]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
cxgb4: Add a debugfs entry to dump CIM MA logic analyzer logs
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4
DM
39#include "t4fw_api.h"
40
41/**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
de498c89
RD
56static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
58{
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72}
73
74static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76{
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79}
80
81/**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93{
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98}
99
100/**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
f2b7e78d 112void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
115{
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121}
122
13ee15d3
VP
123/**
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
131 *
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
134 */
135void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
138{
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
142 }
143}
144
0abfd152
HS
145/*
146 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147 * mechanism. This guarantees that we get the real value even if we're
148 * operating within a Virtual Machine and the Hypervisor is trapping our
149 * Configuration Space accesses.
150 */
151void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152{
3ccc6cf7
HS
153 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
154
155 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
156 req |= ENABLE_F;
157 else
158 req |= T6_ENABLE_F;
0abfd152
HS
159
160 if (is_t4(adap->params.chip))
f061de42 161 req |= LOCALCFG_F;
0abfd152 162
f061de42
HS
163 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
164 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
165
166 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
167 * Configuration Space read. (None of the other fields matter when
168 * ENABLE is 0 so a simple register write is easier than a
169 * read-modify-write via t4_set_reg_field().)
170 */
f061de42 171 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
172}
173
31d55c2d
HS
174/*
175 * t4_report_fw_error - report firmware error
176 * @adap: the adapter
177 *
178 * The adapter firmware can indicate error conditions to the host.
179 * If the firmware has indicated an error, print out the reason for
180 * the firmware error.
181 */
182static void t4_report_fw_error(struct adapter *adap)
183{
184 static const char *const reason[] = {
185 "Crash", /* PCIE_FW_EVAL_CRASH */
186 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
187 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
188 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
189 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
190 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
191 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
192 "Reserved", /* reserved */
193 };
194 u32 pcie_fw;
195
f061de42
HS
196 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
197 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 198 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 199 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
200}
201
56d36be4
DM
202/*
203 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
204 */
205static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
206 u32 mbox_addr)
207{
208 for ( ; nflit; nflit--, mbox_addr += 8)
209 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
210}
211
212/*
213 * Handle a FW assertion reported in a mailbox.
214 */
215static void fw_asrt(struct adapter *adap, u32 mbox_addr)
216{
217 struct fw_debug_cmd asrt;
218
219 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
220 dev_alert(adap->pdev_dev,
221 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
222 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
223 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
224}
225
226static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
227{
228 dev_err(adap->pdev_dev,
229 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
230 (unsigned long long)t4_read_reg64(adap, data_reg),
231 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
238}
239
240/**
01b69614 241 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
242 * @adap: the adapter
243 * @mbox: index of the mailbox to use
244 * @cmd: the command to write
245 * @size: command length in bytes
246 * @rpl: where to optionally store the reply
247 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 248 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
249 *
250 * Sends the given command to FW through the selected mailbox and waits
251 * for the FW to execute the command. If @rpl is not %NULL it is used to
252 * store the FW's reply to the command. The command and its optional
253 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
254 * to respond. @sleep_ok determines whether we may sleep while awaiting
255 * the response. If sleeping is allowed we use progressive backoff
256 * otherwise we spin.
257 *
258 * The return value is 0 on success or a negative errno on failure. A
259 * failure can happen either because we are not able to execute the
260 * command or FW executes it but signals an error. In the latter case
261 * the return value is the error code indicated by FW (negated).
262 */
01b69614
HS
263int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
264 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 265{
005b5717 266 static const int delay[] = {
56d36be4
DM
267 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
268 };
269
270 u32 v;
271 u64 res;
272 int i, ms, delay_idx;
273 const __be64 *p = cmd;
89c3a86c
HS
274 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
275 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
56d36be4
DM
276
277 if ((size & 15) || size > MBOX_LEN)
278 return -EINVAL;
279
204dc3c0
DM
280 /*
281 * If the device is off-line, as in EEH, commands will time out.
282 * Fail them early so we don't waste time waiting.
283 */
284 if (adap->pdev->error_state != pci_channel_io_normal)
285 return -EIO;
286
89c3a86c 287 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 288 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 289 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4
DM
290
291 if (v != MBOX_OWNER_DRV)
292 return v ? -EBUSY : -ETIMEDOUT;
293
294 for (i = 0; i < size; i += 8)
295 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
296
89c3a86c 297 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
298 t4_read_reg(adap, ctl_reg); /* flush write */
299
300 delay_idx = 0;
301 ms = delay[0];
302
01b69614 303 for (i = 0; i < timeout; i += ms) {
56d36be4
DM
304 if (sleep_ok) {
305 ms = delay[delay_idx]; /* last element may repeat */
306 if (delay_idx < ARRAY_SIZE(delay) - 1)
307 delay_idx++;
308 msleep(ms);
309 } else
310 mdelay(ms);
311
312 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
313 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
314 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
315 t4_write_reg(adap, ctl_reg, 0);
316 continue;
317 }
318
319 res = t4_read_reg64(adap, data_reg);
e2ac9628 320 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 321 fw_asrt(adap, data_reg);
e2ac9628
HS
322 res = FW_CMD_RETVAL_V(EIO);
323 } else if (rpl) {
56d36be4 324 get_mbox_rpl(adap, rpl, size / 8, data_reg);
e2ac9628 325 }
56d36be4 326
e2ac9628 327 if (FW_CMD_RETVAL_G((int)res))
56d36be4
DM
328 dump_mbox(adap, mbox, data_reg);
329 t4_write_reg(adap, ctl_reg, 0);
e2ac9628 330 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
331 }
332 }
333
334 dump_mbox(adap, mbox, data_reg);
335 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
336 *(const u8 *)cmd, mbox);
31d55c2d 337 t4_report_fw_error(adap);
56d36be4
DM
338 return -ETIMEDOUT;
339}
340
01b69614
HS
341int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
342 void *rpl, bool sleep_ok)
343{
344 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
345 FW_CMD_MAX_TIMEOUT);
346}
347
5afc8b84
VP
348/**
349 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
350 * @adap: the adapter
fc5ab020 351 * @win: PCI-E Memory Window to use
5afc8b84
VP
352 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
353 * @addr: address within indicated memory type
354 * @len: amount of memory to transfer
f01aa633 355 * @hbuf: host memory buffer
fc5ab020 356 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
357 *
358 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
359 * firmware memory address and host buffer must be aligned on 32-bit
360 * boudaries; the length may be arbitrary. The memory is transferred as
361 * a raw byte sequence from/to the firmware's memory. If this memory
362 * contains data structures which contain multi-byte integers, it's the
363 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 364 */
fc5ab020 365int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 366 u32 len, void *hbuf, int dir)
5afc8b84 367{
fc5ab020
HS
368 u32 pos, offset, resid, memoffset;
369 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 370 u32 *buf;
5afc8b84 371
fc5ab020 372 /* Argument sanity checks ...
5afc8b84 373 */
f01aa633 374 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 375 return -EINVAL;
f01aa633 376 buf = (u32 *)hbuf;
5afc8b84 377
fc5ab020
HS
378 /* It's convenient to be able to handle lengths which aren't a
379 * multiple of 32-bits because we often end up transferring files to
380 * the firmware. So we'll handle that by normalizing the length here
381 * and then handling any residual transfer at the end.
382 */
383 resid = len & 0x3;
384 len -= resid;
8c357ebd 385
19dd37ba 386 /* Offset into the region of memory which is being accessed
5afc8b84
VP
387 * MEM_EDC0 = 0
388 * MEM_EDC1 = 1
3ccc6cf7
HS
389 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
390 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 391 */
6559a7e8 392 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
393 if (mtype != MEM_MC1)
394 memoffset = (mtype * (edc_size * 1024 * 1024));
395 else {
6559a7e8 396 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 397 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
398 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
399 }
5afc8b84
VP
400
401 /* Determine the PCIE_MEM_ACCESS_OFFSET */
402 addr = addr + memoffset;
403
fc5ab020
HS
404 /* Each PCI-E Memory Window is programmed with a window size -- or
405 * "aperture" -- which controls the granularity of its mapping onto
406 * adapter memory. We need to grab that aperture in order to know
407 * how to use the specified window. The window is also programmed
408 * with the base address of the Memory Window in BAR0's address
409 * space. For T4 this is an absolute PCI-E Bus Address. For T5
410 * the address is relative to BAR0.
5afc8b84 411 */
fc5ab020 412 mem_reg = t4_read_reg(adap,
f061de42 413 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 414 win));
f061de42
HS
415 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
416 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
417 if (is_t4(adap->params.chip))
418 mem_base -= adap->t4_bar0;
b2612722 419 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 420
fc5ab020
HS
421 /* Calculate our initial PCI-E Memory Window Position and Offset into
422 * that Window.
423 */
424 pos = addr & ~(mem_aperture-1);
425 offset = addr - pos;
5afc8b84 426
fc5ab020
HS
427 /* Set up initial PCI-E Memory Window to cover the start of our
428 * transfer. (Read it back to ensure that changes propagate before we
429 * attempt to use the new value.)
430 */
431 t4_write_reg(adap,
f061de42 432 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
433 pos | win_pf);
434 t4_read_reg(adap,
f061de42 435 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
436
437 /* Transfer data to/from the adapter as long as there's an integral
438 * number of 32-bit transfers to complete.
f01aa633
HS
439 *
440 * A note on Endianness issues:
441 *
442 * The "register" reads and writes below from/to the PCI-E Memory
443 * Window invoke the standard adapter Big-Endian to PCI-E Link
444 * Little-Endian "swizzel." As a result, if we have the following
445 * data in adapter memory:
446 *
447 * Memory: ... | b0 | b1 | b2 | b3 | ...
448 * Address: i+0 i+1 i+2 i+3
449 *
450 * Then a read of the adapter memory via the PCI-E Memory Window
451 * will yield:
452 *
453 * x = readl(i)
454 * 31 0
455 * [ b3 | b2 | b1 | b0 ]
456 *
457 * If this value is stored into local memory on a Little-Endian system
458 * it will show up correctly in local memory as:
459 *
460 * ( ..., b0, b1, b2, b3, ... )
461 *
462 * But on a Big-Endian system, the store will show up in memory
463 * incorrectly swizzled as:
464 *
465 * ( ..., b3, b2, b1, b0, ... )
466 *
467 * So we need to account for this in the reads and writes to the
468 * PCI-E Memory Window below by undoing the register read/write
469 * swizzels.
fc5ab020
HS
470 */
471 while (len > 0) {
472 if (dir == T4_MEMORY_READ)
f01aa633
HS
473 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
474 mem_base + offset));
fc5ab020
HS
475 else
476 t4_write_reg(adap, mem_base + offset,
f01aa633 477 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
478 offset += sizeof(__be32);
479 len -= sizeof(__be32);
480
481 /* If we've reached the end of our current window aperture,
482 * move the PCI-E Memory Window on to the next. Note that
483 * doing this here after "len" may be 0 allows us to set up
484 * the PCI-E Memory Window for a possible final residual
485 * transfer below ...
5afc8b84 486 */
fc5ab020
HS
487 if (offset == mem_aperture) {
488 pos += mem_aperture;
489 offset = 0;
490 t4_write_reg(adap,
f061de42
HS
491 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
492 win), pos | win_pf);
fc5ab020 493 t4_read_reg(adap,
f061de42
HS
494 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
495 win));
5afc8b84 496 }
5afc8b84
VP
497 }
498
fc5ab020
HS
499 /* If the original transfer had a length which wasn't a multiple of
500 * 32-bits, now's where we need to finish off the transfer of the
501 * residual amount. The PCI-E Memory Window has already been moved
502 * above (if necessary) to cover this final transfer.
503 */
504 if (resid) {
505 union {
f01aa633 506 u32 word;
fc5ab020
HS
507 char byte[4];
508 } last;
509 unsigned char *bp;
510 int i;
511
c81576c2 512 if (dir == T4_MEMORY_READ) {
f01aa633
HS
513 last.word = le32_to_cpu(
514 (__force __le32)t4_read_reg(adap,
515 mem_base + offset));
fc5ab020
HS
516 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
517 bp[i] = last.byte[i];
518 } else {
519 last.word = *buf;
520 for (i = resid; i < 4; i++)
521 last.byte[i] = 0;
522 t4_write_reg(adap, mem_base + offset,
f01aa633 523 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
524 }
525 }
5afc8b84 526
fc5ab020 527 return 0;
5afc8b84
VP
528}
529
b562fc37
HS
530/* Return the specified PCI-E Configuration Space register from our Physical
531 * Function. We try first via a Firmware LDST Command since we prefer to let
532 * the firmware own all of these registers, but if that fails we go for it
533 * directly ourselves.
534 */
535u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
536{
537 u32 val, ldst_addrspace;
538
539 /* If fw_attach != 0, construct and send the Firmware LDST Command to
540 * retrieve the specified PCI-E Configuration Space register.
541 */
542 struct fw_ldst_cmd ldst_cmd;
543 int ret;
544
545 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
546 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
547 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
548 FW_CMD_REQUEST_F |
549 FW_CMD_READ_F |
550 ldst_addrspace);
551 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
552 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
553 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 554 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
555 ldst_cmd.u.pcie.r = reg;
556
557 /* If the LDST Command succeeds, return the result, otherwise
558 * fall through to reading it directly ourselves ...
559 */
560 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
561 &ldst_cmd);
562 if (ret == 0)
563 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
564 else
565 /* Read the desired Configuration Space register via the PCI-E
566 * Backdoor mechanism.
567 */
568 t4_hw_pci_read_cfg4(adap, reg, &val);
569 return val;
570}
571
572/* Get the window based on base passed to it.
573 * Window aperture is currently unhandled, but there is no use case for it
574 * right now
575 */
576static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
577 u32 memwin_base)
578{
579 u32 ret;
580
581 if (is_t4(adap->params.chip)) {
582 u32 bar0;
583
584 /* Truncation intentional: we only read the bottom 32-bits of
585 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
586 * mechanism to read BAR0 instead of using
587 * pci_resource_start() because we could be operating from
588 * within a Virtual Machine which is trapping our accesses to
589 * our Configuration Space and we need to set up the PCI-E
590 * Memory Window decoders with the actual addresses which will
591 * be coming across the PCI-E link.
592 */
593 bar0 = t4_read_pcie_cfg4(adap, pci_base);
594 bar0 &= pci_mask;
595 adap->t4_bar0 = bar0;
596
597 ret = bar0 + memwin_base;
598 } else {
599 /* For T5, only relative offset inside the PCIe BAR is passed */
600 ret = memwin_base;
601 }
602 return ret;
603}
604
605/* Get the default utility window (win0) used by everyone */
606u32 t4_get_util_window(struct adapter *adap)
607{
608 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
609 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
610}
611
612/* Set up memory window for accessing adapter memory ranges. (Read
613 * back MA register to ensure that changes propagate before we attempt
614 * to use the new values.)
615 */
616void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
617{
618 t4_write_reg(adap,
619 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
620 memwin_base | BIR_V(0) |
621 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
622 t4_read_reg(adap,
623 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
624}
625
812034f1
HS
626/**
627 * t4_get_regs_len - return the size of the chips register set
628 * @adapter: the adapter
629 *
630 * Returns the size of the chip's BAR0 register space.
631 */
632unsigned int t4_get_regs_len(struct adapter *adapter)
633{
634 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
635
636 switch (chip_version) {
637 case CHELSIO_T4:
638 return T4_REGMAP_SIZE;
639
640 case CHELSIO_T5:
ab4b583b 641 case CHELSIO_T6:
812034f1
HS
642 return T5_REGMAP_SIZE;
643 }
644
645 dev_err(adapter->pdev_dev,
646 "Unsupported chip version %d\n", chip_version);
647 return 0;
648}
649
650/**
651 * t4_get_regs - read chip registers into provided buffer
652 * @adap: the adapter
653 * @buf: register buffer
654 * @buf_size: size (in bytes) of register buffer
655 *
656 * If the provided register buffer isn't large enough for the chip's
657 * full register range, the register dump will be truncated to the
658 * register buffer's size.
659 */
660void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
661{
662 static const unsigned int t4_reg_ranges[] = {
663 0x1008, 0x1108,
664 0x1180, 0x11b4,
665 0x11fc, 0x123c,
666 0x1300, 0x173c,
667 0x1800, 0x18fc,
9f5ac48d
HS
668 0x3000, 0x305c,
669 0x3068, 0x30d8,
812034f1
HS
670 0x30e0, 0x5924,
671 0x5960, 0x59d4,
672 0x5a00, 0x5af8,
673 0x6000, 0x6098,
674 0x6100, 0x6150,
675 0x6200, 0x6208,
676 0x6240, 0x6248,
677 0x6280, 0x6338,
678 0x6370, 0x638c,
679 0x6400, 0x643c,
680 0x6500, 0x6524,
681 0x6a00, 0x6a38,
682 0x6a60, 0x6a78,
683 0x6b00, 0x6b84,
684 0x6bf0, 0x6c84,
685 0x6cf0, 0x6d84,
686 0x6df0, 0x6e84,
687 0x6ef0, 0x6f84,
688 0x6ff0, 0x7084,
689 0x70f0, 0x7184,
690 0x71f0, 0x7284,
691 0x72f0, 0x7384,
692 0x73f0, 0x7450,
693 0x7500, 0x7530,
694 0x7600, 0x761c,
695 0x7680, 0x76cc,
696 0x7700, 0x7798,
697 0x77c0, 0x77fc,
698 0x7900, 0x79fc,
699 0x7b00, 0x7c38,
700 0x7d00, 0x7efc,
701 0x8dc0, 0x8e1c,
702 0x8e30, 0x8e78,
703 0x8ea0, 0x8f6c,
704 0x8fc0, 0x9074,
705 0x90fc, 0x90fc,
706 0x9400, 0x9458,
707 0x9600, 0x96bc,
708 0x9800, 0x9808,
709 0x9820, 0x983c,
710 0x9850, 0x9864,
711 0x9c00, 0x9c6c,
712 0x9c80, 0x9cec,
713 0x9d00, 0x9d6c,
714 0x9d80, 0x9dec,
715 0x9e00, 0x9e6c,
716 0x9e80, 0x9eec,
717 0x9f00, 0x9f6c,
718 0x9f80, 0x9fec,
719 0xd004, 0xd03c,
720 0xdfc0, 0xdfe0,
721 0xe000, 0xea7c,
722 0xf000, 0x11110,
723 0x11118, 0x11190,
724 0x19040, 0x1906c,
725 0x19078, 0x19080,
726 0x1908c, 0x19124,
727 0x19150, 0x191b0,
728 0x191d0, 0x191e8,
729 0x19238, 0x1924c,
730 0x193f8, 0x19474,
731 0x19490, 0x194f8,
9f5ac48d 732 0x19800, 0x19f4c,
812034f1
HS
733 0x1a000, 0x1a06c,
734 0x1a0b0, 0x1a120,
735 0x1a128, 0x1a138,
736 0x1a190, 0x1a1c4,
737 0x1a1fc, 0x1a1fc,
738 0x1e040, 0x1e04c,
739 0x1e284, 0x1e28c,
740 0x1e2c0, 0x1e2c0,
741 0x1e2e0, 0x1e2e0,
742 0x1e300, 0x1e384,
743 0x1e3c0, 0x1e3c8,
744 0x1e440, 0x1e44c,
745 0x1e684, 0x1e68c,
746 0x1e6c0, 0x1e6c0,
747 0x1e6e0, 0x1e6e0,
748 0x1e700, 0x1e784,
749 0x1e7c0, 0x1e7c8,
750 0x1e840, 0x1e84c,
751 0x1ea84, 0x1ea8c,
752 0x1eac0, 0x1eac0,
753 0x1eae0, 0x1eae0,
754 0x1eb00, 0x1eb84,
755 0x1ebc0, 0x1ebc8,
756 0x1ec40, 0x1ec4c,
757 0x1ee84, 0x1ee8c,
758 0x1eec0, 0x1eec0,
759 0x1eee0, 0x1eee0,
760 0x1ef00, 0x1ef84,
761 0x1efc0, 0x1efc8,
762 0x1f040, 0x1f04c,
763 0x1f284, 0x1f28c,
764 0x1f2c0, 0x1f2c0,
765 0x1f2e0, 0x1f2e0,
766 0x1f300, 0x1f384,
767 0x1f3c0, 0x1f3c8,
768 0x1f440, 0x1f44c,
769 0x1f684, 0x1f68c,
770 0x1f6c0, 0x1f6c0,
771 0x1f6e0, 0x1f6e0,
772 0x1f700, 0x1f784,
773 0x1f7c0, 0x1f7c8,
774 0x1f840, 0x1f84c,
775 0x1fa84, 0x1fa8c,
776 0x1fac0, 0x1fac0,
777 0x1fae0, 0x1fae0,
778 0x1fb00, 0x1fb84,
779 0x1fbc0, 0x1fbc8,
780 0x1fc40, 0x1fc4c,
781 0x1fe84, 0x1fe8c,
782 0x1fec0, 0x1fec0,
783 0x1fee0, 0x1fee0,
784 0x1ff00, 0x1ff84,
785 0x1ffc0, 0x1ffc8,
786 0x20000, 0x2002c,
787 0x20100, 0x2013c,
788 0x20190, 0x201c8,
789 0x20200, 0x20318,
790 0x20400, 0x20528,
791 0x20540, 0x20614,
792 0x21000, 0x21040,
793 0x2104c, 0x21060,
794 0x210c0, 0x210ec,
795 0x21200, 0x21268,
796 0x21270, 0x21284,
797 0x212fc, 0x21388,
798 0x21400, 0x21404,
799 0x21500, 0x21518,
800 0x2152c, 0x2153c,
801 0x21550, 0x21554,
802 0x21600, 0x21600,
803 0x21608, 0x21628,
804 0x21630, 0x2163c,
805 0x21700, 0x2171c,
806 0x21780, 0x2178c,
807 0x21800, 0x21c38,
808 0x21c80, 0x21d7c,
809 0x21e00, 0x21e04,
810 0x22000, 0x2202c,
811 0x22100, 0x2213c,
812 0x22190, 0x221c8,
813 0x22200, 0x22318,
814 0x22400, 0x22528,
815 0x22540, 0x22614,
816 0x23000, 0x23040,
817 0x2304c, 0x23060,
818 0x230c0, 0x230ec,
819 0x23200, 0x23268,
820 0x23270, 0x23284,
821 0x232fc, 0x23388,
822 0x23400, 0x23404,
823 0x23500, 0x23518,
824 0x2352c, 0x2353c,
825 0x23550, 0x23554,
826 0x23600, 0x23600,
827 0x23608, 0x23628,
828 0x23630, 0x2363c,
829 0x23700, 0x2371c,
830 0x23780, 0x2378c,
831 0x23800, 0x23c38,
832 0x23c80, 0x23d7c,
833 0x23e00, 0x23e04,
834 0x24000, 0x2402c,
835 0x24100, 0x2413c,
836 0x24190, 0x241c8,
837 0x24200, 0x24318,
838 0x24400, 0x24528,
839 0x24540, 0x24614,
840 0x25000, 0x25040,
841 0x2504c, 0x25060,
842 0x250c0, 0x250ec,
843 0x25200, 0x25268,
844 0x25270, 0x25284,
845 0x252fc, 0x25388,
846 0x25400, 0x25404,
847 0x25500, 0x25518,
848 0x2552c, 0x2553c,
849 0x25550, 0x25554,
850 0x25600, 0x25600,
851 0x25608, 0x25628,
852 0x25630, 0x2563c,
853 0x25700, 0x2571c,
854 0x25780, 0x2578c,
855 0x25800, 0x25c38,
856 0x25c80, 0x25d7c,
857 0x25e00, 0x25e04,
858 0x26000, 0x2602c,
859 0x26100, 0x2613c,
860 0x26190, 0x261c8,
861 0x26200, 0x26318,
862 0x26400, 0x26528,
863 0x26540, 0x26614,
864 0x27000, 0x27040,
865 0x2704c, 0x27060,
866 0x270c0, 0x270ec,
867 0x27200, 0x27268,
868 0x27270, 0x27284,
869 0x272fc, 0x27388,
870 0x27400, 0x27404,
871 0x27500, 0x27518,
872 0x2752c, 0x2753c,
873 0x27550, 0x27554,
874 0x27600, 0x27600,
875 0x27608, 0x27628,
876 0x27630, 0x2763c,
877 0x27700, 0x2771c,
878 0x27780, 0x2778c,
879 0x27800, 0x27c38,
880 0x27c80, 0x27d7c,
9f5ac48d 881 0x27e00, 0x27e04,
812034f1
HS
882 };
883
884 static const unsigned int t5_reg_ranges[] = {
885 0x1008, 0x1148,
886 0x1180, 0x11b4,
887 0x11fc, 0x123c,
888 0x1280, 0x173c,
889 0x1800, 0x18fc,
890 0x3000, 0x3028,
9f5ac48d 891 0x3068, 0x30d8,
812034f1
HS
892 0x30e0, 0x30fc,
893 0x3140, 0x357c,
894 0x35a8, 0x35cc,
895 0x35ec, 0x35ec,
896 0x3600, 0x5624,
897 0x56cc, 0x575c,
898 0x580c, 0x5814,
899 0x5890, 0x58bc,
900 0x5940, 0x59dc,
901 0x59fc, 0x5a18,
902 0x5a60, 0x5a9c,
9f5ac48d 903 0x5b94, 0x5bfc,
812034f1
HS
904 0x6000, 0x6040,
905 0x6058, 0x614c,
906 0x7700, 0x7798,
907 0x77c0, 0x78fc,
908 0x7b00, 0x7c54,
909 0x7d00, 0x7efc,
910 0x8dc0, 0x8de0,
911 0x8df8, 0x8e84,
912 0x8ea0, 0x8f84,
913 0x8fc0, 0x90f8,
914 0x9400, 0x9470,
915 0x9600, 0x96f4,
916 0x9800, 0x9808,
917 0x9820, 0x983c,
918 0x9850, 0x9864,
919 0x9c00, 0x9c6c,
920 0x9c80, 0x9cec,
921 0x9d00, 0x9d6c,
922 0x9d80, 0x9dec,
923 0x9e00, 0x9e6c,
924 0x9e80, 0x9eec,
925 0x9f00, 0x9f6c,
926 0x9f80, 0xa020,
927 0xd004, 0xd03c,
928 0xdfc0, 0xdfe0,
929 0xe000, 0x11088,
930 0x1109c, 0x11110,
931 0x11118, 0x1117c,
932 0x11190, 0x11204,
933 0x19040, 0x1906c,
934 0x19078, 0x19080,
935 0x1908c, 0x19124,
936 0x19150, 0x191b0,
937 0x191d0, 0x191e8,
938 0x19238, 0x19290,
939 0x193f8, 0x19474,
940 0x19490, 0x194cc,
941 0x194f0, 0x194f8,
942 0x19c00, 0x19c60,
943 0x19c94, 0x19e10,
944 0x19e50, 0x19f34,
945 0x19f40, 0x19f50,
946 0x19f90, 0x19fe4,
947 0x1a000, 0x1a06c,
948 0x1a0b0, 0x1a120,
949 0x1a128, 0x1a138,
950 0x1a190, 0x1a1c4,
951 0x1a1fc, 0x1a1fc,
952 0x1e008, 0x1e00c,
953 0x1e040, 0x1e04c,
954 0x1e284, 0x1e290,
955 0x1e2c0, 0x1e2c0,
956 0x1e2e0, 0x1e2e0,
957 0x1e300, 0x1e384,
958 0x1e3c0, 0x1e3c8,
959 0x1e408, 0x1e40c,
960 0x1e440, 0x1e44c,
961 0x1e684, 0x1e690,
962 0x1e6c0, 0x1e6c0,
963 0x1e6e0, 0x1e6e0,
964 0x1e700, 0x1e784,
965 0x1e7c0, 0x1e7c8,
966 0x1e808, 0x1e80c,
967 0x1e840, 0x1e84c,
968 0x1ea84, 0x1ea90,
969 0x1eac0, 0x1eac0,
970 0x1eae0, 0x1eae0,
971 0x1eb00, 0x1eb84,
972 0x1ebc0, 0x1ebc8,
973 0x1ec08, 0x1ec0c,
974 0x1ec40, 0x1ec4c,
975 0x1ee84, 0x1ee90,
976 0x1eec0, 0x1eec0,
977 0x1eee0, 0x1eee0,
978 0x1ef00, 0x1ef84,
979 0x1efc0, 0x1efc8,
980 0x1f008, 0x1f00c,
981 0x1f040, 0x1f04c,
982 0x1f284, 0x1f290,
983 0x1f2c0, 0x1f2c0,
984 0x1f2e0, 0x1f2e0,
985 0x1f300, 0x1f384,
986 0x1f3c0, 0x1f3c8,
987 0x1f408, 0x1f40c,
988 0x1f440, 0x1f44c,
989 0x1f684, 0x1f690,
990 0x1f6c0, 0x1f6c0,
991 0x1f6e0, 0x1f6e0,
992 0x1f700, 0x1f784,
993 0x1f7c0, 0x1f7c8,
994 0x1f808, 0x1f80c,
995 0x1f840, 0x1f84c,
996 0x1fa84, 0x1fa90,
997 0x1fac0, 0x1fac0,
998 0x1fae0, 0x1fae0,
999 0x1fb00, 0x1fb84,
1000 0x1fbc0, 0x1fbc8,
1001 0x1fc08, 0x1fc0c,
1002 0x1fc40, 0x1fc4c,
1003 0x1fe84, 0x1fe90,
1004 0x1fec0, 0x1fec0,
1005 0x1fee0, 0x1fee0,
1006 0x1ff00, 0x1ff84,
1007 0x1ffc0, 0x1ffc8,
1008 0x30000, 0x30030,
1009 0x30100, 0x30144,
1010 0x30190, 0x301d0,
1011 0x30200, 0x30318,
1012 0x30400, 0x3052c,
1013 0x30540, 0x3061c,
1014 0x30800, 0x30834,
1015 0x308c0, 0x30908,
1016 0x30910, 0x309ac,
9f5ac48d 1017 0x30a00, 0x30a2c,
812034f1
HS
1018 0x30a44, 0x30a50,
1019 0x30a74, 0x30c24,
9f5ac48d 1020 0x30d00, 0x30d00,
812034f1
HS
1021 0x30d08, 0x30d14,
1022 0x30d1c, 0x30d20,
1023 0x30d3c, 0x30d50,
1024 0x31200, 0x3120c,
1025 0x31220, 0x31220,
1026 0x31240, 0x31240,
9f5ac48d 1027 0x31600, 0x3160c,
812034f1 1028 0x31a00, 0x31a1c,
9f5ac48d 1029 0x31e00, 0x31e20,
812034f1
HS
1030 0x31e38, 0x31e3c,
1031 0x31e80, 0x31e80,
1032 0x31e88, 0x31ea8,
1033 0x31eb0, 0x31eb4,
1034 0x31ec8, 0x31ed4,
1035 0x31fb8, 0x32004,
9f5ac48d
HS
1036 0x32200, 0x32200,
1037 0x32208, 0x32240,
1038 0x32248, 0x32280,
1039 0x32288, 0x322c0,
1040 0x322c8, 0x322fc,
812034f1
HS
1041 0x32600, 0x32630,
1042 0x32a00, 0x32abc,
1043 0x32b00, 0x32b70,
1044 0x33000, 0x33048,
1045 0x33060, 0x3309c,
1046 0x330f0, 0x33148,
1047 0x33160, 0x3319c,
1048 0x331f0, 0x332e4,
1049 0x332f8, 0x333e4,
1050 0x333f8, 0x33448,
1051 0x33460, 0x3349c,
1052 0x334f0, 0x33548,
1053 0x33560, 0x3359c,
1054 0x335f0, 0x336e4,
1055 0x336f8, 0x337e4,
1056 0x337f8, 0x337fc,
1057 0x33814, 0x33814,
1058 0x3382c, 0x3382c,
1059 0x33880, 0x3388c,
1060 0x338e8, 0x338ec,
1061 0x33900, 0x33948,
1062 0x33960, 0x3399c,
1063 0x339f0, 0x33ae4,
1064 0x33af8, 0x33b10,
1065 0x33b28, 0x33b28,
1066 0x33b3c, 0x33b50,
1067 0x33bf0, 0x33c10,
1068 0x33c28, 0x33c28,
1069 0x33c3c, 0x33c50,
1070 0x33cf0, 0x33cfc,
1071 0x34000, 0x34030,
1072 0x34100, 0x34144,
1073 0x34190, 0x341d0,
1074 0x34200, 0x34318,
1075 0x34400, 0x3452c,
1076 0x34540, 0x3461c,
1077 0x34800, 0x34834,
1078 0x348c0, 0x34908,
1079 0x34910, 0x349ac,
9f5ac48d 1080 0x34a00, 0x34a2c,
812034f1
HS
1081 0x34a44, 0x34a50,
1082 0x34a74, 0x34c24,
9f5ac48d 1083 0x34d00, 0x34d00,
812034f1
HS
1084 0x34d08, 0x34d14,
1085 0x34d1c, 0x34d20,
1086 0x34d3c, 0x34d50,
1087 0x35200, 0x3520c,
1088 0x35220, 0x35220,
1089 0x35240, 0x35240,
9f5ac48d 1090 0x35600, 0x3560c,
812034f1 1091 0x35a00, 0x35a1c,
9f5ac48d 1092 0x35e00, 0x35e20,
812034f1
HS
1093 0x35e38, 0x35e3c,
1094 0x35e80, 0x35e80,
1095 0x35e88, 0x35ea8,
1096 0x35eb0, 0x35eb4,
1097 0x35ec8, 0x35ed4,
1098 0x35fb8, 0x36004,
9f5ac48d
HS
1099 0x36200, 0x36200,
1100 0x36208, 0x36240,
1101 0x36248, 0x36280,
1102 0x36288, 0x362c0,
1103 0x362c8, 0x362fc,
812034f1
HS
1104 0x36600, 0x36630,
1105 0x36a00, 0x36abc,
1106 0x36b00, 0x36b70,
1107 0x37000, 0x37048,
1108 0x37060, 0x3709c,
1109 0x370f0, 0x37148,
1110 0x37160, 0x3719c,
1111 0x371f0, 0x372e4,
1112 0x372f8, 0x373e4,
1113 0x373f8, 0x37448,
1114 0x37460, 0x3749c,
1115 0x374f0, 0x37548,
1116 0x37560, 0x3759c,
1117 0x375f0, 0x376e4,
1118 0x376f8, 0x377e4,
1119 0x377f8, 0x377fc,
1120 0x37814, 0x37814,
1121 0x3782c, 0x3782c,
1122 0x37880, 0x3788c,
1123 0x378e8, 0x378ec,
1124 0x37900, 0x37948,
1125 0x37960, 0x3799c,
1126 0x379f0, 0x37ae4,
1127 0x37af8, 0x37b10,
1128 0x37b28, 0x37b28,
1129 0x37b3c, 0x37b50,
1130 0x37bf0, 0x37c10,
1131 0x37c28, 0x37c28,
1132 0x37c3c, 0x37c50,
1133 0x37cf0, 0x37cfc,
1134 0x38000, 0x38030,
1135 0x38100, 0x38144,
1136 0x38190, 0x381d0,
1137 0x38200, 0x38318,
1138 0x38400, 0x3852c,
1139 0x38540, 0x3861c,
1140 0x38800, 0x38834,
1141 0x388c0, 0x38908,
1142 0x38910, 0x389ac,
9f5ac48d 1143 0x38a00, 0x38a2c,
812034f1
HS
1144 0x38a44, 0x38a50,
1145 0x38a74, 0x38c24,
9f5ac48d 1146 0x38d00, 0x38d00,
812034f1
HS
1147 0x38d08, 0x38d14,
1148 0x38d1c, 0x38d20,
1149 0x38d3c, 0x38d50,
1150 0x39200, 0x3920c,
1151 0x39220, 0x39220,
1152 0x39240, 0x39240,
9f5ac48d 1153 0x39600, 0x3960c,
812034f1 1154 0x39a00, 0x39a1c,
9f5ac48d 1155 0x39e00, 0x39e20,
812034f1
HS
1156 0x39e38, 0x39e3c,
1157 0x39e80, 0x39e80,
1158 0x39e88, 0x39ea8,
1159 0x39eb0, 0x39eb4,
1160 0x39ec8, 0x39ed4,
1161 0x39fb8, 0x3a004,
9f5ac48d
HS
1162 0x3a200, 0x3a200,
1163 0x3a208, 0x3a240,
1164 0x3a248, 0x3a280,
1165 0x3a288, 0x3a2c0,
1166 0x3a2c8, 0x3a2fc,
812034f1
HS
1167 0x3a600, 0x3a630,
1168 0x3aa00, 0x3aabc,
1169 0x3ab00, 0x3ab70,
1170 0x3b000, 0x3b048,
1171 0x3b060, 0x3b09c,
1172 0x3b0f0, 0x3b148,
1173 0x3b160, 0x3b19c,
1174 0x3b1f0, 0x3b2e4,
1175 0x3b2f8, 0x3b3e4,
1176 0x3b3f8, 0x3b448,
1177 0x3b460, 0x3b49c,
1178 0x3b4f0, 0x3b548,
1179 0x3b560, 0x3b59c,
1180 0x3b5f0, 0x3b6e4,
1181 0x3b6f8, 0x3b7e4,
1182 0x3b7f8, 0x3b7fc,
1183 0x3b814, 0x3b814,
1184 0x3b82c, 0x3b82c,
1185 0x3b880, 0x3b88c,
1186 0x3b8e8, 0x3b8ec,
1187 0x3b900, 0x3b948,
1188 0x3b960, 0x3b99c,
1189 0x3b9f0, 0x3bae4,
1190 0x3baf8, 0x3bb10,
1191 0x3bb28, 0x3bb28,
1192 0x3bb3c, 0x3bb50,
1193 0x3bbf0, 0x3bc10,
1194 0x3bc28, 0x3bc28,
1195 0x3bc3c, 0x3bc50,
1196 0x3bcf0, 0x3bcfc,
1197 0x3c000, 0x3c030,
1198 0x3c100, 0x3c144,
1199 0x3c190, 0x3c1d0,
1200 0x3c200, 0x3c318,
1201 0x3c400, 0x3c52c,
1202 0x3c540, 0x3c61c,
1203 0x3c800, 0x3c834,
1204 0x3c8c0, 0x3c908,
1205 0x3c910, 0x3c9ac,
9f5ac48d 1206 0x3ca00, 0x3ca2c,
812034f1
HS
1207 0x3ca44, 0x3ca50,
1208 0x3ca74, 0x3cc24,
9f5ac48d 1209 0x3cd00, 0x3cd00,
812034f1
HS
1210 0x3cd08, 0x3cd14,
1211 0x3cd1c, 0x3cd20,
1212 0x3cd3c, 0x3cd50,
1213 0x3d200, 0x3d20c,
1214 0x3d220, 0x3d220,
1215 0x3d240, 0x3d240,
9f5ac48d 1216 0x3d600, 0x3d60c,
812034f1 1217 0x3da00, 0x3da1c,
9f5ac48d 1218 0x3de00, 0x3de20,
812034f1
HS
1219 0x3de38, 0x3de3c,
1220 0x3de80, 0x3de80,
1221 0x3de88, 0x3dea8,
1222 0x3deb0, 0x3deb4,
1223 0x3dec8, 0x3ded4,
1224 0x3dfb8, 0x3e004,
9f5ac48d
HS
1225 0x3e200, 0x3e200,
1226 0x3e208, 0x3e240,
1227 0x3e248, 0x3e280,
1228 0x3e288, 0x3e2c0,
1229 0x3e2c8, 0x3e2fc,
812034f1
HS
1230 0x3e600, 0x3e630,
1231 0x3ea00, 0x3eabc,
1232 0x3eb00, 0x3eb70,
1233 0x3f000, 0x3f048,
1234 0x3f060, 0x3f09c,
1235 0x3f0f0, 0x3f148,
1236 0x3f160, 0x3f19c,
1237 0x3f1f0, 0x3f2e4,
1238 0x3f2f8, 0x3f3e4,
1239 0x3f3f8, 0x3f448,
1240 0x3f460, 0x3f49c,
1241 0x3f4f0, 0x3f548,
1242 0x3f560, 0x3f59c,
1243 0x3f5f0, 0x3f6e4,
1244 0x3f6f8, 0x3f7e4,
1245 0x3f7f8, 0x3f7fc,
1246 0x3f814, 0x3f814,
1247 0x3f82c, 0x3f82c,
1248 0x3f880, 0x3f88c,
1249 0x3f8e8, 0x3f8ec,
1250 0x3f900, 0x3f948,
1251 0x3f960, 0x3f99c,
1252 0x3f9f0, 0x3fae4,
1253 0x3faf8, 0x3fb10,
1254 0x3fb28, 0x3fb28,
1255 0x3fb3c, 0x3fb50,
1256 0x3fbf0, 0x3fc10,
1257 0x3fc28, 0x3fc28,
1258 0x3fc3c, 0x3fc50,
1259 0x3fcf0, 0x3fcfc,
1260 0x40000, 0x4000c,
1261 0x40040, 0x40068,
9f5ac48d 1262 0x4007c, 0x40144,
812034f1
HS
1263 0x40180, 0x4018c,
1264 0x40200, 0x40298,
1265 0x402ac, 0x4033c,
1266 0x403f8, 0x403fc,
1267 0x41304, 0x413c4,
1268 0x41400, 0x4141c,
1269 0x41480, 0x414d0,
1270 0x44000, 0x44078,
1271 0x440c0, 0x44278,
1272 0x442c0, 0x44478,
1273 0x444c0, 0x44678,
1274 0x446c0, 0x44878,
1275 0x448c0, 0x449fc,
1276 0x45000, 0x45068,
1277 0x45080, 0x45084,
1278 0x450a0, 0x450b0,
1279 0x45200, 0x45268,
1280 0x45280, 0x45284,
1281 0x452a0, 0x452b0,
1282 0x460c0, 0x460e4,
1283 0x47000, 0x4708c,
1284 0x47200, 0x47250,
1285 0x47400, 0x47420,
1286 0x47600, 0x47618,
1287 0x47800, 0x47814,
1288 0x48000, 0x4800c,
1289 0x48040, 0x48068,
9f5ac48d 1290 0x4807c, 0x48144,
812034f1
HS
1291 0x48180, 0x4818c,
1292 0x48200, 0x48298,
1293 0x482ac, 0x4833c,
1294 0x483f8, 0x483fc,
1295 0x49304, 0x493c4,
1296 0x49400, 0x4941c,
1297 0x49480, 0x494d0,
1298 0x4c000, 0x4c078,
1299 0x4c0c0, 0x4c278,
1300 0x4c2c0, 0x4c478,
1301 0x4c4c0, 0x4c678,
1302 0x4c6c0, 0x4c878,
1303 0x4c8c0, 0x4c9fc,
1304 0x4d000, 0x4d068,
1305 0x4d080, 0x4d084,
1306 0x4d0a0, 0x4d0b0,
1307 0x4d200, 0x4d268,
1308 0x4d280, 0x4d284,
1309 0x4d2a0, 0x4d2b0,
1310 0x4e0c0, 0x4e0e4,
1311 0x4f000, 0x4f08c,
1312 0x4f200, 0x4f250,
1313 0x4f400, 0x4f420,
1314 0x4f600, 0x4f618,
1315 0x4f800, 0x4f814,
1316 0x50000, 0x500cc,
1317 0x50400, 0x50400,
1318 0x50800, 0x508cc,
1319 0x50c00, 0x50c00,
1320 0x51000, 0x5101c,
1321 0x51300, 0x51308,
1322 };
1323
ab4b583b
HS
1324 static const unsigned int t6_reg_ranges[] = {
1325 0x1008, 0x114c,
1326 0x1180, 0x11b4,
1327 0x11fc, 0x1250,
1328 0x1280, 0x133c,
1329 0x1800, 0x18fc,
1330 0x3000, 0x302c,
1331 0x3060, 0x30d8,
1332 0x30e0, 0x30fc,
1333 0x3140, 0x357c,
1334 0x35a8, 0x35cc,
1335 0x35ec, 0x35ec,
1336 0x3600, 0x5624,
1337 0x56cc, 0x575c,
1338 0x580c, 0x5814,
1339 0x5890, 0x58bc,
1340 0x5940, 0x595c,
1341 0x5980, 0x598c,
1342 0x59b0, 0x59dc,
1343 0x59fc, 0x5a18,
1344 0x5a60, 0x5a6c,
1345 0x5a80, 0x5a9c,
1346 0x5b94, 0x5bfc,
1347 0x5c10, 0x5ec0,
1348 0x5ec8, 0x5ec8,
1349 0x6000, 0x6040,
1350 0x6058, 0x6154,
1351 0x7700, 0x7798,
1352 0x77c0, 0x7880,
1353 0x78cc, 0x78fc,
1354 0x7b00, 0x7c54,
1355 0x7d00, 0x7efc,
1356 0x8dc0, 0x8de0,
1357 0x8df8, 0x8e84,
1358 0x8ea0, 0x8f88,
1359 0x8fb8, 0x911c,
1360 0x9400, 0x9470,
1361 0x9600, 0x971c,
1362 0x9800, 0x9808,
1363 0x9820, 0x983c,
1364 0x9850, 0x9864,
1365 0x9c00, 0x9c6c,
1366 0x9c80, 0x9cec,
1367 0x9d00, 0x9d6c,
1368 0x9d80, 0x9dec,
1369 0x9e00, 0x9e6c,
1370 0x9e80, 0x9eec,
1371 0x9f00, 0x9f6c,
1372 0x9f80, 0xa020,
1373 0xd004, 0xd03c,
1374 0xdfc0, 0xdfe0,
1375 0xe000, 0xf008,
1376 0x11000, 0x11014,
1377 0x11048, 0x11110,
1378 0x11118, 0x1117c,
1379 0x11190, 0x11260,
1380 0x11300, 0x1130c,
1381 0x12000, 0x1205c,
1382 0x19040, 0x1906c,
1383 0x19078, 0x19080,
1384 0x1908c, 0x19124,
1385 0x19150, 0x191b0,
1386 0x191d0, 0x191e8,
1387 0x19238, 0x192b8,
1388 0x193f8, 0x19474,
1389 0x19490, 0x194cc,
1390 0x194f0, 0x194f8,
1391 0x19c00, 0x19c80,
1392 0x19c94, 0x19cbc,
1393 0x19ce4, 0x19d28,
1394 0x19d50, 0x19d78,
1395 0x19d94, 0x19dc8,
1396 0x19df0, 0x19e10,
1397 0x19e50, 0x19e6c,
1398 0x19ea0, 0x19f34,
1399 0x19f40, 0x19f50,
1400 0x19f90, 0x19fac,
1401 0x19fc4, 0x19fe4,
1402 0x1a000, 0x1a06c,
1403 0x1a0b0, 0x1a120,
1404 0x1a128, 0x1a138,
1405 0x1a190, 0x1a1c4,
1406 0x1a1fc, 0x1a1fc,
1407 0x1e008, 0x1e00c,
1408 0x1e040, 0x1e04c,
1409 0x1e284, 0x1e290,
1410 0x1e2c0, 0x1e2c0,
1411 0x1e2e0, 0x1e2e0,
1412 0x1e300, 0x1e384,
1413 0x1e3c0, 0x1e3c8,
1414 0x1e408, 0x1e40c,
1415 0x1e440, 0x1e44c,
1416 0x1e684, 0x1e690,
1417 0x1e6c0, 0x1e6c0,
1418 0x1e6e0, 0x1e6e0,
1419 0x1e700, 0x1e784,
1420 0x1e7c0, 0x1e7c8,
1421 0x1e808, 0x1e80c,
1422 0x1e840, 0x1e84c,
1423 0x1ea84, 0x1ea90,
1424 0x1eac0, 0x1eac0,
1425 0x1eae0, 0x1eae0,
1426 0x1eb00, 0x1eb84,
1427 0x1ebc0, 0x1ebc8,
1428 0x1ec08, 0x1ec0c,
1429 0x1ec40, 0x1ec4c,
1430 0x1ee84, 0x1ee90,
1431 0x1eec0, 0x1eec0,
1432 0x1eee0, 0x1eee0,
1433 0x1ef00, 0x1ef84,
1434 0x1efc0, 0x1efc8,
1435 0x1f008, 0x1f00c,
1436 0x1f040, 0x1f04c,
1437 0x1f284, 0x1f290,
1438 0x1f2c0, 0x1f2c0,
1439 0x1f2e0, 0x1f2e0,
1440 0x1f300, 0x1f384,
1441 0x1f3c0, 0x1f3c8,
1442 0x1f408, 0x1f40c,
1443 0x1f440, 0x1f44c,
1444 0x1f684, 0x1f690,
1445 0x1f6c0, 0x1f6c0,
1446 0x1f6e0, 0x1f6e0,
1447 0x1f700, 0x1f784,
1448 0x1f7c0, 0x1f7c8,
1449 0x1f808, 0x1f80c,
1450 0x1f840, 0x1f84c,
1451 0x1fa84, 0x1fa90,
1452 0x1fac0, 0x1fac0,
1453 0x1fae0, 0x1fae0,
1454 0x1fb00, 0x1fb84,
1455 0x1fbc0, 0x1fbc8,
1456 0x1fc08, 0x1fc0c,
1457 0x1fc40, 0x1fc4c,
1458 0x1fe84, 0x1fe90,
1459 0x1fec0, 0x1fec0,
1460 0x1fee0, 0x1fee0,
1461 0x1ff00, 0x1ff84,
1462 0x1ffc0, 0x1ffc8,
1463 0x30000, 0x30070,
1464 0x30100, 0x3015c,
1465 0x30190, 0x301d0,
1466 0x30200, 0x30318,
1467 0x30400, 0x3052c,
1468 0x30540, 0x3061c,
1469 0x30800, 0x3088c,
1470 0x308c0, 0x30908,
1471 0x30910, 0x309b8,
1472 0x30a00, 0x30a04,
1473 0x30a0c, 0x30a2c,
1474 0x30a44, 0x30a50,
1475 0x30a74, 0x30c24,
1476 0x30d00, 0x30d3c,
1477 0x30d44, 0x30d7c,
1478 0x30de0, 0x30de0,
1479 0x30e00, 0x30ed4,
1480 0x30f00, 0x30fa4,
1481 0x30fc0, 0x30fc4,
1482 0x31000, 0x31004,
1483 0x31080, 0x310fc,
1484 0x31208, 0x31220,
1485 0x3123c, 0x31254,
1486 0x31300, 0x31300,
1487 0x31308, 0x3131c,
1488 0x31338, 0x3133c,
1489 0x31380, 0x31380,
1490 0x31388, 0x313a8,
1491 0x313b4, 0x313b4,
1492 0x31400, 0x31420,
1493 0x31438, 0x3143c,
1494 0x31480, 0x31480,
1495 0x314a8, 0x314a8,
1496 0x314b0, 0x314b4,
1497 0x314c8, 0x314d4,
1498 0x31a40, 0x31a4c,
1499 0x31af0, 0x31b20,
1500 0x31b38, 0x31b3c,
1501 0x31b80, 0x31b80,
1502 0x31ba8, 0x31ba8,
1503 0x31bb0, 0x31bb4,
1504 0x31bc8, 0x31bd4,
1505 0x32140, 0x3218c,
1506 0x321f0, 0x32200,
1507 0x32218, 0x32218,
1508 0x32400, 0x32400,
1509 0x32408, 0x3241c,
1510 0x32618, 0x32620,
1511 0x32664, 0x32664,
1512 0x326a8, 0x326a8,
1513 0x326ec, 0x326ec,
1514 0x32a00, 0x32abc,
1515 0x32b00, 0x32b78,
1516 0x32c00, 0x32c00,
1517 0x32c08, 0x32c3c,
1518 0x32e00, 0x32e2c,
1519 0x32f00, 0x32f2c,
1520 0x33000, 0x330ac,
1521 0x330c0, 0x331ac,
1522 0x331c0, 0x332c4,
1523 0x332e4, 0x333c4,
1524 0x333e4, 0x334ac,
1525 0x334c0, 0x335ac,
1526 0x335c0, 0x336c4,
1527 0x336e4, 0x337c4,
1528 0x337e4, 0x337fc,
1529 0x33814, 0x33814,
1530 0x33854, 0x33868,
1531 0x33880, 0x3388c,
1532 0x338c0, 0x338d0,
1533 0x338e8, 0x338ec,
1534 0x33900, 0x339ac,
1535 0x339c0, 0x33ac4,
1536 0x33ae4, 0x33b10,
1537 0x33b24, 0x33b50,
1538 0x33bf0, 0x33c10,
1539 0x33c24, 0x33c50,
1540 0x33cf0, 0x33cfc,
1541 0x34000, 0x34070,
1542 0x34100, 0x3415c,
1543 0x34190, 0x341d0,
1544 0x34200, 0x34318,
1545 0x34400, 0x3452c,
1546 0x34540, 0x3461c,
1547 0x34800, 0x3488c,
1548 0x348c0, 0x34908,
1549 0x34910, 0x349b8,
1550 0x34a00, 0x34a04,
1551 0x34a0c, 0x34a2c,
1552 0x34a44, 0x34a50,
1553 0x34a74, 0x34c24,
1554 0x34d00, 0x34d3c,
1555 0x34d44, 0x34d7c,
1556 0x34de0, 0x34de0,
1557 0x34e00, 0x34ed4,
1558 0x34f00, 0x34fa4,
1559 0x34fc0, 0x34fc4,
1560 0x35000, 0x35004,
1561 0x35080, 0x350fc,
1562 0x35208, 0x35220,
1563 0x3523c, 0x35254,
1564 0x35300, 0x35300,
1565 0x35308, 0x3531c,
1566 0x35338, 0x3533c,
1567 0x35380, 0x35380,
1568 0x35388, 0x353a8,
1569 0x353b4, 0x353b4,
1570 0x35400, 0x35420,
1571 0x35438, 0x3543c,
1572 0x35480, 0x35480,
1573 0x354a8, 0x354a8,
1574 0x354b0, 0x354b4,
1575 0x354c8, 0x354d4,
1576 0x35a40, 0x35a4c,
1577 0x35af0, 0x35b20,
1578 0x35b38, 0x35b3c,
1579 0x35b80, 0x35b80,
1580 0x35ba8, 0x35ba8,
1581 0x35bb0, 0x35bb4,
1582 0x35bc8, 0x35bd4,
1583 0x36140, 0x3618c,
1584 0x361f0, 0x36200,
1585 0x36218, 0x36218,
1586 0x36400, 0x36400,
1587 0x36408, 0x3641c,
1588 0x36618, 0x36620,
1589 0x36664, 0x36664,
1590 0x366a8, 0x366a8,
1591 0x366ec, 0x366ec,
1592 0x36a00, 0x36abc,
1593 0x36b00, 0x36b78,
1594 0x36c00, 0x36c00,
1595 0x36c08, 0x36c3c,
1596 0x36e00, 0x36e2c,
1597 0x36f00, 0x36f2c,
1598 0x37000, 0x370ac,
1599 0x370c0, 0x371ac,
1600 0x371c0, 0x372c4,
1601 0x372e4, 0x373c4,
1602 0x373e4, 0x374ac,
1603 0x374c0, 0x375ac,
1604 0x375c0, 0x376c4,
1605 0x376e4, 0x377c4,
1606 0x377e4, 0x377fc,
1607 0x37814, 0x37814,
1608 0x37854, 0x37868,
1609 0x37880, 0x3788c,
1610 0x378c0, 0x378d0,
1611 0x378e8, 0x378ec,
1612 0x37900, 0x379ac,
1613 0x379c0, 0x37ac4,
1614 0x37ae4, 0x37b10,
1615 0x37b24, 0x37b50,
1616 0x37bf0, 0x37c10,
1617 0x37c24, 0x37c50,
1618 0x37cf0, 0x37cfc,
1619 0x40040, 0x40040,
1620 0x40080, 0x40084,
1621 0x40100, 0x40100,
1622 0x40140, 0x401bc,
1623 0x40200, 0x40214,
1624 0x40228, 0x40228,
1625 0x40240, 0x40258,
1626 0x40280, 0x40280,
1627 0x40304, 0x40304,
1628 0x40330, 0x4033c,
1629 0x41304, 0x413dc,
1630 0x41400, 0x4141c,
1631 0x41480, 0x414d0,
1632 0x44000, 0x4407c,
1633 0x440c0, 0x4427c,
1634 0x442c0, 0x4447c,
1635 0x444c0, 0x4467c,
1636 0x446c0, 0x4487c,
1637 0x448c0, 0x44a7c,
1638 0x44ac0, 0x44c7c,
1639 0x44cc0, 0x44e7c,
1640 0x44ec0, 0x4507c,
1641 0x450c0, 0x451fc,
1642 0x45800, 0x45868,
1643 0x45880, 0x45884,
1644 0x458a0, 0x458b0,
1645 0x45a00, 0x45a68,
1646 0x45a80, 0x45a84,
1647 0x45aa0, 0x45ab0,
1648 0x460c0, 0x460e4,
1649 0x47000, 0x4708c,
1650 0x47200, 0x47250,
1651 0x47400, 0x47420,
1652 0x47600, 0x47618,
1653 0x47800, 0x4782c,
1654 0x50000, 0x500cc,
1655 0x50400, 0x50400,
1656 0x50800, 0x508cc,
1657 0x50c00, 0x50c00,
1658 0x51000, 0x510b0,
1659 0x51300, 0x51324,
1660 };
1661
812034f1
HS
1662 u32 *buf_end = (u32 *)((char *)buf + buf_size);
1663 const unsigned int *reg_ranges;
1664 int reg_ranges_size, range;
1665 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1666
1667 /* Select the right set of register ranges to dump depending on the
1668 * adapter chip type.
1669 */
1670 switch (chip_version) {
1671 case CHELSIO_T4:
1672 reg_ranges = t4_reg_ranges;
1673 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1674 break;
1675
1676 case CHELSIO_T5:
1677 reg_ranges = t5_reg_ranges;
1678 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1679 break;
1680
ab4b583b
HS
1681 case CHELSIO_T6:
1682 reg_ranges = t6_reg_ranges;
1683 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1684 break;
1685
812034f1
HS
1686 default:
1687 dev_err(adap->pdev_dev,
1688 "Unsupported chip version %d\n", chip_version);
1689 return;
1690 }
1691
1692 /* Clear the register buffer and insert the appropriate register
1693 * values selected by the above register ranges.
1694 */
1695 memset(buf, 0, buf_size);
1696 for (range = 0; range < reg_ranges_size; range += 2) {
1697 unsigned int reg = reg_ranges[range];
1698 unsigned int last_reg = reg_ranges[range + 1];
1699 u32 *bufp = (u32 *)((char *)buf + reg);
1700
1701 /* Iterate across the register range filling in the register
1702 * buffer but don't write past the end of the register buffer.
1703 */
1704 while (reg <= last_reg && bufp < buf_end) {
1705 *bufp++ = t4_read_reg(adap, reg);
1706 reg += sizeof(u32);
1707 }
1708 }
1709}
1710
56d36be4 1711#define EEPROM_STAT_ADDR 0x7bfc
47ce9c48
SR
1712#define VPD_BASE 0x400
1713#define VPD_BASE_OLD 0
0a57a536 1714#define VPD_LEN 1024
63a92fe6 1715#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
1716
1717/**
1718 * t4_seeprom_wp - enable/disable EEPROM write protection
1719 * @adapter: the adapter
1720 * @enable: whether to enable or disable write protection
1721 *
1722 * Enables or disables write protection on the serial EEPROM.
1723 */
1724int t4_seeprom_wp(struct adapter *adapter, bool enable)
1725{
1726 unsigned int v = enable ? 0xc : 0;
1727 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1728 return ret < 0 ? ret : 0;
1729}
1730
1731/**
098ef6c2 1732 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
56d36be4
DM
1733 * @adapter: adapter to read
1734 * @p: where to store the parameters
1735 *
1736 * Reads card parameters stored in VPD EEPROM.
1737 */
098ef6c2 1738int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 1739{
098ef6c2
HS
1740 int i, ret = 0, addr;
1741 int ec, sn, pn, na;
8c357ebd 1742 u8 *vpd, csum;
23d88e1d 1743 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 1744
8c357ebd
VP
1745 vpd = vmalloc(VPD_LEN);
1746 if (!vpd)
1747 return -ENOMEM;
1748
098ef6c2
HS
1749 /* Card information normally starts at VPD_BASE but early cards had
1750 * it at 0.
1751 */
47ce9c48
SR
1752 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1753 if (ret < 0)
1754 goto out;
63a92fe6
HS
1755
1756 /* The VPD shall have a unique identifier specified by the PCI SIG.
1757 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1758 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1759 * is expected to automatically put this entry at the
1760 * beginning of the VPD.
1761 */
1762 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
1763
1764 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 1765 if (ret < 0)
8c357ebd 1766 goto out;
56d36be4 1767
23d88e1d
DM
1768 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1769 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
1770 ret = -EINVAL;
1771 goto out;
23d88e1d
DM
1772 }
1773
1774 id_len = pci_vpd_lrdt_size(vpd);
1775 if (id_len > ID_LEN)
1776 id_len = ID_LEN;
1777
1778 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1779 if (i < 0) {
1780 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
1781 ret = -EINVAL;
1782 goto out;
23d88e1d
DM
1783 }
1784
1785 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1786 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1787 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 1788 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
1789 ret = -EINVAL;
1790 goto out;
226ec5fd
DM
1791 }
1792
1793#define FIND_VPD_KW(var, name) do { \
23d88e1d 1794 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
1795 if (var < 0) { \
1796 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
1797 ret = -EINVAL; \
1798 goto out; \
226ec5fd
DM
1799 } \
1800 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1801} while (0)
1802
1803 FIND_VPD_KW(i, "RV");
1804 for (csum = 0; i >= 0; i--)
1805 csum += vpd[i];
56d36be4
DM
1806
1807 if (csum) {
1808 dev_err(adapter->pdev_dev,
1809 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
1810 ret = -EINVAL;
1811 goto out;
56d36be4
DM
1812 }
1813
226ec5fd
DM
1814 FIND_VPD_KW(ec, "EC");
1815 FIND_VPD_KW(sn, "SN");
a94cd705 1816 FIND_VPD_KW(pn, "PN");
098ef6c2 1817 FIND_VPD_KW(na, "NA");
226ec5fd
DM
1818#undef FIND_VPD_KW
1819
23d88e1d 1820 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 1821 strim(p->id);
226ec5fd 1822 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 1823 strim(p->ec);
226ec5fd
DM
1824 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1825 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 1826 strim(p->sn);
63a92fe6 1827 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
1828 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1829 strim(p->pn);
098ef6c2
HS
1830 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
1831 strim((char *)p->na);
636f9d37 1832
098ef6c2
HS
1833out:
1834 vfree(vpd);
1835 return ret;
1836}
1837
1838/**
1839 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
1840 * @adapter: adapter to read
1841 * @p: where to store the parameters
1842 *
1843 * Reads card parameters stored in VPD EEPROM and retrieves the Core
1844 * Clock. This can only be called after a connection to the firmware
1845 * is established.
1846 */
1847int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
1848{
1849 u32 cclk_param, cclk_val;
1850 int ret;
1851
1852 /* Grab the raw VPD parameters.
1853 */
1854 ret = t4_get_raw_vpd_params(adapter, p);
1855 if (ret)
1856 return ret;
1857
1858 /* Ask firmware for the Core Clock since it knows how to translate the
636f9d37
VP
1859 * Reference Clock ('V2') VPD field into a Core Clock value ...
1860 */
5167865a
HS
1861 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1862 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
098ef6c2 1863 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
636f9d37 1864 1, &cclk_param, &cclk_val);
8c357ebd 1865
636f9d37
VP
1866 if (ret)
1867 return ret;
1868 p->cclk = cclk_val;
1869
56d36be4
DM
1870 return 0;
1871}
1872
1873/* serial flash and firmware constants */
1874enum {
1875 SF_ATTEMPTS = 10, /* max retries for SF operations */
1876
1877 /* flash command opcodes */
1878 SF_PROG_PAGE = 2, /* program page */
1879 SF_WR_DISABLE = 4, /* disable writes */
1880 SF_RD_STATUS = 5, /* read status register */
1881 SF_WR_ENABLE = 6, /* enable writes */
1882 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 1883 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
1884 SF_ERASE_SECTOR = 0xd8, /* erase sector */
1885
6f1d7210 1886 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
1887};
1888
1889/**
1890 * sf1_read - read data from the serial flash
1891 * @adapter: the adapter
1892 * @byte_cnt: number of bytes to read
1893 * @cont: whether another operation will be chained
1894 * @lock: whether to lock SF for PL access only
1895 * @valp: where to store the read data
1896 *
1897 * Reads up to 4 bytes of data from the serial flash. The location of
1898 * the read needs to be specified prior to calling this by issuing the
1899 * appropriate commands to the serial flash.
1900 */
1901static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1902 int lock, u32 *valp)
1903{
1904 int ret;
1905
1906 if (!byte_cnt || byte_cnt > 4)
1907 return -EINVAL;
0d804338 1908 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 1909 return -EBUSY;
0d804338
HS
1910 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1911 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1912 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 1913 if (!ret)
0d804338 1914 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
1915 return ret;
1916}
1917
1918/**
1919 * sf1_write - write data to the serial flash
1920 * @adapter: the adapter
1921 * @byte_cnt: number of bytes to write
1922 * @cont: whether another operation will be chained
1923 * @lock: whether to lock SF for PL access only
1924 * @val: value to write
1925 *
1926 * Writes up to 4 bytes of data to the serial flash. The location of
1927 * the write needs to be specified prior to calling this by issuing the
1928 * appropriate commands to the serial flash.
1929 */
1930static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1931 int lock, u32 val)
1932{
1933 if (!byte_cnt || byte_cnt > 4)
1934 return -EINVAL;
0d804338 1935 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 1936 return -EBUSY;
0d804338
HS
1937 t4_write_reg(adapter, SF_DATA_A, val);
1938 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1939 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1940 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
1941}
1942
1943/**
1944 * flash_wait_op - wait for a flash operation to complete
1945 * @adapter: the adapter
1946 * @attempts: max number of polls of the status register
1947 * @delay: delay between polls in ms
1948 *
1949 * Wait for a flash operation to complete by polling the status register.
1950 */
1951static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1952{
1953 int ret;
1954 u32 status;
1955
1956 while (1) {
1957 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1958 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1959 return ret;
1960 if (!(status & 1))
1961 return 0;
1962 if (--attempts == 0)
1963 return -EAGAIN;
1964 if (delay)
1965 msleep(delay);
1966 }
1967}
1968
1969/**
1970 * t4_read_flash - read words from serial flash
1971 * @adapter: the adapter
1972 * @addr: the start address for the read
1973 * @nwords: how many 32-bit words to read
1974 * @data: where to store the read data
1975 * @byte_oriented: whether to store data as bytes or as words
1976 *
1977 * Read the specified number of 32-bit words from the serial flash.
1978 * If @byte_oriented is set the read data is stored as a byte array
1979 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 1980 * natural endianness.
56d36be4 1981 */
49216c1c
HS
1982int t4_read_flash(struct adapter *adapter, unsigned int addr,
1983 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
1984{
1985 int ret;
1986
900a6596 1987 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
1988 return -EINVAL;
1989
1990 addr = swab32(addr) | SF_RD_DATA_FAST;
1991
1992 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
1993 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
1994 return ret;
1995
1996 for ( ; nwords; nwords--, data++) {
1997 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
1998 if (nwords == 1)
0d804338 1999 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2000 if (ret)
2001 return ret;
2002 if (byte_oriented)
f404f80c 2003 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
2004 }
2005 return 0;
2006}
2007
2008/**
2009 * t4_write_flash - write up to a page of data to the serial flash
2010 * @adapter: the adapter
2011 * @addr: the start address to write
2012 * @n: length of data to write in bytes
2013 * @data: the data to write
2014 *
2015 * Writes up to a page of data (256 bytes) to the serial flash starting
2016 * at the given address. All the data must be written to the same page.
2017 */
2018static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2019 unsigned int n, const u8 *data)
2020{
2021 int ret;
2022 u32 buf[64];
2023 unsigned int i, c, left, val, offset = addr & 0xff;
2024
900a6596 2025 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
2026 return -EINVAL;
2027
2028 val = swab32(addr) | SF_PROG_PAGE;
2029
2030 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2031 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2032 goto unlock;
2033
2034 for (left = n; left; left -= c) {
2035 c = min(left, 4U);
2036 for (val = 0, i = 0; i < c; ++i)
2037 val = (val << 8) + *data++;
2038
2039 ret = sf1_write(adapter, c, c != left, 1, val);
2040 if (ret)
2041 goto unlock;
2042 }
900a6596 2043 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
2044 if (ret)
2045 goto unlock;
2046
0d804338 2047 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2048
2049 /* Read the page to verify the write succeeded */
2050 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2051 if (ret)
2052 return ret;
2053
2054 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2055 dev_err(adapter->pdev_dev,
2056 "failed to correctly write the flash page at %#x\n",
2057 addr);
2058 return -EIO;
2059 }
2060 return 0;
2061
2062unlock:
0d804338 2063 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2064 return ret;
2065}
2066
2067/**
16e47624 2068 * t4_get_fw_version - read the firmware version
56d36be4
DM
2069 * @adapter: the adapter
2070 * @vers: where to place the version
2071 *
2072 * Reads the FW version from flash.
2073 */
16e47624 2074int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 2075{
16e47624
HS
2076 return t4_read_flash(adapter, FLASH_FW_START +
2077 offsetof(struct fw_hdr, fw_ver), 1,
2078 vers, 0);
56d36be4
DM
2079}
2080
2081/**
16e47624 2082 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
2083 * @adapter: the adapter
2084 * @vers: where to place the version
2085 *
2086 * Reads the TP microcode version from flash.
2087 */
16e47624 2088int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 2089{
16e47624 2090 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 2091 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
2092 1, vers, 0);
2093}
2094
ba3f8cd5
HS
2095/**
2096 * t4_get_exprom_version - return the Expansion ROM version (if any)
2097 * @adapter: the adapter
2098 * @vers: where to place the version
2099 *
2100 * Reads the Expansion ROM header from FLASH and returns the version
2101 * number (if present) through the @vers return value pointer. We return
2102 * this in the Firmware Version Format since it's convenient. Return
2103 * 0 on success, -ENOENT if no Expansion ROM is present.
2104 */
2105int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2106{
2107 struct exprom_header {
2108 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2109 unsigned char hdr_ver[4]; /* Expansion ROM version */
2110 } *hdr;
2111 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2112 sizeof(u32))];
2113 int ret;
2114
2115 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2116 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2117 0);
2118 if (ret)
2119 return ret;
2120
2121 hdr = (struct exprom_header *)exprom_header_buf;
2122 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2123 return -ENOENT;
2124
2125 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2126 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2127 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2128 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2129 return 0;
2130}
2131
16e47624
HS
2132/* Is the given firmware API compatible with the one the driver was compiled
2133 * with?
56d36be4 2134 */
16e47624 2135static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 2136{
56d36be4 2137
16e47624
HS
2138 /* short circuit if it's the exact same firmware version */
2139 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2140 return 1;
56d36be4 2141
16e47624
HS
2142#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2143 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2144 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2145 return 1;
2146#undef SAME_INTF
0a57a536 2147
16e47624
HS
2148 return 0;
2149}
56d36be4 2150
16e47624
HS
2151/* The firmware in the filesystem is usable, but should it be installed?
2152 * This routine explains itself in detail if it indicates the filesystem
2153 * firmware should be installed.
2154 */
2155static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
2156 int k, int c)
2157{
2158 const char *reason;
2159
2160 if (!card_fw_usable) {
2161 reason = "incompatible or unusable";
2162 goto install;
e69972f5
JH
2163 }
2164
16e47624
HS
2165 if (k > c) {
2166 reason = "older than the version supported with this driver";
2167 goto install;
56d36be4
DM
2168 }
2169
16e47624
HS
2170 return 0;
2171
2172install:
2173 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
2174 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
2175 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2176 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2177 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2178 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 2179
56d36be4
DM
2180 return 1;
2181}
2182
16e47624
HS
2183int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
2184 const u8 *fw_data, unsigned int fw_size,
2185 struct fw_hdr *card_fw, enum dev_state state,
2186 int *reset)
2187{
2188 int ret, card_fw_usable, fs_fw_usable;
2189 const struct fw_hdr *fs_fw;
2190 const struct fw_hdr *drv_fw;
2191
2192 drv_fw = &fw_info->fw_hdr;
2193
2194 /* Read the header of the firmware on the card */
2195 ret = -t4_read_flash(adap, FLASH_FW_START,
2196 sizeof(*card_fw) / sizeof(uint32_t),
2197 (uint32_t *)card_fw, 1);
2198 if (ret == 0) {
2199 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2200 } else {
2201 dev_err(adap->pdev_dev,
2202 "Unable to read card's firmware header: %d\n", ret);
2203 card_fw_usable = 0;
2204 }
2205
2206 if (fw_data != NULL) {
2207 fs_fw = (const void *)fw_data;
2208 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2209 } else {
2210 fs_fw = NULL;
2211 fs_fw_usable = 0;
2212 }
2213
2214 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2215 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2216 /* Common case: the firmware on the card is an exact match and
2217 * the filesystem one is an exact match too, or the filesystem
2218 * one is absent/incompatible.
2219 */
2220 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
2221 should_install_fs_fw(adap, card_fw_usable,
2222 be32_to_cpu(fs_fw->fw_ver),
2223 be32_to_cpu(card_fw->fw_ver))) {
2224 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
2225 fw_size, 0);
2226 if (ret != 0) {
2227 dev_err(adap->pdev_dev,
2228 "failed to install firmware: %d\n", ret);
2229 goto bye;
2230 }
2231
2232 /* Installed successfully, update the cached header too. */
e3d50738 2233 *card_fw = *fs_fw;
16e47624
HS
2234 card_fw_usable = 1;
2235 *reset = 0; /* already reset as part of load_fw */
2236 }
2237
2238 if (!card_fw_usable) {
2239 uint32_t d, c, k;
2240
2241 d = be32_to_cpu(drv_fw->fw_ver);
2242 c = be32_to_cpu(card_fw->fw_ver);
2243 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2244
2245 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
2246 "chip state %d, "
2247 "driver compiled with %d.%d.%d.%d, "
2248 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2249 state,
b2e1a3f0
HS
2250 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2251 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2252 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2253 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2254 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2255 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
2256 ret = EINVAL;
2257 goto bye;
2258 }
2259
2260 /* We're using whatever's on the card and it's known to be good. */
2261 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
2262 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2263
2264bye:
2265 return ret;
2266}
2267
56d36be4
DM
2268/**
2269 * t4_flash_erase_sectors - erase a range of flash sectors
2270 * @adapter: the adapter
2271 * @start: the first sector to erase
2272 * @end: the last sector to erase
2273 *
2274 * Erases the sectors in the given inclusive range.
2275 */
2276static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
2277{
2278 int ret = 0;
2279
c0d5b8cf
HS
2280 if (end >= adapter->params.sf_nsec)
2281 return -EINVAL;
2282
56d36be4
DM
2283 while (start <= end) {
2284 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2285 (ret = sf1_write(adapter, 4, 0, 1,
2286 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 2287 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
2288 dev_err(adapter->pdev_dev,
2289 "erase of flash sector %d failed, error %d\n",
2290 start, ret);
2291 break;
2292 }
2293 start++;
2294 }
0d804338 2295 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2296 return ret;
2297}
2298
636f9d37
VP
2299/**
2300 * t4_flash_cfg_addr - return the address of the flash configuration file
2301 * @adapter: the adapter
2302 *
2303 * Return the address within the flash where the Firmware Configuration
2304 * File is stored.
2305 */
2306unsigned int t4_flash_cfg_addr(struct adapter *adapter)
2307{
2308 if (adapter->params.sf_size == 0x100000)
2309 return FLASH_FPGA_CFG_START;
2310 else
2311 return FLASH_CFG_START;
2312}
2313
79af221d
HS
2314/* Return TRUE if the specified firmware matches the adapter. I.e. T4
2315 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
2316 * and emit an error message for mismatched firmware to save our caller the
2317 * effort ...
2318 */
2319static bool t4_fw_matches_chip(const struct adapter *adap,
2320 const struct fw_hdr *hdr)
2321{
2322 /* The expression below will return FALSE for any unsupported adapter
2323 * which will keep us "honest" in the future ...
2324 */
2325 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
2326 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
2327 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
2328 return true;
2329
2330 dev_err(adap->pdev_dev,
2331 "FW image (%d) is not suitable for this adapter (%d)\n",
2332 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
2333 return false;
2334}
2335
56d36be4
DM
2336/**
2337 * t4_load_fw - download firmware
2338 * @adap: the adapter
2339 * @fw_data: the firmware image to write
2340 * @size: image size
2341 *
2342 * Write the supplied firmware image to the card's serial flash.
2343 */
2344int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
2345{
2346 u32 csum;
2347 int ret, addr;
2348 unsigned int i;
2349 u8 first_page[SF_PAGE_SIZE];
404d9e3f 2350 const __be32 *p = (const __be32 *)fw_data;
56d36be4 2351 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
2352 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
2353 unsigned int fw_img_start = adap->params.sf_fw_start;
2354 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
2355
2356 if (!size) {
2357 dev_err(adap->pdev_dev, "FW image has no data\n");
2358 return -EINVAL;
2359 }
2360 if (size & 511) {
2361 dev_err(adap->pdev_dev,
2362 "FW image size not multiple of 512 bytes\n");
2363 return -EINVAL;
2364 }
f404f80c 2365 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
2366 dev_err(adap->pdev_dev,
2367 "FW image size differs from size in FW header\n");
2368 return -EINVAL;
2369 }
2370 if (size > FW_MAX_SIZE) {
2371 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
2372 FW_MAX_SIZE);
2373 return -EFBIG;
2374 }
79af221d
HS
2375 if (!t4_fw_matches_chip(adap, hdr))
2376 return -EINVAL;
56d36be4
DM
2377
2378 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 2379 csum += be32_to_cpu(p[i]);
56d36be4
DM
2380
2381 if (csum != 0xffffffff) {
2382 dev_err(adap->pdev_dev,
2383 "corrupted firmware image, checksum %#x\n", csum);
2384 return -EINVAL;
2385 }
2386
900a6596
DM
2387 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
2388 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
2389 if (ret)
2390 goto out;
2391
2392 /*
2393 * We write the correct version at the end so the driver can see a bad
2394 * version if the FW write fails. Start by writing a copy of the
2395 * first page with a bad version.
2396 */
2397 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 2398 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 2399 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
2400 if (ret)
2401 goto out;
2402
900a6596 2403 addr = fw_img_start;
56d36be4
DM
2404 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2405 addr += SF_PAGE_SIZE;
2406 fw_data += SF_PAGE_SIZE;
2407 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2408 if (ret)
2409 goto out;
2410 }
2411
2412 ret = t4_write_flash(adap,
900a6596 2413 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
2414 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2415out:
2416 if (ret)
2417 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2418 ret);
dff04bce
HS
2419 else
2420 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
2421 return ret;
2422}
2423
01b69614
HS
2424/**
2425 * t4_phy_fw_ver - return current PHY firmware version
2426 * @adap: the adapter
2427 * @phy_fw_ver: return value buffer for PHY firmware version
2428 *
2429 * Returns the current version of external PHY firmware on the
2430 * adapter.
2431 */
2432int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
2433{
2434 u32 param, val;
2435 int ret;
2436
2437 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2438 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2439 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2440 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 2441 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
2442 &param, &val);
2443 if (ret < 0)
2444 return ret;
2445 *phy_fw_ver = val;
2446 return 0;
2447}
2448
2449/**
2450 * t4_load_phy_fw - download port PHY firmware
2451 * @adap: the adapter
2452 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
2453 * @win_lock: the lock to use to guard the memory copy
2454 * @phy_fw_version: function to check PHY firmware versions
2455 * @phy_fw_data: the PHY firmware image to write
2456 * @phy_fw_size: image size
2457 *
2458 * Transfer the specified PHY firmware to the adapter. If a non-NULL
2459 * @phy_fw_version is supplied, then it will be used to determine if
2460 * it's necessary to perform the transfer by comparing the version
2461 * of any existing adapter PHY firmware with that of the passed in
2462 * PHY firmware image. If @win_lock is non-NULL then it will be used
2463 * around the call to t4_memory_rw() which transfers the PHY firmware
2464 * to the adapter.
2465 *
2466 * A negative error number will be returned if an error occurs. If
2467 * version number support is available and there's no need to upgrade
2468 * the firmware, 0 will be returned. If firmware is successfully
2469 * transferred to the adapter, 1 will be retured.
2470 *
2471 * NOTE: some adapters only have local RAM to store the PHY firmware. As
2472 * a result, a RESET of the adapter would cause that RAM to lose its
2473 * contents. Thus, loading PHY firmware on such adapters must happen
2474 * after any FW_RESET_CMDs ...
2475 */
2476int t4_load_phy_fw(struct adapter *adap,
2477 int win, spinlock_t *win_lock,
2478 int (*phy_fw_version)(const u8 *, size_t),
2479 const u8 *phy_fw_data, size_t phy_fw_size)
2480{
2481 unsigned long mtype = 0, maddr = 0;
2482 u32 param, val;
2483 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
2484 int ret;
2485
2486 /* If we have version number support, then check to see if the adapter
2487 * already has up-to-date PHY firmware loaded.
2488 */
2489 if (phy_fw_version) {
2490 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
2491 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2492 if (ret < 0)
2493 return ret;
2494
2495 if (cur_phy_fw_ver >= new_phy_fw_vers) {
2496 CH_WARN(adap, "PHY Firmware already up-to-date, "
2497 "version %#x\n", cur_phy_fw_ver);
2498 return 0;
2499 }
2500 }
2501
2502 /* Ask the firmware where it wants us to copy the PHY firmware image.
2503 * The size of the file requires a special version of the READ coommand
2504 * which will pass the file size via the values field in PARAMS_CMD and
2505 * retrieve the return value from firmware and place it in the same
2506 * buffer values
2507 */
2508 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2509 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2510 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2511 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2512 val = phy_fw_size;
b2612722 2513 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
2514 &param, &val, 1);
2515 if (ret < 0)
2516 return ret;
2517 mtype = val >> 8;
2518 maddr = (val & 0xff) << 16;
2519
2520 /* Copy the supplied PHY Firmware image to the adapter memory location
2521 * allocated by the adapter firmware.
2522 */
2523 if (win_lock)
2524 spin_lock_bh(win_lock);
2525 ret = t4_memory_rw(adap, win, mtype, maddr,
2526 phy_fw_size, (__be32 *)phy_fw_data,
2527 T4_MEMORY_WRITE);
2528 if (win_lock)
2529 spin_unlock_bh(win_lock);
2530 if (ret)
2531 return ret;
2532
2533 /* Tell the firmware that the PHY firmware image has been written to
2534 * RAM and it can now start copying it over to the PHYs. The chip
2535 * firmware will RESET the affected PHYs as part of this operation
2536 * leaving them running the new PHY firmware image.
2537 */
2538 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2539 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2540 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2541 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 2542 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
2543 &param, &val, 30000);
2544
2545 /* If we have version number support, then check to see that the new
2546 * firmware got loaded properly.
2547 */
2548 if (phy_fw_version) {
2549 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2550 if (ret < 0)
2551 return ret;
2552
2553 if (cur_phy_fw_ver != new_phy_fw_vers) {
2554 CH_WARN(adap, "PHY Firmware did not update: "
2555 "version on adapter %#x, "
2556 "version flashed %#x\n",
2557 cur_phy_fw_ver, new_phy_fw_vers);
2558 return -ENXIO;
2559 }
2560 }
2561
2562 return 1;
2563}
2564
49216c1c
HS
2565/**
2566 * t4_fwcache - firmware cache operation
2567 * @adap: the adapter
2568 * @op : the operation (flush or flush and invalidate)
2569 */
2570int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2571{
2572 struct fw_params_cmd c;
2573
2574 memset(&c, 0, sizeof(c));
2575 c.op_to_vfn =
2576 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2577 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 2578 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
2579 FW_PARAMS_CMD_VFN_V(0));
2580 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2581 c.param[0].mnem =
2582 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2583 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2584 c.param[0].val = (__force __be32)op;
2585
2586 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2587}
2588
26fae93f
HS
2589void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
2590{
2591 u32 cfg;
2592 int i, j, idx;
2593
2594 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2595 if (cfg & LADBGEN_F)
2596 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2597
2598 for (i = 0; i < CIM_MALA_SIZE; i++) {
2599 for (j = 0; j < 5; j++) {
2600 idx = 8 * i + j;
2601 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
2602 PILADBGRDPTR_V(idx));
2603 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
2604 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
2605 }
2606 }
2607 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2608}
2609
797ff0f5
HS
2610void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2611{
2612 unsigned int i, j;
2613
2614 for (i = 0; i < 8; i++) {
2615 u32 *p = la_buf + i;
2616
2617 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2618 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2619 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2620 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2621 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2622 }
2623}
2624
56d36be4 2625#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
72aca4bf
KS
2626 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2627 FW_PORT_CAP_ANEG)
56d36be4
DM
2628
2629/**
4036da90 2630 * t4_link_l1cfg - apply link configuration to MAC/PHY
56d36be4
DM
2631 * @phy: the PHY to setup
2632 * @mac: the MAC to setup
2633 * @lc: the requested link configuration
2634 *
2635 * Set up a port's MAC and PHY according to a desired link configuration.
2636 * - If the PHY can auto-negotiate first decide what to advertise, then
2637 * enable/disable auto-negotiation as desired, and reset.
2638 * - If the PHY does not auto-negotiate just reset it.
2639 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2640 * otherwise do it later based on the outcome of auto-negotiation.
2641 */
4036da90 2642int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
56d36be4
DM
2643 struct link_config *lc)
2644{
2645 struct fw_port_cmd c;
2b5fb1f2 2646 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
56d36be4
DM
2647
2648 lc->link_ok = 0;
2649 if (lc->requested_fc & PAUSE_RX)
2650 fc |= FW_PORT_CAP_FC_RX;
2651 if (lc->requested_fc & PAUSE_TX)
2652 fc |= FW_PORT_CAP_FC_TX;
2653
2654 memset(&c, 0, sizeof(c));
f404f80c
HS
2655 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2656 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2657 FW_PORT_CMD_PORTID_V(port));
2658 c.action_to_len16 =
2659 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2660 FW_LEN16(c));
56d36be4
DM
2661
2662 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
f404f80c
HS
2663 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2664 fc);
56d36be4
DM
2665 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2666 } else if (lc->autoneg == AUTONEG_DISABLE) {
f404f80c 2667 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
56d36be4
DM
2668 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2669 } else
f404f80c 2670 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
56d36be4
DM
2671
2672 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2673}
2674
2675/**
2676 * t4_restart_aneg - restart autonegotiation
2677 * @adap: the adapter
2678 * @mbox: mbox to use for the FW command
2679 * @port: the port id
2680 *
2681 * Restarts autonegotiation for the selected port.
2682 */
2683int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2684{
2685 struct fw_port_cmd c;
2686
2687 memset(&c, 0, sizeof(c));
f404f80c
HS
2688 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2689 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2690 FW_PORT_CMD_PORTID_V(port));
2691 c.action_to_len16 =
2692 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2693 FW_LEN16(c));
2694 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
2695 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2696}
2697
8caa1e84
VP
2698typedef void (*int_handler_t)(struct adapter *adap);
2699
56d36be4
DM
2700struct intr_info {
2701 unsigned int mask; /* bits to check in interrupt status */
2702 const char *msg; /* message to print or NULL */
2703 short stat_idx; /* stat counter to increment or -1 */
2704 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 2705 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
2706};
2707
2708/**
2709 * t4_handle_intr_status - table driven interrupt handler
2710 * @adapter: the adapter that generated the interrupt
2711 * @reg: the interrupt status register to process
2712 * @acts: table of interrupt actions
2713 *
2714 * A table driven interrupt handler that applies a set of masks to an
2715 * interrupt status word and performs the corresponding actions if the
25985edc 2716 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
2717 * optionally emitting a warning or alert message. The table is terminated
2718 * by an entry specifying mask 0. Returns the number of fatal interrupt
2719 * conditions.
2720 */
2721static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2722 const struct intr_info *acts)
2723{
2724 int fatal = 0;
2725 unsigned int mask = 0;
2726 unsigned int status = t4_read_reg(adapter, reg);
2727
2728 for ( ; acts->mask; ++acts) {
2729 if (!(status & acts->mask))
2730 continue;
2731 if (acts->fatal) {
2732 fatal++;
2733 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2734 status & acts->mask);
2735 } else if (acts->msg && printk_ratelimit())
2736 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2737 status & acts->mask);
8caa1e84
VP
2738 if (acts->int_handler)
2739 acts->int_handler(adapter);
56d36be4
DM
2740 mask |= acts->mask;
2741 }
2742 status &= mask;
2743 if (status) /* clear processed interrupts */
2744 t4_write_reg(adapter, reg, status);
2745 return fatal;
2746}
2747
2748/*
2749 * Interrupt handler for the PCIE module.
2750 */
2751static void pcie_intr_handler(struct adapter *adapter)
2752{
005b5717 2753 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
2754 { RNPP_F, "RXNP array parity error", -1, 1 },
2755 { RPCP_F, "RXPC array parity error", -1, 1 },
2756 { RCIP_F, "RXCIF array parity error", -1, 1 },
2757 { RCCP_F, "Rx completions control array parity error", -1, 1 },
2758 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
2759 { 0 }
2760 };
005b5717 2761 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
2762 { TPCP_F, "TXPC array parity error", -1, 1 },
2763 { TNPP_F, "TXNP array parity error", -1, 1 },
2764 { TFTP_F, "TXFT array parity error", -1, 1 },
2765 { TCAP_F, "TXCA array parity error", -1, 1 },
2766 { TCIP_F, "TXCIF array parity error", -1, 1 },
2767 { RCAP_F, "RXCA array parity error", -1, 1 },
2768 { OTDD_F, "outbound request TLP discarded", -1, 1 },
2769 { RDPE_F, "Rx data parity error", -1, 1 },
2770 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
2771 { 0 }
2772 };
005b5717 2773 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
2774 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2775 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2776 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2777 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2778 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2779 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2780 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2781 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2782 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2783 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2784 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2785 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2786 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2787 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2788 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2789 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2790 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2791 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2792 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2793 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2794 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2795 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2796 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2797 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2798 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2799 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2800 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2801 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
2802 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
2803 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
2804 -1, 0 },
56d36be4
DM
2805 { 0 }
2806 };
2807
0a57a536 2808 static struct intr_info t5_pcie_intr_info[] = {
f061de42 2809 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 2810 -1, 1 },
f061de42
HS
2811 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2812 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2813 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2814 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2815 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2816 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2817 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 2818 -1, 1 },
f061de42 2819 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 2820 -1, 1 },
f061de42
HS
2821 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2822 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2823 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2824 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2825 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 2826 -1, 1 },
f061de42
HS
2827 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2828 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2829 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2830 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2831 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2832 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2833 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2834 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2835 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2836 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2837 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 2838 -1, 1 },
f061de42
HS
2839 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2840 -1, 1 },
2841 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2842 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2843 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2844 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
2845 { 0 }
2846 };
2847
56d36be4
DM
2848 int fat;
2849
9bb59b96
HS
2850 if (is_t4(adapter->params.chip))
2851 fat = t4_handle_intr_status(adapter,
f061de42
HS
2852 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2853 sysbus_intr_info) +
9bb59b96 2854 t4_handle_intr_status(adapter,
f061de42
HS
2855 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2856 pcie_port_intr_info) +
2857 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
2858 pcie_intr_info);
2859 else
f061de42 2860 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 2861 t5_pcie_intr_info);
0a57a536 2862
56d36be4
DM
2863 if (fat)
2864 t4_fatal_err(adapter);
2865}
2866
2867/*
2868 * TP interrupt handler.
2869 */
2870static void tp_intr_handler(struct adapter *adapter)
2871{
005b5717 2872 static const struct intr_info tp_intr_info[] = {
56d36be4 2873 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 2874 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
2875 { 0 }
2876 };
2877
837e4a42 2878 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
2879 t4_fatal_err(adapter);
2880}
2881
2882/*
2883 * SGE interrupt handler.
2884 */
2885static void sge_intr_handler(struct adapter *adapter)
2886{
2887 u64 v;
3ccc6cf7 2888 u32 err;
56d36be4 2889
005b5717 2890 static const struct intr_info sge_intr_info[] = {
f612b815 2891 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 2892 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 2893 { ERR_INVALID_CIDX_INC_F,
56d36be4 2894 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
2895 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2896 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 2897 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 2898 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 2899 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 2900 0 },
f612b815 2901 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 2902 0 },
f612b815 2903 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 2904 0 },
f612b815 2905 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 2906 0 },
f612b815 2907 { ERR_ING_CTXT_PRIO_F,
56d36be4 2908 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
2909 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2910 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
2911 { 0 }
2912 };
2913
3ccc6cf7
HS
2914 static struct intr_info t4t5_sge_intr_info[] = {
2915 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
2916 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
2917 { ERR_EGR_CTXT_PRIO_F,
2918 "SGE too many priority egress contexts", -1, 0 },
2919 { 0 }
2920 };
2921
f612b815
HS
2922 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
2923 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
2924 if (v) {
2925 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 2926 (unsigned long long)v);
f612b815
HS
2927 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
2928 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
2929 }
2930
3ccc6cf7
HS
2931 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
2932 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2933 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
2934 t4t5_sge_intr_info);
2935
2936 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
2937 if (err & ERROR_QID_VALID_F) {
2938 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
2939 ERROR_QID_G(err));
2940 if (err & UNCAPTURED_ERROR_F)
2941 dev_err(adapter->pdev_dev,
2942 "SGE UNCAPTURED_ERROR set (clearing)\n");
2943 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
2944 UNCAPTURED_ERROR_F);
2945 }
2946
2947 if (v != 0)
56d36be4
DM
2948 t4_fatal_err(adapter);
2949}
2950
89c3a86c
HS
2951#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2952 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2953#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2954 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2955
56d36be4
DM
2956/*
2957 * CIM interrupt handler.
2958 */
2959static void cim_intr_handler(struct adapter *adapter)
2960{
005b5717 2961 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
2962 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2963 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2964 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2965 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2966 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2967 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2968 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
56d36be4
DM
2969 { 0 }
2970 };
005b5717 2971 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
2972 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2973 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2974 { ILLWRINT_F, "CIM illegal write", -1, 1 },
2975 { ILLRDINT_F, "CIM illegal read", -1, 1 },
2976 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2977 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2978 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2979 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2980 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2981 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2982 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2983 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2984 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2985 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2986 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2987 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2988 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2989 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2990 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2991 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2992 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2993 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2994 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2995 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2996 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2997 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2998 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2999 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
3000 { 0 }
3001 };
3002
3003 int fat;
3004
f061de42 3005 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d
HS
3006 t4_report_fw_error(adapter);
3007
89c3a86c 3008 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 3009 cim_intr_info) +
89c3a86c 3010 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
3011 cim_upintr_info);
3012 if (fat)
3013 t4_fatal_err(adapter);
3014}
3015
3016/*
3017 * ULP RX interrupt handler.
3018 */
3019static void ulprx_intr_handler(struct adapter *adapter)
3020{
005b5717 3021 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 3022 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
3023 { 0x7fffff, "ULPRX parity error", -1, 1 },
3024 { 0 }
3025 };
3026
0d804338 3027 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
3028 t4_fatal_err(adapter);
3029}
3030
3031/*
3032 * ULP TX interrupt handler.
3033 */
3034static void ulptx_intr_handler(struct adapter *adapter)
3035{
005b5717 3036 static const struct intr_info ulptx_intr_info[] = {
837e4a42 3037 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 3038 0 },
837e4a42 3039 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 3040 0 },
837e4a42 3041 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 3042 0 },
837e4a42 3043 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
3044 0 },
3045 { 0xfffffff, "ULPTX parity error", -1, 1 },
3046 { 0 }
3047 };
3048
837e4a42 3049 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
3050 t4_fatal_err(adapter);
3051}
3052
3053/*
3054 * PM TX interrupt handler.
3055 */
3056static void pmtx_intr_handler(struct adapter *adapter)
3057{
005b5717 3058 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
3059 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3060 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3061 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3062 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3063 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3064 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3065 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3066 -1, 1 },
3067 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3068 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
3069 { 0 }
3070 };
3071
837e4a42 3072 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
3073 t4_fatal_err(adapter);
3074}
3075
3076/*
3077 * PM RX interrupt handler.
3078 */
3079static void pmrx_intr_handler(struct adapter *adapter)
3080{
005b5717 3081 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
3082 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3083 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
3084 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3085 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
3086 -1, 1 },
3087 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3088 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
3089 { 0 }
3090 };
3091
837e4a42 3092 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
3093 t4_fatal_err(adapter);
3094}
3095
3096/*
3097 * CPL switch interrupt handler.
3098 */
3099static void cplsw_intr_handler(struct adapter *adapter)
3100{
005b5717 3101 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
3102 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3103 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3104 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3105 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3106 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3107 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
3108 { 0 }
3109 };
3110
0d804338 3111 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
3112 t4_fatal_err(adapter);
3113}
3114
3115/*
3116 * LE interrupt handler.
3117 */
3118static void le_intr_handler(struct adapter *adap)
3119{
3ccc6cf7 3120 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 3121 static const struct intr_info le_intr_info[] = {
0d804338
HS
3122 { LIPMISS_F, "LE LIP miss", -1, 0 },
3123 { LIP0_F, "LE 0 LIP error", -1, 0 },
3124 { PARITYERR_F, "LE parity error", -1, 1 },
3125 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3126 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
3127 { 0 }
3128 };
3129
3ccc6cf7
HS
3130 static struct intr_info t6_le_intr_info[] = {
3131 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3132 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3133 { TCAMINTPERR_F, "LE parity error", -1, 1 },
3134 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3135 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3136 { 0 }
3137 };
3138
3139 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
3140 (chip <= CHELSIO_T5) ?
3141 le_intr_info : t6_le_intr_info))
56d36be4
DM
3142 t4_fatal_err(adap);
3143}
3144
3145/*
3146 * MPS interrupt handler.
3147 */
3148static void mps_intr_handler(struct adapter *adapter)
3149{
005b5717 3150 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
3151 { 0xffffff, "MPS Rx parity error", -1, 1 },
3152 { 0 }
3153 };
005b5717 3154 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
3155 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3156 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3157 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3158 -1, 1 },
3159 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3160 -1, 1 },
3161 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3162 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3163 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
3164 { 0 }
3165 };
005b5717 3166 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
3167 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3168 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3169 -1, 1 },
3170 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
3171 { 0 }
3172 };
005b5717 3173 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
3174 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3175 { 0 }
3176 };
005b5717 3177 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
3178 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3179 { 0 }
3180 };
005b5717 3181 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
3182 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3183 { 0 }
3184 };
005b5717 3185 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
3186 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3187 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3188 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
3189 { 0 }
3190 };
3191
3192 int fat;
3193
837e4a42 3194 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 3195 mps_rx_intr_info) +
837e4a42 3196 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 3197 mps_tx_intr_info) +
837e4a42 3198 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 3199 mps_trc_intr_info) +
837e4a42 3200 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 3201 mps_stat_sram_intr_info) +
837e4a42 3202 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 3203 mps_stat_tx_intr_info) +
837e4a42 3204 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 3205 mps_stat_rx_intr_info) +
837e4a42 3206 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
3207 mps_cls_intr_info);
3208
837e4a42
HS
3209 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
3210 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
3211 if (fat)
3212 t4_fatal_err(adapter);
3213}
3214
89c3a86c
HS
3215#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3216 ECC_UE_INT_CAUSE_F)
56d36be4
DM
3217
3218/*
3219 * EDC/MC interrupt handler.
3220 */
3221static void mem_intr_handler(struct adapter *adapter, int idx)
3222{
822dd8a8 3223 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
3224
3225 unsigned int addr, cnt_addr, v;
3226
3227 if (idx <= MEM_EDC1) {
89c3a86c
HS
3228 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3229 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
3230 } else if (idx == MEM_MC) {
3231 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
3232 addr = MC_INT_CAUSE_A;
3233 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 3234 } else {
89c3a86c
HS
3235 addr = MC_P_INT_CAUSE_A;
3236 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 3237 }
56d36be4 3238 } else {
89c3a86c
HS
3239 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
3240 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
3241 }
3242
3243 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 3244 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
3245 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
3246 name[idx]);
89c3a86c
HS
3247 if (v & ECC_CE_INT_CAUSE_F) {
3248 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 3249
89c3a86c 3250 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
3251 if (printk_ratelimit())
3252 dev_warn(adapter->pdev_dev,
3253 "%u %s correctable ECC data error%s\n",
3254 cnt, name[idx], cnt > 1 ? "s" : "");
3255 }
89c3a86c 3256 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
3257 dev_alert(adapter->pdev_dev,
3258 "%s uncorrectable ECC data error\n", name[idx]);
3259
3260 t4_write_reg(adapter, addr, v);
89c3a86c 3261 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
3262 t4_fatal_err(adapter);
3263}
3264
3265/*
3266 * MA interrupt handler.
3267 */
3268static void ma_intr_handler(struct adapter *adap)
3269{
89c3a86c 3270 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 3271
89c3a86c 3272 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
3273 dev_alert(adap->pdev_dev,
3274 "MA parity error, parity status %#x\n",
89c3a86c 3275 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
3276 if (is_t5(adap->params.chip))
3277 dev_alert(adap->pdev_dev,
3278 "MA parity error, parity status %#x\n",
3279 t4_read_reg(adap,
89c3a86c 3280 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 3281 }
89c3a86c
HS
3282 if (status & MEM_WRAP_INT_CAUSE_F) {
3283 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
3284 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
3285 "client %u to address %#x\n",
89c3a86c
HS
3286 MEM_WRAP_CLIENT_NUM_G(v),
3287 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 3288 }
89c3a86c 3289 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
3290 t4_fatal_err(adap);
3291}
3292
3293/*
3294 * SMB interrupt handler.
3295 */
3296static void smb_intr_handler(struct adapter *adap)
3297{
005b5717 3298 static const struct intr_info smb_intr_info[] = {
0d804338
HS
3299 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3300 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3301 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
3302 { 0 }
3303 };
3304
0d804338 3305 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
3306 t4_fatal_err(adap);
3307}
3308
3309/*
3310 * NC-SI interrupt handler.
3311 */
3312static void ncsi_intr_handler(struct adapter *adap)
3313{
005b5717 3314 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
3315 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3316 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3317 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3318 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
3319 { 0 }
3320 };
3321
0d804338 3322 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
3323 t4_fatal_err(adap);
3324}
3325
3326/*
3327 * XGMAC interrupt handler.
3328 */
3329static void xgmac_intr_handler(struct adapter *adap, int port)
3330{
0a57a536
SR
3331 u32 v, int_cause_reg;
3332
d14807dd 3333 if (is_t4(adap->params.chip))
0d804338 3334 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 3335 else
0d804338 3336 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
3337
3338 v = t4_read_reg(adap, int_cause_reg);
56d36be4 3339
0d804338 3340 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
3341 if (!v)
3342 return;
3343
0d804338 3344 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
3345 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
3346 port);
0d804338 3347 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
3348 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
3349 port);
0d804338 3350 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
3351 t4_fatal_err(adap);
3352}
3353
3354/*
3355 * PL interrupt handler.
3356 */
3357static void pl_intr_handler(struct adapter *adap)
3358{
005b5717 3359 static const struct intr_info pl_intr_info[] = {
0d804338
HS
3360 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3361 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
3362 { 0 }
3363 };
3364
0d804338 3365 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
3366 t4_fatal_err(adap);
3367}
3368
0d804338
HS
3369#define PF_INTR_MASK (PFSW_F)
3370#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
3371 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
3372 CPL_SWITCH_F | SGE_F | ULP_TX_F)
56d36be4
DM
3373
3374/**
3375 * t4_slow_intr_handler - control path interrupt handler
3376 * @adapter: the adapter
3377 *
3378 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
3379 * The designation 'slow' is because it involves register reads, while
3380 * data interrupts typically don't involve any MMIOs.
3381 */
3382int t4_slow_intr_handler(struct adapter *adapter)
3383{
0d804338 3384 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
3385
3386 if (!(cause & GLBL_INTR_MASK))
3387 return 0;
0d804338 3388 if (cause & CIM_F)
56d36be4 3389 cim_intr_handler(adapter);
0d804338 3390 if (cause & MPS_F)
56d36be4 3391 mps_intr_handler(adapter);
0d804338 3392 if (cause & NCSI_F)
56d36be4 3393 ncsi_intr_handler(adapter);
0d804338 3394 if (cause & PL_F)
56d36be4 3395 pl_intr_handler(adapter);
0d804338 3396 if (cause & SMB_F)
56d36be4 3397 smb_intr_handler(adapter);
0d804338 3398 if (cause & XGMAC0_F)
56d36be4 3399 xgmac_intr_handler(adapter, 0);
0d804338 3400 if (cause & XGMAC1_F)
56d36be4 3401 xgmac_intr_handler(adapter, 1);
0d804338 3402 if (cause & XGMAC_KR0_F)
56d36be4 3403 xgmac_intr_handler(adapter, 2);
0d804338 3404 if (cause & XGMAC_KR1_F)
56d36be4 3405 xgmac_intr_handler(adapter, 3);
0d804338 3406 if (cause & PCIE_F)
56d36be4 3407 pcie_intr_handler(adapter);
0d804338 3408 if (cause & MC_F)
56d36be4 3409 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 3410 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 3411 mem_intr_handler(adapter, MEM_MC1);
0d804338 3412 if (cause & EDC0_F)
56d36be4 3413 mem_intr_handler(adapter, MEM_EDC0);
0d804338 3414 if (cause & EDC1_F)
56d36be4 3415 mem_intr_handler(adapter, MEM_EDC1);
0d804338 3416 if (cause & LE_F)
56d36be4 3417 le_intr_handler(adapter);
0d804338 3418 if (cause & TP_F)
56d36be4 3419 tp_intr_handler(adapter);
0d804338 3420 if (cause & MA_F)
56d36be4 3421 ma_intr_handler(adapter);
0d804338 3422 if (cause & PM_TX_F)
56d36be4 3423 pmtx_intr_handler(adapter);
0d804338 3424 if (cause & PM_RX_F)
56d36be4 3425 pmrx_intr_handler(adapter);
0d804338 3426 if (cause & ULP_RX_F)
56d36be4 3427 ulprx_intr_handler(adapter);
0d804338 3428 if (cause & CPL_SWITCH_F)
56d36be4 3429 cplsw_intr_handler(adapter);
0d804338 3430 if (cause & SGE_F)
56d36be4 3431 sge_intr_handler(adapter);
0d804338 3432 if (cause & ULP_TX_F)
56d36be4
DM
3433 ulptx_intr_handler(adapter);
3434
3435 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
3436 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
3437 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
3438 return 1;
3439}
3440
3441/**
3442 * t4_intr_enable - enable interrupts
3443 * @adapter: the adapter whose interrupts should be enabled
3444 *
3445 * Enable PF-specific interrupts for the calling function and the top-level
3446 * interrupt concentrator for global interrupts. Interrupts are already
3447 * enabled at each module, here we just enable the roots of the interrupt
3448 * hierarchies.
3449 *
3450 * Note: this function should be called only when the driver manages
3451 * non PF-specific interrupts from the various HW modules. Only one PCI
3452 * function at a time should be doing this.
3453 */
3454void t4_intr_enable(struct adapter *adapter)
3455{
3ccc6cf7 3456 u32 val = 0;
0d804338 3457 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
56d36be4 3458
3ccc6cf7
HS
3459 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3460 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
3461 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
3462 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 3463 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
3464 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
3465 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
3466 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 3467 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
3468 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
3469 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
3470}
3471
3472/**
3473 * t4_intr_disable - disable interrupts
3474 * @adapter: the adapter whose interrupts should be disabled
3475 *
3476 * Disable interrupts. We only disable the top-level interrupt
3477 * concentrators. The caller must be a PCI function managing global
3478 * interrupts.
3479 */
3480void t4_intr_disable(struct adapter *adapter)
3481{
0d804338 3482 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
56d36be4 3483
0d804338
HS
3484 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
3485 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
3486}
3487
56d36be4
DM
3488/**
3489 * hash_mac_addr - return the hash value of a MAC address
3490 * @addr: the 48-bit Ethernet MAC address
3491 *
3492 * Hashes a MAC address according to the hash function used by HW inexact
3493 * (hash) address matching.
3494 */
3495static int hash_mac_addr(const u8 *addr)
3496{
3497 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
3498 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
3499 a ^= b;
3500 a ^= (a >> 12);
3501 a ^= (a >> 6);
3502 return a & 0x3f;
3503}
3504
3505/**
3506 * t4_config_rss_range - configure a portion of the RSS mapping table
3507 * @adapter: the adapter
3508 * @mbox: mbox to use for the FW command
3509 * @viid: virtual interface whose RSS subtable is to be written
3510 * @start: start entry in the table to write
3511 * @n: how many table entries to write
3512 * @rspq: values for the response queue lookup table
3513 * @nrspq: number of values in @rspq
3514 *
3515 * Programs the selected part of the VI's RSS mapping table with the
3516 * provided values. If @nrspq < @n the supplied values are used repeatedly
3517 * until the full table range is populated.
3518 *
3519 * The caller must ensure the values in @rspq are in the range allowed for
3520 * @viid.
3521 */
3522int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
3523 int start, int n, const u16 *rspq, unsigned int nrspq)
3524{
3525 int ret;
3526 const u16 *rsp = rspq;
3527 const u16 *rsp_end = rspq + nrspq;
3528 struct fw_rss_ind_tbl_cmd cmd;
3529
3530 memset(&cmd, 0, sizeof(cmd));
f404f80c 3531 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 3532 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 3533 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 3534 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
3535
3536 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
3537 while (n > 0) {
3538 int nq = min(n, 32);
3539 __be32 *qp = &cmd.iq0_to_iq2;
3540
f404f80c
HS
3541 cmd.niqid = cpu_to_be16(nq);
3542 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
3543
3544 start += nq;
3545 n -= nq;
3546
3547 while (nq > 0) {
3548 unsigned int v;
3549
b2e1a3f0 3550 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
3551 if (++rsp >= rsp_end)
3552 rsp = rspq;
b2e1a3f0 3553 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
3554 if (++rsp >= rsp_end)
3555 rsp = rspq;
b2e1a3f0 3556 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
3557 if (++rsp >= rsp_end)
3558 rsp = rspq;
3559
f404f80c 3560 *qp++ = cpu_to_be32(v);
56d36be4
DM
3561 nq -= 3;
3562 }
3563
3564 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
3565 if (ret)
3566 return ret;
3567 }
3568 return 0;
3569}
3570
3571/**
3572 * t4_config_glbl_rss - configure the global RSS mode
3573 * @adapter: the adapter
3574 * @mbox: mbox to use for the FW command
3575 * @mode: global RSS mode
3576 * @flags: mode-specific flags
3577 *
3578 * Sets the global RSS mode.
3579 */
3580int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
3581 unsigned int flags)
3582{
3583 struct fw_rss_glb_config_cmd c;
3584
3585 memset(&c, 0, sizeof(c));
f404f80c
HS
3586 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3587 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3588 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 3589 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
3590 c.u.manual.mode_pkd =
3591 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
3592 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3593 c.u.basicvirtual.mode_pkd =
f404f80c
HS
3594 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3595 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
3596 } else
3597 return -EINVAL;
3598 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3599}
3600
c035e183
HS
3601/**
3602 * t4_config_vi_rss - configure per VI RSS settings
3603 * @adapter: the adapter
3604 * @mbox: mbox to use for the FW command
3605 * @viid: the VI id
3606 * @flags: RSS flags
3607 * @defq: id of the default RSS queue for the VI.
3608 *
3609 * Configures VI-specific RSS properties.
3610 */
3611int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
3612 unsigned int flags, unsigned int defq)
3613{
3614 struct fw_rss_vi_config_cmd c;
3615
3616 memset(&c, 0, sizeof(c));
3617 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
3618 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3619 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
3620 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3621 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
3622 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
3623 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3624}
3625
688ea5fe
HS
3626/* Read an RSS table row */
3627static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3628{
3629 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3630 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3631 5, 0, val);
3632}
3633
3634/**
3635 * t4_read_rss - read the contents of the RSS mapping table
3636 * @adapter: the adapter
3637 * @map: holds the contents of the RSS mapping table
3638 *
3639 * Reads the contents of the RSS hash->queue mapping table.
3640 */
3641int t4_read_rss(struct adapter *adapter, u16 *map)
3642{
3643 u32 val;
3644 int i, ret;
3645
3646 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3647 ret = rd_rss_row(adapter, i, &val);
3648 if (ret)
3649 return ret;
3650 *map++ = LKPTBLQUEUE0_G(val);
3651 *map++ = LKPTBLQUEUE1_G(val);
3652 }
3653 return 0;
3654}
3655
c1e9af0c
HS
3656/**
3657 * t4_fw_tp_pio_rw - Access TP PIO through LDST
3658 * @adap: the adapter
3659 * @vals: where the indirect register values are stored/written
3660 * @nregs: how many indirect registers to read/write
3661 * @start_idx: index of first indirect register to read/write
3662 * @rw: Read (1) or Write (0)
3663 *
3664 * Access TP PIO registers through LDST
3665 */
3666static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
3667 unsigned int start_index, unsigned int rw)
3668{
3669 int ret, i;
3670 int cmd = FW_LDST_ADDRSPC_TP_PIO;
3671 struct fw_ldst_cmd c;
3672
3673 for (i = 0 ; i < nregs; i++) {
3674 memset(&c, 0, sizeof(c));
3675 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
3676 FW_CMD_REQUEST_F |
3677 (rw ? FW_CMD_READ_F :
3678 FW_CMD_WRITE_F) |
3679 FW_LDST_CMD_ADDRSPACE_V(cmd));
3680 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
3681
3682 c.u.addrval.addr = cpu_to_be32(start_index + i);
3683 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
3684 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3685 if (!ret && rw)
3686 vals[i] = be32_to_cpu(c.u.addrval.val);
3687 }
3688}
3689
688ea5fe
HS
3690/**
3691 * t4_read_rss_key - read the global RSS key
3692 * @adap: the adapter
3693 * @key: 10-entry array holding the 320-bit RSS key
3694 *
3695 * Reads the global 320-bit RSS key.
3696 */
3697void t4_read_rss_key(struct adapter *adap, u32 *key)
3698{
c1e9af0c
HS
3699 if (adap->flags & FW_OK)
3700 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
3701 else
3702 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3703 TP_RSS_SECRET_KEY0_A);
688ea5fe
HS
3704}
3705
3706/**
3707 * t4_write_rss_key - program one of the RSS keys
3708 * @adap: the adapter
3709 * @key: 10-entry array holding the 320-bit RSS key
3710 * @idx: which RSS key to write
3711 *
3712 * Writes one of the RSS keys with the given 320-bit value. If @idx is
3713 * 0..15 the corresponding entry in the RSS key table is written,
3714 * otherwise the global RSS key is written.
3715 */
3716void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3717{
3ccc6cf7
HS
3718 u8 rss_key_addr_cnt = 16;
3719 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
3720
3721 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
3722 * allows access to key addresses 16-63 by using KeyWrAddrX
3723 * as index[5:4](upper 2) into key table
3724 */
3725 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
3726 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
3727 rss_key_addr_cnt = 32;
3728
c1e9af0c
HS
3729 if (adap->flags & FW_OK)
3730 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
3731 else
3732 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3733 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
3734
3735 if (idx >= 0 && idx < rss_key_addr_cnt) {
3736 if (rss_key_addr_cnt > 16)
3737 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3738 KEYWRADDRX_V(idx >> 4) |
3739 T6_VFWRADDR_V(idx) | KEYWREN_F);
3740 else
3741 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3742 KEYWRADDR_V(idx) | KEYWREN_F);
3743 }
688ea5fe
HS
3744}
3745
3746/**
3747 * t4_read_rss_pf_config - read PF RSS Configuration Table
3748 * @adapter: the adapter
3749 * @index: the entry in the PF RSS table to read
3750 * @valp: where to store the returned value
3751 *
3752 * Reads the PF RSS Configuration Table at the specified index and returns
3753 * the value found there.
3754 */
3755void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3756 u32 *valp)
3757{
c1e9af0c
HS
3758 if (adapter->flags & FW_OK)
3759 t4_fw_tp_pio_rw(adapter, valp, 1,
3760 TP_RSS_PF0_CONFIG_A + index, 1);
3761 else
3762 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3763 valp, 1, TP_RSS_PF0_CONFIG_A + index);
688ea5fe
HS
3764}
3765
3766/**
3767 * t4_read_rss_vf_config - read VF RSS Configuration Table
3768 * @adapter: the adapter
3769 * @index: the entry in the VF RSS table to read
3770 * @vfl: where to store the returned VFL
3771 * @vfh: where to store the returned VFH
3772 *
3773 * Reads the VF RSS Configuration Table at the specified index and returns
3774 * the (VFL, VFH) values found there.
3775 */
3776void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3777 u32 *vfl, u32 *vfh)
3778{
3779 u32 vrt, mask, data;
3780
3ccc6cf7
HS
3781 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3782 mask = VFWRADDR_V(VFWRADDR_M);
3783 data = VFWRADDR_V(index);
3784 } else {
3785 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
3786 data = T6_VFWRADDR_V(index);
3787 }
688ea5fe
HS
3788
3789 /* Request that the index'th VF Table values be read into VFL/VFH.
3790 */
3791 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3792 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3793 vrt |= data | VFRDEN_F;
3794 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3795
3796 /* Grab the VFL/VFH values ...
3797 */
c1e9af0c
HS
3798 if (adapter->flags & FW_OK) {
3799 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
3800 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
3801 } else {
3802 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3803 vfl, 1, TP_RSS_VFL_CONFIG_A);
3804 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3805 vfh, 1, TP_RSS_VFH_CONFIG_A);
3806 }
688ea5fe
HS
3807}
3808
3809/**
3810 * t4_read_rss_pf_map - read PF RSS Map
3811 * @adapter: the adapter
3812 *
3813 * Reads the PF RSS Map register and returns its value.
3814 */
3815u32 t4_read_rss_pf_map(struct adapter *adapter)
3816{
3817 u32 pfmap;
3818
c1e9af0c
HS
3819 if (adapter->flags & FW_OK)
3820 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
3821 else
3822 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3823 &pfmap, 1, TP_RSS_PF_MAP_A);
688ea5fe
HS
3824 return pfmap;
3825}
3826
3827/**
3828 * t4_read_rss_pf_mask - read PF RSS Mask
3829 * @adapter: the adapter
3830 *
3831 * Reads the PF RSS Mask register and returns its value.
3832 */
3833u32 t4_read_rss_pf_mask(struct adapter *adapter)
3834{
3835 u32 pfmask;
3836
c1e9af0c
HS
3837 if (adapter->flags & FW_OK)
3838 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
3839 else
3840 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3841 &pfmask, 1, TP_RSS_PF_MSK_A);
688ea5fe
HS
3842 return pfmask;
3843}
3844
56d36be4
DM
3845/**
3846 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
3847 * @adap: the adapter
3848 * @v4: holds the TCP/IP counter values
3849 * @v6: holds the TCP/IPv6 counter values
3850 *
3851 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3852 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3853 */
3854void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3855 struct tp_tcp_stats *v6)
3856{
837e4a42 3857 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 3858
837e4a42 3859#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
3860#define STAT(x) val[STAT_IDX(x)]
3861#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3862
3863 if (v4) {
837e4a42
HS
3864 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3865 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
3866 v4->tcp_out_rsts = STAT(OUT_RST);
3867 v4->tcp_in_segs = STAT64(IN_SEG);
3868 v4->tcp_out_segs = STAT64(OUT_SEG);
3869 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
3870 }
3871 if (v6) {
837e4a42
HS
3872 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3873 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
3874 v6->tcp_out_rsts = STAT(OUT_RST);
3875 v6->tcp_in_segs = STAT64(IN_SEG);
3876 v6->tcp_out_segs = STAT64(OUT_SEG);
3877 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
3878 }
3879#undef STAT64
3880#undef STAT
3881#undef STAT_IDX
3882}
3883
a4cfd929
HS
3884/**
3885 * t4_tp_get_err_stats - read TP's error MIB counters
3886 * @adap: the adapter
3887 * @st: holds the counter values
3888 *
3889 * Returns the values of TP's error counters.
3890 */
3891void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3892{
3893 /* T6 and later has 2 channels */
3894 if (adap->params.arch.nchan == NCHAN) {
3895 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3896 st->mac_in_errs, 12, TP_MIB_MAC_IN_ERR_0_A);
3897 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3898 st->tnl_cong_drops, 8,
3899 TP_MIB_TNL_CNG_DROP_0_A);
3900 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3901 st->tnl_tx_drops, 4,
3902 TP_MIB_TNL_DROP_0_A);
3903 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3904 st->ofld_vlan_drops, 4,
3905 TP_MIB_OFD_VLN_DROP_0_A);
3906 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3907 st->tcp6_in_errs, 4,
3908 TP_MIB_TCP_V6IN_ERR_0_A);
3909 } else {
3910 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3911 st->mac_in_errs, 2, TP_MIB_MAC_IN_ERR_0_A);
3912 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3913 st->hdr_in_errs, 2, TP_MIB_HDR_IN_ERR_0_A);
3914 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3915 st->tcp_in_errs, 2, TP_MIB_TCP_IN_ERR_0_A);
3916 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3917 st->tnl_cong_drops, 2,
3918 TP_MIB_TNL_CNG_DROP_0_A);
3919 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3920 st->ofld_chan_drops, 2,
3921 TP_MIB_OFD_CHN_DROP_0_A);
3922 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3923 st->tnl_tx_drops, 2, TP_MIB_TNL_DROP_0_A);
3924 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3925 st->ofld_vlan_drops, 2,
3926 TP_MIB_OFD_VLN_DROP_0_A);
3927 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3928 st->tcp6_in_errs, 2, TP_MIB_TCP_V6IN_ERR_0_A);
3929 }
3930 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3931 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
3932}
3933
a6222975
HS
3934/**
3935 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
3936 * @adap: the adapter
3937 * @st: holds the counter values
3938 *
3939 * Returns the values of TP's CPL counters.
3940 */
3941void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3942{
3943 /* T6 and later has 2 channels */
3944 if (adap->params.arch.nchan == NCHAN) {
3945 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
3946 8, TP_MIB_CPL_IN_REQ_0_A);
3947 } else {
3948 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
3949 2, TP_MIB_CPL_IN_REQ_0_A);
3950 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
3951 2, TP_MIB_CPL_OUT_RSP_0_A);
3952 }
3953}
3954
a4cfd929
HS
3955/**
3956 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3957 * @adap: the adapter
3958 * @st: holds the counter values
3959 *
3960 * Returns the values of TP's RDMA counters.
3961 */
3962void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3963{
3964 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
3965 2, TP_MIB_RQE_DFR_PKT_A);
3966}
3967
a6222975
HS
3968/**
3969 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3970 * @adap: the adapter
3971 * @idx: the port index
3972 * @st: holds the counter values
3973 *
3974 * Returns the values of TP's FCoE counters for the selected port.
3975 */
3976void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3977 struct tp_fcoe_stats *st)
3978{
3979 u32 val[2];
3980
3981 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
3982 1, TP_MIB_FCOE_DDP_0_A + idx);
3983 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
3984 1, TP_MIB_FCOE_DROP_0_A + idx);
3985 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3986 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
3987 st->octets_ddp = ((u64)val[0] << 32) | val[1];
3988}
3989
a4cfd929
HS
3990/**
3991 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3992 * @adap: the adapter
3993 * @st: holds the counter values
3994 *
3995 * Returns the values of TP's counters for non-TCP directly-placed packets.
3996 */
3997void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3998{
3999 u32 val[4];
4000
4001 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4002 TP_MIB_USM_PKTS_A);
4003 st->frames = val[0];
4004 st->drops = val[1];
4005 st->octets = ((u64)val[2] << 32) | val[3];
4006}
4007
56d36be4
DM
4008/**
4009 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4010 * @adap: the adapter
4011 * @mtus: where to store the MTU values
4012 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4013 *
4014 * Reads the HW path MTU table.
4015 */
4016void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4017{
4018 u32 v;
4019 int i;
4020
4021 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
4022 t4_write_reg(adap, TP_MTU_TABLE_A,
4023 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4024 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4025 mtus[i] = MTUVALUE_G(v);
56d36be4 4026 if (mtu_log)
837e4a42 4027 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
4028 }
4029}
4030
bad43792
HS
4031/**
4032 * t4_read_cong_tbl - reads the congestion control table
4033 * @adap: the adapter
4034 * @incr: where to store the alpha values
4035 *
4036 * Reads the additive increments programmed into the HW congestion
4037 * control table.
4038 */
4039void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4040{
4041 unsigned int mtu, w;
4042
4043 for (mtu = 0; mtu < NMTUS; ++mtu)
4044 for (w = 0; w < NCCTRL_WIN; ++w) {
4045 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4046 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4047 incr[mtu][w] = (u16)t4_read_reg(adap,
4048 TP_CCTRL_TABLE_A) & 0x1fff;
4049 }
4050}
4051
636f9d37
VP
4052/**
4053 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4054 * @adap: the adapter
4055 * @addr: the indirect TP register address
4056 * @mask: specifies the field within the register to modify
4057 * @val: new value for the field
4058 *
4059 * Sets a field of an indirect TP register to the given value.
4060 */
4061void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4062 unsigned int mask, unsigned int val)
4063{
837e4a42
HS
4064 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4065 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4066 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
4067}
4068
56d36be4
DM
4069/**
4070 * init_cong_ctrl - initialize congestion control parameters
4071 * @a: the alpha values for congestion control
4072 * @b: the beta values for congestion control
4073 *
4074 * Initialize the congestion control parameters.
4075 */
91744948 4076static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
4077{
4078 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
4079 a[9] = 2;
4080 a[10] = 3;
4081 a[11] = 4;
4082 a[12] = 5;
4083 a[13] = 6;
4084 a[14] = 7;
4085 a[15] = 8;
4086 a[16] = 9;
4087 a[17] = 10;
4088 a[18] = 14;
4089 a[19] = 17;
4090 a[20] = 21;
4091 a[21] = 25;
4092 a[22] = 30;
4093 a[23] = 35;
4094 a[24] = 45;
4095 a[25] = 60;
4096 a[26] = 80;
4097 a[27] = 100;
4098 a[28] = 200;
4099 a[29] = 300;
4100 a[30] = 400;
4101 a[31] = 500;
4102
4103 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
4104 b[9] = b[10] = 1;
4105 b[11] = b[12] = 2;
4106 b[13] = b[14] = b[15] = b[16] = 3;
4107 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
4108 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
4109 b[28] = b[29] = 6;
4110 b[30] = b[31] = 7;
4111}
4112
4113/* The minimum additive increment value for the congestion control table */
4114#define CC_MIN_INCR 2U
4115
4116/**
4117 * t4_load_mtus - write the MTU and congestion control HW tables
4118 * @adap: the adapter
4119 * @mtus: the values for the MTU table
4120 * @alpha: the values for the congestion control alpha parameter
4121 * @beta: the values for the congestion control beta parameter
4122 *
4123 * Write the HW MTU table with the supplied MTUs and the high-speed
4124 * congestion control table with the supplied alpha, beta, and MTUs.
4125 * We write the two tables together because the additive increments
4126 * depend on the MTUs.
4127 */
4128void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
4129 const unsigned short *alpha, const unsigned short *beta)
4130{
4131 static const unsigned int avg_pkts[NCCTRL_WIN] = {
4132 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
4133 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
4134 28672, 40960, 57344, 81920, 114688, 163840, 229376
4135 };
4136
4137 unsigned int i, w;
4138
4139 for (i = 0; i < NMTUS; ++i) {
4140 unsigned int mtu = mtus[i];
4141 unsigned int log2 = fls(mtu);
4142
4143 if (!(mtu & ((1 << log2) >> 2))) /* round */
4144 log2--;
837e4a42
HS
4145 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
4146 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
4147
4148 for (w = 0; w < NCCTRL_WIN; ++w) {
4149 unsigned int inc;
4150
4151 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
4152 CC_MIN_INCR);
4153
837e4a42 4154 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
4155 (w << 16) | (beta[w] << 13) | inc);
4156 }
4157 }
4158}
4159
b3bbe36a
HS
4160/**
4161 * t4_pmtx_get_stats - returns the HW stats from PMTX
4162 * @adap: the adapter
4163 * @cnt: where to store the count statistics
4164 * @cycles: where to store the cycle statistics
4165 *
4166 * Returns performance statistics from PMTX.
4167 */
4168void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4169{
4170 int i;
4171 u32 data[2];
4172
4173 for (i = 0; i < PM_NSTATS; i++) {
4174 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
4175 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
4176 if (is_t4(adap->params.chip)) {
4177 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
4178 } else {
4179 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
4180 PM_TX_DBG_DATA_A, data, 2,
4181 PM_TX_DBG_STAT_MSB_A);
4182 cycles[i] = (((u64)data[0] << 32) | data[1]);
4183 }
4184 }
4185}
4186
4187/**
4188 * t4_pmrx_get_stats - returns the HW stats from PMRX
4189 * @adap: the adapter
4190 * @cnt: where to store the count statistics
4191 * @cycles: where to store the cycle statistics
4192 *
4193 * Returns performance statistics from PMRX.
4194 */
4195void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4196{
4197 int i;
4198 u32 data[2];
4199
4200 for (i = 0; i < PM_NSTATS; i++) {
4201 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
4202 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
4203 if (is_t4(adap->params.chip)) {
4204 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
4205 } else {
4206 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
4207 PM_RX_DBG_DATA_A, data, 2,
4208 PM_RX_DBG_STAT_MSB_A);
4209 cycles[i] = (((u64)data[0] << 32) | data[1]);
4210 }
4211 }
4212}
4213
56d36be4 4214/**
145ef8a5 4215 * t4_get_mps_bg_map - return the buffer groups associated with a port
56d36be4
DM
4216 * @adap: the adapter
4217 * @idx: the port index
4218 *
4219 * Returns a bitmap indicating which MPS buffer groups are associated
4220 * with the given port. Bit i is set if buffer group i is used by the
4221 * port.
4222 */
145ef8a5 4223unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
56d36be4 4224{
837e4a42 4225 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
56d36be4
DM
4226
4227 if (n == 0)
4228 return idx == 0 ? 0xf : 0;
4229 if (n == 1)
4230 return idx < 2 ? (3 << (2 * idx)) : 0;
4231 return 1 << idx;
4232}
4233
72aca4bf
KS
4234/**
4235 * t4_get_port_type_description - return Port Type string description
4236 * @port_type: firmware Port Type enumeration
4237 */
4238const char *t4_get_port_type_description(enum fw_port_type port_type)
4239{
4240 static const char *const port_type_description[] = {
4241 "R XFI",
4242 "R XAUI",
4243 "T SGMII",
4244 "T XFI",
4245 "T XAUI",
4246 "KX4",
4247 "CX4",
4248 "KX",
4249 "KR",
4250 "R SFP+",
4251 "KR/KX",
4252 "KR/KX/KX4",
4253 "R QSFP_10G",
5aa80e51 4254 "R QSA",
72aca4bf
KS
4255 "R QSFP",
4256 "R BP40_BA",
4257 };
4258
4259 if (port_type < ARRAY_SIZE(port_type_description))
4260 return port_type_description[port_type];
4261 return "UNKNOWN";
4262}
4263
a4cfd929
HS
4264/**
4265 * t4_get_port_stats_offset - collect port stats relative to a previous
4266 * snapshot
4267 * @adap: The adapter
4268 * @idx: The port
4269 * @stats: Current stats to fill
4270 * @offset: Previous stats snapshot
4271 */
4272void t4_get_port_stats_offset(struct adapter *adap, int idx,
4273 struct port_stats *stats,
4274 struct port_stats *offset)
4275{
4276 u64 *s, *o;
4277 int i;
4278
4279 t4_get_port_stats(adap, idx, stats);
4280 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
4281 i < (sizeof(struct port_stats) / sizeof(u64));
4282 i++, s++, o++)
4283 *s -= *o;
4284}
4285
56d36be4
DM
4286/**
4287 * t4_get_port_stats - collect port statistics
4288 * @adap: the adapter
4289 * @idx: the port index
4290 * @p: the stats structure to fill
4291 *
4292 * Collect statistics related to the given port from HW.
4293 */
4294void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
4295{
145ef8a5 4296 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4
DM
4297
4298#define GET_STAT(name) \
0a57a536 4299 t4_read_reg64(adap, \
d14807dd 4300 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 4301 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
4302#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4303
4304 p->tx_octets = GET_STAT(TX_PORT_BYTES);
4305 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
4306 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
4307 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
4308 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
4309 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
4310 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
4311 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
4312 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
4313 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
4314 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
4315 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
4316 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
4317 p->tx_drop = GET_STAT(TX_PORT_DROP);
4318 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
4319 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
4320 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
4321 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
4322 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
4323 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
4324 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
4325 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
4326 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
4327
4328 p->rx_octets = GET_STAT(RX_PORT_BYTES);
4329 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
4330 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
4331 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
4332 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
4333 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
4334 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
4335 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
4336 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
4337 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
4338 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
4339 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
4340 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
4341 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
4342 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
4343 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
4344 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
4345 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
4346 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
4347 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
4348 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
4349 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
4350 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
4351 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
4352 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
4353 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
4354 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
4355
4356 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
4357 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
4358 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
4359 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
4360 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
4361 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
4362 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
4363 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
4364
4365#undef GET_STAT
4366#undef GET_STAT_COM
4367}
4368
65046e84
HS
4369/**
4370 * t4_get_lb_stats - collect loopback port statistics
4371 * @adap: the adapter
4372 * @idx: the loopback port index
4373 * @p: the stats structure to fill
4374 *
4375 * Return HW statistics for the given loopback port.
4376 */
4377void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4378{
4379 u32 bgmap = t4_get_mps_bg_map(adap, idx);
4380
4381#define GET_STAT(name) \
4382 t4_read_reg64(adap, \
4383 (is_t4(adap->params.chip) ? \
4384 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
4385 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
4386#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4387
4388 p->octets = GET_STAT(BYTES);
4389 p->frames = GET_STAT(FRAMES);
4390 p->bcast_frames = GET_STAT(BCAST);
4391 p->mcast_frames = GET_STAT(MCAST);
4392 p->ucast_frames = GET_STAT(UCAST);
4393 p->error_frames = GET_STAT(ERROR);
4394
4395 p->frames_64 = GET_STAT(64B);
4396 p->frames_65_127 = GET_STAT(65B_127B);
4397 p->frames_128_255 = GET_STAT(128B_255B);
4398 p->frames_256_511 = GET_STAT(256B_511B);
4399 p->frames_512_1023 = GET_STAT(512B_1023B);
4400 p->frames_1024_1518 = GET_STAT(1024B_1518B);
4401 p->frames_1519_max = GET_STAT(1519B_MAX);
4402 p->drop = GET_STAT(DROP_FRAMES);
4403
4404 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4405 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4406 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4407 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4408 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4409 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4410 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4411 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4412
4413#undef GET_STAT
4414#undef GET_STAT_COM
4415}
4416
f2b7e78d
VP
4417/* t4_mk_filtdelwr - create a delete filter WR
4418 * @ftid: the filter ID
4419 * @wr: the filter work request to populate
4420 * @qid: ingress queue to receive the delete notification
4421 *
4422 * Creates a filter work request to delete the supplied filter. If @qid is
4423 * negative the delete notification is suppressed.
4424 */
4425void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4426{
4427 memset(wr, 0, sizeof(*wr));
f404f80c
HS
4428 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
4429 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
4430 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
4431 FW_FILTER_WR_NOREPLY_V(qid < 0));
4432 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 4433 if (qid >= 0)
f404f80c
HS
4434 wr->rx_chan_rx_rpl_iq =
4435 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
4436}
4437
56d36be4 4438#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
4439 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
4440 FW_CMD_REQUEST_F | \
4441 FW_CMD_##rd_wr##_F); \
4442 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
4443} while (0)
4444
8caa1e84
VP
4445int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
4446 u32 addr, u32 val)
4447{
f404f80c 4448 u32 ldst_addrspace;
8caa1e84
VP
4449 struct fw_ldst_cmd c;
4450
4451 memset(&c, 0, sizeof(c));
f404f80c
HS
4452 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
4453 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4454 FW_CMD_REQUEST_F |
4455 FW_CMD_WRITE_F |
4456 ldst_addrspace);
4457 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4458 c.u.addrval.addr = cpu_to_be32(addr);
4459 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
4460
4461 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4462}
4463
56d36be4
DM
4464/**
4465 * t4_mdio_rd - read a PHY register through MDIO
4466 * @adap: the adapter
4467 * @mbox: mailbox to use for the FW command
4468 * @phy_addr: the PHY address
4469 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4470 * @reg: the register to read
4471 * @valp: where to store the value
4472 *
4473 * Issues a FW command through the given mailbox to read a PHY register.
4474 */
4475int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4476 unsigned int mmd, unsigned int reg, u16 *valp)
4477{
4478 int ret;
f404f80c 4479 u32 ldst_addrspace;
56d36be4
DM
4480 struct fw_ldst_cmd c;
4481
4482 memset(&c, 0, sizeof(c));
f404f80c
HS
4483 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4484 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4485 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4486 ldst_addrspace);
4487 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4488 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4489 FW_LDST_CMD_MMD_V(mmd));
4490 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
4491
4492 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4493 if (ret == 0)
f404f80c 4494 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
4495 return ret;
4496}
4497
4498/**
4499 * t4_mdio_wr - write a PHY register through MDIO
4500 * @adap: the adapter
4501 * @mbox: mailbox to use for the FW command
4502 * @phy_addr: the PHY address
4503 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4504 * @reg: the register to write
4505 * @valp: value to write
4506 *
4507 * Issues a FW command through the given mailbox to write a PHY register.
4508 */
4509int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4510 unsigned int mmd, unsigned int reg, u16 val)
4511{
f404f80c 4512 u32 ldst_addrspace;
56d36be4
DM
4513 struct fw_ldst_cmd c;
4514
4515 memset(&c, 0, sizeof(c));
f404f80c
HS
4516 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4517 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4518 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4519 ldst_addrspace);
4520 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4521 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4522 FW_LDST_CMD_MMD_V(mmd));
4523 c.u.mdio.raddr = cpu_to_be16(reg);
4524 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
4525
4526 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4527}
4528
68bce192
KS
4529/**
4530 * t4_sge_decode_idma_state - decode the idma state
4531 * @adap: the adapter
4532 * @state: the state idma is stuck in
4533 */
4534void t4_sge_decode_idma_state(struct adapter *adapter, int state)
4535{
4536 static const char * const t4_decode[] = {
4537 "IDMA_IDLE",
4538 "IDMA_PUSH_MORE_CPL_FIFO",
4539 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4540 "Not used",
4541 "IDMA_PHYSADDR_SEND_PCIEHDR",
4542 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4543 "IDMA_PHYSADDR_SEND_PAYLOAD",
4544 "IDMA_SEND_FIFO_TO_IMSG",
4545 "IDMA_FL_REQ_DATA_FL_PREP",
4546 "IDMA_FL_REQ_DATA_FL",
4547 "IDMA_FL_DROP",
4548 "IDMA_FL_H_REQ_HEADER_FL",
4549 "IDMA_FL_H_SEND_PCIEHDR",
4550 "IDMA_FL_H_PUSH_CPL_FIFO",
4551 "IDMA_FL_H_SEND_CPL",
4552 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4553 "IDMA_FL_H_SEND_IP_HDR",
4554 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4555 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4556 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4557 "IDMA_FL_D_SEND_PCIEHDR",
4558 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4559 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4560 "IDMA_FL_SEND_PCIEHDR",
4561 "IDMA_FL_PUSH_CPL_FIFO",
4562 "IDMA_FL_SEND_CPL",
4563 "IDMA_FL_SEND_PAYLOAD_FIRST",
4564 "IDMA_FL_SEND_PAYLOAD",
4565 "IDMA_FL_REQ_NEXT_DATA_FL",
4566 "IDMA_FL_SEND_NEXT_PCIEHDR",
4567 "IDMA_FL_SEND_PADDING",
4568 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4569 "IDMA_FL_SEND_FIFO_TO_IMSG",
4570 "IDMA_FL_REQ_DATAFL_DONE",
4571 "IDMA_FL_REQ_HEADERFL_DONE",
4572 };
4573 static const char * const t5_decode[] = {
4574 "IDMA_IDLE",
4575 "IDMA_ALMOST_IDLE",
4576 "IDMA_PUSH_MORE_CPL_FIFO",
4577 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4578 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
4579 "IDMA_PHYSADDR_SEND_PCIEHDR",
4580 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4581 "IDMA_PHYSADDR_SEND_PAYLOAD",
4582 "IDMA_SEND_FIFO_TO_IMSG",
4583 "IDMA_FL_REQ_DATA_FL",
4584 "IDMA_FL_DROP",
4585 "IDMA_FL_DROP_SEND_INC",
4586 "IDMA_FL_H_REQ_HEADER_FL",
4587 "IDMA_FL_H_SEND_PCIEHDR",
4588 "IDMA_FL_H_PUSH_CPL_FIFO",
4589 "IDMA_FL_H_SEND_CPL",
4590 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4591 "IDMA_FL_H_SEND_IP_HDR",
4592 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4593 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4594 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4595 "IDMA_FL_D_SEND_PCIEHDR",
4596 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4597 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4598 "IDMA_FL_SEND_PCIEHDR",
4599 "IDMA_FL_PUSH_CPL_FIFO",
4600 "IDMA_FL_SEND_CPL",
4601 "IDMA_FL_SEND_PAYLOAD_FIRST",
4602 "IDMA_FL_SEND_PAYLOAD",
4603 "IDMA_FL_REQ_NEXT_DATA_FL",
4604 "IDMA_FL_SEND_NEXT_PCIEHDR",
4605 "IDMA_FL_SEND_PADDING",
4606 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4607 };
4608 static const u32 sge_regs[] = {
f061de42
HS
4609 SGE_DEBUG_DATA_LOW_INDEX_2_A,
4610 SGE_DEBUG_DATA_LOW_INDEX_3_A,
4611 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
4612 };
4613 const char **sge_idma_decode;
4614 int sge_idma_decode_nstates;
4615 int i;
4616
4617 if (is_t4(adapter->params.chip)) {
4618 sge_idma_decode = (const char **)t4_decode;
4619 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
4620 } else {
4621 sge_idma_decode = (const char **)t5_decode;
4622 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
4623 }
4624
4625 if (state < sge_idma_decode_nstates)
4626 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
4627 else
4628 CH_WARN(adapter, "idma state %d unknown\n", state);
4629
4630 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
4631 CH_WARN(adapter, "SGE register %#x value %#x\n",
4632 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
4633}
4634
5d700ecb
HS
4635/**
4636 * t4_sge_ctxt_flush - flush the SGE context cache
4637 * @adap: the adapter
4638 * @mbox: mailbox to use for the FW command
4639 *
4640 * Issues a FW command through the given mailbox to flush the
4641 * SGE context cache.
4642 */
4643int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4644{
4645 int ret;
4646 u32 ldst_addrspace;
4647 struct fw_ldst_cmd c;
4648
4649 memset(&c, 0, sizeof(c));
4650 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
4651 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4652 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4653 ldst_addrspace);
4654 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4655 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
4656
4657 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4658 return ret;
4659}
4660
56d36be4 4661/**
636f9d37
VP
4662 * t4_fw_hello - establish communication with FW
4663 * @adap: the adapter
4664 * @mbox: mailbox to use for the FW command
4665 * @evt_mbox: mailbox to receive async FW events
4666 * @master: specifies the caller's willingness to be the device master
4667 * @state: returns the current device state (if non-NULL)
56d36be4 4668 *
636f9d37
VP
4669 * Issues a command to establish communication with FW. Returns either
4670 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
4671 */
4672int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4673 enum dev_master master, enum dev_state *state)
4674{
4675 int ret;
4676 struct fw_hello_cmd c;
636f9d37
VP
4677 u32 v;
4678 unsigned int master_mbox;
4679 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 4680
636f9d37
VP
4681retry:
4682 memset(&c, 0, sizeof(c));
56d36be4 4683 INIT_CMD(c, HELLO, WRITE);
f404f80c 4684 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
4685 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
4686 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
4687 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
4688 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
4689 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
4690 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
4691 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 4692
636f9d37
VP
4693 /*
4694 * Issue the HELLO command to the firmware. If it's not successful
4695 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
4696 * the HELLO until we exhaust our retry limit. If we do exceed our
4697 * retry limit, check to see if the firmware left us any error
4698 * information and report that if so.
636f9d37 4699 */
56d36be4 4700 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
4701 if (ret < 0) {
4702 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4703 goto retry;
f061de42 4704 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 4705 t4_report_fw_error(adap);
636f9d37
VP
4706 return ret;
4707 }
4708
f404f80c 4709 v = be32_to_cpu(c.err_to_clearinit);
5167865a 4710 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 4711 if (state) {
5167865a 4712 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 4713 *state = DEV_STATE_ERR;
5167865a 4714 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 4715 *state = DEV_STATE_INIT;
56d36be4
DM
4716 else
4717 *state = DEV_STATE_UNINIT;
4718 }
636f9d37
VP
4719
4720 /*
4721 * If we're not the Master PF then we need to wait around for the
4722 * Master PF Driver to finish setting up the adapter.
4723 *
4724 * Note that we also do this wait if we're a non-Master-capable PF and
4725 * there is no current Master PF; a Master PF may show up momentarily
4726 * and we wouldn't want to fail pointlessly. (This can happen when an
4727 * OS loads lots of different drivers rapidly at the same time). In
4728 * this case, the Master PF returned by the firmware will be
b2e1a3f0 4729 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 4730 */
5167865a 4731 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
4732 master_mbox != mbox) {
4733 int waiting = FW_CMD_HELLO_TIMEOUT;
4734
4735 /*
4736 * Wait for the firmware to either indicate an error or
4737 * initialized state. If we see either of these we bail out
4738 * and report the issue to the caller. If we exhaust the
4739 * "hello timeout" and we haven't exhausted our retries, try
4740 * again. Otherwise bail with a timeout error.
4741 */
4742 for (;;) {
4743 u32 pcie_fw;
4744
4745 msleep(50);
4746 waiting -= 50;
4747
4748 /*
4749 * If neither Error nor Initialialized are indicated
4750 * by the firmware keep waiting till we exaust our
4751 * timeout ... and then retry if we haven't exhausted
4752 * our retries ...
4753 */
f061de42
HS
4754 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
4755 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
4756 if (waiting <= 0) {
4757 if (retries-- > 0)
4758 goto retry;
4759
4760 return -ETIMEDOUT;
4761 }
4762 continue;
4763 }
4764
4765 /*
4766 * We either have an Error or Initialized condition
4767 * report errors preferentially.
4768 */
4769 if (state) {
f061de42 4770 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 4771 *state = DEV_STATE_ERR;
f061de42 4772 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
4773 *state = DEV_STATE_INIT;
4774 }
4775
4776 /*
4777 * If we arrived before a Master PF was selected and
4778 * there's not a valid Master PF, grab its identity
4779 * for our caller.
4780 */
b2e1a3f0 4781 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 4782 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 4783 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
4784 break;
4785 }
4786 }
4787
4788 return master_mbox;
56d36be4
DM
4789}
4790
4791/**
4792 * t4_fw_bye - end communication with FW
4793 * @adap: the adapter
4794 * @mbox: mailbox to use for the FW command
4795 *
4796 * Issues a command to terminate communication with FW.
4797 */
4798int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4799{
4800 struct fw_bye_cmd c;
4801
0062b15c 4802 memset(&c, 0, sizeof(c));
56d36be4
DM
4803 INIT_CMD(c, BYE, WRITE);
4804 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4805}
4806
4807/**
4808 * t4_init_cmd - ask FW to initialize the device
4809 * @adap: the adapter
4810 * @mbox: mailbox to use for the FW command
4811 *
4812 * Issues a command to FW to partially initialize the device. This
4813 * performs initialization that generally doesn't depend on user input.
4814 */
4815int t4_early_init(struct adapter *adap, unsigned int mbox)
4816{
4817 struct fw_initialize_cmd c;
4818
0062b15c 4819 memset(&c, 0, sizeof(c));
56d36be4
DM
4820 INIT_CMD(c, INITIALIZE, WRITE);
4821 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4822}
4823
4824/**
4825 * t4_fw_reset - issue a reset to FW
4826 * @adap: the adapter
4827 * @mbox: mailbox to use for the FW command
4828 * @reset: specifies the type of reset to perform
4829 *
4830 * Issues a reset command of the specified type to FW.
4831 */
4832int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4833{
4834 struct fw_reset_cmd c;
4835
0062b15c 4836 memset(&c, 0, sizeof(c));
56d36be4 4837 INIT_CMD(c, RESET, WRITE);
f404f80c 4838 c.val = cpu_to_be32(reset);
56d36be4
DM
4839 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4840}
4841
26f7cbc0
VP
4842/**
4843 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4844 * @adap: the adapter
4845 * @mbox: mailbox to use for the FW RESET command (if desired)
4846 * @force: force uP into RESET even if FW RESET command fails
4847 *
4848 * Issues a RESET command to firmware (if desired) with a HALT indication
4849 * and then puts the microprocessor into RESET state. The RESET command
4850 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 4851 * PCIE_FW_MASTER_M).
26f7cbc0
VP
4852 *
4853 * This is generally used in order for the host to safely manipulate the
4854 * adapter without fear of conflicting with whatever the firmware might
4855 * be doing. The only way out of this state is to RESTART the firmware
4856 * ...
4857 */
de5b8677 4858static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
4859{
4860 int ret = 0;
4861
4862 /*
4863 * If a legitimate mailbox is provided, issue a RESET command
4864 * with a HALT indication.
4865 */
b2e1a3f0 4866 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
4867 struct fw_reset_cmd c;
4868
4869 memset(&c, 0, sizeof(c));
4870 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
4871 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
4872 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
4873 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4874 }
4875
4876 /*
4877 * Normally we won't complete the operation if the firmware RESET
4878 * command fails but if our caller insists we'll go ahead and put the
4879 * uP into RESET. This can be useful if the firmware is hung or even
4880 * missing ... We'll have to take the risk of putting the uP into
4881 * RESET without the cooperation of firmware in that case.
4882 *
4883 * We also force the firmware's HALT flag to be on in case we bypassed
4884 * the firmware RESET command above or we're dealing with old firmware
4885 * which doesn't have the HALT capability. This will serve as a flag
4886 * for the incoming firmware to know that it's coming out of a HALT
4887 * rather than a RESET ... if it's new enough to understand that ...
4888 */
4889 if (ret == 0 || force) {
89c3a86c 4890 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 4891 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 4892 PCIE_FW_HALT_F);
26f7cbc0
VP
4893 }
4894
4895 /*
4896 * And we always return the result of the firmware RESET command
4897 * even when we force the uP into RESET ...
4898 */
4899 return ret;
4900}
4901
4902/**
4903 * t4_fw_restart - restart the firmware by taking the uP out of RESET
4904 * @adap: the adapter
4905 * @reset: if we want to do a RESET to restart things
4906 *
4907 * Restart firmware previously halted by t4_fw_halt(). On successful
4908 * return the previous PF Master remains as the new PF Master and there
4909 * is no need to issue a new HELLO command, etc.
4910 *
4911 * We do this in two ways:
4912 *
4913 * 1. If we're dealing with newer firmware we'll simply want to take
4914 * the chip's microprocessor out of RESET. This will cause the
4915 * firmware to start up from its start vector. And then we'll loop
4916 * until the firmware indicates it's started again (PCIE_FW.HALT
4917 * reset to 0) or we timeout.
4918 *
4919 * 2. If we're dealing with older firmware then we'll need to RESET
4920 * the chip since older firmware won't recognize the PCIE_FW.HALT
4921 * flag and automatically RESET itself on startup.
4922 */
de5b8677 4923static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
4924{
4925 if (reset) {
4926 /*
4927 * Since we're directing the RESET instead of the firmware
4928 * doing it automatically, we need to clear the PCIE_FW.HALT
4929 * bit.
4930 */
f061de42 4931 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
4932
4933 /*
4934 * If we've been given a valid mailbox, first try to get the
4935 * firmware to do the RESET. If that works, great and we can
4936 * return success. Otherwise, if we haven't been given a
4937 * valid mailbox or the RESET command failed, fall back to
4938 * hitting the chip with a hammer.
4939 */
b2e1a3f0 4940 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 4941 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
4942 msleep(100);
4943 if (t4_fw_reset(adap, mbox,
0d804338 4944 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
4945 return 0;
4946 }
4947
0d804338 4948 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
4949 msleep(2000);
4950 } else {
4951 int ms;
4952
89c3a86c 4953 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 4954 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 4955 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
4956 return 0;
4957 msleep(100);
4958 ms += 100;
4959 }
4960 return -ETIMEDOUT;
4961 }
4962 return 0;
4963}
4964
4965/**
4966 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4967 * @adap: the adapter
4968 * @mbox: mailbox to use for the FW RESET command (if desired)
4969 * @fw_data: the firmware image to write
4970 * @size: image size
4971 * @force: force upgrade even if firmware doesn't cooperate
4972 *
4973 * Perform all of the steps necessary for upgrading an adapter's
4974 * firmware image. Normally this requires the cooperation of the
4975 * existing firmware in order to halt all existing activities
4976 * but if an invalid mailbox token is passed in we skip that step
4977 * (though we'll still put the adapter microprocessor into RESET in
4978 * that case).
4979 *
4980 * On successful return the new firmware will have been loaded and
4981 * the adapter will have been fully RESET losing all previous setup
4982 * state. On unsuccessful return the adapter may be completely hosed ...
4983 * positive errno indicates that the adapter is ~probably~ intact, a
4984 * negative errno indicates that things are looking bad ...
4985 */
22c0b963
HS
4986int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4987 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
4988{
4989 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4990 int reset, ret;
4991
79af221d
HS
4992 if (!t4_fw_matches_chip(adap, fw_hdr))
4993 return -EINVAL;
4994
26f7cbc0
VP
4995 ret = t4_fw_halt(adap, mbox, force);
4996 if (ret < 0 && !force)
4997 return ret;
4998
4999 ret = t4_load_fw(adap, fw_data, size);
5000 if (ret < 0)
5001 return ret;
5002
5003 /*
5004 * Older versions of the firmware don't understand the new
5005 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
5006 * restart. So for newly loaded older firmware we'll have to do the
5007 * RESET for it so it starts up on a clean slate. We can tell if
5008 * the newly loaded firmware will handle this right by checking
5009 * its header flags to see if it advertises the capability.
5010 */
f404f80c 5011 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26f7cbc0
VP
5012 return t4_fw_restart(adap, mbox, reset);
5013}
5014
636f9d37
VP
5015/**
5016 * t4_fixup_host_params - fix up host-dependent parameters
5017 * @adap: the adapter
5018 * @page_size: the host's Base Page Size
5019 * @cache_line_size: the host's Cache Line Size
5020 *
5021 * Various registers in T4 contain values which are dependent on the
5022 * host's Base Page and Cache Line Sizes. This function will fix all of
5023 * those registers with the appropriate values as passed in ...
5024 */
5025int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
5026 unsigned int cache_line_size)
5027{
5028 unsigned int page_shift = fls(page_size) - 1;
5029 unsigned int sge_hps = page_shift - 10;
5030 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
5031 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
5032 unsigned int fl_align_log = fls(fl_align) - 1;
5033
f612b815
HS
5034 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
5035 HOSTPAGESIZEPF0_V(sge_hps) |
5036 HOSTPAGESIZEPF1_V(sge_hps) |
5037 HOSTPAGESIZEPF2_V(sge_hps) |
5038 HOSTPAGESIZEPF3_V(sge_hps) |
5039 HOSTPAGESIZEPF4_V(sge_hps) |
5040 HOSTPAGESIZEPF5_V(sge_hps) |
5041 HOSTPAGESIZEPF6_V(sge_hps) |
5042 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 5043
ce8f407a 5044 if (is_t4(adap->params.chip)) {
f612b815
HS
5045 t4_set_reg_field(adap, SGE_CONTROL_A,
5046 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5047 EGRSTATUSPAGESIZE_F,
5048 INGPADBOUNDARY_V(fl_align_log -
5049 INGPADBOUNDARY_SHIFT_X) |
5050 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
5051 } else {
5052 /* T5 introduced the separation of the Free List Padding and
5053 * Packing Boundaries. Thus, we can select a smaller Padding
5054 * Boundary to avoid uselessly chewing up PCIe Link and Memory
5055 * Bandwidth, and use a Packing Boundary which is large enough
5056 * to avoid false sharing between CPUs, etc.
5057 *
5058 * For the PCI Link, the smaller the Padding Boundary the
5059 * better. For the Memory Controller, a smaller Padding
5060 * Boundary is better until we cross under the Memory Line
5061 * Size (the minimum unit of transfer to/from Memory). If we
5062 * have a Padding Boundary which is smaller than the Memory
5063 * Line Size, that'll involve a Read-Modify-Write cycle on the
5064 * Memory Controller which is never good. For T5 the smallest
5065 * Padding Boundary which we can select is 32 bytes which is
5066 * larger than any known Memory Controller Line Size so we'll
5067 * use that.
5068 *
5069 * T5 has a different interpretation of the "0" value for the
5070 * Packing Boundary. This corresponds to 16 bytes instead of
5071 * the expected 32 bytes. We never have a Packing Boundary
5072 * less than 32 bytes so we can't use that special value but
5073 * on the other hand, if we wanted 32 bytes, the best we can
5074 * really do is 64 bytes.
5075 */
5076 if (fl_align <= 32) {
5077 fl_align = 64;
5078 fl_align_log = 6;
5079 }
f612b815
HS
5080 t4_set_reg_field(adap, SGE_CONTROL_A,
5081 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5082 EGRSTATUSPAGESIZE_F,
5083 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
5084 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
5085 t4_set_reg_field(adap, SGE_CONTROL2_A,
5086 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
5087 INGPACKBOUNDARY_V(fl_align_log -
f612b815 5088 INGPACKBOUNDARY_SHIFT_X));
ce8f407a 5089 }
636f9d37
VP
5090 /*
5091 * Adjust various SGE Free List Host Buffer Sizes.
5092 *
5093 * This is something of a crock since we're using fixed indices into
5094 * the array which are also known by the sge.c code and the T4
5095 * Firmware Configuration File. We need to come up with a much better
5096 * approach to managing this array. For now, the first four entries
5097 * are:
5098 *
5099 * 0: Host Page Size
5100 * 1: 64KB
5101 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
5102 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
5103 *
5104 * For the single-MTU buffers in unpacked mode we need to include
5105 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
5106 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 5107 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
5108 * Default Firmware Configuration File but we need to adjust it for
5109 * this host's cache line size.
5110 */
f612b815
HS
5111 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
5112 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
5113 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 5114 & ~(fl_align-1));
f612b815
HS
5115 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
5116 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
5117 & ~(fl_align-1));
5118
0d804338 5119 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
5120
5121 return 0;
5122}
5123
5124/**
5125 * t4_fw_initialize - ask FW to initialize the device
5126 * @adap: the adapter
5127 * @mbox: mailbox to use for the FW command
5128 *
5129 * Issues a command to FW to partially initialize the device. This
5130 * performs initialization that generally doesn't depend on user input.
5131 */
5132int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
5133{
5134 struct fw_initialize_cmd c;
5135
5136 memset(&c, 0, sizeof(c));
5137 INIT_CMD(c, INITIALIZE, WRITE);
5138 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5139}
5140
56d36be4 5141/**
01b69614 5142 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
5143 * @adap: the adapter
5144 * @mbox: mailbox to use for the FW command
5145 * @pf: the PF
5146 * @vf: the VF
5147 * @nparams: the number of parameters
5148 * @params: the parameter names
5149 * @val: the parameter values
01b69614 5150 * @rw: Write and read flag
56d36be4
DM
5151 *
5152 * Reads the value of FW or device parameters. Up to 7 parameters can be
5153 * queried at once.
5154 */
01b69614
HS
5155int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
5156 unsigned int vf, unsigned int nparams, const u32 *params,
5157 u32 *val, int rw)
56d36be4
DM
5158{
5159 int i, ret;
5160 struct fw_params_cmd c;
5161 __be32 *p = &c.param[0].mnem;
5162
5163 if (nparams > 7)
5164 return -EINVAL;
5165
5166 memset(&c, 0, sizeof(c));
f404f80c
HS
5167 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5168 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5169 FW_PARAMS_CMD_PFN_V(pf) |
5170 FW_PARAMS_CMD_VFN_V(vf));
5171 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5172
01b69614
HS
5173 for (i = 0; i < nparams; i++) {
5174 *p++ = cpu_to_be32(*params++);
5175 if (rw)
5176 *p = cpu_to_be32(*(val + i));
5177 p++;
5178 }
56d36be4
DM
5179
5180 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5181 if (ret == 0)
5182 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 5183 *val++ = be32_to_cpu(*p);
56d36be4
DM
5184 return ret;
5185}
5186
01b69614
HS
5187int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5188 unsigned int vf, unsigned int nparams, const u32 *params,
5189 u32 *val)
5190{
5191 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
5192}
5193
688848b1 5194/**
01b69614 5195 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
5196 * @adap: the adapter
5197 * @mbox: mailbox to use for the FW command
5198 * @pf: the PF
5199 * @vf: the VF
5200 * @nparams: the number of parameters
5201 * @params: the parameter names
5202 * @val: the parameter values
01b69614 5203 * @timeout: the timeout time
688848b1 5204 *
688848b1
AB
5205 * Sets the value of FW or device parameters. Up to 7 parameters can be
5206 * specified at once.
5207 */
01b69614 5208int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
5209 unsigned int pf, unsigned int vf,
5210 unsigned int nparams, const u32 *params,
01b69614 5211 const u32 *val, int timeout)
688848b1
AB
5212{
5213 struct fw_params_cmd c;
5214 __be32 *p = &c.param[0].mnem;
5215
5216 if (nparams > 7)
5217 return -EINVAL;
5218
5219 memset(&c, 0, sizeof(c));
e2ac9628 5220 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
5221 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5222 FW_PARAMS_CMD_PFN_V(pf) |
5223 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
5224 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5225
5226 while (nparams--) {
5227 *p++ = cpu_to_be32(*params++);
5228 *p++ = cpu_to_be32(*val++);
5229 }
5230
01b69614 5231 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
5232}
5233
56d36be4
DM
5234/**
5235 * t4_set_params - sets FW or device parameters
5236 * @adap: the adapter
5237 * @mbox: mailbox to use for the FW command
5238 * @pf: the PF
5239 * @vf: the VF
5240 * @nparams: the number of parameters
5241 * @params: the parameter names
5242 * @val: the parameter values
5243 *
5244 * Sets the value of FW or device parameters. Up to 7 parameters can be
5245 * specified at once.
5246 */
5247int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5248 unsigned int vf, unsigned int nparams, const u32 *params,
5249 const u32 *val)
5250{
01b69614
HS
5251 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
5252 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
5253}
5254
5255/**
5256 * t4_cfg_pfvf - configure PF/VF resource limits
5257 * @adap: the adapter
5258 * @mbox: mailbox to use for the FW command
5259 * @pf: the PF being configured
5260 * @vf: the VF being configured
5261 * @txq: the max number of egress queues
5262 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
5263 * @rxqi: the max number of interrupt-capable ingress queues
5264 * @rxq: the max number of interruptless ingress queues
5265 * @tc: the PCI traffic class
5266 * @vi: the max number of virtual interfaces
5267 * @cmask: the channel access rights mask for the PF/VF
5268 * @pmask: the port access rights mask for the PF/VF
5269 * @nexact: the maximum number of exact MPS filters
5270 * @rcaps: read capabilities
5271 * @wxcaps: write/execute capabilities
5272 *
5273 * Configures resource limits and capabilities for a physical or virtual
5274 * function.
5275 */
5276int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
5277 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
5278 unsigned int rxqi, unsigned int rxq, unsigned int tc,
5279 unsigned int vi, unsigned int cmask, unsigned int pmask,
5280 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
5281{
5282 struct fw_pfvf_cmd c;
5283
5284 memset(&c, 0, sizeof(c));
f404f80c
HS
5285 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
5286 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
5287 FW_PFVF_CMD_VFN_V(vf));
5288 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5289 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
5290 FW_PFVF_CMD_NIQ_V(rxq));
5291 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
5292 FW_PFVF_CMD_PMASK_V(pmask) |
5293 FW_PFVF_CMD_NEQ_V(txq));
5294 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
5295 FW_PFVF_CMD_NVI_V(vi) |
5296 FW_PFVF_CMD_NEXACTF_V(nexact));
5297 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
5298 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
5299 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
5300 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5301}
5302
5303/**
5304 * t4_alloc_vi - allocate a virtual interface
5305 * @adap: the adapter
5306 * @mbox: mailbox to use for the FW command
5307 * @port: physical port associated with the VI
5308 * @pf: the PF owning the VI
5309 * @vf: the VF owning the VI
5310 * @nmac: number of MAC addresses needed (1 to 5)
5311 * @mac: the MAC addresses of the VI
5312 * @rss_size: size of RSS table slice associated with this VI
5313 *
5314 * Allocates a virtual interface for the given physical port. If @mac is
5315 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
5316 * @mac should be large enough to hold @nmac Ethernet addresses, they are
5317 * stored consecutively so the space needed is @nmac * 6 bytes.
5318 * Returns a negative error number or the non-negative VI id.
5319 */
5320int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
5321 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
5322 unsigned int *rss_size)
5323{
5324 int ret;
5325 struct fw_vi_cmd c;
5326
5327 memset(&c, 0, sizeof(c));
f404f80c
HS
5328 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
5329 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
5330 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
5331 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 5332 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
5333 c.nmac = nmac - 1;
5334
5335 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5336 if (ret)
5337 return ret;
5338
5339 if (mac) {
5340 memcpy(mac, c.mac, sizeof(c.mac));
5341 switch (nmac) {
5342 case 5:
5343 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
5344 case 4:
5345 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
5346 case 3:
5347 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
5348 case 2:
5349 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
5350 }
5351 }
5352 if (rss_size)
f404f80c
HS
5353 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
5354 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
5355}
5356
4f3a0fcf
HS
5357/**
5358 * t4_free_vi - free a virtual interface
5359 * @adap: the adapter
5360 * @mbox: mailbox to use for the FW command
5361 * @pf: the PF owning the VI
5362 * @vf: the VF owning the VI
5363 * @viid: virtual interface identifiler
5364 *
5365 * Free a previously allocated virtual interface.
5366 */
5367int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
5368 unsigned int vf, unsigned int viid)
5369{
5370 struct fw_vi_cmd c;
5371
5372 memset(&c, 0, sizeof(c));
5373 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
5374 FW_CMD_REQUEST_F |
5375 FW_CMD_EXEC_F |
5376 FW_VI_CMD_PFN_V(pf) |
5377 FW_VI_CMD_VFN_V(vf));
5378 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
5379 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
5380
5381 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5382}
5383
56d36be4
DM
5384/**
5385 * t4_set_rxmode - set Rx properties of a virtual interface
5386 * @adap: the adapter
5387 * @mbox: mailbox to use for the FW command
5388 * @viid: the VI id
5389 * @mtu: the new MTU or -1
5390 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5391 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5392 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 5393 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
5394 * @sleep_ok: if true we may sleep while awaiting command completion
5395 *
5396 * Sets Rx properties of a virtual interface.
5397 */
5398int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
5399 int mtu, int promisc, int all_multi, int bcast, int vlanex,
5400 bool sleep_ok)
56d36be4
DM
5401{
5402 struct fw_vi_rxmode_cmd c;
5403
5404 /* convert to FW values */
5405 if (mtu < 0)
5406 mtu = FW_RXMODE_MTU_NO_CHG;
5407 if (promisc < 0)
2b5fb1f2 5408 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 5409 if (all_multi < 0)
2b5fb1f2 5410 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 5411 if (bcast < 0)
2b5fb1f2 5412 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 5413 if (vlanex < 0)
2b5fb1f2 5414 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
5415
5416 memset(&c, 0, sizeof(c));
f404f80c
HS
5417 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
5418 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5419 FW_VI_RXMODE_CMD_VIID_V(viid));
5420 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5421 c.mtu_to_vlanexen =
5422 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
5423 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
5424 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
5425 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
5426 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
5427 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5428}
5429
5430/**
5431 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5432 * @adap: the adapter
5433 * @mbox: mailbox to use for the FW command
5434 * @viid: the VI id
5435 * @free: if true any existing filters for this VI id are first removed
5436 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
5437 * @addr: the MAC address(es)
5438 * @idx: where to store the index of each allocated filter
5439 * @hash: pointer to hash address filter bitmap
5440 * @sleep_ok: call is allowed to sleep
5441 *
5442 * Allocates an exact-match filter for each of the supplied addresses and
5443 * sets it to the corresponding address. If @idx is not %NULL it should
5444 * have at least @naddr entries, each of which will be set to the index of
5445 * the filter allocated for the corresponding MAC address. If a filter
5446 * could not be allocated for an address its index is set to 0xffff.
5447 * If @hash is not %NULL addresses that fail to allocate an exact filter
5448 * are hashed and update the hash filter bitmap pointed at by @hash.
5449 *
5450 * Returns a negative error number or the number of filters allocated.
5451 */
5452int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5453 unsigned int viid, bool free, unsigned int naddr,
5454 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5455{
3ccc6cf7 5456 int offset, ret = 0;
56d36be4 5457 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
5458 unsigned int nfilters = 0;
5459 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
5460 unsigned int rem = naddr;
56d36be4 5461
3ccc6cf7 5462 if (naddr > max_naddr)
56d36be4
DM
5463 return -EINVAL;
5464
3ccc6cf7
HS
5465 for (offset = 0; offset < naddr ; /**/) {
5466 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
5467 rem : ARRAY_SIZE(c.u.exact));
5468 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5469 u.exact[fw_naddr]), 16);
5470 struct fw_vi_mac_exact *p;
5471 int i;
56d36be4 5472
3ccc6cf7
HS
5473 memset(&c, 0, sizeof(c));
5474 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5475 FW_CMD_REQUEST_F |
5476 FW_CMD_WRITE_F |
5477 FW_CMD_EXEC_V(free) |
5478 FW_VI_MAC_CMD_VIID_V(viid));
5479 c.freemacs_to_len16 =
5480 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
5481 FW_CMD_LEN16_V(len16));
5482
5483 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5484 p->valid_to_idx =
5485 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5486 FW_VI_MAC_CMD_IDX_V(
5487 FW_VI_MAC_ADD_MAC));
5488 memcpy(p->macaddr, addr[offset + i],
5489 sizeof(p->macaddr));
5490 }
56d36be4 5491
3ccc6cf7
HS
5492 /* It's okay if we run out of space in our MAC address arena.
5493 * Some of the addresses we submit may get stored so we need
5494 * to run through the reply to see what the results were ...
5495 */
5496 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5497 if (ret && ret != -FW_ENOMEM)
5498 break;
56d36be4 5499
3ccc6cf7
HS
5500 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5501 u16 index = FW_VI_MAC_CMD_IDX_G(
5502 be16_to_cpu(p->valid_to_idx));
5503
5504 if (idx)
5505 idx[offset + i] = (index >= max_naddr ?
5506 0xffff : index);
5507 if (index < max_naddr)
5508 nfilters++;
5509 else if (hash)
5510 *hash |= (1ULL <<
5511 hash_mac_addr(addr[offset + i]));
5512 }
5513
5514 free = false;
5515 offset += fw_naddr;
5516 rem -= fw_naddr;
56d36be4 5517 }
3ccc6cf7
HS
5518
5519 if (ret == 0 || ret == -FW_ENOMEM)
5520 ret = nfilters;
56d36be4
DM
5521 return ret;
5522}
5523
5524/**
5525 * t4_change_mac - modifies the exact-match filter for a MAC address
5526 * @adap: the adapter
5527 * @mbox: mailbox to use for the FW command
5528 * @viid: the VI id
5529 * @idx: index of existing filter for old value of MAC address, or -1
5530 * @addr: the new MAC address value
5531 * @persist: whether a new MAC allocation should be persistent
5532 * @add_smt: if true also add the address to the HW SMT
5533 *
5534 * Modifies an exact-match filter and sets it to the new MAC address.
5535 * Note that in general it is not possible to modify the value of a given
5536 * filter so the generic way to modify an address filter is to free the one
5537 * being used by the old address value and allocate a new filter for the
5538 * new address value. @idx can be -1 if the address is a new addition.
5539 *
5540 * Returns a negative error number or the index of the filter with the new
5541 * MAC value.
5542 */
5543int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5544 int idx, const u8 *addr, bool persist, bool add_smt)
5545{
5546 int ret, mode;
5547 struct fw_vi_mac_cmd c;
5548 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 5549 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
5550
5551 if (idx < 0) /* new allocation */
5552 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5553 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5554
5555 memset(&c, 0, sizeof(c));
f404f80c
HS
5556 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5557 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5558 FW_VI_MAC_CMD_VIID_V(viid));
5559 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
5560 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5561 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
5562 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
5563 memcpy(p->macaddr, addr, sizeof(p->macaddr));
5564
5565 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5566 if (ret == 0) {
f404f80c 5567 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 5568 if (ret >= max_mac_addr)
56d36be4
DM
5569 ret = -ENOMEM;
5570 }
5571 return ret;
5572}
5573
5574/**
5575 * t4_set_addr_hash - program the MAC inexact-match hash filter
5576 * @adap: the adapter
5577 * @mbox: mailbox to use for the FW command
5578 * @viid: the VI id
5579 * @ucast: whether the hash filter should also match unicast addresses
5580 * @vec: the value to be written to the hash filter
5581 * @sleep_ok: call is allowed to sleep
5582 *
5583 * Sets the 64-bit inexact-match hash filter for a virtual interface.
5584 */
5585int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5586 bool ucast, u64 vec, bool sleep_ok)
5587{
5588 struct fw_vi_mac_cmd c;
5589
5590 memset(&c, 0, sizeof(c));
f404f80c
HS
5591 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5592 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5593 FW_VI_ENABLE_CMD_VIID_V(viid));
5594 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
5595 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
5596 FW_CMD_LEN16_V(1));
56d36be4
DM
5597 c.u.hash.hashvec = cpu_to_be64(vec);
5598 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5599}
5600
688848b1
AB
5601/**
5602 * t4_enable_vi_params - enable/disable a virtual interface
5603 * @adap: the adapter
5604 * @mbox: mailbox to use for the FW command
5605 * @viid: the VI id
5606 * @rx_en: 1=enable Rx, 0=disable Rx
5607 * @tx_en: 1=enable Tx, 0=disable Tx
5608 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
5609 *
5610 * Enables/disables a virtual interface. Note that setting DCB Enable
5611 * only makes sense when enabling a Virtual Interface ...
5612 */
5613int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
5614 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
5615{
5616 struct fw_vi_enable_cmd c;
5617
5618 memset(&c, 0, sizeof(c));
f404f80c
HS
5619 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5620 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5621 FW_VI_ENABLE_CMD_VIID_V(viid));
5622 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
5623 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
5624 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
5625 FW_LEN16(c));
30f00847 5626 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
5627}
5628
56d36be4
DM
5629/**
5630 * t4_enable_vi - enable/disable a virtual interface
5631 * @adap: the adapter
5632 * @mbox: mailbox to use for the FW command
5633 * @viid: the VI id
5634 * @rx_en: 1=enable Rx, 0=disable Rx
5635 * @tx_en: 1=enable Tx, 0=disable Tx
5636 *
5637 * Enables/disables a virtual interface.
5638 */
5639int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5640 bool rx_en, bool tx_en)
5641{
688848b1 5642 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
5643}
5644
5645/**
5646 * t4_identify_port - identify a VI's port by blinking its LED
5647 * @adap: the adapter
5648 * @mbox: mailbox to use for the FW command
5649 * @viid: the VI id
5650 * @nblinks: how many times to blink LED at 2.5 Hz
5651 *
5652 * Identifies a VI's port by blinking its LED.
5653 */
5654int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5655 unsigned int nblinks)
5656{
5657 struct fw_vi_enable_cmd c;
5658
0062b15c 5659 memset(&c, 0, sizeof(c));
f404f80c
HS
5660 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5661 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5662 FW_VI_ENABLE_CMD_VIID_V(viid));
5663 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
5664 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 5665 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
5666}
5667
5668/**
5669 * t4_iq_free - free an ingress queue and its FLs
5670 * @adap: the adapter
5671 * @mbox: mailbox to use for the FW command
5672 * @pf: the PF owning the queues
5673 * @vf: the VF owning the queues
5674 * @iqtype: the ingress queue type
5675 * @iqid: ingress queue id
5676 * @fl0id: FL0 queue id or 0xffff if no attached FL0
5677 * @fl1id: FL1 queue id or 0xffff if no attached FL1
5678 *
5679 * Frees an ingress queue and its associated FLs, if any.
5680 */
5681int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5682 unsigned int vf, unsigned int iqtype, unsigned int iqid,
5683 unsigned int fl0id, unsigned int fl1id)
5684{
5685 struct fw_iq_cmd c;
5686
5687 memset(&c, 0, sizeof(c));
f404f80c
HS
5688 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
5689 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
5690 FW_IQ_CMD_VFN_V(vf));
5691 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
5692 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
5693 c.iqid = cpu_to_be16(iqid);
5694 c.fl0id = cpu_to_be16(fl0id);
5695 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
5696 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5697}
5698
5699/**
5700 * t4_eth_eq_free - free an Ethernet egress queue
5701 * @adap: the adapter
5702 * @mbox: mailbox to use for the FW command
5703 * @pf: the PF owning the queue
5704 * @vf: the VF owning the queue
5705 * @eqid: egress queue id
5706 *
5707 * Frees an Ethernet egress queue.
5708 */
5709int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5710 unsigned int vf, unsigned int eqid)
5711{
5712 struct fw_eq_eth_cmd c;
5713
5714 memset(&c, 0, sizeof(c));
f404f80c
HS
5715 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
5716 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5717 FW_EQ_ETH_CMD_PFN_V(pf) |
5718 FW_EQ_ETH_CMD_VFN_V(vf));
5719 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
5720 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
5721 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5722}
5723
5724/**
5725 * t4_ctrl_eq_free - free a control egress queue
5726 * @adap: the adapter
5727 * @mbox: mailbox to use for the FW command
5728 * @pf: the PF owning the queue
5729 * @vf: the VF owning the queue
5730 * @eqid: egress queue id
5731 *
5732 * Frees a control egress queue.
5733 */
5734int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5735 unsigned int vf, unsigned int eqid)
5736{
5737 struct fw_eq_ctrl_cmd c;
5738
5739 memset(&c, 0, sizeof(c));
f404f80c
HS
5740 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
5741 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5742 FW_EQ_CTRL_CMD_PFN_V(pf) |
5743 FW_EQ_CTRL_CMD_VFN_V(vf));
5744 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
5745 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
5746 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5747}
5748
5749/**
5750 * t4_ofld_eq_free - free an offload egress queue
5751 * @adap: the adapter
5752 * @mbox: mailbox to use for the FW command
5753 * @pf: the PF owning the queue
5754 * @vf: the VF owning the queue
5755 * @eqid: egress queue id
5756 *
5757 * Frees a control egress queue.
5758 */
5759int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5760 unsigned int vf, unsigned int eqid)
5761{
5762 struct fw_eq_ofld_cmd c;
5763
5764 memset(&c, 0, sizeof(c));
f404f80c
HS
5765 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
5766 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5767 FW_EQ_OFLD_CMD_PFN_V(pf) |
5768 FW_EQ_OFLD_CMD_VFN_V(vf));
5769 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
5770 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
5771 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5772}
5773
5774/**
5775 * t4_handle_fw_rpl - process a FW reply message
5776 * @adap: the adapter
5777 * @rpl: start of the FW message
5778 *
5779 * Processes a FW message, such as link state change messages.
5780 */
5781int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5782{
5783 u8 opcode = *(const u8 *)rpl;
5784
5785 if (opcode == FW_PORT_CMD) { /* link/module state change message */
5786 int speed = 0, fc = 0;
5787 const struct fw_port_cmd *p = (void *)rpl;
f404f80c 5788 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
56d36be4
DM
5789 int port = adap->chan_map[chan];
5790 struct port_info *pi = adap2pinfo(adap, port);
5791 struct link_config *lc = &pi->link_cfg;
f404f80c 5792 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
2b5fb1f2
HS
5793 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
5794 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
56d36be4 5795
2b5fb1f2 5796 if (stat & FW_PORT_CMD_RXPAUSE_F)
56d36be4 5797 fc |= PAUSE_RX;
2b5fb1f2 5798 if (stat & FW_PORT_CMD_TXPAUSE_F)
56d36be4 5799 fc |= PAUSE_TX;
2b5fb1f2 5800 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
e8b39015 5801 speed = 100;
2b5fb1f2 5802 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
e8b39015 5803 speed = 1000;
2b5fb1f2 5804 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
e8b39015 5805 speed = 10000;
2b5fb1f2 5806 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
e8b39015 5807 speed = 40000;
56d36be4
DM
5808
5809 if (link_ok != lc->link_ok || speed != lc->speed ||
5810 fc != lc->fc) { /* something changed */
5811 lc->link_ok = link_ok;
5812 lc->speed = speed;
5813 lc->fc = fc;
444018a7 5814 lc->supported = be16_to_cpu(p->u.info.pcap);
56d36be4
DM
5815 t4_os_link_changed(adap, port, link_ok);
5816 }
5817 if (mod != pi->mod_type) {
5818 pi->mod_type = mod;
5819 t4_os_portmod_changed(adap, port);
5820 }
5821 }
5822 return 0;
5823}
5824
1dd06ae8 5825static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
5826{
5827 u16 val;
56d36be4 5828
e5c8ae5f
JL
5829 if (pci_is_pcie(adapter->pdev)) {
5830 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
5831 p->speed = val & PCI_EXP_LNKSTA_CLS;
5832 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5833 }
5834}
5835
5836/**
5837 * init_link_config - initialize a link's SW state
5838 * @lc: structure holding the link state
5839 * @caps: link capabilities
5840 *
5841 * Initializes the SW state maintained for each link, including the link's
5842 * capabilities and default speed/flow-control/autonegotiation settings.
5843 */
1dd06ae8 5844static void init_link_config(struct link_config *lc, unsigned int caps)
56d36be4
DM
5845{
5846 lc->supported = caps;
5847 lc->requested_speed = 0;
5848 lc->speed = 0;
5849 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5850 if (lc->supported & FW_PORT_CAP_ANEG) {
5851 lc->advertising = lc->supported & ADVERT_MASK;
5852 lc->autoneg = AUTONEG_ENABLE;
5853 lc->requested_fc |= PAUSE_AUTONEG;
5854 } else {
5855 lc->advertising = 0;
5856 lc->autoneg = AUTONEG_DISABLE;
5857 }
5858}
5859
8203b509
HS
5860#define CIM_PF_NOACCESS 0xeeeeeeee
5861
5862int t4_wait_dev_ready(void __iomem *regs)
56d36be4 5863{
8203b509
HS
5864 u32 whoami;
5865
0d804338 5866 whoami = readl(regs + PL_WHOAMI_A);
8203b509 5867 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 5868 return 0;
8203b509 5869
56d36be4 5870 msleep(500);
0d804338 5871 whoami = readl(regs + PL_WHOAMI_A);
8203b509 5872 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
5873}
5874
fe2ee139
HS
5875struct flash_desc {
5876 u32 vendor_and_model_id;
5877 u32 size_mb;
5878};
5879
91744948 5880static int get_flash_params(struct adapter *adap)
900a6596 5881{
fe2ee139
HS
5882 /* Table for non-Numonix supported flash parts. Numonix parts are left
5883 * to the preexisting code. All flash parts have 64KB sectors.
5884 */
5885 static struct flash_desc supported_flash[] = {
5886 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
5887 };
5888
900a6596
DM
5889 int ret;
5890 u32 info;
5891
5892 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
5893 if (!ret)
5894 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 5895 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
5896 if (ret)
5897 return ret;
5898
fe2ee139
HS
5899 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
5900 if (supported_flash[ret].vendor_and_model_id == info) {
5901 adap->params.sf_size = supported_flash[ret].size_mb;
5902 adap->params.sf_nsec =
5903 adap->params.sf_size / SF_SEC_SIZE;
5904 return 0;
5905 }
5906
900a6596
DM
5907 if ((info & 0xff) != 0x20) /* not a Numonix flash */
5908 return -EINVAL;
5909 info >>= 16; /* log2 of size */
5910 if (info >= 0x14 && info < 0x18)
5911 adap->params.sf_nsec = 1 << (info - 16);
5912 else if (info == 0x18)
5913 adap->params.sf_nsec = 64;
5914 else
5915 return -EINVAL;
5916 adap->params.sf_size = 1 << info;
5917 adap->params.sf_fw_start =
89c3a86c 5918 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
5919
5920 if (adap->params.sf_size < FLASH_MIN_SIZE)
5921 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
5922 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
5923 return 0;
5924}
5925
eca0f6ee
HS
5926static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
5927{
5928 u16 val;
5929 u32 pcie_cap;
5930
5931 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5932 if (pcie_cap) {
5933 pci_read_config_word(adapter->pdev,
5934 pcie_cap + PCI_EXP_DEVCTL2, &val);
5935 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
5936 val |= range;
5937 pci_write_config_word(adapter->pdev,
5938 pcie_cap + PCI_EXP_DEVCTL2, val);
5939 }
5940}
5941
56d36be4
DM
5942/**
5943 * t4_prep_adapter - prepare SW and HW for operation
5944 * @adapter: the adapter
5945 * @reset: if true perform a HW reset
5946 *
5947 * Initialize adapter SW state for the various HW modules, set initial
5948 * values for some adapter tunables, take PHYs out of reset, and
5949 * initialize the MDIO interface.
5950 */
91744948 5951int t4_prep_adapter(struct adapter *adapter)
56d36be4 5952{
0a57a536
SR
5953 int ret, ver;
5954 uint16_t device_id;
d14807dd 5955 u32 pl_rev;
56d36be4 5956
56d36be4 5957 get_pci_mode(adapter, &adapter->params.pci);
0d804338 5958 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 5959
900a6596
DM
5960 ret = get_flash_params(adapter);
5961 if (ret < 0) {
5962 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
5963 return ret;
5964 }
5965
0a57a536
SR
5966 /* Retrieve adapter's device ID
5967 */
5968 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
5969 ver = device_id >> 12;
d14807dd 5970 adapter->params.chip = 0;
0a57a536
SR
5971 switch (ver) {
5972 case CHELSIO_T4:
d14807dd 5973 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
5974 adapter->params.arch.sge_fl_db = DBPRIO_F;
5975 adapter->params.arch.mps_tcam_size =
5976 NUM_MPS_CLS_SRAM_L_INSTANCES;
5977 adapter->params.arch.mps_rplc_size = 128;
5978 adapter->params.arch.nchan = NCHAN;
5979 adapter->params.arch.vfcount = 128;
0a57a536
SR
5980 break;
5981 case CHELSIO_T5:
d14807dd 5982 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
5983 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
5984 adapter->params.arch.mps_tcam_size =
5985 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5986 adapter->params.arch.mps_rplc_size = 128;
5987 adapter->params.arch.nchan = NCHAN;
5988 adapter->params.arch.vfcount = 128;
5989 break;
5990 case CHELSIO_T6:
5991 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5992 adapter->params.arch.sge_fl_db = 0;
5993 adapter->params.arch.mps_tcam_size =
5994 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5995 adapter->params.arch.mps_rplc_size = 256;
5996 adapter->params.arch.nchan = 2;
5997 adapter->params.arch.vfcount = 256;
0a57a536
SR
5998 break;
5999 default:
6000 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
6001 device_id);
6002 return -EINVAL;
6003 }
6004
f1ff24aa 6005 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
6006 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
6007
6008 /*
6009 * Default port for debugging in case we can't reach FW.
6010 */
6011 adapter->params.nports = 1;
6012 adapter->params.portvec = 1;
636f9d37 6013 adapter->params.vpd.cclk = 50000;
eca0f6ee
HS
6014
6015 /* Set pci completion timeout value to 4 seconds. */
6016 set_pcie_completion_timeout(adapter, 0xd);
56d36be4
DM
6017 return 0;
6018}
6019
e85c9a7a 6020/**
b2612722 6021 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
6022 * @adapter: the adapter
6023 * @qid: the Queue ID
6024 * @qtype: the Ingress or Egress type for @qid
6025 * @pbar2_qoffset: BAR2 Queue Offset
6026 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
6027 *
6028 * Returns the BAR2 SGE Queue Registers information associated with the
6029 * indicated Absolute Queue ID. These are passed back in return value
6030 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
6031 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
6032 *
6033 * This may return an error which indicates that BAR2 SGE Queue
6034 * registers aren't available. If an error is not returned, then the
6035 * following values are returned:
6036 *
6037 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
6038 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
6039 *
6040 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
6041 * require the "Inferred Queue ID" ability may be used. E.g. the
6042 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
6043 * then these "Inferred Queue ID" register may not be used.
6044 */
b2612722 6045int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
6046 unsigned int qid,
6047 enum t4_bar2_qtype qtype,
6048 u64 *pbar2_qoffset,
6049 unsigned int *pbar2_qid)
6050{
6051 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
6052 u64 bar2_page_offset, bar2_qoffset;
6053 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
6054
6055 /* T4 doesn't support BAR2 SGE Queue registers.
6056 */
6057 if (is_t4(adapter->params.chip))
6058 return -EINVAL;
6059
6060 /* Get our SGE Page Size parameters.
6061 */
6062 page_shift = adapter->params.sge.hps + 10;
6063 page_size = 1 << page_shift;
6064
6065 /* Get the right Queues per Page parameters for our Queue.
6066 */
6067 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
6068 ? adapter->params.sge.eq_qpp
6069 : adapter->params.sge.iq_qpp);
6070 qpp_mask = (1 << qpp_shift) - 1;
6071
6072 /* Calculate the basics of the BAR2 SGE Queue register area:
6073 * o The BAR2 page the Queue registers will be in.
6074 * o The BAR2 Queue ID.
6075 * o The BAR2 Queue ID Offset into the BAR2 page.
6076 */
513d1a1d 6077 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
6078 bar2_qid = qid & qpp_mask;
6079 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
6080
6081 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
6082 * hardware will infer the Absolute Queue ID simply from the writes to
6083 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
6084 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
6085 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
6086 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
6087 * from the BAR2 Page and BAR2 Queue ID.
6088 *
6089 * One important censequence of this is that some BAR2 SGE registers
6090 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
6091 * there. But other registers synthesize the SGE Queue ID purely
6092 * from the writes to the registers -- the Write Combined Doorbell
6093 * Buffer is a good example. These BAR2 SGE Registers are only
6094 * available for those BAR2 SGE Register areas where the SGE Absolute
6095 * Queue ID can be inferred from simple writes.
6096 */
6097 bar2_qoffset = bar2_page_offset;
6098 bar2_qinferred = (bar2_qid_offset < page_size);
6099 if (bar2_qinferred) {
6100 bar2_qoffset += bar2_qid_offset;
6101 bar2_qid = 0;
6102 }
6103
6104 *pbar2_qoffset = bar2_qoffset;
6105 *pbar2_qid = bar2_qid;
6106 return 0;
6107}
6108
ae469b68
HS
6109/**
6110 * t4_init_devlog_params - initialize adapter->params.devlog
6111 * @adap: the adapter
6112 *
6113 * Initialize various fields of the adapter's Firmware Device Log
6114 * Parameters structure.
6115 */
6116int t4_init_devlog_params(struct adapter *adap)
6117{
6118 struct devlog_params *dparams = &adap->params.devlog;
6119 u32 pf_dparams;
6120 unsigned int devlog_meminfo;
6121 struct fw_devlog_cmd devlog_cmd;
6122 int ret;
6123
6124 /* If we're dealing with newer firmware, the Device Log Paramerters
6125 * are stored in a designated register which allows us to access the
6126 * Device Log even if we can't talk to the firmware.
6127 */
6128 pf_dparams =
6129 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
6130 if (pf_dparams) {
6131 unsigned int nentries, nentries128;
6132
6133 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
6134 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
6135
6136 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
6137 nentries = (nentries128 + 1) * 128;
6138 dparams->size = nentries * sizeof(struct fw_devlog_e);
6139
6140 return 0;
6141 }
6142
6143 /* Otherwise, ask the firmware for it's Device Log Parameters.
6144 */
6145 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
6146 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
6147 FW_CMD_REQUEST_F | FW_CMD_READ_F);
6148 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
6149 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
6150 &devlog_cmd);
6151 if (ret)
6152 return ret;
6153
f404f80c
HS
6154 devlog_meminfo =
6155 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
6156 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
6157 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 6158 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
6159
6160 return 0;
6161}
6162
e85c9a7a
HS
6163/**
6164 * t4_init_sge_params - initialize adap->params.sge
6165 * @adapter: the adapter
6166 *
6167 * Initialize various fields of the adapter's SGE Parameters structure.
6168 */
6169int t4_init_sge_params(struct adapter *adapter)
6170{
6171 struct sge_params *sge_params = &adapter->params.sge;
6172 u32 hps, qpp;
6173 unsigned int s_hps, s_qpp;
6174
6175 /* Extract the SGE Page Size for our PF.
6176 */
f612b815 6177 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 6178 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 6179 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
6180 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
6181
6182 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
6183 */
6184 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 6185 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
6186 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
6187 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 6188 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 6189 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
6190
6191 return 0;
6192}
6193
dcf7b6f5
KS
6194/**
6195 * t4_init_tp_params - initialize adap->params.tp
6196 * @adap: the adapter
6197 *
6198 * Initialize various fields of the adapter's TP Parameters structure.
6199 */
6200int t4_init_tp_params(struct adapter *adap)
6201{
6202 int chan;
6203 u32 v;
6204
837e4a42
HS
6205 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
6206 adap->params.tp.tre = TIMERRESOLUTION_G(v);
6207 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
6208
6209 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
6210 for (chan = 0; chan < NCHAN; chan++)
6211 adap->params.tp.tx_modq[chan] = chan;
6212
6213 /* Cache the adapter's Compressed Filter Mode and global Incress
6214 * Configuration.
6215 */
c1e9af0c
HS
6216 if (adap->flags & FW_OK) {
6217 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
6218 TP_VLAN_PRI_MAP_A, 1);
6219 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
6220 TP_INGRESS_CONFIG_A, 1);
6221 } else {
6222 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6223 &adap->params.tp.vlan_pri_map, 1,
6224 TP_VLAN_PRI_MAP_A);
6225 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6226 &adap->params.tp.ingress_config, 1,
6227 TP_INGRESS_CONFIG_A);
6228 }
dcf7b6f5
KS
6229
6230 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
6231 * shift positions of several elements of the Compressed Filter Tuple
6232 * for this adapter which we need frequently ...
6233 */
0d804338
HS
6234 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
6235 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
6236 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 6237 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 6238 PROTOCOL_F);
dcf7b6f5
KS
6239
6240 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 6241 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 6242 */
0d804338 6243 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
6244 adap->params.tp.vnic_shift = -1;
6245
6246 return 0;
6247}
6248
6249/**
6250 * t4_filter_field_shift - calculate filter field shift
6251 * @adap: the adapter
6252 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
6253 *
6254 * Return the shift position of a filter field within the Compressed
6255 * Filter Tuple. The filter field is specified via its selection bit
6256 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
6257 */
6258int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
6259{
6260 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
6261 unsigned int sel;
6262 int field_shift;
6263
6264 if ((filter_mode & filter_sel) == 0)
6265 return -1;
6266
6267 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
6268 switch (filter_mode & sel) {
0d804338
HS
6269 case FCOE_F:
6270 field_shift += FT_FCOE_W;
dcf7b6f5 6271 break;
0d804338
HS
6272 case PORT_F:
6273 field_shift += FT_PORT_W;
dcf7b6f5 6274 break;
0d804338
HS
6275 case VNIC_ID_F:
6276 field_shift += FT_VNIC_ID_W;
dcf7b6f5 6277 break;
0d804338
HS
6278 case VLAN_F:
6279 field_shift += FT_VLAN_W;
dcf7b6f5 6280 break;
0d804338
HS
6281 case TOS_F:
6282 field_shift += FT_TOS_W;
dcf7b6f5 6283 break;
0d804338
HS
6284 case PROTOCOL_F:
6285 field_shift += FT_PROTOCOL_W;
dcf7b6f5 6286 break;
0d804338
HS
6287 case ETHERTYPE_F:
6288 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 6289 break;
0d804338
HS
6290 case MACMATCH_F:
6291 field_shift += FT_MACMATCH_W;
dcf7b6f5 6292 break;
0d804338
HS
6293 case MPSHITTYPE_F:
6294 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 6295 break;
0d804338
HS
6296 case FRAGMENTATION_F:
6297 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
6298 break;
6299 }
6300 }
6301 return field_shift;
6302}
6303
c035e183
HS
6304int t4_init_rss_mode(struct adapter *adap, int mbox)
6305{
6306 int i, ret;
6307 struct fw_rss_vi_config_cmd rvc;
6308
6309 memset(&rvc, 0, sizeof(rvc));
6310
6311 for_each_port(adap, i) {
6312 struct port_info *p = adap2pinfo(adap, i);
6313
f404f80c
HS
6314 rvc.op_to_viid =
6315 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6316 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6317 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
6318 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
6319 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6320 if (ret)
6321 return ret;
f404f80c 6322 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
6323 }
6324 return 0;
6325}
6326
91744948 6327int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
56d36be4
DM
6328{
6329 u8 addr[6];
6330 int ret, i, j = 0;
6331 struct fw_port_cmd c;
f796564a 6332 struct fw_rss_vi_config_cmd rvc;
56d36be4
DM
6333
6334 memset(&c, 0, sizeof(c));
f796564a 6335 memset(&rvc, 0, sizeof(rvc));
56d36be4
DM
6336
6337 for_each_port(adap, i) {
6338 unsigned int rss_size;
6339 struct port_info *p = adap2pinfo(adap, i);
6340
6341 while ((adap->params.portvec & (1 << j)) == 0)
6342 j++;
6343
f404f80c
HS
6344 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
6345 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6346 FW_PORT_CMD_PORTID_V(j));
6347 c.action_to_len16 = cpu_to_be32(
2b5fb1f2 6348 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
56d36be4
DM
6349 FW_LEN16(c));
6350 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6351 if (ret)
6352 return ret;
6353
6354 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
6355 if (ret < 0)
6356 return ret;
6357
6358 p->viid = ret;
6359 p->tx_chan = j;
6360 p->lport = j;
6361 p->rss_size = rss_size;
6362 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
40c9f8ab 6363 adap->port[i]->dev_port = j;
56d36be4 6364
f404f80c 6365 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
2b5fb1f2
HS
6366 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
6367 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
6368 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
a0881cab 6369 p->mod_type = FW_PORT_MOD_TYPE_NA;
56d36be4 6370
f404f80c
HS
6371 rvc.op_to_viid =
6372 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6373 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6374 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
6375 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
f796564a
DM
6376 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6377 if (ret)
6378 return ret;
f404f80c 6379 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
f796564a 6380
f404f80c 6381 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
56d36be4
DM
6382 j++;
6383 }
6384 return 0;
6385}
f1ff24aa 6386
74b3092c
HS
6387/**
6388 * t4_read_cimq_cfg - read CIM queue configuration
6389 * @adap: the adapter
6390 * @base: holds the queue base addresses in bytes
6391 * @size: holds the queue sizes in bytes
6392 * @thres: holds the queue full thresholds in bytes
6393 *
6394 * Returns the current configuration of the CIM queues, starting with
6395 * the IBQs, then the OBQs.
6396 */
6397void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
6398{
6399 unsigned int i, v;
6400 int cim_num_obq = is_t4(adap->params.chip) ?
6401 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6402
6403 for (i = 0; i < CIM_NUM_IBQ; i++) {
6404 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
6405 QUENUMSELECT_V(i));
6406 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6407 /* value is in 256-byte units */
6408 *base++ = CIMQBASE_G(v) * 256;
6409 *size++ = CIMQSIZE_G(v) * 256;
6410 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
6411 }
6412 for (i = 0; i < cim_num_obq; i++) {
6413 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6414 QUENUMSELECT_V(i));
6415 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6416 /* value is in 256-byte units */
6417 *base++ = CIMQBASE_G(v) * 256;
6418 *size++ = CIMQSIZE_G(v) * 256;
6419 }
6420}
6421
e5f0e43b
HS
6422/**
6423 * t4_read_cim_ibq - read the contents of a CIM inbound queue
6424 * @adap: the adapter
6425 * @qid: the queue index
6426 * @data: where to store the queue contents
6427 * @n: capacity of @data in 32-bit words
6428 *
6429 * Reads the contents of the selected CIM queue starting at address 0 up
6430 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6431 * error and the number of 32-bit words actually read on success.
6432 */
6433int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6434{
6435 int i, err, attempts;
6436 unsigned int addr;
6437 const unsigned int nwords = CIM_IBQ_SIZE * 4;
6438
6439 if (qid > 5 || (n & 3))
6440 return -EINVAL;
6441
6442 addr = qid * nwords;
6443 if (n > nwords)
6444 n = nwords;
6445
6446 /* It might take 3-10ms before the IBQ debug read access is allowed.
6447 * Wait for 1 Sec with a delay of 1 usec.
6448 */
6449 attempts = 1000000;
6450
6451 for (i = 0; i < n; i++, addr++) {
6452 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
6453 IBQDBGEN_F);
6454 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
6455 attempts, 1);
6456 if (err)
6457 return err;
6458 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
6459 }
6460 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
6461 return i;
6462}
6463
6464/**
6465 * t4_read_cim_obq - read the contents of a CIM outbound queue
6466 * @adap: the adapter
6467 * @qid: the queue index
6468 * @data: where to store the queue contents
6469 * @n: capacity of @data in 32-bit words
6470 *
6471 * Reads the contents of the selected CIM queue starting at address 0 up
6472 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6473 * error and the number of 32-bit words actually read on success.
6474 */
6475int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6476{
6477 int i, err;
6478 unsigned int addr, v, nwords;
6479 int cim_num_obq = is_t4(adap->params.chip) ?
6480 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6481
6482 if ((qid > (cim_num_obq - 1)) || (n & 3))
6483 return -EINVAL;
6484
6485 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6486 QUENUMSELECT_V(qid));
6487 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6488
6489 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
6490 nwords = CIMQSIZE_G(v) * 64; /* same */
6491 if (n > nwords)
6492 n = nwords;
6493
6494 for (i = 0; i < n; i++, addr++) {
6495 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
6496 OBQDBGEN_F);
6497 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
6498 2, 1);
6499 if (err)
6500 return err;
6501 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
6502 }
6503 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
6504 return i;
6505}
6506
f1ff24aa
HS
6507/**
6508 * t4_cim_read - read a block from CIM internal address space
6509 * @adap: the adapter
6510 * @addr: the start address within the CIM address space
6511 * @n: number of words to read
6512 * @valp: where to store the result
6513 *
6514 * Reads a block of 4-byte words from the CIM intenal address space.
6515 */
6516int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
6517 unsigned int *valp)
6518{
6519 int ret = 0;
6520
6521 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6522 return -EBUSY;
6523
6524 for ( ; !ret && n--; addr += 4) {
6525 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
6526 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6527 0, 5, 2);
6528 if (!ret)
6529 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
6530 }
6531 return ret;
6532}
6533
6534/**
6535 * t4_cim_write - write a block into CIM internal address space
6536 * @adap: the adapter
6537 * @addr: the start address within the CIM address space
6538 * @n: number of words to write
6539 * @valp: set of values to write
6540 *
6541 * Writes a block of 4-byte words into the CIM intenal address space.
6542 */
6543int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
6544 const unsigned int *valp)
6545{
6546 int ret = 0;
6547
6548 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6549 return -EBUSY;
6550
6551 for ( ; !ret && n--; addr += 4) {
6552 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
6553 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
6554 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6555 0, 5, 2);
6556 }
6557 return ret;
6558}
6559
6560static int t4_cim_write1(struct adapter *adap, unsigned int addr,
6561 unsigned int val)
6562{
6563 return t4_cim_write(adap, addr, 1, &val);
6564}
6565
6566/**
6567 * t4_cim_read_la - read CIM LA capture buffer
6568 * @adap: the adapter
6569 * @la_buf: where to store the LA data
6570 * @wrptr: the HW write pointer within the capture buffer
6571 *
6572 * Reads the contents of the CIM LA buffer with the most recent entry at
6573 * the end of the returned data and with the entry at @wrptr first.
6574 * We try to leave the LA in the running state we find it in.
6575 */
6576int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
6577{
6578 int i, ret;
6579 unsigned int cfg, val, idx;
6580
6581 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
6582 if (ret)
6583 return ret;
6584
6585 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
6586 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
6587 if (ret)
6588 return ret;
6589 }
6590
6591 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6592 if (ret)
6593 goto restart;
6594
6595 idx = UPDBGLAWRPTR_G(val);
6596 if (wrptr)
6597 *wrptr = idx;
6598
6599 for (i = 0; i < adap->params.cim_la_size; i++) {
6600 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6601 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
6602 if (ret)
6603 break;
6604 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6605 if (ret)
6606 break;
6607 if (val & UPDBGLARDEN_F) {
6608 ret = -ETIMEDOUT;
6609 break;
6610 }
6611 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
6612 if (ret)
6613 break;
6614 idx = (idx + 1) & UPDBGLARDPTR_M;
6615 }
6616restart:
6617 if (cfg & UPDBGLAEN_F) {
6618 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6619 cfg & ~UPDBGLARDEN_F);
6620 if (!ret)
6621 ret = r;
6622 }
6623 return ret;
6624}
2d277b3b
HS
6625
6626/**
6627 * t4_tp_read_la - read TP LA capture buffer
6628 * @adap: the adapter
6629 * @la_buf: where to store the LA data
6630 * @wrptr: the HW write pointer within the capture buffer
6631 *
6632 * Reads the contents of the TP LA buffer with the most recent entry at
6633 * the end of the returned data and with the entry at @wrptr first.
6634 * We leave the LA in the running state we find it in.
6635 */
6636void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
6637{
6638 bool last_incomplete;
6639 unsigned int i, cfg, val, idx;
6640
6641 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
6642 if (cfg & DBGLAENABLE_F) /* freeze LA */
6643 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6644 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
6645
6646 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
6647 idx = DBGLAWPTR_G(val);
6648 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
6649 if (last_incomplete)
6650 idx = (idx + 1) & DBGLARPTR_M;
6651 if (wrptr)
6652 *wrptr = idx;
6653
6654 val &= 0xffff;
6655 val &= ~DBGLARPTR_V(DBGLARPTR_M);
6656 val |= adap->params.tp.la_mask;
6657
6658 for (i = 0; i < TPLA_SIZE; i++) {
6659 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
6660 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
6661 idx = (idx + 1) & DBGLARPTR_M;
6662 }
6663
6664 /* Wipe out last entry if it isn't valid */
6665 if (last_incomplete)
6666 la_buf[TPLA_SIZE - 1] = ~0ULL;
6667
6668 if (cfg & DBGLAENABLE_F) /* restore running state */
6669 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6670 cfg | adap->params.tp.la_mask);
6671}
a3bfb617
HS
6672
6673/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
6674 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
6675 * state for more than the Warning Threshold then we'll issue a warning about
6676 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
6677 * appears to be hung every Warning Repeat second till the situation clears.
6678 * If the situation clears, we'll note that as well.
6679 */
6680#define SGE_IDMA_WARN_THRESH 1
6681#define SGE_IDMA_WARN_REPEAT 300
6682
6683/**
6684 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
6685 * @adapter: the adapter
6686 * @idma: the adapter IDMA Monitor state
6687 *
6688 * Initialize the state of an SGE Ingress DMA Monitor.
6689 */
6690void t4_idma_monitor_init(struct adapter *adapter,
6691 struct sge_idma_monitor_state *idma)
6692{
6693 /* Initialize the state variables for detecting an SGE Ingress DMA
6694 * hang. The SGE has internal counters which count up on each clock
6695 * tick whenever the SGE finds its Ingress DMA State Engines in the
6696 * same state they were on the previous clock tick. The clock used is
6697 * the Core Clock so we have a limit on the maximum "time" they can
6698 * record; typically a very small number of seconds. For instance,
6699 * with a 600MHz Core Clock, we can only count up to a bit more than
6700 * 7s. So we'll synthesize a larger counter in order to not run the
6701 * risk of having the "timers" overflow and give us the flexibility to
6702 * maintain a Hung SGE State Machine of our own which operates across
6703 * a longer time frame.
6704 */
6705 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
6706 idma->idma_stalled[0] = 0;
6707 idma->idma_stalled[1] = 0;
6708}
6709
6710/**
6711 * t4_idma_monitor - monitor SGE Ingress DMA state
6712 * @adapter: the adapter
6713 * @idma: the adapter IDMA Monitor state
6714 * @hz: number of ticks/second
6715 * @ticks: number of ticks since the last IDMA Monitor call
6716 */
6717void t4_idma_monitor(struct adapter *adapter,
6718 struct sge_idma_monitor_state *idma,
6719 int hz, int ticks)
6720{
6721 int i, idma_same_state_cnt[2];
6722
6723 /* Read the SGE Debug Ingress DMA Same State Count registers. These
6724 * are counters inside the SGE which count up on each clock when the
6725 * SGE finds its Ingress DMA State Engines in the same states they
6726 * were in the previous clock. The counters will peg out at
6727 * 0xffffffff without wrapping around so once they pass the 1s
6728 * threshold they'll stay above that till the IDMA state changes.
6729 */
6730 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
6731 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
6732 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6733
6734 for (i = 0; i < 2; i++) {
6735 u32 debug0, debug11;
6736
6737 /* If the Ingress DMA Same State Counter ("timer") is less
6738 * than 1s, then we can reset our synthesized Stall Timer and
6739 * continue. If we have previously emitted warnings about a
6740 * potential stalled Ingress Queue, issue a note indicating
6741 * that the Ingress Queue has resumed forward progress.
6742 */
6743 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
6744 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
6745 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
6746 "resumed after %d seconds\n",
6747 i, idma->idma_qid[i],
6748 idma->idma_stalled[i] / hz);
6749 idma->idma_stalled[i] = 0;
6750 continue;
6751 }
6752
6753 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
6754 * domain. The first time we get here it'll be because we
6755 * passed the 1s Threshold; each additional time it'll be
6756 * because the RX Timer Callback is being fired on its regular
6757 * schedule.
6758 *
6759 * If the stall is below our Potential Hung Ingress Queue
6760 * Warning Threshold, continue.
6761 */
6762 if (idma->idma_stalled[i] == 0) {
6763 idma->idma_stalled[i] = hz;
6764 idma->idma_warn[i] = 0;
6765 } else {
6766 idma->idma_stalled[i] += ticks;
6767 idma->idma_warn[i] -= ticks;
6768 }
6769
6770 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
6771 continue;
6772
6773 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
6774 */
6775 if (idma->idma_warn[i] > 0)
6776 continue;
6777 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
6778
6779 /* Read and save the SGE IDMA State and Queue ID information.
6780 * We do this every time in case it changes across time ...
6781 * can't be too careful ...
6782 */
6783 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
6784 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6785 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
6786
6787 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
6788 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6789 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
6790
6791 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
6792 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
6793 i, idma->idma_qid[i], idma->idma_state[i],
6794 idma->idma_stalled[i] / hz,
6795 debug0, debug11);
6796 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
6797 }
6798}