapter)
4410{
4411 unsigned int i;
4412
4413 t4_free_mem(adapter->l2t);
4414 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4415 kfree(adapter->sge.egr_map);
4416 kfree(adapter->sge.ingr_map);
4417 kfree(adapter->sge.starving_fl);
4418 kfree(adapter->sge.txq_maperr);
06546391
DM
4419 disable_msi(adapter);
4420
4421 for_each_port(adapter, i)
671b0060
DM
4422 if (adapter->port[i]) {
4423 kfree(adap2pinfo(adapter, i)->rss);
06546391 4424 free_netdev(adapter->port[i]);
671b0060 4425 }
06546391 4426 if (adapter->flags & FW_OK)
060e0c75 4427 t4_fw_bye(adapter, adapter->fn);
06546391
DM
4428}
4429
2ed28baa 4430#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 4431#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 4432 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 4433#define SEGMENT_SIZE 128
b8ff05a9 4434
1dd06ae8 4435static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 4436{
22adfe0a 4437 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 4438 struct port_info *pi;
c8f44aff 4439 bool highdma = false;
b8ff05a9 4440 struct adapter *adapter = NULL;
d6ce2628 4441 void __iomem *regs;
b8ff05a9
DM
4442
4443 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4444
4445 err = pci_request_regions(pdev, KBUILD_MODNAME);
4446 if (err) {
4447 /* Just info, some other driver may have claimed the device. */
4448 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4449 return err;
4450 }
4451
b8ff05a9
DM
4452 err = pci_enable_device(pdev);
4453 if (err) {
4454 dev_err(&pdev->dev, "cannot enable PCI device\n");
4455 goto out_release_regions;
4456 }
4457
d6ce2628
HS
4458 regs = pci_ioremap_bar(pdev, 0);
4459 if (!regs) {
4460 dev_err(&pdev->dev, "cannot map device registers\n");
4461 err = -ENOMEM;
4462 goto out_disable_device;
4463 }
4464
8203b509
HS
4465 err = t4_wait_dev_ready(regs);
4466 if (err < 0)
4467 goto out_unmap_bar0;
4468
d6ce2628 4469 /* We control everything through one PF */
0d804338 4470 func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
d6ce2628
HS
4471 if (func != ent->driver_data) {
4472 iounmap(regs);
4473 pci_disable_device(pdev);
4474 pci_save_state(pdev); /* to restore SR-IOV later */
4475 goto sriov;
4476 }
4477
b8ff05a9 4478 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 4479 highdma = true;
b8ff05a9
DM
4480 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4481 if (err) {
4482 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4483 "coherent allocations\n");
d6ce2628 4484 goto out_unmap_bar0;
b8ff05a9
DM
4485 }
4486 } else {
4487 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4488 if (err) {
4489 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 4490 goto out_unmap_bar0;
b8ff05a9
DM
4491 }
4492 }
4493
4494 pci_enable_pcie_error_reporting(pdev);
ef306b50 4495 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
4496 pci_set_master(pdev);
4497 pci_save_state(pdev);
4498
4499 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4500 if (!adapter) {
4501 err = -ENOMEM;
d6ce2628 4502 goto out_unmap_bar0;
b8ff05a9
DM
4503 }
4504
29aaee65
AB
4505 adapter->workq = create_singlethread_workqueue("cxgb4");
4506 if (!adapter->workq) {
4507 err = -ENOMEM;
4508 goto out_free_adapter;
4509 }
4510
144be3d9
GS
4511 /* PCI device has been enabled */
4512 adapter->flags |= DEV_ENABLED;
4513
d6ce2628 4514 adapter->regs = regs;
b8ff05a9
DM
4515 adapter->pdev = pdev;
4516 adapter->pdev_dev = &pdev->dev;
3069ee9b 4517 adapter->mbox = func;
060e0c75 4518 adapter->fn = func;
b8ff05a9
DM
4519 adapter->msg_enable = dflt_msg_enable;
4520 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4521
4522 spin_lock_init(&adapter->stats_lock);
4523 spin_lock_init(&adapter->tid_release_lock);
e327c225 4524 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
4525
4526 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
4527 INIT_WORK(&adapter->db_full_task, process_db_full);
4528 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
4529
4530 err = t4_prep_adapter(adapter);
4531 if (err)
d6ce2628
HS
4532 goto out_free_adapter;
4533
22adfe0a 4534
d14807dd 4535 if (!is_t4(adapter->params.chip)) {
f612b815
HS
4536 s_qpp = (QUEUESPERPAGEPF0_S +
4537 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4538 adapter->fn);
4539 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4540 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
4541 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4542
4543 /* Each segment size is 128B. Write coalescing is enabled only
4544 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4545 * queue is less no of segments that can be accommodated in
4546 * a page size.
4547 */
4548 if (qpp > num_seg) {
4549 dev_err(&pdev->dev,
4550 "Incorrect number of egress queues per page\n");
4551 err = -EINVAL;
d6ce2628 4552 goto out_free_adapter;
22adfe0a
SR
4553 }
4554 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4555 pci_resource_len(pdev, 2));
4556 if (!adapter->bar2) {
4557 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4558 err = -ENOMEM;
d6ce2628 4559 goto out_free_adapter;
22adfe0a
SR
4560 }
4561 }
4562
636f9d37 4563 setup_memwin(adapter);
b8ff05a9 4564 err = adap_init0(adapter);
636f9d37 4565 setup_memwin_rdma(adapter);
b8ff05a9
DM
4566 if (err)
4567 goto out_unmap_bar;
4568
4569 for_each_port(adapter, i) {
4570 struct net_device *netdev;
4571
4572 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4573 MAX_ETH_QSETS);
4574 if (!netdev) {
4575 err = -ENOMEM;
4576 goto out_free_dev;
4577 }
4578
4579 SET_NETDEV_DEV(netdev, &pdev->dev);
4580
4581 adapter->port[i] = netdev;
4582 pi = netdev_priv(netdev);
4583 pi->adapter = adapter;
4584 pi->xact_addr_filt = -1;
b8ff05a9 4585 pi->port_id = i;
b8ff05a9
DM
4586 netdev->irq = pdev->irq;
4587
2ed28baa
MM
4588 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4589 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4590 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 4591 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
4592 if (highdma)
4593 netdev->hw_features |= NETIF_F_HIGHDMA;
4594 netdev->features |= netdev->hw_features;
b8ff05a9
DM
4595 netdev->vlan_features = netdev->features & VLAN_FEAT;
4596
01789349
JP
4597 netdev->priv_flags |= IFF_UNICAST_FLT;
4598
b8ff05a9 4599 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
4600#ifdef CONFIG_CHELSIO_T4_DCB
4601 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4602 cxgb4_dcb_state_init(netdev);
4603#endif
812034f1 4604 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
4605 }
4606
4607 pci_set_drvdata(pdev, adapter);
4608
4609 if (adapter->flags & FW_OK) {
060e0c75 4610 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
4611 if (err)
4612 goto out_free_dev;
4613 }
4614
4615 /*
4616 * Configure queues and allocate tables now, they can be needed as
4617 * soon as the first register_netdev completes.
4618 */
4619 cfg_queues(adapter);
4620
4621 adapter->l2t = t4_init_l2t();
4622 if (!adapter->l2t) {
4623 /* We tolerate a lack of L2T, giving up some functionality */
4624 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4625 adapter->params.offload = 0;
4626 }
4627
b5a02f50
AB
4628#if IS_ENABLED(CONFIG_IPV6)
4629 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4630 adapter->clipt_end);
4631 if (!adapter->clipt) {
4632 /* We tolerate a lack of clip_table, giving up
4633 * some functionality
4634 */
4635 dev_warn(&pdev->dev,
4636 "could not allocate Clip table, continuing\n");
4637 adapter->params.offload = 0;
4638 }
4639#endif
b8ff05a9
DM
4640 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4641 dev_warn(&pdev->dev, "could not allocate TID table, "
4642 "continuing\n");
4643 adapter->params.offload = 0;
4644 }
4645
f7cabcdd
DM
4646 /* See what interrupts we'll be using */
4647 if (msi > 1 && enable_msix(adapter) == 0)
4648 adapter->flags |= USING_MSIX;
4649 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4650 adapter->flags |= USING_MSI;
4651
671b0060
DM
4652 err = init_rss(adapter);
4653 if (err)
4654 goto out_free_dev;
4655
b8ff05a9
DM
4656 /*
4657 * The card is now ready to go. If any errors occur during device
4658 * registration we do not fail the whole card but rather proceed only
4659 * with the ports we manage to register successfully. However we must
4660 * register at least one net device.
4661 */
4662 for_each_port(adapter, i) {
a57cabe0
DM
4663 pi = adap2pinfo(adapter, i);
4664 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4665 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4666
b8ff05a9
DM
4667 err = register_netdev(adapter->port[i]);
4668 if (err)
b1a3c2b6 4669 break;
b1a3c2b6
DM
4670 adapter->chan_map[pi->tx_chan] = i;
4671 print_port_info(adapter->port[i]);
b8ff05a9 4672 }
b1a3c2b6 4673 if (i == 0) {
b8ff05a9
DM
4674 dev_err(&pdev->dev, "could not register any net devices\n");
4675 goto out_free_dev;
4676 }
b1a3c2b6
DM
4677 if (err) {
4678 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4679 err = 0;
6403eab1 4680 }
b8ff05a9
DM
4681
4682 if (cxgb4_debugfs_root) {
4683 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4684 cxgb4_debugfs_root);
4685 setup_debugfs(adapter);
4686 }
4687
6482aa7c
DLR
4688 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4689 pdev->needs_freset = 1;
4690
b8ff05a9
DM
4691 if (is_offload(adapter))
4692 attach_ulds(adapter);
4693
8e1e6059 4694sriov:
b8ff05a9 4695#ifdef CONFIG_PCI_IOV
7d6727cf 4696 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
4697 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4698 dev_info(&pdev->dev,
4699 "instantiated %u virtual functions\n",
4700 num_vf[func]);
4701#endif
4702 return 0;
4703
4704 out_free_dev:
06546391 4705 free_some_resources(adapter);
b8ff05a9 4706 out_unmap_bar:
d14807dd 4707 if (!is_t4(adapter->params.chip))
22adfe0a 4708 iounmap(adapter->bar2);
b8ff05a9 4709 out_free_adapter:
29aaee65
AB
4710 if (adapter->workq)
4711 destroy_workqueue(adapter->workq);
4712
b8ff05a9 4713 kfree(adapter);
d6ce2628
HS
4714 out_unmap_bar0:
4715 iounmap(regs);
b8ff05a9
DM
4716 out_disable_device:
4717 pci_disable_pcie_error_reporting(pdev);
4718 pci_disable_device(pdev);
4719 out_release_regions:
4720 pci_release_regions(pdev);
b8ff05a9
DM
4721 return err;
4722}
4723
91744948 4724static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
4725{
4726 struct adapter *adapter = pci_get_drvdata(pdev);
4727
636f9d37 4728#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
4729 pci_disable_sriov(pdev);
4730
636f9d37
VP
4731#endif
4732
b8ff05a9
DM
4733 if (adapter) {
4734 int i;
4735
29aaee65
AB
4736 /* Tear down per-adapter Work Queue first since it can contain
4737 * references to our adapter data structure.
4738 */
4739 destroy_workqueue(adapter->workq);
4740
b8ff05a9
DM
4741 if (is_offload(adapter))
4742 detach_ulds(adapter);
4743
b37987e8
HS
4744 disable_interrupts(adapter);
4745
b8ff05a9 4746 for_each_port(adapter, i)
8f3a7676 4747 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
4748 unregister_netdev(adapter->port[i]);
4749
9f16dc2e 4750 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 4751
f2b7e78d
VP
4752 /* If we allocated filters, free up state associated with any
4753 * valid filters ...
4754 */
4755 if (adapter->tids.ftid_tab) {
4756 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
4757 for (i = 0; i < (adapter->tids.nftids +
4758 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
4759 if (f->valid)
4760 clear_filter(adapter, f);
4761 }
4762
aaefae9b
DM
4763 if (adapter->flags & FULL_INIT_DONE)
4764 cxgb_down(adapter);
b8ff05a9 4765
06546391 4766 free_some_resources(adapter);
b5a02f50
AB
4767#if IS_ENABLED(CONFIG_IPV6)
4768 t4_cleanup_clip_tbl(adapter);
4769#endif
b8ff05a9 4770 iounmap(adapter->regs);
d14807dd 4771 if (!is_t4(adapter->params.chip))
22adfe0a 4772 iounmap(adapter->bar2);
b8ff05a9 4773 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
4774 if ((adapter->flags & DEV_ENABLED)) {
4775 pci_disable_device(pdev);
4776 adapter->flags &= ~DEV_ENABLED;
4777 }
b8ff05a9 4778 pci_release_regions(pdev);
ee9a33b2 4779 synchronize_rcu();
8b662fe7 4780 kfree(adapter);
a069ec91 4781 } else
b8ff05a9
DM
4782 pci_release_regions(pdev);
4783}
4784
4785static struct pci_driver cxgb4_driver = {
4786 .name = KBUILD_MODNAME,
4787 .id_table = cxgb4_pci_tbl,
4788 .probe = init_one,
91744948 4789 .remove = remove_one,
687d705c 4790 .shutdown = remove_one,
204dc3c0 4791 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
4792};
4793
4794static int __init cxgb4_init_module(void)
4795{
4796 int ret;
4797
4798 /* Debugfs support is optional, just warn if this fails */
4799 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4800 if (!cxgb4_debugfs_root)
428ac43f 4801 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
4802
4803 ret = pci_register_driver(&cxgb4_driver);
29aaee65 4804 if (ret < 0)
b8ff05a9 4805 debugfs_remove(cxgb4_debugfs_root);
01bcca68 4806
1bb60376 4807#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
4808 if (!inet6addr_registered) {
4809 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4810 inet6addr_registered = true;
4811 }
1bb60376 4812#endif
01bcca68 4813
b8ff05a9
DM
4814 return ret;
4815}
4816
4817static void __exit cxgb4_cleanup_module(void)
4818{
1bb60376 4819#if IS_ENABLED(CONFIG_IPV6)
1793c798 4820 if (inet6addr_registered) {
b5a02f50
AB
4821 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4822 inet6addr_registered = false;
4823 }
1bb60376 4824#endif
b8ff05a9
DM
4825 pci_unregister_driver(&cxgb4_driver);
4826 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
4827}
4828
4829module_init(cxgb4_init_module);
4830module_exit(cxgb4_cleanup_module);