]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4: Add support to dump edc bist status
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
812034f1
HS
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
01bcca68
VP
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
3a7f8554 84#define DRV_VERSION "2.0.0-ko"
812034f1 85const char cxgb4_driver_version[] = DRV_VERSION;
3a7f8554 86#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9 87
f2b7e78d
VP
88/* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110};
111
b8ff05a9
DM
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
3fedeab1
HS
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 119 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 121
3fedeab1
HS
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134#include "t4_pci_id_tbl.h"
b8ff05a9 135
16e47624 136#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 137#define FW5_FNAME "cxgb4/t5fw.bin"
3ccc6cf7 138#define FW6_FNAME "cxgb4/t6fw.bin"
16e47624 139#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 140#define FW5_CFNAME "cxgb4/t5-config.txt"
3ccc6cf7 141#define FW6_CFNAME "cxgb4/t6-config.txt"
01b69614
HS
142#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144#define PHY_AQ1202_DEVICEID 0x4409
145#define PHY_BCM84834_DEVICEID 0x4486
b8ff05a9
DM
146
147MODULE_DESCRIPTION(DRV_DESC);
148MODULE_AUTHOR("Chelsio Communications");
149MODULE_LICENSE("Dual BSD/GPL");
150MODULE_VERSION(DRV_VERSION);
151MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 152MODULE_FIRMWARE(FW4_FNAME);
0a57a536 153MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 154
636f9d37
VP
155/*
156 * Normally we're willing to become the firmware's Master PF but will be happy
157 * if another PF has already become the Master and initialized the adapter.
158 * Setting "force_init" will cause this driver to forcibly establish itself as
159 * the Master PF and initialize the adapter.
160 */
161static uint force_init;
162
163module_param(force_init, uint, 0644);
164MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
165
13ee15d3
VP
166/*
167 * Normally if the firmware we connect to has Configuration File support, we
168 * use that and only fall back to the old Driver-based initialization if the
169 * Configuration File fails for some reason. If force_old_init is set, then
170 * we'll always use the old Driver-based initialization sequence.
171 */
172static uint force_old_init;
173
174module_param(force_old_init, uint, 0644);
06640310
HS
175MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
176 " parameter");
13ee15d3 177
b8ff05a9
DM
178static int dflt_msg_enable = DFLT_MSG_ENABLE;
179
180module_param(dflt_msg_enable, int, 0644);
181MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
182
183/*
184 * The driver uses the best interrupt scheme available on a platform in the
185 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
186 * of these schemes the driver may consider as follows:
187 *
188 * msi = 2: choose from among all three options
189 * msi = 1: only consider MSI and INTx interrupts
190 * msi = 0: force INTx interrupts
191 */
192static int msi = 2;
193
194module_param(msi, int, 0644);
195MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
196
197/*
198 * Queue interrupt hold-off timer values. Queues default to the first of these
199 * upon creation.
200 */
201static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
202
203module_param_array(intr_holdoff, uint, NULL, 0644);
204MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 205 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
206
207static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
208
209module_param_array(intr_cnt, uint, NULL, 0644);
210MODULE_PARM_DESC(intr_cnt,
06640310
HS
211 "thresholds 1..3 for queue interrupt packet counters, "
212 "deprecated parameter");
b8ff05a9 213
636f9d37
VP
214/*
215 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
216 * offset by 2 bytes in order to have the IP headers line up on 4-byte
217 * boundaries. This is a requirement for many architectures which will throw
218 * a machine check fault if an attempt is made to access one of the 4-byte IP
219 * header fields on a non-4-byte boundary. And it's a major performance issue
220 * even on some architectures which allow it like some implementations of the
221 * x86 ISA. However, some architectures don't mind this and for some very
222 * edge-case performance sensitive applications (like forwarding large volumes
223 * of small packets), setting this DMA offset to 0 will decrease the number of
224 * PCI-E Bus transfers enough to measurably affect performance.
225 */
226static int rx_dma_offset = 2;
227
eb939922 228static bool vf_acls;
b8ff05a9
DM
229
230#ifdef CONFIG_PCI_IOV
231module_param(vf_acls, bool, 0644);
06640310
HS
232MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
233 "deprecated parameter");
b8ff05a9 234
7d6727cf
SR
235/* Configure the number of PCI-E Virtual Function which are to be instantiated
236 * on SR-IOV Capable Physical Functions.
0a57a536 237 */
7d6727cf 238static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
239
240module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 241MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
242#endif
243
688848b1
AB
244/* TX Queue select used to determine what algorithm to use for selecting TX
245 * queue. Select between the kernel provided function (select_queue=0) or user
246 * cxgb_select_queue function (select_queue=1)
247 *
248 * Default: select_queue=0
249 */
250static int select_queue;
251module_param(select_queue, int, 0644);
252MODULE_PARM_DESC(select_queue,
253 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
254
06640310 255static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 256
f2b7e78d 257module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
258MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
259 "deprecated parameter");
f2b7e78d 260
b8ff05a9
DM
261static struct dentry *cxgb4_debugfs_root;
262
263static LIST_HEAD(adapter_list);
264static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
265/* Adapter list to be accessed from atomic context */
266static LIST_HEAD(adap_rcu_list);
267static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
268static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
269static const char *uld_str[] = { "RDMA", "iSCSI" };
270
271static void link_report(struct net_device *dev)
272{
273 if (!netif_carrier_ok(dev))
274 netdev_info(dev, "link down\n");
275 else {
276 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
277
278 const char *s = "10Mbps";
279 const struct port_info *p = netdev_priv(dev);
280
281 switch (p->link_cfg.speed) {
e8b39015 282 case 10000:
b8ff05a9
DM
283 s = "10Gbps";
284 break;
e8b39015 285 case 1000:
b8ff05a9
DM
286 s = "1000Mbps";
287 break;
e8b39015 288 case 100:
b8ff05a9
DM
289 s = "100Mbps";
290 break;
e8b39015 291 case 40000:
72aca4bf
KS
292 s = "40Gbps";
293 break;
b8ff05a9
DM
294 }
295
296 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
297 fc[p->link_cfg.fc]);
298 }
299}
300
688848b1
AB
301#ifdef CONFIG_CHELSIO_T4_DCB
302/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
303static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
304{
305 struct port_info *pi = netdev_priv(dev);
306 struct adapter *adap = pi->adapter;
307 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
308 int i;
309
310 /* We use a simple mapping of Port TX Queue Index to DCB
311 * Priority when we're enabling DCB.
312 */
313 for (i = 0; i < pi->nqsets; i++, txq++) {
314 u32 name, value;
315 int err;
316
5167865a
HS
317 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
318 FW_PARAMS_PARAM_X_V(
319 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
320 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
321 value = enable ? i : 0xffffffff;
322
323 /* Since we can be called while atomic (from "interrupt
324 * level") we need to issue the Set Parameters Commannd
325 * without sleeping (timeout < 0).
326 */
b2612722 327 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
328 &name, &value,
329 -FW_CMD_MAX_TIMEOUT);
688848b1
AB
330
331 if (err)
332 dev_err(adap->pdev_dev,
333 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
334 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
335 else
336 txq->dcb_prio = value;
688848b1
AB
337 }
338}
339#endif /* CONFIG_CHELSIO_T4_DCB */
340
b8ff05a9
DM
341void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
342{
343 struct net_device *dev = adapter->port[port_id];
344
345 /* Skip changes from disabled ports. */
346 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
347 if (link_stat)
348 netif_carrier_on(dev);
688848b1
AB
349 else {
350#ifdef CONFIG_CHELSIO_T4_DCB
351 cxgb4_dcb_state_init(dev);
352 dcb_tx_queue_prio_enable(dev, false);
353#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 354 netif_carrier_off(dev);
688848b1 355 }
b8ff05a9
DM
356
357 link_report(dev);
358 }
359}
360
361void t4_os_portmod_changed(const struct adapter *adap, int port_id)
362{
363 static const char *mod_str[] = {
a0881cab 364 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
365 };
366
367 const struct net_device *dev = adap->port[port_id];
368 const struct port_info *pi = netdev_priv(dev);
369
370 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
371 netdev_info(dev, "port module unplugged\n");
a0881cab 372 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
373 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
374}
375
376/*
377 * Configure the exact and hash address filters to handle a port's multicast
378 * and secondary unicast MAC addresses.
379 */
380static int set_addr_filters(const struct net_device *dev, bool sleep)
381{
382 u64 mhash = 0;
383 u64 uhash = 0;
384 bool free = true;
385 u16 filt_idx[7];
386 const u8 *addr[7];
387 int ret, naddr = 0;
b8ff05a9
DM
388 const struct netdev_hw_addr *ha;
389 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 390 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 391 const struct port_info *pi = netdev_priv(dev);
b2612722 392 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
393
394 /* first do the secondary unicast addresses */
395 netdev_for_each_uc_addr(ha, dev) {
396 addr[naddr++] = ha->addr;
397 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 398 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
399 naddr, addr, filt_idx, &uhash, sleep);
400 if (ret < 0)
401 return ret;
402
403 free = false;
404 naddr = 0;
405 }
406 }
407
408 /* next set up the multicast addresses */
4a35ecf8
DM
409 netdev_for_each_mc_addr(ha, dev) {
410 addr[naddr++] = ha->addr;
411 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 412 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
413 naddr, addr, filt_idx, &mhash, sleep);
414 if (ret < 0)
415 return ret;
416
417 free = false;
418 naddr = 0;
419 }
420 }
421
060e0c75 422 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
423 uhash | mhash, sleep);
424}
425
3069ee9b
VP
426int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
427module_param(dbfifo_int_thresh, int, 0644);
428MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
429
404d9e3f
VP
430/*
431 * usecs to sleep while draining the dbfifo
432 */
433static int dbfifo_drain_delay = 1000;
3069ee9b
VP
434module_param(dbfifo_drain_delay, int, 0644);
435MODULE_PARM_DESC(dbfifo_drain_delay,
436 "usecs to sleep while draining the dbfifo");
437
b8ff05a9
DM
438/*
439 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
440 * If @mtu is -1 it is left unchanged.
441 */
442static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
443{
444 int ret;
445 struct port_info *pi = netdev_priv(dev);
446
447 ret = set_addr_filters(dev, sleep_ok);
448 if (ret == 0)
b2612722 449 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
b8ff05a9 450 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 451 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
452 sleep_ok);
453 return ret;
454}
455
456/**
457 * link_start - enable a port
458 * @dev: the port to enable
459 *
460 * Performs the MAC and PHY actions needed to enable a port.
461 */
462static int link_start(struct net_device *dev)
463{
464 int ret;
465 struct port_info *pi = netdev_priv(dev);
b2612722 466 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
467
468 /*
469 * We do not set address filters and promiscuity here, the stack does
470 * that step explicitly.
471 */
060e0c75 472 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 473 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 474 if (ret == 0) {
060e0c75 475 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 476 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 477 true);
b8ff05a9
DM
478 if (ret >= 0) {
479 pi->xact_addr_filt = ret;
480 ret = 0;
481 }
482 }
483 if (ret == 0)
4036da90 484 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
060e0c75 485 &pi->link_cfg);
30f00847
AB
486 if (ret == 0) {
487 local_bh_disable();
688848b1
AB
488 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
489 true, CXGB4_DCB_ENABLED);
30f00847
AB
490 local_bh_enable();
491 }
688848b1 492
b8ff05a9
DM
493 return ret;
494}
495
688848b1
AB
496int cxgb4_dcb_enabled(const struct net_device *dev)
497{
498#ifdef CONFIG_CHELSIO_T4_DCB
499 struct port_info *pi = netdev_priv(dev);
500
3bb06261
AB
501 if (!pi->dcb.enabled)
502 return 0;
503
504 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
505 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
506#else
507 return 0;
508#endif
509}
510EXPORT_SYMBOL(cxgb4_dcb_enabled);
511
512#ifdef CONFIG_CHELSIO_T4_DCB
513/* Handle a Data Center Bridging update message from the firmware. */
514static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
515{
2b5fb1f2 516 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
517 struct net_device *dev = adap->port[port];
518 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
519 int new_dcb_enabled;
520
521 cxgb4_dcb_handle_fw_update(adap, pcmd);
522 new_dcb_enabled = cxgb4_dcb_enabled(dev);
523
524 /* If the DCB has become enabled or disabled on the port then we're
525 * going to need to set up/tear down DCB Priority parameters for the
526 * TX Queues associated with the port.
527 */
528 if (new_dcb_enabled != old_dcb_enabled)
529 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
530}
531#endif /* CONFIG_CHELSIO_T4_DCB */
532
f2b7e78d
VP
533/* Clear a filter and release any of its resources that we own. This also
534 * clears the filter's "pending" status.
535 */
536static void clear_filter(struct adapter *adap, struct filter_entry *f)
537{
538 /* If the new or old filter have loopback rewriteing rules then we'll
539 * need to free any existing Layer Two Table (L2T) entries of the old
540 * filter rule. The firmware will handle freeing up any Source MAC
541 * Table (SMT) entries used for rewriting Source MAC Addresses in
542 * loopback rules.
543 */
544 if (f->l2t)
545 cxgb4_l2t_release(f->l2t);
546
547 /* The zeroing of the filter rule below clears the filter valid,
548 * pending, locked flags, l2t pointer, etc. so it's all we need for
549 * this operation.
550 */
551 memset(f, 0, sizeof(*f));
552}
553
554/* Handle a filter write/deletion reply.
555 */
556static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
557{
558 unsigned int idx = GET_TID(rpl);
559 unsigned int nidx = idx - adap->tids.ftid_base;
560 unsigned int ret;
561 struct filter_entry *f;
562
563 if (idx >= adap->tids.ftid_base && nidx <
564 (adap->tids.nftids + adap->tids.nsftids)) {
565 idx = nidx;
bdc590b9 566 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
567 f = &adap->tids.ftid_tab[idx];
568
569 if (ret == FW_FILTER_WR_FLT_DELETED) {
570 /* Clear the filter when we get confirmation from the
571 * hardware that the filter has been deleted.
572 */
573 clear_filter(adap, f);
574 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
575 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
576 idx);
577 clear_filter(adap, f);
578 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
579 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
580 f->pending = 0; /* asynchronous setup completed */
581 f->valid = 1;
582 } else {
583 /* Something went wrong. Issue a warning about the
584 * problem and clear everything out.
585 */
586 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
587 idx, ret);
588 clear_filter(adap, f);
589 }
590 }
591}
592
593/* Response queue handler for the FW event queue.
b8ff05a9
DM
594 */
595static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
596 const struct pkt_gl *gl)
597{
598 u8 opcode = ((const struct rss_header *)rsp)->opcode;
599
600 rsp++; /* skip RSS header */
b407a4a9
VP
601
602 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
603 */
604 if (unlikely(opcode == CPL_FW4_MSG &&
605 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
606 rsp++;
607 opcode = ((const struct rss_header *)rsp)->opcode;
608 rsp++;
609 if (opcode != CPL_SGE_EGR_UPDATE) {
610 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
611 , opcode);
612 goto out;
613 }
614 }
615
b8ff05a9
DM
616 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
617 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 618 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 619 struct sge_txq *txq;
b8ff05a9 620
e46dab4d 621 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 622 txq->restarts++;
e46dab4d 623 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
624 struct sge_eth_txq *eq;
625
626 eq = container_of(txq, struct sge_eth_txq, q);
627 netif_tx_wake_queue(eq->txq);
628 } else {
629 struct sge_ofld_txq *oq;
630
631 oq = container_of(txq, struct sge_ofld_txq, q);
632 tasklet_schedule(&oq->qresume_tsk);
633 }
634 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
635 const struct cpl_fw6_msg *p = (void *)rsp;
636
688848b1
AB
637#ifdef CONFIG_CHELSIO_T4_DCB
638 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 639 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 640 unsigned int action =
2b5fb1f2 641 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
642
643 if (cmd == FW_PORT_CMD &&
644 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 645 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
646 be32_to_cpu(pcmd->op_to_portid));
647 struct net_device *dev = q->adap->port[port];
648 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 649 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
650 ? CXGB4_DCB_INPUT_FW_DISABLED
651 : CXGB4_DCB_INPUT_FW_ENABLED);
652
653 cxgb4_dcb_state_fsm(dev, state_input);
654 }
655
656 if (cmd == FW_PORT_CMD &&
657 action == FW_PORT_ACTION_L2_DCB_CFG)
658 dcb_rpl(q->adap, pcmd);
659 else
660#endif
661 if (p->type == 0)
662 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
663 } else if (opcode == CPL_L2T_WRITE_RPL) {
664 const struct cpl_l2t_write_rpl *p = (void *)rsp;
665
666 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
667 } else if (opcode == CPL_SET_TCB_RPL) {
668 const struct cpl_set_tcb_rpl *p = (void *)rsp;
669
670 filter_rpl(q->adap, p);
b8ff05a9
DM
671 } else
672 dev_err(q->adap->pdev_dev,
673 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 674out:
b8ff05a9
DM
675 return 0;
676}
677
678/**
679 * uldrx_handler - response queue handler for ULD queues
680 * @q: the response queue that received the packet
681 * @rsp: the response queue descriptor holding the offload message
682 * @gl: the gather list of packet fragments
683 *
684 * Deliver an ingress offload packet to a ULD. All processing is done by
685 * the ULD, we just maintain statistics.
686 */
687static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
688 const struct pkt_gl *gl)
689{
690 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
691
b407a4a9
VP
692 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
693 */
694 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
695 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
696 rsp += 2;
697
b8ff05a9
DM
698 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
699 rxq->stats.nomem++;
700 return -1;
701 }
702 if (gl == NULL)
703 rxq->stats.imm++;
704 else if (gl == CXGB4_MSG_AN)
705 rxq->stats.an++;
706 else
707 rxq->stats.pkts++;
708 return 0;
709}
710
711static void disable_msi(struct adapter *adapter)
712{
713 if (adapter->flags & USING_MSIX) {
714 pci_disable_msix(adapter->pdev);
715 adapter->flags &= ~USING_MSIX;
716 } else if (adapter->flags & USING_MSI) {
717 pci_disable_msi(adapter->pdev);
718 adapter->flags &= ~USING_MSI;
719 }
720}
721
722/*
723 * Interrupt handler for non-data events used with MSI-X.
724 */
725static irqreturn_t t4_nondata_intr(int irq, void *cookie)
726{
727 struct adapter *adap = cookie;
0d804338 728 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 729
0d804338 730 if (v & PFSW_F) {
b8ff05a9 731 adap->swintr = 1;
0d804338 732 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 733 }
c3c7b121
HS
734 if (adap->flags & MASTER_PF)
735 t4_slow_intr_handler(adap);
b8ff05a9
DM
736 return IRQ_HANDLED;
737}
738
739/*
740 * Name the MSI-X interrupts.
741 */
742static void name_msix_vecs(struct adapter *adap)
743{
ba27816c 744 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
745
746 /* non-data interrupts */
b1a3c2b6 747 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
748
749 /* FW events */
b1a3c2b6
DM
750 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
751 adap->port[0]->name);
b8ff05a9
DM
752
753 /* Ethernet queues */
754 for_each_port(adap, j) {
755 struct net_device *d = adap->port[j];
756 const struct port_info *pi = netdev_priv(d);
757
ba27816c 758 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
759 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
760 d->name, i);
b8ff05a9
DM
761 }
762
763 /* offload queues */
ba27816c
DM
764 for_each_ofldrxq(&adap->sge, i)
765 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 766 adap->port[0]->name, i);
ba27816c
DM
767
768 for_each_rdmarxq(&adap->sge, i)
769 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 770 adap->port[0]->name, i);
cf38be6d
HS
771
772 for_each_rdmaciq(&adap->sge, i)
773 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
774 adap->port[0]->name, i);
b8ff05a9
DM
775}
776
777static int request_msix_queue_irqs(struct adapter *adap)
778{
779 struct sge *s = &adap->sge;
cf38be6d
HS
780 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
781 int msi_index = 2;
b8ff05a9
DM
782
783 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
784 adap->msix_info[1].desc, &s->fw_evtq);
785 if (err)
786 return err;
787
788 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
789 err = request_irq(adap->msix_info[msi_index].vec,
790 t4_sge_intr_msix, 0,
791 adap->msix_info[msi_index].desc,
b8ff05a9
DM
792 &s->ethrxq[ethqidx].rspq);
793 if (err)
794 goto unwind;
404d9e3f 795 msi_index++;
b8ff05a9
DM
796 }
797 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
798 err = request_irq(adap->msix_info[msi_index].vec,
799 t4_sge_intr_msix, 0,
800 adap->msix_info[msi_index].desc,
b8ff05a9
DM
801 &s->ofldrxq[ofldqidx].rspq);
802 if (err)
803 goto unwind;
404d9e3f 804 msi_index++;
b8ff05a9
DM
805 }
806 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
807 err = request_irq(adap->msix_info[msi_index].vec,
808 t4_sge_intr_msix, 0,
809 adap->msix_info[msi_index].desc,
b8ff05a9
DM
810 &s->rdmarxq[rdmaqidx].rspq);
811 if (err)
812 goto unwind;
404d9e3f 813 msi_index++;
b8ff05a9 814 }
cf38be6d
HS
815 for_each_rdmaciq(s, rdmaciqqidx) {
816 err = request_irq(adap->msix_info[msi_index].vec,
817 t4_sge_intr_msix, 0,
818 adap->msix_info[msi_index].desc,
819 &s->rdmaciq[rdmaciqqidx].rspq);
820 if (err)
821 goto unwind;
822 msi_index++;
823 }
b8ff05a9
DM
824 return 0;
825
826unwind:
cf38be6d
HS
827 while (--rdmaciqqidx >= 0)
828 free_irq(adap->msix_info[--msi_index].vec,
829 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 830 while (--rdmaqidx >= 0)
404d9e3f 831 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
832 &s->rdmarxq[rdmaqidx].rspq);
833 while (--ofldqidx >= 0)
404d9e3f 834 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
835 &s->ofldrxq[ofldqidx].rspq);
836 while (--ethqidx >= 0)
404d9e3f
VP
837 free_irq(adap->msix_info[--msi_index].vec,
838 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
839 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
840 return err;
841}
842
843static void free_msix_queue_irqs(struct adapter *adap)
844{
404d9e3f 845 int i, msi_index = 2;
b8ff05a9
DM
846 struct sge *s = &adap->sge;
847
848 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
849 for_each_ethrxq(s, i)
404d9e3f 850 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 851 for_each_ofldrxq(s, i)
404d9e3f 852 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 853 for_each_rdmarxq(s, i)
404d9e3f 854 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
855 for_each_rdmaciq(s, i)
856 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
857}
858
671b0060 859/**
812034f1 860 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
861 * @pi: the port
862 * @queues: array of queue indices for RSS
863 *
864 * Sets up the portion of the HW RSS table for the port's VI to distribute
865 * packets to the Rx queues in @queues.
c035e183 866 * Should never be called before setting up sge eth rx queues
671b0060 867 */
812034f1 868int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
869{
870 u16 *rss;
871 int i, err;
c035e183
HS
872 struct adapter *adapter = pi->adapter;
873 const struct sge_eth_rxq *rxq;
671b0060 874
c035e183 875 rxq = &adapter->sge.ethrxq[pi->first_qset];
671b0060
DM
876 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
877 if (!rss)
878 return -ENOMEM;
879
880 /* map the queue indices to queue ids */
881 for (i = 0; i < pi->rss_size; i++, queues++)
c035e183 882 rss[i] = rxq[*queues].rspq.abs_id;
671b0060 883
b2612722 884 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
060e0c75 885 pi->rss_size, rss, pi->rss_size);
c035e183
HS
886 /* If Tunnel All Lookup isn't specified in the global RSS
887 * Configuration, then we need to specify a default Ingress
888 * Queue for any ingress packets which aren't hashed. We'll
889 * use our first ingress queue ...
890 */
891 if (!err)
892 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
893 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
894 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
895 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
896 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
897 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
898 rss[0]);
671b0060
DM
899 kfree(rss);
900 return err;
901}
902
b8ff05a9
DM
903/**
904 * setup_rss - configure RSS
905 * @adap: the adapter
906 *
671b0060 907 * Sets up RSS for each port.
b8ff05a9
DM
908 */
909static int setup_rss(struct adapter *adap)
910{
c035e183 911 int i, j, err;
b8ff05a9
DM
912
913 for_each_port(adap, i) {
914 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 915
c035e183
HS
916 /* Fill default values with equal distribution */
917 for (j = 0; j < pi->rss_size; j++)
918 pi->rss[j] = j % pi->nqsets;
919
812034f1 920 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
921 if (err)
922 return err;
923 }
924 return 0;
925}
926
e46dab4d
DM
927/*
928 * Return the channel of the ingress queue with the given qid.
929 */
930static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
931{
932 qid -= p->ingr_start;
933 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
934}
935
b8ff05a9
DM
936/*
937 * Wait until all NAPI handlers are descheduled.
938 */
939static void quiesce_rx(struct adapter *adap)
940{
941 int i;
942
4b8e27a8 943 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
944 struct sge_rspq *q = adap->sge.ingr_map[i];
945
3a336cb1 946 if (q && q->handler) {
b8ff05a9 947 napi_disable(&q->napi);
3a336cb1
HS
948 local_bh_disable();
949 while (!cxgb_poll_lock_napi(q))
950 mdelay(1);
951 local_bh_enable();
952 }
953
b8ff05a9
DM
954 }
955}
956
b37987e8
HS
957/* Disable interrupt and napi handler */
958static void disable_interrupts(struct adapter *adap)
959{
960 if (adap->flags & FULL_INIT_DONE) {
961 t4_intr_disable(adap);
962 if (adap->flags & USING_MSIX) {
963 free_msix_queue_irqs(adap);
964 free_irq(adap->msix_info[0].vec, adap);
965 } else {
966 free_irq(adap->pdev->irq, adap);
967 }
968 quiesce_rx(adap);
969 }
970}
971
b8ff05a9
DM
972/*
973 * Enable NAPI scheduling and interrupt generation for all Rx queues.
974 */
975static void enable_rx(struct adapter *adap)
976{
977 int i;
978
4b8e27a8 979 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
980 struct sge_rspq *q = adap->sge.ingr_map[i];
981
982 if (!q)
983 continue;
3a336cb1
HS
984 if (q->handler) {
985 cxgb_busy_poll_init_lock(q);
b8ff05a9 986 napi_enable(&q->napi);
3a336cb1 987 }
b8ff05a9 988 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
989 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
990 SEINTARM_V(q->intr_params) |
991 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
992 }
993}
994
1c6a5b0e
HS
995static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
996 unsigned int nq, unsigned int per_chan, int msi_idx,
997 u16 *ids)
998{
999 int i, err;
1000
1001 for (i = 0; i < nq; i++, q++) {
1002 if (msi_idx > 0)
1003 msi_idx++;
1004 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1005 adap->port[i / per_chan],
1006 msi_idx, q->fl.size ? &q->fl : NULL,
145ef8a5 1007 uldrx_handler, 0);
1c6a5b0e
HS
1008 if (err)
1009 return err;
1010 memset(&q->stats, 0, sizeof(q->stats));
1011 if (ids)
1012 ids[i] = q->rspq.abs_id;
1013 }
1014 return 0;
1015}
1016
b8ff05a9
DM
1017/**
1018 * setup_sge_queues - configure SGE Tx/Rx/response queues
1019 * @adap: the adapter
1020 *
1021 * Determines how many sets of SGE queues to use and initializes them.
1022 * We support multiple queue sets per port if we have MSI-X, otherwise
1023 * just one queue set per port.
1024 */
1025static int setup_sge_queues(struct adapter *adap)
1026{
1027 int err, msi_idx, i, j;
1028 struct sge *s = &adap->sge;
1029
4b8e27a8
HS
1030 bitmap_zero(s->starving_fl, s->egr_sz);
1031 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1032
1033 if (adap->flags & USING_MSIX)
1034 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1035 else {
1036 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
145ef8a5 1037 NULL, NULL, -1);
b8ff05a9
DM
1038 if (err)
1039 return err;
1040 msi_idx = -((int)s->intrq.abs_id + 1);
1041 }
1042
4b8e27a8
HS
1043 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1044 * don't forget to update the following which need to be
1045 * synchronized to and changes here.
1046 *
1047 * 1. The calculations of MAX_INGQ in cxgb4.h.
1048 *
1049 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1050 * to accommodate any new/deleted Ingress Queues
1051 * which need MSI-X Vectors.
1052 *
1053 * 3. Update sge_qinfo_show() to include information on the
1054 * new/deleted queues.
1055 */
b8ff05a9 1056 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
145ef8a5 1057 msi_idx, NULL, fwevtq_handler, -1);
b8ff05a9
DM
1058 if (err) {
1059freeout: t4_free_sge_resources(adap);
1060 return err;
1061 }
1062
1063 for_each_port(adap, i) {
1064 struct net_device *dev = adap->port[i];
1065 struct port_info *pi = netdev_priv(dev);
1066 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1067 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1068
1069 for (j = 0; j < pi->nqsets; j++, q++) {
1070 if (msi_idx > 0)
1071 msi_idx++;
1072 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1073 msi_idx, &q->fl,
145ef8a5
HS
1074 t4_ethrx_handler,
1075 t4_get_mps_bg_map(adap,
1076 pi->tx_chan));
b8ff05a9
DM
1077 if (err)
1078 goto freeout;
1079 q->rspq.idx = j;
1080 memset(&q->stats, 0, sizeof(q->stats));
1081 }
1082 for (j = 0; j < pi->nqsets; j++, t++) {
1083 err = t4_sge_alloc_eth_txq(adap, t, dev,
1084 netdev_get_tx_queue(dev, j),
1085 s->fw_evtq.cntxt_id);
1086 if (err)
1087 goto freeout;
1088 }
1089 }
1090
1091 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1092 for_each_ofldrxq(s, i) {
1c6a5b0e
HS
1093 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1094 adap->port[i / j],
b8ff05a9
DM
1095 s->fw_evtq.cntxt_id);
1096 if (err)
1097 goto freeout;
1098 }
1099
1c6a5b0e
HS
1100#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1101 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1102 if (err) \
1103 goto freeout; \
1104 if (msi_idx > 0) \
1105 msi_idx += nq; \
1106} while (0)
b8ff05a9 1107
1c6a5b0e
HS
1108 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1109 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
f36e58e5
HS
1110 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1111 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
b8ff05a9 1112
1c6a5b0e 1113#undef ALLOC_OFLD_RXQS
cf38be6d 1114
b8ff05a9
DM
1115 for_each_port(adap, i) {
1116 /*
1117 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1118 * have RDMA queues, and that's the right value.
1119 */
1120 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1121 s->fw_evtq.cntxt_id,
1122 s->rdmarxq[i].rspq.cntxt_id);
1123 if (err)
1124 goto freeout;
1125 }
1126
9bb59b96 1127 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1128 MPS_TRC_RSS_CONTROL_A :
1129 MPS_T5_TRC_RSS_CONTROL_A,
1130 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1131 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1132 return 0;
1133}
1134
b8ff05a9
DM
1135/*
1136 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1137 * The allocated memory is cleared.
1138 */
1139void *t4_alloc_mem(size_t size)
1140{
8be04b93 1141 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1142
1143 if (!p)
89bf67f1 1144 p = vzalloc(size);
b8ff05a9
DM
1145 return p;
1146}
1147
1148/*
1149 * Free memory allocated through alloc_mem().
1150 */
fd88b31a 1151void t4_free_mem(void *addr)
b8ff05a9 1152{
d2fcb548 1153 kvfree(addr);
b8ff05a9
DM
1154}
1155
f2b7e78d
VP
1156/* Send a Work Request to write the filter at a specified index. We construct
1157 * a Firmware Filter Work Request to have the work done and put the indicated
1158 * filter into "pending" mode which will prevent any further actions against
1159 * it till we get a reply from the firmware on the completion status of the
1160 * request.
1161 */
1162static int set_filter_wr(struct adapter *adapter, int fidx)
1163{
1164 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1165 struct sk_buff *skb;
1166 struct fw_filter_wr *fwr;
1167 unsigned int ftid;
1168
f72f116a
MH
1169 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1170 if (!skb)
1171 return -ENOMEM;
1172
f2b7e78d
VP
1173 /* If the new filter requires loopback Destination MAC and/or VLAN
1174 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1175 * the filter.
1176 */
1177 if (f->fs.newdmac || f->fs.newvlan) {
1178 /* allocate L2T entry for new filter */
1179 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
f72f116a
MH
1180 if (f->l2t == NULL) {
1181 kfree_skb(skb);
f2b7e78d 1182 return -EAGAIN;
f72f116a 1183 }
f2b7e78d
VP
1184 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1185 f->fs.eport, f->fs.dmac)) {
1186 cxgb4_l2t_release(f->l2t);
1187 f->l2t = NULL;
f72f116a 1188 kfree_skb(skb);
f2b7e78d
VP
1189 return -ENOMEM;
1190 }
1191 }
1192
1193 ftid = adapter->tids.ftid_base + fidx;
1194
f2b7e78d
VP
1195 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1196 memset(fwr, 0, sizeof(*fwr));
1197
1198 /* It would be nice to put most of the following in t4_hw.c but most
1199 * of the work is translating the cxgbtool ch_filter_specification
1200 * into the Work Request and the definition of that structure is
1201 * currently in cxgbtool.h which isn't appropriate to pull into the
1202 * common code. We may eventually try to come up with a more neutral
1203 * filter specification structure but for now it's easiest to simply
1204 * put this fairly direct code in line ...
1205 */
e2ac9628
HS
1206 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1207 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1208 fwr->tid_to_iq =
77a80e23
HS
1209 htonl(FW_FILTER_WR_TID_V(ftid) |
1210 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1211 FW_FILTER_WR_NOREPLY_V(0) |
1212 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1213 fwr->del_filter_to_l2tix =
77a80e23
HS
1214 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1215 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1216 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1217 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1218 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1219 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1220 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1221 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1222 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1223 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1224 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1225 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1226 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1227 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1228 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1229 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1230 fwr->ethtype = htons(f->fs.val.ethtype);
1231 fwr->ethtypem = htons(f->fs.mask.ethtype);
1232 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1233 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1234 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1235 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1236 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1237 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1238 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1239 fwr->smac_sel = 0;
1240 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1241 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1242 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1243 fwr->maci_to_matchtypem =
77a80e23
HS
1244 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1245 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1246 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1247 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1248 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1249 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1250 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1251 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1252 fwr->ptcl = f->fs.val.proto;
1253 fwr->ptclm = f->fs.mask.proto;
1254 fwr->ttyp = f->fs.val.tos;
1255 fwr->ttypm = f->fs.mask.tos;
1256 fwr->ivlan = htons(f->fs.val.ivlan);
1257 fwr->ivlanm = htons(f->fs.mask.ivlan);
1258 fwr->ovlan = htons(f->fs.val.ovlan);
1259 fwr->ovlanm = htons(f->fs.mask.ovlan);
1260 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1261 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1262 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1263 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1264 fwr->lp = htons(f->fs.val.lport);
1265 fwr->lpm = htons(f->fs.mask.lport);
1266 fwr->fp = htons(f->fs.val.fport);
1267 fwr->fpm = htons(f->fs.mask.fport);
1268 if (f->fs.newsmac)
1269 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1270
1271 /* Mark the filter as "pending" and ship off the Filter Work Request.
1272 * When we get the Work Request Reply we'll clear the pending status.
1273 */
1274 f->pending = 1;
1275 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1276 t4_ofld_send(adapter, skb);
1277 return 0;
1278}
1279
1280/* Delete the filter at a specified index.
1281 */
1282static int del_filter_wr(struct adapter *adapter, int fidx)
1283{
1284 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1285 struct sk_buff *skb;
1286 struct fw_filter_wr *fwr;
1287 unsigned int len, ftid;
1288
1289 len = sizeof(*fwr);
1290 ftid = adapter->tids.ftid_base + fidx;
1291
f72f116a
MH
1292 skb = alloc_skb(len, GFP_KERNEL);
1293 if (!skb)
1294 return -ENOMEM;
1295
f2b7e78d
VP
1296 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1297 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1298
1299 /* Mark the filter as "pending" and ship off the Filter Work Request.
1300 * When we get the Work Request Reply we'll clear the pending status.
1301 */
1302 f->pending = 1;
1303 t4_mgmt_tx(adapter, skb);
1304 return 0;
1305}
1306
688848b1
AB
1307static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1308 void *accel_priv, select_queue_fallback_t fallback)
1309{
1310 int txq;
1311
1312#ifdef CONFIG_CHELSIO_T4_DCB
1313 /* If a Data Center Bridging has been successfully negotiated on this
1314 * link then we'll use the skb's priority to map it to a TX Queue.
1315 * The skb's priority is determined via the VLAN Tag Priority Code
1316 * Point field.
1317 */
1318 if (cxgb4_dcb_enabled(dev)) {
1319 u16 vlan_tci;
1320 int err;
1321
1322 err = vlan_get_tag(skb, &vlan_tci);
1323 if (unlikely(err)) {
1324 if (net_ratelimit())
1325 netdev_warn(dev,
1326 "TX Packet without VLAN Tag on DCB Link\n");
1327 txq = 0;
1328 } else {
1329 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1330#ifdef CONFIG_CHELSIO_T4_FCOE
1331 if (skb->protocol == htons(ETH_P_FCOE))
1332 txq = skb->priority & 0x7;
1333#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1334 }
1335 return txq;
1336 }
1337#endif /* CONFIG_CHELSIO_T4_DCB */
1338
1339 if (select_queue) {
1340 txq = (skb_rx_queue_recorded(skb)
1341 ? skb_get_rx_queue(skb)
1342 : smp_processor_id());
1343
1344 while (unlikely(txq >= dev->real_num_tx_queues))
1345 txq -= dev->real_num_tx_queues;
1346
1347 return txq;
1348 }
1349
1350 return fallback(dev, skb) % dev->real_num_tx_queues;
1351}
1352
b8ff05a9
DM
1353static int closest_timer(const struct sge *s, int time)
1354{
1355 int i, delta, match = 0, min_delta = INT_MAX;
1356
1357 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1358 delta = time - s->timer_val[i];
1359 if (delta < 0)
1360 delta = -delta;
1361 if (delta < min_delta) {
1362 min_delta = delta;
1363 match = i;
1364 }
1365 }
1366 return match;
1367}
1368
1369static int closest_thres(const struct sge *s, int thres)
1370{
1371 int i, delta, match = 0, min_delta = INT_MAX;
1372
1373 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1374 delta = thres - s->counter_val[i];
1375 if (delta < 0)
1376 delta = -delta;
1377 if (delta < min_delta) {
1378 min_delta = delta;
1379 match = i;
1380 }
1381 }
1382 return match;
1383}
1384
b8ff05a9 1385/**
812034f1 1386 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1387 * @q: the Rx queue
1388 * @us: the hold-off time in us, or 0 to disable timer
1389 * @cnt: the hold-off packet count, or 0 to disable counter
1390 *
1391 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1392 * one of the two needs to be enabled for the queue to generate interrupts.
1393 */
812034f1
HS
1394int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1395 unsigned int us, unsigned int cnt)
b8ff05a9 1396{
c887ad0e
HS
1397 struct adapter *adap = q->adap;
1398
b8ff05a9
DM
1399 if ((us | cnt) == 0)
1400 cnt = 1;
1401
1402 if (cnt) {
1403 int err;
1404 u32 v, new_idx;
1405
1406 new_idx = closest_thres(&adap->sge, cnt);
1407 if (q->desc && q->pktcnt_idx != new_idx) {
1408 /* the queue has already been created, update it */
5167865a
HS
1409 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1410 FW_PARAMS_PARAM_X_V(
1411 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1412 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
b2612722
HS
1413 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1414 &v, &new_idx);
b8ff05a9
DM
1415 if (err)
1416 return err;
1417 }
1418 q->pktcnt_idx = new_idx;
1419 }
1420
1421 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1ecc7b7a 1422 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
b8ff05a9
DM
1423 return 0;
1424}
1425
c8f44aff 1426static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1427{
2ed28baa 1428 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1429 netdev_features_t changed = dev->features ^ features;
19ecae2c 1430 int err;
19ecae2c 1431
f646968f 1432 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1433 return 0;
19ecae2c 1434
b2612722 1435 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
2ed28baa 1436 -1, -1, -1,
f646968f 1437 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1438 if (unlikely(err))
f646968f 1439 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1440 return err;
87b6cf51
DM
1441}
1442
91744948 1443static int setup_debugfs(struct adapter *adap)
b8ff05a9 1444{
b8ff05a9
DM
1445 if (IS_ERR_OR_NULL(adap->debugfs_root))
1446 return -1;
1447
fd88b31a
HS
1448#ifdef CONFIG_DEBUG_FS
1449 t4_setup_debugfs(adap);
1450#endif
b8ff05a9
DM
1451 return 0;
1452}
1453
1454/*
1455 * upper-layer driver support
1456 */
1457
1458/*
1459 * Allocate an active-open TID and set it to the supplied value.
1460 */
1461int cxgb4_alloc_atid(struct tid_info *t, void *data)
1462{
1463 int atid = -1;
1464
1465 spin_lock_bh(&t->atid_lock);
1466 if (t->afree) {
1467 union aopen_entry *p = t->afree;
1468
f2b7e78d 1469 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1470 t->afree = p->next;
1471 p->data = data;
1472 t->atids_in_use++;
1473 }
1474 spin_unlock_bh(&t->atid_lock);
1475 return atid;
1476}
1477EXPORT_SYMBOL(cxgb4_alloc_atid);
1478
1479/*
1480 * Release an active-open TID.
1481 */
1482void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1483{
f2b7e78d 1484 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1485
1486 spin_lock_bh(&t->atid_lock);
1487 p->next = t->afree;
1488 t->afree = p;
1489 t->atids_in_use--;
1490 spin_unlock_bh(&t->atid_lock);
1491}
1492EXPORT_SYMBOL(cxgb4_free_atid);
1493
1494/*
1495 * Allocate a server TID and set it to the supplied value.
1496 */
1497int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1498{
1499 int stid;
1500
1501 spin_lock_bh(&t->stid_lock);
1502 if (family == PF_INET) {
1503 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1504 if (stid < t->nstids)
1505 __set_bit(stid, t->stid_bmap);
1506 else
1507 stid = -1;
1508 } else {
1509 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1510 if (stid < 0)
1511 stid = -1;
1512 }
1513 if (stid >= 0) {
1514 t->stid_tab[stid].data = data;
1515 stid += t->stid_base;
15f63b74
KS
1516 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1517 * This is equivalent to 4 TIDs. With CLIP enabled it
1518 * needs 2 TIDs.
1519 */
1520 if (family == PF_INET)
1521 t->stids_in_use++;
1522 else
1523 t->stids_in_use += 4;
b8ff05a9
DM
1524 }
1525 spin_unlock_bh(&t->stid_lock);
1526 return stid;
1527}
1528EXPORT_SYMBOL(cxgb4_alloc_stid);
1529
dca4faeb
VP
1530/* Allocate a server filter TID and set it to the supplied value.
1531 */
1532int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1533{
1534 int stid;
1535
1536 spin_lock_bh(&t->stid_lock);
1537 if (family == PF_INET) {
1538 stid = find_next_zero_bit(t->stid_bmap,
1539 t->nstids + t->nsftids, t->nstids);
1540 if (stid < (t->nstids + t->nsftids))
1541 __set_bit(stid, t->stid_bmap);
1542 else
1543 stid = -1;
1544 } else {
1545 stid = -1;
1546 }
1547 if (stid >= 0) {
1548 t->stid_tab[stid].data = data;
470c60c4
KS
1549 stid -= t->nstids;
1550 stid += t->sftid_base;
dca4faeb
VP
1551 t->stids_in_use++;
1552 }
1553 spin_unlock_bh(&t->stid_lock);
1554 return stid;
1555}
1556EXPORT_SYMBOL(cxgb4_alloc_sftid);
1557
1558/* Release a server TID.
b8ff05a9
DM
1559 */
1560void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1561{
470c60c4
KS
1562 /* Is it a server filter TID? */
1563 if (t->nsftids && (stid >= t->sftid_base)) {
1564 stid -= t->sftid_base;
1565 stid += t->nstids;
1566 } else {
1567 stid -= t->stid_base;
1568 }
1569
b8ff05a9
DM
1570 spin_lock_bh(&t->stid_lock);
1571 if (family == PF_INET)
1572 __clear_bit(stid, t->stid_bmap);
1573 else
1574 bitmap_release_region(t->stid_bmap, stid, 2);
1575 t->stid_tab[stid].data = NULL;
15f63b74
KS
1576 if (family == PF_INET)
1577 t->stids_in_use--;
1578 else
1579 t->stids_in_use -= 4;
b8ff05a9
DM
1580 spin_unlock_bh(&t->stid_lock);
1581}
1582EXPORT_SYMBOL(cxgb4_free_stid);
1583
1584/*
1585 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1586 */
1587static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1588 unsigned int tid)
1589{
1590 struct cpl_tid_release *req;
1591
1592 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1593 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1594 INIT_TP_WR(req, tid);
1595 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1596}
1597
1598/*
1599 * Queue a TID release request and if necessary schedule a work queue to
1600 * process it.
1601 */
31b9c19b 1602static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1603 unsigned int tid)
b8ff05a9
DM
1604{
1605 void **p = &t->tid_tab[tid];
1606 struct adapter *adap = container_of(t, struct adapter, tids);
1607
1608 spin_lock_bh(&adap->tid_release_lock);
1609 *p = adap->tid_release_head;
1610 /* Low 2 bits encode the Tx channel number */
1611 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1612 if (!adap->tid_release_task_busy) {
1613 adap->tid_release_task_busy = true;
29aaee65 1614 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1615 }
1616 spin_unlock_bh(&adap->tid_release_lock);
1617}
b8ff05a9
DM
1618
1619/*
1620 * Process the list of pending TID release requests.
1621 */
1622static void process_tid_release_list(struct work_struct *work)
1623{
1624 struct sk_buff *skb;
1625 struct adapter *adap;
1626
1627 adap = container_of(work, struct adapter, tid_release_task);
1628
1629 spin_lock_bh(&adap->tid_release_lock);
1630 while (adap->tid_release_head) {
1631 void **p = adap->tid_release_head;
1632 unsigned int chan = (uintptr_t)p & 3;
1633 p = (void *)p - chan;
1634
1635 adap->tid_release_head = *p;
1636 *p = NULL;
1637 spin_unlock_bh(&adap->tid_release_lock);
1638
1639 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1640 GFP_KERNEL)))
1641 schedule_timeout_uninterruptible(1);
1642
1643 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1644 t4_ofld_send(adap, skb);
1645 spin_lock_bh(&adap->tid_release_lock);
1646 }
1647 adap->tid_release_task_busy = false;
1648 spin_unlock_bh(&adap->tid_release_lock);
1649}
1650
1651/*
1652 * Release a TID and inform HW. If we are unable to allocate the release
1653 * message we defer to a work queue.
1654 */
1655void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1656{
1657 void *old;
1658 struct sk_buff *skb;
1659 struct adapter *adap = container_of(t, struct adapter, tids);
1660
1661 old = t->tid_tab[tid];
1662 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1663 if (likely(skb)) {
1664 t->tid_tab[tid] = NULL;
1665 mk_tid_release(skb, chan, tid);
1666 t4_ofld_send(adap, skb);
1667 } else
1668 cxgb4_queue_tid_release(t, chan, tid);
1669 if (old)
1670 atomic_dec(&t->tids_in_use);
1671}
1672EXPORT_SYMBOL(cxgb4_remove_tid);
1673
1674/*
1675 * Allocate and initialize the TID tables. Returns 0 on success.
1676 */
1677static int tid_init(struct tid_info *t)
1678{
1679 size_t size;
f2b7e78d 1680 unsigned int stid_bmap_size;
b8ff05a9 1681 unsigned int natids = t->natids;
b6f8eaec 1682 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1683
dca4faeb 1684 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1685 size = t->ntids * sizeof(*t->tid_tab) +
1686 natids * sizeof(*t->atid_tab) +
b8ff05a9 1687 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1688 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1689 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1690 t->nftids * sizeof(*t->ftid_tab) +
1691 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1692
b8ff05a9
DM
1693 t->tid_tab = t4_alloc_mem(size);
1694 if (!t->tid_tab)
1695 return -ENOMEM;
1696
1697 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1698 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1699 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1700 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1701 spin_lock_init(&t->stid_lock);
1702 spin_lock_init(&t->atid_lock);
1703
1704 t->stids_in_use = 0;
1705 t->afree = NULL;
1706 t->atids_in_use = 0;
1707 atomic_set(&t->tids_in_use, 0);
1708
1709 /* Setup the free list for atid_tab and clear the stid bitmap. */
1710 if (natids) {
1711 while (--natids)
1712 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1713 t->afree = t->atid_tab;
1714 }
dca4faeb 1715 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1716 /* Reserve stid 0 for T4/T5 adapters */
1717 if (!t->stid_base &&
3ccc6cf7 1718 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
b6f8eaec
KS
1719 __set_bit(0, t->stid_bmap);
1720
b8ff05a9
DM
1721 return 0;
1722}
1723
1724/**
1725 * cxgb4_create_server - create an IP server
1726 * @dev: the device
1727 * @stid: the server TID
1728 * @sip: local IP address to bind server to
1729 * @sport: the server's TCP port
1730 * @queue: queue to direct messages from this server to
1731 *
1732 * Create an IP server for the given port and address.
1733 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1734 */
1735int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1736 __be32 sip, __be16 sport, __be16 vlan,
1737 unsigned int queue)
b8ff05a9
DM
1738{
1739 unsigned int chan;
1740 struct sk_buff *skb;
1741 struct adapter *adap;
1742 struct cpl_pass_open_req *req;
80f40c1f 1743 int ret;
b8ff05a9
DM
1744
1745 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1746 if (!skb)
1747 return -ENOMEM;
1748
1749 adap = netdev2adap(dev);
1750 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1751 INIT_TP_WR(req, 0);
1752 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1753 req->local_port = sport;
1754 req->peer_port = htons(0);
1755 req->local_ip = sip;
1756 req->peer_ip = htonl(0);
e46dab4d 1757 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1758 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1759 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1760 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1761 ret = t4_mgmt_tx(adap, skb);
1762 return net_xmit_eval(ret);
b8ff05a9
DM
1763}
1764EXPORT_SYMBOL(cxgb4_create_server);
1765
80f40c1f
VP
1766/* cxgb4_create_server6 - create an IPv6 server
1767 * @dev: the device
1768 * @stid: the server TID
1769 * @sip: local IPv6 address to bind server to
1770 * @sport: the server's TCP port
1771 * @queue: queue to direct messages from this server to
1772 *
1773 * Create an IPv6 server for the given port and address.
1774 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1775 */
1776int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1777 const struct in6_addr *sip, __be16 sport,
1778 unsigned int queue)
1779{
1780 unsigned int chan;
1781 struct sk_buff *skb;
1782 struct adapter *adap;
1783 struct cpl_pass_open_req6 *req;
1784 int ret;
1785
1786 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1787 if (!skb)
1788 return -ENOMEM;
1789
1790 adap = netdev2adap(dev);
1791 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1792 INIT_TP_WR(req, 0);
1793 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1794 req->local_port = sport;
1795 req->peer_port = htons(0);
1796 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1797 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1798 req->peer_ip_hi = cpu_to_be64(0);
1799 req->peer_ip_lo = cpu_to_be64(0);
1800 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1801 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1802 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1803 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1804 ret = t4_mgmt_tx(adap, skb);
1805 return net_xmit_eval(ret);
1806}
1807EXPORT_SYMBOL(cxgb4_create_server6);
1808
1809int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1810 unsigned int queue, bool ipv6)
1811{
1812 struct sk_buff *skb;
1813 struct adapter *adap;
1814 struct cpl_close_listsvr_req *req;
1815 int ret;
1816
1817 adap = netdev2adap(dev);
1818
1819 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1820 if (!skb)
1821 return -ENOMEM;
1822
1823 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1824 INIT_TP_WR(req, 0);
1825 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1826 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1827 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1828 ret = t4_mgmt_tx(adap, skb);
1829 return net_xmit_eval(ret);
1830}
1831EXPORT_SYMBOL(cxgb4_remove_server);
1832
b8ff05a9
DM
1833/**
1834 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1835 * @mtus: the HW MTU table
1836 * @mtu: the target MTU
1837 * @idx: index of selected entry in the MTU table
1838 *
1839 * Returns the index and the value in the HW MTU table that is closest to
1840 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1841 * table, in which case that smallest available value is selected.
1842 */
1843unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1844 unsigned int *idx)
1845{
1846 unsigned int i = 0;
1847
1848 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1849 ++i;
1850 if (idx)
1851 *idx = i;
1852 return mtus[i];
1853}
1854EXPORT_SYMBOL(cxgb4_best_mtu);
1855
92e7ae71
HS
1856/**
1857 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1858 * @mtus: the HW MTU table
1859 * @header_size: Header Size
1860 * @data_size_max: maximum Data Segment Size
1861 * @data_size_align: desired Data Segment Size Alignment (2^N)
1862 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1863 *
1864 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1865 * MTU Table based solely on a Maximum MTU parameter, we break that
1866 * parameter up into a Header Size and Maximum Data Segment Size, and
1867 * provide a desired Data Segment Size Alignment. If we find an MTU in
1868 * the Hardware MTU Table which will result in a Data Segment Size with
1869 * the requested alignment _and_ that MTU isn't "too far" from the
1870 * closest MTU, then we'll return that rather than the closest MTU.
1871 */
1872unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1873 unsigned short header_size,
1874 unsigned short data_size_max,
1875 unsigned short data_size_align,
1876 unsigned int *mtu_idxp)
1877{
1878 unsigned short max_mtu = header_size + data_size_max;
1879 unsigned short data_size_align_mask = data_size_align - 1;
1880 int mtu_idx, aligned_mtu_idx;
1881
1882 /* Scan the MTU Table till we find an MTU which is larger than our
1883 * Maximum MTU or we reach the end of the table. Along the way,
1884 * record the last MTU found, if any, which will result in a Data
1885 * Segment Length matching the requested alignment.
1886 */
1887 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1888 unsigned short data_size = mtus[mtu_idx] - header_size;
1889
1890 /* If this MTU minus the Header Size would result in a
1891 * Data Segment Size of the desired alignment, remember it.
1892 */
1893 if ((data_size & data_size_align_mask) == 0)
1894 aligned_mtu_idx = mtu_idx;
1895
1896 /* If we're not at the end of the Hardware MTU Table and the
1897 * next element is larger than our Maximum MTU, drop out of
1898 * the loop.
1899 */
1900 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1901 break;
1902 }
1903
1904 /* If we fell out of the loop because we ran to the end of the table,
1905 * then we just have to use the last [largest] entry.
1906 */
1907 if (mtu_idx == NMTUS)
1908 mtu_idx--;
1909
1910 /* If we found an MTU which resulted in the requested Data Segment
1911 * Length alignment and that's "not far" from the largest MTU which is
1912 * less than or equal to the maximum MTU, then use that.
1913 */
1914 if (aligned_mtu_idx >= 0 &&
1915 mtu_idx - aligned_mtu_idx <= 1)
1916 mtu_idx = aligned_mtu_idx;
1917
1918 /* If the caller has passed in an MTU Index pointer, pass the
1919 * MTU Index back. Return the MTU value.
1920 */
1921 if (mtu_idxp)
1922 *mtu_idxp = mtu_idx;
1923 return mtus[mtu_idx];
1924}
1925EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1926
b8ff05a9
DM
1927/**
1928 * cxgb4_port_chan - get the HW channel of a port
1929 * @dev: the net device for the port
1930 *
1931 * Return the HW Tx channel of the given port.
1932 */
1933unsigned int cxgb4_port_chan(const struct net_device *dev)
1934{
1935 return netdev2pinfo(dev)->tx_chan;
1936}
1937EXPORT_SYMBOL(cxgb4_port_chan);
1938
881806bc
VP
1939unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1940{
1941 struct adapter *adap = netdev2adap(dev);
2cc301d2 1942 u32 v1, v2, lp_count, hp_count;
881806bc 1943
f061de42
HS
1944 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1945 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 1946 if (is_t4(adap->params.chip)) {
f061de42
HS
1947 lp_count = LP_COUNT_G(v1);
1948 hp_count = HP_COUNT_G(v1);
2cc301d2 1949 } else {
f061de42
HS
1950 lp_count = LP_COUNT_T5_G(v1);
1951 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
1952 }
1953 return lpfifo ? lp_count : hp_count;
881806bc
VP
1954}
1955EXPORT_SYMBOL(cxgb4_dbfifo_count);
1956
b8ff05a9
DM
1957/**
1958 * cxgb4_port_viid - get the VI id of a port
1959 * @dev: the net device for the port
1960 *
1961 * Return the VI id of the given port.
1962 */
1963unsigned int cxgb4_port_viid(const struct net_device *dev)
1964{
1965 return netdev2pinfo(dev)->viid;
1966}
1967EXPORT_SYMBOL(cxgb4_port_viid);
1968
1969/**
1970 * cxgb4_port_idx - get the index of a port
1971 * @dev: the net device for the port
1972 *
1973 * Return the index of the given port.
1974 */
1975unsigned int cxgb4_port_idx(const struct net_device *dev)
1976{
1977 return netdev2pinfo(dev)->port_id;
1978}
1979EXPORT_SYMBOL(cxgb4_port_idx);
1980
b8ff05a9
DM
1981void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1982 struct tp_tcp_stats *v6)
1983{
1984 struct adapter *adap = pci_get_drvdata(pdev);
1985
1986 spin_lock(&adap->stats_lock);
1987 t4_tp_get_tcp_stats(adap, v4, v6);
1988 spin_unlock(&adap->stats_lock);
1989}
1990EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1991
1992void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1993 const unsigned int *pgsz_order)
1994{
1995 struct adapter *adap = netdev2adap(dev);
1996
0d804338
HS
1997 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1998 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1999 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2000 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
2001}
2002EXPORT_SYMBOL(cxgb4_iscsi_init);
2003
3069ee9b
VP
2004int cxgb4_flush_eq_cache(struct net_device *dev)
2005{
2006 struct adapter *adap = netdev2adap(dev);
3069ee9b 2007
5d700ecb 2008 return t4_sge_ctxt_flush(adap, adap->mbox);
3069ee9b
VP
2009}
2010EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2011
2012static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2013{
f061de42 2014 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
2015 __be64 indices;
2016 int ret;
2017
fc5ab020
HS
2018 spin_lock(&adap->win0_lock);
2019 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2020 sizeof(indices), (__be32 *)&indices,
2021 T4_MEMORY_READ);
2022 spin_unlock(&adap->win0_lock);
3069ee9b 2023 if (!ret) {
404d9e3f
VP
2024 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2025 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2026 }
2027 return ret;
2028}
2029
2030int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2031 u16 size)
2032{
2033 struct adapter *adap = netdev2adap(dev);
2034 u16 hw_pidx, hw_cidx;
2035 int ret;
2036
2037 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2038 if (ret)
2039 goto out;
2040
2041 if (pidx != hw_pidx) {
2042 u16 delta;
f612b815 2043 u32 val;
3069ee9b
VP
2044
2045 if (pidx >= hw_pidx)
2046 delta = pidx - hw_pidx;
2047 else
2048 delta = size - hw_pidx + pidx;
f612b815
HS
2049
2050 if (is_t4(adap->params.chip))
2051 val = PIDX_V(delta);
2052 else
2053 val = PIDX_T5_V(delta);
3069ee9b 2054 wmb();
f612b815
HS
2055 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2056 QID_V(qid) | val);
3069ee9b
VP
2057 }
2058out:
2059 return ret;
2060}
2061EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2062
031cf476
HS
2063int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2064{
2065 struct adapter *adap;
2066 u32 offset, memtype, memaddr;
6559a7e8 2067 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2068 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2069 int ret;
2070
2071 adap = netdev2adap(dev);
2072
2073 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2074
2075 /* Figure out where the offset lands in the Memory Type/Address scheme.
2076 * This code assumes that the memory is laid out starting at offset 0
2077 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2078 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2079 * MC0, and some have both MC0 and MC1.
2080 */
6559a7e8
HS
2081 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2082 edc0_size = EDRAM0_SIZE_G(size) << 20;
2083 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2084 edc1_size = EDRAM1_SIZE_G(size) << 20;
2085 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2086 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2087
2088 edc0_end = edc0_size;
2089 edc1_end = edc0_end + edc1_size;
2090 mc0_end = edc1_end + mc0_size;
2091
2092 if (offset < edc0_end) {
2093 memtype = MEM_EDC0;
2094 memaddr = offset;
2095 } else if (offset < edc1_end) {
2096 memtype = MEM_EDC1;
2097 memaddr = offset - edc0_end;
2098 } else {
2099 if (offset < mc0_end) {
2100 memtype = MEM_MC0;
2101 memaddr = offset - edc1_end;
3ccc6cf7 2102 } else if (is_t5(adap->params.chip)) {
6559a7e8
HS
2103 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2104 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2105 mc1_end = mc0_end + mc1_size;
2106 if (offset < mc1_end) {
2107 memtype = MEM_MC1;
2108 memaddr = offset - mc0_end;
2109 } else {
2110 /* offset beyond the end of any memory */
2111 goto err;
2112 }
3ccc6cf7
HS
2113 } else {
2114 /* T4/T6 only has a single memory channel */
2115 goto err;
031cf476
HS
2116 }
2117 }
2118
2119 spin_lock(&adap->win0_lock);
2120 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2121 spin_unlock(&adap->win0_lock);
2122 return ret;
2123
2124err:
2125 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2126 stag, offset);
2127 return -EINVAL;
2128}
2129EXPORT_SYMBOL(cxgb4_read_tpte);
2130
7730b4c7
HS
2131u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2132{
2133 u32 hi, lo;
2134 struct adapter *adap;
2135
2136 adap = netdev2adap(dev);
f612b815
HS
2137 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2138 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2139
2140 return ((u64)hi << 32) | (u64)lo;
2141}
2142EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2143
df64e4d3
HS
2144int cxgb4_bar2_sge_qregs(struct net_device *dev,
2145 unsigned int qid,
2146 enum cxgb4_bar2_qtype qtype,
66cf188e 2147 int user,
df64e4d3
HS
2148 u64 *pbar2_qoffset,
2149 unsigned int *pbar2_qid)
2150{
b2612722 2151 return t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2152 qid,
2153 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2154 ? T4_BAR2_QTYPE_EGRESS
2155 : T4_BAR2_QTYPE_INGRESS),
66cf188e 2156 user,
df64e4d3
HS
2157 pbar2_qoffset,
2158 pbar2_qid);
2159}
2160EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2161
b8ff05a9
DM
2162static struct pci_driver cxgb4_driver;
2163
2164static void check_neigh_update(struct neighbour *neigh)
2165{
2166 const struct device *parent;
2167 const struct net_device *netdev = neigh->dev;
2168
2169 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2170 netdev = vlan_dev_real_dev(netdev);
2171 parent = netdev->dev.parent;
2172 if (parent && parent->driver == &cxgb4_driver.driver)
2173 t4_l2t_update(dev_get_drvdata(parent), neigh);
2174}
2175
2176static int netevent_cb(struct notifier_block *nb, unsigned long event,
2177 void *data)
2178{
2179 switch (event) {
2180 case NETEVENT_NEIGH_UPDATE:
2181 check_neigh_update(data);
2182 break;
b8ff05a9
DM
2183 case NETEVENT_REDIRECT:
2184 default:
2185 break;
2186 }
2187 return 0;
2188}
2189
2190static bool netevent_registered;
2191static struct notifier_block cxgb4_netevent_nb = {
2192 .notifier_call = netevent_cb
2193};
2194
3069ee9b
VP
2195static void drain_db_fifo(struct adapter *adap, int usecs)
2196{
2cc301d2 2197 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2198
2199 do {
f061de42
HS
2200 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2201 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2202 if (is_t4(adap->params.chip)) {
f061de42
HS
2203 lp_count = LP_COUNT_G(v1);
2204 hp_count = HP_COUNT_G(v1);
2cc301d2 2205 } else {
f061de42
HS
2206 lp_count = LP_COUNT_T5_G(v1);
2207 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2208 }
2209
2210 if (lp_count == 0 && hp_count == 0)
2211 break;
3069ee9b
VP
2212 set_current_state(TASK_UNINTERRUPTIBLE);
2213 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2214 } while (1);
2215}
2216
2217static void disable_txq_db(struct sge_txq *q)
2218{
05eb2389
SW
2219 unsigned long flags;
2220
2221 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2222 q->db_disabled = 1;
05eb2389 2223 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2224}
2225
05eb2389 2226static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2227{
2228 spin_lock_irq(&q->db_lock);
05eb2389
SW
2229 if (q->db_pidx_inc) {
2230 /* Make sure that all writes to the TX descriptors
2231 * are committed before we tell HW about them.
2232 */
2233 wmb();
f612b815
HS
2234 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2235 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2236 q->db_pidx_inc = 0;
2237 }
3069ee9b
VP
2238 q->db_disabled = 0;
2239 spin_unlock_irq(&q->db_lock);
2240}
2241
2242static void disable_dbs(struct adapter *adap)
2243{
2244 int i;
2245
2246 for_each_ethrxq(&adap->sge, i)
2247 disable_txq_db(&adap->sge.ethtxq[i].q);
2248 for_each_ofldrxq(&adap->sge, i)
2249 disable_txq_db(&adap->sge.ofldtxq[i].q);
2250 for_each_port(adap, i)
2251 disable_txq_db(&adap->sge.ctrlq[i].q);
2252}
2253
2254static void enable_dbs(struct adapter *adap)
2255{
2256 int i;
2257
2258 for_each_ethrxq(&adap->sge, i)
05eb2389 2259 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 2260 for_each_ofldrxq(&adap->sge, i)
05eb2389 2261 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2262 for_each_port(adap, i)
05eb2389
SW
2263 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2264}
2265
2266static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2267{
2268 if (adap->uld_handle[CXGB4_ULD_RDMA])
2269 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2270 cmd);
2271}
2272
2273static void process_db_full(struct work_struct *work)
2274{
2275 struct adapter *adap;
2276
2277 adap = container_of(work, struct adapter, db_full_task);
2278
2279 drain_db_fifo(adap, dbfifo_drain_delay);
2280 enable_dbs(adap);
2281 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7
HS
2282 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2283 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2284 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2285 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2286 else
2287 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2288 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
3069ee9b
VP
2289}
2290
2291static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2292{
2293 u16 hw_pidx, hw_cidx;
2294 int ret;
2295
05eb2389 2296 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2297 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2298 if (ret)
2299 goto out;
2300 if (q->db_pidx != hw_pidx) {
2301 u16 delta;
f612b815 2302 u32 val;
3069ee9b
VP
2303
2304 if (q->db_pidx >= hw_pidx)
2305 delta = q->db_pidx - hw_pidx;
2306 else
2307 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2308
2309 if (is_t4(adap->params.chip))
2310 val = PIDX_V(delta);
2311 else
2312 val = PIDX_T5_V(delta);
3069ee9b 2313 wmb();
f612b815
HS
2314 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2315 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2316 }
2317out:
2318 q->db_disabled = 0;
05eb2389
SW
2319 q->db_pidx_inc = 0;
2320 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2321 if (ret)
2322 CH_WARN(adap, "DB drop recovery failed.\n");
2323}
2324static void recover_all_queues(struct adapter *adap)
2325{
2326 int i;
2327
2328 for_each_ethrxq(&adap->sge, i)
2329 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2330 for_each_ofldrxq(&adap->sge, i)
2331 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2332 for_each_port(adap, i)
2333 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2334}
2335
881806bc
VP
2336static void process_db_drop(struct work_struct *work)
2337{
2338 struct adapter *adap;
881806bc 2339
3069ee9b 2340 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2341
d14807dd 2342 if (is_t4(adap->params.chip)) {
05eb2389 2343 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2344 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2345 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2346 recover_all_queues(adap);
05eb2389 2347 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2348 enable_dbs(adap);
05eb2389 2349 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7 2350 } else if (is_t5(adap->params.chip)) {
2cc301d2
SR
2351 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2352 u16 qid = (dropped_db >> 15) & 0x1ffff;
2353 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2354 u64 bar2_qoffset;
2355 unsigned int bar2_qid;
2356 int ret;
2cc301d2 2357
b2612722 2358 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
e0456717 2359 0, &bar2_qoffset, &bar2_qid);
df64e4d3
HS
2360 if (ret)
2361 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2362 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2363 else
f612b815 2364 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2365 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2366
2367 /* Re-enable BAR2 WC */
2368 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2369 }
2370
3ccc6cf7
HS
2371 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2372 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2373}
2374
2375void t4_db_full(struct adapter *adap)
2376{
d14807dd 2377 if (is_t4(adap->params.chip)) {
05eb2389
SW
2378 disable_dbs(adap);
2379 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2380 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2381 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2382 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2383 }
881806bc
VP
2384}
2385
2386void t4_db_dropped(struct adapter *adap)
2387{
05eb2389
SW
2388 if (is_t4(adap->params.chip)) {
2389 disable_dbs(adap);
2390 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2391 }
29aaee65 2392 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2393}
2394
b8ff05a9
DM
2395static void uld_attach(struct adapter *adap, unsigned int uld)
2396{
2397 void *handle;
2398 struct cxgb4_lld_info lli;
dca4faeb 2399 unsigned short i;
b8ff05a9
DM
2400
2401 lli.pdev = adap->pdev;
b2612722 2402 lli.pf = adap->pf;
b8ff05a9
DM
2403 lli.l2t = adap->l2t;
2404 lli.tids = &adap->tids;
2405 lli.ports = adap->port;
2406 lli.vr = &adap->vres;
2407 lli.mtus = adap->params.mtus;
2408 if (uld == CXGB4_ULD_RDMA) {
2409 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2410 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2411 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2412 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
2413 } else if (uld == CXGB4_ULD_ISCSI) {
2414 lli.rxq_ids = adap->sge.ofld_rxq;
2415 lli.nrxq = adap->sge.ofldqsets;
2416 }
2417 lli.ntxq = adap->sge.ofldqsets;
2418 lli.nchan = adap->params.nports;
2419 lli.nports = adap->params.nports;
2420 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2421 lli.adapter_type = adap->params.chip;
837e4a42 2422 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 2423 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2424 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2425 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2426 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2427 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2428 for (i = 0; i < NCHAN; i++)
2429 lli.tx_modq[i] = i;
f612b815
HS
2430 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2431 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2432 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2433 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2434 lli.sge_ingpadboundary = adap->sge.fl_align;
2435 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2436 lli.sge_pktshift = adap->sge.pktshift;
2437 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2438 lli.max_ordird_qp = adap->params.max_ordird_qp;
2439 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2440 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2441 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2442
2443 handle = ulds[uld].add(&lli);
2444 if (IS_ERR(handle)) {
2445 dev_warn(adap->pdev_dev,
2446 "could not attach to the %s driver, error %ld\n",
2447 uld_str[uld], PTR_ERR(handle));
2448 return;
2449 }
2450
2451 adap->uld_handle[uld] = handle;
2452
2453 if (!netevent_registered) {
2454 register_netevent_notifier(&cxgb4_netevent_nb);
2455 netevent_registered = true;
2456 }
e29f5dbc
DM
2457
2458 if (adap->flags & FULL_INIT_DONE)
2459 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2460}
2461
2462static void attach_ulds(struct adapter *adap)
2463{
2464 unsigned int i;
2465
01bcca68
VP
2466 spin_lock(&adap_rcu_lock);
2467 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2468 spin_unlock(&adap_rcu_lock);
2469
b8ff05a9
DM
2470 mutex_lock(&uld_mutex);
2471 list_add_tail(&adap->list_node, &adapter_list);
2472 for (i = 0; i < CXGB4_ULD_MAX; i++)
2473 if (ulds[i].add)
2474 uld_attach(adap, i);
2475 mutex_unlock(&uld_mutex);
2476}
2477
2478static void detach_ulds(struct adapter *adap)
2479{
2480 unsigned int i;
2481
2482 mutex_lock(&uld_mutex);
2483 list_del(&adap->list_node);
2484 for (i = 0; i < CXGB4_ULD_MAX; i++)
2485 if (adap->uld_handle[i]) {
2486 ulds[i].state_change(adap->uld_handle[i],
2487 CXGB4_STATE_DETACH);
2488 adap->uld_handle[i] = NULL;
2489 }
2490 if (netevent_registered && list_empty(&adapter_list)) {
2491 unregister_netevent_notifier(&cxgb4_netevent_nb);
2492 netevent_registered = false;
2493 }
2494 mutex_unlock(&uld_mutex);
01bcca68
VP
2495
2496 spin_lock(&adap_rcu_lock);
2497 list_del_rcu(&adap->rcu_node);
2498 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2499}
2500
2501static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2502{
2503 unsigned int i;
2504
2505 mutex_lock(&uld_mutex);
2506 for (i = 0; i < CXGB4_ULD_MAX; i++)
2507 if (adap->uld_handle[i])
2508 ulds[i].state_change(adap->uld_handle[i], new_state);
2509 mutex_unlock(&uld_mutex);
2510}
2511
2512/**
2513 * cxgb4_register_uld - register an upper-layer driver
2514 * @type: the ULD type
2515 * @p: the ULD methods
2516 *
2517 * Registers an upper-layer driver with this driver and notifies the ULD
2518 * about any presently available devices that support its type. Returns
2519 * %-EBUSY if a ULD of the same type is already registered.
2520 */
2521int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2522{
2523 int ret = 0;
2524 struct adapter *adap;
2525
2526 if (type >= CXGB4_ULD_MAX)
2527 return -EINVAL;
2528 mutex_lock(&uld_mutex);
2529 if (ulds[type].add) {
2530 ret = -EBUSY;
2531 goto out;
2532 }
2533 ulds[type] = *p;
2534 list_for_each_entry(adap, &adapter_list, list_node)
2535 uld_attach(adap, type);
2536out: mutex_unlock(&uld_mutex);
2537 return ret;
2538}
2539EXPORT_SYMBOL(cxgb4_register_uld);
2540
2541/**
2542 * cxgb4_unregister_uld - unregister an upper-layer driver
2543 * @type: the ULD type
2544 *
2545 * Unregisters an existing upper-layer driver.
2546 */
2547int cxgb4_unregister_uld(enum cxgb4_uld type)
2548{
2549 struct adapter *adap;
2550
2551 if (type >= CXGB4_ULD_MAX)
2552 return -EINVAL;
2553 mutex_lock(&uld_mutex);
2554 list_for_each_entry(adap, &adapter_list, list_node)
2555 adap->uld_handle[type] = NULL;
2556 ulds[type].add = NULL;
2557 mutex_unlock(&uld_mutex);
2558 return 0;
2559}
2560EXPORT_SYMBOL(cxgb4_unregister_uld);
2561
1bb60376 2562#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2563static int cxgb4_inet6addr_handler(struct notifier_block *this,
2564 unsigned long event, void *data)
01bcca68 2565{
b5a02f50
AB
2566 struct inet6_ifaddr *ifa = data;
2567 struct net_device *event_dev = ifa->idev->dev;
2568 const struct device *parent = NULL;
2569#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2570 struct adapter *adap;
b5a02f50
AB
2571#endif
2572 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2573 event_dev = vlan_dev_real_dev(event_dev);
2574#if IS_ENABLED(CONFIG_BONDING)
2575 if (event_dev->flags & IFF_MASTER) {
2576 list_for_each_entry(adap, &adapter_list, list_node) {
2577 switch (event) {
2578 case NETDEV_UP:
2579 cxgb4_clip_get(adap->port[0],
2580 (const u32 *)ifa, 1);
2581 break;
2582 case NETDEV_DOWN:
2583 cxgb4_clip_release(adap->port[0],
2584 (const u32 *)ifa, 1);
2585 break;
2586 default:
2587 break;
2588 }
2589 }
2590 return NOTIFY_OK;
2591 }
2592#endif
01bcca68 2593
b5a02f50
AB
2594 if (event_dev)
2595 parent = event_dev->dev.parent;
01bcca68 2596
b5a02f50 2597 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2598 switch (event) {
2599 case NETDEV_UP:
b5a02f50 2600 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2601 break;
2602 case NETDEV_DOWN:
b5a02f50 2603 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2604 break;
2605 default:
2606 break;
2607 }
2608 }
b5a02f50 2609 return NOTIFY_OK;
01bcca68
VP
2610}
2611
b5a02f50 2612static bool inet6addr_registered;
01bcca68
VP
2613static struct notifier_block cxgb4_inet6addr_notifier = {
2614 .notifier_call = cxgb4_inet6addr_handler
2615};
2616
01bcca68
VP
2617static void update_clip(const struct adapter *adap)
2618{
2619 int i;
2620 struct net_device *dev;
2621 int ret;
2622
2623 rcu_read_lock();
2624
2625 for (i = 0; i < MAX_NPORTS; i++) {
2626 dev = adap->port[i];
2627 ret = 0;
2628
2629 if (dev)
b5a02f50 2630 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2631
2632 if (ret < 0)
2633 break;
2634 }
2635 rcu_read_unlock();
2636}
1bb60376 2637#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2638
b8ff05a9
DM
2639/**
2640 * cxgb_up - enable the adapter
2641 * @adap: adapter being enabled
2642 *
2643 * Called when the first port is enabled, this function performs the
2644 * actions necessary to make an adapter operational, such as completing
2645 * the initialization of HW modules, and enabling interrupts.
2646 *
2647 * Must be called with the rtnl lock held.
2648 */
2649static int cxgb_up(struct adapter *adap)
2650{
aaefae9b 2651 int err;
b8ff05a9 2652
aaefae9b
DM
2653 err = setup_sge_queues(adap);
2654 if (err)
2655 goto out;
2656 err = setup_rss(adap);
2657 if (err)
2658 goto freeq;
b8ff05a9
DM
2659
2660 if (adap->flags & USING_MSIX) {
aaefae9b 2661 name_msix_vecs(adap);
b8ff05a9
DM
2662 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2663 adap->msix_info[0].desc, adap);
2664 if (err)
2665 goto irq_err;
2666
2667 err = request_msix_queue_irqs(adap);
2668 if (err) {
2669 free_irq(adap->msix_info[0].vec, adap);
2670 goto irq_err;
2671 }
2672 } else {
2673 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2674 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2675 adap->port[0]->name, adap);
b8ff05a9
DM
2676 if (err)
2677 goto irq_err;
2678 }
2679 enable_rx(adap);
2680 t4_sge_start(adap);
2681 t4_intr_enable(adap);
aaefae9b 2682 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2683 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2684#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2685 update_clip(adap);
1bb60376 2686#endif
b8ff05a9
DM
2687 out:
2688 return err;
2689 irq_err:
2690 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2691 freeq:
2692 t4_free_sge_resources(adap);
b8ff05a9
DM
2693 goto out;
2694}
2695
2696static void cxgb_down(struct adapter *adapter)
2697{
b8ff05a9 2698 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2699 cancel_work_sync(&adapter->db_full_task);
2700 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2701 adapter->tid_release_task_busy = false;
204dc3c0 2702 adapter->tid_release_head = NULL;
b8ff05a9 2703
aaefae9b
DM
2704 t4_sge_stop(adapter);
2705 t4_free_sge_resources(adapter);
2706 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2707}
2708
2709/*
2710 * net_device operations
2711 */
2712static int cxgb_open(struct net_device *dev)
2713{
2714 int err;
2715 struct port_info *pi = netdev_priv(dev);
2716 struct adapter *adapter = pi->adapter;
2717
6a3c869a
DM
2718 netif_carrier_off(dev);
2719
aaefae9b
DM
2720 if (!(adapter->flags & FULL_INIT_DONE)) {
2721 err = cxgb_up(adapter);
2722 if (err < 0)
2723 return err;
2724 }
b8ff05a9 2725
f68707b8
DM
2726 err = link_start(dev);
2727 if (!err)
2728 netif_tx_start_all_queues(dev);
2729 return err;
b8ff05a9
DM
2730}
2731
2732static int cxgb_close(struct net_device *dev)
2733{
b8ff05a9
DM
2734 struct port_info *pi = netdev_priv(dev);
2735 struct adapter *adapter = pi->adapter;
2736
2737 netif_tx_stop_all_queues(dev);
2738 netif_carrier_off(dev);
b2612722 2739 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
b8ff05a9
DM
2740}
2741
f2b7e78d
VP
2742/* Return an error number if the indicated filter isn't writable ...
2743 */
2744static int writable_filter(struct filter_entry *f)
2745{
2746 if (f->locked)
2747 return -EPERM;
2748 if (f->pending)
2749 return -EBUSY;
2750
2751 return 0;
2752}
2753
2754/* Delete the filter at the specified index (if valid). The checks for all
2755 * the common problems with doing this like the filter being locked, currently
2756 * pending in another operation, etc.
2757 */
2758static int delete_filter(struct adapter *adapter, unsigned int fidx)
2759{
2760 struct filter_entry *f;
2761 int ret;
2762
dca4faeb 2763 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2764 return -EINVAL;
2765
2766 f = &adapter->tids.ftid_tab[fidx];
2767 ret = writable_filter(f);
2768 if (ret)
2769 return ret;
2770 if (f->valid)
2771 return del_filter_wr(adapter, fidx);
2772
2773 return 0;
2774}
2775
dca4faeb 2776int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2777 __be32 sip, __be16 sport, __be16 vlan,
2778 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2779{
2780 int ret;
2781 struct filter_entry *f;
2782 struct adapter *adap;
2783 int i;
2784 u8 *val;
2785
2786 adap = netdev2adap(dev);
2787
1cab775c 2788 /* Adjust stid to correct filter index */
470c60c4 2789 stid -= adap->tids.sftid_base;
1cab775c
VP
2790 stid += adap->tids.nftids;
2791
dca4faeb
VP
2792 /* Check to make sure the filter requested is writable ...
2793 */
2794 f = &adap->tids.ftid_tab[stid];
2795 ret = writable_filter(f);
2796 if (ret)
2797 return ret;
2798
2799 /* Clear out any old resources being used by the filter before
2800 * we start constructing the new filter.
2801 */
2802 if (f->valid)
2803 clear_filter(adap, f);
2804
2805 /* Clear out filter specifications */
2806 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2807 f->fs.val.lport = cpu_to_be16(sport);
2808 f->fs.mask.lport = ~0;
2809 val = (u8 *)&sip;
793dad94 2810 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2811 for (i = 0; i < 4; i++) {
2812 f->fs.val.lip[i] = val[i];
2813 f->fs.mask.lip[i] = ~0;
2814 }
0d804338 2815 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2816 f->fs.val.iport = port;
2817 f->fs.mask.iport = mask;
2818 }
2819 }
dca4faeb 2820
0d804338 2821 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2822 f->fs.val.proto = IPPROTO_TCP;
2823 f->fs.mask.proto = ~0;
2824 }
2825
dca4faeb
VP
2826 f->fs.dirsteer = 1;
2827 f->fs.iq = queue;
2828 /* Mark filter as locked */
2829 f->locked = 1;
2830 f->fs.rpttid = 1;
2831
2832 ret = set_filter_wr(adap, stid);
2833 if (ret) {
2834 clear_filter(adap, f);
2835 return ret;
2836 }
2837
2838 return 0;
2839}
2840EXPORT_SYMBOL(cxgb4_create_server_filter);
2841
2842int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2843 unsigned int queue, bool ipv6)
2844{
2845 int ret;
2846 struct filter_entry *f;
2847 struct adapter *adap;
2848
2849 adap = netdev2adap(dev);
1cab775c
VP
2850
2851 /* Adjust stid to correct filter index */
470c60c4 2852 stid -= adap->tids.sftid_base;
1cab775c
VP
2853 stid += adap->tids.nftids;
2854
dca4faeb
VP
2855 f = &adap->tids.ftid_tab[stid];
2856 /* Unlock the filter */
2857 f->locked = 0;
2858
2859 ret = delete_filter(adap, stid);
2860 if (ret)
2861 return ret;
2862
2863 return 0;
2864}
2865EXPORT_SYMBOL(cxgb4_remove_server_filter);
2866
f5152c90
DM
2867static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2868 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2869{
2870 struct port_stats stats;
2871 struct port_info *p = netdev_priv(dev);
2872 struct adapter *adapter = p->adapter;
b8ff05a9 2873
9fe6cb58
GS
2874 /* Block retrieving statistics during EEH error
2875 * recovery. Otherwise, the recovery might fail
2876 * and the PCI device will be removed permanently
2877 */
b8ff05a9 2878 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2879 if (!netif_device_present(dev)) {
2880 spin_unlock(&adapter->stats_lock);
2881 return ns;
2882 }
a4cfd929
HS
2883 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2884 &p->stats_base);
b8ff05a9
DM
2885 spin_unlock(&adapter->stats_lock);
2886
2887 ns->tx_bytes = stats.tx_octets;
2888 ns->tx_packets = stats.tx_frames;
2889 ns->rx_bytes = stats.rx_octets;
2890 ns->rx_packets = stats.rx_frames;
2891 ns->multicast = stats.rx_mcast_frames;
2892
2893 /* detailed rx_errors */
2894 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2895 stats.rx_runt;
2896 ns->rx_over_errors = 0;
2897 ns->rx_crc_errors = stats.rx_fcs_err;
2898 ns->rx_frame_errors = stats.rx_symbol_err;
2899 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2900 stats.rx_ovflow2 + stats.rx_ovflow3 +
2901 stats.rx_trunc0 + stats.rx_trunc1 +
2902 stats.rx_trunc2 + stats.rx_trunc3;
2903 ns->rx_missed_errors = 0;
2904
2905 /* detailed tx_errors */
2906 ns->tx_aborted_errors = 0;
2907 ns->tx_carrier_errors = 0;
2908 ns->tx_fifo_errors = 0;
2909 ns->tx_heartbeat_errors = 0;
2910 ns->tx_window_errors = 0;
2911
2912 ns->tx_errors = stats.tx_error_frames;
2913 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2914 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2915 return ns;
2916}
2917
2918static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2919{
060e0c75 2920 unsigned int mbox;
b8ff05a9
DM
2921 int ret = 0, prtad, devad;
2922 struct port_info *pi = netdev_priv(dev);
2923 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2924
2925 switch (cmd) {
2926 case SIOCGMIIPHY:
2927 if (pi->mdio_addr < 0)
2928 return -EOPNOTSUPP;
2929 data->phy_id = pi->mdio_addr;
2930 break;
2931 case SIOCGMIIREG:
2932 case SIOCSMIIREG:
2933 if (mdio_phy_id_is_c45(data->phy_id)) {
2934 prtad = mdio_phy_id_prtad(data->phy_id);
2935 devad = mdio_phy_id_devad(data->phy_id);
2936 } else if (data->phy_id < 32) {
2937 prtad = data->phy_id;
2938 devad = 0;
2939 data->reg_num &= 0x1f;
2940 } else
2941 return -EINVAL;
2942
b2612722 2943 mbox = pi->adapter->pf;
b8ff05a9 2944 if (cmd == SIOCGMIIREG)
060e0c75 2945 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2946 data->reg_num, &data->val_out);
2947 else
060e0c75 2948 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2949 data->reg_num, data->val_in);
2950 break;
2951 default:
2952 return -EOPNOTSUPP;
2953 }
2954 return ret;
2955}
2956
2957static void cxgb_set_rxmode(struct net_device *dev)
2958{
2959 /* unfortunately we can't return errors to the stack */
2960 set_rxmode(dev, -1, false);
2961}
2962
2963static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2964{
2965 int ret;
2966 struct port_info *pi = netdev_priv(dev);
2967
2968 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2969 return -EINVAL;
b2612722 2970 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
060e0c75 2971 -1, -1, -1, true);
b8ff05a9
DM
2972 if (!ret)
2973 dev->mtu = new_mtu;
2974 return ret;
2975}
2976
2977static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2978{
2979 int ret;
2980 struct sockaddr *addr = p;
2981 struct port_info *pi = netdev_priv(dev);
2982
2983 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 2984 return -EADDRNOTAVAIL;
b8ff05a9 2985
b2612722 2986 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
060e0c75 2987 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
2988 if (ret < 0)
2989 return ret;
2990
2991 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2992 pi->xact_addr_filt = ret;
2993 return 0;
2994}
2995
b8ff05a9
DM
2996#ifdef CONFIG_NET_POLL_CONTROLLER
2997static void cxgb_netpoll(struct net_device *dev)
2998{
2999 struct port_info *pi = netdev_priv(dev);
3000 struct adapter *adap = pi->adapter;
3001
3002 if (adap->flags & USING_MSIX) {
3003 int i;
3004 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3005
3006 for (i = pi->nqsets; i; i--, rx++)
3007 t4_sge_intr_msix(0, &rx->rspq);
3008 } else
3009 t4_intr_handler(adap)(0, adap);
3010}
3011#endif
3012
3013static const struct net_device_ops cxgb4_netdev_ops = {
3014 .ndo_open = cxgb_open,
3015 .ndo_stop = cxgb_close,
3016 .ndo_start_xmit = t4_eth_xmit,
688848b1 3017 .ndo_select_queue = cxgb_select_queue,
9be793bf 3018 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3019 .ndo_set_rx_mode = cxgb_set_rxmode,
3020 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3021 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3022 .ndo_validate_addr = eth_validate_addr,
3023 .ndo_do_ioctl = cxgb_ioctl,
3024 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3025#ifdef CONFIG_NET_POLL_CONTROLLER
3026 .ndo_poll_controller = cxgb_netpoll,
3027#endif
84a200b3
VP
3028#ifdef CONFIG_CHELSIO_T4_FCOE
3029 .ndo_fcoe_enable = cxgb_fcoe_enable,
3030 .ndo_fcoe_disable = cxgb_fcoe_disable,
3031#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3032#ifdef CONFIG_NET_RX_BUSY_POLL
3033 .ndo_busy_poll = cxgb_busy_poll,
3034#endif
3035
b8ff05a9
DM
3036};
3037
3038void t4_fatal_err(struct adapter *adap)
3039{
f612b815 3040 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3041 t4_intr_disable(adap);
3042 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3043}
3044
3045static void setup_memwin(struct adapter *adap)
3046{
b562fc37 3047 u32 nic_win_base = t4_get_util_window(adap);
b8ff05a9 3048
b562fc37 3049 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
636f9d37
VP
3050}
3051
3052static void setup_memwin_rdma(struct adapter *adap)
3053{
1ae970e0 3054 if (adap->vres.ocq.size) {
0abfd152
HS
3055 u32 start;
3056 unsigned int sz_kb;
1ae970e0 3057
0abfd152
HS
3058 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3059 start &= PCI_BASE_ADDRESS_MEM_MASK;
3060 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3061 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3062 t4_write_reg(adap,
f061de42
HS
3063 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3064 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3065 t4_write_reg(adap,
f061de42 3066 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3067 adap->vres.ocq.start);
3068 t4_read_reg(adap,
f061de42 3069 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3070 }
b8ff05a9
DM
3071}
3072
02b5fb8e
DM
3073static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3074{
3075 u32 v;
3076 int ret;
3077
3078 /* get device capabilities */
3079 memset(c, 0, sizeof(*c));
e2ac9628
HS
3080 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3081 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3082 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
b2612722 3083 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
02b5fb8e
DM
3084 if (ret < 0)
3085 return ret;
3086
3087 /* select capabilities we'll be using */
3088 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3089 if (!vf_acls)
3090 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3091 else
3092 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3093 } else if (vf_acls) {
3094 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3095 return ret;
3096 }
e2ac9628
HS
3097 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3098 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
b2612722 3099 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
02b5fb8e
DM
3100 if (ret < 0)
3101 return ret;
3102
b2612722 3103 ret = t4_config_glbl_rss(adap, adap->pf,
02b5fb8e 3104 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3105 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3106 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3107 if (ret < 0)
3108 return ret;
3109
b2612722 3110 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4b8e27a8
HS
3111 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3112 FW_CMD_CAP_PF);
02b5fb8e
DM
3113 if (ret < 0)
3114 return ret;
3115
3116 t4_sge_init(adap);
3117
02b5fb8e 3118 /* tweak some settings */
837e4a42 3119 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3120 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3121 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3122 v = t4_read_reg(adap, TP_PIO_DATA_A);
3123 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3124
dca4faeb
VP
3125 /* first 4 Tx modulation queues point to consecutive Tx channels */
3126 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3127 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3128 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3129
3130 /* associate each Tx modulation queue with consecutive Tx channels */
3131 v = 0x84218421;
837e4a42 3132 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3133 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3134 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3135 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3136 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3137 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3138
3139#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3140 if (is_offload(adap)) {
0d804338
HS
3141 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3142 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3143 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3144 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3145 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3146 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3147 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3148 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3149 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3150 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3151 }
3152
060e0c75 3153 /* get basic stuff going */
b2612722 3154 return t4_early_init(adap, adap->pf);
02b5fb8e
DM
3155}
3156
b8ff05a9
DM
3157/*
3158 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3159 */
3160#define MAX_ATIDS 8192U
3161
636f9d37
VP
3162/*
3163 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3164 *
3165 * If the firmware we're dealing with has Configuration File support, then
3166 * we use that to perform all configuration
3167 */
3168
3169/*
3170 * Tweak configuration based on module parameters, etc. Most of these have
3171 * defaults assigned to them by Firmware Configuration Files (if we're using
3172 * them) but need to be explicitly set if we're using hard-coded
3173 * initialization. But even in the case of using Firmware Configuration
3174 * Files, we'd like to expose the ability to change these via module
3175 * parameters so these are essentially common tweaks/settings for
3176 * Configuration Files and hard-coded initialization ...
3177 */
3178static int adap_init0_tweaks(struct adapter *adapter)
3179{
3180 /*
3181 * Fix up various Host-Dependent Parameters like Page Size, Cache
3182 * Line Size, etc. The firmware default is for a 4KB Page Size and
3183 * 64B Cache Line Size ...
3184 */
3185 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3186
3187 /*
3188 * Process module parameters which affect early initialization.
3189 */
3190 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3191 dev_err(&adapter->pdev->dev,
3192 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3193 rx_dma_offset);
3194 rx_dma_offset = 2;
3195 }
f612b815
HS
3196 t4_set_reg_field(adapter, SGE_CONTROL_A,
3197 PKTSHIFT_V(PKTSHIFT_M),
3198 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3199
3200 /*
3201 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3202 * adds the pseudo header itself.
3203 */
837e4a42
HS
3204 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3205 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3206
3207 return 0;
3208}
3209
01b69614
HS
3210/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3211 * unto themselves and they contain their own firmware to perform their
3212 * tasks ...
3213 */
3214static int phy_aq1202_version(const u8 *phy_fw_data,
3215 size_t phy_fw_size)
3216{
3217 int offset;
3218
3219 /* At offset 0x8 you're looking for the primary image's
3220 * starting offset which is 3 Bytes wide
3221 *
3222 * At offset 0xa of the primary image, you look for the offset
3223 * of the DRAM segment which is 3 Bytes wide.
3224 *
3225 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3226 * wide
3227 */
3228 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3229 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3230 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3231
3232 offset = le24(phy_fw_data + 0x8) << 12;
3233 offset = le24(phy_fw_data + offset + 0xa);
3234 return be16(phy_fw_data + offset + 0x27e);
3235
3236 #undef be16
3237 #undef le16
3238 #undef le24
3239}
3240
3241static struct info_10gbt_phy_fw {
3242 unsigned int phy_fw_id; /* PCI Device ID */
3243 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3244 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3245 int phy_flash; /* Has FLASH for PHY Firmware */
3246} phy_info_array[] = {
3247 {
3248 PHY_AQ1202_DEVICEID,
3249 PHY_AQ1202_FIRMWARE,
3250 phy_aq1202_version,
3251 1,
3252 },
3253 {
3254 PHY_BCM84834_DEVICEID,
3255 PHY_BCM84834_FIRMWARE,
3256 NULL,
3257 0,
3258 },
3259 { 0, NULL, NULL },
3260};
3261
3262static struct info_10gbt_phy_fw *find_phy_info(int devid)
3263{
3264 int i;
3265
3266 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3267 if (phy_info_array[i].phy_fw_id == devid)
3268 return &phy_info_array[i];
3269 }
3270 return NULL;
3271}
3272
3273/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3274 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3275 * we return a negative error number. If we transfer new firmware we return 1
3276 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3277 */
3278static int adap_init0_phy(struct adapter *adap)
3279{
3280 const struct firmware *phyf;
3281 int ret;
3282 struct info_10gbt_phy_fw *phy_info;
3283
3284 /* Use the device ID to determine which PHY file to flash.
3285 */
3286 phy_info = find_phy_info(adap->pdev->device);
3287 if (!phy_info) {
3288 dev_warn(adap->pdev_dev,
3289 "No PHY Firmware file found for this PHY\n");
3290 return -EOPNOTSUPP;
3291 }
3292
3293 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3294 * use that. The adapter firmware provides us with a memory buffer
3295 * where we can load a PHY firmware file from the host if we want to
3296 * override the PHY firmware File in flash.
3297 */
3298 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3299 adap->pdev_dev);
3300 if (ret < 0) {
3301 /* For adapters without FLASH attached to PHY for their
3302 * firmware, it's obviously a fatal error if we can't get the
3303 * firmware to the adapter. For adapters with PHY firmware
3304 * FLASH storage, it's worth a warning if we can't find the
3305 * PHY Firmware but we'll neuter the error ...
3306 */
3307 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3308 "/lib/firmware/%s, error %d\n",
3309 phy_info->phy_fw_file, -ret);
3310 if (phy_info->phy_flash) {
3311 int cur_phy_fw_ver = 0;
3312
3313 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3314 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3315 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3316 ret = 0;
3317 }
3318
3319 return ret;
3320 }
3321
3322 /* Load PHY Firmware onto adapter.
3323 */
3324 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3325 phy_info->phy_fw_version,
3326 (u8 *)phyf->data, phyf->size);
3327 if (ret < 0)
3328 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3329 -ret);
3330 else if (ret > 0) {
3331 int new_phy_fw_ver = 0;
3332
3333 if (phy_info->phy_fw_version)
3334 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3335 phyf->size);
3336 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3337 "Firmware /lib/firmware/%s, version %#x\n",
3338 phy_info->phy_fw_file, new_phy_fw_ver);
3339 }
3340
3341 release_firmware(phyf);
3342
3343 return ret;
3344}
3345
636f9d37
VP
3346/*
3347 * Attempt to initialize the adapter via a Firmware Configuration File.
3348 */
3349static int adap_init0_config(struct adapter *adapter, int reset)
3350{
3351 struct fw_caps_config_cmd caps_cmd;
3352 const struct firmware *cf;
3353 unsigned long mtype = 0, maddr = 0;
3354 u32 finiver, finicsum, cfcsum;
16e47624
HS
3355 int ret;
3356 int config_issued = 0;
0a57a536 3357 char *fw_config_file, fw_config_file_path[256];
16e47624 3358 char *config_name = NULL;
636f9d37
VP
3359
3360 /*
3361 * Reset device if necessary.
3362 */
3363 if (reset) {
3364 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3365 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3366 if (ret < 0)
3367 goto bye;
3368 }
3369
01b69614
HS
3370 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3371 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3372 * to be performed after any global adapter RESET above since some
3373 * PHYs only have local RAM copies of the PHY firmware.
3374 */
3375 if (is_10gbt_device(adapter->pdev->device)) {
3376 ret = adap_init0_phy(adapter);
3377 if (ret < 0)
3378 goto bye;
3379 }
636f9d37
VP
3380 /*
3381 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3382 * then use that. Otherwise, use the configuration file stored
3383 * in the adapter flash ...
3384 */
d14807dd 3385 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3386 case CHELSIO_T4:
16e47624 3387 fw_config_file = FW4_CFNAME;
0a57a536
SR
3388 break;
3389 case CHELSIO_T5:
3390 fw_config_file = FW5_CFNAME;
3391 break;
3ccc6cf7
HS
3392 case CHELSIO_T6:
3393 fw_config_file = FW6_CFNAME;
3394 break;
0a57a536
SR
3395 default:
3396 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3397 adapter->pdev->device);
3398 ret = -EINVAL;
3399 goto bye;
3400 }
3401
3402 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3403 if (ret < 0) {
16e47624 3404 config_name = "On FLASH";
636f9d37
VP
3405 mtype = FW_MEMTYPE_CF_FLASH;
3406 maddr = t4_flash_cfg_addr(adapter);
3407 } else {
3408 u32 params[7], val[7];
3409
16e47624
HS
3410 sprintf(fw_config_file_path,
3411 "/lib/firmware/%s", fw_config_file);
3412 config_name = fw_config_file_path;
3413
636f9d37
VP
3414 if (cf->size >= FLASH_CFG_MAX_SIZE)
3415 ret = -ENOMEM;
3416 else {
5167865a
HS
3417 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3418 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37 3419 ret = t4_query_params(adapter, adapter->mbox,
b2612722 3420 adapter->pf, 0, 1, params, val);
636f9d37
VP
3421 if (ret == 0) {
3422 /*
fc5ab020 3423 * For t4_memory_rw() below addresses and
636f9d37
VP
3424 * sizes have to be in terms of multiples of 4
3425 * bytes. So, if the Configuration File isn't
3426 * a multiple of 4 bytes in length we'll have
3427 * to write that out separately since we can't
3428 * guarantee that the bytes following the
3429 * residual byte in the buffer returned by
3430 * request_firmware() are zeroed out ...
3431 */
3432 size_t resid = cf->size & 0x3;
3433 size_t size = cf->size & ~0x3;
3434 __be32 *data = (__be32 *)cf->data;
3435
5167865a
HS
3436 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3437 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3438
fc5ab020
HS
3439 spin_lock(&adapter->win0_lock);
3440 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3441 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3442 if (ret == 0 && resid != 0) {
3443 union {
3444 __be32 word;
3445 char buf[4];
3446 } last;
3447 int i;
3448
3449 last.word = data[size >> 2];
3450 for (i = resid; i < 4; i++)
3451 last.buf[i] = 0;
fc5ab020
HS
3452 ret = t4_memory_rw(adapter, 0, mtype,
3453 maddr + size,
3454 4, &last.word,
3455 T4_MEMORY_WRITE);
636f9d37 3456 }
fc5ab020 3457 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3458 }
3459 }
3460
3461 release_firmware(cf);
3462 if (ret)
3463 goto bye;
3464 }
3465
3466 /*
3467 * Issue a Capability Configuration command to the firmware to get it
3468 * to parse the Configuration File. We don't use t4_fw_config_file()
3469 * because we want the ability to modify various features after we've
3470 * processed the configuration file ...
3471 */
3472 memset(&caps_cmd, 0, sizeof(caps_cmd));
3473 caps_cmd.op_to_write =
e2ac9628
HS
3474 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3475 FW_CMD_REQUEST_F |
3476 FW_CMD_READ_F);
ce91a923 3477 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3478 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3479 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3480 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3481 FW_LEN16(caps_cmd));
3482 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3483 &caps_cmd);
16e47624
HS
3484
3485 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3486 * Configuration File in FLASH), our last gasp effort is to use the
3487 * Firmware Configuration File which is embedded in the firmware. A
3488 * very few early versions of the firmware didn't have one embedded
3489 * but we can ignore those.
3490 */
3491 if (ret == -ENOENT) {
3492 memset(&caps_cmd, 0, sizeof(caps_cmd));
3493 caps_cmd.op_to_write =
e2ac9628
HS
3494 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3495 FW_CMD_REQUEST_F |
3496 FW_CMD_READ_F);
16e47624
HS
3497 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3498 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3499 sizeof(caps_cmd), &caps_cmd);
3500 config_name = "Firmware Default";
3501 }
3502
3503 config_issued = 1;
636f9d37
VP
3504 if (ret < 0)
3505 goto bye;
3506
3507 finiver = ntohl(caps_cmd.finiver);
3508 finicsum = ntohl(caps_cmd.finicsum);
3509 cfcsum = ntohl(caps_cmd.cfcsum);
3510 if (finicsum != cfcsum)
3511 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3512 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3513 finicsum, cfcsum);
3514
636f9d37
VP
3515 /*
3516 * And now tell the firmware to use the configuration we just loaded.
3517 */
3518 caps_cmd.op_to_write =
e2ac9628
HS
3519 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3520 FW_CMD_REQUEST_F |
3521 FW_CMD_WRITE_F);
ce91a923 3522 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3523 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3524 NULL);
3525 if (ret < 0)
3526 goto bye;
3527
3528 /*
3529 * Tweak configuration based on system architecture, module
3530 * parameters, etc.
3531 */
3532 ret = adap_init0_tweaks(adapter);
3533 if (ret < 0)
3534 goto bye;
3535
3536 /*
3537 * And finally tell the firmware to initialize itself using the
3538 * parameters from the Configuration File.
3539 */
3540 ret = t4_fw_initialize(adapter, adapter->mbox);
3541 if (ret < 0)
3542 goto bye;
3543
06640310
HS
3544 /* Emit Firmware Configuration File information and return
3545 * successfully.
636f9d37 3546 */
636f9d37 3547 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3548 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3549 config_name, finiver, cfcsum);
636f9d37
VP
3550 return 0;
3551
3552 /*
3553 * Something bad happened. Return the error ... (If the "error"
3554 * is that there's no Configuration File on the adapter we don't
3555 * want to issue a warning since this is fairly common.)
3556 */
3557bye:
16e47624
HS
3558 if (config_issued && ret != -ENOENT)
3559 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3560 config_name, -ret);
636f9d37
VP
3561 return ret;
3562}
3563
16e47624
HS
3564static struct fw_info fw_info_array[] = {
3565 {
3566 .chip = CHELSIO_T4,
3567 .fs_name = FW4_CFNAME,
3568 .fw_mod_name = FW4_FNAME,
3569 .fw_hdr = {
3570 .chip = FW_HDR_CHIP_T4,
3571 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3572 .intfver_nic = FW_INTFVER(T4, NIC),
3573 .intfver_vnic = FW_INTFVER(T4, VNIC),
3574 .intfver_ri = FW_INTFVER(T4, RI),
3575 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3576 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3577 },
3578 }, {
3579 .chip = CHELSIO_T5,
3580 .fs_name = FW5_CFNAME,
3581 .fw_mod_name = FW5_FNAME,
3582 .fw_hdr = {
3583 .chip = FW_HDR_CHIP_T5,
3584 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3585 .intfver_nic = FW_INTFVER(T5, NIC),
3586 .intfver_vnic = FW_INTFVER(T5, VNIC),
3587 .intfver_ri = FW_INTFVER(T5, RI),
3588 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3589 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3590 },
3ccc6cf7
HS
3591 }, {
3592 .chip = CHELSIO_T6,
3593 .fs_name = FW6_CFNAME,
3594 .fw_mod_name = FW6_FNAME,
3595 .fw_hdr = {
3596 .chip = FW_HDR_CHIP_T6,
3597 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3598 .intfver_nic = FW_INTFVER(T6, NIC),
3599 .intfver_vnic = FW_INTFVER(T6, VNIC),
3600 .intfver_ofld = FW_INTFVER(T6, OFLD),
3601 .intfver_ri = FW_INTFVER(T6, RI),
3602 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3603 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3604 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3605 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3606 },
16e47624 3607 }
3ccc6cf7 3608
16e47624
HS
3609};
3610
3611static struct fw_info *find_fw_info(int chip)
3612{
3613 int i;
3614
3615 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3616 if (fw_info_array[i].chip == chip)
3617 return &fw_info_array[i];
3618 }
3619 return NULL;
3620}
3621
b8ff05a9
DM
3622/*
3623 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3624 */
3625static int adap_init0(struct adapter *adap)
3626{
3627 int ret;
3628 u32 v, port_vec;
3629 enum dev_state state;
3630 u32 params[7], val[7];
9a4da2cd 3631 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3632 int reset = 1;
b8ff05a9 3633
ae469b68
HS
3634 /* Grab Firmware Device Log parameters as early as possible so we have
3635 * access to it for debugging, etc.
3636 */
3637 ret = t4_init_devlog_params(adap);
3638 if (ret < 0)
3639 return ret;
3640
666224d4
HS
3641 /* Contact FW, advertising Master capability */
3642 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
3643 if (ret < 0) {
3644 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3645 ret);
3646 return ret;
3647 }
636f9d37
VP
3648 if (ret == adap->mbox)
3649 adap->flags |= MASTER_PF;
b8ff05a9 3650
636f9d37
VP
3651 /*
3652 * If we're the Master PF Driver and the device is uninitialized,
3653 * then let's consider upgrading the firmware ... (We always want
3654 * to check the firmware version number in order to A. get it for
3655 * later reporting and B. to warn if the currently loaded firmware
3656 * is excessively mismatched relative to the driver.)
3657 */
16e47624
HS
3658 t4_get_fw_version(adap, &adap->params.fw_vers);
3659 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 3660 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3661 struct fw_info *fw_info;
3662 struct fw_hdr *card_fw;
3663 const struct firmware *fw;
3664 const u8 *fw_data = NULL;
3665 unsigned int fw_size = 0;
3666
3667 /* This is the firmware whose headers the driver was compiled
3668 * against
3669 */
3670 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3671 if (fw_info == NULL) {
3672 dev_err(adap->pdev_dev,
3673 "unable to get firmware info for chip %d.\n",
3674 CHELSIO_CHIP_VERSION(adap->params.chip));
3675 return -EINVAL;
636f9d37 3676 }
16e47624
HS
3677
3678 /* allocate memory to read the header of the firmware on the
3679 * card
3680 */
3681 card_fw = t4_alloc_mem(sizeof(*card_fw));
3682
3683 /* Get FW from from /lib/firmware/ */
3684 ret = request_firmware(&fw, fw_info->fw_mod_name,
3685 adap->pdev_dev);
3686 if (ret < 0) {
3687 dev_err(adap->pdev_dev,
3688 "unable to load firmware image %s, error %d\n",
3689 fw_info->fw_mod_name, ret);
3690 } else {
3691 fw_data = fw->data;
3692 fw_size = fw->size;
3693 }
3694
3695 /* upgrade FW logic */
3696 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3697 state, &reset);
3698
3699 /* Cleaning up */
0b5b6bee 3700 release_firmware(fw);
16e47624
HS
3701 t4_free_mem(card_fw);
3702
636f9d37 3703 if (ret < 0)
16e47624 3704 goto bye;
636f9d37 3705 }
b8ff05a9 3706
636f9d37
VP
3707 /*
3708 * Grab VPD parameters. This should be done after we establish a
3709 * connection to the firmware since some of the VPD parameters
3710 * (notably the Core Clock frequency) are retrieved via requests to
3711 * the firmware. On the other hand, we need these fairly early on
3712 * so we do this right after getting ahold of the firmware.
3713 */
098ef6c2 3714 ret = t4_get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3715 if (ret < 0)
3716 goto bye;
a0881cab 3717
636f9d37 3718 /*
13ee15d3
VP
3719 * Find out what ports are available to us. Note that we need to do
3720 * this before calling adap_init0_no_config() since it needs nports
3721 * and portvec ...
636f9d37
VP
3722 */
3723 v =
5167865a
HS
3724 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3725 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
b2612722 3726 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
a0881cab
DM
3727 if (ret < 0)
3728 goto bye;
3729
636f9d37
VP
3730 adap->params.nports = hweight32(port_vec);
3731 adap->params.portvec = port_vec;
3732
06640310
HS
3733 /* If the firmware is initialized already, emit a simply note to that
3734 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3735 */
3736 if (state == DEV_STATE_INIT) {
3737 dev_info(adap->pdev_dev, "Coming up as %s: "\
3738 "Adapter already initialized\n",
3739 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3740 } else {
3741 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3742 "Initializing adapter\n");
06640310
HS
3743
3744 /* Find out whether we're dealing with a version of the
3745 * firmware which has configuration file support.
636f9d37 3746 */
06640310
HS
3747 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3748 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
b2612722 3749 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
06640310 3750 params, val);
13ee15d3 3751
06640310
HS
3752 /* If the firmware doesn't support Configuration Files,
3753 * return an error.
3754 */
3755 if (ret < 0) {
3756 dev_err(adap->pdev_dev, "firmware doesn't support "
3757 "Firmware Configuration Files\n");
3758 goto bye;
3759 }
3760
3761 /* The firmware provides us with a memory buffer where we can
3762 * load a Configuration File from the host if we want to
3763 * override the Configuration File in flash.
3764 */
3765 ret = adap_init0_config(adap, reset);
3766 if (ret == -ENOENT) {
3767 dev_err(adap->pdev_dev, "no Configuration File "
3768 "present on adapter.\n");
3769 goto bye;
636f9d37
VP
3770 }
3771 if (ret < 0) {
06640310
HS
3772 dev_err(adap->pdev_dev, "could not initialize "
3773 "adapter, error %d\n", -ret);
636f9d37
VP
3774 goto bye;
3775 }
3776 }
3777
06640310
HS
3778 /* Give the SGE code a chance to pull in anything that it needs ...
3779 * Note that this must be called after we retrieve our VPD parameters
3780 * in order to know how to convert core ticks to seconds, etc.
636f9d37 3781 */
06640310
HS
3782 ret = t4_sge_init(adap);
3783 if (ret < 0)
3784 goto bye;
636f9d37 3785
9a4da2cd
VP
3786 if (is_bypass_device(adap->pdev->device))
3787 adap->params.bypass = 1;
3788
636f9d37
VP
3789 /*
3790 * Grab some of our basic fundamental operating parameters.
3791 */
3792#define FW_PARAM_DEV(param) \
5167865a
HS
3793 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3794 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 3795
b8ff05a9 3796#define FW_PARAM_PFVF(param) \
5167865a
HS
3797 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3798 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3799 FW_PARAMS_PARAM_Y_V(0) | \
3800 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 3801
636f9d37 3802 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
3803 params[1] = FW_PARAM_PFVF(L2T_START);
3804 params[2] = FW_PARAM_PFVF(L2T_END);
3805 params[3] = FW_PARAM_PFVF(FILTER_START);
3806 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 3807 params[5] = FW_PARAM_PFVF(IQFLINT_START);
b2612722 3808 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
b8ff05a9
DM
3809 if (ret < 0)
3810 goto bye;
636f9d37
VP
3811 adap->sge.egr_start = val[0];
3812 adap->l2t_start = val[1];
3813 adap->l2t_end = val[2];
b8ff05a9
DM
3814 adap->tids.ftid_base = val[3];
3815 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 3816 adap->sge.ingr_start = val[5];
b8ff05a9 3817
4b8e27a8
HS
3818 /* qids (ingress/egress) returned from firmware can be anywhere
3819 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3820 * Hence driver needs to allocate memory for this range to
3821 * store the queue info. Get the highest IQFLINT/EQ index returned
3822 * in FW_EQ_*_CMD.alloc command.
3823 */
3824 params[0] = FW_PARAM_PFVF(EQ_END);
3825 params[1] = FW_PARAM_PFVF(IQFLINT_END);
b2612722 3826 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4b8e27a8
HS
3827 if (ret < 0)
3828 goto bye;
3829 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3830 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3831
3832 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3833 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3834 if (!adap->sge.egr_map) {
3835 ret = -ENOMEM;
3836 goto bye;
3837 }
3838
3839 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3840 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3841 if (!adap->sge.ingr_map) {
3842 ret = -ENOMEM;
3843 goto bye;
3844 }
3845
3846 /* Allocate the memory for the vaious egress queue bitmaps
5b377d11 3847 * ie starving_fl, txq_maperr and blocked_fl.
4b8e27a8
HS
3848 */
3849 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3850 sizeof(long), GFP_KERNEL);
3851 if (!adap->sge.starving_fl) {
3852 ret = -ENOMEM;
3853 goto bye;
3854 }
3855
3856 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3857 sizeof(long), GFP_KERNEL);
3858 if (!adap->sge.txq_maperr) {
3859 ret = -ENOMEM;
3860 goto bye;
3861 }
3862
5b377d11
HS
3863#ifdef CONFIG_DEBUG_FS
3864 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3865 sizeof(long), GFP_KERNEL);
3866 if (!adap->sge.blocked_fl) {
3867 ret = -ENOMEM;
3868 goto bye;
3869 }
3870#endif
3871
b5a02f50
AB
3872 params[0] = FW_PARAM_PFVF(CLIP_START);
3873 params[1] = FW_PARAM_PFVF(CLIP_END);
b2612722 3874 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
b5a02f50
AB
3875 if (ret < 0)
3876 goto bye;
3877 adap->clipt_start = val[0];
3878 adap->clipt_end = val[1];
3879
636f9d37
VP
3880 /* query params related to active filter region */
3881 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3882 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
b2612722 3883 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
636f9d37
VP
3884 /* If Active filter size is set we enable establishing
3885 * offload connection through firmware work request
3886 */
3887 if ((val[0] != val[1]) && (ret >= 0)) {
3888 adap->flags |= FW_OFLD_CONN;
3889 adap->tids.aftid_base = val[0];
3890 adap->tids.aftid_end = val[1];
3891 }
3892
b407a4a9
VP
3893 /* If we're running on newer firmware, let it know that we're
3894 * prepared to deal with encapsulated CPL messages. Older
3895 * firmware won't understand this and we'll just get
3896 * unencapsulated messages ...
3897 */
3898 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3899 val[0] = 1;
b2612722 3900 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
b407a4a9 3901
1ac0f095
KS
3902 /*
3903 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3904 * capability. Earlier versions of the firmware didn't have the
3905 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3906 * permission to use ULPTX MEMWRITE DSGL.
3907 */
3908 if (is_t4(adap->params.chip)) {
3909 adap->params.ulptx_memwrite_dsgl = false;
3910 } else {
3911 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
b2612722 3912 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1ac0f095
KS
3913 1, params, val);
3914 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3915 }
3916
636f9d37
VP
3917 /*
3918 * Get device capabilities so we can determine what resources we need
3919 * to manage.
3920 */
3921 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
3922 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3923 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3924 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3925 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3926 &caps_cmd);
3927 if (ret < 0)
3928 goto bye;
3929
13ee15d3 3930 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
3931 /* query offload-related parameters */
3932 params[0] = FW_PARAM_DEV(NTID);
3933 params[1] = FW_PARAM_PFVF(SERVER_START);
3934 params[2] = FW_PARAM_PFVF(SERVER_END);
3935 params[3] = FW_PARAM_PFVF(TDDP_START);
3936 params[4] = FW_PARAM_PFVF(TDDP_END);
3937 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
b2612722 3938 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 3939 params, val);
b8ff05a9
DM
3940 if (ret < 0)
3941 goto bye;
3942 adap->tids.ntids = val[0];
3943 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3944 adap->tids.stid_base = val[1];
3945 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 3946 /*
dbedd44e 3947 * Setup server filter region. Divide the available filter
636f9d37
VP
3948 * region into two parts. Regular filters get 1/3rd and server
3949 * filters get 2/3rd part. This is only enabled if workarond
3950 * path is enabled.
3951 * 1. For regular filters.
3952 * 2. Server filter: This are special filters which are used
3953 * to redirect SYN packets to offload queue.
3954 */
3955 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3956 adap->tids.sftid_base = adap->tids.ftid_base +
3957 DIV_ROUND_UP(adap->tids.nftids, 3);
3958 adap->tids.nsftids = adap->tids.nftids -
3959 DIV_ROUND_UP(adap->tids.nftids, 3);
3960 adap->tids.nftids = adap->tids.sftid_base -
3961 adap->tids.ftid_base;
3962 }
b8ff05a9
DM
3963 adap->vres.ddp.start = val[3];
3964 adap->vres.ddp.size = val[4] - val[3] + 1;
3965 adap->params.ofldq_wr_cred = val[5];
636f9d37 3966
b8ff05a9
DM
3967 adap->params.offload = 1;
3968 }
636f9d37 3969 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
3970 params[0] = FW_PARAM_PFVF(STAG_START);
3971 params[1] = FW_PARAM_PFVF(STAG_END);
3972 params[2] = FW_PARAM_PFVF(RQ_START);
3973 params[3] = FW_PARAM_PFVF(RQ_END);
3974 params[4] = FW_PARAM_PFVF(PBL_START);
3975 params[5] = FW_PARAM_PFVF(PBL_END);
b2612722 3976 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 3977 params, val);
b8ff05a9
DM
3978 if (ret < 0)
3979 goto bye;
3980 adap->vres.stag.start = val[0];
3981 adap->vres.stag.size = val[1] - val[0] + 1;
3982 adap->vres.rq.start = val[2];
3983 adap->vres.rq.size = val[3] - val[2] + 1;
3984 adap->vres.pbl.start = val[4];
3985 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
3986
3987 params[0] = FW_PARAM_PFVF(SQRQ_START);
3988 params[1] = FW_PARAM_PFVF(SQRQ_END);
3989 params[2] = FW_PARAM_PFVF(CQ_START);
3990 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
3991 params[4] = FW_PARAM_PFVF(OCQ_START);
3992 params[5] = FW_PARAM_PFVF(OCQ_END);
b2612722 3993 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5c937dd3 3994 val);
a0881cab
DM
3995 if (ret < 0)
3996 goto bye;
3997 adap->vres.qp.start = val[0];
3998 adap->vres.qp.size = val[1] - val[0] + 1;
3999 adap->vres.cq.start = val[2];
4000 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
4001 adap->vres.ocq.start = val[4];
4002 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
4003
4004 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4005 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
b2612722 4006 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5c937dd3 4007 val);
4c2c5763
HS
4008 if (ret < 0) {
4009 adap->params.max_ordird_qp = 8;
4010 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4011 ret = 0;
4012 } else {
4013 adap->params.max_ordird_qp = val[0];
4014 adap->params.max_ird_adapter = val[1];
4015 }
4016 dev_info(adap->pdev_dev,
4017 "max_ordird_qp %d max_ird_adapter %d\n",
4018 adap->params.max_ordird_qp,
4019 adap->params.max_ird_adapter);
b8ff05a9 4020 }
636f9d37 4021 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
4022 params[0] = FW_PARAM_PFVF(ISCSI_START);
4023 params[1] = FW_PARAM_PFVF(ISCSI_END);
b2612722 4024 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
636f9d37 4025 params, val);
b8ff05a9
DM
4026 if (ret < 0)
4027 goto bye;
4028 adap->vres.iscsi.start = val[0];
4029 adap->vres.iscsi.size = val[1] - val[0] + 1;
4030 }
4031#undef FW_PARAM_PFVF
4032#undef FW_PARAM_DEV
4033
92e7ae71
HS
4034 /* The MTU/MSS Table is initialized by now, so load their values. If
4035 * we're initializing the adapter, then we'll make any modifications
4036 * we want to the MTU/MSS Table and also initialize the congestion
4037 * parameters.
636f9d37 4038 */
b8ff05a9 4039 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
4040 if (state != DEV_STATE_INIT) {
4041 int i;
4042
4043 /* The default MTU Table contains values 1492 and 1500.
4044 * However, for TCP, it's better to have two values which are
4045 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4046 * This allows us to have a TCP Data Payload which is a
4047 * multiple of 8 regardless of what combination of TCP Options
4048 * are in use (always a multiple of 4 bytes) which is
4049 * important for performance reasons. For instance, if no
4050 * options are in use, then we have a 20-byte IP header and a
4051 * 20-byte TCP header. In this case, a 1500-byte MSS would
4052 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4053 * which is not a multiple of 8. So using an MSS of 1488 in
4054 * this case results in a TCP Data Payload of 1448 bytes which
4055 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4056 * Stamps have been negotiated, then an MTU of 1500 bytes
4057 * results in a TCP Data Payload of 1448 bytes which, as
4058 * above, is a multiple of 8 bytes ...
4059 */
4060 for (i = 0; i < NMTUS; i++)
4061 if (adap->params.mtus[i] == 1492) {
4062 adap->params.mtus[i] = 1488;
4063 break;
4064 }
7ee9ff94 4065
92e7ae71
HS
4066 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4067 adap->params.b_wnd);
4068 }
df64e4d3 4069 t4_init_sge_params(adap);
636f9d37 4070 adap->flags |= FW_OK;
c1e9af0c 4071 t4_init_tp_params(adap);
b8ff05a9
DM
4072 return 0;
4073
4074 /*
636f9d37
VP
4075 * Something bad happened. If a command timed out or failed with EIO
4076 * FW does not operate within its spec or something catastrophic
4077 * happened to HW/FW, stop issuing commands.
b8ff05a9 4078 */
636f9d37 4079bye:
4b8e27a8
HS
4080 kfree(adap->sge.egr_map);
4081 kfree(adap->sge.ingr_map);
4082 kfree(adap->sge.starving_fl);
4083 kfree(adap->sge.txq_maperr);
5b377d11
HS
4084#ifdef CONFIG_DEBUG_FS
4085 kfree(adap->sge.blocked_fl);
4086#endif
636f9d37
VP
4087 if (ret != -ETIMEDOUT && ret != -EIO)
4088 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
4089 return ret;
4090}
4091
204dc3c0
DM
4092/* EEH callbacks */
4093
4094static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4095 pci_channel_state_t state)
4096{
4097 int i;
4098 struct adapter *adap = pci_get_drvdata(pdev);
4099
4100 if (!adap)
4101 goto out;
4102
4103 rtnl_lock();
4104 adap->flags &= ~FW_OK;
4105 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 4106 spin_lock(&adap->stats_lock);
204dc3c0
DM
4107 for_each_port(adap, i) {
4108 struct net_device *dev = adap->port[i];
4109
4110 netif_device_detach(dev);
4111 netif_carrier_off(dev);
4112 }
9fe6cb58 4113 spin_unlock(&adap->stats_lock);
b37987e8 4114 disable_interrupts(adap);
204dc3c0
DM
4115 if (adap->flags & FULL_INIT_DONE)
4116 cxgb_down(adap);
4117 rtnl_unlock();
144be3d9
GS
4118 if ((adap->flags & DEV_ENABLED)) {
4119 pci_disable_device(pdev);
4120 adap->flags &= ~DEV_ENABLED;
4121 }
204dc3c0
DM
4122out: return state == pci_channel_io_perm_failure ?
4123 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4124}
4125
4126static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4127{
4128 int i, ret;
4129 struct fw_caps_config_cmd c;
4130 struct adapter *adap = pci_get_drvdata(pdev);
4131
4132 if (!adap) {
4133 pci_restore_state(pdev);
4134 pci_save_state(pdev);
4135 return PCI_ERS_RESULT_RECOVERED;
4136 }
4137
144be3d9
GS
4138 if (!(adap->flags & DEV_ENABLED)) {
4139 if (pci_enable_device(pdev)) {
4140 dev_err(&pdev->dev, "Cannot reenable PCI "
4141 "device after reset\n");
4142 return PCI_ERS_RESULT_DISCONNECT;
4143 }
4144 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4145 }
4146
4147 pci_set_master(pdev);
4148 pci_restore_state(pdev);
4149 pci_save_state(pdev);
4150 pci_cleanup_aer_uncorrect_error_status(pdev);
4151
8203b509 4152 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4153 return PCI_ERS_RESULT_DISCONNECT;
b2612722 4154 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4155 return PCI_ERS_RESULT_DISCONNECT;
4156 adap->flags |= FW_OK;
4157 if (adap_init1(adap, &c))
4158 return PCI_ERS_RESULT_DISCONNECT;
4159
4160 for_each_port(adap, i) {
4161 struct port_info *p = adap2pinfo(adap, i);
4162
b2612722 4163 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
060e0c75 4164 NULL, NULL);
204dc3c0
DM
4165 if (ret < 0)
4166 return PCI_ERS_RESULT_DISCONNECT;
4167 p->viid = ret;
4168 p->xact_addr_filt = -1;
4169 }
4170
4171 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4172 adap->params.b_wnd);
1ae970e0 4173 setup_memwin(adap);
204dc3c0
DM
4174 if (cxgb_up(adap))
4175 return PCI_ERS_RESULT_DISCONNECT;
4176 return PCI_ERS_RESULT_RECOVERED;
4177}
4178
4179static void eeh_resume(struct pci_dev *pdev)
4180{
4181 int i;
4182 struct adapter *adap = pci_get_drvdata(pdev);
4183
4184 if (!adap)
4185 return;
4186
4187 rtnl_lock();
4188 for_each_port(adap, i) {
4189 struct net_device *dev = adap->port[i];
4190
4191 if (netif_running(dev)) {
4192 link_start(dev);
4193 cxgb_set_rxmode(dev);
4194 }
4195 netif_device_attach(dev);
4196 }
4197 rtnl_unlock();
4198}
4199
3646f0e5 4200static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4201 .error_detected = eeh_err_detected,
4202 .slot_reset = eeh_slot_reset,
4203 .resume = eeh_resume,
4204};
4205
57d8b764 4206static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4207{
57d8b764
KS
4208 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4209 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4210}
4211
c887ad0e
HS
4212static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4213 unsigned int us, unsigned int cnt,
b8ff05a9
DM
4214 unsigned int size, unsigned int iqe_size)
4215{
c887ad0e 4216 q->adap = adap;
812034f1 4217 cxgb4_set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
4218 q->iqe_len = iqe_size;
4219 q->size = size;
4220}
4221
4222/*
4223 * Perform default configuration of DMA queues depending on the number and type
4224 * of ports we found and the number of available CPUs. Most settings can be
4225 * modified by the admin prior to actual use.
4226 */
91744948 4227static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4228{
4229 struct sge *s = &adap->sge;
688848b1
AB
4230 int i, n10g = 0, qidx = 0;
4231#ifndef CONFIG_CHELSIO_T4_DCB
4232 int q10g = 0;
4233#endif
cf38be6d 4234 int ciq_size;
b8ff05a9
DM
4235
4236 for_each_port(adap, i)
57d8b764 4237 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4238#ifdef CONFIG_CHELSIO_T4_DCB
4239 /* For Data Center Bridging support we need to be able to support up
4240 * to 8 Traffic Priorities; each of which will be assigned to its
4241 * own TX Queue in order to prevent Head-Of-Line Blocking.
4242 */
4243 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4244 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4245 MAX_ETH_QSETS, adap->params.nports * 8);
4246 BUG_ON(1);
4247 }
b8ff05a9 4248
688848b1
AB
4249 for_each_port(adap, i) {
4250 struct port_info *pi = adap2pinfo(adap, i);
4251
4252 pi->first_qset = qidx;
4253 pi->nqsets = 8;
4254 qidx += pi->nqsets;
4255 }
4256#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4257 /*
4258 * We default to 1 queue per non-10G port and up to # of cores queues
4259 * per 10G port.
4260 */
4261 if (n10g)
4262 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4263 if (q10g > netif_get_num_default_rss_queues())
4264 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4265
4266 for_each_port(adap, i) {
4267 struct port_info *pi = adap2pinfo(adap, i);
4268
4269 pi->first_qset = qidx;
57d8b764 4270 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4271 qidx += pi->nqsets;
4272 }
688848b1 4273#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4274
4275 s->ethqsets = qidx;
4276 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4277
4278 if (is_offload(adap)) {
4279 /*
4280 * For offload we use 1 queue/channel if all ports are up to 1G,
4281 * otherwise we divide all available queues amongst the channels
4282 * capped by the number of available cores.
4283 */
4284 if (n10g) {
4285 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4286 num_online_cpus());
4287 s->ofldqsets = roundup(i, adap->params.nports);
4288 } else
4289 s->ofldqsets = adap->params.nports;
4290 /* For RDMA one Rx queue per channel suffices */
4291 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4292 /* Try and allow at least 1 CIQ per cpu rounding down
4293 * to the number of ports, with a minimum of 1 per port.
4294 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4295 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4296 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4297 */
4298 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4299 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4300 adap->params.nports;
4301 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
b8ff05a9
DM
4302 }
4303
4304 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4305 struct sge_eth_rxq *r = &s->ethrxq[i];
4306
c887ad0e 4307 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4308 r->fl.size = 72;
4309 }
4310
4311 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4312 s->ethtxq[i].q.size = 1024;
4313
4314 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4315 s->ctrlq[i].q.size = 512;
4316
4317 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4318 s->ofldtxq[i].q.size = 1024;
4319
4320 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4321 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4322
c887ad0e 4323 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4324 r->rspq.uld = CXGB4_ULD_ISCSI;
4325 r->fl.size = 72;
4326 }
4327
4328 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4329 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4330
c887ad0e 4331 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4332 r->rspq.uld = CXGB4_ULD_RDMA;
4333 r->fl.size = 72;
4334 }
4335
cf38be6d
HS
4336 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4337 if (ciq_size > SGE_MAX_IQ_SIZE) {
4338 CH_WARN(adap, "CIQ size too small for available IQs\n");
4339 ciq_size = SGE_MAX_IQ_SIZE;
4340 }
4341
4342 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4343 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4344
c887ad0e 4345 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4346 r->rspq.uld = CXGB4_ULD_RDMA;
4347 }
4348
c887ad0e
HS
4349 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4350 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4351}
4352
4353/*
4354 * Reduce the number of Ethernet queues across all ports to at most n.
4355 * n provides at least one queue per port.
4356 */
91744948 4357static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4358{
4359 int i;
4360 struct port_info *pi;
4361
4362 while (n < adap->sge.ethqsets)
4363 for_each_port(adap, i) {
4364 pi = adap2pinfo(adap, i);
4365 if (pi->nqsets > 1) {
4366 pi->nqsets--;
4367 adap->sge.ethqsets--;
4368 if (adap->sge.ethqsets <= n)
4369 break;
4370 }
4371 }
4372
4373 n = 0;
4374 for_each_port(adap, i) {
4375 pi = adap2pinfo(adap, i);
4376 pi->first_qset = n;
4377 n += pi->nqsets;
4378 }
4379}
4380
4381/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4382#define EXTRA_VECS 2
4383
91744948 4384static int enable_msix(struct adapter *adap)
b8ff05a9
DM
4385{
4386 int ofld_need = 0;
f36e58e5 4387 int i, want, need, allocated;
b8ff05a9
DM
4388 struct sge *s = &adap->sge;
4389 unsigned int nchan = adap->params.nports;
f36e58e5
HS
4390 struct msix_entry *entries;
4391
4392 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4393 GFP_KERNEL);
4394 if (!entries)
4395 return -ENOMEM;
b8ff05a9 4396
f36e58e5 4397 for (i = 0; i < MAX_INGQ + 1; ++i)
b8ff05a9
DM
4398 entries[i].entry = i;
4399
4400 want = s->max_ethqsets + EXTRA_VECS;
4401 if (is_offload(adap)) {
cf38be6d 4402 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 4403 /* need nchan for each possible ULD */
cf38be6d 4404 ofld_need = 3 * nchan;
b8ff05a9 4405 }
688848b1
AB
4406#ifdef CONFIG_CHELSIO_T4_DCB
4407 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4408 * each port.
4409 */
4410 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4411#else
b8ff05a9 4412 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 4413#endif
f36e58e5
HS
4414 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4415 if (allocated < 0) {
4416 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4417 " not using MSI-X\n");
4418 kfree(entries);
4419 return allocated;
4420 }
b8ff05a9 4421
f36e58e5 4422 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4423 * Every group gets its minimum requirement and NIC gets top
4424 * priority for leftovers.
4425 */
f36e58e5 4426 i = allocated - EXTRA_VECS - ofld_need;
c32ad224
AG
4427 if (i < s->max_ethqsets) {
4428 s->max_ethqsets = i;
4429 if (i < s->ethqsets)
4430 reduce_ethqs(adap, i);
4431 }
4432 if (is_offload(adap)) {
f36e58e5
HS
4433 if (allocated < want) {
4434 s->rdmaqs = nchan;
4435 s->rdmaciqs = nchan;
4436 }
4437
4438 /* leftovers go to OFLD */
4439 i = allocated - EXTRA_VECS - s->max_ethqsets -
4440 s->rdmaqs - s->rdmaciqs;
c32ad224
AG
4441 s->ofldqsets = (i / nchan) * nchan; /* round down */
4442 }
f36e58e5 4443 for (i = 0; i < allocated; ++i)
c32ad224
AG
4444 adap->msix_info[i].vec = entries[i].vector;
4445
f36e58e5 4446 kfree(entries);
c32ad224 4447 return 0;
b8ff05a9
DM
4448}
4449
4450#undef EXTRA_VECS
4451
91744948 4452static int init_rss(struct adapter *adap)
671b0060 4453{
c035e183
HS
4454 unsigned int i;
4455 int err;
4456
4457 err = t4_init_rss_mode(adap, adap->mbox);
4458 if (err)
4459 return err;
671b0060
DM
4460
4461 for_each_port(adap, i) {
4462 struct port_info *pi = adap2pinfo(adap, i);
4463
4464 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4465 if (!pi->rss)
4466 return -ENOMEM;
671b0060
DM
4467 }
4468 return 0;
4469}
4470
91744948 4471static void print_port_info(const struct net_device *dev)
b8ff05a9 4472{
b8ff05a9 4473 char buf[80];
118969ed 4474 char *bufp = buf;
f1a051b9 4475 const char *spd = "";
118969ed
DM
4476 const struct port_info *pi = netdev_priv(dev);
4477 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4478
4479 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4480 spd = " 2.5 GT/s";
4481 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4482 spd = " 5 GT/s";
d2e752db
RD
4483 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4484 spd = " 8 GT/s";
b8ff05a9 4485
118969ed
DM
4486 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4487 bufp += sprintf(bufp, "100/");
4488 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4489 bufp += sprintf(bufp, "1000/");
4490 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4491 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4492 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4493 bufp += sprintf(bufp, "40G/");
118969ed
DM
4494 if (bufp != buf)
4495 --bufp;
72aca4bf 4496 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
4497
4498 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 4499 adap->params.vpd.id,
d14807dd 4500 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
4501 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4502 (adap->flags & USING_MSIX) ? " MSI-X" :
4503 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
4504 netdev_info(dev, "S/N: %s, P/N: %s\n",
4505 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
4506}
4507
91744948 4508static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4509{
e5c8ae5f 4510 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4511}
4512
06546391
DM
4513/*
4514 * Free the following resources:
4515 * - memory used for tables
4516 * - MSI/MSI-X
4517 * - net devices
4518 * - resources FW is holding for us
4519 */
4520static void free_some_resources(struct adapter *adapter)
4521{
4522 unsigned int i;
4523
4524 t4_free_mem(adapter->l2t);
4525 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4526 kfree(adapter->sge.egr_map);
4527 kfree(adapter->sge.ingr_map);
4528 kfree(adapter->sge.starving_fl);
4529 kfree(adapter->sge.txq_maperr);
5b377d11
HS
4530#ifdef CONFIG_DEBUG_FS
4531 kfree(adapter->sge.blocked_fl);
4532#endif
06546391
DM
4533 disable_msi(adapter);
4534
4535 for_each_port(adapter, i)
671b0060 4536 if (adapter->port[i]) {
4f3a0fcf
HS
4537 struct port_info *pi = adap2pinfo(adapter, i);
4538
4539 if (pi->viid != 0)
4540 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4541 0, pi->viid);
671b0060 4542 kfree(adap2pinfo(adapter, i)->rss);
06546391 4543 free_netdev(adapter->port[i]);
671b0060 4544 }
06546391 4545 if (adapter->flags & FW_OK)
b2612722 4546 t4_fw_bye(adapter, adapter->pf);
06546391
DM
4547}
4548
2ed28baa 4549#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 4550#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 4551 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 4552#define SEGMENT_SIZE 128
b8ff05a9 4553
1dd06ae8 4554static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 4555{
22adfe0a 4556 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 4557 struct port_info *pi;
c8f44aff 4558 bool highdma = false;
b8ff05a9 4559 struct adapter *adapter = NULL;
d6ce2628 4560 void __iomem *regs;
b8ff05a9
DM
4561
4562 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4563
4564 err = pci_request_regions(pdev, KBUILD_MODNAME);
4565 if (err) {
4566 /* Just info, some other driver may have claimed the device. */
4567 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4568 return err;
4569 }
4570
b8ff05a9
DM
4571 err = pci_enable_device(pdev);
4572 if (err) {
4573 dev_err(&pdev->dev, "cannot enable PCI device\n");
4574 goto out_release_regions;
4575 }
4576
d6ce2628
HS
4577 regs = pci_ioremap_bar(pdev, 0);
4578 if (!regs) {
4579 dev_err(&pdev->dev, "cannot map device registers\n");
4580 err = -ENOMEM;
4581 goto out_disable_device;
4582 }
4583
8203b509
HS
4584 err = t4_wait_dev_ready(regs);
4585 if (err < 0)
4586 goto out_unmap_bar0;
4587
d6ce2628 4588 /* We control everything through one PF */
0d804338 4589 func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
d6ce2628
HS
4590 if (func != ent->driver_data) {
4591 iounmap(regs);
4592 pci_disable_device(pdev);
4593 pci_save_state(pdev); /* to restore SR-IOV later */
4594 goto sriov;
4595 }
4596
b8ff05a9 4597 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 4598 highdma = true;
b8ff05a9
DM
4599 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4600 if (err) {
4601 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4602 "coherent allocations\n");
d6ce2628 4603 goto out_unmap_bar0;
b8ff05a9
DM
4604 }
4605 } else {
4606 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4607 if (err) {
4608 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 4609 goto out_unmap_bar0;
b8ff05a9
DM
4610 }
4611 }
4612
4613 pci_enable_pcie_error_reporting(pdev);
ef306b50 4614 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
4615 pci_set_master(pdev);
4616 pci_save_state(pdev);
4617
4618 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4619 if (!adapter) {
4620 err = -ENOMEM;
d6ce2628 4621 goto out_unmap_bar0;
b8ff05a9
DM
4622 }
4623
29aaee65
AB
4624 adapter->workq = create_singlethread_workqueue("cxgb4");
4625 if (!adapter->workq) {
4626 err = -ENOMEM;
4627 goto out_free_adapter;
4628 }
4629
144be3d9
GS
4630 /* PCI device has been enabled */
4631 adapter->flags |= DEV_ENABLED;
4632
d6ce2628 4633 adapter->regs = regs;
b8ff05a9
DM
4634 adapter->pdev = pdev;
4635 adapter->pdev_dev = &pdev->dev;
3069ee9b 4636 adapter->mbox = func;
b2612722 4637 adapter->pf = func;
b8ff05a9
DM
4638 adapter->msg_enable = dflt_msg_enable;
4639 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4640
4641 spin_lock_init(&adapter->stats_lock);
4642 spin_lock_init(&adapter->tid_release_lock);
e327c225 4643 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
4644
4645 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
4646 INIT_WORK(&adapter->db_full_task, process_db_full);
4647 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
4648
4649 err = t4_prep_adapter(adapter);
4650 if (err)
d6ce2628
HS
4651 goto out_free_adapter;
4652
22adfe0a 4653
d14807dd 4654 if (!is_t4(adapter->params.chip)) {
f612b815
HS
4655 s_qpp = (QUEUESPERPAGEPF0_S +
4656 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
b2612722 4657 adapter->pf);
f612b815
HS
4658 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4659 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
4660 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4661
4662 /* Each segment size is 128B. Write coalescing is enabled only
4663 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4664 * queue is less no of segments that can be accommodated in
4665 * a page size.
4666 */
4667 if (qpp > num_seg) {
4668 dev_err(&pdev->dev,
4669 "Incorrect number of egress queues per page\n");
4670 err = -EINVAL;
d6ce2628 4671 goto out_free_adapter;
22adfe0a
SR
4672 }
4673 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4674 pci_resource_len(pdev, 2));
4675 if (!adapter->bar2) {
4676 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4677 err = -ENOMEM;
d6ce2628 4678 goto out_free_adapter;
22adfe0a 4679 }
a4cfd929
HS
4680 t4_write_reg(adapter, SGE_STAT_CFG_A,
4681 STATSOURCE_T5_V(7) | STATMODE_V(0));
22adfe0a
SR
4682 }
4683
636f9d37 4684 setup_memwin(adapter);
b8ff05a9 4685 err = adap_init0(adapter);
5b377d11
HS
4686#ifdef CONFIG_DEBUG_FS
4687 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4688#endif
636f9d37 4689 setup_memwin_rdma(adapter);
b8ff05a9
DM
4690 if (err)
4691 goto out_unmap_bar;
4692
4693 for_each_port(adapter, i) {
4694 struct net_device *netdev;
4695
4696 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4697 MAX_ETH_QSETS);
4698 if (!netdev) {
4699 err = -ENOMEM;
4700 goto out_free_dev;
4701 }
4702
4703 SET_NETDEV_DEV(netdev, &pdev->dev);
4704
4705 adapter->port[i] = netdev;
4706 pi = netdev_priv(netdev);
4707 pi->adapter = adapter;
4708 pi->xact_addr_filt = -1;
b8ff05a9 4709 pi->port_id = i;
b8ff05a9
DM
4710 netdev->irq = pdev->irq;
4711
2ed28baa
MM
4712 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4713 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4714 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 4715 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
4716 if (highdma)
4717 netdev->hw_features |= NETIF_F_HIGHDMA;
4718 netdev->features |= netdev->hw_features;
b8ff05a9
DM
4719 netdev->vlan_features = netdev->features & VLAN_FEAT;
4720
01789349
JP
4721 netdev->priv_flags |= IFF_UNICAST_FLT;
4722
b8ff05a9 4723 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
4724#ifdef CONFIG_CHELSIO_T4_DCB
4725 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4726 cxgb4_dcb_state_init(netdev);
4727#endif
812034f1 4728 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
4729 }
4730
4731 pci_set_drvdata(pdev, adapter);
4732
4733 if (adapter->flags & FW_OK) {
060e0c75 4734 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
4735 if (err)
4736 goto out_free_dev;
098ef6c2
HS
4737 } else if (adapter->params.nports == 1) {
4738 /* If we don't have a connection to the firmware -- possibly
4739 * because of an error -- grab the raw VPD parameters so we
4740 * can set the proper MAC Address on the debug network
4741 * interface that we've created.
4742 */
4743 u8 hw_addr[ETH_ALEN];
4744 u8 *na = adapter->params.vpd.na;
4745
4746 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4747 if (!err) {
4748 for (i = 0; i < ETH_ALEN; i++)
4749 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4750 hex2val(na[2 * i + 1]));
4751 t4_set_hw_addr(adapter, 0, hw_addr);
4752 }
b8ff05a9
DM
4753 }
4754
098ef6c2 4755 /* Configure queues and allocate tables now, they can be needed as
b8ff05a9
DM
4756 * soon as the first register_netdev completes.
4757 */
4758 cfg_queues(adapter);
4759
5be9ed8d 4760 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
b8ff05a9
DM
4761 if (!adapter->l2t) {
4762 /* We tolerate a lack of L2T, giving up some functionality */
4763 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4764 adapter->params.offload = 0;
4765 }
4766
b5a02f50
AB
4767#if IS_ENABLED(CONFIG_IPV6)
4768 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4769 adapter->clipt_end);
4770 if (!adapter->clipt) {
4771 /* We tolerate a lack of clip_table, giving up
4772 * some functionality
4773 */
4774 dev_warn(&pdev->dev,
4775 "could not allocate Clip table, continuing\n");
4776 adapter->params.offload = 0;
4777 }
4778#endif
b8ff05a9
DM
4779 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4780 dev_warn(&pdev->dev, "could not allocate TID table, "
4781 "continuing\n");
4782 adapter->params.offload = 0;
4783 }
4784
f7cabcdd
DM
4785 /* See what interrupts we'll be using */
4786 if (msi > 1 && enable_msix(adapter) == 0)
4787 adapter->flags |= USING_MSIX;
4788 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4789 adapter->flags |= USING_MSI;
4790
671b0060
DM
4791 err = init_rss(adapter);
4792 if (err)
4793 goto out_free_dev;
4794
b8ff05a9
DM
4795 /*
4796 * The card is now ready to go. If any errors occur during device
4797 * registration we do not fail the whole card but rather proceed only
4798 * with the ports we manage to register successfully. However we must
4799 * register at least one net device.
4800 */
4801 for_each_port(adapter, i) {
a57cabe0
DM
4802 pi = adap2pinfo(adapter, i);
4803 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4804 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4805
b8ff05a9
DM
4806 err = register_netdev(adapter->port[i]);
4807 if (err)
b1a3c2b6 4808 break;
b1a3c2b6
DM
4809 adapter->chan_map[pi->tx_chan] = i;
4810 print_port_info(adapter->port[i]);
b8ff05a9 4811 }
b1a3c2b6 4812 if (i == 0) {
b8ff05a9
DM
4813 dev_err(&pdev->dev, "could not register any net devices\n");
4814 goto out_free_dev;
4815 }
b1a3c2b6
DM
4816 if (err) {
4817 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4818 err = 0;
6403eab1 4819 }
b8ff05a9
DM
4820
4821 if (cxgb4_debugfs_root) {
4822 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4823 cxgb4_debugfs_root);
4824 setup_debugfs(adapter);
4825 }
4826
6482aa7c
DLR
4827 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4828 pdev->needs_freset = 1;
4829
b8ff05a9
DM
4830 if (is_offload(adapter))
4831 attach_ulds(adapter);
4832
8e1e6059 4833sriov:
b8ff05a9 4834#ifdef CONFIG_PCI_IOV
7d6727cf 4835 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
4836 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4837 dev_info(&pdev->dev,
4838 "instantiated %u virtual functions\n",
4839 num_vf[func]);
4840#endif
4841 return 0;
4842
4843 out_free_dev:
06546391 4844 free_some_resources(adapter);
b8ff05a9 4845 out_unmap_bar:
d14807dd 4846 if (!is_t4(adapter->params.chip))
22adfe0a 4847 iounmap(adapter->bar2);
b8ff05a9 4848 out_free_adapter:
29aaee65
AB
4849 if (adapter->workq)
4850 destroy_workqueue(adapter->workq);
4851
b8ff05a9 4852 kfree(adapter);
d6ce2628
HS
4853 out_unmap_bar0:
4854 iounmap(regs);
b8ff05a9
DM
4855 out_disable_device:
4856 pci_disable_pcie_error_reporting(pdev);
4857 pci_disable_device(pdev);
4858 out_release_regions:
4859 pci_release_regions(pdev);
b8ff05a9
DM
4860 return err;
4861}
4862
91744948 4863static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
4864{
4865 struct adapter *adapter = pci_get_drvdata(pdev);
4866
636f9d37 4867#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
4868 pci_disable_sriov(pdev);
4869
636f9d37
VP
4870#endif
4871
b8ff05a9
DM
4872 if (adapter) {
4873 int i;
4874
29aaee65
AB
4875 /* Tear down per-adapter Work Queue first since it can contain
4876 * references to our adapter data structure.
4877 */
4878 destroy_workqueue(adapter->workq);
4879
b8ff05a9
DM
4880 if (is_offload(adapter))
4881 detach_ulds(adapter);
4882
b37987e8
HS
4883 disable_interrupts(adapter);
4884
b8ff05a9 4885 for_each_port(adapter, i)
8f3a7676 4886 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
4887 unregister_netdev(adapter->port[i]);
4888
9f16dc2e 4889 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 4890
f2b7e78d
VP
4891 /* If we allocated filters, free up state associated with any
4892 * valid filters ...
4893 */
4894 if (adapter->tids.ftid_tab) {
4895 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
4896 for (i = 0; i < (adapter->tids.nftids +
4897 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
4898 if (f->valid)
4899 clear_filter(adapter, f);
4900 }
4901
aaefae9b
DM
4902 if (adapter->flags & FULL_INIT_DONE)
4903 cxgb_down(adapter);
b8ff05a9 4904
06546391 4905 free_some_resources(adapter);
b5a02f50
AB
4906#if IS_ENABLED(CONFIG_IPV6)
4907 t4_cleanup_clip_tbl(adapter);
4908#endif
b8ff05a9 4909 iounmap(adapter->regs);
d14807dd 4910 if (!is_t4(adapter->params.chip))
22adfe0a 4911 iounmap(adapter->bar2);
b8ff05a9 4912 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
4913 if ((adapter->flags & DEV_ENABLED)) {
4914 pci_disable_device(pdev);
4915 adapter->flags &= ~DEV_ENABLED;
4916 }
b8ff05a9 4917 pci_release_regions(pdev);
ee9a33b2 4918 synchronize_rcu();
8b662fe7 4919 kfree(adapter);
a069ec91 4920 } else
b8ff05a9
DM
4921 pci_release_regions(pdev);
4922}
4923
4924static struct pci_driver cxgb4_driver = {
4925 .name = KBUILD_MODNAME,
4926 .id_table = cxgb4_pci_tbl,
4927 .probe = init_one,
91744948 4928 .remove = remove_one,
687d705c 4929 .shutdown = remove_one,
204dc3c0 4930 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
4931};
4932
4933static int __init cxgb4_init_module(void)
4934{
4935 int ret;
4936
4937 /* Debugfs support is optional, just warn if this fails */
4938 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4939 if (!cxgb4_debugfs_root)
428ac43f 4940 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
4941
4942 ret = pci_register_driver(&cxgb4_driver);
29aaee65 4943 if (ret < 0)
b8ff05a9 4944 debugfs_remove(cxgb4_debugfs_root);
01bcca68 4945
1bb60376 4946#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
4947 if (!inet6addr_registered) {
4948 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4949 inet6addr_registered = true;
4950 }
1bb60376 4951#endif
01bcca68 4952
b8ff05a9
DM
4953 return ret;
4954}
4955
4956static void __exit cxgb4_cleanup_module(void)
4957{
1bb60376 4958#if IS_ENABLED(CONFIG_IPV6)
1793c798 4959 if (inet6addr_registered) {
b5a02f50
AB
4960 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4961 inet6addr_registered = false;
4962 }
1bb60376 4963#endif
b8ff05a9
DM
4964 pci_unregister_driver(&cxgb4_driver);
4965 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
4966}
4967
4968module_init(cxgb4_init_module);
4969module_exit(cxgb4_cleanup_module);