]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
cxgb4: core hardware/firmware support for Forward Error Correction on a link
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
b72a32da 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4 39#include "t4fw_api.h"
a69265e9 40#include "t4fw_version.h"
56d36be4
DM
41
42/**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
de498c89
RD
57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
59{
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73}
74
75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77{
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80}
81
82/**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94{
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99}
100
101/**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
f2b7e78d 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
116{
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122}
123
13ee15d3
VP
124/**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139{
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144}
145
0abfd152
HS
146/*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153{
3ccc6cf7
HS
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
0abfd152
HS
160
161 if (is_t4(adap->params.chip))
f061de42 162 req |= LOCALCFG_F;
0abfd152 163
f061de42
HS
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
f061de42 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
173}
174
31d55c2d
HS
175/*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183static void t4_report_fw_error(struct adapter *adap)
184{
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
f061de42
HS
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
201}
202
56d36be4
DM
203/*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208{
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211}
212
213/*
214 * Handle a FW assertion reported in a mailbox.
215 */
216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217{
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
225}
226
7f080c3f
HS
227/**
228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229 * @adapter: the adapter
230 * @cmd: the Firmware Mailbox Command or Reply
231 * @size: command length in bytes
232 * @access: the time (ms) needed to access the Firmware Mailbox
233 * @execute: the time (ms) the command spent being executed
234 */
235static void t4_record_mbox(struct adapter *adapter,
236 const __be64 *cmd, unsigned int size,
237 int access, int execute)
56d36be4 238{
7f080c3f
HS
239 struct mbox_cmd_log *log = adapter->mbox_log;
240 struct mbox_cmd *entry;
241 int i;
242
243 entry = mbox_cmd_log_entry(log, log->cursor++);
244 if (log->cursor == log->size)
245 log->cursor = 0;
246
247 for (i = 0; i < size / 8; i++)
248 entry->cmd[i] = be64_to_cpu(cmd[i]);
249 while (i < MBOX_LEN / 8)
250 entry->cmd[i++] = 0;
251 entry->timestamp = jiffies;
252 entry->seqno = log->seqno++;
253 entry->access = access;
254 entry->execute = execute;
56d36be4
DM
255}
256
257/**
01b69614 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
259 * @adap: the adapter
260 * @mbox: index of the mailbox to use
261 * @cmd: the command to write
262 * @size: command length in bytes
263 * @rpl: where to optionally store the reply
264 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 265 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
266 *
267 * Sends the given command to FW through the selected mailbox and waits
268 * for the FW to execute the command. If @rpl is not %NULL it is used to
269 * store the FW's reply to the command. The command and its optional
270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
271 * to respond. @sleep_ok determines whether we may sleep while awaiting
272 * the response. If sleeping is allowed we use progressive backoff
273 * otherwise we spin.
274 *
275 * The return value is 0 on success or a negative errno on failure. A
276 * failure can happen either because we are not able to execute the
277 * command or FW executes it but signals an error. In the latter case
278 * the return value is the error code indicated by FW (negated).
279 */
01b69614
HS
280int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 282{
005b5717 283 static const int delay[] = {
56d36be4
DM
284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 };
286
4055ae5e 287 struct mbox_list entry;
7f080c3f
HS
288 u16 access = 0;
289 u16 execute = 0;
56d36be4
DM
290 u32 v;
291 u64 res;
7f080c3f 292 int i, ms, delay_idx, ret;
56d36be4 293 const __be64 *p = cmd;
89c3a86c
HS
294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
7f080c3f 296 __be64 cmd_rpl[MBOX_LEN / 8];
f358738b 297 u32 pcie_fw;
56d36be4
DM
298
299 if ((size & 15) || size > MBOX_LEN)
300 return -EINVAL;
301
204dc3c0
DM
302 /*
303 * If the device is off-line, as in EEH, commands will time out.
304 * Fail them early so we don't waste time waiting.
305 */
306 if (adap->pdev->error_state != pci_channel_io_normal)
307 return -EIO;
308
5a20f5cf
HS
309 /* If we have a negative timeout, that implies that we can't sleep. */
310 if (timeout < 0) {
311 sleep_ok = false;
312 timeout = -timeout;
313 }
314
4055ae5e
HS
315 /* Queue ourselves onto the mailbox access list. When our entry is at
316 * the front of the list, we have rights to access the mailbox. So we
317 * wait [for a while] till we're at the front [or bail out with an
318 * EBUSY] ...
319 */
320 spin_lock(&adap->mbox_lock);
321 list_add_tail(&entry.list, &adap->mlist.list);
322 spin_unlock(&adap->mbox_lock);
323
324 delay_idx = 0;
325 ms = delay[0];
326
327 for (i = 0; ; i += ms) {
328 /* If we've waited too long, return a busy indication. This
329 * really ought to be based on our initial position in the
330 * mailbox access list but this is a start. We very rearely
331 * contend on access to the mailbox ...
332 */
3be0679b
HS
333 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
4055ae5e
HS
335 spin_lock(&adap->mbox_lock);
336 list_del(&entry.list);
337 spin_unlock(&adap->mbox_lock);
3be0679b 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
4055ae5e
HS
339 t4_record_mbox(adap, cmd, size, access, ret);
340 return ret;
341 }
342
343 /* If we're at the head, break out and start the mailbox
344 * protocol.
345 */
346 if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 list) == &entry)
348 break;
349
350 /* Delay for a bit before checking again ... */
351 if (sleep_ok) {
352 ms = delay[delay_idx]; /* last element may repeat */
353 if (delay_idx < ARRAY_SIZE(delay) - 1)
354 delay_idx++;
355 msleep(ms);
356 } else {
357 mdelay(ms);
358 }
359 }
360
361 /* Loop trying to get ownership of the mailbox. Return an error
362 * if we can't gain ownership.
363 */
89c3a86c 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
7f080c3f 367 if (v != MBOX_OWNER_DRV) {
4055ae5e
HS
368 spin_lock(&adap->mbox_lock);
369 list_del(&entry.list);
370 spin_unlock(&adap->mbox_lock);
7f080c3f
HS
371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
373 return ret;
374 }
56d36be4 375
7f080c3f
HS
376 /* Copy in the new mailbox command and send it on its way ... */
377 t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
56d36be4
DM
378 for (i = 0; i < size; i += 8)
379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380
89c3a86c 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
382 t4_read_reg(adap, ctl_reg); /* flush write */
383
384 delay_idx = 0;
385 ms = delay[0];
386
f358738b
HS
387 for (i = 0;
388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 i < timeout;
390 i += ms) {
56d36be4
DM
391 if (sleep_ok) {
392 ms = delay[delay_idx]; /* last element may repeat */
393 if (delay_idx < ARRAY_SIZE(delay) - 1)
394 delay_idx++;
395 msleep(ms);
396 } else
397 mdelay(ms);
398
399 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
402 t4_write_reg(adap, ctl_reg, 0);
403 continue;
404 }
405
7f080c3f
HS
406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 res = be64_to_cpu(cmd_rpl[0]);
408
e2ac9628 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 410 fw_asrt(adap, data_reg);
e2ac9628
HS
411 res = FW_CMD_RETVAL_V(EIO);
412 } else if (rpl) {
7f080c3f 413 memcpy(rpl, cmd_rpl, size);
e2ac9628 414 }
56d36be4 415
56d36be4 416 t4_write_reg(adap, ctl_reg, 0);
7f080c3f
HS
417
418 execute = i + ms;
419 t4_record_mbox(adap, cmd_rpl,
420 MBOX_LEN, access, execute);
4055ae5e
HS
421 spin_lock(&adap->mbox_lock);
422 list_del(&entry.list);
423 spin_unlock(&adap->mbox_lock);
e2ac9628 424 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
425 }
426 }
427
f358738b 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
7f080c3f 429 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
56d36be4
DM
430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 *(const u8 *)cmd, mbox);
31d55c2d 432 t4_report_fw_error(adap);
4055ae5e
HS
433 spin_lock(&adap->mbox_lock);
434 list_del(&entry.list);
435 spin_unlock(&adap->mbox_lock);
3be0679b 436 t4_fatal_err(adap);
7f080c3f 437 return ret;
56d36be4
DM
438}
439
01b69614
HS
440int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 void *rpl, bool sleep_ok)
56d36be4 442{
01b69614
HS
443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
445}
446
bf8ebb67
HS
447static int t4_edc_err_read(struct adapter *adap, int idx)
448{
449 u32 edc_ecc_err_addr_reg;
450 u32 rdata_reg;
451
452 if (is_t4(adap->params.chip)) {
453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 return 0;
455 }
456 if (idx != 0 && idx != 1) {
457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 return 0;
459 }
460
461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463
464 CH_WARN(adap,
465 "edc%d err addr 0x%x: 0x%x.\n",
466 idx, edc_ecc_err_addr_reg,
467 t4_read_reg(adap, edc_ecc_err_addr_reg));
468 CH_WARN(adap,
469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 rdata_reg,
471 (unsigned long long)t4_read_reg64(adap, rdata_reg),
472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480
481 return 0;
482}
483
5afc8b84
VP
484/**
485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486 * @adap: the adapter
fc5ab020 487 * @win: PCI-E Memory Window to use
5afc8b84
VP
488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489 * @addr: address within indicated memory type
490 * @len: amount of memory to transfer
f01aa633 491 * @hbuf: host memory buffer
fc5ab020 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
493 *
494 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
495 * firmware memory address and host buffer must be aligned on 32-bit
496 * boudaries; the length may be arbitrary. The memory is transferred as
497 * a raw byte sequence from/to the firmware's memory. If this memory
498 * contains data structures which contain multi-byte integers, it's the
499 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 500 */
fc5ab020 501int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 502 u32 len, void *hbuf, int dir)
5afc8b84 503{
fc5ab020
HS
504 u32 pos, offset, resid, memoffset;
505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 506 u32 *buf;
5afc8b84 507
fc5ab020 508 /* Argument sanity checks ...
5afc8b84 509 */
f01aa633 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 511 return -EINVAL;
f01aa633 512 buf = (u32 *)hbuf;
5afc8b84 513
fc5ab020
HS
514 /* It's convenient to be able to handle lengths which aren't a
515 * multiple of 32-bits because we often end up transferring files to
516 * the firmware. So we'll handle that by normalizing the length here
517 * and then handling any residual transfer at the end.
518 */
519 resid = len & 0x3;
520 len -= resid;
8c357ebd 521
19dd37ba 522 /* Offset into the region of memory which is being accessed
5afc8b84
VP
523 * MEM_EDC0 = 0
524 * MEM_EDC1 = 1
3ccc6cf7
HS
525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 527 */
6559a7e8 528 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
529 if (mtype != MEM_MC1)
530 memoffset = (mtype * (edc_size * 1024 * 1024));
531 else {
6559a7e8 532 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 533 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
534 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 }
5afc8b84
VP
536
537 /* Determine the PCIE_MEM_ACCESS_OFFSET */
538 addr = addr + memoffset;
539
fc5ab020
HS
540 /* Each PCI-E Memory Window is programmed with a window size -- or
541 * "aperture" -- which controls the granularity of its mapping onto
542 * adapter memory. We need to grab that aperture in order to know
543 * how to use the specified window. The window is also programmed
544 * with the base address of the Memory Window in BAR0's address
545 * space. For T4 this is an absolute PCI-E Bus Address. For T5
546 * the address is relative to BAR0.
5afc8b84 547 */
fc5ab020 548 mem_reg = t4_read_reg(adap,
f061de42 549 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 550 win));
f061de42
HS
551 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
553 if (is_t4(adap->params.chip))
554 mem_base -= adap->t4_bar0;
b2612722 555 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 556
fc5ab020
HS
557 /* Calculate our initial PCI-E Memory Window Position and Offset into
558 * that Window.
559 */
560 pos = addr & ~(mem_aperture-1);
561 offset = addr - pos;
5afc8b84 562
fc5ab020
HS
563 /* Set up initial PCI-E Memory Window to cover the start of our
564 * transfer. (Read it back to ensure that changes propagate before we
565 * attempt to use the new value.)
566 */
567 t4_write_reg(adap,
f061de42 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
569 pos | win_pf);
570 t4_read_reg(adap,
f061de42 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
572
573 /* Transfer data to/from the adapter as long as there's an integral
574 * number of 32-bit transfers to complete.
f01aa633
HS
575 *
576 * A note on Endianness issues:
577 *
578 * The "register" reads and writes below from/to the PCI-E Memory
579 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 * Little-Endian "swizzel." As a result, if we have the following
581 * data in adapter memory:
582 *
583 * Memory: ... | b0 | b1 | b2 | b3 | ...
584 * Address: i+0 i+1 i+2 i+3
585 *
586 * Then a read of the adapter memory via the PCI-E Memory Window
587 * will yield:
588 *
589 * x = readl(i)
590 * 31 0
591 * [ b3 | b2 | b1 | b0 ]
592 *
593 * If this value is stored into local memory on a Little-Endian system
594 * it will show up correctly in local memory as:
595 *
596 * ( ..., b0, b1, b2, b3, ... )
597 *
598 * But on a Big-Endian system, the store will show up in memory
599 * incorrectly swizzled as:
600 *
601 * ( ..., b3, b2, b1, b0, ... )
602 *
603 * So we need to account for this in the reads and writes to the
604 * PCI-E Memory Window below by undoing the register read/write
605 * swizzels.
fc5ab020
HS
606 */
607 while (len > 0) {
608 if (dir == T4_MEMORY_READ)
f01aa633
HS
609 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 mem_base + offset));
fc5ab020
HS
611 else
612 t4_write_reg(adap, mem_base + offset,
f01aa633 613 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
614 offset += sizeof(__be32);
615 len -= sizeof(__be32);
616
617 /* If we've reached the end of our current window aperture,
618 * move the PCI-E Memory Window on to the next. Note that
619 * doing this here after "len" may be 0 allows us to set up
620 * the PCI-E Memory Window for a possible final residual
621 * transfer below ...
5afc8b84 622 */
fc5ab020
HS
623 if (offset == mem_aperture) {
624 pos += mem_aperture;
625 offset = 0;
626 t4_write_reg(adap,
f061de42
HS
627 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 win), pos | win_pf);
fc5ab020 629 t4_read_reg(adap,
f061de42
HS
630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 win));
5afc8b84 632 }
5afc8b84
VP
633 }
634
fc5ab020
HS
635 /* If the original transfer had a length which wasn't a multiple of
636 * 32-bits, now's where we need to finish off the transfer of the
637 * residual amount. The PCI-E Memory Window has already been moved
638 * above (if necessary) to cover this final transfer.
639 */
640 if (resid) {
641 union {
f01aa633 642 u32 word;
fc5ab020
HS
643 char byte[4];
644 } last;
645 unsigned char *bp;
646 int i;
647
c81576c2 648 if (dir == T4_MEMORY_READ) {
f01aa633
HS
649 last.word = le32_to_cpu(
650 (__force __le32)t4_read_reg(adap,
651 mem_base + offset));
fc5ab020
HS
652 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 bp[i] = last.byte[i];
654 } else {
655 last.word = *buf;
656 for (i = resid; i < 4; i++)
657 last.byte[i] = 0;
658 t4_write_reg(adap, mem_base + offset,
f01aa633 659 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
660 }
661 }
5afc8b84 662
fc5ab020 663 return 0;
5afc8b84
VP
664}
665
b562fc37
HS
666/* Return the specified PCI-E Configuration Space register from our Physical
667 * Function. We try first via a Firmware LDST Command since we prefer to let
668 * the firmware own all of these registers, but if that fails we go for it
669 * directly ourselves.
670 */
671u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672{
673 u32 val, ldst_addrspace;
674
675 /* If fw_attach != 0, construct and send the Firmware LDST Command to
676 * retrieve the specified PCI-E Configuration Space register.
677 */
678 struct fw_ldst_cmd ldst_cmd;
679 int ret;
680
681 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 FW_CMD_REQUEST_F |
685 FW_CMD_READ_F |
686 ldst_addrspace);
687 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 690 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
691 ldst_cmd.u.pcie.r = reg;
692
693 /* If the LDST Command succeeds, return the result, otherwise
694 * fall through to reading it directly ourselves ...
695 */
696 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 &ldst_cmd);
698 if (ret == 0)
699 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 else
701 /* Read the desired Configuration Space register via the PCI-E
702 * Backdoor mechanism.
703 */
704 t4_hw_pci_read_cfg4(adap, reg, &val);
705 return val;
706}
707
708/* Get the window based on base passed to it.
709 * Window aperture is currently unhandled, but there is no use case for it
710 * right now
711 */
712static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 u32 memwin_base)
714{
715 u32 ret;
716
717 if (is_t4(adap->params.chip)) {
718 u32 bar0;
719
720 /* Truncation intentional: we only read the bottom 32-bits of
721 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
722 * mechanism to read BAR0 instead of using
723 * pci_resource_start() because we could be operating from
724 * within a Virtual Machine which is trapping our accesses to
725 * our Configuration Space and we need to set up the PCI-E
726 * Memory Window decoders with the actual addresses which will
727 * be coming across the PCI-E link.
728 */
729 bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 bar0 &= pci_mask;
731 adap->t4_bar0 = bar0;
732
733 ret = bar0 + memwin_base;
734 } else {
735 /* For T5, only relative offset inside the PCIe BAR is passed */
736 ret = memwin_base;
737 }
738 return ret;
739}
740
741/* Get the default utility window (win0) used by everyone */
742u32 t4_get_util_window(struct adapter *adap)
743{
744 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746}
747
748/* Set up memory window for accessing adapter memory ranges. (Read
749 * back MA register to ensure that changes propagate before we attempt
750 * to use the new values.)
751 */
752void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753{
754 t4_write_reg(adap,
755 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 memwin_base | BIR_V(0) |
757 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 t4_read_reg(adap,
759 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760}
761
812034f1
HS
762/**
763 * t4_get_regs_len - return the size of the chips register set
764 * @adapter: the adapter
765 *
766 * Returns the size of the chip's BAR0 register space.
767 */
768unsigned int t4_get_regs_len(struct adapter *adapter)
769{
770 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771
772 switch (chip_version) {
773 case CHELSIO_T4:
774 return T4_REGMAP_SIZE;
775
776 case CHELSIO_T5:
ab4b583b 777 case CHELSIO_T6:
812034f1
HS
778 return T5_REGMAP_SIZE;
779 }
780
781 dev_err(adapter->pdev_dev,
782 "Unsupported chip version %d\n", chip_version);
783 return 0;
784}
785
786/**
787 * t4_get_regs - read chip registers into provided buffer
788 * @adap: the adapter
789 * @buf: register buffer
790 * @buf_size: size (in bytes) of register buffer
791 *
792 * If the provided register buffer isn't large enough for the chip's
793 * full register range, the register dump will be truncated to the
794 * register buffer's size.
795 */
796void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797{
798 static const unsigned int t4_reg_ranges[] = {
799 0x1008, 0x1108,
8119c018
HS
800 0x1180, 0x1184,
801 0x1190, 0x1194,
802 0x11a0, 0x11a4,
803 0x11b0, 0x11b4,
812034f1
HS
804 0x11fc, 0x123c,
805 0x1300, 0x173c,
806 0x1800, 0x18fc,
8119c018
HS
807 0x3000, 0x30d8,
808 0x30e0, 0x30e4,
809 0x30ec, 0x5910,
810 0x5920, 0x5924,
811 0x5960, 0x5960,
812 0x5968, 0x5968,
813 0x5970, 0x5970,
814 0x5978, 0x5978,
815 0x5980, 0x5980,
816 0x5988, 0x5988,
817 0x5990, 0x5990,
818 0x5998, 0x5998,
819 0x59a0, 0x59d4,
820 0x5a00, 0x5ae0,
821 0x5ae8, 0x5ae8,
822 0x5af0, 0x5af0,
823 0x5af8, 0x5af8,
812034f1
HS
824 0x6000, 0x6098,
825 0x6100, 0x6150,
826 0x6200, 0x6208,
827 0x6240, 0x6248,
8119c018
HS
828 0x6280, 0x62b0,
829 0x62c0, 0x6338,
812034f1
HS
830 0x6370, 0x638c,
831 0x6400, 0x643c,
832 0x6500, 0x6524,
8119c018
HS
833 0x6a00, 0x6a04,
834 0x6a14, 0x6a38,
835 0x6a60, 0x6a70,
836 0x6a78, 0x6a78,
837 0x6b00, 0x6b0c,
838 0x6b1c, 0x6b84,
839 0x6bf0, 0x6bf8,
840 0x6c00, 0x6c0c,
841 0x6c1c, 0x6c84,
842 0x6cf0, 0x6cf8,
843 0x6d00, 0x6d0c,
844 0x6d1c, 0x6d84,
845 0x6df0, 0x6df8,
846 0x6e00, 0x6e0c,
847 0x6e1c, 0x6e84,
848 0x6ef0, 0x6ef8,
849 0x6f00, 0x6f0c,
850 0x6f1c, 0x6f84,
851 0x6ff0, 0x6ff8,
852 0x7000, 0x700c,
853 0x701c, 0x7084,
854 0x70f0, 0x70f8,
855 0x7100, 0x710c,
856 0x711c, 0x7184,
857 0x71f0, 0x71f8,
858 0x7200, 0x720c,
859 0x721c, 0x7284,
860 0x72f0, 0x72f8,
861 0x7300, 0x730c,
862 0x731c, 0x7384,
863 0x73f0, 0x73f8,
864 0x7400, 0x7450,
812034f1 865 0x7500, 0x7530,
8119c018
HS
866 0x7600, 0x760c,
867 0x7614, 0x761c,
812034f1
HS
868 0x7680, 0x76cc,
869 0x7700, 0x7798,
870 0x77c0, 0x77fc,
871 0x7900, 0x79fc,
8119c018
HS
872 0x7b00, 0x7b58,
873 0x7b60, 0x7b84,
874 0x7b8c, 0x7c38,
875 0x7d00, 0x7d38,
876 0x7d40, 0x7d80,
877 0x7d8c, 0x7ddc,
878 0x7de4, 0x7e04,
879 0x7e10, 0x7e1c,
880 0x7e24, 0x7e38,
881 0x7e40, 0x7e44,
882 0x7e4c, 0x7e78,
883 0x7e80, 0x7ea4,
884 0x7eac, 0x7edc,
885 0x7ee8, 0x7efc,
886 0x8dc0, 0x8e04,
887 0x8e10, 0x8e1c,
812034f1 888 0x8e30, 0x8e78,
8119c018
HS
889 0x8ea0, 0x8eb8,
890 0x8ec0, 0x8f6c,
891 0x8fc0, 0x9008,
892 0x9010, 0x9058,
893 0x9060, 0x9060,
894 0x9068, 0x9074,
812034f1 895 0x90fc, 0x90fc,
8119c018
HS
896 0x9400, 0x9408,
897 0x9410, 0x9458,
898 0x9600, 0x9600,
899 0x9608, 0x9638,
900 0x9640, 0x96bc,
812034f1
HS
901 0x9800, 0x9808,
902 0x9820, 0x983c,
903 0x9850, 0x9864,
904 0x9c00, 0x9c6c,
905 0x9c80, 0x9cec,
906 0x9d00, 0x9d6c,
907 0x9d80, 0x9dec,
908 0x9e00, 0x9e6c,
909 0x9e80, 0x9eec,
910 0x9f00, 0x9f6c,
911 0x9f80, 0x9fec,
8119c018
HS
912 0xd004, 0xd004,
913 0xd010, 0xd03c,
812034f1
HS
914 0xdfc0, 0xdfe0,
915 0xe000, 0xea7c,
04d8980b
AV
916 0xf000, 0x11110,
917 0x11118, 0x11190,
812034f1
HS
918 0x19040, 0x1906c,
919 0x19078, 0x19080,
8119c018
HS
920 0x1908c, 0x190e4,
921 0x190f0, 0x190f8,
922 0x19100, 0x19110,
923 0x19120, 0x19124,
924 0x19150, 0x19194,
925 0x1919c, 0x191b0,
812034f1
HS
926 0x191d0, 0x191e8,
927 0x19238, 0x1924c,
8119c018
HS
928 0x193f8, 0x1943c,
929 0x1944c, 0x19474,
930 0x19490, 0x194e0,
931 0x194f0, 0x194f8,
932 0x19800, 0x19c08,
933 0x19c10, 0x19c90,
934 0x19ca0, 0x19ce4,
935 0x19cf0, 0x19d40,
936 0x19d50, 0x19d94,
937 0x19da0, 0x19de8,
938 0x19df0, 0x19e40,
939 0x19e50, 0x19e90,
940 0x19ea0, 0x19f4c,
941 0x1a000, 0x1a004,
942 0x1a010, 0x1a06c,
943 0x1a0b0, 0x1a0e4,
944 0x1a0ec, 0x1a0f4,
945 0x1a100, 0x1a108,
946 0x1a114, 0x1a120,
947 0x1a128, 0x1a130,
948 0x1a138, 0x1a138,
812034f1
HS
949 0x1a190, 0x1a1c4,
950 0x1a1fc, 0x1a1fc,
951 0x1e040, 0x1e04c,
952 0x1e284, 0x1e28c,
953 0x1e2c0, 0x1e2c0,
954 0x1e2e0, 0x1e2e0,
955 0x1e300, 0x1e384,
956 0x1e3c0, 0x1e3c8,
957 0x1e440, 0x1e44c,
958 0x1e684, 0x1e68c,
959 0x1e6c0, 0x1e6c0,
960 0x1e6e0, 0x1e6e0,
961 0x1e700, 0x1e784,
962 0x1e7c0, 0x1e7c8,
963 0x1e840, 0x1e84c,
964 0x1ea84, 0x1ea8c,
965 0x1eac0, 0x1eac0,
966 0x1eae0, 0x1eae0,
967 0x1eb00, 0x1eb84,
968 0x1ebc0, 0x1ebc8,
969 0x1ec40, 0x1ec4c,
970 0x1ee84, 0x1ee8c,
971 0x1eec0, 0x1eec0,
972 0x1eee0, 0x1eee0,
973 0x1ef00, 0x1ef84,
974 0x1efc0, 0x1efc8,
975 0x1f040, 0x1f04c,
976 0x1f284, 0x1f28c,
977 0x1f2c0, 0x1f2c0,
978 0x1f2e0, 0x1f2e0,
979 0x1f300, 0x1f384,
980 0x1f3c0, 0x1f3c8,
981 0x1f440, 0x1f44c,
982 0x1f684, 0x1f68c,
983 0x1f6c0, 0x1f6c0,
984 0x1f6e0, 0x1f6e0,
985 0x1f700, 0x1f784,
986 0x1f7c0, 0x1f7c8,
987 0x1f840, 0x1f84c,
988 0x1fa84, 0x1fa8c,
989 0x1fac0, 0x1fac0,
990 0x1fae0, 0x1fae0,
991 0x1fb00, 0x1fb84,
992 0x1fbc0, 0x1fbc8,
993 0x1fc40, 0x1fc4c,
994 0x1fe84, 0x1fe8c,
995 0x1fec0, 0x1fec0,
996 0x1fee0, 0x1fee0,
997 0x1ff00, 0x1ff84,
998 0x1ffc0, 0x1ffc8,
999 0x20000, 0x2002c,
1000 0x20100, 0x2013c,
8119c018
HS
1001 0x20190, 0x201a0,
1002 0x201a8, 0x201b8,
1003 0x201c4, 0x201c8,
812034f1 1004 0x20200, 0x20318,
8119c018
HS
1005 0x20400, 0x204b4,
1006 0x204c0, 0x20528,
812034f1
HS
1007 0x20540, 0x20614,
1008 0x21000, 0x21040,
1009 0x2104c, 0x21060,
1010 0x210c0, 0x210ec,
1011 0x21200, 0x21268,
1012 0x21270, 0x21284,
1013 0x212fc, 0x21388,
1014 0x21400, 0x21404,
8119c018
HS
1015 0x21500, 0x21500,
1016 0x21510, 0x21518,
1017 0x2152c, 0x21530,
1018 0x2153c, 0x2153c,
812034f1
HS
1019 0x21550, 0x21554,
1020 0x21600, 0x21600,
8119c018
HS
1021 0x21608, 0x2161c,
1022 0x21624, 0x21628,
1023 0x21630, 0x21634,
1024 0x2163c, 0x2163c,
812034f1
HS
1025 0x21700, 0x2171c,
1026 0x21780, 0x2178c,
8119c018
HS
1027 0x21800, 0x21818,
1028 0x21820, 0x21828,
1029 0x21830, 0x21848,
1030 0x21850, 0x21854,
1031 0x21860, 0x21868,
1032 0x21870, 0x21870,
1033 0x21878, 0x21898,
1034 0x218a0, 0x218a8,
1035 0x218b0, 0x218c8,
1036 0x218d0, 0x218d4,
1037 0x218e0, 0x218e8,
1038 0x218f0, 0x218f0,
1039 0x218f8, 0x21a18,
1040 0x21a20, 0x21a28,
1041 0x21a30, 0x21a48,
1042 0x21a50, 0x21a54,
1043 0x21a60, 0x21a68,
1044 0x21a70, 0x21a70,
1045 0x21a78, 0x21a98,
1046 0x21aa0, 0x21aa8,
1047 0x21ab0, 0x21ac8,
1048 0x21ad0, 0x21ad4,
1049 0x21ae0, 0x21ae8,
1050 0x21af0, 0x21af0,
1051 0x21af8, 0x21c18,
1052 0x21c20, 0x21c20,
1053 0x21c28, 0x21c30,
1054 0x21c38, 0x21c38,
1055 0x21c80, 0x21c98,
1056 0x21ca0, 0x21ca8,
1057 0x21cb0, 0x21cc8,
1058 0x21cd0, 0x21cd4,
1059 0x21ce0, 0x21ce8,
1060 0x21cf0, 0x21cf0,
1061 0x21cf8, 0x21d7c,
812034f1
HS
1062 0x21e00, 0x21e04,
1063 0x22000, 0x2202c,
1064 0x22100, 0x2213c,
8119c018
HS
1065 0x22190, 0x221a0,
1066 0x221a8, 0x221b8,
1067 0x221c4, 0x221c8,
812034f1 1068 0x22200, 0x22318,
8119c018
HS
1069 0x22400, 0x224b4,
1070 0x224c0, 0x22528,
812034f1
HS
1071 0x22540, 0x22614,
1072 0x23000, 0x23040,
1073 0x2304c, 0x23060,
1074 0x230c0, 0x230ec,
1075 0x23200, 0x23268,
1076 0x23270, 0x23284,
1077 0x232fc, 0x23388,
1078 0x23400, 0x23404,
8119c018
HS
1079 0x23500, 0x23500,
1080 0x23510, 0x23518,
1081 0x2352c, 0x23530,
1082 0x2353c, 0x2353c,
812034f1
HS
1083 0x23550, 0x23554,
1084 0x23600, 0x23600,
8119c018
HS
1085 0x23608, 0x2361c,
1086 0x23624, 0x23628,
1087 0x23630, 0x23634,
1088 0x2363c, 0x2363c,
812034f1
HS
1089 0x23700, 0x2371c,
1090 0x23780, 0x2378c,
8119c018
HS
1091 0x23800, 0x23818,
1092 0x23820, 0x23828,
1093 0x23830, 0x23848,
1094 0x23850, 0x23854,
1095 0x23860, 0x23868,
1096 0x23870, 0x23870,
1097 0x23878, 0x23898,
1098 0x238a0, 0x238a8,
1099 0x238b0, 0x238c8,
1100 0x238d0, 0x238d4,
1101 0x238e0, 0x238e8,
1102 0x238f0, 0x238f0,
1103 0x238f8, 0x23a18,
1104 0x23a20, 0x23a28,
1105 0x23a30, 0x23a48,
1106 0x23a50, 0x23a54,
1107 0x23a60, 0x23a68,
1108 0x23a70, 0x23a70,
1109 0x23a78, 0x23a98,
1110 0x23aa0, 0x23aa8,
1111 0x23ab0, 0x23ac8,
1112 0x23ad0, 0x23ad4,
1113 0x23ae0, 0x23ae8,
1114 0x23af0, 0x23af0,
1115 0x23af8, 0x23c18,
1116 0x23c20, 0x23c20,
1117 0x23c28, 0x23c30,
1118 0x23c38, 0x23c38,
1119 0x23c80, 0x23c98,
1120 0x23ca0, 0x23ca8,
1121 0x23cb0, 0x23cc8,
1122 0x23cd0, 0x23cd4,
1123 0x23ce0, 0x23ce8,
1124 0x23cf0, 0x23cf0,
1125 0x23cf8, 0x23d7c,
812034f1
HS
1126 0x23e00, 0x23e04,
1127 0x24000, 0x2402c,
1128 0x24100, 0x2413c,
8119c018
HS
1129 0x24190, 0x241a0,
1130 0x241a8, 0x241b8,
1131 0x241c4, 0x241c8,
812034f1 1132 0x24200, 0x24318,
8119c018
HS
1133 0x24400, 0x244b4,
1134 0x244c0, 0x24528,
812034f1
HS
1135 0x24540, 0x24614,
1136 0x25000, 0x25040,
1137 0x2504c, 0x25060,
1138 0x250c0, 0x250ec,
1139 0x25200, 0x25268,
1140 0x25270, 0x25284,
1141 0x252fc, 0x25388,
1142 0x25400, 0x25404,
8119c018
HS
1143 0x25500, 0x25500,
1144 0x25510, 0x25518,
1145 0x2552c, 0x25530,
1146 0x2553c, 0x2553c,
812034f1
HS
1147 0x25550, 0x25554,
1148 0x25600, 0x25600,
8119c018
HS
1149 0x25608, 0x2561c,
1150 0x25624, 0x25628,
1151 0x25630, 0x25634,
1152 0x2563c, 0x2563c,
812034f1
HS
1153 0x25700, 0x2571c,
1154 0x25780, 0x2578c,
8119c018
HS
1155 0x25800, 0x25818,
1156 0x25820, 0x25828,
1157 0x25830, 0x25848,
1158 0x25850, 0x25854,
1159 0x25860, 0x25868,
1160 0x25870, 0x25870,
1161 0x25878, 0x25898,
1162 0x258a0, 0x258a8,
1163 0x258b0, 0x258c8,
1164 0x258d0, 0x258d4,
1165 0x258e0, 0x258e8,
1166 0x258f0, 0x258f0,
1167 0x258f8, 0x25a18,
1168 0x25a20, 0x25a28,
1169 0x25a30, 0x25a48,
1170 0x25a50, 0x25a54,
1171 0x25a60, 0x25a68,
1172 0x25a70, 0x25a70,
1173 0x25a78, 0x25a98,
1174 0x25aa0, 0x25aa8,
1175 0x25ab0, 0x25ac8,
1176 0x25ad0, 0x25ad4,
1177 0x25ae0, 0x25ae8,
1178 0x25af0, 0x25af0,
1179 0x25af8, 0x25c18,
1180 0x25c20, 0x25c20,
1181 0x25c28, 0x25c30,
1182 0x25c38, 0x25c38,
1183 0x25c80, 0x25c98,
1184 0x25ca0, 0x25ca8,
1185 0x25cb0, 0x25cc8,
1186 0x25cd0, 0x25cd4,
1187 0x25ce0, 0x25ce8,
1188 0x25cf0, 0x25cf0,
1189 0x25cf8, 0x25d7c,
812034f1
HS
1190 0x25e00, 0x25e04,
1191 0x26000, 0x2602c,
1192 0x26100, 0x2613c,
8119c018
HS
1193 0x26190, 0x261a0,
1194 0x261a8, 0x261b8,
1195 0x261c4, 0x261c8,
812034f1 1196 0x26200, 0x26318,
8119c018
HS
1197 0x26400, 0x264b4,
1198 0x264c0, 0x26528,
812034f1
HS
1199 0x26540, 0x26614,
1200 0x27000, 0x27040,
1201 0x2704c, 0x27060,
1202 0x270c0, 0x270ec,
1203 0x27200, 0x27268,
1204 0x27270, 0x27284,
1205 0x272fc, 0x27388,
1206 0x27400, 0x27404,
8119c018
HS
1207 0x27500, 0x27500,
1208 0x27510, 0x27518,
1209 0x2752c, 0x27530,
1210 0x2753c, 0x2753c,
812034f1
HS
1211 0x27550, 0x27554,
1212 0x27600, 0x27600,
8119c018
HS
1213 0x27608, 0x2761c,
1214 0x27624, 0x27628,
1215 0x27630, 0x27634,
1216 0x2763c, 0x2763c,
812034f1
HS
1217 0x27700, 0x2771c,
1218 0x27780, 0x2778c,
8119c018
HS
1219 0x27800, 0x27818,
1220 0x27820, 0x27828,
1221 0x27830, 0x27848,
1222 0x27850, 0x27854,
1223 0x27860, 0x27868,
1224 0x27870, 0x27870,
1225 0x27878, 0x27898,
1226 0x278a0, 0x278a8,
1227 0x278b0, 0x278c8,
1228 0x278d0, 0x278d4,
1229 0x278e0, 0x278e8,
1230 0x278f0, 0x278f0,
1231 0x278f8, 0x27a18,
1232 0x27a20, 0x27a28,
1233 0x27a30, 0x27a48,
1234 0x27a50, 0x27a54,
1235 0x27a60, 0x27a68,
1236 0x27a70, 0x27a70,
1237 0x27a78, 0x27a98,
1238 0x27aa0, 0x27aa8,
1239 0x27ab0, 0x27ac8,
1240 0x27ad0, 0x27ad4,
1241 0x27ae0, 0x27ae8,
1242 0x27af0, 0x27af0,
1243 0x27af8, 0x27c18,
1244 0x27c20, 0x27c20,
1245 0x27c28, 0x27c30,
1246 0x27c38, 0x27c38,
1247 0x27c80, 0x27c98,
1248 0x27ca0, 0x27ca8,
1249 0x27cb0, 0x27cc8,
1250 0x27cd0, 0x27cd4,
1251 0x27ce0, 0x27ce8,
1252 0x27cf0, 0x27cf0,
1253 0x27cf8, 0x27d7c,
9f5ac48d 1254 0x27e00, 0x27e04,
812034f1
HS
1255 };
1256
1257 static const unsigned int t5_reg_ranges[] = {
8119c018
HS
1258 0x1008, 0x10c0,
1259 0x10cc, 0x10f8,
1260 0x1100, 0x1100,
1261 0x110c, 0x1148,
1262 0x1180, 0x1184,
1263 0x1190, 0x1194,
1264 0x11a0, 0x11a4,
1265 0x11b0, 0x11b4,
812034f1
HS
1266 0x11fc, 0x123c,
1267 0x1280, 0x173c,
1268 0x1800, 0x18fc,
1269 0x3000, 0x3028,
8119c018
HS
1270 0x3060, 0x30b0,
1271 0x30b8, 0x30d8,
812034f1
HS
1272 0x30e0, 0x30fc,
1273 0x3140, 0x357c,
1274 0x35a8, 0x35cc,
1275 0x35ec, 0x35ec,
1276 0x3600, 0x5624,
8119c018
HS
1277 0x56cc, 0x56ec,
1278 0x56f4, 0x5720,
1279 0x5728, 0x575c,
812034f1 1280 0x580c, 0x5814,
8119c018
HS
1281 0x5890, 0x589c,
1282 0x58a4, 0x58ac,
1283 0x58b8, 0x58bc,
1284 0x5940, 0x59c8,
1285 0x59d0, 0x59dc,
812034f1 1286 0x59fc, 0x5a18,
8119c018
HS
1287 0x5a60, 0x5a70,
1288 0x5a80, 0x5a9c,
9f5ac48d 1289 0x5b94, 0x5bfc,
8119c018
HS
1290 0x6000, 0x6020,
1291 0x6028, 0x6040,
1292 0x6058, 0x609c,
1293 0x60a8, 0x614c,
812034f1
HS
1294 0x7700, 0x7798,
1295 0x77c0, 0x78fc,
8119c018
HS
1296 0x7b00, 0x7b58,
1297 0x7b60, 0x7b84,
1298 0x7b8c, 0x7c54,
1299 0x7d00, 0x7d38,
1300 0x7d40, 0x7d80,
1301 0x7d8c, 0x7ddc,
1302 0x7de4, 0x7e04,
1303 0x7e10, 0x7e1c,
1304 0x7e24, 0x7e38,
1305 0x7e40, 0x7e44,
1306 0x7e4c, 0x7e78,
1307 0x7e80, 0x7edc,
1308 0x7ee8, 0x7efc,
812034f1 1309 0x8dc0, 0x8de0,
8119c018
HS
1310 0x8df8, 0x8e04,
1311 0x8e10, 0x8e84,
812034f1 1312 0x8ea0, 0x8f84,
8119c018
HS
1313 0x8fc0, 0x9058,
1314 0x9060, 0x9060,
1315 0x9068, 0x90f8,
1316 0x9400, 0x9408,
1317 0x9410, 0x9470,
1318 0x9600, 0x9600,
1319 0x9608, 0x9638,
1320 0x9640, 0x96f4,
812034f1
HS
1321 0x9800, 0x9808,
1322 0x9820, 0x983c,
1323 0x9850, 0x9864,
1324 0x9c00, 0x9c6c,
1325 0x9c80, 0x9cec,
1326 0x9d00, 0x9d6c,
1327 0x9d80, 0x9dec,
1328 0x9e00, 0x9e6c,
1329 0x9e80, 0x9eec,
1330 0x9f00, 0x9f6c,
1331 0x9f80, 0xa020,
8119c018
HS
1332 0xd004, 0xd004,
1333 0xd010, 0xd03c,
812034f1 1334 0xdfc0, 0xdfe0,
8119c018
HS
1335 0xe000, 0x1106c,
1336 0x11074, 0x11088,
1337 0x1109c, 0x1117c,
812034f1
HS
1338 0x11190, 0x11204,
1339 0x19040, 0x1906c,
1340 0x19078, 0x19080,
8119c018
HS
1341 0x1908c, 0x190e8,
1342 0x190f0, 0x190f8,
1343 0x19100, 0x19110,
1344 0x19120, 0x19124,
1345 0x19150, 0x19194,
1346 0x1919c, 0x191b0,
812034f1
HS
1347 0x191d0, 0x191e8,
1348 0x19238, 0x19290,
8119c018
HS
1349 0x193f8, 0x19428,
1350 0x19430, 0x19444,
1351 0x1944c, 0x1946c,
1352 0x19474, 0x19474,
812034f1
HS
1353 0x19490, 0x194cc,
1354 0x194f0, 0x194f8,
8119c018
HS
1355 0x19c00, 0x19c08,
1356 0x19c10, 0x19c60,
1357 0x19c94, 0x19ce4,
1358 0x19cf0, 0x19d40,
1359 0x19d50, 0x19d94,
1360 0x19da0, 0x19de8,
1361 0x19df0, 0x19e10,
1362 0x19e50, 0x19e90,
1363 0x19ea0, 0x19f24,
1364 0x19f34, 0x19f34,
812034f1 1365 0x19f40, 0x19f50,
8119c018
HS
1366 0x19f90, 0x19fb4,
1367 0x19fc4, 0x19fe4,
1368 0x1a000, 0x1a004,
1369 0x1a010, 0x1a06c,
1370 0x1a0b0, 0x1a0e4,
1371 0x1a0ec, 0x1a0f8,
1372 0x1a100, 0x1a108,
1373 0x1a114, 0x1a120,
1374 0x1a128, 0x1a130,
1375 0x1a138, 0x1a138,
812034f1
HS
1376 0x1a190, 0x1a1c4,
1377 0x1a1fc, 0x1a1fc,
1378 0x1e008, 0x1e00c,
8119c018
HS
1379 0x1e040, 0x1e044,
1380 0x1e04c, 0x1e04c,
812034f1
HS
1381 0x1e284, 0x1e290,
1382 0x1e2c0, 0x1e2c0,
1383 0x1e2e0, 0x1e2e0,
1384 0x1e300, 0x1e384,
1385 0x1e3c0, 0x1e3c8,
1386 0x1e408, 0x1e40c,
8119c018
HS
1387 0x1e440, 0x1e444,
1388 0x1e44c, 0x1e44c,
812034f1
HS
1389 0x1e684, 0x1e690,
1390 0x1e6c0, 0x1e6c0,
1391 0x1e6e0, 0x1e6e0,
1392 0x1e700, 0x1e784,
1393 0x1e7c0, 0x1e7c8,
1394 0x1e808, 0x1e80c,
8119c018
HS
1395 0x1e840, 0x1e844,
1396 0x1e84c, 0x1e84c,
812034f1
HS
1397 0x1ea84, 0x1ea90,
1398 0x1eac0, 0x1eac0,
1399 0x1eae0, 0x1eae0,
1400 0x1eb00, 0x1eb84,
1401 0x1ebc0, 0x1ebc8,
1402 0x1ec08, 0x1ec0c,
8119c018
HS
1403 0x1ec40, 0x1ec44,
1404 0x1ec4c, 0x1ec4c,
812034f1
HS
1405 0x1ee84, 0x1ee90,
1406 0x1eec0, 0x1eec0,
1407 0x1eee0, 0x1eee0,
1408 0x1ef00, 0x1ef84,
1409 0x1efc0, 0x1efc8,
1410 0x1f008, 0x1f00c,
8119c018
HS
1411 0x1f040, 0x1f044,
1412 0x1f04c, 0x1f04c,
812034f1
HS
1413 0x1f284, 0x1f290,
1414 0x1f2c0, 0x1f2c0,
1415 0x1f2e0, 0x1f2e0,
1416 0x1f300, 0x1f384,
1417 0x1f3c0, 0x1f3c8,
1418 0x1f408, 0x1f40c,
8119c018
HS
1419 0x1f440, 0x1f444,
1420 0x1f44c, 0x1f44c,
812034f1
HS
1421 0x1f684, 0x1f690,
1422 0x1f6c0, 0x1f6c0,
1423 0x1f6e0, 0x1f6e0,
1424 0x1f700, 0x1f784,
1425 0x1f7c0, 0x1f7c8,
1426 0x1f808, 0x1f80c,
8119c018
HS
1427 0x1f840, 0x1f844,
1428 0x1f84c, 0x1f84c,
812034f1
HS
1429 0x1fa84, 0x1fa90,
1430 0x1fac0, 0x1fac0,
1431 0x1fae0, 0x1fae0,
1432 0x1fb00, 0x1fb84,
1433 0x1fbc0, 0x1fbc8,
1434 0x1fc08, 0x1fc0c,
8119c018
HS
1435 0x1fc40, 0x1fc44,
1436 0x1fc4c, 0x1fc4c,
812034f1
HS
1437 0x1fe84, 0x1fe90,
1438 0x1fec0, 0x1fec0,
1439 0x1fee0, 0x1fee0,
1440 0x1ff00, 0x1ff84,
1441 0x1ffc0, 0x1ffc8,
1442 0x30000, 0x30030,
1443 0x30100, 0x30144,
8119c018
HS
1444 0x30190, 0x301a0,
1445 0x301a8, 0x301b8,
1446 0x301c4, 0x301c8,
1447 0x301d0, 0x301d0,
812034f1 1448 0x30200, 0x30318,
8119c018
HS
1449 0x30400, 0x304b4,
1450 0x304c0, 0x3052c,
812034f1 1451 0x30540, 0x3061c,
8119c018
HS
1452 0x30800, 0x30828,
1453 0x30834, 0x30834,
812034f1
HS
1454 0x308c0, 0x30908,
1455 0x30910, 0x309ac,
8119c018
HS
1456 0x30a00, 0x30a14,
1457 0x30a1c, 0x30a2c,
812034f1 1458 0x30a44, 0x30a50,
8119c018
HS
1459 0x30a74, 0x30a74,
1460 0x30a7c, 0x30afc,
1461 0x30b08, 0x30c24,
9f5ac48d 1462 0x30d00, 0x30d00,
812034f1
HS
1463 0x30d08, 0x30d14,
1464 0x30d1c, 0x30d20,
8119c018
HS
1465 0x30d3c, 0x30d3c,
1466 0x30d48, 0x30d50,
812034f1
HS
1467 0x31200, 0x3120c,
1468 0x31220, 0x31220,
1469 0x31240, 0x31240,
9f5ac48d 1470 0x31600, 0x3160c,
812034f1 1471 0x31a00, 0x31a1c,
9f5ac48d 1472 0x31e00, 0x31e20,
812034f1
HS
1473 0x31e38, 0x31e3c,
1474 0x31e80, 0x31e80,
1475 0x31e88, 0x31ea8,
1476 0x31eb0, 0x31eb4,
1477 0x31ec8, 0x31ed4,
1478 0x31fb8, 0x32004,
9f5ac48d
HS
1479 0x32200, 0x32200,
1480 0x32208, 0x32240,
1481 0x32248, 0x32280,
1482 0x32288, 0x322c0,
1483 0x322c8, 0x322fc,
812034f1
HS
1484 0x32600, 0x32630,
1485 0x32a00, 0x32abc,
8119c018
HS
1486 0x32b00, 0x32b10,
1487 0x32b20, 0x32b30,
1488 0x32b40, 0x32b50,
1489 0x32b60, 0x32b70,
1490 0x33000, 0x33028,
1491 0x33030, 0x33048,
1492 0x33060, 0x33068,
1493 0x33070, 0x3309c,
1494 0x330f0, 0x33128,
1495 0x33130, 0x33148,
1496 0x33160, 0x33168,
1497 0x33170, 0x3319c,
1498 0x331f0, 0x33238,
1499 0x33240, 0x33240,
1500 0x33248, 0x33250,
1501 0x3325c, 0x33264,
1502 0x33270, 0x332b8,
1503 0x332c0, 0x332e4,
1504 0x332f8, 0x33338,
1505 0x33340, 0x33340,
1506 0x33348, 0x33350,
1507 0x3335c, 0x33364,
1508 0x33370, 0x333b8,
1509 0x333c0, 0x333e4,
1510 0x333f8, 0x33428,
1511 0x33430, 0x33448,
1512 0x33460, 0x33468,
1513 0x33470, 0x3349c,
1514 0x334f0, 0x33528,
1515 0x33530, 0x33548,
1516 0x33560, 0x33568,
1517 0x33570, 0x3359c,
1518 0x335f0, 0x33638,
1519 0x33640, 0x33640,
1520 0x33648, 0x33650,
1521 0x3365c, 0x33664,
1522 0x33670, 0x336b8,
1523 0x336c0, 0x336e4,
1524 0x336f8, 0x33738,
1525 0x33740, 0x33740,
1526 0x33748, 0x33750,
1527 0x3375c, 0x33764,
1528 0x33770, 0x337b8,
1529 0x337c0, 0x337e4,
812034f1
HS
1530 0x337f8, 0x337fc,
1531 0x33814, 0x33814,
1532 0x3382c, 0x3382c,
1533 0x33880, 0x3388c,
1534 0x338e8, 0x338ec,
8119c018
HS
1535 0x33900, 0x33928,
1536 0x33930, 0x33948,
1537 0x33960, 0x33968,
1538 0x33970, 0x3399c,
1539 0x339f0, 0x33a38,
1540 0x33a40, 0x33a40,
1541 0x33a48, 0x33a50,
1542 0x33a5c, 0x33a64,
1543 0x33a70, 0x33ab8,
1544 0x33ac0, 0x33ae4,
812034f1
HS
1545 0x33af8, 0x33b10,
1546 0x33b28, 0x33b28,
1547 0x33b3c, 0x33b50,
1548 0x33bf0, 0x33c10,
1549 0x33c28, 0x33c28,
1550 0x33c3c, 0x33c50,
1551 0x33cf0, 0x33cfc,
1552 0x34000, 0x34030,
1553 0x34100, 0x34144,
8119c018
HS
1554 0x34190, 0x341a0,
1555 0x341a8, 0x341b8,
1556 0x341c4, 0x341c8,
1557 0x341d0, 0x341d0,
812034f1 1558 0x34200, 0x34318,
8119c018
HS
1559 0x34400, 0x344b4,
1560 0x344c0, 0x3452c,
812034f1 1561 0x34540, 0x3461c,
8119c018
HS
1562 0x34800, 0x34828,
1563 0x34834, 0x34834,
812034f1
HS
1564 0x348c0, 0x34908,
1565 0x34910, 0x349ac,
8119c018
HS
1566 0x34a00, 0x34a14,
1567 0x34a1c, 0x34a2c,
812034f1 1568 0x34a44, 0x34a50,
8119c018
HS
1569 0x34a74, 0x34a74,
1570 0x34a7c, 0x34afc,
1571 0x34b08, 0x34c24,
9f5ac48d 1572 0x34d00, 0x34d00,
812034f1
HS
1573 0x34d08, 0x34d14,
1574 0x34d1c, 0x34d20,
8119c018
HS
1575 0x34d3c, 0x34d3c,
1576 0x34d48, 0x34d50,
812034f1
HS
1577 0x35200, 0x3520c,
1578 0x35220, 0x35220,
1579 0x35240, 0x35240,
9f5ac48d 1580 0x35600, 0x3560c,
812034f1 1581 0x35a00, 0x35a1c,
9f5ac48d 1582 0x35e00, 0x35e20,
812034f1
HS
1583 0x35e38, 0x35e3c,
1584 0x35e80, 0x35e80,
1585 0x35e88, 0x35ea8,
1586 0x35eb0, 0x35eb4,
1587 0x35ec8, 0x35ed4,
1588 0x35fb8, 0x36004,
9f5ac48d
HS
1589 0x36200, 0x36200,
1590 0x36208, 0x36240,
1591 0x36248, 0x36280,
1592 0x36288, 0x362c0,
1593 0x362c8, 0x362fc,
812034f1
HS
1594 0x36600, 0x36630,
1595 0x36a00, 0x36abc,
8119c018
HS
1596 0x36b00, 0x36b10,
1597 0x36b20, 0x36b30,
1598 0x36b40, 0x36b50,
1599 0x36b60, 0x36b70,
1600 0x37000, 0x37028,
1601 0x37030, 0x37048,
1602 0x37060, 0x37068,
1603 0x37070, 0x3709c,
1604 0x370f0, 0x37128,
1605 0x37130, 0x37148,
1606 0x37160, 0x37168,
1607 0x37170, 0x3719c,
1608 0x371f0, 0x37238,
1609 0x37240, 0x37240,
1610 0x37248, 0x37250,
1611 0x3725c, 0x37264,
1612 0x37270, 0x372b8,
1613 0x372c0, 0x372e4,
1614 0x372f8, 0x37338,
1615 0x37340, 0x37340,
1616 0x37348, 0x37350,
1617 0x3735c, 0x37364,
1618 0x37370, 0x373b8,
1619 0x373c0, 0x373e4,
1620 0x373f8, 0x37428,
1621 0x37430, 0x37448,
1622 0x37460, 0x37468,
1623 0x37470, 0x3749c,
1624 0x374f0, 0x37528,
1625 0x37530, 0x37548,
1626 0x37560, 0x37568,
1627 0x37570, 0x3759c,
1628 0x375f0, 0x37638,
1629 0x37640, 0x37640,
1630 0x37648, 0x37650,
1631 0x3765c, 0x37664,
1632 0x37670, 0x376b8,
1633 0x376c0, 0x376e4,
1634 0x376f8, 0x37738,
1635 0x37740, 0x37740,
1636 0x37748, 0x37750,
1637 0x3775c, 0x37764,
1638 0x37770, 0x377b8,
1639 0x377c0, 0x377e4,
812034f1
HS
1640 0x377f8, 0x377fc,
1641 0x37814, 0x37814,
1642 0x3782c, 0x3782c,
1643 0x37880, 0x3788c,
1644 0x378e8, 0x378ec,
8119c018
HS
1645 0x37900, 0x37928,
1646 0x37930, 0x37948,
1647 0x37960, 0x37968,
1648 0x37970, 0x3799c,
1649 0x379f0, 0x37a38,
1650 0x37a40, 0x37a40,
1651 0x37a48, 0x37a50,
1652 0x37a5c, 0x37a64,
1653 0x37a70, 0x37ab8,
1654 0x37ac0, 0x37ae4,
812034f1
HS
1655 0x37af8, 0x37b10,
1656 0x37b28, 0x37b28,
1657 0x37b3c, 0x37b50,
1658 0x37bf0, 0x37c10,
1659 0x37c28, 0x37c28,
1660 0x37c3c, 0x37c50,
1661 0x37cf0, 0x37cfc,
1662 0x38000, 0x38030,
1663 0x38100, 0x38144,
8119c018
HS
1664 0x38190, 0x381a0,
1665 0x381a8, 0x381b8,
1666 0x381c4, 0x381c8,
1667 0x381d0, 0x381d0,
812034f1 1668 0x38200, 0x38318,
8119c018
HS
1669 0x38400, 0x384b4,
1670 0x384c0, 0x3852c,
812034f1 1671 0x38540, 0x3861c,
8119c018
HS
1672 0x38800, 0x38828,
1673 0x38834, 0x38834,
812034f1
HS
1674 0x388c0, 0x38908,
1675 0x38910, 0x389ac,
8119c018
HS
1676 0x38a00, 0x38a14,
1677 0x38a1c, 0x38a2c,
812034f1 1678 0x38a44, 0x38a50,
8119c018
HS
1679 0x38a74, 0x38a74,
1680 0x38a7c, 0x38afc,
1681 0x38b08, 0x38c24,
9f5ac48d 1682 0x38d00, 0x38d00,
812034f1
HS
1683 0x38d08, 0x38d14,
1684 0x38d1c, 0x38d20,
8119c018
HS
1685 0x38d3c, 0x38d3c,
1686 0x38d48, 0x38d50,
812034f1
HS
1687 0x39200, 0x3920c,
1688 0x39220, 0x39220,
1689 0x39240, 0x39240,
9f5ac48d 1690 0x39600, 0x3960c,
812034f1 1691 0x39a00, 0x39a1c,
9f5ac48d 1692 0x39e00, 0x39e20,
812034f1
HS
1693 0x39e38, 0x39e3c,
1694 0x39e80, 0x39e80,
1695 0x39e88, 0x39ea8,
1696 0x39eb0, 0x39eb4,
1697 0x39ec8, 0x39ed4,
1698 0x39fb8, 0x3a004,
9f5ac48d
HS
1699 0x3a200, 0x3a200,
1700 0x3a208, 0x3a240,
1701 0x3a248, 0x3a280,
1702 0x3a288, 0x3a2c0,
1703 0x3a2c8, 0x3a2fc,
812034f1
HS
1704 0x3a600, 0x3a630,
1705 0x3aa00, 0x3aabc,
8119c018
HS
1706 0x3ab00, 0x3ab10,
1707 0x3ab20, 0x3ab30,
1708 0x3ab40, 0x3ab50,
1709 0x3ab60, 0x3ab70,
1710 0x3b000, 0x3b028,
1711 0x3b030, 0x3b048,
1712 0x3b060, 0x3b068,
1713 0x3b070, 0x3b09c,
1714 0x3b0f0, 0x3b128,
1715 0x3b130, 0x3b148,
1716 0x3b160, 0x3b168,
1717 0x3b170, 0x3b19c,
1718 0x3b1f0, 0x3b238,
1719 0x3b240, 0x3b240,
1720 0x3b248, 0x3b250,
1721 0x3b25c, 0x3b264,
1722 0x3b270, 0x3b2b8,
1723 0x3b2c0, 0x3b2e4,
1724 0x3b2f8, 0x3b338,
1725 0x3b340, 0x3b340,
1726 0x3b348, 0x3b350,
1727 0x3b35c, 0x3b364,
1728 0x3b370, 0x3b3b8,
1729 0x3b3c0, 0x3b3e4,
1730 0x3b3f8, 0x3b428,
1731 0x3b430, 0x3b448,
1732 0x3b460, 0x3b468,
1733 0x3b470, 0x3b49c,
1734 0x3b4f0, 0x3b528,
1735 0x3b530, 0x3b548,
1736 0x3b560, 0x3b568,
1737 0x3b570, 0x3b59c,
1738 0x3b5f0, 0x3b638,
1739 0x3b640, 0x3b640,
1740 0x3b648, 0x3b650,
1741 0x3b65c, 0x3b664,
1742 0x3b670, 0x3b6b8,
1743 0x3b6c0, 0x3b6e4,
1744 0x3b6f8, 0x3b738,
1745 0x3b740, 0x3b740,
1746 0x3b748, 0x3b750,
1747 0x3b75c, 0x3b764,
1748 0x3b770, 0x3b7b8,
1749 0x3b7c0, 0x3b7e4,
812034f1
HS
1750 0x3b7f8, 0x3b7fc,
1751 0x3b814, 0x3b814,
1752 0x3b82c, 0x3b82c,
1753 0x3b880, 0x3b88c,
1754 0x3b8e8, 0x3b8ec,
8119c018
HS
1755 0x3b900, 0x3b928,
1756 0x3b930, 0x3b948,
1757 0x3b960, 0x3b968,
1758 0x3b970, 0x3b99c,
1759 0x3b9f0, 0x3ba38,
1760 0x3ba40, 0x3ba40,
1761 0x3ba48, 0x3ba50,
1762 0x3ba5c, 0x3ba64,
1763 0x3ba70, 0x3bab8,
1764 0x3bac0, 0x3bae4,
812034f1
HS
1765 0x3baf8, 0x3bb10,
1766 0x3bb28, 0x3bb28,
1767 0x3bb3c, 0x3bb50,
1768 0x3bbf0, 0x3bc10,
1769 0x3bc28, 0x3bc28,
1770 0x3bc3c, 0x3bc50,
1771 0x3bcf0, 0x3bcfc,
1772 0x3c000, 0x3c030,
1773 0x3c100, 0x3c144,
8119c018
HS
1774 0x3c190, 0x3c1a0,
1775 0x3c1a8, 0x3c1b8,
1776 0x3c1c4, 0x3c1c8,
1777 0x3c1d0, 0x3c1d0,
812034f1 1778 0x3c200, 0x3c318,
8119c018
HS
1779 0x3c400, 0x3c4b4,
1780 0x3c4c0, 0x3c52c,
812034f1 1781 0x3c540, 0x3c61c,
8119c018
HS
1782 0x3c800, 0x3c828,
1783 0x3c834, 0x3c834,
812034f1
HS
1784 0x3c8c0, 0x3c908,
1785 0x3c910, 0x3c9ac,
8119c018
HS
1786 0x3ca00, 0x3ca14,
1787 0x3ca1c, 0x3ca2c,
812034f1 1788 0x3ca44, 0x3ca50,
8119c018
HS
1789 0x3ca74, 0x3ca74,
1790 0x3ca7c, 0x3cafc,
1791 0x3cb08, 0x3cc24,
9f5ac48d 1792 0x3cd00, 0x3cd00,
812034f1
HS
1793 0x3cd08, 0x3cd14,
1794 0x3cd1c, 0x3cd20,
8119c018
HS
1795 0x3cd3c, 0x3cd3c,
1796 0x3cd48, 0x3cd50,
812034f1
HS
1797 0x3d200, 0x3d20c,
1798 0x3d220, 0x3d220,
1799 0x3d240, 0x3d240,
9f5ac48d 1800 0x3d600, 0x3d60c,
812034f1 1801 0x3da00, 0x3da1c,
9f5ac48d 1802 0x3de00, 0x3de20,
812034f1
HS
1803 0x3de38, 0x3de3c,
1804 0x3de80, 0x3de80,
1805 0x3de88, 0x3dea8,
1806 0x3deb0, 0x3deb4,
1807 0x3dec8, 0x3ded4,
1808 0x3dfb8, 0x3e004,
9f5ac48d
HS
1809 0x3e200, 0x3e200,
1810 0x3e208, 0x3e240,
1811 0x3e248, 0x3e280,
1812 0x3e288, 0x3e2c0,
1813 0x3e2c8, 0x3e2fc,
812034f1
HS
1814 0x3e600, 0x3e630,
1815 0x3ea00, 0x3eabc,
8119c018
HS
1816 0x3eb00, 0x3eb10,
1817 0x3eb20, 0x3eb30,
1818 0x3eb40, 0x3eb50,
1819 0x3eb60, 0x3eb70,
1820 0x3f000, 0x3f028,
1821 0x3f030, 0x3f048,
1822 0x3f060, 0x3f068,
1823 0x3f070, 0x3f09c,
1824 0x3f0f0, 0x3f128,
1825 0x3f130, 0x3f148,
1826 0x3f160, 0x3f168,
1827 0x3f170, 0x3f19c,
1828 0x3f1f0, 0x3f238,
1829 0x3f240, 0x3f240,
1830 0x3f248, 0x3f250,
1831 0x3f25c, 0x3f264,
1832 0x3f270, 0x3f2b8,
1833 0x3f2c0, 0x3f2e4,
1834 0x3f2f8, 0x3f338,
1835 0x3f340, 0x3f340,
1836 0x3f348, 0x3f350,
1837 0x3f35c, 0x3f364,
1838 0x3f370, 0x3f3b8,
1839 0x3f3c0, 0x3f3e4,
1840 0x3f3f8, 0x3f428,
1841 0x3f430, 0x3f448,
1842 0x3f460, 0x3f468,
1843 0x3f470, 0x3f49c,
1844 0x3f4f0, 0x3f528,
1845 0x3f530, 0x3f548,
1846 0x3f560, 0x3f568,
1847 0x3f570, 0x3f59c,
1848 0x3f5f0, 0x3f638,
1849 0x3f640, 0x3f640,
1850 0x3f648, 0x3f650,
1851 0x3f65c, 0x3f664,
1852 0x3f670, 0x3f6b8,
1853 0x3f6c0, 0x3f6e4,
1854 0x3f6f8, 0x3f738,
1855 0x3f740, 0x3f740,
1856 0x3f748, 0x3f750,
1857 0x3f75c, 0x3f764,
1858 0x3f770, 0x3f7b8,
1859 0x3f7c0, 0x3f7e4,
812034f1
HS
1860 0x3f7f8, 0x3f7fc,
1861 0x3f814, 0x3f814,
1862 0x3f82c, 0x3f82c,
1863 0x3f880, 0x3f88c,
1864 0x3f8e8, 0x3f8ec,
8119c018
HS
1865 0x3f900, 0x3f928,
1866 0x3f930, 0x3f948,
1867 0x3f960, 0x3f968,
1868 0x3f970, 0x3f99c,
1869 0x3f9f0, 0x3fa38,
1870 0x3fa40, 0x3fa40,
1871 0x3fa48, 0x3fa50,
1872 0x3fa5c, 0x3fa64,
1873 0x3fa70, 0x3fab8,
1874 0x3fac0, 0x3fae4,
812034f1
HS
1875 0x3faf8, 0x3fb10,
1876 0x3fb28, 0x3fb28,
1877 0x3fb3c, 0x3fb50,
1878 0x3fbf0, 0x3fc10,
1879 0x3fc28, 0x3fc28,
1880 0x3fc3c, 0x3fc50,
1881 0x3fcf0, 0x3fcfc,
1882 0x40000, 0x4000c,
8119c018
HS
1883 0x40040, 0x40050,
1884 0x40060, 0x40068,
1885 0x4007c, 0x4008c,
1886 0x40094, 0x400b0,
1887 0x400c0, 0x40144,
812034f1 1888 0x40180, 0x4018c,
8119c018
HS
1889 0x40200, 0x40254,
1890 0x40260, 0x40264,
1891 0x40270, 0x40288,
1892 0x40290, 0x40298,
1893 0x402ac, 0x402c8,
1894 0x402d0, 0x402e0,
1895 0x402f0, 0x402f0,
1896 0x40300, 0x4033c,
812034f1
HS
1897 0x403f8, 0x403fc,
1898 0x41304, 0x413c4,
8119c018
HS
1899 0x41400, 0x4140c,
1900 0x41414, 0x4141c,
812034f1 1901 0x41480, 0x414d0,
8119c018
HS
1902 0x44000, 0x44054,
1903 0x4405c, 0x44078,
1904 0x440c0, 0x44174,
1905 0x44180, 0x441ac,
1906 0x441b4, 0x441b8,
1907 0x441c0, 0x44254,
1908 0x4425c, 0x44278,
1909 0x442c0, 0x44374,
1910 0x44380, 0x443ac,
1911 0x443b4, 0x443b8,
1912 0x443c0, 0x44454,
1913 0x4445c, 0x44478,
1914 0x444c0, 0x44574,
1915 0x44580, 0x445ac,
1916 0x445b4, 0x445b8,
1917 0x445c0, 0x44654,
1918 0x4465c, 0x44678,
1919 0x446c0, 0x44774,
1920 0x44780, 0x447ac,
1921 0x447b4, 0x447b8,
1922 0x447c0, 0x44854,
1923 0x4485c, 0x44878,
1924 0x448c0, 0x44974,
1925 0x44980, 0x449ac,
1926 0x449b4, 0x449b8,
1927 0x449c0, 0x449fc,
1928 0x45000, 0x45004,
1929 0x45010, 0x45030,
1930 0x45040, 0x45060,
1931 0x45068, 0x45068,
812034f1
HS
1932 0x45080, 0x45084,
1933 0x450a0, 0x450b0,
8119c018
HS
1934 0x45200, 0x45204,
1935 0x45210, 0x45230,
1936 0x45240, 0x45260,
1937 0x45268, 0x45268,
812034f1
HS
1938 0x45280, 0x45284,
1939 0x452a0, 0x452b0,
1940 0x460c0, 0x460e4,
8119c018
HS
1941 0x47000, 0x4703c,
1942 0x47044, 0x4708c,
812034f1 1943 0x47200, 0x47250,
8119c018
HS
1944 0x47400, 0x47408,
1945 0x47414, 0x47420,
812034f1
HS
1946 0x47600, 0x47618,
1947 0x47800, 0x47814,
1948 0x48000, 0x4800c,
8119c018
HS
1949 0x48040, 0x48050,
1950 0x48060, 0x48068,
1951 0x4807c, 0x4808c,
1952 0x48094, 0x480b0,
1953 0x480c0, 0x48144,
812034f1 1954 0x48180, 0x4818c,
8119c018
HS
1955 0x48200, 0x48254,
1956 0x48260, 0x48264,
1957 0x48270, 0x48288,
1958 0x48290, 0x48298,
1959 0x482ac, 0x482c8,
1960 0x482d0, 0x482e0,
1961 0x482f0, 0x482f0,
1962 0x48300, 0x4833c,
812034f1
HS
1963 0x483f8, 0x483fc,
1964 0x49304, 0x493c4,
8119c018
HS
1965 0x49400, 0x4940c,
1966 0x49414, 0x4941c,
812034f1 1967 0x49480, 0x494d0,
8119c018
HS
1968 0x4c000, 0x4c054,
1969 0x4c05c, 0x4c078,
1970 0x4c0c0, 0x4c174,
1971 0x4c180, 0x4c1ac,
1972 0x4c1b4, 0x4c1b8,
1973 0x4c1c0, 0x4c254,
1974 0x4c25c, 0x4c278,
1975 0x4c2c0, 0x4c374,
1976 0x4c380, 0x4c3ac,
1977 0x4c3b4, 0x4c3b8,
1978 0x4c3c0, 0x4c454,
1979 0x4c45c, 0x4c478,
1980 0x4c4c0, 0x4c574,
1981 0x4c580, 0x4c5ac,
1982 0x4c5b4, 0x4c5b8,
1983 0x4c5c0, 0x4c654,
1984 0x4c65c, 0x4c678,
1985 0x4c6c0, 0x4c774,
1986 0x4c780, 0x4c7ac,
1987 0x4c7b4, 0x4c7b8,
1988 0x4c7c0, 0x4c854,
1989 0x4c85c, 0x4c878,
1990 0x4c8c0, 0x4c974,
1991 0x4c980, 0x4c9ac,
1992 0x4c9b4, 0x4c9b8,
1993 0x4c9c0, 0x4c9fc,
1994 0x4d000, 0x4d004,
1995 0x4d010, 0x4d030,
1996 0x4d040, 0x4d060,
1997 0x4d068, 0x4d068,
812034f1
HS
1998 0x4d080, 0x4d084,
1999 0x4d0a0, 0x4d0b0,
8119c018
HS
2000 0x4d200, 0x4d204,
2001 0x4d210, 0x4d230,
2002 0x4d240, 0x4d260,
2003 0x4d268, 0x4d268,
812034f1
HS
2004 0x4d280, 0x4d284,
2005 0x4d2a0, 0x4d2b0,
2006 0x4e0c0, 0x4e0e4,
8119c018
HS
2007 0x4f000, 0x4f03c,
2008 0x4f044, 0x4f08c,
812034f1 2009 0x4f200, 0x4f250,
8119c018
HS
2010 0x4f400, 0x4f408,
2011 0x4f414, 0x4f420,
812034f1
HS
2012 0x4f600, 0x4f618,
2013 0x4f800, 0x4f814,
8119c018
HS
2014 0x50000, 0x50084,
2015 0x50090, 0x500cc,
812034f1 2016 0x50400, 0x50400,
8119c018
HS
2017 0x50800, 0x50884,
2018 0x50890, 0x508cc,
812034f1
HS
2019 0x50c00, 0x50c00,
2020 0x51000, 0x5101c,
2021 0x51300, 0x51308,
2022 };
2023
ab4b583b 2024 static const unsigned int t6_reg_ranges[] = {
8119c018
HS
2025 0x1008, 0x101c,
2026 0x1024, 0x10a8,
2027 0x10b4, 0x10f8,
2028 0x1100, 0x1114,
2029 0x111c, 0x112c,
2030 0x1138, 0x113c,
2031 0x1144, 0x114c,
2032 0x1180, 0x1184,
2033 0x1190, 0x1194,
2034 0x11a0, 0x11a4,
2035 0x11b0, 0x11b4,
04d8980b
AV
2036 0x11fc, 0x1274,
2037 0x1280, 0x133c,
ab4b583b
HS
2038 0x1800, 0x18fc,
2039 0x3000, 0x302c,
8119c018
HS
2040 0x3060, 0x30b0,
2041 0x30b8, 0x30d8,
ab4b583b
HS
2042 0x30e0, 0x30fc,
2043 0x3140, 0x357c,
2044 0x35a8, 0x35cc,
2045 0x35ec, 0x35ec,
2046 0x3600, 0x5624,
8119c018
HS
2047 0x56cc, 0x56ec,
2048 0x56f4, 0x5720,
2049 0x5728, 0x575c,
ab4b583b 2050 0x580c, 0x5814,
8119c018
HS
2051 0x5890, 0x589c,
2052 0x58a4, 0x58ac,
2053 0x58b8, 0x58bc,
ab4b583b
HS
2054 0x5940, 0x595c,
2055 0x5980, 0x598c,
8119c018
HS
2056 0x59b0, 0x59c8,
2057 0x59d0, 0x59dc,
ab4b583b
HS
2058 0x59fc, 0x5a18,
2059 0x5a60, 0x5a6c,
8119c018
HS
2060 0x5a80, 0x5a8c,
2061 0x5a94, 0x5a9c,
ab4b583b 2062 0x5b94, 0x5bfc,
8119c018
HS
2063 0x5c10, 0x5e48,
2064 0x5e50, 0x5e94,
2065 0x5ea0, 0x5eb0,
2066 0x5ec0, 0x5ec0,
676d6a75 2067 0x5ec8, 0x5ed0,
04d8980b
AV
2068 0x5ee0, 0x5ee0,
2069 0x5ef0, 0x5ef0,
2070 0x5f00, 0x5f00,
8119c018
HS
2071 0x6000, 0x6020,
2072 0x6028, 0x6040,
2073 0x6058, 0x609c,
2074 0x60a8, 0x619c,
ab4b583b
HS
2075 0x7700, 0x7798,
2076 0x77c0, 0x7880,
2077 0x78cc, 0x78fc,
8119c018
HS
2078 0x7b00, 0x7b58,
2079 0x7b60, 0x7b84,
2080 0x7b8c, 0x7c54,
2081 0x7d00, 0x7d38,
2082 0x7d40, 0x7d84,
2083 0x7d8c, 0x7ddc,
2084 0x7de4, 0x7e04,
2085 0x7e10, 0x7e1c,
2086 0x7e24, 0x7e38,
2087 0x7e40, 0x7e44,
2088 0x7e4c, 0x7e78,
2089 0x7e80, 0x7edc,
2090 0x7ee8, 0x7efc,
f109ff11 2091 0x8dc0, 0x8de4,
8119c018
HS
2092 0x8df8, 0x8e04,
2093 0x8e10, 0x8e84,
ab4b583b 2094 0x8ea0, 0x8f88,
8119c018
HS
2095 0x8fb8, 0x9058,
2096 0x9060, 0x9060,
2097 0x9068, 0x90f8,
2098 0x9100, 0x9124,
ab4b583b 2099 0x9400, 0x9470,
8119c018
HS
2100 0x9600, 0x9600,
2101 0x9608, 0x9638,
2102 0x9640, 0x9704,
2103 0x9710, 0x971c,
ab4b583b
HS
2104 0x9800, 0x9808,
2105 0x9820, 0x983c,
2106 0x9850, 0x9864,
2107 0x9c00, 0x9c6c,
2108 0x9c80, 0x9cec,
2109 0x9d00, 0x9d6c,
2110 0x9d80, 0x9dec,
2111 0x9e00, 0x9e6c,
2112 0x9e80, 0x9eec,
2113 0x9f00, 0x9f6c,
2114 0x9f80, 0xa020,
2115 0xd004, 0xd03c,
5b4e83e1 2116 0xd100, 0xd118,
8119c018
HS
2117 0xd200, 0xd214,
2118 0xd220, 0xd234,
2119 0xd240, 0xd254,
2120 0xd260, 0xd274,
2121 0xd280, 0xd294,
2122 0xd2a0, 0xd2b4,
2123 0xd2c0, 0xd2d4,
2124 0xd2e0, 0xd2f4,
2125 0xd300, 0xd31c,
ab4b583b
HS
2126 0xdfc0, 0xdfe0,
2127 0xe000, 0xf008,
04d8980b
AV
2128 0xf010, 0xf018,
2129 0xf020, 0xf028,
ab4b583b 2130 0x11000, 0x11014,
8119c018
HS
2131 0x11048, 0x1106c,
2132 0x11074, 0x11088,
2133 0x11098, 0x11120,
2134 0x1112c, 0x1117c,
2135 0x11190, 0x112e0,
ab4b583b 2136 0x11300, 0x1130c,
5b4e83e1 2137 0x12000, 0x1206c,
ab4b583b
HS
2138 0x19040, 0x1906c,
2139 0x19078, 0x19080,
8119c018
HS
2140 0x1908c, 0x190e8,
2141 0x190f0, 0x190f8,
2142 0x19100, 0x19110,
2143 0x19120, 0x19124,
2144 0x19150, 0x19194,
2145 0x1919c, 0x191b0,
ab4b583b 2146 0x191d0, 0x191e8,
676d6a75
HS
2147 0x19238, 0x19290,
2148 0x192a4, 0x192b0,
8119c018
HS
2149 0x192bc, 0x192bc,
2150 0x19348, 0x1934c,
2151 0x193f8, 0x19418,
2152 0x19420, 0x19428,
2153 0x19430, 0x19444,
2154 0x1944c, 0x1946c,
2155 0x19474, 0x19474,
ab4b583b
HS
2156 0x19490, 0x194cc,
2157 0x194f0, 0x194f8,
8119c018
HS
2158 0x19c00, 0x19c48,
2159 0x19c50, 0x19c80,
2160 0x19c94, 0x19c98,
2161 0x19ca0, 0x19cbc,
2162 0x19ce4, 0x19ce4,
2163 0x19cf0, 0x19cf8,
2164 0x19d00, 0x19d28,
ab4b583b 2165 0x19d50, 0x19d78,
8119c018
HS
2166 0x19d94, 0x19d98,
2167 0x19da0, 0x19dc8,
ab4b583b
HS
2168 0x19df0, 0x19e10,
2169 0x19e50, 0x19e6c,
8119c018
HS
2170 0x19ea0, 0x19ebc,
2171 0x19ec4, 0x19ef4,
2172 0x19f04, 0x19f2c,
2173 0x19f34, 0x19f34,
ab4b583b
HS
2174 0x19f40, 0x19f50,
2175 0x19f90, 0x19fac,
8119c018
HS
2176 0x19fc4, 0x19fc8,
2177 0x19fd0, 0x19fe4,
2178 0x1a000, 0x1a004,
2179 0x1a010, 0x1a06c,
2180 0x1a0b0, 0x1a0e4,
2181 0x1a0ec, 0x1a0f8,
2182 0x1a100, 0x1a108,
2183 0x1a114, 0x1a120,
2184 0x1a128, 0x1a130,
2185 0x1a138, 0x1a138,
ab4b583b
HS
2186 0x1a190, 0x1a1c4,
2187 0x1a1fc, 0x1a1fc,
2188 0x1e008, 0x1e00c,
8119c018
HS
2189 0x1e040, 0x1e044,
2190 0x1e04c, 0x1e04c,
ab4b583b
HS
2191 0x1e284, 0x1e290,
2192 0x1e2c0, 0x1e2c0,
2193 0x1e2e0, 0x1e2e0,
2194 0x1e300, 0x1e384,
2195 0x1e3c0, 0x1e3c8,
2196 0x1e408, 0x1e40c,
8119c018
HS
2197 0x1e440, 0x1e444,
2198 0x1e44c, 0x1e44c,
ab4b583b
HS
2199 0x1e684, 0x1e690,
2200 0x1e6c0, 0x1e6c0,
2201 0x1e6e0, 0x1e6e0,
2202 0x1e700, 0x1e784,
2203 0x1e7c0, 0x1e7c8,
2204 0x1e808, 0x1e80c,
8119c018
HS
2205 0x1e840, 0x1e844,
2206 0x1e84c, 0x1e84c,
ab4b583b
HS
2207 0x1ea84, 0x1ea90,
2208 0x1eac0, 0x1eac0,
2209 0x1eae0, 0x1eae0,
2210 0x1eb00, 0x1eb84,
2211 0x1ebc0, 0x1ebc8,
2212 0x1ec08, 0x1ec0c,
8119c018
HS
2213 0x1ec40, 0x1ec44,
2214 0x1ec4c, 0x1ec4c,
ab4b583b
HS
2215 0x1ee84, 0x1ee90,
2216 0x1eec0, 0x1eec0,
2217 0x1eee0, 0x1eee0,
2218 0x1ef00, 0x1ef84,
2219 0x1efc0, 0x1efc8,
2220 0x1f008, 0x1f00c,
8119c018
HS
2221 0x1f040, 0x1f044,
2222 0x1f04c, 0x1f04c,
ab4b583b
HS
2223 0x1f284, 0x1f290,
2224 0x1f2c0, 0x1f2c0,
2225 0x1f2e0, 0x1f2e0,
2226 0x1f300, 0x1f384,
2227 0x1f3c0, 0x1f3c8,
2228 0x1f408, 0x1f40c,
8119c018
HS
2229 0x1f440, 0x1f444,
2230 0x1f44c, 0x1f44c,
ab4b583b
HS
2231 0x1f684, 0x1f690,
2232 0x1f6c0, 0x1f6c0,
2233 0x1f6e0, 0x1f6e0,
2234 0x1f700, 0x1f784,
2235 0x1f7c0, 0x1f7c8,
2236 0x1f808, 0x1f80c,
8119c018
HS
2237 0x1f840, 0x1f844,
2238 0x1f84c, 0x1f84c,
ab4b583b
HS
2239 0x1fa84, 0x1fa90,
2240 0x1fac0, 0x1fac0,
2241 0x1fae0, 0x1fae0,
2242 0x1fb00, 0x1fb84,
2243 0x1fbc0, 0x1fbc8,
2244 0x1fc08, 0x1fc0c,
8119c018
HS
2245 0x1fc40, 0x1fc44,
2246 0x1fc4c, 0x1fc4c,
ab4b583b
HS
2247 0x1fe84, 0x1fe90,
2248 0x1fec0, 0x1fec0,
2249 0x1fee0, 0x1fee0,
2250 0x1ff00, 0x1ff84,
2251 0x1ffc0, 0x1ffc8,
8119c018 2252 0x30000, 0x30030,
8119c018
HS
2253 0x30100, 0x30168,
2254 0x30190, 0x301a0,
2255 0x301a8, 0x301b8,
2256 0x301c4, 0x301c8,
2257 0x301d0, 0x301d0,
f109ff11 2258 0x30200, 0x30320,
8119c018
HS
2259 0x30400, 0x304b4,
2260 0x304c0, 0x3052c,
ab4b583b 2261 0x30540, 0x3061c,
8119c018 2262 0x30800, 0x308a0,
ab4b583b
HS
2263 0x308c0, 0x30908,
2264 0x30910, 0x309b8,
2265 0x30a00, 0x30a04,
8119c018
HS
2266 0x30a0c, 0x30a14,
2267 0x30a1c, 0x30a2c,
ab4b583b 2268 0x30a44, 0x30a50,
8119c018
HS
2269 0x30a74, 0x30a74,
2270 0x30a7c, 0x30afc,
2271 0x30b08, 0x30c24,
2272 0x30d00, 0x30d14,
2273 0x30d1c, 0x30d3c,
2274 0x30d44, 0x30d4c,
2275 0x30d54, 0x30d74,
2276 0x30d7c, 0x30d7c,
ab4b583b
HS
2277 0x30de0, 0x30de0,
2278 0x30e00, 0x30ed4,
2279 0x30f00, 0x30fa4,
2280 0x30fc0, 0x30fc4,
2281 0x31000, 0x31004,
2282 0x31080, 0x310fc,
2283 0x31208, 0x31220,
2284 0x3123c, 0x31254,
2285 0x31300, 0x31300,
2286 0x31308, 0x3131c,
2287 0x31338, 0x3133c,
2288 0x31380, 0x31380,
2289 0x31388, 0x313a8,
2290 0x313b4, 0x313b4,
2291 0x31400, 0x31420,
2292 0x31438, 0x3143c,
2293 0x31480, 0x31480,
2294 0x314a8, 0x314a8,
2295 0x314b0, 0x314b4,
2296 0x314c8, 0x314d4,
2297 0x31a40, 0x31a4c,
2298 0x31af0, 0x31b20,
2299 0x31b38, 0x31b3c,
2300 0x31b80, 0x31b80,
2301 0x31ba8, 0x31ba8,
2302 0x31bb0, 0x31bb4,
2303 0x31bc8, 0x31bd4,
2304 0x32140, 0x3218c,
8119c018
HS
2305 0x321f0, 0x321f4,
2306 0x32200, 0x32200,
ab4b583b
HS
2307 0x32218, 0x32218,
2308 0x32400, 0x32400,
2309 0x32408, 0x3241c,
2310 0x32618, 0x32620,
2311 0x32664, 0x32664,
2312 0x326a8, 0x326a8,
2313 0x326ec, 0x326ec,
2314 0x32a00, 0x32abc,
04d8980b
AV
2315 0x32b00, 0x32b18,
2316 0x32b20, 0x32b38,
8119c018
HS
2317 0x32b40, 0x32b58,
2318 0x32b60, 0x32b78,
ab4b583b
HS
2319 0x32c00, 0x32c00,
2320 0x32c08, 0x32c3c,
8119c018
HS
2321 0x33000, 0x3302c,
2322 0x33034, 0x33050,
2323 0x33058, 0x33058,
2324 0x33060, 0x3308c,
2325 0x3309c, 0x330ac,
2326 0x330c0, 0x330c0,
2327 0x330c8, 0x330d0,
2328 0x330d8, 0x330e0,
2329 0x330ec, 0x3312c,
2330 0x33134, 0x33150,
2331 0x33158, 0x33158,
2332 0x33160, 0x3318c,
2333 0x3319c, 0x331ac,
2334 0x331c0, 0x331c0,
2335 0x331c8, 0x331d0,
2336 0x331d8, 0x331e0,
2337 0x331ec, 0x33290,
2338 0x33298, 0x332c4,
2339 0x332e4, 0x33390,
2340 0x33398, 0x333c4,
2341 0x333e4, 0x3342c,
2342 0x33434, 0x33450,
2343 0x33458, 0x33458,
2344 0x33460, 0x3348c,
2345 0x3349c, 0x334ac,
2346 0x334c0, 0x334c0,
2347 0x334c8, 0x334d0,
2348 0x334d8, 0x334e0,
2349 0x334ec, 0x3352c,
2350 0x33534, 0x33550,
2351 0x33558, 0x33558,
2352 0x33560, 0x3358c,
2353 0x3359c, 0x335ac,
2354 0x335c0, 0x335c0,
2355 0x335c8, 0x335d0,
2356 0x335d8, 0x335e0,
2357 0x335ec, 0x33690,
2358 0x33698, 0x336c4,
2359 0x336e4, 0x33790,
2360 0x33798, 0x337c4,
ab4b583b
HS
2361 0x337e4, 0x337fc,
2362 0x33814, 0x33814,
2363 0x33854, 0x33868,
2364 0x33880, 0x3388c,
2365 0x338c0, 0x338d0,
2366 0x338e8, 0x338ec,
8119c018
HS
2367 0x33900, 0x3392c,
2368 0x33934, 0x33950,
2369 0x33958, 0x33958,
2370 0x33960, 0x3398c,
2371 0x3399c, 0x339ac,
2372 0x339c0, 0x339c0,
2373 0x339c8, 0x339d0,
2374 0x339d8, 0x339e0,
2375 0x339ec, 0x33a90,
2376 0x33a98, 0x33ac4,
ab4b583b 2377 0x33ae4, 0x33b10,
8119c018
HS
2378 0x33b24, 0x33b28,
2379 0x33b38, 0x33b50,
ab4b583b 2380 0x33bf0, 0x33c10,
8119c018
HS
2381 0x33c24, 0x33c28,
2382 0x33c38, 0x33c50,
ab4b583b 2383 0x33cf0, 0x33cfc,
8119c018 2384 0x34000, 0x34030,
8119c018
HS
2385 0x34100, 0x34168,
2386 0x34190, 0x341a0,
2387 0x341a8, 0x341b8,
2388 0x341c4, 0x341c8,
2389 0x341d0, 0x341d0,
f109ff11 2390 0x34200, 0x34320,
8119c018
HS
2391 0x34400, 0x344b4,
2392 0x344c0, 0x3452c,
ab4b583b 2393 0x34540, 0x3461c,
8119c018 2394 0x34800, 0x348a0,
ab4b583b
HS
2395 0x348c0, 0x34908,
2396 0x34910, 0x349b8,
2397 0x34a00, 0x34a04,
8119c018
HS
2398 0x34a0c, 0x34a14,
2399 0x34a1c, 0x34a2c,
ab4b583b 2400 0x34a44, 0x34a50,
8119c018
HS
2401 0x34a74, 0x34a74,
2402 0x34a7c, 0x34afc,
2403 0x34b08, 0x34c24,
2404 0x34d00, 0x34d14,
2405 0x34d1c, 0x34d3c,
2406 0x34d44, 0x34d4c,
2407 0x34d54, 0x34d74,
2408 0x34d7c, 0x34d7c,
ab4b583b
HS
2409 0x34de0, 0x34de0,
2410 0x34e00, 0x34ed4,
2411 0x34f00, 0x34fa4,
2412 0x34fc0, 0x34fc4,
2413 0x35000, 0x35004,
2414 0x35080, 0x350fc,
2415 0x35208, 0x35220,
2416 0x3523c, 0x35254,
2417 0x35300, 0x35300,
2418 0x35308, 0x3531c,
2419 0x35338, 0x3533c,
2420 0x35380, 0x35380,
2421 0x35388, 0x353a8,
2422 0x353b4, 0x353b4,
2423 0x35400, 0x35420,
2424 0x35438, 0x3543c,
2425 0x35480, 0x35480,
2426 0x354a8, 0x354a8,
2427 0x354b0, 0x354b4,
2428 0x354c8, 0x354d4,
2429 0x35a40, 0x35a4c,
2430 0x35af0, 0x35b20,
2431 0x35b38, 0x35b3c,
2432 0x35b80, 0x35b80,
2433 0x35ba8, 0x35ba8,
2434 0x35bb0, 0x35bb4,
2435 0x35bc8, 0x35bd4,
2436 0x36140, 0x3618c,
8119c018
HS
2437 0x361f0, 0x361f4,
2438 0x36200, 0x36200,
ab4b583b
HS
2439 0x36218, 0x36218,
2440 0x36400, 0x36400,
2441 0x36408, 0x3641c,
2442 0x36618, 0x36620,
2443 0x36664, 0x36664,
2444 0x366a8, 0x366a8,
2445 0x366ec, 0x366ec,
2446 0x36a00, 0x36abc,
04d8980b
AV
2447 0x36b00, 0x36b18,
2448 0x36b20, 0x36b38,
8119c018
HS
2449 0x36b40, 0x36b58,
2450 0x36b60, 0x36b78,
ab4b583b
HS
2451 0x36c00, 0x36c00,
2452 0x36c08, 0x36c3c,
8119c018
HS
2453 0x37000, 0x3702c,
2454 0x37034, 0x37050,
2455 0x37058, 0x37058,
2456 0x37060, 0x3708c,
2457 0x3709c, 0x370ac,
2458 0x370c0, 0x370c0,
2459 0x370c8, 0x370d0,
2460 0x370d8, 0x370e0,
2461 0x370ec, 0x3712c,
2462 0x37134, 0x37150,
2463 0x37158, 0x37158,
2464 0x37160, 0x3718c,
2465 0x3719c, 0x371ac,
2466 0x371c0, 0x371c0,
2467 0x371c8, 0x371d0,
2468 0x371d8, 0x371e0,
2469 0x371ec, 0x37290,
2470 0x37298, 0x372c4,
2471 0x372e4, 0x37390,
2472 0x37398, 0x373c4,
2473 0x373e4, 0x3742c,
2474 0x37434, 0x37450,
2475 0x37458, 0x37458,
2476 0x37460, 0x3748c,
2477 0x3749c, 0x374ac,
2478 0x374c0, 0x374c0,
2479 0x374c8, 0x374d0,
2480 0x374d8, 0x374e0,
2481 0x374ec, 0x3752c,
2482 0x37534, 0x37550,
2483 0x37558, 0x37558,
2484 0x37560, 0x3758c,
2485 0x3759c, 0x375ac,
2486 0x375c0, 0x375c0,
2487 0x375c8, 0x375d0,
2488 0x375d8, 0x375e0,
2489 0x375ec, 0x37690,
2490 0x37698, 0x376c4,
2491 0x376e4, 0x37790,
2492 0x37798, 0x377c4,
ab4b583b
HS
2493 0x377e4, 0x377fc,
2494 0x37814, 0x37814,
2495 0x37854, 0x37868,
2496 0x37880, 0x3788c,
2497 0x378c0, 0x378d0,
2498 0x378e8, 0x378ec,
8119c018
HS
2499 0x37900, 0x3792c,
2500 0x37934, 0x37950,
2501 0x37958, 0x37958,
2502 0x37960, 0x3798c,
2503 0x3799c, 0x379ac,
2504 0x379c0, 0x379c0,
2505 0x379c8, 0x379d0,
2506 0x379d8, 0x379e0,
2507 0x379ec, 0x37a90,
2508 0x37a98, 0x37ac4,
ab4b583b 2509 0x37ae4, 0x37b10,
8119c018
HS
2510 0x37b24, 0x37b28,
2511 0x37b38, 0x37b50,
ab4b583b 2512 0x37bf0, 0x37c10,
8119c018
HS
2513 0x37c24, 0x37c28,
2514 0x37c38, 0x37c50,
ab4b583b
HS
2515 0x37cf0, 0x37cfc,
2516 0x40040, 0x40040,
2517 0x40080, 0x40084,
2518 0x40100, 0x40100,
2519 0x40140, 0x401bc,
2520 0x40200, 0x40214,
2521 0x40228, 0x40228,
2522 0x40240, 0x40258,
2523 0x40280, 0x40280,
2524 0x40304, 0x40304,
2525 0x40330, 0x4033c,
04d8980b 2526 0x41304, 0x413c8,
8119c018
HS
2527 0x413d0, 0x413dc,
2528 0x413f0, 0x413f0,
2529 0x41400, 0x4140c,
2530 0x41414, 0x4141c,
ab4b583b
HS
2531 0x41480, 0x414d0,
2532 0x44000, 0x4407c,
8119c018
HS
2533 0x440c0, 0x441ac,
2534 0x441b4, 0x4427c,
2535 0x442c0, 0x443ac,
2536 0x443b4, 0x4447c,
2537 0x444c0, 0x445ac,
2538 0x445b4, 0x4467c,
2539 0x446c0, 0x447ac,
2540 0x447b4, 0x4487c,
2541 0x448c0, 0x449ac,
2542 0x449b4, 0x44a7c,
2543 0x44ac0, 0x44bac,
2544 0x44bb4, 0x44c7c,
2545 0x44cc0, 0x44dac,
2546 0x44db4, 0x44e7c,
2547 0x44ec0, 0x44fac,
2548 0x44fb4, 0x4507c,
2549 0x450c0, 0x451ac,
2550 0x451b4, 0x451fc,
2551 0x45800, 0x45804,
2552 0x45810, 0x45830,
2553 0x45840, 0x45860,
2554 0x45868, 0x45868,
ab4b583b
HS
2555 0x45880, 0x45884,
2556 0x458a0, 0x458b0,
8119c018
HS
2557 0x45a00, 0x45a04,
2558 0x45a10, 0x45a30,
2559 0x45a40, 0x45a60,
2560 0x45a68, 0x45a68,
ab4b583b
HS
2561 0x45a80, 0x45a84,
2562 0x45aa0, 0x45ab0,
2563 0x460c0, 0x460e4,
8119c018
HS
2564 0x47000, 0x4703c,
2565 0x47044, 0x4708c,
ab4b583b 2566 0x47200, 0x47250,
8119c018
HS
2567 0x47400, 0x47408,
2568 0x47414, 0x47420,
ab4b583b 2569 0x47600, 0x47618,
8119c018
HS
2570 0x47800, 0x47814,
2571 0x47820, 0x4782c,
2572 0x50000, 0x50084,
2573 0x50090, 0x500cc,
2574 0x50300, 0x50384,
ab4b583b 2575 0x50400, 0x50400,
8119c018
HS
2576 0x50800, 0x50884,
2577 0x50890, 0x508cc,
2578 0x50b00, 0x50b84,
ab4b583b 2579 0x50c00, 0x50c00,
8119c018
HS
2580 0x51000, 0x51020,
2581 0x51028, 0x510b0,
ab4b583b
HS
2582 0x51300, 0x51324,
2583 };
2584
812034f1
HS
2585 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2586 const unsigned int *reg_ranges;
2587 int reg_ranges_size, range;
2588 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2589
2590 /* Select the right set of register ranges to dump depending on the
2591 * adapter chip type.
2592 */
2593 switch (chip_version) {
2594 case CHELSIO_T4:
2595 reg_ranges = t4_reg_ranges;
2596 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2597 break;
2598
2599 case CHELSIO_T5:
2600 reg_ranges = t5_reg_ranges;
2601 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2602 break;
2603
ab4b583b
HS
2604 case CHELSIO_T6:
2605 reg_ranges = t6_reg_ranges;
2606 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2607 break;
2608
812034f1
HS
2609 default:
2610 dev_err(adap->pdev_dev,
2611 "Unsupported chip version %d\n", chip_version);
2612 return;
2613 }
2614
2615 /* Clear the register buffer and insert the appropriate register
2616 * values selected by the above register ranges.
2617 */
2618 memset(buf, 0, buf_size);
2619 for (range = 0; range < reg_ranges_size; range += 2) {
2620 unsigned int reg = reg_ranges[range];
2621 unsigned int last_reg = reg_ranges[range + 1];
2622 u32 *bufp = (u32 *)((char *)buf + reg);
2623
2624 /* Iterate across the register range filling in the register
2625 * buffer but don't write past the end of the register buffer.
2626 */
2627 while (reg <= last_reg && bufp < buf_end) {
2628 *bufp++ = t4_read_reg(adap, reg);
2629 reg += sizeof(u32);
2630 }
2631 }
2632}
2633
56d36be4 2634#define EEPROM_STAT_ADDR 0x7bfc
67e65879 2635#define VPD_SIZE 0x800
47ce9c48
SR
2636#define VPD_BASE 0x400
2637#define VPD_BASE_OLD 0
0a57a536 2638#define VPD_LEN 1024
63a92fe6 2639#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
2640
2641/**
2642 * t4_seeprom_wp - enable/disable EEPROM write protection
2643 * @adapter: the adapter
2644 * @enable: whether to enable or disable write protection
2645 *
2646 * Enables or disables write protection on the serial EEPROM.
2647 */
2648int t4_seeprom_wp(struct adapter *adapter, bool enable)
2649{
2650 unsigned int v = enable ? 0xc : 0;
2651 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2652 return ret < 0 ? ret : 0;
2653}
2654
2655/**
098ef6c2 2656 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
56d36be4
DM
2657 * @adapter: adapter to read
2658 * @p: where to store the parameters
2659 *
2660 * Reads card parameters stored in VPD EEPROM.
2661 */
098ef6c2 2662int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 2663{
098ef6c2
HS
2664 int i, ret = 0, addr;
2665 int ec, sn, pn, na;
8c357ebd 2666 u8 *vpd, csum;
23d88e1d 2667 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 2668
8c357ebd
VP
2669 vpd = vmalloc(VPD_LEN);
2670 if (!vpd)
2671 return -ENOMEM;
2672
67e65879
HS
2673 /* We have two VPD data structures stored in the adapter VPD area.
2674 * By default, Linux calculates the size of the VPD area by traversing
2675 * the first VPD area at offset 0x0, so we need to tell the OS what
2676 * our real VPD size is.
2677 */
2678 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2679 if (ret < 0)
2680 goto out;
2681
098ef6c2
HS
2682 /* Card information normally starts at VPD_BASE but early cards had
2683 * it at 0.
2684 */
47ce9c48
SR
2685 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2686 if (ret < 0)
2687 goto out;
63a92fe6
HS
2688
2689 /* The VPD shall have a unique identifier specified by the PCI SIG.
2690 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2691 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2692 * is expected to automatically put this entry at the
2693 * beginning of the VPD.
2694 */
2695 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
2696
2697 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 2698 if (ret < 0)
8c357ebd 2699 goto out;
56d36be4 2700
23d88e1d
DM
2701 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2702 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
2703 ret = -EINVAL;
2704 goto out;
23d88e1d
DM
2705 }
2706
2707 id_len = pci_vpd_lrdt_size(vpd);
2708 if (id_len > ID_LEN)
2709 id_len = ID_LEN;
2710
2711 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2712 if (i < 0) {
2713 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
2714 ret = -EINVAL;
2715 goto out;
23d88e1d
DM
2716 }
2717
2718 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2719 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2720 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 2721 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
2722 ret = -EINVAL;
2723 goto out;
226ec5fd
DM
2724 }
2725
2726#define FIND_VPD_KW(var, name) do { \
23d88e1d 2727 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
2728 if (var < 0) { \
2729 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
2730 ret = -EINVAL; \
2731 goto out; \
226ec5fd
DM
2732 } \
2733 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2734} while (0)
2735
2736 FIND_VPD_KW(i, "RV");
2737 for (csum = 0; i >= 0; i--)
2738 csum += vpd[i];
56d36be4
DM
2739
2740 if (csum) {
2741 dev_err(adapter->pdev_dev,
2742 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
2743 ret = -EINVAL;
2744 goto out;
56d36be4
DM
2745 }
2746
226ec5fd
DM
2747 FIND_VPD_KW(ec, "EC");
2748 FIND_VPD_KW(sn, "SN");
a94cd705 2749 FIND_VPD_KW(pn, "PN");
098ef6c2 2750 FIND_VPD_KW(na, "NA");
226ec5fd
DM
2751#undef FIND_VPD_KW
2752
23d88e1d 2753 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 2754 strim(p->id);
226ec5fd 2755 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 2756 strim(p->ec);
226ec5fd
DM
2757 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2758 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 2759 strim(p->sn);
63a92fe6 2760 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
2761 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2762 strim(p->pn);
098ef6c2
HS
2763 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2764 strim((char *)p->na);
636f9d37 2765
098ef6c2
HS
2766out:
2767 vfree(vpd);
661dbeb9 2768 return ret < 0 ? ret : 0;
098ef6c2
HS
2769}
2770
2771/**
2772 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2773 * @adapter: adapter to read
2774 * @p: where to store the parameters
2775 *
2776 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2777 * Clock. This can only be called after a connection to the firmware
2778 * is established.
2779 */
2780int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2781{
2782 u32 cclk_param, cclk_val;
2783 int ret;
2784
2785 /* Grab the raw VPD parameters.
2786 */
2787 ret = t4_get_raw_vpd_params(adapter, p);
2788 if (ret)
2789 return ret;
2790
2791 /* Ask firmware for the Core Clock since it knows how to translate the
636f9d37
VP
2792 * Reference Clock ('V2') VPD field into a Core Clock value ...
2793 */
5167865a
HS
2794 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2795 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
098ef6c2 2796 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
636f9d37 2797 1, &cclk_param, &cclk_val);
8c357ebd 2798
636f9d37
VP
2799 if (ret)
2800 return ret;
2801 p->cclk = cclk_val;
2802
56d36be4
DM
2803 return 0;
2804}
2805
2806/* serial flash and firmware constants */
2807enum {
2808 SF_ATTEMPTS = 10, /* max retries for SF operations */
2809
2810 /* flash command opcodes */
2811 SF_PROG_PAGE = 2, /* program page */
2812 SF_WR_DISABLE = 4, /* disable writes */
2813 SF_RD_STATUS = 5, /* read status register */
2814 SF_WR_ENABLE = 6, /* enable writes */
2815 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 2816 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
2817 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2818
6f1d7210 2819 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
2820};
2821
2822/**
2823 * sf1_read - read data from the serial flash
2824 * @adapter: the adapter
2825 * @byte_cnt: number of bytes to read
2826 * @cont: whether another operation will be chained
2827 * @lock: whether to lock SF for PL access only
2828 * @valp: where to store the read data
2829 *
2830 * Reads up to 4 bytes of data from the serial flash. The location of
2831 * the read needs to be specified prior to calling this by issuing the
2832 * appropriate commands to the serial flash.
2833 */
2834static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2835 int lock, u32 *valp)
2836{
2837 int ret;
2838
2839 if (!byte_cnt || byte_cnt > 4)
2840 return -EINVAL;
0d804338 2841 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2842 return -EBUSY;
0d804338
HS
2843 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2844 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2845 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 2846 if (!ret)
0d804338 2847 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
2848 return ret;
2849}
2850
2851/**
2852 * sf1_write - write data to the serial flash
2853 * @adapter: the adapter
2854 * @byte_cnt: number of bytes to write
2855 * @cont: whether another operation will be chained
2856 * @lock: whether to lock SF for PL access only
2857 * @val: value to write
2858 *
2859 * Writes up to 4 bytes of data to the serial flash. The location of
2860 * the write needs to be specified prior to calling this by issuing the
2861 * appropriate commands to the serial flash.
2862 */
2863static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2864 int lock, u32 val)
2865{
2866 if (!byte_cnt || byte_cnt > 4)
2867 return -EINVAL;
0d804338 2868 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2869 return -EBUSY;
0d804338
HS
2870 t4_write_reg(adapter, SF_DATA_A, val);
2871 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2872 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2873 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
2874}
2875
2876/**
2877 * flash_wait_op - wait for a flash operation to complete
2878 * @adapter: the adapter
2879 * @attempts: max number of polls of the status register
2880 * @delay: delay between polls in ms
2881 *
2882 * Wait for a flash operation to complete by polling the status register.
2883 */
2884static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2885{
2886 int ret;
2887 u32 status;
2888
2889 while (1) {
2890 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2891 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2892 return ret;
2893 if (!(status & 1))
2894 return 0;
2895 if (--attempts == 0)
2896 return -EAGAIN;
2897 if (delay)
2898 msleep(delay);
2899 }
2900}
2901
2902/**
2903 * t4_read_flash - read words from serial flash
2904 * @adapter: the adapter
2905 * @addr: the start address for the read
2906 * @nwords: how many 32-bit words to read
2907 * @data: where to store the read data
2908 * @byte_oriented: whether to store data as bytes or as words
2909 *
2910 * Read the specified number of 32-bit words from the serial flash.
2911 * If @byte_oriented is set the read data is stored as a byte array
2912 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 2913 * natural endianness.
56d36be4 2914 */
49216c1c
HS
2915int t4_read_flash(struct adapter *adapter, unsigned int addr,
2916 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
2917{
2918 int ret;
2919
900a6596 2920 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
2921 return -EINVAL;
2922
2923 addr = swab32(addr) | SF_RD_DATA_FAST;
2924
2925 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2926 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2927 return ret;
2928
2929 for ( ; nwords; nwords--, data++) {
2930 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2931 if (nwords == 1)
0d804338 2932 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2933 if (ret)
2934 return ret;
2935 if (byte_oriented)
f404f80c 2936 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
2937 }
2938 return 0;
2939}
2940
2941/**
2942 * t4_write_flash - write up to a page of data to the serial flash
2943 * @adapter: the adapter
2944 * @addr: the start address to write
2945 * @n: length of data to write in bytes
2946 * @data: the data to write
2947 *
2948 * Writes up to a page of data (256 bytes) to the serial flash starting
2949 * at the given address. All the data must be written to the same page.
2950 */
2951static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2952 unsigned int n, const u8 *data)
2953{
2954 int ret;
2955 u32 buf[64];
2956 unsigned int i, c, left, val, offset = addr & 0xff;
2957
900a6596 2958 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
2959 return -EINVAL;
2960
2961 val = swab32(addr) | SF_PROG_PAGE;
2962
2963 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2964 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2965 goto unlock;
2966
2967 for (left = n; left; left -= c) {
2968 c = min(left, 4U);
2969 for (val = 0, i = 0; i < c; ++i)
2970 val = (val << 8) + *data++;
2971
2972 ret = sf1_write(adapter, c, c != left, 1, val);
2973 if (ret)
2974 goto unlock;
2975 }
900a6596 2976 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
2977 if (ret)
2978 goto unlock;
2979
0d804338 2980 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2981
2982 /* Read the page to verify the write succeeded */
2983 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2984 if (ret)
2985 return ret;
2986
2987 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2988 dev_err(adapter->pdev_dev,
2989 "failed to correctly write the flash page at %#x\n",
2990 addr);
2991 return -EIO;
2992 }
2993 return 0;
2994
2995unlock:
0d804338 2996 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2997 return ret;
2998}
2999
3000/**
16e47624 3001 * t4_get_fw_version - read the firmware version
56d36be4
DM
3002 * @adapter: the adapter
3003 * @vers: where to place the version
3004 *
3005 * Reads the FW version from flash.
3006 */
16e47624 3007int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 3008{
16e47624
HS
3009 return t4_read_flash(adapter, FLASH_FW_START +
3010 offsetof(struct fw_hdr, fw_ver), 1,
3011 vers, 0);
56d36be4
DM
3012}
3013
0de72738
HS
3014/**
3015 * t4_get_bs_version - read the firmware bootstrap version
3016 * @adapter: the adapter
3017 * @vers: where to place the version
3018 *
3019 * Reads the FW Bootstrap version from flash.
3020 */
3021int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3022{
3023 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3024 offsetof(struct fw_hdr, fw_ver), 1,
3025 vers, 0);
3026}
3027
56d36be4 3028/**
16e47624 3029 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
3030 * @adapter: the adapter
3031 * @vers: where to place the version
3032 *
3033 * Reads the TP microcode version from flash.
3034 */
16e47624 3035int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 3036{
16e47624 3037 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 3038 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
3039 1, vers, 0);
3040}
3041
ba3f8cd5
HS
3042/**
3043 * t4_get_exprom_version - return the Expansion ROM version (if any)
3044 * @adapter: the adapter
3045 * @vers: where to place the version
3046 *
3047 * Reads the Expansion ROM header from FLASH and returns the version
3048 * number (if present) through the @vers return value pointer. We return
3049 * this in the Firmware Version Format since it's convenient. Return
3050 * 0 on success, -ENOENT if no Expansion ROM is present.
3051 */
3052int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3053{
3054 struct exprom_header {
3055 unsigned char hdr_arr[16]; /* must start with 0x55aa */
3056 unsigned char hdr_ver[4]; /* Expansion ROM version */
3057 } *hdr;
3058 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3059 sizeof(u32))];
3060 int ret;
3061
3062 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3063 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3064 0);
3065 if (ret)
3066 return ret;
3067
3068 hdr = (struct exprom_header *)exprom_header_buf;
3069 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3070 return -ENOENT;
3071
3072 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3073 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3074 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3075 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3076 return 0;
3077}
3078
760446f9
GG
3079/**
3080 * t4_get_vpd_version - return the VPD version
3081 * @adapter: the adapter
3082 * @vers: where to place the version
3083 *
3084 * Reads the VPD via the Firmware interface (thus this can only be called
3085 * once we're ready to issue Firmware commands). The format of the
3086 * VPD version is adapter specific. Returns 0 on success, an error on
3087 * failure.
3088 *
3089 * Note that early versions of the Firmware didn't include the ability
3090 * to retrieve the VPD version, so we zero-out the return-value parameter
3091 * in that case to avoid leaving it with garbage in it.
3092 *
3093 * Also note that the Firmware will return its cached copy of the VPD
3094 * Revision ID, not the actual Revision ID as written in the Serial
3095 * EEPROM. This is only an issue if a new VPD has been written and the
3096 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best
3097 * to defer calling this routine till after a FW_RESET_CMD has been issued
3098 * if the Host Driver will be performing a full adapter initialization.
3099 */
3100int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3101{
3102 u32 vpdrev_param;
3103 int ret;
3104
3105 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3106 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3107 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3108 1, &vpdrev_param, vers);
3109 if (ret)
3110 *vers = 0;
3111 return ret;
3112}
3113
3114/**
3115 * t4_get_scfg_version - return the Serial Configuration version
3116 * @adapter: the adapter
3117 * @vers: where to place the version
3118 *
3119 * Reads the Serial Configuration Version via the Firmware interface
3120 * (thus this can only be called once we're ready to issue Firmware
3121 * commands). The format of the Serial Configuration version is
3122 * adapter specific. Returns 0 on success, an error on failure.
3123 *
3124 * Note that early versions of the Firmware didn't include the ability
3125 * to retrieve the Serial Configuration version, so we zero-out the
3126 * return-value parameter in that case to avoid leaving it with
3127 * garbage in it.
3128 *
3129 * Also note that the Firmware will return its cached copy of the Serial
3130 * Initialization Revision ID, not the actual Revision ID as written in
3131 * the Serial EEPROM. This is only an issue if a new VPD has been written
3132 * and the Firmware/Chip haven't yet gone through a RESET sequence. So
3133 * it's best to defer calling this routine till after a FW_RESET_CMD has
3134 * been issued if the Host Driver will be performing a full adapter
3135 * initialization.
3136 */
3137int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3138{
3139 u32 scfgrev_param;
3140 int ret;
3141
3142 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3143 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3144 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3145 1, &scfgrev_param, vers);
3146 if (ret)
3147 *vers = 0;
3148 return ret;
3149}
3150
3151/**
3152 * t4_get_version_info - extract various chip/firmware version information
3153 * @adapter: the adapter
3154 *
3155 * Reads various chip/firmware version numbers and stores them into the
3156 * adapter Adapter Parameters structure. If any of the efforts fails
3157 * the first failure will be returned, but all of the version numbers
3158 * will be read.
3159 */
3160int t4_get_version_info(struct adapter *adapter)
3161{
3162 int ret = 0;
3163
3164 #define FIRST_RET(__getvinfo) \
3165 do { \
3166 int __ret = __getvinfo; \
3167 if (__ret && !ret) \
3168 ret = __ret; \
3169 } while (0)
3170
3171 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3172 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3173 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3174 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3175 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3176 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3177
3178 #undef FIRST_RET
3179 return ret;
3180}
3181
3182/**
3183 * t4_dump_version_info - dump all of the adapter configuration IDs
3184 * @adapter: the adapter
3185 *
3186 * Dumps all of the various bits of adapter configuration version/revision
3187 * IDs information. This is typically called at some point after
3188 * t4_get_version_info() has been called.
3189 */
3190void t4_dump_version_info(struct adapter *adapter)
3191{
3192 /* Device information */
3193 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3194 adapter->params.vpd.id,
3195 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3196 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3197 adapter->params.vpd.sn, adapter->params.vpd.pn);
3198
3199 /* Firmware Version */
3200 if (!adapter->params.fw_vers)
3201 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3202 else
3203 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3204 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3205 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3206 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3207 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3208
3209 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3210 * Firmware, so dev_info() is more appropriate here.)
3211 */
3212 if (!adapter->params.bs_vers)
3213 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3214 else
3215 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3216 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3217 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3218 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3219 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3220
3221 /* TP Microcode Version */
3222 if (!adapter->params.tp_vers)
3223 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3224 else
3225 dev_info(adapter->pdev_dev,
3226 "TP Microcode version: %u.%u.%u.%u\n",
3227 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3228 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3229 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3230 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3231
3232 /* Expansion ROM version */
3233 if (!adapter->params.er_vers)
3234 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3235 else
3236 dev_info(adapter->pdev_dev,
3237 "Expansion ROM version: %u.%u.%u.%u\n",
3238 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3239 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3240 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3241 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3242
3243 /* Serial Configuration version */
3244 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3245 adapter->params.scfg_vers);
3246
3247 /* VPD Version */
3248 dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3249 adapter->params.vpd_vers);
3250}
3251
a69265e9
HS
3252/**
3253 * t4_check_fw_version - check if the FW is supported with this driver
3254 * @adap: the adapter
3255 *
3256 * Checks if an adapter's FW is compatible with the driver. Returns 0
3257 * if there's exact match, a negative error if the version could not be
3258 * read or there's a major version mismatch
3259 */
3260int t4_check_fw_version(struct adapter *adap)
3261{
21d11bd6 3262 int i, ret, major, minor, micro;
a69265e9
HS
3263 int exp_major, exp_minor, exp_micro;
3264 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3265
3266 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
21d11bd6
HS
3267 /* Try multiple times before returning error */
3268 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3269 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3270
a69265e9
HS
3271 if (ret)
3272 return ret;
3273
3274 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3275 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3276 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3277
3278 switch (chip_version) {
3279 case CHELSIO_T4:
3280 exp_major = T4FW_MIN_VERSION_MAJOR;
3281 exp_minor = T4FW_MIN_VERSION_MINOR;
3282 exp_micro = T4FW_MIN_VERSION_MICRO;
3283 break;
3284 case CHELSIO_T5:
3285 exp_major = T5FW_MIN_VERSION_MAJOR;
3286 exp_minor = T5FW_MIN_VERSION_MINOR;
3287 exp_micro = T5FW_MIN_VERSION_MICRO;
3288 break;
3289 case CHELSIO_T6:
3290 exp_major = T6FW_MIN_VERSION_MAJOR;
3291 exp_minor = T6FW_MIN_VERSION_MINOR;
3292 exp_micro = T6FW_MIN_VERSION_MICRO;
3293 break;
3294 default:
3295 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3296 adap->chip);
3297 return -EINVAL;
3298 }
3299
3300 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3301 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3302 dev_err(adap->pdev_dev,
3303 "Card has firmware version %u.%u.%u, minimum "
3304 "supported firmware is %u.%u.%u.\n", major, minor,
3305 micro, exp_major, exp_minor, exp_micro);
3306 return -EFAULT;
3307 }
3308 return 0;
3309}
3310
16e47624
HS
3311/* Is the given firmware API compatible with the one the driver was compiled
3312 * with?
56d36be4 3313 */
16e47624 3314static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 3315{
56d36be4 3316
16e47624
HS
3317 /* short circuit if it's the exact same firmware version */
3318 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3319 return 1;
56d36be4 3320
16e47624
HS
3321#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3322 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3323 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3324 return 1;
3325#undef SAME_INTF
0a57a536 3326
16e47624
HS
3327 return 0;
3328}
56d36be4 3329
16e47624
HS
3330/* The firmware in the filesystem is usable, but should it be installed?
3331 * This routine explains itself in detail if it indicates the filesystem
3332 * firmware should be installed.
3333 */
3334static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3335 int k, int c)
3336{
3337 const char *reason;
3338
3339 if (!card_fw_usable) {
3340 reason = "incompatible or unusable";
3341 goto install;
e69972f5
JH
3342 }
3343
16e47624
HS
3344 if (k > c) {
3345 reason = "older than the version supported with this driver";
3346 goto install;
56d36be4
DM
3347 }
3348
16e47624
HS
3349 return 0;
3350
3351install:
3352 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3353 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
3354 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3355 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3356 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3357 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 3358
56d36be4
DM
3359 return 1;
3360}
3361
16e47624
HS
3362int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3363 const u8 *fw_data, unsigned int fw_size,
3364 struct fw_hdr *card_fw, enum dev_state state,
3365 int *reset)
3366{
3367 int ret, card_fw_usable, fs_fw_usable;
3368 const struct fw_hdr *fs_fw;
3369 const struct fw_hdr *drv_fw;
3370
3371 drv_fw = &fw_info->fw_hdr;
3372
3373 /* Read the header of the firmware on the card */
3374 ret = -t4_read_flash(adap, FLASH_FW_START,
3375 sizeof(*card_fw) / sizeof(uint32_t),
3376 (uint32_t *)card_fw, 1);
3377 if (ret == 0) {
3378 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3379 } else {
3380 dev_err(adap->pdev_dev,
3381 "Unable to read card's firmware header: %d\n", ret);
3382 card_fw_usable = 0;
3383 }
3384
3385 if (fw_data != NULL) {
3386 fs_fw = (const void *)fw_data;
3387 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3388 } else {
3389 fs_fw = NULL;
3390 fs_fw_usable = 0;
3391 }
3392
3393 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3394 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3395 /* Common case: the firmware on the card is an exact match and
3396 * the filesystem one is an exact match too, or the filesystem
3397 * one is absent/incompatible.
3398 */
3399 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3400 should_install_fs_fw(adap, card_fw_usable,
3401 be32_to_cpu(fs_fw->fw_ver),
3402 be32_to_cpu(card_fw->fw_ver))) {
3403 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3404 fw_size, 0);
3405 if (ret != 0) {
3406 dev_err(adap->pdev_dev,
3407 "failed to install firmware: %d\n", ret);
3408 goto bye;
3409 }
3410
3411 /* Installed successfully, update the cached header too. */
e3d50738 3412 *card_fw = *fs_fw;
16e47624
HS
3413 card_fw_usable = 1;
3414 *reset = 0; /* already reset as part of load_fw */
3415 }
3416
3417 if (!card_fw_usable) {
3418 uint32_t d, c, k;
3419
3420 d = be32_to_cpu(drv_fw->fw_ver);
3421 c = be32_to_cpu(card_fw->fw_ver);
3422 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3423
3424 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3425 "chip state %d, "
3426 "driver compiled with %d.%d.%d.%d, "
3427 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3428 state,
b2e1a3f0
HS
3429 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3430 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3431 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3433 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
3435 ret = EINVAL;
3436 goto bye;
3437 }
3438
3439 /* We're using whatever's on the card and it's known to be good. */
3440 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3441 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3442
3443bye:
3444 return ret;
3445}
3446
56d36be4
DM
3447/**
3448 * t4_flash_erase_sectors - erase a range of flash sectors
3449 * @adapter: the adapter
3450 * @start: the first sector to erase
3451 * @end: the last sector to erase
3452 *
3453 * Erases the sectors in the given inclusive range.
3454 */
3455static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3456{
3457 int ret = 0;
3458
c0d5b8cf
HS
3459 if (end >= adapter->params.sf_nsec)
3460 return -EINVAL;
3461
56d36be4
DM
3462 while (start <= end) {
3463 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3464 (ret = sf1_write(adapter, 4, 0, 1,
3465 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 3466 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
3467 dev_err(adapter->pdev_dev,
3468 "erase of flash sector %d failed, error %d\n",
3469 start, ret);
3470 break;
3471 }
3472 start++;
3473 }
0d804338 3474 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3475 return ret;
3476}
3477
636f9d37
VP
3478/**
3479 * t4_flash_cfg_addr - return the address of the flash configuration file
3480 * @adapter: the adapter
3481 *
3482 * Return the address within the flash where the Firmware Configuration
3483 * File is stored.
3484 */
3485unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3486{
3487 if (adapter->params.sf_size == 0x100000)
3488 return FLASH_FPGA_CFG_START;
3489 else
3490 return FLASH_CFG_START;
3491}
3492
79af221d
HS
3493/* Return TRUE if the specified firmware matches the adapter. I.e. T4
3494 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3495 * and emit an error message for mismatched firmware to save our caller the
3496 * effort ...
3497 */
3498static bool t4_fw_matches_chip(const struct adapter *adap,
3499 const struct fw_hdr *hdr)
3500{
3501 /* The expression below will return FALSE for any unsupported adapter
3502 * which will keep us "honest" in the future ...
3503 */
3504 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
3505 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3506 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
3507 return true;
3508
3509 dev_err(adap->pdev_dev,
3510 "FW image (%d) is not suitable for this adapter (%d)\n",
3511 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3512 return false;
3513}
3514
56d36be4
DM
3515/**
3516 * t4_load_fw - download firmware
3517 * @adap: the adapter
3518 * @fw_data: the firmware image to write
3519 * @size: image size
3520 *
3521 * Write the supplied firmware image to the card's serial flash.
3522 */
3523int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3524{
3525 u32 csum;
3526 int ret, addr;
3527 unsigned int i;
3528 u8 first_page[SF_PAGE_SIZE];
404d9e3f 3529 const __be32 *p = (const __be32 *)fw_data;
56d36be4 3530 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
3531 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3532 unsigned int fw_img_start = adap->params.sf_fw_start;
3533 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
3534
3535 if (!size) {
3536 dev_err(adap->pdev_dev, "FW image has no data\n");
3537 return -EINVAL;
3538 }
3539 if (size & 511) {
3540 dev_err(adap->pdev_dev,
3541 "FW image size not multiple of 512 bytes\n");
3542 return -EINVAL;
3543 }
f404f80c 3544 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
3545 dev_err(adap->pdev_dev,
3546 "FW image size differs from size in FW header\n");
3547 return -EINVAL;
3548 }
3549 if (size > FW_MAX_SIZE) {
3550 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3551 FW_MAX_SIZE);
3552 return -EFBIG;
3553 }
79af221d
HS
3554 if (!t4_fw_matches_chip(adap, hdr))
3555 return -EINVAL;
56d36be4
DM
3556
3557 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 3558 csum += be32_to_cpu(p[i]);
56d36be4
DM
3559
3560 if (csum != 0xffffffff) {
3561 dev_err(adap->pdev_dev,
3562 "corrupted firmware image, checksum %#x\n", csum);
3563 return -EINVAL;
3564 }
3565
900a6596
DM
3566 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3567 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
3568 if (ret)
3569 goto out;
3570
3571 /*
3572 * We write the correct version at the end so the driver can see a bad
3573 * version if the FW write fails. Start by writing a copy of the
3574 * first page with a bad version.
3575 */
3576 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 3577 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 3578 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
3579 if (ret)
3580 goto out;
3581
900a6596 3582 addr = fw_img_start;
56d36be4
DM
3583 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3584 addr += SF_PAGE_SIZE;
3585 fw_data += SF_PAGE_SIZE;
3586 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3587 if (ret)
3588 goto out;
3589 }
3590
3591 ret = t4_write_flash(adap,
900a6596 3592 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
3593 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3594out:
3595 if (ret)
3596 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3597 ret);
dff04bce
HS
3598 else
3599 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
3600 return ret;
3601}
3602
01b69614
HS
3603/**
3604 * t4_phy_fw_ver - return current PHY firmware version
3605 * @adap: the adapter
3606 * @phy_fw_ver: return value buffer for PHY firmware version
3607 *
3608 * Returns the current version of external PHY firmware on the
3609 * adapter.
3610 */
3611int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3612{
3613 u32 param, val;
3614 int ret;
3615
3616 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3617 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3618 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3619 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 3620 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3621 &param, &val);
3622 if (ret < 0)
3623 return ret;
3624 *phy_fw_ver = val;
3625 return 0;
3626}
3627
3628/**
3629 * t4_load_phy_fw - download port PHY firmware
3630 * @adap: the adapter
3631 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3632 * @win_lock: the lock to use to guard the memory copy
3633 * @phy_fw_version: function to check PHY firmware versions
3634 * @phy_fw_data: the PHY firmware image to write
3635 * @phy_fw_size: image size
3636 *
3637 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3638 * @phy_fw_version is supplied, then it will be used to determine if
3639 * it's necessary to perform the transfer by comparing the version
3640 * of any existing adapter PHY firmware with that of the passed in
3641 * PHY firmware image. If @win_lock is non-NULL then it will be used
3642 * around the call to t4_memory_rw() which transfers the PHY firmware
3643 * to the adapter.
3644 *
3645 * A negative error number will be returned if an error occurs. If
3646 * version number support is available and there's no need to upgrade
3647 * the firmware, 0 will be returned. If firmware is successfully
3648 * transferred to the adapter, 1 will be retured.
3649 *
3650 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3651 * a result, a RESET of the adapter would cause that RAM to lose its
3652 * contents. Thus, loading PHY firmware on such adapters must happen
3653 * after any FW_RESET_CMDs ...
3654 */
3655int t4_load_phy_fw(struct adapter *adap,
3656 int win, spinlock_t *win_lock,
3657 int (*phy_fw_version)(const u8 *, size_t),
3658 const u8 *phy_fw_data, size_t phy_fw_size)
3659{
3660 unsigned long mtype = 0, maddr = 0;
3661 u32 param, val;
3662 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3663 int ret;
3664
3665 /* If we have version number support, then check to see if the adapter
3666 * already has up-to-date PHY firmware loaded.
3667 */
3668 if (phy_fw_version) {
3669 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3670 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3671 if (ret < 0)
3672 return ret;
3673
3674 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3675 CH_WARN(adap, "PHY Firmware already up-to-date, "
3676 "version %#x\n", cur_phy_fw_ver);
3677 return 0;
3678 }
3679 }
3680
3681 /* Ask the firmware where it wants us to copy the PHY firmware image.
3682 * The size of the file requires a special version of the READ coommand
3683 * which will pass the file size via the values field in PARAMS_CMD and
3684 * retrieve the return value from firmware and place it in the same
3685 * buffer values
3686 */
3687 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3688 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3689 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3690 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3691 val = phy_fw_size;
b2612722 3692 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
8f46d467 3693 &param, &val, 1, true);
01b69614
HS
3694 if (ret < 0)
3695 return ret;
3696 mtype = val >> 8;
3697 maddr = (val & 0xff) << 16;
3698
3699 /* Copy the supplied PHY Firmware image to the adapter memory location
3700 * allocated by the adapter firmware.
3701 */
3702 if (win_lock)
3703 spin_lock_bh(win_lock);
3704 ret = t4_memory_rw(adap, win, mtype, maddr,
3705 phy_fw_size, (__be32 *)phy_fw_data,
3706 T4_MEMORY_WRITE);
3707 if (win_lock)
3708 spin_unlock_bh(win_lock);
3709 if (ret)
3710 return ret;
3711
3712 /* Tell the firmware that the PHY firmware image has been written to
3713 * RAM and it can now start copying it over to the PHYs. The chip
3714 * firmware will RESET the affected PHYs as part of this operation
3715 * leaving them running the new PHY firmware image.
3716 */
3717 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3718 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3719 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3720 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 3721 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3722 &param, &val, 30000);
3723
3724 /* If we have version number support, then check to see that the new
3725 * firmware got loaded properly.
3726 */
3727 if (phy_fw_version) {
3728 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3729 if (ret < 0)
3730 return ret;
3731
3732 if (cur_phy_fw_ver != new_phy_fw_vers) {
3733 CH_WARN(adap, "PHY Firmware did not update: "
3734 "version on adapter %#x, "
3735 "version flashed %#x\n",
3736 cur_phy_fw_ver, new_phy_fw_vers);
3737 return -ENXIO;
3738 }
3739 }
3740
3741 return 1;
3742}
3743
49216c1c
HS
3744/**
3745 * t4_fwcache - firmware cache operation
3746 * @adap: the adapter
3747 * @op : the operation (flush or flush and invalidate)
3748 */
3749int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3750{
3751 struct fw_params_cmd c;
3752
3753 memset(&c, 0, sizeof(c));
3754 c.op_to_vfn =
3755 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3756 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 3757 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
3758 FW_PARAMS_CMD_VFN_V(0));
3759 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3760 c.param[0].mnem =
3761 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3762 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3763 c.param[0].val = (__force __be32)op;
3764
3765 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3766}
3767
19689609
HS
3768void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3769 unsigned int *pif_req_wrptr,
3770 unsigned int *pif_rsp_wrptr)
3771{
3772 int i, j;
3773 u32 cfg, val, req, rsp;
3774
3775 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3776 if (cfg & LADBGEN_F)
3777 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3778
3779 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3780 req = POLADBGWRPTR_G(val);
3781 rsp = PILADBGWRPTR_G(val);
3782 if (pif_req_wrptr)
3783 *pif_req_wrptr = req;
3784 if (pif_rsp_wrptr)
3785 *pif_rsp_wrptr = rsp;
3786
3787 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3788 for (j = 0; j < 6; j++) {
3789 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3790 PILADBGRDPTR_V(rsp));
3791 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3792 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3793 req++;
3794 rsp++;
3795 }
3796 req = (req + 2) & POLADBGRDPTR_M;
3797 rsp = (rsp + 2) & PILADBGRDPTR_M;
3798 }
3799 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3800}
3801
26fae93f
HS
3802void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3803{
3804 u32 cfg;
3805 int i, j, idx;
3806
3807 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3808 if (cfg & LADBGEN_F)
3809 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3810
3811 for (i = 0; i < CIM_MALA_SIZE; i++) {
3812 for (j = 0; j < 5; j++) {
3813 idx = 8 * i + j;
3814 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3815 PILADBGRDPTR_V(idx));
3816 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3817 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3818 }
3819 }
3820 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3821}
3822
797ff0f5
HS
3823void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3824{
3825 unsigned int i, j;
3826
3827 for (i = 0; i < 8; i++) {
3828 u32 *p = la_buf + i;
3829
3830 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3831 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3832 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3833 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3834 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3835 }
3836}
3837
56d36be4 3838#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
9b86a8d1
HS
3839 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3840 FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
72aca4bf 3841 FW_PORT_CAP_ANEG)
56d36be4 3842
158a5c0a
CL
3843/* Translate Firmware Port Capabilities Pause specification to Common Code */
3844static inline unsigned int fwcap_to_cc_pause(unsigned int fw_pause)
3845{
3846 unsigned int cc_pause = 0;
3847
3848 if (fw_pause & FW_PORT_CAP_FC_RX)
3849 cc_pause |= PAUSE_RX;
3850 if (fw_pause & FW_PORT_CAP_FC_TX)
3851 cc_pause |= PAUSE_TX;
3852
3853 return cc_pause;
3854}
3855
3856/* Translate Common Code Pause specification into Firmware Port Capabilities */
3857static inline unsigned int cc_to_fwcap_pause(unsigned int cc_pause)
3858{
3859 unsigned int fw_pause = 0;
3860
3861 if (cc_pause & PAUSE_RX)
3862 fw_pause |= FW_PORT_CAP_FC_RX;
3863 if (cc_pause & PAUSE_TX)
3864 fw_pause |= FW_PORT_CAP_FC_TX;
3865
3866 return fw_pause;
3867}
3868
3869/* Translate Firmware Forward Error Correction specification to Common Code */
3870static inline unsigned int fwcap_to_cc_fec(unsigned int fw_fec)
3871{
3872 unsigned int cc_fec = 0;
3873
3874 if (fw_fec & FW_PORT_CAP_FEC_RS)
3875 cc_fec |= FEC_RS;
3876 if (fw_fec & FW_PORT_CAP_FEC_BASER_RS)
3877 cc_fec |= FEC_BASER_RS;
3878
3879 return cc_fec;
3880}
3881
3882/* Translate Common Code Forward Error Correction specification to Firmware */
3883static inline unsigned int cc_to_fwcap_fec(unsigned int cc_fec)
3884{
3885 unsigned int fw_fec = 0;
3886
3887 if (cc_fec & FEC_RS)
3888 fw_fec |= FW_PORT_CAP_FEC_RS;
3889 if (cc_fec & FEC_BASER_RS)
3890 fw_fec |= FW_PORT_CAP_FEC_BASER_RS;
3891
3892 return fw_fec;
3893}
3894
56d36be4 3895/**
4036da90 3896 * t4_link_l1cfg - apply link configuration to MAC/PHY
158a5c0a
CL
3897 * @adapter: the adapter
3898 * @mbox: the Firmware Mailbox to use
3899 * @port: the Port ID
3900 * @lc: the Port's Link Configuration
56d36be4
DM
3901 *
3902 * Set up a port's MAC and PHY according to a desired link configuration.
3903 * - If the PHY can auto-negotiate first decide what to advertise, then
3904 * enable/disable auto-negotiation as desired, and reset.
3905 * - If the PHY does not auto-negotiate just reset it.
3906 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3907 * otherwise do it later based on the outcome of auto-negotiation.
3908 */
4036da90 3909int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
56d36be4
DM
3910 struct link_config *lc)
3911{
3912 struct fw_port_cmd c;
158a5c0a
CL
3913 unsigned int fw_mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3914 unsigned int fw_fc, cc_fec, fw_fec;
3915 unsigned int rcap;
56d36be4
DM
3916
3917 lc->link_ok = 0;
56d36be4 3918
158a5c0a
CL
3919 /* Convert driver coding of Pause Frame Flow Control settings into the
3920 * Firmware's API.
3921 */
3922 fw_fc = cc_to_fwcap_pause(lc->requested_fc);
3923
3924 /* Convert Common Code Forward Error Control settings into the
3925 * Firmware's API. If the current Requested FEC has "Automatic"
3926 * (IEEE 802.3) specified, then we use whatever the Firmware
3927 * sent us as part of it's IEEE 802.3-based interpratation of
3928 * the Transceiver Module EPROM FEC parameters. Otherwise we
3929 * use whatever is in the current Requested FEC settings.
3930 */
3931 if (lc->requested_fec & FEC_AUTO)
3932 cc_fec = lc->auto_fec;
3933 else
3934 cc_fec = lc->requested_fec;
3935 fw_fec = cc_to_fwcap_fec(cc_fec);
3bb4858f 3936
158a5c0a
CL
3937 /* Figure out what our Requested Port Capabilities are going to be.
3938 */
3939 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3940 rcap = (lc->supported & ADVERT_MASK) | fw_fc | fw_fec;
3941 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3942 lc->fec = cc_fec;
3943 } else if (lc->autoneg == AUTONEG_DISABLE) {
3944 rcap = lc->requested_speed | fw_fc | fw_fec | fw_mdi;
3945 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3946 lc->fec = cc_fec;
3947 } else {
3948 rcap = lc->advertising | fw_fc | fw_fec | fw_mdi;
3949 }
3bb4858f 3950
158a5c0a
CL
3951 /* And send that on to the Firmware ...
3952 */
56d36be4 3953 memset(&c, 0, sizeof(c));
f404f80c
HS
3954 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3955 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3956 FW_PORT_CMD_PORTID_V(port));
3957 c.action_to_len16 =
3958 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3959 FW_LEN16(c));
158a5c0a 3960 c.u.l1cfg.rcap = cpu_to_be32(rcap);
56d36be4
DM
3961 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3962}
3963
3964/**
3965 * t4_restart_aneg - restart autonegotiation
3966 * @adap: the adapter
3967 * @mbox: mbox to use for the FW command
3968 * @port: the port id
3969 *
3970 * Restarts autonegotiation for the selected port.
3971 */
3972int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3973{
3974 struct fw_port_cmd c;
3975
3976 memset(&c, 0, sizeof(c));
f404f80c
HS
3977 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3978 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3979 FW_PORT_CMD_PORTID_V(port));
3980 c.action_to_len16 =
3981 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3982 FW_LEN16(c));
3983 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
3984 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3985}
3986
8caa1e84
VP
3987typedef void (*int_handler_t)(struct adapter *adap);
3988
56d36be4
DM
3989struct intr_info {
3990 unsigned int mask; /* bits to check in interrupt status */
3991 const char *msg; /* message to print or NULL */
3992 short stat_idx; /* stat counter to increment or -1 */
3993 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 3994 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
3995};
3996
3997/**
3998 * t4_handle_intr_status - table driven interrupt handler
3999 * @adapter: the adapter that generated the interrupt
4000 * @reg: the interrupt status register to process
4001 * @acts: table of interrupt actions
4002 *
4003 * A table driven interrupt handler that applies a set of masks to an
4004 * interrupt status word and performs the corresponding actions if the
25985edc 4005 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
4006 * optionally emitting a warning or alert message. The table is terminated
4007 * by an entry specifying mask 0. Returns the number of fatal interrupt
4008 * conditions.
4009 */
4010static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4011 const struct intr_info *acts)
4012{
4013 int fatal = 0;
4014 unsigned int mask = 0;
4015 unsigned int status = t4_read_reg(adapter, reg);
4016
4017 for ( ; acts->mask; ++acts) {
4018 if (!(status & acts->mask))
4019 continue;
4020 if (acts->fatal) {
4021 fatal++;
4022 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4023 status & acts->mask);
4024 } else if (acts->msg && printk_ratelimit())
4025 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4026 status & acts->mask);
8caa1e84
VP
4027 if (acts->int_handler)
4028 acts->int_handler(adapter);
56d36be4
DM
4029 mask |= acts->mask;
4030 }
4031 status &= mask;
4032 if (status) /* clear processed interrupts */
4033 t4_write_reg(adapter, reg, status);
4034 return fatal;
4035}
4036
4037/*
4038 * Interrupt handler for the PCIE module.
4039 */
4040static void pcie_intr_handler(struct adapter *adapter)
4041{
005b5717 4042 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
4043 { RNPP_F, "RXNP array parity error", -1, 1 },
4044 { RPCP_F, "RXPC array parity error", -1, 1 },
4045 { RCIP_F, "RXCIF array parity error", -1, 1 },
4046 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4047 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
4048 { 0 }
4049 };
005b5717 4050 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
4051 { TPCP_F, "TXPC array parity error", -1, 1 },
4052 { TNPP_F, "TXNP array parity error", -1, 1 },
4053 { TFTP_F, "TXFT array parity error", -1, 1 },
4054 { TCAP_F, "TXCA array parity error", -1, 1 },
4055 { TCIP_F, "TXCIF array parity error", -1, 1 },
4056 { RCAP_F, "RXCA array parity error", -1, 1 },
4057 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4058 { RDPE_F, "Rx data parity error", -1, 1 },
4059 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
4060 { 0 }
4061 };
005b5717 4062 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
4063 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4064 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4065 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4066 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4067 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4068 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4069 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4070 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4071 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4072 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4073 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4074 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4075 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4076 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4077 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4078 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4079 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4080 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4081 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4082 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4083 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4084 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4085 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4086 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4087 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4088 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4089 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4090 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4091 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4092 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4093 -1, 0 },
56d36be4
DM
4094 { 0 }
4095 };
4096
0a57a536 4097 static struct intr_info t5_pcie_intr_info[] = {
f061de42 4098 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 4099 -1, 1 },
f061de42
HS
4100 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4101 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4102 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4103 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4104 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4105 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4106 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 4107 -1, 1 },
f061de42 4108 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 4109 -1, 1 },
f061de42
HS
4110 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4111 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4112 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4113 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4114 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 4115 -1, 1 },
f061de42
HS
4116 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4117 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4118 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4119 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4120 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4121 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4122 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4123 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4124 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4125 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4126 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 4127 -1, 1 },
f061de42
HS
4128 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4129 -1, 1 },
4130 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4131 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4132 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4133 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
4134 { 0 }
4135 };
4136
56d36be4
DM
4137 int fat;
4138
9bb59b96
HS
4139 if (is_t4(adapter->params.chip))
4140 fat = t4_handle_intr_status(adapter,
f061de42
HS
4141 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4142 sysbus_intr_info) +
9bb59b96 4143 t4_handle_intr_status(adapter,
f061de42
HS
4144 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4145 pcie_port_intr_info) +
4146 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
4147 pcie_intr_info);
4148 else
f061de42 4149 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 4150 t5_pcie_intr_info);
0a57a536 4151
56d36be4
DM
4152 if (fat)
4153 t4_fatal_err(adapter);
4154}
4155
4156/*
4157 * TP interrupt handler.
4158 */
4159static void tp_intr_handler(struct adapter *adapter)
4160{
005b5717 4161 static const struct intr_info tp_intr_info[] = {
56d36be4 4162 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 4163 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
4164 { 0 }
4165 };
4166
837e4a42 4167 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
4168 t4_fatal_err(adapter);
4169}
4170
4171/*
4172 * SGE interrupt handler.
4173 */
4174static void sge_intr_handler(struct adapter *adapter)
4175{
4176 u64 v;
3ccc6cf7 4177 u32 err;
56d36be4 4178
005b5717 4179 static const struct intr_info sge_intr_info[] = {
f612b815 4180 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 4181 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 4182 { ERR_INVALID_CIDX_INC_F,
56d36be4 4183 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
4184 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4185 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 4186 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 4187 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 4188 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 4189 0 },
f612b815 4190 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 4191 0 },
f612b815 4192 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 4193 0 },
f612b815 4194 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 4195 0 },
f612b815 4196 { ERR_ING_CTXT_PRIO_F,
56d36be4 4197 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
4198 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4199 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
4200 { 0 }
4201 };
4202
3ccc6cf7
HS
4203 static struct intr_info t4t5_sge_intr_info[] = {
4204 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4205 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4206 { ERR_EGR_CTXT_PRIO_F,
4207 "SGE too many priority egress contexts", -1, 0 },
4208 { 0 }
4209 };
4210
f612b815
HS
4211 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4212 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
4213 if (v) {
4214 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 4215 (unsigned long long)v);
f612b815
HS
4216 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4217 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
4218 }
4219
3ccc6cf7
HS
4220 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4221 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4222 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4223 t4t5_sge_intr_info);
4224
4225 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4226 if (err & ERROR_QID_VALID_F) {
4227 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4228 ERROR_QID_G(err));
4229 if (err & UNCAPTURED_ERROR_F)
4230 dev_err(adapter->pdev_dev,
4231 "SGE UNCAPTURED_ERROR set (clearing)\n");
4232 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4233 UNCAPTURED_ERROR_F);
4234 }
4235
4236 if (v != 0)
56d36be4
DM
4237 t4_fatal_err(adapter);
4238}
4239
89c3a86c
HS
4240#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4241 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4242#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4243 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4244
56d36be4
DM
4245/*
4246 * CIM interrupt handler.
4247 */
4248static void cim_intr_handler(struct adapter *adapter)
4249{
005b5717 4250 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
4251 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4252 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4253 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4254 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4255 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4256 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4257 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
d86cc04e 4258 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
56d36be4
DM
4259 { 0 }
4260 };
005b5717 4261 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
4262 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4263 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4264 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4265 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4266 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4267 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4268 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4269 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4270 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4271 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4272 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4273 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4274 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4275 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4276 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4277 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4278 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4279 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4280 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4281 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4282 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4283 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4284 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4285 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4286 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4287 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4288 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4289 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
4290 { 0 }
4291 };
4292
d86cc04e 4293 u32 val, fw_err;
56d36be4
DM
4294 int fat;
4295
d86cc04e
RL
4296 fw_err = t4_read_reg(adapter, PCIE_FW_A);
4297 if (fw_err & PCIE_FW_ERR_F)
31d55c2d
HS
4298 t4_report_fw_error(adapter);
4299
d86cc04e
RL
4300 /* When the Firmware detects an internal error which normally
4301 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4302 * in order to make sure the Host sees the Firmware Crash. So
4303 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4304 * ignore the Timer0 interrupt.
4305 */
4306
4307 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4308 if (val & TIMER0INT_F)
4309 if (!(fw_err & PCIE_FW_ERR_F) ||
4310 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4311 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4312 TIMER0INT_F);
4313
89c3a86c 4314 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 4315 cim_intr_info) +
89c3a86c 4316 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
4317 cim_upintr_info);
4318 if (fat)
4319 t4_fatal_err(adapter);
4320}
4321
4322/*
4323 * ULP RX interrupt handler.
4324 */
4325static void ulprx_intr_handler(struct adapter *adapter)
4326{
005b5717 4327 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 4328 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
4329 { 0x7fffff, "ULPRX parity error", -1, 1 },
4330 { 0 }
4331 };
4332
0d804338 4333 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
4334 t4_fatal_err(adapter);
4335}
4336
4337/*
4338 * ULP TX interrupt handler.
4339 */
4340static void ulptx_intr_handler(struct adapter *adapter)
4341{
005b5717 4342 static const struct intr_info ulptx_intr_info[] = {
837e4a42 4343 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 4344 0 },
837e4a42 4345 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 4346 0 },
837e4a42 4347 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 4348 0 },
837e4a42 4349 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
4350 0 },
4351 { 0xfffffff, "ULPTX parity error", -1, 1 },
4352 { 0 }
4353 };
4354
837e4a42 4355 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
4356 t4_fatal_err(adapter);
4357}
4358
4359/*
4360 * PM TX interrupt handler.
4361 */
4362static void pmtx_intr_handler(struct adapter *adapter)
4363{
005b5717 4364 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
4365 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4366 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4367 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4368 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4369 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4370 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4371 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4372 -1, 1 },
4373 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4374 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
4375 { 0 }
4376 };
4377
837e4a42 4378 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
4379 t4_fatal_err(adapter);
4380}
4381
4382/*
4383 * PM RX interrupt handler.
4384 */
4385static void pmrx_intr_handler(struct adapter *adapter)
4386{
005b5717 4387 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
4388 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4389 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4390 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4391 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4392 -1, 1 },
4393 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4394 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
4395 { 0 }
4396 };
4397
837e4a42 4398 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
4399 t4_fatal_err(adapter);
4400}
4401
4402/*
4403 * CPL switch interrupt handler.
4404 */
4405static void cplsw_intr_handler(struct adapter *adapter)
4406{
005b5717 4407 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
4408 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4409 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4410 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4411 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4412 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4413 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
4414 { 0 }
4415 };
4416
0d804338 4417 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
4418 t4_fatal_err(adapter);
4419}
4420
4421/*
4422 * LE interrupt handler.
4423 */
4424static void le_intr_handler(struct adapter *adap)
4425{
3ccc6cf7 4426 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 4427 static const struct intr_info le_intr_info[] = {
0d804338
HS
4428 { LIPMISS_F, "LE LIP miss", -1, 0 },
4429 { LIP0_F, "LE 0 LIP error", -1, 0 },
4430 { PARITYERR_F, "LE parity error", -1, 1 },
4431 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4432 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
4433 { 0 }
4434 };
4435
3ccc6cf7
HS
4436 static struct intr_info t6_le_intr_info[] = {
4437 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4438 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4439 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4440 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4441 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4442 { 0 }
4443 };
4444
4445 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4446 (chip <= CHELSIO_T5) ?
4447 le_intr_info : t6_le_intr_info))
56d36be4
DM
4448 t4_fatal_err(adap);
4449}
4450
4451/*
4452 * MPS interrupt handler.
4453 */
4454static void mps_intr_handler(struct adapter *adapter)
4455{
005b5717 4456 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
4457 { 0xffffff, "MPS Rx parity error", -1, 1 },
4458 { 0 }
4459 };
005b5717 4460 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
4461 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4462 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4463 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4464 -1, 1 },
4465 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4466 -1, 1 },
4467 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4468 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4469 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
4470 { 0 }
4471 };
005b5717 4472 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
4473 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4474 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4475 -1, 1 },
4476 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
4477 { 0 }
4478 };
005b5717 4479 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
4480 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4481 { 0 }
4482 };
005b5717 4483 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
4484 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4485 { 0 }
4486 };
005b5717 4487 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
4488 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4489 { 0 }
4490 };
005b5717 4491 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
4492 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4493 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4494 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
4495 { 0 }
4496 };
4497
4498 int fat;
4499
837e4a42 4500 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 4501 mps_rx_intr_info) +
837e4a42 4502 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 4503 mps_tx_intr_info) +
837e4a42 4504 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 4505 mps_trc_intr_info) +
837e4a42 4506 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 4507 mps_stat_sram_intr_info) +
837e4a42 4508 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 4509 mps_stat_tx_intr_info) +
837e4a42 4510 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 4511 mps_stat_rx_intr_info) +
837e4a42 4512 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
4513 mps_cls_intr_info);
4514
837e4a42
HS
4515 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4516 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
4517 if (fat)
4518 t4_fatal_err(adapter);
4519}
4520
89c3a86c
HS
4521#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4522 ECC_UE_INT_CAUSE_F)
56d36be4
DM
4523
4524/*
4525 * EDC/MC interrupt handler.
4526 */
4527static void mem_intr_handler(struct adapter *adapter, int idx)
4528{
822dd8a8 4529 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
4530
4531 unsigned int addr, cnt_addr, v;
4532
4533 if (idx <= MEM_EDC1) {
89c3a86c
HS
4534 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4535 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
4536 } else if (idx == MEM_MC) {
4537 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
4538 addr = MC_INT_CAUSE_A;
4539 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 4540 } else {
89c3a86c
HS
4541 addr = MC_P_INT_CAUSE_A;
4542 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 4543 }
56d36be4 4544 } else {
89c3a86c
HS
4545 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4546 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
4547 }
4548
4549 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 4550 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
4551 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4552 name[idx]);
89c3a86c
HS
4553 if (v & ECC_CE_INT_CAUSE_F) {
4554 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 4555
bf8ebb67
HS
4556 t4_edc_err_read(adapter, idx);
4557
89c3a86c 4558 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
4559 if (printk_ratelimit())
4560 dev_warn(adapter->pdev_dev,
4561 "%u %s correctable ECC data error%s\n",
4562 cnt, name[idx], cnt > 1 ? "s" : "");
4563 }
89c3a86c 4564 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
4565 dev_alert(adapter->pdev_dev,
4566 "%s uncorrectable ECC data error\n", name[idx]);
4567
4568 t4_write_reg(adapter, addr, v);
89c3a86c 4569 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
4570 t4_fatal_err(adapter);
4571}
4572
4573/*
4574 * MA interrupt handler.
4575 */
4576static void ma_intr_handler(struct adapter *adap)
4577{
89c3a86c 4578 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 4579
89c3a86c 4580 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
4581 dev_alert(adap->pdev_dev,
4582 "MA parity error, parity status %#x\n",
89c3a86c 4583 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
4584 if (is_t5(adap->params.chip))
4585 dev_alert(adap->pdev_dev,
4586 "MA parity error, parity status %#x\n",
4587 t4_read_reg(adap,
89c3a86c 4588 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 4589 }
89c3a86c
HS
4590 if (status & MEM_WRAP_INT_CAUSE_F) {
4591 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
4592 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4593 "client %u to address %#x\n",
89c3a86c
HS
4594 MEM_WRAP_CLIENT_NUM_G(v),
4595 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 4596 }
89c3a86c 4597 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
4598 t4_fatal_err(adap);
4599}
4600
4601/*
4602 * SMB interrupt handler.
4603 */
4604static void smb_intr_handler(struct adapter *adap)
4605{
005b5717 4606 static const struct intr_info smb_intr_info[] = {
0d804338
HS
4607 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4608 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4609 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
4610 { 0 }
4611 };
4612
0d804338 4613 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
4614 t4_fatal_err(adap);
4615}
4616
4617/*
4618 * NC-SI interrupt handler.
4619 */
4620static void ncsi_intr_handler(struct adapter *adap)
4621{
005b5717 4622 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
4623 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4624 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4625 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4626 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
4627 { 0 }
4628 };
4629
0d804338 4630 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
4631 t4_fatal_err(adap);
4632}
4633
4634/*
4635 * XGMAC interrupt handler.
4636 */
4637static void xgmac_intr_handler(struct adapter *adap, int port)
4638{
0a57a536
SR
4639 u32 v, int_cause_reg;
4640
d14807dd 4641 if (is_t4(adap->params.chip))
0d804338 4642 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 4643 else
0d804338 4644 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
4645
4646 v = t4_read_reg(adap, int_cause_reg);
56d36be4 4647
0d804338 4648 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
4649 if (!v)
4650 return;
4651
0d804338 4652 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
4653 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4654 port);
0d804338 4655 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
4656 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4657 port);
0d804338 4658 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
4659 t4_fatal_err(adap);
4660}
4661
4662/*
4663 * PL interrupt handler.
4664 */
4665static void pl_intr_handler(struct adapter *adap)
4666{
005b5717 4667 static const struct intr_info pl_intr_info[] = {
0d804338
HS
4668 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4669 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
4670 { 0 }
4671 };
4672
0d804338 4673 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
4674 t4_fatal_err(adap);
4675}
4676
0d804338
HS
4677#define PF_INTR_MASK (PFSW_F)
4678#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4679 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
38b6ec50 4680 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
56d36be4
DM
4681
4682/**
4683 * t4_slow_intr_handler - control path interrupt handler
4684 * @adapter: the adapter
4685 *
4686 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4687 * The designation 'slow' is because it involves register reads, while
4688 * data interrupts typically don't involve any MMIOs.
4689 */
4690int t4_slow_intr_handler(struct adapter *adapter)
4691{
0d804338 4692 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
4693
4694 if (!(cause & GLBL_INTR_MASK))
4695 return 0;
0d804338 4696 if (cause & CIM_F)
56d36be4 4697 cim_intr_handler(adapter);
0d804338 4698 if (cause & MPS_F)
56d36be4 4699 mps_intr_handler(adapter);
0d804338 4700 if (cause & NCSI_F)
56d36be4 4701 ncsi_intr_handler(adapter);
0d804338 4702 if (cause & PL_F)
56d36be4 4703 pl_intr_handler(adapter);
0d804338 4704 if (cause & SMB_F)
56d36be4 4705 smb_intr_handler(adapter);
0d804338 4706 if (cause & XGMAC0_F)
56d36be4 4707 xgmac_intr_handler(adapter, 0);
0d804338 4708 if (cause & XGMAC1_F)
56d36be4 4709 xgmac_intr_handler(adapter, 1);
0d804338 4710 if (cause & XGMAC_KR0_F)
56d36be4 4711 xgmac_intr_handler(adapter, 2);
0d804338 4712 if (cause & XGMAC_KR1_F)
56d36be4 4713 xgmac_intr_handler(adapter, 3);
0d804338 4714 if (cause & PCIE_F)
56d36be4 4715 pcie_intr_handler(adapter);
0d804338 4716 if (cause & MC_F)
56d36be4 4717 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 4718 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 4719 mem_intr_handler(adapter, MEM_MC1);
0d804338 4720 if (cause & EDC0_F)
56d36be4 4721 mem_intr_handler(adapter, MEM_EDC0);
0d804338 4722 if (cause & EDC1_F)
56d36be4 4723 mem_intr_handler(adapter, MEM_EDC1);
0d804338 4724 if (cause & LE_F)
56d36be4 4725 le_intr_handler(adapter);
0d804338 4726 if (cause & TP_F)
56d36be4 4727 tp_intr_handler(adapter);
0d804338 4728 if (cause & MA_F)
56d36be4 4729 ma_intr_handler(adapter);
0d804338 4730 if (cause & PM_TX_F)
56d36be4 4731 pmtx_intr_handler(adapter);
0d804338 4732 if (cause & PM_RX_F)
56d36be4 4733 pmrx_intr_handler(adapter);
0d804338 4734 if (cause & ULP_RX_F)
56d36be4 4735 ulprx_intr_handler(adapter);
0d804338 4736 if (cause & CPL_SWITCH_F)
56d36be4 4737 cplsw_intr_handler(adapter);
0d804338 4738 if (cause & SGE_F)
56d36be4 4739 sge_intr_handler(adapter);
0d804338 4740 if (cause & ULP_TX_F)
56d36be4
DM
4741 ulptx_intr_handler(adapter);
4742
4743 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
4744 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4745 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
4746 return 1;
4747}
4748
4749/**
4750 * t4_intr_enable - enable interrupts
4751 * @adapter: the adapter whose interrupts should be enabled
4752 *
4753 * Enable PF-specific interrupts for the calling function and the top-level
4754 * interrupt concentrator for global interrupts. Interrupts are already
4755 * enabled at each module, here we just enable the roots of the interrupt
4756 * hierarchies.
4757 *
4758 * Note: this function should be called only when the driver manages
4759 * non PF-specific interrupts from the various HW modules. Only one PCI
4760 * function at a time should be doing this.
4761 */
4762void t4_intr_enable(struct adapter *adapter)
4763{
3ccc6cf7 4764 u32 val = 0;
d86bd29e
HS
4765 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4766 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4767 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4768
3ccc6cf7
HS
4769 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4770 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
4771 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4772 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 4773 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
4774 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4775 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4776 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 4777 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
4778 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4779 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
4780}
4781
4782/**
4783 * t4_intr_disable - disable interrupts
4784 * @adapter: the adapter whose interrupts should be disabled
4785 *
4786 * Disable interrupts. We only disable the top-level interrupt
4787 * concentrators. The caller must be a PCI function managing global
4788 * interrupts.
4789 */
4790void t4_intr_disable(struct adapter *adapter)
4791{
025d0973
GP
4792 u32 whoami, pf;
4793
4794 if (pci_channel_offline(adapter->pdev))
4795 return;
4796
4797 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4798 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
d86bd29e 4799 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4800
0d804338
HS
4801 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4802 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
4803}
4804
56d36be4
DM
4805/**
4806 * t4_config_rss_range - configure a portion of the RSS mapping table
4807 * @adapter: the adapter
4808 * @mbox: mbox to use for the FW command
4809 * @viid: virtual interface whose RSS subtable is to be written
4810 * @start: start entry in the table to write
4811 * @n: how many table entries to write
4812 * @rspq: values for the response queue lookup table
4813 * @nrspq: number of values in @rspq
4814 *
4815 * Programs the selected part of the VI's RSS mapping table with the
4816 * provided values. If @nrspq < @n the supplied values are used repeatedly
4817 * until the full table range is populated.
4818 *
4819 * The caller must ensure the values in @rspq are in the range allowed for
4820 * @viid.
4821 */
4822int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4823 int start, int n, const u16 *rspq, unsigned int nrspq)
4824{
4825 int ret;
4826 const u16 *rsp = rspq;
4827 const u16 *rsp_end = rspq + nrspq;
4828 struct fw_rss_ind_tbl_cmd cmd;
4829
4830 memset(&cmd, 0, sizeof(cmd));
f404f80c 4831 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 4832 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 4833 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 4834 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
4835
4836 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4837 while (n > 0) {
4838 int nq = min(n, 32);
4839 __be32 *qp = &cmd.iq0_to_iq2;
4840
f404f80c
HS
4841 cmd.niqid = cpu_to_be16(nq);
4842 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
4843
4844 start += nq;
4845 n -= nq;
4846
4847 while (nq > 0) {
4848 unsigned int v;
4849
b2e1a3f0 4850 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
4851 if (++rsp >= rsp_end)
4852 rsp = rspq;
b2e1a3f0 4853 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
4854 if (++rsp >= rsp_end)
4855 rsp = rspq;
b2e1a3f0 4856 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
4857 if (++rsp >= rsp_end)
4858 rsp = rspq;
4859
f404f80c 4860 *qp++ = cpu_to_be32(v);
56d36be4
DM
4861 nq -= 3;
4862 }
4863
4864 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4865 if (ret)
4866 return ret;
4867 }
4868 return 0;
4869}
4870
4871/**
4872 * t4_config_glbl_rss - configure the global RSS mode
4873 * @adapter: the adapter
4874 * @mbox: mbox to use for the FW command
4875 * @mode: global RSS mode
4876 * @flags: mode-specific flags
4877 *
4878 * Sets the global RSS mode.
4879 */
4880int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4881 unsigned int flags)
4882{
4883 struct fw_rss_glb_config_cmd c;
4884
4885 memset(&c, 0, sizeof(c));
f404f80c
HS
4886 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4887 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4888 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 4889 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
4890 c.u.manual.mode_pkd =
4891 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
4892 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4893 c.u.basicvirtual.mode_pkd =
f404f80c
HS
4894 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4895 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
4896 } else
4897 return -EINVAL;
4898 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4899}
4900
c035e183
HS
4901/**
4902 * t4_config_vi_rss - configure per VI RSS settings
4903 * @adapter: the adapter
4904 * @mbox: mbox to use for the FW command
4905 * @viid: the VI id
4906 * @flags: RSS flags
4907 * @defq: id of the default RSS queue for the VI.
4908 *
4909 * Configures VI-specific RSS properties.
4910 */
4911int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4912 unsigned int flags, unsigned int defq)
4913{
4914 struct fw_rss_vi_config_cmd c;
4915
4916 memset(&c, 0, sizeof(c));
4917 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4918 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4919 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4920 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4921 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4922 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4923 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4924}
4925
688ea5fe
HS
4926/* Read an RSS table row */
4927static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4928{
4929 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4930 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4931 5, 0, val);
4932}
4933
4934/**
4935 * t4_read_rss - read the contents of the RSS mapping table
4936 * @adapter: the adapter
4937 * @map: holds the contents of the RSS mapping table
4938 *
4939 * Reads the contents of the RSS hash->queue mapping table.
4940 */
4941int t4_read_rss(struct adapter *adapter, u16 *map)
4942{
4943 u32 val;
4944 int i, ret;
4945
4946 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4947 ret = rd_rss_row(adapter, i, &val);
4948 if (ret)
4949 return ret;
4950 *map++ = LKPTBLQUEUE0_G(val);
4951 *map++ = LKPTBLQUEUE1_G(val);
4952 }
4953 return 0;
4954}
4955
0b2c2a93
HS
4956static unsigned int t4_use_ldst(struct adapter *adap)
4957{
4958 return (adap->flags & FW_OK) || !adap->use_bd;
4959}
4960
c1e9af0c
HS
4961/**
4962 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4963 * @adap: the adapter
4964 * @vals: where the indirect register values are stored/written
4965 * @nregs: how many indirect registers to read/write
4966 * @start_idx: index of first indirect register to read/write
4967 * @rw: Read (1) or Write (0)
4968 *
4969 * Access TP PIO registers through LDST
4970 */
4971static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4972 unsigned int start_index, unsigned int rw)
4973{
4974 int ret, i;
4975 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4976 struct fw_ldst_cmd c;
4977
4978 for (i = 0 ; i < nregs; i++) {
4979 memset(&c, 0, sizeof(c));
4980 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4981 FW_CMD_REQUEST_F |
4982 (rw ? FW_CMD_READ_F :
4983 FW_CMD_WRITE_F) |
4984 FW_LDST_CMD_ADDRSPACE_V(cmd));
4985 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4986
4987 c.u.addrval.addr = cpu_to_be32(start_index + i);
4988 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4989 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4990 if (!ret && rw)
4991 vals[i] = be32_to_cpu(c.u.addrval.val);
4992 }
4993}
4994
688ea5fe
HS
4995/**
4996 * t4_read_rss_key - read the global RSS key
4997 * @adap: the adapter
4998 * @key: 10-entry array holding the 320-bit RSS key
4999 *
5000 * Reads the global 320-bit RSS key.
5001 */
5002void t4_read_rss_key(struct adapter *adap, u32 *key)
5003{
0b2c2a93 5004 if (t4_use_ldst(adap))
c1e9af0c
HS
5005 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
5006 else
5007 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
5008 TP_RSS_SECRET_KEY0_A);
688ea5fe
HS
5009}
5010
5011/**
5012 * t4_write_rss_key - program one of the RSS keys
5013 * @adap: the adapter
5014 * @key: 10-entry array holding the 320-bit RSS key
5015 * @idx: which RSS key to write
5016 *
5017 * Writes one of the RSS keys with the given 320-bit value. If @idx is
5018 * 0..15 the corresponding entry in the RSS key table is written,
5019 * otherwise the global RSS key is written.
5020 */
5021void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
5022{
3ccc6cf7
HS
5023 u8 rss_key_addr_cnt = 16;
5024 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5025
5026 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5027 * allows access to key addresses 16-63 by using KeyWrAddrX
5028 * as index[5:4](upper 2) into key table
5029 */
5030 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5031 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5032 rss_key_addr_cnt = 32;
5033
0b2c2a93 5034 if (t4_use_ldst(adap))
c1e9af0c
HS
5035 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
5036 else
5037 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
5038 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
5039
5040 if (idx >= 0 && idx < rss_key_addr_cnt) {
5041 if (rss_key_addr_cnt > 16)
5042 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5043 KEYWRADDRX_V(idx >> 4) |
5044 T6_VFWRADDR_V(idx) | KEYWREN_F);
5045 else
5046 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5047 KEYWRADDR_V(idx) | KEYWREN_F);
5048 }
688ea5fe
HS
5049}
5050
5051/**
5052 * t4_read_rss_pf_config - read PF RSS Configuration Table
5053 * @adapter: the adapter
5054 * @index: the entry in the PF RSS table to read
5055 * @valp: where to store the returned value
5056 *
5057 * Reads the PF RSS Configuration Table at the specified index and returns
5058 * the value found there.
5059 */
5060void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5061 u32 *valp)
5062{
0b2c2a93 5063 if (t4_use_ldst(adapter))
c1e9af0c
HS
5064 t4_fw_tp_pio_rw(adapter, valp, 1,
5065 TP_RSS_PF0_CONFIG_A + index, 1);
5066 else
5067 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5068 valp, 1, TP_RSS_PF0_CONFIG_A + index);
688ea5fe
HS
5069}
5070
5071/**
5072 * t4_read_rss_vf_config - read VF RSS Configuration Table
5073 * @adapter: the adapter
5074 * @index: the entry in the VF RSS table to read
5075 * @vfl: where to store the returned VFL
5076 * @vfh: where to store the returned VFH
5077 *
5078 * Reads the VF RSS Configuration Table at the specified index and returns
5079 * the (VFL, VFH) values found there.
5080 */
5081void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5082 u32 *vfl, u32 *vfh)
5083{
5084 u32 vrt, mask, data;
5085
3ccc6cf7
HS
5086 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5087 mask = VFWRADDR_V(VFWRADDR_M);
5088 data = VFWRADDR_V(index);
5089 } else {
5090 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
5091 data = T6_VFWRADDR_V(index);
5092 }
688ea5fe
HS
5093
5094 /* Request that the index'th VF Table values be read into VFL/VFH.
5095 */
5096 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5097 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5098 vrt |= data | VFRDEN_F;
5099 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5100
5101 /* Grab the VFL/VFH values ...
5102 */
0b2c2a93 5103 if (t4_use_ldst(adapter)) {
c1e9af0c
HS
5104 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
5105 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
5106 } else {
5107 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5108 vfl, 1, TP_RSS_VFL_CONFIG_A);
5109 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5110 vfh, 1, TP_RSS_VFH_CONFIG_A);
5111 }
688ea5fe
HS
5112}
5113
5114/**
5115 * t4_read_rss_pf_map - read PF RSS Map
5116 * @adapter: the adapter
5117 *
5118 * Reads the PF RSS Map register and returns its value.
5119 */
5120u32 t4_read_rss_pf_map(struct adapter *adapter)
5121{
5122 u32 pfmap;
5123
0b2c2a93 5124 if (t4_use_ldst(adapter))
c1e9af0c
HS
5125 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
5126 else
5127 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5128 &pfmap, 1, TP_RSS_PF_MAP_A);
688ea5fe
HS
5129 return pfmap;
5130}
5131
5132/**
5133 * t4_read_rss_pf_mask - read PF RSS Mask
5134 * @adapter: the adapter
5135 *
5136 * Reads the PF RSS Mask register and returns its value.
5137 */
5138u32 t4_read_rss_pf_mask(struct adapter *adapter)
5139{
5140 u32 pfmask;
5141
0b2c2a93 5142 if (t4_use_ldst(adapter))
c1e9af0c
HS
5143 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
5144 else
5145 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5146 &pfmask, 1, TP_RSS_PF_MSK_A);
688ea5fe
HS
5147 return pfmask;
5148}
5149
56d36be4
DM
5150/**
5151 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
5152 * @adap: the adapter
5153 * @v4: holds the TCP/IP counter values
5154 * @v6: holds the TCP/IPv6 counter values
5155 *
5156 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5157 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5158 */
5159void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5160 struct tp_tcp_stats *v6)
5161{
837e4a42 5162 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 5163
837e4a42 5164#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
5165#define STAT(x) val[STAT_IDX(x)]
5166#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5167
5168 if (v4) {
837e4a42
HS
5169 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5170 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
5171 v4->tcp_out_rsts = STAT(OUT_RST);
5172 v4->tcp_in_segs = STAT64(IN_SEG);
5173 v4->tcp_out_segs = STAT64(OUT_SEG);
5174 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
5175 }
5176 if (v6) {
837e4a42
HS
5177 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5178 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
5179 v6->tcp_out_rsts = STAT(OUT_RST);
5180 v6->tcp_in_segs = STAT64(IN_SEG);
5181 v6->tcp_out_segs = STAT64(OUT_SEG);
5182 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
5183 }
5184#undef STAT64
5185#undef STAT
5186#undef STAT_IDX
5187}
5188
a4cfd929
HS
5189/**
5190 * t4_tp_get_err_stats - read TP's error MIB counters
5191 * @adap: the adapter
5192 * @st: holds the counter values
5193 *
5194 * Returns the values of TP's error counters.
5195 */
5196void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5197{
df459ebc
HS
5198 int nchan = adap->params.arch.nchan;
5199
5200 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5201 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
5202 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5203 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
5204 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5205 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
5206 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5207 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
5208 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5209 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
5210 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5211 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
5212 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5213 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
5214 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5215 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
5216
a4cfd929
HS
5217 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5218 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
5219}
5220
a6222975
HS
5221/**
5222 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
5223 * @adap: the adapter
5224 * @st: holds the counter values
5225 *
5226 * Returns the values of TP's CPL counters.
5227 */
5228void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5229{
df459ebc
HS
5230 int nchan = adap->params.arch.nchan;
5231
5232 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
5233 nchan, TP_MIB_CPL_IN_REQ_0_A);
5234 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
5235 nchan, TP_MIB_CPL_OUT_RSP_0_A);
5236
a6222975
HS
5237}
5238
a4cfd929
HS
5239/**
5240 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5241 * @adap: the adapter
5242 * @st: holds the counter values
5243 *
5244 * Returns the values of TP's RDMA counters.
5245 */
5246void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5247{
5248 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
5249 2, TP_MIB_RQE_DFR_PKT_A);
5250}
5251
a6222975
HS
5252/**
5253 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5254 * @adap: the adapter
5255 * @idx: the port index
5256 * @st: holds the counter values
5257 *
5258 * Returns the values of TP's FCoE counters for the selected port.
5259 */
5260void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5261 struct tp_fcoe_stats *st)
5262{
5263 u32 val[2];
5264
5265 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
5266 1, TP_MIB_FCOE_DDP_0_A + idx);
5267 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
5268 1, TP_MIB_FCOE_DROP_0_A + idx);
5269 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5270 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
5271 st->octets_ddp = ((u64)val[0] << 32) | val[1];
5272}
5273
a4cfd929
HS
5274/**
5275 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5276 * @adap: the adapter
5277 * @st: holds the counter values
5278 *
5279 * Returns the values of TP's counters for non-TCP directly-placed packets.
5280 */
5281void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5282{
5283 u32 val[4];
5284
5285 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
5286 TP_MIB_USM_PKTS_A);
5287 st->frames = val[0];
5288 st->drops = val[1];
5289 st->octets = ((u64)val[2] << 32) | val[3];
5290}
5291
56d36be4
DM
5292/**
5293 * t4_read_mtu_tbl - returns the values in the HW path MTU table
5294 * @adap: the adapter
5295 * @mtus: where to store the MTU values
5296 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
5297 *
5298 * Reads the HW path MTU table.
5299 */
5300void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5301{
5302 u32 v;
5303 int i;
5304
5305 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
5306 t4_write_reg(adap, TP_MTU_TABLE_A,
5307 MTUINDEX_V(0xff) | MTUVALUE_V(i));
5308 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5309 mtus[i] = MTUVALUE_G(v);
56d36be4 5310 if (mtu_log)
837e4a42 5311 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
5312 }
5313}
5314
bad43792
HS
5315/**
5316 * t4_read_cong_tbl - reads the congestion control table
5317 * @adap: the adapter
5318 * @incr: where to store the alpha values
5319 *
5320 * Reads the additive increments programmed into the HW congestion
5321 * control table.
5322 */
5323void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5324{
5325 unsigned int mtu, w;
5326
5327 for (mtu = 0; mtu < NMTUS; ++mtu)
5328 for (w = 0; w < NCCTRL_WIN; ++w) {
5329 t4_write_reg(adap, TP_CCTRL_TABLE_A,
5330 ROWINDEX_V(0xffff) | (mtu << 5) | w);
5331 incr[mtu][w] = (u16)t4_read_reg(adap,
5332 TP_CCTRL_TABLE_A) & 0x1fff;
5333 }
5334}
5335
636f9d37
VP
5336/**
5337 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5338 * @adap: the adapter
5339 * @addr: the indirect TP register address
5340 * @mask: specifies the field within the register to modify
5341 * @val: new value for the field
5342 *
5343 * Sets a field of an indirect TP register to the given value.
5344 */
5345void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5346 unsigned int mask, unsigned int val)
5347{
837e4a42
HS
5348 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5349 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5350 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
5351}
5352
56d36be4
DM
5353/**
5354 * init_cong_ctrl - initialize congestion control parameters
5355 * @a: the alpha values for congestion control
5356 * @b: the beta values for congestion control
5357 *
5358 * Initialize the congestion control parameters.
5359 */
91744948 5360static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
5361{
5362 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5363 a[9] = 2;
5364 a[10] = 3;
5365 a[11] = 4;
5366 a[12] = 5;
5367 a[13] = 6;
5368 a[14] = 7;
5369 a[15] = 8;
5370 a[16] = 9;
5371 a[17] = 10;
5372 a[18] = 14;
5373 a[19] = 17;
5374 a[20] = 21;
5375 a[21] = 25;
5376 a[22] = 30;
5377 a[23] = 35;
5378 a[24] = 45;
5379 a[25] = 60;
5380 a[26] = 80;
5381 a[27] = 100;
5382 a[28] = 200;
5383 a[29] = 300;
5384 a[30] = 400;
5385 a[31] = 500;
5386
5387 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5388 b[9] = b[10] = 1;
5389 b[11] = b[12] = 2;
5390 b[13] = b[14] = b[15] = b[16] = 3;
5391 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5392 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5393 b[28] = b[29] = 6;
5394 b[30] = b[31] = 7;
5395}
5396
5397/* The minimum additive increment value for the congestion control table */
5398#define CC_MIN_INCR 2U
5399
5400/**
5401 * t4_load_mtus - write the MTU and congestion control HW tables
5402 * @adap: the adapter
5403 * @mtus: the values for the MTU table
5404 * @alpha: the values for the congestion control alpha parameter
5405 * @beta: the values for the congestion control beta parameter
5406 *
5407 * Write the HW MTU table with the supplied MTUs and the high-speed
5408 * congestion control table with the supplied alpha, beta, and MTUs.
5409 * We write the two tables together because the additive increments
5410 * depend on the MTUs.
5411 */
5412void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5413 const unsigned short *alpha, const unsigned short *beta)
5414{
5415 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5416 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5417 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5418 28672, 40960, 57344, 81920, 114688, 163840, 229376
5419 };
5420
5421 unsigned int i, w;
5422
5423 for (i = 0; i < NMTUS; ++i) {
5424 unsigned int mtu = mtus[i];
5425 unsigned int log2 = fls(mtu);
5426
5427 if (!(mtu & ((1 << log2) >> 2))) /* round */
5428 log2--;
837e4a42
HS
5429 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5430 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
5431
5432 for (w = 0; w < NCCTRL_WIN; ++w) {
5433 unsigned int inc;
5434
5435 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5436 CC_MIN_INCR);
5437
837e4a42 5438 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
5439 (w << 16) | (beta[w] << 13) | inc);
5440 }
5441 }
5442}
5443
7864026b
HS
5444/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5445 * clocks. The formula is
5446 *
5447 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5448 *
5449 * which is equivalent to
5450 *
5451 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5452 */
5453static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5454{
5455 u64 v = bytes256 * adap->params.vpd.cclk;
5456
5457 return v * 62 + v / 2;
5458}
5459
5460/**
5461 * t4_get_chan_txrate - get the current per channel Tx rates
5462 * @adap: the adapter
5463 * @nic_rate: rates for NIC traffic
5464 * @ofld_rate: rates for offloaded traffic
5465 *
5466 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5467 * for each channel.
5468 */
5469void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5470{
5471 u32 v;
5472
5473 v = t4_read_reg(adap, TP_TX_TRATE_A);
5474 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5475 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5476 if (adap->params.arch.nchan == NCHAN) {
5477 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5478 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5479 }
5480
5481 v = t4_read_reg(adap, TP_TX_ORATE_A);
5482 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5483 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5484 if (adap->params.arch.nchan == NCHAN) {
5485 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5486 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5487 }
5488}
5489
8e3d04fd
HS
5490/**
5491 * t4_set_trace_filter - configure one of the tracing filters
5492 * @adap: the adapter
5493 * @tp: the desired trace filter parameters
5494 * @idx: which filter to configure
5495 * @enable: whether to enable or disable the filter
5496 *
5497 * Configures one of the tracing filters available in HW. If @enable is
5498 * %0 @tp is not examined and may be %NULL. The user is responsible to
5499 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5500 */
5501int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5502 int idx, int enable)
5503{
5504 int i, ofst = idx * 4;
5505 u32 data_reg, mask_reg, cfg;
5506 u32 multitrc = TRCMULTIFILTER_F;
5507
5508 if (!enable) {
5509 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5510 return 0;
5511 }
5512
5513 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5514 if (cfg & TRCMULTIFILTER_F) {
5515 /* If multiple tracers are enabled, then maximum
5516 * capture size is 2.5KB (FIFO size of a single channel)
5517 * minus 2 flits for CPL_TRACE_PKT header.
5518 */
5519 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5520 return -EINVAL;
5521 } else {
5522 /* If multiple tracers are disabled, to avoid deadlocks
5523 * maximum packet capture size of 9600 bytes is recommended.
5524 * Also in this mode, only trace0 can be enabled and running.
5525 */
5526 multitrc = 0;
5527 if (tp->snap_len > 9600 || idx)
5528 return -EINVAL;
5529 }
5530
5531 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5532 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5533 tp->min_len > TFMINPKTSIZE_M)
5534 return -EINVAL;
5535
5536 /* stop the tracer we'll be changing */
5537 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5538
5539 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5540 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5541 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5542
5543 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5544 t4_write_reg(adap, data_reg, tp->data[i]);
5545 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5546 }
5547 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5548 TFCAPTUREMAX_V(tp->snap_len) |
5549 TFMINPKTSIZE_V(tp->min_len));
5550 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5551 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5552 (is_t4(adap->params.chip) ?
5553 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5554 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5555 T5_TFINVERTMATCH_V(tp->invert)));
5556
5557 return 0;
5558}
5559
5560/**
5561 * t4_get_trace_filter - query one of the tracing filters
5562 * @adap: the adapter
5563 * @tp: the current trace filter parameters
5564 * @idx: which trace filter to query
5565 * @enabled: non-zero if the filter is enabled
5566 *
5567 * Returns the current settings of one of the HW tracing filters.
5568 */
5569void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5570 int *enabled)
5571{
5572 u32 ctla, ctlb;
5573 int i, ofst = idx * 4;
5574 u32 data_reg, mask_reg;
5575
5576 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5577 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5578
5579 if (is_t4(adap->params.chip)) {
5580 *enabled = !!(ctla & TFEN_F);
5581 tp->port = TFPORT_G(ctla);
5582 tp->invert = !!(ctla & TFINVERTMATCH_F);
5583 } else {
5584 *enabled = !!(ctla & T5_TFEN_F);
5585 tp->port = T5_TFPORT_G(ctla);
5586 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5587 }
5588 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5589 tp->min_len = TFMINPKTSIZE_G(ctlb);
5590 tp->skip_ofst = TFOFFSET_G(ctla);
5591 tp->skip_len = TFLENGTH_G(ctla);
5592
5593 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5594 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5595 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5596
5597 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5598 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5599 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5600 }
5601}
5602
b3bbe36a
HS
5603/**
5604 * t4_pmtx_get_stats - returns the HW stats from PMTX
5605 * @adap: the adapter
5606 * @cnt: where to store the count statistics
5607 * @cycles: where to store the cycle statistics
5608 *
5609 * Returns performance statistics from PMTX.
5610 */
5611void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5612{
5613 int i;
5614 u32 data[2];
5615
44588560 5616 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5617 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5618 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5619 if (is_t4(adap->params.chip)) {
5620 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5621 } else {
5622 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5623 PM_TX_DBG_DATA_A, data, 2,
5624 PM_TX_DBG_STAT_MSB_A);
5625 cycles[i] = (((u64)data[0] << 32) | data[1]);
5626 }
5627 }
5628}
5629
5630/**
5631 * t4_pmrx_get_stats - returns the HW stats from PMRX
5632 * @adap: the adapter
5633 * @cnt: where to store the count statistics
5634 * @cycles: where to store the cycle statistics
5635 *
5636 * Returns performance statistics from PMRX.
5637 */
5638void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5639{
5640 int i;
5641 u32 data[2];
5642
44588560 5643 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5644 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5645 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5646 if (is_t4(adap->params.chip)) {
5647 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5648 } else {
5649 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5650 PM_RX_DBG_DATA_A, data, 2,
5651 PM_RX_DBG_STAT_MSB_A);
5652 cycles[i] = (((u64)data[0] << 32) | data[1]);
5653 }
5654 }
5655}
5656
56d36be4 5657/**
8f46d467 5658 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
56d36be4 5659 * @adap: the adapter
193c4c28 5660 * @pidx: the port index
56d36be4 5661 *
8f46d467
AV
5662 * Computes and returns a bitmap indicating which MPS buffer groups are
5663 * associated with the given Port. Bit i is set if buffer group i is
5664 * used by the Port.
56d36be4 5665 */
8f46d467
AV
5666static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5667 int pidx)
56d36be4 5668{
8f46d467 5669 unsigned int chip_version, nports;
193c4c28 5670
8f46d467
AV
5671 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5672 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
193c4c28
AV
5673
5674 switch (chip_version) {
5675 case CHELSIO_T4:
5676 case CHELSIO_T5:
5677 switch (nports) {
5678 case 1: return 0xf;
5679 case 2: return 3 << (2 * pidx);
5680 case 4: return 1 << pidx;
5681 }
5682 break;
5683
5684 case CHELSIO_T6:
5685 switch (nports) {
5686 case 2: return 1 << (2 * pidx);
5687 }
5688 break;
5689 }
5690
8f46d467 5691 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
193c4c28 5692 chip_version, nports);
8f46d467 5693
193c4c28
AV
5694 return 0;
5695}
5696
8f46d467
AV
5697/**
5698 * t4_get_mps_bg_map - return the buffer groups associated with a port
5699 * @adapter: the adapter
5700 * @pidx: the port index
5701 *
5702 * Returns a bitmap indicating which MPS buffer groups are associated
5703 * with the given Port. Bit i is set if buffer group i is used by the
5704 * Port.
5705 */
5706unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5707{
5708 u8 *mps_bg_map;
5709 unsigned int nports;
5710
5711 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5712 if (pidx >= nports) {
5713 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5714 pidx, nports);
5715 return 0;
5716 }
5717
5718 /* If we've already retrieved/computed this, just return the result.
5719 */
5720 mps_bg_map = adapter->params.mps_bg_map;
5721 if (mps_bg_map[pidx])
5722 return mps_bg_map[pidx];
5723
5724 /* Newer Firmware can tell us what the MPS Buffer Group Map is.
5725 * If we're talking to such Firmware, let it tell us. If the new
5726 * API isn't supported, revert back to old hardcoded way. The value
5727 * obtained from Firmware is encoded in below format:
5728 *
5729 * val = (( MPSBGMAP[Port 3] << 24 ) |
5730 * ( MPSBGMAP[Port 2] << 16 ) |
5731 * ( MPSBGMAP[Port 1] << 8 ) |
5732 * ( MPSBGMAP[Port 0] << 0 ))
5733 */
5734 if (adapter->flags & FW_OK) {
5735 u32 param, val;
5736 int ret;
5737
5738 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5739 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5740 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5741 0, 1, &param, &val);
5742 if (!ret) {
5743 int p;
5744
5745 /* Store the BG Map for all of the Ports in order to
5746 * avoid more calls to the Firmware in the future.
5747 */
5748 for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5749 mps_bg_map[p] = val & 0xff;
5750
5751 return mps_bg_map[pidx];
5752 }
5753 }
5754
5755 /* Either we're not talking to the Firmware or we're dealing with
5756 * older Firmware which doesn't support the new API to get the MPS
5757 * Buffer Group Map. Fall back to computing it ourselves.
5758 */
5759 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
5760 return mps_bg_map[pidx];
5761}
5762
193c4c28
AV
5763/**
5764 * t4_get_tp_ch_map - return TP ingress channels associated with a port
5765 * @adapter: the adapter
5766 * @pidx: the port index
5767 *
5768 * Returns a bitmap indicating which TP Ingress Channels are associated
5769 * with a given Port. Bit i is set if TP Ingress Channel i is used by
5770 * the Port.
5771 */
5772unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
5773{
5774 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
5775 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5776
5777 if (pidx >= nports) {
5778 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
5779 pidx, nports);
5780 return 0;
5781 }
5782
5783 switch (chip_version) {
5784 case CHELSIO_T4:
5785 case CHELSIO_T5:
5786 /* Note that this happens to be the same values as the MPS
5787 * Buffer Group Map for these Chips. But we replicate the code
5788 * here because they're really separate concepts.
5789 */
5790 switch (nports) {
5791 case 1: return 0xf;
5792 case 2: return 3 << (2 * pidx);
5793 case 4: return 1 << pidx;
5794 }
5795 break;
5796
5797 case CHELSIO_T6:
5798 switch (nports) {
5799 case 2: return 1 << pidx;
5800 }
5801 break;
5802 }
5803
5804 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
5805 chip_version, nports);
5806 return 0;
56d36be4
DM
5807}
5808
72aca4bf
KS
5809/**
5810 * t4_get_port_type_description - return Port Type string description
5811 * @port_type: firmware Port Type enumeration
5812 */
5813const char *t4_get_port_type_description(enum fw_port_type port_type)
5814{
5815 static const char *const port_type_description[] = {
89eb9835
GG
5816 "Fiber_XFI",
5817 "Fiber_XAUI",
5818 "BT_SGMII",
5819 "BT_XFI",
5820 "BT_XAUI",
72aca4bf
KS
5821 "KX4",
5822 "CX4",
5823 "KX",
5824 "KR",
89eb9835
GG
5825 "SFP",
5826 "BP_AP",
5827 "BP4_AP",
5828 "QSFP_10G",
5829 "QSA",
5830 "QSFP",
5831 "BP40_BA",
5832 "KR4_100G",
5833 "CR4_QSFP",
5834 "CR_QSFP",
5835 "CR2_QSFP",
5836 "SFP28",
5837 "KR_SFP28",
72aca4bf
KS
5838 };
5839
5840 if (port_type < ARRAY_SIZE(port_type_description))
5841 return port_type_description[port_type];
5842 return "UNKNOWN";
5843}
5844
a4cfd929
HS
5845/**
5846 * t4_get_port_stats_offset - collect port stats relative to a previous
5847 * snapshot
5848 * @adap: The adapter
5849 * @idx: The port
5850 * @stats: Current stats to fill
5851 * @offset: Previous stats snapshot
5852 */
5853void t4_get_port_stats_offset(struct adapter *adap, int idx,
5854 struct port_stats *stats,
5855 struct port_stats *offset)
5856{
5857 u64 *s, *o;
5858 int i;
5859
5860 t4_get_port_stats(adap, idx, stats);
5861 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5862 i < (sizeof(struct port_stats) / sizeof(u64));
5863 i++, s++, o++)
5864 *s -= *o;
5865}
5866
56d36be4
DM
5867/**
5868 * t4_get_port_stats - collect port statistics
5869 * @adap: the adapter
5870 * @idx: the port index
5871 * @p: the stats structure to fill
5872 *
5873 * Collect statistics related to the given port from HW.
5874 */
5875void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5876{
145ef8a5 5877 u32 bgmap = t4_get_mps_bg_map(adap, idx);
f750e82e 5878 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
56d36be4
DM
5879
5880#define GET_STAT(name) \
0a57a536 5881 t4_read_reg64(adap, \
d14807dd 5882 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 5883 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
5884#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5885
5886 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5887 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5888 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5889 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5890 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5891 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5892 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5893 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5894 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5895 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5896 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5897 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5898 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5899 p->tx_drop = GET_STAT(TX_PORT_DROP);
5900 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5901 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5902 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5903 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5904 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5905 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5906 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5907 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5908 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5909
f750e82e
GG
5910 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5911 if (stat_ctl & COUNTPAUSESTATTX_F) {
5912 p->tx_frames -= p->tx_pause;
5913 p->tx_octets -= p->tx_pause * 64;
5914 }
5915 if (stat_ctl & COUNTPAUSEMCTX_F)
5916 p->tx_mcast_frames -= p->tx_pause;
5917 }
56d36be4
DM
5918 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5919 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5920 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5921 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5922 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5923 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5924 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5925 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5926 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5927 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5928 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5929 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5930 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5931 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5932 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5933 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5934 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5935 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5936 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5937 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5938 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5939 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5940 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5941 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5942 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5943 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5944 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5945
f750e82e
GG
5946 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5947 if (stat_ctl & COUNTPAUSESTATRX_F) {
5948 p->rx_frames -= p->rx_pause;
5949 p->rx_octets -= p->rx_pause * 64;
5950 }
5951 if (stat_ctl & COUNTPAUSEMCRX_F)
5952 p->rx_mcast_frames -= p->rx_pause;
5953 }
5954
56d36be4
DM
5955 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5956 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5957 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5958 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5959 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5960 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5961 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5962 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5963
5964#undef GET_STAT
5965#undef GET_STAT_COM
5966}
5967
56d36be4 5968/**
65046e84 5969 * t4_get_lb_stats - collect loopback port statistics
56d36be4 5970 * @adap: the adapter
65046e84
HS
5971 * @idx: the loopback port index
5972 * @p: the stats structure to fill
56d36be4 5973 *
65046e84 5974 * Return HW statistics for the given loopback port.
56d36be4 5975 */
65046e84 5976void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
56d36be4 5977{
65046e84 5978 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4 5979
65046e84
HS
5980#define GET_STAT(name) \
5981 t4_read_reg64(adap, \
0d804338 5982 (is_t4(adap->params.chip) ? \
65046e84
HS
5983 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5984 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5985#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
56d36be4 5986
65046e84
HS
5987 p->octets = GET_STAT(BYTES);
5988 p->frames = GET_STAT(FRAMES);
5989 p->bcast_frames = GET_STAT(BCAST);
5990 p->mcast_frames = GET_STAT(MCAST);
5991 p->ucast_frames = GET_STAT(UCAST);
5992 p->error_frames = GET_STAT(ERROR);
5993
5994 p->frames_64 = GET_STAT(64B);
5995 p->frames_65_127 = GET_STAT(65B_127B);
5996 p->frames_128_255 = GET_STAT(128B_255B);
5997 p->frames_256_511 = GET_STAT(256B_511B);
5998 p->frames_512_1023 = GET_STAT(512B_1023B);
5999 p->frames_1024_1518 = GET_STAT(1024B_1518B);
6000 p->frames_1519_max = GET_STAT(1519B_MAX);
6001 p->drop = GET_STAT(DROP_FRAMES);
6002
6003 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6004 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6005 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6006 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6007 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6008 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6009 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6010 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
56d36be4 6011
65046e84
HS
6012#undef GET_STAT
6013#undef GET_STAT_COM
56d36be4
DM
6014}
6015
f2b7e78d
VP
6016/* t4_mk_filtdelwr - create a delete filter WR
6017 * @ftid: the filter ID
6018 * @wr: the filter work request to populate
6019 * @qid: ingress queue to receive the delete notification
6020 *
6021 * Creates a filter work request to delete the supplied filter. If @qid is
6022 * negative the delete notification is suppressed.
6023 */
6024void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6025{
6026 memset(wr, 0, sizeof(*wr));
f404f80c
HS
6027 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6028 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6029 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6030 FW_FILTER_WR_NOREPLY_V(qid < 0));
6031 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 6032 if (qid >= 0)
f404f80c
HS
6033 wr->rx_chan_rx_rpl_iq =
6034 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
6035}
6036
56d36be4 6037#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
6038 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6039 FW_CMD_REQUEST_F | \
6040 FW_CMD_##rd_wr##_F); \
6041 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
6042} while (0)
6043
8caa1e84
VP
6044int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6045 u32 addr, u32 val)
6046{
f404f80c 6047 u32 ldst_addrspace;
8caa1e84
VP
6048 struct fw_ldst_cmd c;
6049
6050 memset(&c, 0, sizeof(c));
f404f80c
HS
6051 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6052 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6053 FW_CMD_REQUEST_F |
6054 FW_CMD_WRITE_F |
6055 ldst_addrspace);
6056 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6057 c.u.addrval.addr = cpu_to_be32(addr);
6058 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
6059
6060 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6061}
6062
56d36be4
DM
6063/**
6064 * t4_mdio_rd - read a PHY register through MDIO
6065 * @adap: the adapter
6066 * @mbox: mailbox to use for the FW command
6067 * @phy_addr: the PHY address
6068 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6069 * @reg: the register to read
6070 * @valp: where to store the value
6071 *
6072 * Issues a FW command through the given mailbox to read a PHY register.
6073 */
6074int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6075 unsigned int mmd, unsigned int reg, u16 *valp)
6076{
6077 int ret;
f404f80c 6078 u32 ldst_addrspace;
56d36be4
DM
6079 struct fw_ldst_cmd c;
6080
6081 memset(&c, 0, sizeof(c));
f404f80c
HS
6082 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6083 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6084 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6085 ldst_addrspace);
6086 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6087 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6088 FW_LDST_CMD_MMD_V(mmd));
6089 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
6090
6091 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6092 if (ret == 0)
f404f80c 6093 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
6094 return ret;
6095}
6096
6097/**
6098 * t4_mdio_wr - write a PHY register through MDIO
6099 * @adap: the adapter
6100 * @mbox: mailbox to use for the FW command
6101 * @phy_addr: the PHY address
6102 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6103 * @reg: the register to write
6104 * @valp: value to write
6105 *
6106 * Issues a FW command through the given mailbox to write a PHY register.
6107 */
6108int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6109 unsigned int mmd, unsigned int reg, u16 val)
6110{
f404f80c 6111 u32 ldst_addrspace;
56d36be4
DM
6112 struct fw_ldst_cmd c;
6113
6114 memset(&c, 0, sizeof(c));
f404f80c
HS
6115 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6116 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6117 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6118 ldst_addrspace);
6119 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6120 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6121 FW_LDST_CMD_MMD_V(mmd));
6122 c.u.mdio.raddr = cpu_to_be16(reg);
6123 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
6124
6125 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6126}
6127
68bce192
KS
6128/**
6129 * t4_sge_decode_idma_state - decode the idma state
6130 * @adap: the adapter
6131 * @state: the state idma is stuck in
6132 */
6133void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6134{
6135 static const char * const t4_decode[] = {
6136 "IDMA_IDLE",
6137 "IDMA_PUSH_MORE_CPL_FIFO",
6138 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6139 "Not used",
6140 "IDMA_PHYSADDR_SEND_PCIEHDR",
6141 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6142 "IDMA_PHYSADDR_SEND_PAYLOAD",
6143 "IDMA_SEND_FIFO_TO_IMSG",
6144 "IDMA_FL_REQ_DATA_FL_PREP",
6145 "IDMA_FL_REQ_DATA_FL",
6146 "IDMA_FL_DROP",
6147 "IDMA_FL_H_REQ_HEADER_FL",
6148 "IDMA_FL_H_SEND_PCIEHDR",
6149 "IDMA_FL_H_PUSH_CPL_FIFO",
6150 "IDMA_FL_H_SEND_CPL",
6151 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6152 "IDMA_FL_H_SEND_IP_HDR",
6153 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6154 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6155 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6156 "IDMA_FL_D_SEND_PCIEHDR",
6157 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6158 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6159 "IDMA_FL_SEND_PCIEHDR",
6160 "IDMA_FL_PUSH_CPL_FIFO",
6161 "IDMA_FL_SEND_CPL",
6162 "IDMA_FL_SEND_PAYLOAD_FIRST",
6163 "IDMA_FL_SEND_PAYLOAD",
6164 "IDMA_FL_REQ_NEXT_DATA_FL",
6165 "IDMA_FL_SEND_NEXT_PCIEHDR",
6166 "IDMA_FL_SEND_PADDING",
6167 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6168 "IDMA_FL_SEND_FIFO_TO_IMSG",
6169 "IDMA_FL_REQ_DATAFL_DONE",
6170 "IDMA_FL_REQ_HEADERFL_DONE",
6171 };
6172 static const char * const t5_decode[] = {
6173 "IDMA_IDLE",
6174 "IDMA_ALMOST_IDLE",
6175 "IDMA_PUSH_MORE_CPL_FIFO",
6176 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6177 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6178 "IDMA_PHYSADDR_SEND_PCIEHDR",
6179 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6180 "IDMA_PHYSADDR_SEND_PAYLOAD",
6181 "IDMA_SEND_FIFO_TO_IMSG",
6182 "IDMA_FL_REQ_DATA_FL",
6183 "IDMA_FL_DROP",
6184 "IDMA_FL_DROP_SEND_INC",
6185 "IDMA_FL_H_REQ_HEADER_FL",
6186 "IDMA_FL_H_SEND_PCIEHDR",
6187 "IDMA_FL_H_PUSH_CPL_FIFO",
6188 "IDMA_FL_H_SEND_CPL",
6189 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6190 "IDMA_FL_H_SEND_IP_HDR",
6191 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6192 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6193 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6194 "IDMA_FL_D_SEND_PCIEHDR",
6195 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6196 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6197 "IDMA_FL_SEND_PCIEHDR",
6198 "IDMA_FL_PUSH_CPL_FIFO",
6199 "IDMA_FL_SEND_CPL",
6200 "IDMA_FL_SEND_PAYLOAD_FIRST",
6201 "IDMA_FL_SEND_PAYLOAD",
6202 "IDMA_FL_REQ_NEXT_DATA_FL",
6203 "IDMA_FL_SEND_NEXT_PCIEHDR",
6204 "IDMA_FL_SEND_PADDING",
6205 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6206 };
6df39753
HS
6207 static const char * const t6_decode[] = {
6208 "IDMA_IDLE",
6209 "IDMA_PUSH_MORE_CPL_FIFO",
6210 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6211 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6212 "IDMA_PHYSADDR_SEND_PCIEHDR",
6213 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6214 "IDMA_PHYSADDR_SEND_PAYLOAD",
6215 "IDMA_FL_REQ_DATA_FL",
6216 "IDMA_FL_DROP",
6217 "IDMA_FL_DROP_SEND_INC",
6218 "IDMA_FL_H_REQ_HEADER_FL",
6219 "IDMA_FL_H_SEND_PCIEHDR",
6220 "IDMA_FL_H_PUSH_CPL_FIFO",
6221 "IDMA_FL_H_SEND_CPL",
6222 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6223 "IDMA_FL_H_SEND_IP_HDR",
6224 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6225 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6226 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6227 "IDMA_FL_D_SEND_PCIEHDR",
6228 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6229 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6230 "IDMA_FL_SEND_PCIEHDR",
6231 "IDMA_FL_PUSH_CPL_FIFO",
6232 "IDMA_FL_SEND_CPL",
6233 "IDMA_FL_SEND_PAYLOAD_FIRST",
6234 "IDMA_FL_SEND_PAYLOAD",
6235 "IDMA_FL_REQ_NEXT_DATA_FL",
6236 "IDMA_FL_SEND_NEXT_PCIEHDR",
6237 "IDMA_FL_SEND_PADDING",
6238 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6239 };
68bce192 6240 static const u32 sge_regs[] = {
f061de42
HS
6241 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6242 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6243 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
6244 };
6245 const char **sge_idma_decode;
6246 int sge_idma_decode_nstates;
6247 int i;
6df39753
HS
6248 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6249
6250 /* Select the right set of decode strings to dump depending on the
6251 * adapter chip type.
6252 */
6253 switch (chip_version) {
6254 case CHELSIO_T4:
6255 sge_idma_decode = (const char **)t4_decode;
6256 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6257 break;
6258
6259 case CHELSIO_T5:
6260 sge_idma_decode = (const char **)t5_decode;
6261 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6262 break;
6263
6264 case CHELSIO_T6:
6265 sge_idma_decode = (const char **)t6_decode;
6266 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6267 break;
6268
6269 default:
6270 dev_err(adapter->pdev_dev,
6271 "Unsupported chip version %d\n", chip_version);
6272 return;
6273 }
68bce192
KS
6274
6275 if (is_t4(adapter->params.chip)) {
6276 sge_idma_decode = (const char **)t4_decode;
6277 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6278 } else {
6279 sge_idma_decode = (const char **)t5_decode;
6280 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6281 }
6282
6283 if (state < sge_idma_decode_nstates)
6284 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6285 else
6286 CH_WARN(adapter, "idma state %d unknown\n", state);
6287
6288 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6289 CH_WARN(adapter, "SGE register %#x value %#x\n",
6290 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6291}
6292
5d700ecb
HS
6293/**
6294 * t4_sge_ctxt_flush - flush the SGE context cache
6295 * @adap: the adapter
6296 * @mbox: mailbox to use for the FW command
6297 *
6298 * Issues a FW command through the given mailbox to flush the
6299 * SGE context cache.
6300 */
6301int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6302{
6303 int ret;
6304 u32 ldst_addrspace;
6305 struct fw_ldst_cmd c;
6306
6307 memset(&c, 0, sizeof(c));
6308 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
6309 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6310 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6311 ldst_addrspace);
6312 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6313 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6314
6315 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6316 return ret;
6317}
6318
56d36be4 6319/**
636f9d37
VP
6320 * t4_fw_hello - establish communication with FW
6321 * @adap: the adapter
6322 * @mbox: mailbox to use for the FW command
6323 * @evt_mbox: mailbox to receive async FW events
6324 * @master: specifies the caller's willingness to be the device master
6325 * @state: returns the current device state (if non-NULL)
56d36be4 6326 *
636f9d37
VP
6327 * Issues a command to establish communication with FW. Returns either
6328 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
6329 */
6330int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6331 enum dev_master master, enum dev_state *state)
6332{
6333 int ret;
6334 struct fw_hello_cmd c;
636f9d37
VP
6335 u32 v;
6336 unsigned int master_mbox;
6337 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 6338
636f9d37
VP
6339retry:
6340 memset(&c, 0, sizeof(c));
56d36be4 6341 INIT_CMD(c, HELLO, WRITE);
f404f80c 6342 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
6343 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6344 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
6345 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6346 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
6347 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6348 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6349 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 6350
636f9d37
VP
6351 /*
6352 * Issue the HELLO command to the firmware. If it's not successful
6353 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
6354 * the HELLO until we exhaust our retry limit. If we do exceed our
6355 * retry limit, check to see if the firmware left us any error
6356 * information and report that if so.
636f9d37 6357 */
56d36be4 6358 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
6359 if (ret < 0) {
6360 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6361 goto retry;
f061de42 6362 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 6363 t4_report_fw_error(adap);
636f9d37
VP
6364 return ret;
6365 }
6366
f404f80c 6367 v = be32_to_cpu(c.err_to_clearinit);
5167865a 6368 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 6369 if (state) {
5167865a 6370 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 6371 *state = DEV_STATE_ERR;
5167865a 6372 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 6373 *state = DEV_STATE_INIT;
56d36be4
DM
6374 else
6375 *state = DEV_STATE_UNINIT;
6376 }
636f9d37
VP
6377
6378 /*
6379 * If we're not the Master PF then we need to wait around for the
6380 * Master PF Driver to finish setting up the adapter.
6381 *
6382 * Note that we also do this wait if we're a non-Master-capable PF and
6383 * there is no current Master PF; a Master PF may show up momentarily
6384 * and we wouldn't want to fail pointlessly. (This can happen when an
6385 * OS loads lots of different drivers rapidly at the same time). In
6386 * this case, the Master PF returned by the firmware will be
b2e1a3f0 6387 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 6388 */
5167865a 6389 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
6390 master_mbox != mbox) {
6391 int waiting = FW_CMD_HELLO_TIMEOUT;
6392
6393 /*
6394 * Wait for the firmware to either indicate an error or
6395 * initialized state. If we see either of these we bail out
6396 * and report the issue to the caller. If we exhaust the
6397 * "hello timeout" and we haven't exhausted our retries, try
6398 * again. Otherwise bail with a timeout error.
6399 */
6400 for (;;) {
6401 u32 pcie_fw;
6402
6403 msleep(50);
6404 waiting -= 50;
6405
6406 /*
6407 * If neither Error nor Initialialized are indicated
6408 * by the firmware keep waiting till we exaust our
6409 * timeout ... and then retry if we haven't exhausted
6410 * our retries ...
6411 */
f061de42
HS
6412 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6413 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
6414 if (waiting <= 0) {
6415 if (retries-- > 0)
6416 goto retry;
6417
6418 return -ETIMEDOUT;
6419 }
6420 continue;
6421 }
6422
6423 /*
6424 * We either have an Error or Initialized condition
6425 * report errors preferentially.
6426 */
6427 if (state) {
f061de42 6428 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 6429 *state = DEV_STATE_ERR;
f061de42 6430 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
6431 *state = DEV_STATE_INIT;
6432 }
6433
6434 /*
6435 * If we arrived before a Master PF was selected and
6436 * there's not a valid Master PF, grab its identity
6437 * for our caller.
6438 */
b2e1a3f0 6439 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 6440 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 6441 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
6442 break;
6443 }
6444 }
6445
6446 return master_mbox;
56d36be4
DM
6447}
6448
6449/**
6450 * t4_fw_bye - end communication with FW
6451 * @adap: the adapter
6452 * @mbox: mailbox to use for the FW command
6453 *
6454 * Issues a command to terminate communication with FW.
6455 */
6456int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6457{
6458 struct fw_bye_cmd c;
6459
0062b15c 6460 memset(&c, 0, sizeof(c));
56d36be4
DM
6461 INIT_CMD(c, BYE, WRITE);
6462 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6463}
6464
6465/**
6466 * t4_init_cmd - ask FW to initialize the device
6467 * @adap: the adapter
6468 * @mbox: mailbox to use for the FW command
6469 *
6470 * Issues a command to FW to partially initialize the device. This
6471 * performs initialization that generally doesn't depend on user input.
6472 */
6473int t4_early_init(struct adapter *adap, unsigned int mbox)
6474{
6475 struct fw_initialize_cmd c;
6476
0062b15c 6477 memset(&c, 0, sizeof(c));
56d36be4
DM
6478 INIT_CMD(c, INITIALIZE, WRITE);
6479 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6480}
6481
6482/**
6483 * t4_fw_reset - issue a reset to FW
6484 * @adap: the adapter
6485 * @mbox: mailbox to use for the FW command
6486 * @reset: specifies the type of reset to perform
6487 *
6488 * Issues a reset command of the specified type to FW.
6489 */
6490int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6491{
6492 struct fw_reset_cmd c;
6493
0062b15c 6494 memset(&c, 0, sizeof(c));
56d36be4 6495 INIT_CMD(c, RESET, WRITE);
f404f80c 6496 c.val = cpu_to_be32(reset);
56d36be4
DM
6497 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6498}
6499
26f7cbc0
VP
6500/**
6501 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6502 * @adap: the adapter
6503 * @mbox: mailbox to use for the FW RESET command (if desired)
6504 * @force: force uP into RESET even if FW RESET command fails
6505 *
6506 * Issues a RESET command to firmware (if desired) with a HALT indication
6507 * and then puts the microprocessor into RESET state. The RESET command
6508 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 6509 * PCIE_FW_MASTER_M).
26f7cbc0
VP
6510 *
6511 * This is generally used in order for the host to safely manipulate the
6512 * adapter without fear of conflicting with whatever the firmware might
6513 * be doing. The only way out of this state is to RESTART the firmware
6514 * ...
6515 */
de5b8677 6516static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
6517{
6518 int ret = 0;
6519
6520 /*
6521 * If a legitimate mailbox is provided, issue a RESET command
6522 * with a HALT indication.
6523 */
b2e1a3f0 6524 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
6525 struct fw_reset_cmd c;
6526
6527 memset(&c, 0, sizeof(c));
6528 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
6529 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6530 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
6531 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6532 }
6533
6534 /*
6535 * Normally we won't complete the operation if the firmware RESET
6536 * command fails but if our caller insists we'll go ahead and put the
6537 * uP into RESET. This can be useful if the firmware is hung or even
6538 * missing ... We'll have to take the risk of putting the uP into
6539 * RESET without the cooperation of firmware in that case.
6540 *
6541 * We also force the firmware's HALT flag to be on in case we bypassed
6542 * the firmware RESET command above or we're dealing with old firmware
6543 * which doesn't have the HALT capability. This will serve as a flag
6544 * for the incoming firmware to know that it's coming out of a HALT
6545 * rather than a RESET ... if it's new enough to understand that ...
6546 */
6547 if (ret == 0 || force) {
89c3a86c 6548 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 6549 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 6550 PCIE_FW_HALT_F);
26f7cbc0
VP
6551 }
6552
6553 /*
6554 * And we always return the result of the firmware RESET command
6555 * even when we force the uP into RESET ...
6556 */
6557 return ret;
6558}
6559
6560/**
6561 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6562 * @adap: the adapter
6563 * @reset: if we want to do a RESET to restart things
6564 *
6565 * Restart firmware previously halted by t4_fw_halt(). On successful
6566 * return the previous PF Master remains as the new PF Master and there
6567 * is no need to issue a new HELLO command, etc.
6568 *
6569 * We do this in two ways:
6570 *
6571 * 1. If we're dealing with newer firmware we'll simply want to take
6572 * the chip's microprocessor out of RESET. This will cause the
6573 * firmware to start up from its start vector. And then we'll loop
6574 * until the firmware indicates it's started again (PCIE_FW.HALT
6575 * reset to 0) or we timeout.
6576 *
6577 * 2. If we're dealing with older firmware then we'll need to RESET
6578 * the chip since older firmware won't recognize the PCIE_FW.HALT
6579 * flag and automatically RESET itself on startup.
6580 */
de5b8677 6581static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
6582{
6583 if (reset) {
6584 /*
6585 * Since we're directing the RESET instead of the firmware
6586 * doing it automatically, we need to clear the PCIE_FW.HALT
6587 * bit.
6588 */
f061de42 6589 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
6590
6591 /*
6592 * If we've been given a valid mailbox, first try to get the
6593 * firmware to do the RESET. If that works, great and we can
6594 * return success. Otherwise, if we haven't been given a
6595 * valid mailbox or the RESET command failed, fall back to
6596 * hitting the chip with a hammer.
6597 */
b2e1a3f0 6598 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 6599 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
6600 msleep(100);
6601 if (t4_fw_reset(adap, mbox,
0d804338 6602 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
6603 return 0;
6604 }
6605
0d804338 6606 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
6607 msleep(2000);
6608 } else {
6609 int ms;
6610
89c3a86c 6611 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 6612 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 6613 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
6614 return 0;
6615 msleep(100);
6616 ms += 100;
6617 }
6618 return -ETIMEDOUT;
6619 }
6620 return 0;
6621}
6622
6623/**
6624 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6625 * @adap: the adapter
6626 * @mbox: mailbox to use for the FW RESET command (if desired)
6627 * @fw_data: the firmware image to write
6628 * @size: image size
6629 * @force: force upgrade even if firmware doesn't cooperate
6630 *
6631 * Perform all of the steps necessary for upgrading an adapter's
6632 * firmware image. Normally this requires the cooperation of the
6633 * existing firmware in order to halt all existing activities
6634 * but if an invalid mailbox token is passed in we skip that step
6635 * (though we'll still put the adapter microprocessor into RESET in
6636 * that case).
6637 *
6638 * On successful return the new firmware will have been loaded and
6639 * the adapter will have been fully RESET losing all previous setup
6640 * state. On unsuccessful return the adapter may be completely hosed ...
6641 * positive errno indicates that the adapter is ~probably~ intact, a
6642 * negative errno indicates that things are looking bad ...
6643 */
22c0b963
HS
6644int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6645 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
6646{
6647 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6648 int reset, ret;
6649
79af221d
HS
6650 if (!t4_fw_matches_chip(adap, fw_hdr))
6651 return -EINVAL;
6652
26747211
AV
6653 /* Disable FW_OK flag so that mbox commands with FW_OK flag set
6654 * wont be sent when we are flashing FW.
6655 */
6656 adap->flags &= ~FW_OK;
6657
26f7cbc0
VP
6658 ret = t4_fw_halt(adap, mbox, force);
6659 if (ret < 0 && !force)
26747211 6660 goto out;
26f7cbc0
VP
6661
6662 ret = t4_load_fw(adap, fw_data, size);
6663 if (ret < 0)
26747211 6664 goto out;
26f7cbc0
VP
6665
6666 /*
6667 * Older versions of the firmware don't understand the new
6668 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6669 * restart. So for newly loaded older firmware we'll have to do the
6670 * RESET for it so it starts up on a clean slate. We can tell if
6671 * the newly loaded firmware will handle this right by checking
6672 * its header flags to see if it advertises the capability.
6673 */
f404f80c 6674 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26747211
AV
6675 ret = t4_fw_restart(adap, mbox, reset);
6676
6677 /* Grab potentially new Firmware Device Log parameters so we can see
6678 * how healthy the new Firmware is. It's okay to contact the new
6679 * Firmware for these parameters even though, as far as it's
6680 * concerned, we've never said "HELLO" to it ...
6681 */
6682 (void)t4_init_devlog_params(adap);
6683out:
6684 adap->flags |= FW_OK;
6685 return ret;
26f7cbc0
VP
6686}
6687
acac5962
HS
6688/**
6689 * t4_fl_pkt_align - return the fl packet alignment
6690 * @adap: the adapter
6691 *
6692 * T4 has a single field to specify the packing and padding boundary.
6693 * T5 onwards has separate fields for this and hence the alignment for
6694 * next packet offset is maximum of these two.
6695 *
6696 */
6697int t4_fl_pkt_align(struct adapter *adap)
6698{
6699 u32 sge_control, sge_control2;
6700 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6701
6702 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6703
6704 /* T4 uses a single control field to specify both the PCIe Padding and
6705 * Packing Boundary. T5 introduced the ability to specify these
6706 * separately. The actual Ingress Packet Data alignment boundary
6707 * within Packed Buffer Mode is the maximum of these two
6708 * specifications. (Note that it makes no real practical sense to
6709 * have the Pading Boudary be larger than the Packing Boundary but you
6710 * could set the chip up that way and, in fact, legacy T4 code would
6711 * end doing this because it would initialize the Padding Boundary and
6712 * leave the Packing Boundary initialized to 0 (16 bytes).)
6713 * Padding Boundary values in T6 starts from 8B,
6714 * where as it is 32B for T4 and T5.
6715 */
6716 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6717 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6718 else
6719 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6720
6721 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6722
6723 fl_align = ingpadboundary;
6724 if (!is_t4(adap->params.chip)) {
6725 /* T5 has a weird interpretation of one of the PCIe Packing
6726 * Boundary values. No idea why ...
6727 */
6728 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6729 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6730 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6731 ingpackboundary = 16;
6732 else
6733 ingpackboundary = 1 << (ingpackboundary +
6734 INGPACKBOUNDARY_SHIFT_X);
6735
6736 fl_align = max(ingpadboundary, ingpackboundary);
6737 }
6738 return fl_align;
6739}
6740
636f9d37
VP
6741/**
6742 * t4_fixup_host_params - fix up host-dependent parameters
6743 * @adap: the adapter
6744 * @page_size: the host's Base Page Size
6745 * @cache_line_size: the host's Cache Line Size
6746 *
6747 * Various registers in T4 contain values which are dependent on the
6748 * host's Base Page and Cache Line Sizes. This function will fix all of
6749 * those registers with the appropriate values as passed in ...
6750 */
6751int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6752 unsigned int cache_line_size)
6753{
6754 unsigned int page_shift = fls(page_size) - 1;
6755 unsigned int sge_hps = page_shift - 10;
6756 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6757 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6758 unsigned int fl_align_log = fls(fl_align) - 1;
6759
f612b815
HS
6760 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6761 HOSTPAGESIZEPF0_V(sge_hps) |
6762 HOSTPAGESIZEPF1_V(sge_hps) |
6763 HOSTPAGESIZEPF2_V(sge_hps) |
6764 HOSTPAGESIZEPF3_V(sge_hps) |
6765 HOSTPAGESIZEPF4_V(sge_hps) |
6766 HOSTPAGESIZEPF5_V(sge_hps) |
6767 HOSTPAGESIZEPF6_V(sge_hps) |
6768 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 6769
ce8f407a 6770 if (is_t4(adap->params.chip)) {
f612b815
HS
6771 t4_set_reg_field(adap, SGE_CONTROL_A,
6772 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6773 EGRSTATUSPAGESIZE_F,
6774 INGPADBOUNDARY_V(fl_align_log -
6775 INGPADBOUNDARY_SHIFT_X) |
6776 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a 6777 } else {
bb58d079
AV
6778 unsigned int pack_align;
6779 unsigned int ingpad, ingpack;
6780 unsigned int pcie_cap;
6781
ce8f407a
HS
6782 /* T5 introduced the separation of the Free List Padding and
6783 * Packing Boundaries. Thus, we can select a smaller Padding
6784 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6785 * Bandwidth, and use a Packing Boundary which is large enough
6786 * to avoid false sharing between CPUs, etc.
6787 *
6788 * For the PCI Link, the smaller the Padding Boundary the
6789 * better. For the Memory Controller, a smaller Padding
6790 * Boundary is better until we cross under the Memory Line
6791 * Size (the minimum unit of transfer to/from Memory). If we
6792 * have a Padding Boundary which is smaller than the Memory
6793 * Line Size, that'll involve a Read-Modify-Write cycle on the
bb58d079
AV
6794 * Memory Controller which is never good.
6795 */
6796
6797 /* We want the Packing Boundary to be based on the Cache Line
6798 * Size in order to help avoid False Sharing performance
6799 * issues between CPUs, etc. We also want the Packing
6800 * Boundary to incorporate the PCI-E Maximum Payload Size. We
6801 * get best performance when the Packing Boundary is a
6802 * multiple of the Maximum Payload Size.
6803 */
6804 pack_align = fl_align;
6805 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
6806 if (pcie_cap) {
6807 unsigned int mps, mps_log;
6808 u16 devctl;
6809
6810 /* The PCIe Device Control Maximum Payload Size field
6811 * [bits 7:5] encodes sizes as powers of 2 starting at
6812 * 128 bytes.
6813 */
6814 pci_read_config_word(adap->pdev,
6815 pcie_cap + PCI_EXP_DEVCTL,
6816 &devctl);
6817 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
6818 mps = 1 << mps_log;
6819 if (mps > pack_align)
6820 pack_align = mps;
6821 }
6822
6823 /* N.B. T5/T6 have a crazy special interpretation of the "0"
6824 * value for the Packing Boundary. This corresponds to 16
6825 * bytes instead of the expected 32 bytes. So if we want 32
6826 * bytes, the best we can really do is 64 bytes ...
6827 */
6828 if (pack_align <= 16) {
6829 ingpack = INGPACKBOUNDARY_16B_X;
6830 fl_align = 16;
6831 } else if (pack_align == 32) {
6832 ingpack = INGPACKBOUNDARY_64B_X;
ce8f407a 6833 fl_align = 64;
bb58d079
AV
6834 } else {
6835 unsigned int pack_align_log = fls(pack_align) - 1;
6836
6837 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
6838 fl_align = pack_align;
ce8f407a 6839 }
acac5962 6840
bb58d079
AV
6841 /* Use the smallest Ingress Padding which isn't smaller than
6842 * the Memory Controller Read/Write Size. We'll take that as
6843 * being 8 bytes since we don't know of any system with a
6844 * wider Memory Controller Bus Width.
6845 */
acac5962 6846 if (is_t5(adap->params.chip))
bb58d079 6847 ingpad = INGPADBOUNDARY_32B_X;
acac5962 6848 else
bb58d079 6849 ingpad = T6_INGPADBOUNDARY_8B_X;
acac5962 6850
f612b815
HS
6851 t4_set_reg_field(adap, SGE_CONTROL_A,
6852 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6853 EGRSTATUSPAGESIZE_F,
acac5962 6854 INGPADBOUNDARY_V(ingpad) |
f612b815 6855 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6856 t4_set_reg_field(adap, SGE_CONTROL2_A,
6857 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
bb58d079 6858 INGPACKBOUNDARY_V(ingpack));
ce8f407a 6859 }
636f9d37
VP
6860 /*
6861 * Adjust various SGE Free List Host Buffer Sizes.
6862 *
6863 * This is something of a crock since we're using fixed indices into
6864 * the array which are also known by the sge.c code and the T4
6865 * Firmware Configuration File. We need to come up with a much better
6866 * approach to managing this array. For now, the first four entries
6867 * are:
6868 *
6869 * 0: Host Page Size
6870 * 1: 64KB
6871 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6872 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6873 *
6874 * For the single-MTU buffers in unpacked mode we need to include
6875 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6876 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 6877 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
6878 * Default Firmware Configuration File but we need to adjust it for
6879 * this host's cache line size.
6880 */
f612b815
HS
6881 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6882 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6883 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 6884 & ~(fl_align-1));
f612b815
HS
6885 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6886 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
6887 & ~(fl_align-1));
6888
0d804338 6889 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
6890
6891 return 0;
6892}
6893
6894/**
6895 * t4_fw_initialize - ask FW to initialize the device
6896 * @adap: the adapter
6897 * @mbox: mailbox to use for the FW command
6898 *
6899 * Issues a command to FW to partially initialize the device. This
6900 * performs initialization that generally doesn't depend on user input.
6901 */
6902int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6903{
6904 struct fw_initialize_cmd c;
6905
6906 memset(&c, 0, sizeof(c));
6907 INIT_CMD(c, INITIALIZE, WRITE);
6908 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6909}
6910
56d36be4 6911/**
01b69614 6912 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
6913 * @adap: the adapter
6914 * @mbox: mailbox to use for the FW command
6915 * @pf: the PF
6916 * @vf: the VF
6917 * @nparams: the number of parameters
6918 * @params: the parameter names
6919 * @val: the parameter values
01b69614 6920 * @rw: Write and read flag
8f46d467 6921 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion
56d36be4
DM
6922 *
6923 * Reads the value of FW or device parameters. Up to 7 parameters can be
6924 * queried at once.
6925 */
01b69614
HS
6926int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6927 unsigned int vf, unsigned int nparams, const u32 *params,
8f46d467 6928 u32 *val, int rw, bool sleep_ok)
56d36be4
DM
6929{
6930 int i, ret;
6931 struct fw_params_cmd c;
6932 __be32 *p = &c.param[0].mnem;
6933
6934 if (nparams > 7)
6935 return -EINVAL;
6936
6937 memset(&c, 0, sizeof(c));
f404f80c
HS
6938 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6939 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6940 FW_PARAMS_CMD_PFN_V(pf) |
6941 FW_PARAMS_CMD_VFN_V(vf));
6942 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6943
01b69614
HS
6944 for (i = 0; i < nparams; i++) {
6945 *p++ = cpu_to_be32(*params++);
6946 if (rw)
6947 *p = cpu_to_be32(*(val + i));
6948 p++;
6949 }
56d36be4 6950
8f46d467 6951 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
56d36be4
DM
6952 if (ret == 0)
6953 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 6954 *val++ = be32_to_cpu(*p);
56d36be4
DM
6955 return ret;
6956}
6957
01b69614
HS
6958int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6959 unsigned int vf, unsigned int nparams, const u32 *params,
6960 u32 *val)
6961{
8f46d467
AV
6962 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
6963 true);
6964}
6965
6966int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
6967 unsigned int vf, unsigned int nparams, const u32 *params,
6968 u32 *val)
6969{
6970 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
6971 false);
01b69614
HS
6972}
6973
688848b1 6974/**
01b69614 6975 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
6976 * @adap: the adapter
6977 * @mbox: mailbox to use for the FW command
6978 * @pf: the PF
6979 * @vf: the VF
6980 * @nparams: the number of parameters
6981 * @params: the parameter names
6982 * @val: the parameter values
01b69614 6983 * @timeout: the timeout time
688848b1 6984 *
688848b1
AB
6985 * Sets the value of FW or device parameters. Up to 7 parameters can be
6986 * specified at once.
6987 */
01b69614 6988int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
6989 unsigned int pf, unsigned int vf,
6990 unsigned int nparams, const u32 *params,
01b69614 6991 const u32 *val, int timeout)
688848b1
AB
6992{
6993 struct fw_params_cmd c;
6994 __be32 *p = &c.param[0].mnem;
6995
6996 if (nparams > 7)
6997 return -EINVAL;
6998
6999 memset(&c, 0, sizeof(c));
e2ac9628 7000 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
7001 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7002 FW_PARAMS_CMD_PFN_V(pf) |
7003 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
7004 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7005
7006 while (nparams--) {
7007 *p++ = cpu_to_be32(*params++);
7008 *p++ = cpu_to_be32(*val++);
7009 }
7010
01b69614 7011 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
7012}
7013
56d36be4
DM
7014/**
7015 * t4_set_params - sets FW or device parameters
7016 * @adap: the adapter
7017 * @mbox: mailbox to use for the FW command
7018 * @pf: the PF
7019 * @vf: the VF
7020 * @nparams: the number of parameters
7021 * @params: the parameter names
7022 * @val: the parameter values
7023 *
7024 * Sets the value of FW or device parameters. Up to 7 parameters can be
7025 * specified at once.
7026 */
7027int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7028 unsigned int vf, unsigned int nparams, const u32 *params,
7029 const u32 *val)
7030{
01b69614
HS
7031 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7032 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
7033}
7034
7035/**
7036 * t4_cfg_pfvf - configure PF/VF resource limits
7037 * @adap: the adapter
7038 * @mbox: mailbox to use for the FW command
7039 * @pf: the PF being configured
7040 * @vf: the VF being configured
7041 * @txq: the max number of egress queues
7042 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
7043 * @rxqi: the max number of interrupt-capable ingress queues
7044 * @rxq: the max number of interruptless ingress queues
7045 * @tc: the PCI traffic class
7046 * @vi: the max number of virtual interfaces
7047 * @cmask: the channel access rights mask for the PF/VF
7048 * @pmask: the port access rights mask for the PF/VF
7049 * @nexact: the maximum number of exact MPS filters
7050 * @rcaps: read capabilities
7051 * @wxcaps: write/execute capabilities
7052 *
7053 * Configures resource limits and capabilities for a physical or virtual
7054 * function.
7055 */
7056int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7057 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7058 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7059 unsigned int vi, unsigned int cmask, unsigned int pmask,
7060 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7061{
7062 struct fw_pfvf_cmd c;
7063
7064 memset(&c, 0, sizeof(c));
f404f80c
HS
7065 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7066 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7067 FW_PFVF_CMD_VFN_V(vf));
7068 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7069 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7070 FW_PFVF_CMD_NIQ_V(rxq));
7071 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7072 FW_PFVF_CMD_PMASK_V(pmask) |
7073 FW_PFVF_CMD_NEQ_V(txq));
7074 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7075 FW_PFVF_CMD_NVI_V(vi) |
7076 FW_PFVF_CMD_NEXACTF_V(nexact));
7077 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7078 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7079 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
7080 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7081}
7082
7083/**
7084 * t4_alloc_vi - allocate a virtual interface
7085 * @adap: the adapter
7086 * @mbox: mailbox to use for the FW command
7087 * @port: physical port associated with the VI
7088 * @pf: the PF owning the VI
7089 * @vf: the VF owning the VI
7090 * @nmac: number of MAC addresses needed (1 to 5)
7091 * @mac: the MAC addresses of the VI
7092 * @rss_size: size of RSS table slice associated with this VI
7093 *
7094 * Allocates a virtual interface for the given physical port. If @mac is
7095 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
7096 * @mac should be large enough to hold @nmac Ethernet addresses, they are
7097 * stored consecutively so the space needed is @nmac * 6 bytes.
7098 * Returns a negative error number or the non-negative VI id.
7099 */
7100int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7101 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7102 unsigned int *rss_size)
7103{
7104 int ret;
7105 struct fw_vi_cmd c;
7106
7107 memset(&c, 0, sizeof(c));
f404f80c
HS
7108 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7109 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7110 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7111 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 7112 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
7113 c.nmac = nmac - 1;
7114
7115 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7116 if (ret)
7117 return ret;
7118
7119 if (mac) {
7120 memcpy(mac, c.mac, sizeof(c.mac));
7121 switch (nmac) {
7122 case 5:
7123 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7124 case 4:
7125 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7126 case 3:
7127 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7128 case 2:
7129 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
7130 }
7131 }
7132 if (rss_size)
f404f80c
HS
7133 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7134 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
7135}
7136
4f3a0fcf
HS
7137/**
7138 * t4_free_vi - free a virtual interface
7139 * @adap: the adapter
7140 * @mbox: mailbox to use for the FW command
7141 * @pf: the PF owning the VI
7142 * @vf: the VF owning the VI
7143 * @viid: virtual interface identifiler
7144 *
7145 * Free a previously allocated virtual interface.
7146 */
7147int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7148 unsigned int vf, unsigned int viid)
7149{
7150 struct fw_vi_cmd c;
7151
7152 memset(&c, 0, sizeof(c));
7153 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7154 FW_CMD_REQUEST_F |
7155 FW_CMD_EXEC_F |
7156 FW_VI_CMD_PFN_V(pf) |
7157 FW_VI_CMD_VFN_V(vf));
7158 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7159 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7160
7161 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
56d36be4
DM
7162}
7163
56d36be4
DM
7164/**
7165 * t4_set_rxmode - set Rx properties of a virtual interface
7166 * @adap: the adapter
7167 * @mbox: mailbox to use for the FW command
7168 * @viid: the VI id
7169 * @mtu: the new MTU or -1
7170 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7171 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7172 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 7173 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
7174 * @sleep_ok: if true we may sleep while awaiting command completion
7175 *
7176 * Sets Rx properties of a virtual interface.
7177 */
7178int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
7179 int mtu, int promisc, int all_multi, int bcast, int vlanex,
7180 bool sleep_ok)
56d36be4
DM
7181{
7182 struct fw_vi_rxmode_cmd c;
7183
7184 /* convert to FW values */
7185 if (mtu < 0)
7186 mtu = FW_RXMODE_MTU_NO_CHG;
7187 if (promisc < 0)
2b5fb1f2 7188 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 7189 if (all_multi < 0)
2b5fb1f2 7190 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 7191 if (bcast < 0)
2b5fb1f2 7192 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 7193 if (vlanex < 0)
2b5fb1f2 7194 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
7195
7196 memset(&c, 0, sizeof(c));
f404f80c
HS
7197 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7198 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7199 FW_VI_RXMODE_CMD_VIID_V(viid));
7200 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7201 c.mtu_to_vlanexen =
7202 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7203 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7204 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7205 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7206 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
7207 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7208}
7209
7210/**
7211 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7212 * @adap: the adapter
7213 * @mbox: mailbox to use for the FW command
7214 * @viid: the VI id
7215 * @free: if true any existing filters for this VI id are first removed
7216 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
7217 * @addr: the MAC address(es)
7218 * @idx: where to store the index of each allocated filter
7219 * @hash: pointer to hash address filter bitmap
7220 * @sleep_ok: call is allowed to sleep
7221 *
7222 * Allocates an exact-match filter for each of the supplied addresses and
7223 * sets it to the corresponding address. If @idx is not %NULL it should
7224 * have at least @naddr entries, each of which will be set to the index of
7225 * the filter allocated for the corresponding MAC address. If a filter
7226 * could not be allocated for an address its index is set to 0xffff.
7227 * If @hash is not %NULL addresses that fail to allocate an exact filter
7228 * are hashed and update the hash filter bitmap pointed at by @hash.
7229 *
7230 * Returns a negative error number or the number of filters allocated.
7231 */
7232int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7233 unsigned int viid, bool free, unsigned int naddr,
7234 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7235{
3ccc6cf7 7236 int offset, ret = 0;
56d36be4 7237 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
7238 unsigned int nfilters = 0;
7239 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7240 unsigned int rem = naddr;
56d36be4 7241
3ccc6cf7 7242 if (naddr > max_naddr)
56d36be4
DM
7243 return -EINVAL;
7244
3ccc6cf7
HS
7245 for (offset = 0; offset < naddr ; /**/) {
7246 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7247 rem : ARRAY_SIZE(c.u.exact));
7248 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7249 u.exact[fw_naddr]), 16);
7250 struct fw_vi_mac_exact *p;
7251 int i;
56d36be4 7252
3ccc6cf7
HS
7253 memset(&c, 0, sizeof(c));
7254 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7255 FW_CMD_REQUEST_F |
7256 FW_CMD_WRITE_F |
7257 FW_CMD_EXEC_V(free) |
7258 FW_VI_MAC_CMD_VIID_V(viid));
7259 c.freemacs_to_len16 =
7260 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7261 FW_CMD_LEN16_V(len16));
7262
7263 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7264 p->valid_to_idx =
7265 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7266 FW_VI_MAC_CMD_IDX_V(
7267 FW_VI_MAC_ADD_MAC));
7268 memcpy(p->macaddr, addr[offset + i],
7269 sizeof(p->macaddr));
7270 }
56d36be4 7271
3ccc6cf7
HS
7272 /* It's okay if we run out of space in our MAC address arena.
7273 * Some of the addresses we submit may get stored so we need
7274 * to run through the reply to see what the results were ...
7275 */
7276 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7277 if (ret && ret != -FW_ENOMEM)
7278 break;
56d36be4 7279
3ccc6cf7
HS
7280 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7281 u16 index = FW_VI_MAC_CMD_IDX_G(
7282 be16_to_cpu(p->valid_to_idx));
7283
7284 if (idx)
7285 idx[offset + i] = (index >= max_naddr ?
7286 0xffff : index);
7287 if (index < max_naddr)
7288 nfilters++;
7289 else if (hash)
7290 *hash |= (1ULL <<
7291 hash_mac_addr(addr[offset + i]));
7292 }
56d36be4 7293
3ccc6cf7
HS
7294 free = false;
7295 offset += fw_naddr;
7296 rem -= fw_naddr;
56d36be4 7297 }
3ccc6cf7
HS
7298
7299 if (ret == 0 || ret == -FW_ENOMEM)
7300 ret = nfilters;
56d36be4
DM
7301 return ret;
7302}
7303
fc08a01a
HS
7304/**
7305 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
7306 * @adap: the adapter
7307 * @mbox: mailbox to use for the FW command
7308 * @viid: the VI id
7309 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
7310 * @addr: the MAC address(es)
7311 * @sleep_ok: call is allowed to sleep
7312 *
7313 * Frees the exact-match filter for each of the supplied addresses
7314 *
7315 * Returns a negative error number or the number of filters freed.
7316 */
7317int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7318 unsigned int viid, unsigned int naddr,
7319 const u8 **addr, bool sleep_ok)
7320{
7321 int offset, ret = 0;
7322 struct fw_vi_mac_cmd c;
7323 unsigned int nfilters = 0;
7324 unsigned int max_naddr = is_t4(adap->params.chip) ?
7325 NUM_MPS_CLS_SRAM_L_INSTANCES :
7326 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7327 unsigned int rem = naddr;
7328
7329 if (naddr > max_naddr)
7330 return -EINVAL;
7331
7332 for (offset = 0; offset < (int)naddr ; /**/) {
7333 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7334 ? rem
7335 : ARRAY_SIZE(c.u.exact));
7336 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7337 u.exact[fw_naddr]), 16);
7338 struct fw_vi_mac_exact *p;
7339 int i;
7340
7341 memset(&c, 0, sizeof(c));
7342 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7343 FW_CMD_REQUEST_F |
7344 FW_CMD_WRITE_F |
7345 FW_CMD_EXEC_V(0) |
7346 FW_VI_MAC_CMD_VIID_V(viid));
7347 c.freemacs_to_len16 =
7348 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7349 FW_CMD_LEN16_V(len16));
7350
7351 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7352 p->valid_to_idx = cpu_to_be16(
7353 FW_VI_MAC_CMD_VALID_F |
7354 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7355 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7356 }
7357
7358 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7359 if (ret)
7360 break;
7361
7362 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7363 u16 index = FW_VI_MAC_CMD_IDX_G(
7364 be16_to_cpu(p->valid_to_idx));
7365
7366 if (index < max_naddr)
7367 nfilters++;
7368 }
7369
7370 offset += fw_naddr;
7371 rem -= fw_naddr;
7372 }
7373
7374 if (ret == 0)
7375 ret = nfilters;
7376 return ret;
7377}
7378
56d36be4
DM
7379/**
7380 * t4_change_mac - modifies the exact-match filter for a MAC address
7381 * @adap: the adapter
7382 * @mbox: mailbox to use for the FW command
7383 * @viid: the VI id
7384 * @idx: index of existing filter for old value of MAC address, or -1
7385 * @addr: the new MAC address value
7386 * @persist: whether a new MAC allocation should be persistent
7387 * @add_smt: if true also add the address to the HW SMT
7388 *
7389 * Modifies an exact-match filter and sets it to the new MAC address.
7390 * Note that in general it is not possible to modify the value of a given
7391 * filter so the generic way to modify an address filter is to free the one
7392 * being used by the old address value and allocate a new filter for the
7393 * new address value. @idx can be -1 if the address is a new addition.
7394 *
7395 * Returns a negative error number or the index of the filter with the new
7396 * MAC value.
7397 */
7398int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7399 int idx, const u8 *addr, bool persist, bool add_smt)
7400{
7401 int ret, mode;
7402 struct fw_vi_mac_cmd c;
7403 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 7404 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
7405
7406 if (idx < 0) /* new allocation */
7407 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7408 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7409
7410 memset(&c, 0, sizeof(c));
f404f80c
HS
7411 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7412 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7413 FW_VI_MAC_CMD_VIID_V(viid));
7414 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7415 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7416 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7417 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
7418 memcpy(p->macaddr, addr, sizeof(p->macaddr));
7419
7420 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7421 if (ret == 0) {
f404f80c 7422 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 7423 if (ret >= max_mac_addr)
56d36be4
DM
7424 ret = -ENOMEM;
7425 }
7426 return ret;
7427}
7428
7429/**
7430 * t4_set_addr_hash - program the MAC inexact-match hash filter
7431 * @adap: the adapter
7432 * @mbox: mailbox to use for the FW command
7433 * @viid: the VI id
7434 * @ucast: whether the hash filter should also match unicast addresses
7435 * @vec: the value to be written to the hash filter
7436 * @sleep_ok: call is allowed to sleep
7437 *
7438 * Sets the 64-bit inexact-match hash filter for a virtual interface.
7439 */
7440int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7441 bool ucast, u64 vec, bool sleep_ok)
7442{
7443 struct fw_vi_mac_cmd c;
7444
7445 memset(&c, 0, sizeof(c));
f404f80c
HS
7446 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7447 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7448 FW_VI_ENABLE_CMD_VIID_V(viid));
7449 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7450 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7451 FW_CMD_LEN16_V(1));
56d36be4
DM
7452 c.u.hash.hashvec = cpu_to_be64(vec);
7453 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7454}
7455
688848b1
AB
7456/**
7457 * t4_enable_vi_params - enable/disable a virtual interface
7458 * @adap: the adapter
7459 * @mbox: mailbox to use for the FW command
7460 * @viid: the VI id
7461 * @rx_en: 1=enable Rx, 0=disable Rx
7462 * @tx_en: 1=enable Tx, 0=disable Tx
7463 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
7464 *
7465 * Enables/disables a virtual interface. Note that setting DCB Enable
7466 * only makes sense when enabling a Virtual Interface ...
7467 */
7468int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7469 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7470{
7471 struct fw_vi_enable_cmd c;
7472
7473 memset(&c, 0, sizeof(c));
f404f80c
HS
7474 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7475 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7476 FW_VI_ENABLE_CMD_VIID_V(viid));
7477 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7478 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7479 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7480 FW_LEN16(c));
30f00847 7481 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
7482}
7483
56d36be4
DM
7484/**
7485 * t4_enable_vi - enable/disable a virtual interface
7486 * @adap: the adapter
7487 * @mbox: mailbox to use for the FW command
7488 * @viid: the VI id
7489 * @rx_en: 1=enable Rx, 0=disable Rx
7490 * @tx_en: 1=enable Tx, 0=disable Tx
7491 *
7492 * Enables/disables a virtual interface.
7493 */
7494int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7495 bool rx_en, bool tx_en)
7496{
688848b1 7497 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
7498}
7499
7500/**
7501 * t4_identify_port - identify a VI's port by blinking its LED
7502 * @adap: the adapter
7503 * @mbox: mailbox to use for the FW command
7504 * @viid: the VI id
7505 * @nblinks: how many times to blink LED at 2.5 Hz
7506 *
7507 * Identifies a VI's port by blinking its LED.
7508 */
7509int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7510 unsigned int nblinks)
7511{
7512 struct fw_vi_enable_cmd c;
7513
0062b15c 7514 memset(&c, 0, sizeof(c));
f404f80c
HS
7515 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7516 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7517 FW_VI_ENABLE_CMD_VIID_V(viid));
7518 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7519 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 7520 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
7521}
7522
ebf4dc2b
HS
7523/**
7524 * t4_iq_stop - stop an ingress queue and its FLs
7525 * @adap: the adapter
7526 * @mbox: mailbox to use for the FW command
7527 * @pf: the PF owning the queues
7528 * @vf: the VF owning the queues
7529 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7530 * @iqid: ingress queue id
7531 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7532 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7533 *
7534 * Stops an ingress queue and its associated FLs, if any. This causes
7535 * any current or future data/messages destined for these queues to be
7536 * tossed.
7537 */
7538int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7539 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7540 unsigned int fl0id, unsigned int fl1id)
7541{
7542 struct fw_iq_cmd c;
7543
7544 memset(&c, 0, sizeof(c));
7545 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7546 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7547 FW_IQ_CMD_VFN_V(vf));
7548 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7549 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7550 c.iqid = cpu_to_be16(iqid);
7551 c.fl0id = cpu_to_be16(fl0id);
7552 c.fl1id = cpu_to_be16(fl1id);
7553 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7554}
7555
56d36be4
DM
7556/**
7557 * t4_iq_free - free an ingress queue and its FLs
7558 * @adap: the adapter
7559 * @mbox: mailbox to use for the FW command
7560 * @pf: the PF owning the queues
7561 * @vf: the VF owning the queues
7562 * @iqtype: the ingress queue type
7563 * @iqid: ingress queue id
7564 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7565 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7566 *
7567 * Frees an ingress queue and its associated FLs, if any.
7568 */
7569int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7570 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7571 unsigned int fl0id, unsigned int fl1id)
7572{
7573 struct fw_iq_cmd c;
7574
7575 memset(&c, 0, sizeof(c));
f404f80c
HS
7576 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7577 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7578 FW_IQ_CMD_VFN_V(vf));
7579 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7580 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7581 c.iqid = cpu_to_be16(iqid);
7582 c.fl0id = cpu_to_be16(fl0id);
7583 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
7584 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7585}
7586
7587/**
7588 * t4_eth_eq_free - free an Ethernet egress queue
7589 * @adap: the adapter
7590 * @mbox: mailbox to use for the FW command
7591 * @pf: the PF owning the queue
7592 * @vf: the VF owning the queue
7593 * @eqid: egress queue id
7594 *
7595 * Frees an Ethernet egress queue.
7596 */
7597int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7598 unsigned int vf, unsigned int eqid)
7599{
7600 struct fw_eq_eth_cmd c;
7601
7602 memset(&c, 0, sizeof(c));
f404f80c
HS
7603 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7604 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7605 FW_EQ_ETH_CMD_PFN_V(pf) |
7606 FW_EQ_ETH_CMD_VFN_V(vf));
7607 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7608 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
7609 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7610}
7611
7612/**
7613 * t4_ctrl_eq_free - free a control egress queue
7614 * @adap: the adapter
7615 * @mbox: mailbox to use for the FW command
7616 * @pf: the PF owning the queue
7617 * @vf: the VF owning the queue
7618 * @eqid: egress queue id
7619 *
7620 * Frees a control egress queue.
7621 */
7622int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7623 unsigned int vf, unsigned int eqid)
7624{
7625 struct fw_eq_ctrl_cmd c;
7626
7627 memset(&c, 0, sizeof(c));
f404f80c
HS
7628 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7629 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7630 FW_EQ_CTRL_CMD_PFN_V(pf) |
7631 FW_EQ_CTRL_CMD_VFN_V(vf));
7632 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7633 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
7634 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7635}
7636
7637/**
7638 * t4_ofld_eq_free - free an offload egress queue
7639 * @adap: the adapter
7640 * @mbox: mailbox to use for the FW command
7641 * @pf: the PF owning the queue
7642 * @vf: the VF owning the queue
7643 * @eqid: egress queue id
7644 *
7645 * Frees a control egress queue.
7646 */
7647int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7648 unsigned int vf, unsigned int eqid)
7649{
7650 struct fw_eq_ofld_cmd c;
7651
7652 memset(&c, 0, sizeof(c));
f404f80c
HS
7653 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7654 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7655 FW_EQ_OFLD_CMD_PFN_V(pf) |
7656 FW_EQ_OFLD_CMD_VFN_V(vf));
7657 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7658 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
7659 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7660}
7661
ddc7740d
HS
7662/**
7663 * t4_link_down_rc_str - return a string for a Link Down Reason Code
7664 * @adap: the adapter
7665 * @link_down_rc: Link Down Reason Code
7666 *
7667 * Returns a string representation of the Link Down Reason Code.
7668 */
7669static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7670{
7671 static const char * const reason[] = {
7672 "Link Down",
7673 "Remote Fault",
7674 "Auto-negotiation Failure",
7675 "Reserved",
7676 "Insufficient Airflow",
7677 "Unable To Determine Reason",
7678 "No RX Signal Detected",
7679 "Reserved",
7680 };
7681
7682 if (link_down_rc >= ARRAY_SIZE(reason))
7683 return "Bad Reason Code";
7684
7685 return reason[link_down_rc];
7686}
7687
56d36be4 7688/**
23853a0a
HS
7689 * t4_handle_get_port_info - process a FW reply message
7690 * @pi: the port info
56d36be4
DM
7691 * @rpl: start of the FW message
7692 *
23853a0a
HS
7693 * Processes a GET_PORT_INFO FW reply message.
7694 */
7695void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7696{
7697 const struct fw_port_cmd *p = (const void *)rpl;
158a5c0a 7698 unsigned int acaps = be16_to_cpu(p->u.info.acap);
23853a0a
HS
7699 struct adapter *adap = pi->adapter;
7700
7701 /* link/module state change message */
158a5c0a 7702 int speed = 0, fc, fec;
23853a0a
HS
7703 struct link_config *lc;
7704 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7705 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7706 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7707
158a5c0a
CL
7708 /* Unfortunately the format of the Link Status returned by the
7709 * Firmware isn't the same as the Firmware Port Capabilities bitfield
7710 * used everywhere else ...
7711 */
7712 fc = 0;
23853a0a
HS
7713 if (stat & FW_PORT_CMD_RXPAUSE_F)
7714 fc |= PAUSE_RX;
7715 if (stat & FW_PORT_CMD_TXPAUSE_F)
7716 fc |= PAUSE_TX;
158a5c0a
CL
7717
7718 fec = fwcap_to_cc_fec(acaps);
7719
23853a0a
HS
7720 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7721 speed = 100;
7722 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7723 speed = 1000;
7724 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7725 speed = 10000;
9b86a8d1
HS
7726 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7727 speed = 25000;
23853a0a
HS
7728 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7729 speed = 40000;
9b86a8d1
HS
7730 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7731 speed = 100000;
23853a0a
HS
7732
7733 lc = &pi->link_cfg;
7734
7735 if (mod != pi->mod_type) {
158a5c0a
CL
7736 /* When a new Transceiver Module is inserted, the Firmware
7737 * will examine any Forward Error Correction parameters
7738 * present in the Transceiver Module i2c EPROM and determine
7739 * the supported and recommended FEC settings from those
7740 * based on IEEE 802.3 standards. We always record the
7741 * IEEE 802.3 recommended "automatic" settings.
7742 */
7743 lc->auto_fec = fec;
7744
23853a0a
HS
7745 pi->mod_type = mod;
7746 t4_os_portmod_changed(adap, pi->port_id);
7747 }
7748 if (link_ok != lc->link_ok || speed != lc->speed ||
158a5c0a 7749 fc != lc->fc || fec != lc->fec) { /* something changed */
ddc7740d
HS
7750 if (!link_ok && lc->link_ok) {
7751 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7752
7753 lc->link_down_rc = rc;
7754 dev_warn(adap->pdev_dev,
7755 "Port %d link down, reason: %s\n",
7756 pi->port_id, t4_link_down_rc_str(rc));
7757 }
23853a0a
HS
7758 lc->link_ok = link_ok;
7759 lc->speed = speed;
7760 lc->fc = fc;
158a5c0a
CL
7761 lc->fec = fec;
7762
23853a0a 7763 lc->supported = be16_to_cpu(p->u.info.pcap);
eb97ad99 7764 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
2061ec3f 7765
23853a0a
HS
7766 t4_os_link_changed(adap, pi->port_id, link_ok);
7767 }
7768}
7769
2061ec3f
GG
7770/**
7771 * t4_update_port_info - retrieve and update port information if changed
7772 * @pi: the port_info
7773 *
7774 * We issue a Get Port Information Command to the Firmware and, if
7775 * successful, we check to see if anything is different from what we
7776 * last recorded and update things accordingly.
7777 */
7778int t4_update_port_info(struct port_info *pi)
7779{
7780 struct fw_port_cmd port_cmd;
7781 int ret;
7782
7783 memset(&port_cmd, 0, sizeof(port_cmd));
7784 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7785 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7786 FW_PORT_CMD_PORTID_V(pi->port_id));
7787 port_cmd.action_to_len16 = cpu_to_be32(
7788 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7789 FW_LEN16(port_cmd));
7790 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
7791 &port_cmd, sizeof(port_cmd), &port_cmd);
7792 if (ret)
7793 return ret;
7794
7795 t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
7796 return 0;
7797}
7798
23853a0a
HS
7799/**
7800 * t4_handle_fw_rpl - process a FW reply message
7801 * @adap: the adapter
7802 * @rpl: start of the FW message
7803 *
7804 * Processes a FW message, such as link state change messages.
56d36be4
DM
7805 */
7806int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7807{
7808 u8 opcode = *(const u8 *)rpl;
7809
23853a0a
HS
7810 /* This might be a port command ... this simplifies the following
7811 * conditionals ... We can get away with pre-dereferencing
7812 * action_to_len16 because it's in the first 16 bytes and all messages
7813 * will be at least that long.
7814 */
7815 const struct fw_port_cmd *p = (const void *)rpl;
7816 unsigned int action =
7817 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7818
7819 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7820 int i;
f404f80c 7821 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
23853a0a
HS
7822 struct port_info *pi = NULL;
7823
7824 for_each_port(adap, i) {
7825 pi = adap2pinfo(adap, i);
7826 if (pi->tx_chan == chan)
7827 break;
56d36be4 7828 }
23853a0a
HS
7829
7830 t4_handle_get_port_info(pi, rpl);
7831 } else {
7832 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7833 return -EINVAL;
56d36be4
DM
7834 }
7835 return 0;
7836}
7837
1dd06ae8 7838static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
7839{
7840 u16 val;
56d36be4 7841
e5c8ae5f
JL
7842 if (pci_is_pcie(adapter->pdev)) {
7843 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
7844 p->speed = val & PCI_EXP_LNKSTA_CLS;
7845 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7846 }
7847}
7848
7849/**
7850 * init_link_config - initialize a link's SW state
7851 * @lc: structure holding the link state
158a5c0a
CL
7852 * @pcaps: link Port Capabilities
7853 * @acaps: link current Advertised Port Capabilities
56d36be4
DM
7854 *
7855 * Initializes the SW state maintained for each link, including the link's
7856 * capabilities and default speed/flow-control/autonegotiation settings.
7857 */
3bb4858f
GG
7858static void init_link_config(struct link_config *lc, unsigned int pcaps,
7859 unsigned int acaps)
56d36be4 7860{
3bb4858f 7861 lc->supported = pcaps;
eb97ad99 7862 lc->lp_advertising = 0;
56d36be4
DM
7863 lc->requested_speed = 0;
7864 lc->speed = 0;
7865 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3bb4858f
GG
7866
7867 /* For Forward Error Control, we default to whatever the Firmware
7868 * tells us the Link is currently advertising.
7869 */
158a5c0a 7870 lc->auto_fec = fwcap_to_cc_fec(acaps);
3bb4858f
GG
7871 lc->requested_fec = FEC_AUTO;
7872 lc->fec = lc->auto_fec;
7873
56d36be4
DM
7874 if (lc->supported & FW_PORT_CAP_ANEG) {
7875 lc->advertising = lc->supported & ADVERT_MASK;
7876 lc->autoneg = AUTONEG_ENABLE;
7877 lc->requested_fc |= PAUSE_AUTONEG;
7878 } else {
7879 lc->advertising = 0;
7880 lc->autoneg = AUTONEG_DISABLE;
7881 }
7882}
7883
8203b509
HS
7884#define CIM_PF_NOACCESS 0xeeeeeeee
7885
7886int t4_wait_dev_ready(void __iomem *regs)
56d36be4 7887{
8203b509
HS
7888 u32 whoami;
7889
0d804338 7890 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7891 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 7892 return 0;
8203b509 7893
56d36be4 7894 msleep(500);
0d804338 7895 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7896 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
7897}
7898
fe2ee139
HS
7899struct flash_desc {
7900 u32 vendor_and_model_id;
7901 u32 size_mb;
7902};
7903
91744948 7904static int get_flash_params(struct adapter *adap)
900a6596 7905{
fe2ee139
HS
7906 /* Table for non-Numonix supported flash parts. Numonix parts are left
7907 * to the preexisting code. All flash parts have 64KB sectors.
7908 */
7909 static struct flash_desc supported_flash[] = {
7910 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7911 };
7912
900a6596
DM
7913 int ret;
7914 u32 info;
7915
7916 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7917 if (!ret)
7918 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 7919 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
7920 if (ret)
7921 return ret;
7922
fe2ee139
HS
7923 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7924 if (supported_flash[ret].vendor_and_model_id == info) {
7925 adap->params.sf_size = supported_flash[ret].size_mb;
7926 adap->params.sf_nsec =
7927 adap->params.sf_size / SF_SEC_SIZE;
7928 return 0;
7929 }
7930
900a6596
DM
7931 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7932 return -EINVAL;
7933 info >>= 16; /* log2 of size */
7934 if (info >= 0x14 && info < 0x18)
7935 adap->params.sf_nsec = 1 << (info - 16);
7936 else if (info == 0x18)
7937 adap->params.sf_nsec = 64;
7938 else
7939 return -EINVAL;
7940 adap->params.sf_size = 1 << info;
7941 adap->params.sf_fw_start =
89c3a86c 7942 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
7943
7944 if (adap->params.sf_size < FLASH_MIN_SIZE)
7945 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7946 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
7947 return 0;
7948}
7949
eca0f6ee
HS
7950static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7951{
7952 u16 val;
7953 u32 pcie_cap;
7954
7955 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7956 if (pcie_cap) {
7957 pci_read_config_word(adapter->pdev,
7958 pcie_cap + PCI_EXP_DEVCTL2, &val);
7959 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7960 val |= range;
7961 pci_write_config_word(adapter->pdev,
7962 pcie_cap + PCI_EXP_DEVCTL2, val);
7963 }
7964}
7965
56d36be4
DM
7966/**
7967 * t4_prep_adapter - prepare SW and HW for operation
7968 * @adapter: the adapter
7969 * @reset: if true perform a HW reset
7970 *
7971 * Initialize adapter SW state for the various HW modules, set initial
7972 * values for some adapter tunables, take PHYs out of reset, and
7973 * initialize the MDIO interface.
7974 */
91744948 7975int t4_prep_adapter(struct adapter *adapter)
56d36be4 7976{
0a57a536
SR
7977 int ret, ver;
7978 uint16_t device_id;
d14807dd 7979 u32 pl_rev;
56d36be4 7980
56d36be4 7981 get_pci_mode(adapter, &adapter->params.pci);
0d804338 7982 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 7983
900a6596
DM
7984 ret = get_flash_params(adapter);
7985 if (ret < 0) {
7986 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7987 return ret;
7988 }
7989
0a57a536
SR
7990 /* Retrieve adapter's device ID
7991 */
7992 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7993 ver = device_id >> 12;
d14807dd 7994 adapter->params.chip = 0;
0a57a536
SR
7995 switch (ver) {
7996 case CHELSIO_T4:
d14807dd 7997 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
7998 adapter->params.arch.sge_fl_db = DBPRIO_F;
7999 adapter->params.arch.mps_tcam_size =
8000 NUM_MPS_CLS_SRAM_L_INSTANCES;
8001 adapter->params.arch.mps_rplc_size = 128;
8002 adapter->params.arch.nchan = NCHAN;
44588560 8003 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 8004 adapter->params.arch.vfcount = 128;
2216d014
HS
8005 /* Congestion map is for 4 channels so that
8006 * MPS can have 4 priority per port.
8007 */
8008 adapter->params.arch.cng_ch_bits_log = 2;
0a57a536
SR
8009 break;
8010 case CHELSIO_T5:
d14807dd 8011 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
8012 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8013 adapter->params.arch.mps_tcam_size =
8014 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8015 adapter->params.arch.mps_rplc_size = 128;
8016 adapter->params.arch.nchan = NCHAN;
44588560 8017 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 8018 adapter->params.arch.vfcount = 128;
2216d014 8019 adapter->params.arch.cng_ch_bits_log = 2;
3ccc6cf7
HS
8020 break;
8021 case CHELSIO_T6:
8022 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8023 adapter->params.arch.sge_fl_db = 0;
8024 adapter->params.arch.mps_tcam_size =
8025 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8026 adapter->params.arch.mps_rplc_size = 256;
8027 adapter->params.arch.nchan = 2;
44588560 8028 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
3ccc6cf7 8029 adapter->params.arch.vfcount = 256;
2216d014
HS
8030 /* Congestion map will be for 2 channels so that
8031 * MPS can have 8 priority per port.
8032 */
8033 adapter->params.arch.cng_ch_bits_log = 3;
0a57a536
SR
8034 break;
8035 default:
8036 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8037 device_id);
8038 return -EINVAL;
8039 }
8040
f1ff24aa 8041 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
8042 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8043
8044 /*
8045 * Default port for debugging in case we can't reach FW.
8046 */
8047 adapter->params.nports = 1;
8048 adapter->params.portvec = 1;
636f9d37 8049 adapter->params.vpd.cclk = 50000;
eca0f6ee
HS
8050
8051 /* Set pci completion timeout value to 4 seconds. */
8052 set_pcie_completion_timeout(adapter, 0xd);
56d36be4
DM
8053 return 0;
8054}
8055
3be0679b
HS
8056/**
8057 * t4_shutdown_adapter - shut down adapter, host & wire
8058 * @adapter: the adapter
8059 *
8060 * Perform an emergency shutdown of the adapter and stop it from
8061 * continuing any further communication on the ports or DMA to the
8062 * host. This is typically used when the adapter and/or firmware
8063 * have crashed and we want to prevent any further accidental
8064 * communication with the rest of the world. This will also force
8065 * the port Link Status to go down -- if register writes work --
8066 * which should help our peers figure out that we're down.
8067 */
8068int t4_shutdown_adapter(struct adapter *adapter)
8069{
8070 int port;
8071
8072 t4_intr_disable(adapter);
8073 t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8074 for_each_port(adapter, port) {
b3fd8220
RL
8075 u32 a_port_cfg = is_t4(adapter->params.chip) ?
8076 PORT_REG(port, XGMAC_PORT_CFG_A) :
8077 T5_PORT_REG(port, MAC_PORT_CFG_A);
3be0679b
HS
8078
8079 t4_write_reg(adapter, a_port_cfg,
8080 t4_read_reg(adapter, a_port_cfg)
8081 & ~SIGNAL_DET_V(1));
8082 }
8083 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8084
8085 return 0;
8086}
8087
e85c9a7a 8088/**
b2612722 8089 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
8090 * @adapter: the adapter
8091 * @qid: the Queue ID
8092 * @qtype: the Ingress or Egress type for @qid
66cf188e 8093 * @user: true if this request is for a user mode queue
e85c9a7a
HS
8094 * @pbar2_qoffset: BAR2 Queue Offset
8095 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8096 *
8097 * Returns the BAR2 SGE Queue Registers information associated with the
8098 * indicated Absolute Queue ID. These are passed back in return value
8099 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8100 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8101 *
8102 * This may return an error which indicates that BAR2 SGE Queue
8103 * registers aren't available. If an error is not returned, then the
8104 * following values are returned:
8105 *
8106 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8107 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8108 *
8109 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8110 * require the "Inferred Queue ID" ability may be used. E.g. the
8111 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8112 * then these "Inferred Queue ID" register may not be used.
8113 */
b2612722 8114int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
8115 unsigned int qid,
8116 enum t4_bar2_qtype qtype,
66cf188e 8117 int user,
e85c9a7a
HS
8118 u64 *pbar2_qoffset,
8119 unsigned int *pbar2_qid)
8120{
8121 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8122 u64 bar2_page_offset, bar2_qoffset;
8123 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8124
66cf188e
H
8125 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8126 if (!user && is_t4(adapter->params.chip))
e85c9a7a
HS
8127 return -EINVAL;
8128
8129 /* Get our SGE Page Size parameters.
8130 */
8131 page_shift = adapter->params.sge.hps + 10;
8132 page_size = 1 << page_shift;
8133
8134 /* Get the right Queues per Page parameters for our Queue.
8135 */
8136 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8137 ? adapter->params.sge.eq_qpp
8138 : adapter->params.sge.iq_qpp);
8139 qpp_mask = (1 << qpp_shift) - 1;
8140
8141 /* Calculate the basics of the BAR2 SGE Queue register area:
8142 * o The BAR2 page the Queue registers will be in.
8143 * o The BAR2 Queue ID.
8144 * o The BAR2 Queue ID Offset into the BAR2 page.
8145 */
513d1a1d 8146 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
8147 bar2_qid = qid & qpp_mask;
8148 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8149
8150 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
8151 * hardware will infer the Absolute Queue ID simply from the writes to
8152 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8153 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
8154 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8155 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8156 * from the BAR2 Page and BAR2 Queue ID.
8157 *
8158 * One important censequence of this is that some BAR2 SGE registers
8159 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8160 * there. But other registers synthesize the SGE Queue ID purely
8161 * from the writes to the registers -- the Write Combined Doorbell
8162 * Buffer is a good example. These BAR2 SGE Registers are only
8163 * available for those BAR2 SGE Register areas where the SGE Absolute
8164 * Queue ID can be inferred from simple writes.
8165 */
8166 bar2_qoffset = bar2_page_offset;
8167 bar2_qinferred = (bar2_qid_offset < page_size);
8168 if (bar2_qinferred) {
8169 bar2_qoffset += bar2_qid_offset;
8170 bar2_qid = 0;
8171 }
8172
8173 *pbar2_qoffset = bar2_qoffset;
8174 *pbar2_qid = bar2_qid;
8175 return 0;
8176}
8177
ae469b68
HS
8178/**
8179 * t4_init_devlog_params - initialize adapter->params.devlog
8180 * @adap: the adapter
8181 *
8182 * Initialize various fields of the adapter's Firmware Device Log
8183 * Parameters structure.
8184 */
8185int t4_init_devlog_params(struct adapter *adap)
8186{
8187 struct devlog_params *dparams = &adap->params.devlog;
8188 u32 pf_dparams;
8189 unsigned int devlog_meminfo;
8190 struct fw_devlog_cmd devlog_cmd;
8191 int ret;
8192
8193 /* If we're dealing with newer firmware, the Device Log Paramerters
8194 * are stored in a designated register which allows us to access the
8195 * Device Log even if we can't talk to the firmware.
8196 */
8197 pf_dparams =
8198 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8199 if (pf_dparams) {
8200 unsigned int nentries, nentries128;
8201
8202 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8203 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8204
8205 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8206 nentries = (nentries128 + 1) * 128;
8207 dparams->size = nentries * sizeof(struct fw_devlog_e);
8208
8209 return 0;
8210 }
8211
8212 /* Otherwise, ask the firmware for it's Device Log Parameters.
8213 */
8214 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
8215 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8216 FW_CMD_REQUEST_F | FW_CMD_READ_F);
8217 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
8218 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8219 &devlog_cmd);
8220 if (ret)
8221 return ret;
8222
f404f80c
HS
8223 devlog_meminfo =
8224 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
8225 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8226 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 8227 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
8228
8229 return 0;
8230}
8231
e85c9a7a
HS
8232/**
8233 * t4_init_sge_params - initialize adap->params.sge
8234 * @adapter: the adapter
8235 *
8236 * Initialize various fields of the adapter's SGE Parameters structure.
8237 */
8238int t4_init_sge_params(struct adapter *adapter)
8239{
8240 struct sge_params *sge_params = &adapter->params.sge;
8241 u32 hps, qpp;
8242 unsigned int s_hps, s_qpp;
8243
8244 /* Extract the SGE Page Size for our PF.
8245 */
f612b815 8246 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 8247 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 8248 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
8249 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8250
8251 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8252 */
8253 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 8254 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
8255 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8256 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 8257 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 8258 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
8259
8260 return 0;
8261}
8262
dcf7b6f5
KS
8263/**
8264 * t4_init_tp_params - initialize adap->params.tp
8265 * @adap: the adapter
8266 *
8267 * Initialize various fields of the adapter's TP Parameters structure.
8268 */
8269int t4_init_tp_params(struct adapter *adap)
8270{
8271 int chan;
8272 u32 v;
8273
837e4a42
HS
8274 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8275 adap->params.tp.tre = TIMERRESOLUTION_G(v);
8276 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
8277
8278 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8279 for (chan = 0; chan < NCHAN; chan++)
8280 adap->params.tp.tx_modq[chan] = chan;
8281
8282 /* Cache the adapter's Compressed Filter Mode and global Incress
8283 * Configuration.
8284 */
0b2c2a93 8285 if (t4_use_ldst(adap)) {
c1e9af0c
HS
8286 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
8287 TP_VLAN_PRI_MAP_A, 1);
8288 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
8289 TP_INGRESS_CONFIG_A, 1);
8290 } else {
8291 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8292 &adap->params.tp.vlan_pri_map, 1,
8293 TP_VLAN_PRI_MAP_A);
8294 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8295 &adap->params.tp.ingress_config, 1,
8296 TP_INGRESS_CONFIG_A);
8297 }
8eb9f2f9
A
8298 /* For T6, cache the adapter's compressed error vector
8299 * and passing outer header info for encapsulated packets.
8300 */
8301 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8302 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8303 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8304 }
dcf7b6f5
KS
8305
8306 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8307 * shift positions of several elements of the Compressed Filter Tuple
8308 * for this adapter which we need frequently ...
8309 */
0d804338
HS
8310 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8311 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8312 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 8313 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 8314 PROTOCOL_F);
dcf7b6f5
KS
8315
8316 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 8317 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 8318 */
0d804338 8319 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
8320 adap->params.tp.vnic_shift = -1;
8321
8322 return 0;
8323}
8324
8325/**
8326 * t4_filter_field_shift - calculate filter field shift
8327 * @adap: the adapter
8328 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8329 *
8330 * Return the shift position of a filter field within the Compressed
8331 * Filter Tuple. The filter field is specified via its selection bit
8332 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
8333 */
8334int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8335{
8336 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8337 unsigned int sel;
8338 int field_shift;
8339
8340 if ((filter_mode & filter_sel) == 0)
8341 return -1;
8342
8343 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8344 switch (filter_mode & sel) {
0d804338
HS
8345 case FCOE_F:
8346 field_shift += FT_FCOE_W;
dcf7b6f5 8347 break;
0d804338
HS
8348 case PORT_F:
8349 field_shift += FT_PORT_W;
dcf7b6f5 8350 break;
0d804338
HS
8351 case VNIC_ID_F:
8352 field_shift += FT_VNIC_ID_W;
dcf7b6f5 8353 break;
0d804338
HS
8354 case VLAN_F:
8355 field_shift += FT_VLAN_W;
dcf7b6f5 8356 break;
0d804338
HS
8357 case TOS_F:
8358 field_shift += FT_TOS_W;
dcf7b6f5 8359 break;
0d804338
HS
8360 case PROTOCOL_F:
8361 field_shift += FT_PROTOCOL_W;
dcf7b6f5 8362 break;
0d804338
HS
8363 case ETHERTYPE_F:
8364 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 8365 break;
0d804338
HS
8366 case MACMATCH_F:
8367 field_shift += FT_MACMATCH_W;
dcf7b6f5 8368 break;
0d804338
HS
8369 case MPSHITTYPE_F:
8370 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 8371 break;
0d804338
HS
8372 case FRAGMENTATION_F:
8373 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
8374 break;
8375 }
8376 }
8377 return field_shift;
8378}
8379
c035e183
HS
8380int t4_init_rss_mode(struct adapter *adap, int mbox)
8381{
8382 int i, ret;
8383 struct fw_rss_vi_config_cmd rvc;
8384
8385 memset(&rvc, 0, sizeof(rvc));
8386
8387 for_each_port(adap, i) {
8388 struct port_info *p = adap2pinfo(adap, i);
8389
f404f80c
HS
8390 rvc.op_to_viid =
8391 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8392 FW_CMD_REQUEST_F | FW_CMD_READ_F |
8393 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8394 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
8395 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8396 if (ret)
8397 return ret;
f404f80c 8398 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
8399 }
8400 return 0;
8401}
8402
c3e324e3
HS
8403/**
8404 * t4_init_portinfo - allocate a virtual interface amd initialize port_info
8405 * @pi: the port_info
8406 * @mbox: mailbox to use for the FW command
8407 * @port: physical port associated with the VI
8408 * @pf: the PF owning the VI
8409 * @vf: the VF owning the VI
8410 * @mac: the MAC address of the VI
8411 *
8412 * Allocates a virtual interface for the given physical port. If @mac is
8413 * not %NULL it contains the MAC address of the VI as assigned by FW.
8414 * @mac should be large enough to hold an Ethernet address.
8415 * Returns < 0 on error.
8416 */
8417int t4_init_portinfo(struct port_info *pi, int mbox,
8418 int port, int pf, int vf, u8 mac[])
56d36be4 8419{
c3e324e3 8420 int ret;
56d36be4 8421 struct fw_port_cmd c;
c3e324e3 8422 unsigned int rss_size;
56d36be4
DM
8423
8424 memset(&c, 0, sizeof(c));
c3e324e3
HS
8425 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8426 FW_CMD_REQUEST_F | FW_CMD_READ_F |
8427 FW_PORT_CMD_PORTID_V(port));
8428 c.action_to_len16 = cpu_to_be32(
8429 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
8430 FW_LEN16(c));
8431 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
8432 if (ret)
8433 return ret;
8434
8435 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
8436 if (ret < 0)
8437 return ret;
8438
8439 pi->viid = ret;
8440 pi->tx_chan = port;
8441 pi->lport = port;
8442 pi->rss_size = rss_size;
8443
8444 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8445 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
8446 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
8447 pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
8448 pi->mod_type = FW_PORT_MOD_TYPE_NA;
8449
3bb4858f
GG
8450 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap),
8451 be16_to_cpu(c.u.info.acap));
c3e324e3
HS
8452 return 0;
8453}
8454
8455int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
8456{
8457 u8 addr[6];
8458 int ret, i, j = 0;
56d36be4
DM
8459
8460 for_each_port(adap, i) {
c3e324e3 8461 struct port_info *pi = adap2pinfo(adap, i);
56d36be4
DM
8462
8463 while ((adap->params.portvec & (1 << j)) == 0)
8464 j++;
8465
c3e324e3 8466 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
56d36be4
DM
8467 if (ret)
8468 return ret;
8469
56d36be4 8470 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
56d36be4
DM
8471 j++;
8472 }
8473 return 0;
8474}
f1ff24aa 8475
74b3092c
HS
8476/**
8477 * t4_read_cimq_cfg - read CIM queue configuration
8478 * @adap: the adapter
8479 * @base: holds the queue base addresses in bytes
8480 * @size: holds the queue sizes in bytes
8481 * @thres: holds the queue full thresholds in bytes
8482 *
8483 * Returns the current configuration of the CIM queues, starting with
8484 * the IBQs, then the OBQs.
8485 */
8486void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8487{
8488 unsigned int i, v;
8489 int cim_num_obq = is_t4(adap->params.chip) ?
8490 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8491
8492 for (i = 0; i < CIM_NUM_IBQ; i++) {
8493 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
8494 QUENUMSELECT_V(i));
8495 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8496 /* value is in 256-byte units */
8497 *base++ = CIMQBASE_G(v) * 256;
8498 *size++ = CIMQSIZE_G(v) * 256;
8499 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
8500 }
8501 for (i = 0; i < cim_num_obq; i++) {
8502 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8503 QUENUMSELECT_V(i));
8504 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8505 /* value is in 256-byte units */
8506 *base++ = CIMQBASE_G(v) * 256;
8507 *size++ = CIMQSIZE_G(v) * 256;
8508 }
8509}
8510
e5f0e43b
HS
8511/**
8512 * t4_read_cim_ibq - read the contents of a CIM inbound queue
8513 * @adap: the adapter
8514 * @qid: the queue index
8515 * @data: where to store the queue contents
8516 * @n: capacity of @data in 32-bit words
8517 *
8518 * Reads the contents of the selected CIM queue starting at address 0 up
8519 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
8520 * error and the number of 32-bit words actually read on success.
8521 */
8522int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8523{
8524 int i, err, attempts;
8525 unsigned int addr;
8526 const unsigned int nwords = CIM_IBQ_SIZE * 4;
8527
8528 if (qid > 5 || (n & 3))
8529 return -EINVAL;
8530
8531 addr = qid * nwords;
8532 if (n > nwords)
8533 n = nwords;
8534
8535 /* It might take 3-10ms before the IBQ debug read access is allowed.
8536 * Wait for 1 Sec with a delay of 1 usec.
8537 */
8538 attempts = 1000000;
8539
8540 for (i = 0; i < n; i++, addr++) {
8541 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
8542 IBQDBGEN_F);
8543 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
8544 attempts, 1);
8545 if (err)
8546 return err;
8547 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
8548 }
8549 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
8550 return i;
8551}
8552
8553/**
8554 * t4_read_cim_obq - read the contents of a CIM outbound queue
8555 * @adap: the adapter
8556 * @qid: the queue index
8557 * @data: where to store the queue contents
8558 * @n: capacity of @data in 32-bit words
8559 *
8560 * Reads the contents of the selected CIM queue starting at address 0 up
8561 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
8562 * error and the number of 32-bit words actually read on success.
8563 */
8564int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8565{
8566 int i, err;
8567 unsigned int addr, v, nwords;
8568 int cim_num_obq = is_t4(adap->params.chip) ?
8569 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8570
8571 if ((qid > (cim_num_obq - 1)) || (n & 3))
8572 return -EINVAL;
8573
8574 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8575 QUENUMSELECT_V(qid));
8576 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8577
8578 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
8579 nwords = CIMQSIZE_G(v) * 64; /* same */
8580 if (n > nwords)
8581 n = nwords;
8582
8583 for (i = 0; i < n; i++, addr++) {
8584 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
8585 OBQDBGEN_F);
8586 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
8587 2, 1);
8588 if (err)
8589 return err;
8590 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
8591 }
8592 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
8593 return i;
8594}
8595
f1ff24aa
HS
8596/**
8597 * t4_cim_read - read a block from CIM internal address space
8598 * @adap: the adapter
8599 * @addr: the start address within the CIM address space
8600 * @n: number of words to read
8601 * @valp: where to store the result
8602 *
8603 * Reads a block of 4-byte words from the CIM intenal address space.
8604 */
8605int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8606 unsigned int *valp)
8607{
8608 int ret = 0;
8609
8610 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8611 return -EBUSY;
8612
8613 for ( ; !ret && n--; addr += 4) {
8614 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8615 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8616 0, 5, 2);
8617 if (!ret)
8618 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8619 }
8620 return ret;
8621}
8622
8623/**
8624 * t4_cim_write - write a block into CIM internal address space
8625 * @adap: the adapter
8626 * @addr: the start address within the CIM address space
8627 * @n: number of words to write
8628 * @valp: set of values to write
8629 *
8630 * Writes a block of 4-byte words into the CIM intenal address space.
8631 */
8632int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8633 const unsigned int *valp)
8634{
8635 int ret = 0;
8636
8637 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8638 return -EBUSY;
8639
8640 for ( ; !ret && n--; addr += 4) {
8641 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8642 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8643 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8644 0, 5, 2);
8645 }
8646 return ret;
8647}
8648
8649static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8650 unsigned int val)
8651{
8652 return t4_cim_write(adap, addr, 1, &val);
8653}
8654
8655/**
8656 * t4_cim_read_la - read CIM LA capture buffer
8657 * @adap: the adapter
8658 * @la_buf: where to store the LA data
8659 * @wrptr: the HW write pointer within the capture buffer
8660 *
8661 * Reads the contents of the CIM LA buffer with the most recent entry at
8662 * the end of the returned data and with the entry at @wrptr first.
8663 * We try to leave the LA in the running state we find it in.
8664 */
8665int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8666{
8667 int i, ret;
8668 unsigned int cfg, val, idx;
8669
8670 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8671 if (ret)
8672 return ret;
8673
8674 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
8675 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8676 if (ret)
8677 return ret;
8678 }
8679
8680 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8681 if (ret)
8682 goto restart;
8683
8684 idx = UPDBGLAWRPTR_G(val);
8685 if (wrptr)
8686 *wrptr = idx;
8687
8688 for (i = 0; i < adap->params.cim_la_size; i++) {
8689 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8690 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8691 if (ret)
8692 break;
8693 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8694 if (ret)
8695 break;
8696 if (val & UPDBGLARDEN_F) {
8697 ret = -ETIMEDOUT;
8698 break;
8699 }
8700 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8701 if (ret)
8702 break;
a97051f4
GG
8703
8704 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8705 * identify the 32-bit portion of the full 312-bit data
8706 */
8707 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
8708 idx = (idx & 0xff0) + 0x10;
8709 else
8710 idx++;
8711 /* address can't exceed 0xfff */
8712 idx &= UPDBGLARDPTR_M;
f1ff24aa
HS
8713 }
8714restart:
8715 if (cfg & UPDBGLAEN_F) {
8716 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8717 cfg & ~UPDBGLARDEN_F);
8718 if (!ret)
8719 ret = r;
8720 }
8721 return ret;
8722}
2d277b3b
HS
8723
8724/**
8725 * t4_tp_read_la - read TP LA capture buffer
8726 * @adap: the adapter
8727 * @la_buf: where to store the LA data
8728 * @wrptr: the HW write pointer within the capture buffer
8729 *
8730 * Reads the contents of the TP LA buffer with the most recent entry at
8731 * the end of the returned data and with the entry at @wrptr first.
8732 * We leave the LA in the running state we find it in.
8733 */
8734void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8735{
8736 bool last_incomplete;
8737 unsigned int i, cfg, val, idx;
8738
8739 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8740 if (cfg & DBGLAENABLE_F) /* freeze LA */
8741 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8742 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8743
8744 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8745 idx = DBGLAWPTR_G(val);
8746 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8747 if (last_incomplete)
8748 idx = (idx + 1) & DBGLARPTR_M;
8749 if (wrptr)
8750 *wrptr = idx;
8751
8752 val &= 0xffff;
8753 val &= ~DBGLARPTR_V(DBGLARPTR_M);
8754 val |= adap->params.tp.la_mask;
8755
8756 for (i = 0; i < TPLA_SIZE; i++) {
8757 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8758 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8759 idx = (idx + 1) & DBGLARPTR_M;
8760 }
8761
8762 /* Wipe out last entry if it isn't valid */
8763 if (last_incomplete)
8764 la_buf[TPLA_SIZE - 1] = ~0ULL;
8765
8766 if (cfg & DBGLAENABLE_F) /* restore running state */
8767 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8768 cfg | adap->params.tp.la_mask);
8769}
a3bfb617
HS
8770
8771/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8772 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
8773 * state for more than the Warning Threshold then we'll issue a warning about
8774 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
8775 * appears to be hung every Warning Repeat second till the situation clears.
8776 * If the situation clears, we'll note that as well.
8777 */
8778#define SGE_IDMA_WARN_THRESH 1
8779#define SGE_IDMA_WARN_REPEAT 300
8780
8781/**
8782 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8783 * @adapter: the adapter
8784 * @idma: the adapter IDMA Monitor state
8785 *
8786 * Initialize the state of an SGE Ingress DMA Monitor.
8787 */
8788void t4_idma_monitor_init(struct adapter *adapter,
8789 struct sge_idma_monitor_state *idma)
8790{
8791 /* Initialize the state variables for detecting an SGE Ingress DMA
8792 * hang. The SGE has internal counters which count up on each clock
8793 * tick whenever the SGE finds its Ingress DMA State Engines in the
8794 * same state they were on the previous clock tick. The clock used is
8795 * the Core Clock so we have a limit on the maximum "time" they can
8796 * record; typically a very small number of seconds. For instance,
8797 * with a 600MHz Core Clock, we can only count up to a bit more than
8798 * 7s. So we'll synthesize a larger counter in order to not run the
8799 * risk of having the "timers" overflow and give us the flexibility to
8800 * maintain a Hung SGE State Machine of our own which operates across
8801 * a longer time frame.
8802 */
8803 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8804 idma->idma_stalled[0] = 0;
8805 idma->idma_stalled[1] = 0;
8806}
8807
8808/**
8809 * t4_idma_monitor - monitor SGE Ingress DMA state
8810 * @adapter: the adapter
8811 * @idma: the adapter IDMA Monitor state
8812 * @hz: number of ticks/second
8813 * @ticks: number of ticks since the last IDMA Monitor call
8814 */
8815void t4_idma_monitor(struct adapter *adapter,
8816 struct sge_idma_monitor_state *idma,
8817 int hz, int ticks)
8818{
8819 int i, idma_same_state_cnt[2];
8820
8821 /* Read the SGE Debug Ingress DMA Same State Count registers. These
8822 * are counters inside the SGE which count up on each clock when the
8823 * SGE finds its Ingress DMA State Engines in the same states they
8824 * were in the previous clock. The counters will peg out at
8825 * 0xffffffff without wrapping around so once they pass the 1s
8826 * threshold they'll stay above that till the IDMA state changes.
8827 */
8828 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8829 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8830 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8831
8832 for (i = 0; i < 2; i++) {
8833 u32 debug0, debug11;
8834
8835 /* If the Ingress DMA Same State Counter ("timer") is less
8836 * than 1s, then we can reset our synthesized Stall Timer and
8837 * continue. If we have previously emitted warnings about a
8838 * potential stalled Ingress Queue, issue a note indicating
8839 * that the Ingress Queue has resumed forward progress.
8840 */
8841 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8842 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8843 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8844 "resumed after %d seconds\n",
8845 i, idma->idma_qid[i],
8846 idma->idma_stalled[i] / hz);
8847 idma->idma_stalled[i] = 0;
8848 continue;
8849 }
8850
8851 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8852 * domain. The first time we get here it'll be because we
8853 * passed the 1s Threshold; each additional time it'll be
8854 * because the RX Timer Callback is being fired on its regular
8855 * schedule.
8856 *
8857 * If the stall is below our Potential Hung Ingress Queue
8858 * Warning Threshold, continue.
8859 */
8860 if (idma->idma_stalled[i] == 0) {
8861 idma->idma_stalled[i] = hz;
8862 idma->idma_warn[i] = 0;
8863 } else {
8864 idma->idma_stalled[i] += ticks;
8865 idma->idma_warn[i] -= ticks;
8866 }
8867
8868 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8869 continue;
8870
8871 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8872 */
8873 if (idma->idma_warn[i] > 0)
8874 continue;
8875 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8876
8877 /* Read and save the SGE IDMA State and Queue ID information.
8878 * We do this every time in case it changes across time ...
8879 * can't be too careful ...
8880 */
8881 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8882 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8883 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8884
8885 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8886 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8887 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8888
8889 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8890 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8891 i, idma->idma_qid[i], idma->idma_state[i],
8892 idma->idma_stalled[i] / hz,
8893 debug0, debug11);
8894 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8895 }
8896}
858aa65c
HS
8897
8898/**
8899 * t4_set_vf_mac - Set MAC address for the specified VF
8900 * @adapter: The adapter
8901 * @vf: one of the VFs instantiated by the specified PF
8902 * @naddr: the number of MAC addresses
8903 * @addr: the MAC address(es) to be set to the specified VF
8904 */
8905int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
8906 unsigned int naddr, u8 *addr)
8907{
8908 struct fw_acl_mac_cmd cmd;
8909
8910 memset(&cmd, 0, sizeof(cmd));
8911 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
8912 FW_CMD_REQUEST_F |
8913 FW_CMD_WRITE_F |
8914 FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
8915 FW_ACL_MAC_CMD_VFN_V(vf));
8916
8917 /* Note: Do not enable the ACL */
8918 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
8919 cmd.nmac = naddr;
8920
8921 switch (adapter->pf) {
8922 case 3:
8923 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
8924 break;
8925 case 2:
8926 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
8927 break;
8928 case 1:
8929 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
8930 break;
8931 case 0:
8932 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
8933 break;
8934 }
8935
8936 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
8937}
b72a32da
RL
8938
8939int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
8940 int rateunit, int ratemode, int channel, int class,
8941 int minrate, int maxrate, int weight, int pktsize)
8942{
8943 struct fw_sched_cmd cmd;
8944
8945 memset(&cmd, 0, sizeof(cmd));
8946 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
8947 FW_CMD_REQUEST_F |
8948 FW_CMD_WRITE_F);
8949 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
8950
8951 cmd.u.params.sc = FW_SCHED_SC_PARAMS;
8952 cmd.u.params.type = type;
8953 cmd.u.params.level = level;
8954 cmd.u.params.mode = mode;
8955 cmd.u.params.ch = channel;
8956 cmd.u.params.cl = class;
8957 cmd.u.params.unit = rateunit;
8958 cmd.u.params.rate = ratemode;
8959 cmd.u.params.min = cpu_to_be32(minrate);
8960 cmd.u.params.max = cpu_to_be32(maxrate);
8961 cmd.u.params.weight = cpu_to_be16(weight);
8962 cmd.u.params.pktsize = cpu_to_be16(pktsize);
8963
8964 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
8965 NULL, 1);
8966}