]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
cxgb4: Decode link down reason code obtained from firmware
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4 39#include "t4fw_api.h"
a69265e9 40#include "t4fw_version.h"
56d36be4
DM
41
42/**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
de498c89
RD
57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
59{
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73}
74
75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77{
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80}
81
82/**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94{
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99}
100
101/**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
f2b7e78d 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
116{
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122}
123
13ee15d3
VP
124/**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139{
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144}
145
0abfd152
HS
146/*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153{
3ccc6cf7
HS
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
0abfd152
HS
160
161 if (is_t4(adap->params.chip))
f061de42 162 req |= LOCALCFG_F;
0abfd152 163
f061de42
HS
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
f061de42 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
173}
174
31d55c2d
HS
175/*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183static void t4_report_fw_error(struct adapter *adap)
184{
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
f061de42
HS
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
201}
202
56d36be4
DM
203/*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208{
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211}
212
213/*
214 * Handle a FW assertion reported in a mailbox.
215 */
216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217{
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
225}
226
227static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228{
229 dev_err(adap->pdev_dev,
230 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 (unsigned long long)t4_read_reg64(adap, data_reg),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239}
240
241/**
01b69614 242 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
243 * @adap: the adapter
244 * @mbox: index of the mailbox to use
245 * @cmd: the command to write
246 * @size: command length in bytes
247 * @rpl: where to optionally store the reply
248 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 249 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
250 *
251 * Sends the given command to FW through the selected mailbox and waits
252 * for the FW to execute the command. If @rpl is not %NULL it is used to
253 * store the FW's reply to the command. The command and its optional
254 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
255 * to respond. @sleep_ok determines whether we may sleep while awaiting
256 * the response. If sleeping is allowed we use progressive backoff
257 * otherwise we spin.
258 *
259 * The return value is 0 on success or a negative errno on failure. A
260 * failure can happen either because we are not able to execute the
261 * command or FW executes it but signals an error. In the latter case
262 * the return value is the error code indicated by FW (negated).
263 */
01b69614
HS
264int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 266{
005b5717 267 static const int delay[] = {
56d36be4
DM
268 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 };
270
271 u32 v;
272 u64 res;
273 int i, ms, delay_idx;
274 const __be64 *p = cmd;
89c3a86c
HS
275 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
56d36be4
DM
277
278 if ((size & 15) || size > MBOX_LEN)
279 return -EINVAL;
280
204dc3c0
DM
281 /*
282 * If the device is off-line, as in EEH, commands will time out.
283 * Fail them early so we don't waste time waiting.
284 */
285 if (adap->pdev->error_state != pci_channel_io_normal)
286 return -EIO;
287
89c3a86c 288 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 289 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 290 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4
DM
291
292 if (v != MBOX_OWNER_DRV)
293 return v ? -EBUSY : -ETIMEDOUT;
294
295 for (i = 0; i < size; i += 8)
296 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
89c3a86c 298 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
299 t4_read_reg(adap, ctl_reg); /* flush write */
300
301 delay_idx = 0;
302 ms = delay[0];
303
01b69614 304 for (i = 0; i < timeout; i += ms) {
56d36be4
DM
305 if (sleep_ok) {
306 ms = delay[delay_idx]; /* last element may repeat */
307 if (delay_idx < ARRAY_SIZE(delay) - 1)
308 delay_idx++;
309 msleep(ms);
310 } else
311 mdelay(ms);
312
313 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
314 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
316 t4_write_reg(adap, ctl_reg, 0);
317 continue;
318 }
319
320 res = t4_read_reg64(adap, data_reg);
e2ac9628 321 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 322 fw_asrt(adap, data_reg);
e2ac9628
HS
323 res = FW_CMD_RETVAL_V(EIO);
324 } else if (rpl) {
56d36be4 325 get_mbox_rpl(adap, rpl, size / 8, data_reg);
e2ac9628 326 }
56d36be4 327
e2ac9628 328 if (FW_CMD_RETVAL_G((int)res))
56d36be4
DM
329 dump_mbox(adap, mbox, data_reg);
330 t4_write_reg(adap, ctl_reg, 0);
e2ac9628 331 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
332 }
333 }
334
335 dump_mbox(adap, mbox, data_reg);
336 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 *(const u8 *)cmd, mbox);
31d55c2d 338 t4_report_fw_error(adap);
56d36be4
DM
339 return -ETIMEDOUT;
340}
341
01b69614
HS
342int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 void *rpl, bool sleep_ok)
56d36be4 344{
01b69614
HS
345 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
347}
348
bf8ebb67
HS
349static int t4_edc_err_read(struct adapter *adap, int idx)
350{
351 u32 edc_ecc_err_addr_reg;
352 u32 rdata_reg;
353
354 if (is_t4(adap->params.chip)) {
355 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 return 0;
357 }
358 if (idx != 0 && idx != 1) {
359 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 return 0;
361 }
362
363 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366 CH_WARN(adap,
367 "edc%d err addr 0x%x: 0x%x.\n",
368 idx, edc_ecc_err_addr_reg,
369 t4_read_reg(adap, edc_ecc_err_addr_reg));
370 CH_WARN(adap,
371 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 rdata_reg,
373 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383 return 0;
384}
385
5afc8b84
VP
386/**
387 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388 * @adap: the adapter
fc5ab020 389 * @win: PCI-E Memory Window to use
5afc8b84
VP
390 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391 * @addr: address within indicated memory type
392 * @len: amount of memory to transfer
f01aa633 393 * @hbuf: host memory buffer
fc5ab020 394 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
395 *
396 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
397 * firmware memory address and host buffer must be aligned on 32-bit
398 * boudaries; the length may be arbitrary. The memory is transferred as
399 * a raw byte sequence from/to the firmware's memory. If this memory
400 * contains data structures which contain multi-byte integers, it's the
401 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 402 */
fc5ab020 403int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 404 u32 len, void *hbuf, int dir)
5afc8b84 405{
fc5ab020
HS
406 u32 pos, offset, resid, memoffset;
407 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 408 u32 *buf;
5afc8b84 409
fc5ab020 410 /* Argument sanity checks ...
5afc8b84 411 */
f01aa633 412 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 413 return -EINVAL;
f01aa633 414 buf = (u32 *)hbuf;
5afc8b84 415
fc5ab020
HS
416 /* It's convenient to be able to handle lengths which aren't a
417 * multiple of 32-bits because we often end up transferring files to
418 * the firmware. So we'll handle that by normalizing the length here
419 * and then handling any residual transfer at the end.
420 */
421 resid = len & 0x3;
422 len -= resid;
8c357ebd 423
19dd37ba 424 /* Offset into the region of memory which is being accessed
5afc8b84
VP
425 * MEM_EDC0 = 0
426 * MEM_EDC1 = 1
3ccc6cf7
HS
427 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
428 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 429 */
6559a7e8 430 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
431 if (mtype != MEM_MC1)
432 memoffset = (mtype * (edc_size * 1024 * 1024));
433 else {
6559a7e8 434 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 435 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
436 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 }
5afc8b84
VP
438
439 /* Determine the PCIE_MEM_ACCESS_OFFSET */
440 addr = addr + memoffset;
441
fc5ab020
HS
442 /* Each PCI-E Memory Window is programmed with a window size -- or
443 * "aperture" -- which controls the granularity of its mapping onto
444 * adapter memory. We need to grab that aperture in order to know
445 * how to use the specified window. The window is also programmed
446 * with the base address of the Memory Window in BAR0's address
447 * space. For T4 this is an absolute PCI-E Bus Address. For T5
448 * the address is relative to BAR0.
5afc8b84 449 */
fc5ab020 450 mem_reg = t4_read_reg(adap,
f061de42 451 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 452 win));
f061de42
HS
453 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
455 if (is_t4(adap->params.chip))
456 mem_base -= adap->t4_bar0;
b2612722 457 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 458
fc5ab020
HS
459 /* Calculate our initial PCI-E Memory Window Position and Offset into
460 * that Window.
461 */
462 pos = addr & ~(mem_aperture-1);
463 offset = addr - pos;
5afc8b84 464
fc5ab020
HS
465 /* Set up initial PCI-E Memory Window to cover the start of our
466 * transfer. (Read it back to ensure that changes propagate before we
467 * attempt to use the new value.)
468 */
469 t4_write_reg(adap,
f061de42 470 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
471 pos | win_pf);
472 t4_read_reg(adap,
f061de42 473 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
474
475 /* Transfer data to/from the adapter as long as there's an integral
476 * number of 32-bit transfers to complete.
f01aa633
HS
477 *
478 * A note on Endianness issues:
479 *
480 * The "register" reads and writes below from/to the PCI-E Memory
481 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 * Little-Endian "swizzel." As a result, if we have the following
483 * data in adapter memory:
484 *
485 * Memory: ... | b0 | b1 | b2 | b3 | ...
486 * Address: i+0 i+1 i+2 i+3
487 *
488 * Then a read of the adapter memory via the PCI-E Memory Window
489 * will yield:
490 *
491 * x = readl(i)
492 * 31 0
493 * [ b3 | b2 | b1 | b0 ]
494 *
495 * If this value is stored into local memory on a Little-Endian system
496 * it will show up correctly in local memory as:
497 *
498 * ( ..., b0, b1, b2, b3, ... )
499 *
500 * But on a Big-Endian system, the store will show up in memory
501 * incorrectly swizzled as:
502 *
503 * ( ..., b3, b2, b1, b0, ... )
504 *
505 * So we need to account for this in the reads and writes to the
506 * PCI-E Memory Window below by undoing the register read/write
507 * swizzels.
fc5ab020
HS
508 */
509 while (len > 0) {
510 if (dir == T4_MEMORY_READ)
f01aa633
HS
511 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 mem_base + offset));
fc5ab020
HS
513 else
514 t4_write_reg(adap, mem_base + offset,
f01aa633 515 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
516 offset += sizeof(__be32);
517 len -= sizeof(__be32);
518
519 /* If we've reached the end of our current window aperture,
520 * move the PCI-E Memory Window on to the next. Note that
521 * doing this here after "len" may be 0 allows us to set up
522 * the PCI-E Memory Window for a possible final residual
523 * transfer below ...
5afc8b84 524 */
fc5ab020
HS
525 if (offset == mem_aperture) {
526 pos += mem_aperture;
527 offset = 0;
528 t4_write_reg(adap,
f061de42
HS
529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 win), pos | win_pf);
fc5ab020 531 t4_read_reg(adap,
f061de42
HS
532 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 win));
5afc8b84 534 }
5afc8b84
VP
535 }
536
fc5ab020
HS
537 /* If the original transfer had a length which wasn't a multiple of
538 * 32-bits, now's where we need to finish off the transfer of the
539 * residual amount. The PCI-E Memory Window has already been moved
540 * above (if necessary) to cover this final transfer.
541 */
542 if (resid) {
543 union {
f01aa633 544 u32 word;
fc5ab020
HS
545 char byte[4];
546 } last;
547 unsigned char *bp;
548 int i;
549
c81576c2 550 if (dir == T4_MEMORY_READ) {
f01aa633
HS
551 last.word = le32_to_cpu(
552 (__force __le32)t4_read_reg(adap,
553 mem_base + offset));
fc5ab020
HS
554 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 bp[i] = last.byte[i];
556 } else {
557 last.word = *buf;
558 for (i = resid; i < 4; i++)
559 last.byte[i] = 0;
560 t4_write_reg(adap, mem_base + offset,
f01aa633 561 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
562 }
563 }
5afc8b84 564
fc5ab020 565 return 0;
5afc8b84
VP
566}
567
b562fc37
HS
568/* Return the specified PCI-E Configuration Space register from our Physical
569 * Function. We try first via a Firmware LDST Command since we prefer to let
570 * the firmware own all of these registers, but if that fails we go for it
571 * directly ourselves.
572 */
573u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574{
575 u32 val, ldst_addrspace;
576
577 /* If fw_attach != 0, construct and send the Firmware LDST Command to
578 * retrieve the specified PCI-E Configuration Space register.
579 */
580 struct fw_ldst_cmd ldst_cmd;
581 int ret;
582
583 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 FW_CMD_REQUEST_F |
587 FW_CMD_READ_F |
588 ldst_addrspace);
589 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 592 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
593 ldst_cmd.u.pcie.r = reg;
594
595 /* If the LDST Command succeeds, return the result, otherwise
596 * fall through to reading it directly ourselves ...
597 */
598 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 &ldst_cmd);
600 if (ret == 0)
601 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 else
603 /* Read the desired Configuration Space register via the PCI-E
604 * Backdoor mechanism.
605 */
606 t4_hw_pci_read_cfg4(adap, reg, &val);
607 return val;
608}
609
610/* Get the window based on base passed to it.
611 * Window aperture is currently unhandled, but there is no use case for it
612 * right now
613 */
614static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 u32 memwin_base)
616{
617 u32 ret;
618
619 if (is_t4(adap->params.chip)) {
620 u32 bar0;
621
622 /* Truncation intentional: we only read the bottom 32-bits of
623 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
624 * mechanism to read BAR0 instead of using
625 * pci_resource_start() because we could be operating from
626 * within a Virtual Machine which is trapping our accesses to
627 * our Configuration Space and we need to set up the PCI-E
628 * Memory Window decoders with the actual addresses which will
629 * be coming across the PCI-E link.
630 */
631 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 bar0 &= pci_mask;
633 adap->t4_bar0 = bar0;
634
635 ret = bar0 + memwin_base;
636 } else {
637 /* For T5, only relative offset inside the PCIe BAR is passed */
638 ret = memwin_base;
639 }
640 return ret;
641}
642
643/* Get the default utility window (win0) used by everyone */
644u32 t4_get_util_window(struct adapter *adap)
645{
646 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648}
649
650/* Set up memory window for accessing adapter memory ranges. (Read
651 * back MA register to ensure that changes propagate before we attempt
652 * to use the new values.)
653 */
654void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655{
656 t4_write_reg(adap,
657 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 memwin_base | BIR_V(0) |
659 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 t4_read_reg(adap,
661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662}
663
812034f1
HS
664/**
665 * t4_get_regs_len - return the size of the chips register set
666 * @adapter: the adapter
667 *
668 * Returns the size of the chip's BAR0 register space.
669 */
670unsigned int t4_get_regs_len(struct adapter *adapter)
671{
672 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674 switch (chip_version) {
675 case CHELSIO_T4:
676 return T4_REGMAP_SIZE;
677
678 case CHELSIO_T5:
ab4b583b 679 case CHELSIO_T6:
812034f1
HS
680 return T5_REGMAP_SIZE;
681 }
682
683 dev_err(adapter->pdev_dev,
684 "Unsupported chip version %d\n", chip_version);
685 return 0;
686}
687
688/**
689 * t4_get_regs - read chip registers into provided buffer
690 * @adap: the adapter
691 * @buf: register buffer
692 * @buf_size: size (in bytes) of register buffer
693 *
694 * If the provided register buffer isn't large enough for the chip's
695 * full register range, the register dump will be truncated to the
696 * register buffer's size.
697 */
698void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699{
700 static const unsigned int t4_reg_ranges[] = {
701 0x1008, 0x1108,
8119c018
HS
702 0x1180, 0x1184,
703 0x1190, 0x1194,
704 0x11a0, 0x11a4,
705 0x11b0, 0x11b4,
812034f1
HS
706 0x11fc, 0x123c,
707 0x1300, 0x173c,
708 0x1800, 0x18fc,
8119c018
HS
709 0x3000, 0x30d8,
710 0x30e0, 0x30e4,
711 0x30ec, 0x5910,
712 0x5920, 0x5924,
713 0x5960, 0x5960,
714 0x5968, 0x5968,
715 0x5970, 0x5970,
716 0x5978, 0x5978,
717 0x5980, 0x5980,
718 0x5988, 0x5988,
719 0x5990, 0x5990,
720 0x5998, 0x5998,
721 0x59a0, 0x59d4,
722 0x5a00, 0x5ae0,
723 0x5ae8, 0x5ae8,
724 0x5af0, 0x5af0,
725 0x5af8, 0x5af8,
812034f1
HS
726 0x6000, 0x6098,
727 0x6100, 0x6150,
728 0x6200, 0x6208,
729 0x6240, 0x6248,
8119c018
HS
730 0x6280, 0x62b0,
731 0x62c0, 0x6338,
812034f1
HS
732 0x6370, 0x638c,
733 0x6400, 0x643c,
734 0x6500, 0x6524,
8119c018
HS
735 0x6a00, 0x6a04,
736 0x6a14, 0x6a38,
737 0x6a60, 0x6a70,
738 0x6a78, 0x6a78,
739 0x6b00, 0x6b0c,
740 0x6b1c, 0x6b84,
741 0x6bf0, 0x6bf8,
742 0x6c00, 0x6c0c,
743 0x6c1c, 0x6c84,
744 0x6cf0, 0x6cf8,
745 0x6d00, 0x6d0c,
746 0x6d1c, 0x6d84,
747 0x6df0, 0x6df8,
748 0x6e00, 0x6e0c,
749 0x6e1c, 0x6e84,
750 0x6ef0, 0x6ef8,
751 0x6f00, 0x6f0c,
752 0x6f1c, 0x6f84,
753 0x6ff0, 0x6ff8,
754 0x7000, 0x700c,
755 0x701c, 0x7084,
756 0x70f0, 0x70f8,
757 0x7100, 0x710c,
758 0x711c, 0x7184,
759 0x71f0, 0x71f8,
760 0x7200, 0x720c,
761 0x721c, 0x7284,
762 0x72f0, 0x72f8,
763 0x7300, 0x730c,
764 0x731c, 0x7384,
765 0x73f0, 0x73f8,
766 0x7400, 0x7450,
812034f1 767 0x7500, 0x7530,
8119c018
HS
768 0x7600, 0x760c,
769 0x7614, 0x761c,
812034f1
HS
770 0x7680, 0x76cc,
771 0x7700, 0x7798,
772 0x77c0, 0x77fc,
773 0x7900, 0x79fc,
8119c018
HS
774 0x7b00, 0x7b58,
775 0x7b60, 0x7b84,
776 0x7b8c, 0x7c38,
777 0x7d00, 0x7d38,
778 0x7d40, 0x7d80,
779 0x7d8c, 0x7ddc,
780 0x7de4, 0x7e04,
781 0x7e10, 0x7e1c,
782 0x7e24, 0x7e38,
783 0x7e40, 0x7e44,
784 0x7e4c, 0x7e78,
785 0x7e80, 0x7ea4,
786 0x7eac, 0x7edc,
787 0x7ee8, 0x7efc,
788 0x8dc0, 0x8e04,
789 0x8e10, 0x8e1c,
812034f1 790 0x8e30, 0x8e78,
8119c018
HS
791 0x8ea0, 0x8eb8,
792 0x8ec0, 0x8f6c,
793 0x8fc0, 0x9008,
794 0x9010, 0x9058,
795 0x9060, 0x9060,
796 0x9068, 0x9074,
812034f1 797 0x90fc, 0x90fc,
8119c018
HS
798 0x9400, 0x9408,
799 0x9410, 0x9458,
800 0x9600, 0x9600,
801 0x9608, 0x9638,
802 0x9640, 0x96bc,
812034f1
HS
803 0x9800, 0x9808,
804 0x9820, 0x983c,
805 0x9850, 0x9864,
806 0x9c00, 0x9c6c,
807 0x9c80, 0x9cec,
808 0x9d00, 0x9d6c,
809 0x9d80, 0x9dec,
810 0x9e00, 0x9e6c,
811 0x9e80, 0x9eec,
812 0x9f00, 0x9f6c,
813 0x9f80, 0x9fec,
8119c018
HS
814 0xd004, 0xd004,
815 0xd010, 0xd03c,
812034f1
HS
816 0xdfc0, 0xdfe0,
817 0xe000, 0xea7c,
8119c018 818 0xf000, 0x11190,
812034f1
HS
819 0x19040, 0x1906c,
820 0x19078, 0x19080,
8119c018
HS
821 0x1908c, 0x190e4,
822 0x190f0, 0x190f8,
823 0x19100, 0x19110,
824 0x19120, 0x19124,
825 0x19150, 0x19194,
826 0x1919c, 0x191b0,
812034f1
HS
827 0x191d0, 0x191e8,
828 0x19238, 0x1924c,
8119c018
HS
829 0x193f8, 0x1943c,
830 0x1944c, 0x19474,
831 0x19490, 0x194e0,
832 0x194f0, 0x194f8,
833 0x19800, 0x19c08,
834 0x19c10, 0x19c90,
835 0x19ca0, 0x19ce4,
836 0x19cf0, 0x19d40,
837 0x19d50, 0x19d94,
838 0x19da0, 0x19de8,
839 0x19df0, 0x19e40,
840 0x19e50, 0x19e90,
841 0x19ea0, 0x19f4c,
842 0x1a000, 0x1a004,
843 0x1a010, 0x1a06c,
844 0x1a0b0, 0x1a0e4,
845 0x1a0ec, 0x1a0f4,
846 0x1a100, 0x1a108,
847 0x1a114, 0x1a120,
848 0x1a128, 0x1a130,
849 0x1a138, 0x1a138,
812034f1
HS
850 0x1a190, 0x1a1c4,
851 0x1a1fc, 0x1a1fc,
852 0x1e040, 0x1e04c,
853 0x1e284, 0x1e28c,
854 0x1e2c0, 0x1e2c0,
855 0x1e2e0, 0x1e2e0,
856 0x1e300, 0x1e384,
857 0x1e3c0, 0x1e3c8,
858 0x1e440, 0x1e44c,
859 0x1e684, 0x1e68c,
860 0x1e6c0, 0x1e6c0,
861 0x1e6e0, 0x1e6e0,
862 0x1e700, 0x1e784,
863 0x1e7c0, 0x1e7c8,
864 0x1e840, 0x1e84c,
865 0x1ea84, 0x1ea8c,
866 0x1eac0, 0x1eac0,
867 0x1eae0, 0x1eae0,
868 0x1eb00, 0x1eb84,
869 0x1ebc0, 0x1ebc8,
870 0x1ec40, 0x1ec4c,
871 0x1ee84, 0x1ee8c,
872 0x1eec0, 0x1eec0,
873 0x1eee0, 0x1eee0,
874 0x1ef00, 0x1ef84,
875 0x1efc0, 0x1efc8,
876 0x1f040, 0x1f04c,
877 0x1f284, 0x1f28c,
878 0x1f2c0, 0x1f2c0,
879 0x1f2e0, 0x1f2e0,
880 0x1f300, 0x1f384,
881 0x1f3c0, 0x1f3c8,
882 0x1f440, 0x1f44c,
883 0x1f684, 0x1f68c,
884 0x1f6c0, 0x1f6c0,
885 0x1f6e0, 0x1f6e0,
886 0x1f700, 0x1f784,
887 0x1f7c0, 0x1f7c8,
888 0x1f840, 0x1f84c,
889 0x1fa84, 0x1fa8c,
890 0x1fac0, 0x1fac0,
891 0x1fae0, 0x1fae0,
892 0x1fb00, 0x1fb84,
893 0x1fbc0, 0x1fbc8,
894 0x1fc40, 0x1fc4c,
895 0x1fe84, 0x1fe8c,
896 0x1fec0, 0x1fec0,
897 0x1fee0, 0x1fee0,
898 0x1ff00, 0x1ff84,
899 0x1ffc0, 0x1ffc8,
900 0x20000, 0x2002c,
901 0x20100, 0x2013c,
8119c018
HS
902 0x20190, 0x201a0,
903 0x201a8, 0x201b8,
904 0x201c4, 0x201c8,
812034f1 905 0x20200, 0x20318,
8119c018
HS
906 0x20400, 0x204b4,
907 0x204c0, 0x20528,
812034f1
HS
908 0x20540, 0x20614,
909 0x21000, 0x21040,
910 0x2104c, 0x21060,
911 0x210c0, 0x210ec,
912 0x21200, 0x21268,
913 0x21270, 0x21284,
914 0x212fc, 0x21388,
915 0x21400, 0x21404,
8119c018
HS
916 0x21500, 0x21500,
917 0x21510, 0x21518,
918 0x2152c, 0x21530,
919 0x2153c, 0x2153c,
812034f1
HS
920 0x21550, 0x21554,
921 0x21600, 0x21600,
8119c018
HS
922 0x21608, 0x2161c,
923 0x21624, 0x21628,
924 0x21630, 0x21634,
925 0x2163c, 0x2163c,
812034f1
HS
926 0x21700, 0x2171c,
927 0x21780, 0x2178c,
8119c018
HS
928 0x21800, 0x21818,
929 0x21820, 0x21828,
930 0x21830, 0x21848,
931 0x21850, 0x21854,
932 0x21860, 0x21868,
933 0x21870, 0x21870,
934 0x21878, 0x21898,
935 0x218a0, 0x218a8,
936 0x218b0, 0x218c8,
937 0x218d0, 0x218d4,
938 0x218e0, 0x218e8,
939 0x218f0, 0x218f0,
940 0x218f8, 0x21a18,
941 0x21a20, 0x21a28,
942 0x21a30, 0x21a48,
943 0x21a50, 0x21a54,
944 0x21a60, 0x21a68,
945 0x21a70, 0x21a70,
946 0x21a78, 0x21a98,
947 0x21aa0, 0x21aa8,
948 0x21ab0, 0x21ac8,
949 0x21ad0, 0x21ad4,
950 0x21ae0, 0x21ae8,
951 0x21af0, 0x21af0,
952 0x21af8, 0x21c18,
953 0x21c20, 0x21c20,
954 0x21c28, 0x21c30,
955 0x21c38, 0x21c38,
956 0x21c80, 0x21c98,
957 0x21ca0, 0x21ca8,
958 0x21cb0, 0x21cc8,
959 0x21cd0, 0x21cd4,
960 0x21ce0, 0x21ce8,
961 0x21cf0, 0x21cf0,
962 0x21cf8, 0x21d7c,
812034f1
HS
963 0x21e00, 0x21e04,
964 0x22000, 0x2202c,
965 0x22100, 0x2213c,
8119c018
HS
966 0x22190, 0x221a0,
967 0x221a8, 0x221b8,
968 0x221c4, 0x221c8,
812034f1 969 0x22200, 0x22318,
8119c018
HS
970 0x22400, 0x224b4,
971 0x224c0, 0x22528,
812034f1
HS
972 0x22540, 0x22614,
973 0x23000, 0x23040,
974 0x2304c, 0x23060,
975 0x230c0, 0x230ec,
976 0x23200, 0x23268,
977 0x23270, 0x23284,
978 0x232fc, 0x23388,
979 0x23400, 0x23404,
8119c018
HS
980 0x23500, 0x23500,
981 0x23510, 0x23518,
982 0x2352c, 0x23530,
983 0x2353c, 0x2353c,
812034f1
HS
984 0x23550, 0x23554,
985 0x23600, 0x23600,
8119c018
HS
986 0x23608, 0x2361c,
987 0x23624, 0x23628,
988 0x23630, 0x23634,
989 0x2363c, 0x2363c,
812034f1
HS
990 0x23700, 0x2371c,
991 0x23780, 0x2378c,
8119c018
HS
992 0x23800, 0x23818,
993 0x23820, 0x23828,
994 0x23830, 0x23848,
995 0x23850, 0x23854,
996 0x23860, 0x23868,
997 0x23870, 0x23870,
998 0x23878, 0x23898,
999 0x238a0, 0x238a8,
1000 0x238b0, 0x238c8,
1001 0x238d0, 0x238d4,
1002 0x238e0, 0x238e8,
1003 0x238f0, 0x238f0,
1004 0x238f8, 0x23a18,
1005 0x23a20, 0x23a28,
1006 0x23a30, 0x23a48,
1007 0x23a50, 0x23a54,
1008 0x23a60, 0x23a68,
1009 0x23a70, 0x23a70,
1010 0x23a78, 0x23a98,
1011 0x23aa0, 0x23aa8,
1012 0x23ab0, 0x23ac8,
1013 0x23ad0, 0x23ad4,
1014 0x23ae0, 0x23ae8,
1015 0x23af0, 0x23af0,
1016 0x23af8, 0x23c18,
1017 0x23c20, 0x23c20,
1018 0x23c28, 0x23c30,
1019 0x23c38, 0x23c38,
1020 0x23c80, 0x23c98,
1021 0x23ca0, 0x23ca8,
1022 0x23cb0, 0x23cc8,
1023 0x23cd0, 0x23cd4,
1024 0x23ce0, 0x23ce8,
1025 0x23cf0, 0x23cf0,
1026 0x23cf8, 0x23d7c,
812034f1
HS
1027 0x23e00, 0x23e04,
1028 0x24000, 0x2402c,
1029 0x24100, 0x2413c,
8119c018
HS
1030 0x24190, 0x241a0,
1031 0x241a8, 0x241b8,
1032 0x241c4, 0x241c8,
812034f1 1033 0x24200, 0x24318,
8119c018
HS
1034 0x24400, 0x244b4,
1035 0x244c0, 0x24528,
812034f1
HS
1036 0x24540, 0x24614,
1037 0x25000, 0x25040,
1038 0x2504c, 0x25060,
1039 0x250c0, 0x250ec,
1040 0x25200, 0x25268,
1041 0x25270, 0x25284,
1042 0x252fc, 0x25388,
1043 0x25400, 0x25404,
8119c018
HS
1044 0x25500, 0x25500,
1045 0x25510, 0x25518,
1046 0x2552c, 0x25530,
1047 0x2553c, 0x2553c,
812034f1
HS
1048 0x25550, 0x25554,
1049 0x25600, 0x25600,
8119c018
HS
1050 0x25608, 0x2561c,
1051 0x25624, 0x25628,
1052 0x25630, 0x25634,
1053 0x2563c, 0x2563c,
812034f1
HS
1054 0x25700, 0x2571c,
1055 0x25780, 0x2578c,
8119c018
HS
1056 0x25800, 0x25818,
1057 0x25820, 0x25828,
1058 0x25830, 0x25848,
1059 0x25850, 0x25854,
1060 0x25860, 0x25868,
1061 0x25870, 0x25870,
1062 0x25878, 0x25898,
1063 0x258a0, 0x258a8,
1064 0x258b0, 0x258c8,
1065 0x258d0, 0x258d4,
1066 0x258e0, 0x258e8,
1067 0x258f0, 0x258f0,
1068 0x258f8, 0x25a18,
1069 0x25a20, 0x25a28,
1070 0x25a30, 0x25a48,
1071 0x25a50, 0x25a54,
1072 0x25a60, 0x25a68,
1073 0x25a70, 0x25a70,
1074 0x25a78, 0x25a98,
1075 0x25aa0, 0x25aa8,
1076 0x25ab0, 0x25ac8,
1077 0x25ad0, 0x25ad4,
1078 0x25ae0, 0x25ae8,
1079 0x25af0, 0x25af0,
1080 0x25af8, 0x25c18,
1081 0x25c20, 0x25c20,
1082 0x25c28, 0x25c30,
1083 0x25c38, 0x25c38,
1084 0x25c80, 0x25c98,
1085 0x25ca0, 0x25ca8,
1086 0x25cb0, 0x25cc8,
1087 0x25cd0, 0x25cd4,
1088 0x25ce0, 0x25ce8,
1089 0x25cf0, 0x25cf0,
1090 0x25cf8, 0x25d7c,
812034f1
HS
1091 0x25e00, 0x25e04,
1092 0x26000, 0x2602c,
1093 0x26100, 0x2613c,
8119c018
HS
1094 0x26190, 0x261a0,
1095 0x261a8, 0x261b8,
1096 0x261c4, 0x261c8,
812034f1 1097 0x26200, 0x26318,
8119c018
HS
1098 0x26400, 0x264b4,
1099 0x264c0, 0x26528,
812034f1
HS
1100 0x26540, 0x26614,
1101 0x27000, 0x27040,
1102 0x2704c, 0x27060,
1103 0x270c0, 0x270ec,
1104 0x27200, 0x27268,
1105 0x27270, 0x27284,
1106 0x272fc, 0x27388,
1107 0x27400, 0x27404,
8119c018
HS
1108 0x27500, 0x27500,
1109 0x27510, 0x27518,
1110 0x2752c, 0x27530,
1111 0x2753c, 0x2753c,
812034f1
HS
1112 0x27550, 0x27554,
1113 0x27600, 0x27600,
8119c018
HS
1114 0x27608, 0x2761c,
1115 0x27624, 0x27628,
1116 0x27630, 0x27634,
1117 0x2763c, 0x2763c,
812034f1
HS
1118 0x27700, 0x2771c,
1119 0x27780, 0x2778c,
8119c018
HS
1120 0x27800, 0x27818,
1121 0x27820, 0x27828,
1122 0x27830, 0x27848,
1123 0x27850, 0x27854,
1124 0x27860, 0x27868,
1125 0x27870, 0x27870,
1126 0x27878, 0x27898,
1127 0x278a0, 0x278a8,
1128 0x278b0, 0x278c8,
1129 0x278d0, 0x278d4,
1130 0x278e0, 0x278e8,
1131 0x278f0, 0x278f0,
1132 0x278f8, 0x27a18,
1133 0x27a20, 0x27a28,
1134 0x27a30, 0x27a48,
1135 0x27a50, 0x27a54,
1136 0x27a60, 0x27a68,
1137 0x27a70, 0x27a70,
1138 0x27a78, 0x27a98,
1139 0x27aa0, 0x27aa8,
1140 0x27ab0, 0x27ac8,
1141 0x27ad0, 0x27ad4,
1142 0x27ae0, 0x27ae8,
1143 0x27af0, 0x27af0,
1144 0x27af8, 0x27c18,
1145 0x27c20, 0x27c20,
1146 0x27c28, 0x27c30,
1147 0x27c38, 0x27c38,
1148 0x27c80, 0x27c98,
1149 0x27ca0, 0x27ca8,
1150 0x27cb0, 0x27cc8,
1151 0x27cd0, 0x27cd4,
1152 0x27ce0, 0x27ce8,
1153 0x27cf0, 0x27cf0,
1154 0x27cf8, 0x27d7c,
9f5ac48d 1155 0x27e00, 0x27e04,
812034f1
HS
1156 };
1157
1158 static const unsigned int t5_reg_ranges[] = {
8119c018
HS
1159 0x1008, 0x10c0,
1160 0x10cc, 0x10f8,
1161 0x1100, 0x1100,
1162 0x110c, 0x1148,
1163 0x1180, 0x1184,
1164 0x1190, 0x1194,
1165 0x11a0, 0x11a4,
1166 0x11b0, 0x11b4,
812034f1
HS
1167 0x11fc, 0x123c,
1168 0x1280, 0x173c,
1169 0x1800, 0x18fc,
1170 0x3000, 0x3028,
8119c018
HS
1171 0x3060, 0x30b0,
1172 0x30b8, 0x30d8,
812034f1
HS
1173 0x30e0, 0x30fc,
1174 0x3140, 0x357c,
1175 0x35a8, 0x35cc,
1176 0x35ec, 0x35ec,
1177 0x3600, 0x5624,
8119c018
HS
1178 0x56cc, 0x56ec,
1179 0x56f4, 0x5720,
1180 0x5728, 0x575c,
812034f1 1181 0x580c, 0x5814,
8119c018
HS
1182 0x5890, 0x589c,
1183 0x58a4, 0x58ac,
1184 0x58b8, 0x58bc,
1185 0x5940, 0x59c8,
1186 0x59d0, 0x59dc,
812034f1 1187 0x59fc, 0x5a18,
8119c018
HS
1188 0x5a60, 0x5a70,
1189 0x5a80, 0x5a9c,
9f5ac48d 1190 0x5b94, 0x5bfc,
8119c018
HS
1191 0x6000, 0x6020,
1192 0x6028, 0x6040,
1193 0x6058, 0x609c,
1194 0x60a8, 0x614c,
812034f1
HS
1195 0x7700, 0x7798,
1196 0x77c0, 0x78fc,
8119c018
HS
1197 0x7b00, 0x7b58,
1198 0x7b60, 0x7b84,
1199 0x7b8c, 0x7c54,
1200 0x7d00, 0x7d38,
1201 0x7d40, 0x7d80,
1202 0x7d8c, 0x7ddc,
1203 0x7de4, 0x7e04,
1204 0x7e10, 0x7e1c,
1205 0x7e24, 0x7e38,
1206 0x7e40, 0x7e44,
1207 0x7e4c, 0x7e78,
1208 0x7e80, 0x7edc,
1209 0x7ee8, 0x7efc,
812034f1 1210 0x8dc0, 0x8de0,
8119c018
HS
1211 0x8df8, 0x8e04,
1212 0x8e10, 0x8e84,
812034f1 1213 0x8ea0, 0x8f84,
8119c018
HS
1214 0x8fc0, 0x9058,
1215 0x9060, 0x9060,
1216 0x9068, 0x90f8,
1217 0x9400, 0x9408,
1218 0x9410, 0x9470,
1219 0x9600, 0x9600,
1220 0x9608, 0x9638,
1221 0x9640, 0x96f4,
812034f1
HS
1222 0x9800, 0x9808,
1223 0x9820, 0x983c,
1224 0x9850, 0x9864,
1225 0x9c00, 0x9c6c,
1226 0x9c80, 0x9cec,
1227 0x9d00, 0x9d6c,
1228 0x9d80, 0x9dec,
1229 0x9e00, 0x9e6c,
1230 0x9e80, 0x9eec,
1231 0x9f00, 0x9f6c,
1232 0x9f80, 0xa020,
8119c018
HS
1233 0xd004, 0xd004,
1234 0xd010, 0xd03c,
812034f1 1235 0xdfc0, 0xdfe0,
8119c018
HS
1236 0xe000, 0x1106c,
1237 0x11074, 0x11088,
1238 0x1109c, 0x1117c,
812034f1
HS
1239 0x11190, 0x11204,
1240 0x19040, 0x1906c,
1241 0x19078, 0x19080,
8119c018
HS
1242 0x1908c, 0x190e8,
1243 0x190f0, 0x190f8,
1244 0x19100, 0x19110,
1245 0x19120, 0x19124,
1246 0x19150, 0x19194,
1247 0x1919c, 0x191b0,
812034f1
HS
1248 0x191d0, 0x191e8,
1249 0x19238, 0x19290,
8119c018
HS
1250 0x193f8, 0x19428,
1251 0x19430, 0x19444,
1252 0x1944c, 0x1946c,
1253 0x19474, 0x19474,
812034f1
HS
1254 0x19490, 0x194cc,
1255 0x194f0, 0x194f8,
8119c018
HS
1256 0x19c00, 0x19c08,
1257 0x19c10, 0x19c60,
1258 0x19c94, 0x19ce4,
1259 0x19cf0, 0x19d40,
1260 0x19d50, 0x19d94,
1261 0x19da0, 0x19de8,
1262 0x19df0, 0x19e10,
1263 0x19e50, 0x19e90,
1264 0x19ea0, 0x19f24,
1265 0x19f34, 0x19f34,
812034f1 1266 0x19f40, 0x19f50,
8119c018
HS
1267 0x19f90, 0x19fb4,
1268 0x19fc4, 0x19fe4,
1269 0x1a000, 0x1a004,
1270 0x1a010, 0x1a06c,
1271 0x1a0b0, 0x1a0e4,
1272 0x1a0ec, 0x1a0f8,
1273 0x1a100, 0x1a108,
1274 0x1a114, 0x1a120,
1275 0x1a128, 0x1a130,
1276 0x1a138, 0x1a138,
812034f1
HS
1277 0x1a190, 0x1a1c4,
1278 0x1a1fc, 0x1a1fc,
1279 0x1e008, 0x1e00c,
8119c018
HS
1280 0x1e040, 0x1e044,
1281 0x1e04c, 0x1e04c,
812034f1
HS
1282 0x1e284, 0x1e290,
1283 0x1e2c0, 0x1e2c0,
1284 0x1e2e0, 0x1e2e0,
1285 0x1e300, 0x1e384,
1286 0x1e3c0, 0x1e3c8,
1287 0x1e408, 0x1e40c,
8119c018
HS
1288 0x1e440, 0x1e444,
1289 0x1e44c, 0x1e44c,
812034f1
HS
1290 0x1e684, 0x1e690,
1291 0x1e6c0, 0x1e6c0,
1292 0x1e6e0, 0x1e6e0,
1293 0x1e700, 0x1e784,
1294 0x1e7c0, 0x1e7c8,
1295 0x1e808, 0x1e80c,
8119c018
HS
1296 0x1e840, 0x1e844,
1297 0x1e84c, 0x1e84c,
812034f1
HS
1298 0x1ea84, 0x1ea90,
1299 0x1eac0, 0x1eac0,
1300 0x1eae0, 0x1eae0,
1301 0x1eb00, 0x1eb84,
1302 0x1ebc0, 0x1ebc8,
1303 0x1ec08, 0x1ec0c,
8119c018
HS
1304 0x1ec40, 0x1ec44,
1305 0x1ec4c, 0x1ec4c,
812034f1
HS
1306 0x1ee84, 0x1ee90,
1307 0x1eec0, 0x1eec0,
1308 0x1eee0, 0x1eee0,
1309 0x1ef00, 0x1ef84,
1310 0x1efc0, 0x1efc8,
1311 0x1f008, 0x1f00c,
8119c018
HS
1312 0x1f040, 0x1f044,
1313 0x1f04c, 0x1f04c,
812034f1
HS
1314 0x1f284, 0x1f290,
1315 0x1f2c0, 0x1f2c0,
1316 0x1f2e0, 0x1f2e0,
1317 0x1f300, 0x1f384,
1318 0x1f3c0, 0x1f3c8,
1319 0x1f408, 0x1f40c,
8119c018
HS
1320 0x1f440, 0x1f444,
1321 0x1f44c, 0x1f44c,
812034f1
HS
1322 0x1f684, 0x1f690,
1323 0x1f6c0, 0x1f6c0,
1324 0x1f6e0, 0x1f6e0,
1325 0x1f700, 0x1f784,
1326 0x1f7c0, 0x1f7c8,
1327 0x1f808, 0x1f80c,
8119c018
HS
1328 0x1f840, 0x1f844,
1329 0x1f84c, 0x1f84c,
812034f1
HS
1330 0x1fa84, 0x1fa90,
1331 0x1fac0, 0x1fac0,
1332 0x1fae0, 0x1fae0,
1333 0x1fb00, 0x1fb84,
1334 0x1fbc0, 0x1fbc8,
1335 0x1fc08, 0x1fc0c,
8119c018
HS
1336 0x1fc40, 0x1fc44,
1337 0x1fc4c, 0x1fc4c,
812034f1
HS
1338 0x1fe84, 0x1fe90,
1339 0x1fec0, 0x1fec0,
1340 0x1fee0, 0x1fee0,
1341 0x1ff00, 0x1ff84,
1342 0x1ffc0, 0x1ffc8,
1343 0x30000, 0x30030,
8119c018
HS
1344 0x30038, 0x30038,
1345 0x30040, 0x30040,
812034f1 1346 0x30100, 0x30144,
8119c018
HS
1347 0x30190, 0x301a0,
1348 0x301a8, 0x301b8,
1349 0x301c4, 0x301c8,
1350 0x301d0, 0x301d0,
812034f1 1351 0x30200, 0x30318,
8119c018
HS
1352 0x30400, 0x304b4,
1353 0x304c0, 0x3052c,
812034f1 1354 0x30540, 0x3061c,
8119c018
HS
1355 0x30800, 0x30828,
1356 0x30834, 0x30834,
812034f1
HS
1357 0x308c0, 0x30908,
1358 0x30910, 0x309ac,
8119c018
HS
1359 0x30a00, 0x30a14,
1360 0x30a1c, 0x30a2c,
812034f1 1361 0x30a44, 0x30a50,
8119c018
HS
1362 0x30a74, 0x30a74,
1363 0x30a7c, 0x30afc,
1364 0x30b08, 0x30c24,
9f5ac48d 1365 0x30d00, 0x30d00,
812034f1
HS
1366 0x30d08, 0x30d14,
1367 0x30d1c, 0x30d20,
8119c018
HS
1368 0x30d3c, 0x30d3c,
1369 0x30d48, 0x30d50,
812034f1
HS
1370 0x31200, 0x3120c,
1371 0x31220, 0x31220,
1372 0x31240, 0x31240,
9f5ac48d 1373 0x31600, 0x3160c,
812034f1 1374 0x31a00, 0x31a1c,
9f5ac48d 1375 0x31e00, 0x31e20,
812034f1
HS
1376 0x31e38, 0x31e3c,
1377 0x31e80, 0x31e80,
1378 0x31e88, 0x31ea8,
1379 0x31eb0, 0x31eb4,
1380 0x31ec8, 0x31ed4,
1381 0x31fb8, 0x32004,
9f5ac48d
HS
1382 0x32200, 0x32200,
1383 0x32208, 0x32240,
1384 0x32248, 0x32280,
1385 0x32288, 0x322c0,
1386 0x322c8, 0x322fc,
812034f1
HS
1387 0x32600, 0x32630,
1388 0x32a00, 0x32abc,
8119c018
HS
1389 0x32b00, 0x32b10,
1390 0x32b20, 0x32b30,
1391 0x32b40, 0x32b50,
1392 0x32b60, 0x32b70,
1393 0x33000, 0x33028,
1394 0x33030, 0x33048,
1395 0x33060, 0x33068,
1396 0x33070, 0x3309c,
1397 0x330f0, 0x33128,
1398 0x33130, 0x33148,
1399 0x33160, 0x33168,
1400 0x33170, 0x3319c,
1401 0x331f0, 0x33238,
1402 0x33240, 0x33240,
1403 0x33248, 0x33250,
1404 0x3325c, 0x33264,
1405 0x33270, 0x332b8,
1406 0x332c0, 0x332e4,
1407 0x332f8, 0x33338,
1408 0x33340, 0x33340,
1409 0x33348, 0x33350,
1410 0x3335c, 0x33364,
1411 0x33370, 0x333b8,
1412 0x333c0, 0x333e4,
1413 0x333f8, 0x33428,
1414 0x33430, 0x33448,
1415 0x33460, 0x33468,
1416 0x33470, 0x3349c,
1417 0x334f0, 0x33528,
1418 0x33530, 0x33548,
1419 0x33560, 0x33568,
1420 0x33570, 0x3359c,
1421 0x335f0, 0x33638,
1422 0x33640, 0x33640,
1423 0x33648, 0x33650,
1424 0x3365c, 0x33664,
1425 0x33670, 0x336b8,
1426 0x336c0, 0x336e4,
1427 0x336f8, 0x33738,
1428 0x33740, 0x33740,
1429 0x33748, 0x33750,
1430 0x3375c, 0x33764,
1431 0x33770, 0x337b8,
1432 0x337c0, 0x337e4,
812034f1
HS
1433 0x337f8, 0x337fc,
1434 0x33814, 0x33814,
1435 0x3382c, 0x3382c,
1436 0x33880, 0x3388c,
1437 0x338e8, 0x338ec,
8119c018
HS
1438 0x33900, 0x33928,
1439 0x33930, 0x33948,
1440 0x33960, 0x33968,
1441 0x33970, 0x3399c,
1442 0x339f0, 0x33a38,
1443 0x33a40, 0x33a40,
1444 0x33a48, 0x33a50,
1445 0x33a5c, 0x33a64,
1446 0x33a70, 0x33ab8,
1447 0x33ac0, 0x33ae4,
812034f1
HS
1448 0x33af8, 0x33b10,
1449 0x33b28, 0x33b28,
1450 0x33b3c, 0x33b50,
1451 0x33bf0, 0x33c10,
1452 0x33c28, 0x33c28,
1453 0x33c3c, 0x33c50,
1454 0x33cf0, 0x33cfc,
1455 0x34000, 0x34030,
8119c018
HS
1456 0x34038, 0x34038,
1457 0x34040, 0x34040,
812034f1 1458 0x34100, 0x34144,
8119c018
HS
1459 0x34190, 0x341a0,
1460 0x341a8, 0x341b8,
1461 0x341c4, 0x341c8,
1462 0x341d0, 0x341d0,
812034f1 1463 0x34200, 0x34318,
8119c018
HS
1464 0x34400, 0x344b4,
1465 0x344c0, 0x3452c,
812034f1 1466 0x34540, 0x3461c,
8119c018
HS
1467 0x34800, 0x34828,
1468 0x34834, 0x34834,
812034f1
HS
1469 0x348c0, 0x34908,
1470 0x34910, 0x349ac,
8119c018
HS
1471 0x34a00, 0x34a14,
1472 0x34a1c, 0x34a2c,
812034f1 1473 0x34a44, 0x34a50,
8119c018
HS
1474 0x34a74, 0x34a74,
1475 0x34a7c, 0x34afc,
1476 0x34b08, 0x34c24,
9f5ac48d 1477 0x34d00, 0x34d00,
812034f1
HS
1478 0x34d08, 0x34d14,
1479 0x34d1c, 0x34d20,
8119c018
HS
1480 0x34d3c, 0x34d3c,
1481 0x34d48, 0x34d50,
812034f1
HS
1482 0x35200, 0x3520c,
1483 0x35220, 0x35220,
1484 0x35240, 0x35240,
9f5ac48d 1485 0x35600, 0x3560c,
812034f1 1486 0x35a00, 0x35a1c,
9f5ac48d 1487 0x35e00, 0x35e20,
812034f1
HS
1488 0x35e38, 0x35e3c,
1489 0x35e80, 0x35e80,
1490 0x35e88, 0x35ea8,
1491 0x35eb0, 0x35eb4,
1492 0x35ec8, 0x35ed4,
1493 0x35fb8, 0x36004,
9f5ac48d
HS
1494 0x36200, 0x36200,
1495 0x36208, 0x36240,
1496 0x36248, 0x36280,
1497 0x36288, 0x362c0,
1498 0x362c8, 0x362fc,
812034f1
HS
1499 0x36600, 0x36630,
1500 0x36a00, 0x36abc,
8119c018
HS
1501 0x36b00, 0x36b10,
1502 0x36b20, 0x36b30,
1503 0x36b40, 0x36b50,
1504 0x36b60, 0x36b70,
1505 0x37000, 0x37028,
1506 0x37030, 0x37048,
1507 0x37060, 0x37068,
1508 0x37070, 0x3709c,
1509 0x370f0, 0x37128,
1510 0x37130, 0x37148,
1511 0x37160, 0x37168,
1512 0x37170, 0x3719c,
1513 0x371f0, 0x37238,
1514 0x37240, 0x37240,
1515 0x37248, 0x37250,
1516 0x3725c, 0x37264,
1517 0x37270, 0x372b8,
1518 0x372c0, 0x372e4,
1519 0x372f8, 0x37338,
1520 0x37340, 0x37340,
1521 0x37348, 0x37350,
1522 0x3735c, 0x37364,
1523 0x37370, 0x373b8,
1524 0x373c0, 0x373e4,
1525 0x373f8, 0x37428,
1526 0x37430, 0x37448,
1527 0x37460, 0x37468,
1528 0x37470, 0x3749c,
1529 0x374f0, 0x37528,
1530 0x37530, 0x37548,
1531 0x37560, 0x37568,
1532 0x37570, 0x3759c,
1533 0x375f0, 0x37638,
1534 0x37640, 0x37640,
1535 0x37648, 0x37650,
1536 0x3765c, 0x37664,
1537 0x37670, 0x376b8,
1538 0x376c0, 0x376e4,
1539 0x376f8, 0x37738,
1540 0x37740, 0x37740,
1541 0x37748, 0x37750,
1542 0x3775c, 0x37764,
1543 0x37770, 0x377b8,
1544 0x377c0, 0x377e4,
812034f1
HS
1545 0x377f8, 0x377fc,
1546 0x37814, 0x37814,
1547 0x3782c, 0x3782c,
1548 0x37880, 0x3788c,
1549 0x378e8, 0x378ec,
8119c018
HS
1550 0x37900, 0x37928,
1551 0x37930, 0x37948,
1552 0x37960, 0x37968,
1553 0x37970, 0x3799c,
1554 0x379f0, 0x37a38,
1555 0x37a40, 0x37a40,
1556 0x37a48, 0x37a50,
1557 0x37a5c, 0x37a64,
1558 0x37a70, 0x37ab8,
1559 0x37ac0, 0x37ae4,
812034f1
HS
1560 0x37af8, 0x37b10,
1561 0x37b28, 0x37b28,
1562 0x37b3c, 0x37b50,
1563 0x37bf0, 0x37c10,
1564 0x37c28, 0x37c28,
1565 0x37c3c, 0x37c50,
1566 0x37cf0, 0x37cfc,
1567 0x38000, 0x38030,
8119c018
HS
1568 0x38038, 0x38038,
1569 0x38040, 0x38040,
812034f1 1570 0x38100, 0x38144,
8119c018
HS
1571 0x38190, 0x381a0,
1572 0x381a8, 0x381b8,
1573 0x381c4, 0x381c8,
1574 0x381d0, 0x381d0,
812034f1 1575 0x38200, 0x38318,
8119c018
HS
1576 0x38400, 0x384b4,
1577 0x384c0, 0x3852c,
812034f1 1578 0x38540, 0x3861c,
8119c018
HS
1579 0x38800, 0x38828,
1580 0x38834, 0x38834,
812034f1
HS
1581 0x388c0, 0x38908,
1582 0x38910, 0x389ac,
8119c018
HS
1583 0x38a00, 0x38a14,
1584 0x38a1c, 0x38a2c,
812034f1 1585 0x38a44, 0x38a50,
8119c018
HS
1586 0x38a74, 0x38a74,
1587 0x38a7c, 0x38afc,
1588 0x38b08, 0x38c24,
9f5ac48d 1589 0x38d00, 0x38d00,
812034f1
HS
1590 0x38d08, 0x38d14,
1591 0x38d1c, 0x38d20,
8119c018
HS
1592 0x38d3c, 0x38d3c,
1593 0x38d48, 0x38d50,
812034f1
HS
1594 0x39200, 0x3920c,
1595 0x39220, 0x39220,
1596 0x39240, 0x39240,
9f5ac48d 1597 0x39600, 0x3960c,
812034f1 1598 0x39a00, 0x39a1c,
9f5ac48d 1599 0x39e00, 0x39e20,
812034f1
HS
1600 0x39e38, 0x39e3c,
1601 0x39e80, 0x39e80,
1602 0x39e88, 0x39ea8,
1603 0x39eb0, 0x39eb4,
1604 0x39ec8, 0x39ed4,
1605 0x39fb8, 0x3a004,
9f5ac48d
HS
1606 0x3a200, 0x3a200,
1607 0x3a208, 0x3a240,
1608 0x3a248, 0x3a280,
1609 0x3a288, 0x3a2c0,
1610 0x3a2c8, 0x3a2fc,
812034f1
HS
1611 0x3a600, 0x3a630,
1612 0x3aa00, 0x3aabc,
8119c018
HS
1613 0x3ab00, 0x3ab10,
1614 0x3ab20, 0x3ab30,
1615 0x3ab40, 0x3ab50,
1616 0x3ab60, 0x3ab70,
1617 0x3b000, 0x3b028,
1618 0x3b030, 0x3b048,
1619 0x3b060, 0x3b068,
1620 0x3b070, 0x3b09c,
1621 0x3b0f0, 0x3b128,
1622 0x3b130, 0x3b148,
1623 0x3b160, 0x3b168,
1624 0x3b170, 0x3b19c,
1625 0x3b1f0, 0x3b238,
1626 0x3b240, 0x3b240,
1627 0x3b248, 0x3b250,
1628 0x3b25c, 0x3b264,
1629 0x3b270, 0x3b2b8,
1630 0x3b2c0, 0x3b2e4,
1631 0x3b2f8, 0x3b338,
1632 0x3b340, 0x3b340,
1633 0x3b348, 0x3b350,
1634 0x3b35c, 0x3b364,
1635 0x3b370, 0x3b3b8,
1636 0x3b3c0, 0x3b3e4,
1637 0x3b3f8, 0x3b428,
1638 0x3b430, 0x3b448,
1639 0x3b460, 0x3b468,
1640 0x3b470, 0x3b49c,
1641 0x3b4f0, 0x3b528,
1642 0x3b530, 0x3b548,
1643 0x3b560, 0x3b568,
1644 0x3b570, 0x3b59c,
1645 0x3b5f0, 0x3b638,
1646 0x3b640, 0x3b640,
1647 0x3b648, 0x3b650,
1648 0x3b65c, 0x3b664,
1649 0x3b670, 0x3b6b8,
1650 0x3b6c0, 0x3b6e4,
1651 0x3b6f8, 0x3b738,
1652 0x3b740, 0x3b740,
1653 0x3b748, 0x3b750,
1654 0x3b75c, 0x3b764,
1655 0x3b770, 0x3b7b8,
1656 0x3b7c0, 0x3b7e4,
812034f1
HS
1657 0x3b7f8, 0x3b7fc,
1658 0x3b814, 0x3b814,
1659 0x3b82c, 0x3b82c,
1660 0x3b880, 0x3b88c,
1661 0x3b8e8, 0x3b8ec,
8119c018
HS
1662 0x3b900, 0x3b928,
1663 0x3b930, 0x3b948,
1664 0x3b960, 0x3b968,
1665 0x3b970, 0x3b99c,
1666 0x3b9f0, 0x3ba38,
1667 0x3ba40, 0x3ba40,
1668 0x3ba48, 0x3ba50,
1669 0x3ba5c, 0x3ba64,
1670 0x3ba70, 0x3bab8,
1671 0x3bac0, 0x3bae4,
812034f1
HS
1672 0x3baf8, 0x3bb10,
1673 0x3bb28, 0x3bb28,
1674 0x3bb3c, 0x3bb50,
1675 0x3bbf0, 0x3bc10,
1676 0x3bc28, 0x3bc28,
1677 0x3bc3c, 0x3bc50,
1678 0x3bcf0, 0x3bcfc,
1679 0x3c000, 0x3c030,
8119c018
HS
1680 0x3c038, 0x3c038,
1681 0x3c040, 0x3c040,
812034f1 1682 0x3c100, 0x3c144,
8119c018
HS
1683 0x3c190, 0x3c1a0,
1684 0x3c1a8, 0x3c1b8,
1685 0x3c1c4, 0x3c1c8,
1686 0x3c1d0, 0x3c1d0,
812034f1 1687 0x3c200, 0x3c318,
8119c018
HS
1688 0x3c400, 0x3c4b4,
1689 0x3c4c0, 0x3c52c,
812034f1 1690 0x3c540, 0x3c61c,
8119c018
HS
1691 0x3c800, 0x3c828,
1692 0x3c834, 0x3c834,
812034f1
HS
1693 0x3c8c0, 0x3c908,
1694 0x3c910, 0x3c9ac,
8119c018
HS
1695 0x3ca00, 0x3ca14,
1696 0x3ca1c, 0x3ca2c,
812034f1 1697 0x3ca44, 0x3ca50,
8119c018
HS
1698 0x3ca74, 0x3ca74,
1699 0x3ca7c, 0x3cafc,
1700 0x3cb08, 0x3cc24,
9f5ac48d 1701 0x3cd00, 0x3cd00,
812034f1
HS
1702 0x3cd08, 0x3cd14,
1703 0x3cd1c, 0x3cd20,
8119c018
HS
1704 0x3cd3c, 0x3cd3c,
1705 0x3cd48, 0x3cd50,
812034f1
HS
1706 0x3d200, 0x3d20c,
1707 0x3d220, 0x3d220,
1708 0x3d240, 0x3d240,
9f5ac48d 1709 0x3d600, 0x3d60c,
812034f1 1710 0x3da00, 0x3da1c,
9f5ac48d 1711 0x3de00, 0x3de20,
812034f1
HS
1712 0x3de38, 0x3de3c,
1713 0x3de80, 0x3de80,
1714 0x3de88, 0x3dea8,
1715 0x3deb0, 0x3deb4,
1716 0x3dec8, 0x3ded4,
1717 0x3dfb8, 0x3e004,
9f5ac48d
HS
1718 0x3e200, 0x3e200,
1719 0x3e208, 0x3e240,
1720 0x3e248, 0x3e280,
1721 0x3e288, 0x3e2c0,
1722 0x3e2c8, 0x3e2fc,
812034f1
HS
1723 0x3e600, 0x3e630,
1724 0x3ea00, 0x3eabc,
8119c018
HS
1725 0x3eb00, 0x3eb10,
1726 0x3eb20, 0x3eb30,
1727 0x3eb40, 0x3eb50,
1728 0x3eb60, 0x3eb70,
1729 0x3f000, 0x3f028,
1730 0x3f030, 0x3f048,
1731 0x3f060, 0x3f068,
1732 0x3f070, 0x3f09c,
1733 0x3f0f0, 0x3f128,
1734 0x3f130, 0x3f148,
1735 0x3f160, 0x3f168,
1736 0x3f170, 0x3f19c,
1737 0x3f1f0, 0x3f238,
1738 0x3f240, 0x3f240,
1739 0x3f248, 0x3f250,
1740 0x3f25c, 0x3f264,
1741 0x3f270, 0x3f2b8,
1742 0x3f2c0, 0x3f2e4,
1743 0x3f2f8, 0x3f338,
1744 0x3f340, 0x3f340,
1745 0x3f348, 0x3f350,
1746 0x3f35c, 0x3f364,
1747 0x3f370, 0x3f3b8,
1748 0x3f3c0, 0x3f3e4,
1749 0x3f3f8, 0x3f428,
1750 0x3f430, 0x3f448,
1751 0x3f460, 0x3f468,
1752 0x3f470, 0x3f49c,
1753 0x3f4f0, 0x3f528,
1754 0x3f530, 0x3f548,
1755 0x3f560, 0x3f568,
1756 0x3f570, 0x3f59c,
1757 0x3f5f0, 0x3f638,
1758 0x3f640, 0x3f640,
1759 0x3f648, 0x3f650,
1760 0x3f65c, 0x3f664,
1761 0x3f670, 0x3f6b8,
1762 0x3f6c0, 0x3f6e4,
1763 0x3f6f8, 0x3f738,
1764 0x3f740, 0x3f740,
1765 0x3f748, 0x3f750,
1766 0x3f75c, 0x3f764,
1767 0x3f770, 0x3f7b8,
1768 0x3f7c0, 0x3f7e4,
812034f1
HS
1769 0x3f7f8, 0x3f7fc,
1770 0x3f814, 0x3f814,
1771 0x3f82c, 0x3f82c,
1772 0x3f880, 0x3f88c,
1773 0x3f8e8, 0x3f8ec,
8119c018
HS
1774 0x3f900, 0x3f928,
1775 0x3f930, 0x3f948,
1776 0x3f960, 0x3f968,
1777 0x3f970, 0x3f99c,
1778 0x3f9f0, 0x3fa38,
1779 0x3fa40, 0x3fa40,
1780 0x3fa48, 0x3fa50,
1781 0x3fa5c, 0x3fa64,
1782 0x3fa70, 0x3fab8,
1783 0x3fac0, 0x3fae4,
812034f1
HS
1784 0x3faf8, 0x3fb10,
1785 0x3fb28, 0x3fb28,
1786 0x3fb3c, 0x3fb50,
1787 0x3fbf0, 0x3fc10,
1788 0x3fc28, 0x3fc28,
1789 0x3fc3c, 0x3fc50,
1790 0x3fcf0, 0x3fcfc,
1791 0x40000, 0x4000c,
8119c018
HS
1792 0x40040, 0x40050,
1793 0x40060, 0x40068,
1794 0x4007c, 0x4008c,
1795 0x40094, 0x400b0,
1796 0x400c0, 0x40144,
812034f1 1797 0x40180, 0x4018c,
8119c018
HS
1798 0x40200, 0x40254,
1799 0x40260, 0x40264,
1800 0x40270, 0x40288,
1801 0x40290, 0x40298,
1802 0x402ac, 0x402c8,
1803 0x402d0, 0x402e0,
1804 0x402f0, 0x402f0,
1805 0x40300, 0x4033c,
812034f1
HS
1806 0x403f8, 0x403fc,
1807 0x41304, 0x413c4,
8119c018
HS
1808 0x41400, 0x4140c,
1809 0x41414, 0x4141c,
812034f1 1810 0x41480, 0x414d0,
8119c018
HS
1811 0x44000, 0x44054,
1812 0x4405c, 0x44078,
1813 0x440c0, 0x44174,
1814 0x44180, 0x441ac,
1815 0x441b4, 0x441b8,
1816 0x441c0, 0x44254,
1817 0x4425c, 0x44278,
1818 0x442c0, 0x44374,
1819 0x44380, 0x443ac,
1820 0x443b4, 0x443b8,
1821 0x443c0, 0x44454,
1822 0x4445c, 0x44478,
1823 0x444c0, 0x44574,
1824 0x44580, 0x445ac,
1825 0x445b4, 0x445b8,
1826 0x445c0, 0x44654,
1827 0x4465c, 0x44678,
1828 0x446c0, 0x44774,
1829 0x44780, 0x447ac,
1830 0x447b4, 0x447b8,
1831 0x447c0, 0x44854,
1832 0x4485c, 0x44878,
1833 0x448c0, 0x44974,
1834 0x44980, 0x449ac,
1835 0x449b4, 0x449b8,
1836 0x449c0, 0x449fc,
1837 0x45000, 0x45004,
1838 0x45010, 0x45030,
1839 0x45040, 0x45060,
1840 0x45068, 0x45068,
812034f1
HS
1841 0x45080, 0x45084,
1842 0x450a0, 0x450b0,
8119c018
HS
1843 0x45200, 0x45204,
1844 0x45210, 0x45230,
1845 0x45240, 0x45260,
1846 0x45268, 0x45268,
812034f1
HS
1847 0x45280, 0x45284,
1848 0x452a0, 0x452b0,
1849 0x460c0, 0x460e4,
8119c018
HS
1850 0x47000, 0x4703c,
1851 0x47044, 0x4708c,
812034f1 1852 0x47200, 0x47250,
8119c018
HS
1853 0x47400, 0x47408,
1854 0x47414, 0x47420,
812034f1
HS
1855 0x47600, 0x47618,
1856 0x47800, 0x47814,
1857 0x48000, 0x4800c,
8119c018
HS
1858 0x48040, 0x48050,
1859 0x48060, 0x48068,
1860 0x4807c, 0x4808c,
1861 0x48094, 0x480b0,
1862 0x480c0, 0x48144,
812034f1 1863 0x48180, 0x4818c,
8119c018
HS
1864 0x48200, 0x48254,
1865 0x48260, 0x48264,
1866 0x48270, 0x48288,
1867 0x48290, 0x48298,
1868 0x482ac, 0x482c8,
1869 0x482d0, 0x482e0,
1870 0x482f0, 0x482f0,
1871 0x48300, 0x4833c,
812034f1
HS
1872 0x483f8, 0x483fc,
1873 0x49304, 0x493c4,
8119c018
HS
1874 0x49400, 0x4940c,
1875 0x49414, 0x4941c,
812034f1 1876 0x49480, 0x494d0,
8119c018
HS
1877 0x4c000, 0x4c054,
1878 0x4c05c, 0x4c078,
1879 0x4c0c0, 0x4c174,
1880 0x4c180, 0x4c1ac,
1881 0x4c1b4, 0x4c1b8,
1882 0x4c1c0, 0x4c254,
1883 0x4c25c, 0x4c278,
1884 0x4c2c0, 0x4c374,
1885 0x4c380, 0x4c3ac,
1886 0x4c3b4, 0x4c3b8,
1887 0x4c3c0, 0x4c454,
1888 0x4c45c, 0x4c478,
1889 0x4c4c0, 0x4c574,
1890 0x4c580, 0x4c5ac,
1891 0x4c5b4, 0x4c5b8,
1892 0x4c5c0, 0x4c654,
1893 0x4c65c, 0x4c678,
1894 0x4c6c0, 0x4c774,
1895 0x4c780, 0x4c7ac,
1896 0x4c7b4, 0x4c7b8,
1897 0x4c7c0, 0x4c854,
1898 0x4c85c, 0x4c878,
1899 0x4c8c0, 0x4c974,
1900 0x4c980, 0x4c9ac,
1901 0x4c9b4, 0x4c9b8,
1902 0x4c9c0, 0x4c9fc,
1903 0x4d000, 0x4d004,
1904 0x4d010, 0x4d030,
1905 0x4d040, 0x4d060,
1906 0x4d068, 0x4d068,
812034f1
HS
1907 0x4d080, 0x4d084,
1908 0x4d0a0, 0x4d0b0,
8119c018
HS
1909 0x4d200, 0x4d204,
1910 0x4d210, 0x4d230,
1911 0x4d240, 0x4d260,
1912 0x4d268, 0x4d268,
812034f1
HS
1913 0x4d280, 0x4d284,
1914 0x4d2a0, 0x4d2b0,
1915 0x4e0c0, 0x4e0e4,
8119c018
HS
1916 0x4f000, 0x4f03c,
1917 0x4f044, 0x4f08c,
812034f1 1918 0x4f200, 0x4f250,
8119c018
HS
1919 0x4f400, 0x4f408,
1920 0x4f414, 0x4f420,
812034f1
HS
1921 0x4f600, 0x4f618,
1922 0x4f800, 0x4f814,
8119c018
HS
1923 0x50000, 0x50084,
1924 0x50090, 0x500cc,
812034f1 1925 0x50400, 0x50400,
8119c018
HS
1926 0x50800, 0x50884,
1927 0x50890, 0x508cc,
812034f1
HS
1928 0x50c00, 0x50c00,
1929 0x51000, 0x5101c,
1930 0x51300, 0x51308,
1931 };
1932
ab4b583b 1933 static const unsigned int t6_reg_ranges[] = {
8119c018
HS
1934 0x1008, 0x101c,
1935 0x1024, 0x10a8,
1936 0x10b4, 0x10f8,
1937 0x1100, 0x1114,
1938 0x111c, 0x112c,
1939 0x1138, 0x113c,
1940 0x1144, 0x114c,
1941 0x1180, 0x1184,
1942 0x1190, 0x1194,
1943 0x11a0, 0x11a4,
1944 0x11b0, 0x11b4,
676d6a75
HS
1945 0x11fc, 0x1258,
1946 0x1280, 0x12d4,
1947 0x12d9, 0x12d9,
1948 0x12de, 0x12de,
1949 0x12e3, 0x12e3,
1950 0x12e8, 0x133c,
ab4b583b
HS
1951 0x1800, 0x18fc,
1952 0x3000, 0x302c,
8119c018
HS
1953 0x3060, 0x30b0,
1954 0x30b8, 0x30d8,
ab4b583b
HS
1955 0x30e0, 0x30fc,
1956 0x3140, 0x357c,
1957 0x35a8, 0x35cc,
1958 0x35ec, 0x35ec,
1959 0x3600, 0x5624,
8119c018
HS
1960 0x56cc, 0x56ec,
1961 0x56f4, 0x5720,
1962 0x5728, 0x575c,
ab4b583b 1963 0x580c, 0x5814,
8119c018
HS
1964 0x5890, 0x589c,
1965 0x58a4, 0x58ac,
1966 0x58b8, 0x58bc,
ab4b583b
HS
1967 0x5940, 0x595c,
1968 0x5980, 0x598c,
8119c018
HS
1969 0x59b0, 0x59c8,
1970 0x59d0, 0x59dc,
ab4b583b
HS
1971 0x59fc, 0x5a18,
1972 0x5a60, 0x5a6c,
8119c018
HS
1973 0x5a80, 0x5a8c,
1974 0x5a94, 0x5a9c,
ab4b583b 1975 0x5b94, 0x5bfc,
8119c018
HS
1976 0x5c10, 0x5e48,
1977 0x5e50, 0x5e94,
1978 0x5ea0, 0x5eb0,
1979 0x5ec0, 0x5ec0,
676d6a75 1980 0x5ec8, 0x5ed0,
8119c018
HS
1981 0x6000, 0x6020,
1982 0x6028, 0x6040,
1983 0x6058, 0x609c,
1984 0x60a8, 0x619c,
ab4b583b
HS
1985 0x7700, 0x7798,
1986 0x77c0, 0x7880,
1987 0x78cc, 0x78fc,
8119c018
HS
1988 0x7b00, 0x7b58,
1989 0x7b60, 0x7b84,
1990 0x7b8c, 0x7c54,
1991 0x7d00, 0x7d38,
1992 0x7d40, 0x7d84,
1993 0x7d8c, 0x7ddc,
1994 0x7de4, 0x7e04,
1995 0x7e10, 0x7e1c,
1996 0x7e24, 0x7e38,
1997 0x7e40, 0x7e44,
1998 0x7e4c, 0x7e78,
1999 0x7e80, 0x7edc,
2000 0x7ee8, 0x7efc,
f109ff11 2001 0x8dc0, 0x8de4,
8119c018
HS
2002 0x8df8, 0x8e04,
2003 0x8e10, 0x8e84,
ab4b583b 2004 0x8ea0, 0x8f88,
8119c018
HS
2005 0x8fb8, 0x9058,
2006 0x9060, 0x9060,
2007 0x9068, 0x90f8,
2008 0x9100, 0x9124,
ab4b583b 2009 0x9400, 0x9470,
8119c018
HS
2010 0x9600, 0x9600,
2011 0x9608, 0x9638,
2012 0x9640, 0x9704,
2013 0x9710, 0x971c,
ab4b583b
HS
2014 0x9800, 0x9808,
2015 0x9820, 0x983c,
2016 0x9850, 0x9864,
2017 0x9c00, 0x9c6c,
2018 0x9c80, 0x9cec,
2019 0x9d00, 0x9d6c,
2020 0x9d80, 0x9dec,
2021 0x9e00, 0x9e6c,
2022 0x9e80, 0x9eec,
2023 0x9f00, 0x9f6c,
2024 0x9f80, 0xa020,
2025 0xd004, 0xd03c,
5b4e83e1 2026 0xd100, 0xd118,
8119c018
HS
2027 0xd200, 0xd214,
2028 0xd220, 0xd234,
2029 0xd240, 0xd254,
2030 0xd260, 0xd274,
2031 0xd280, 0xd294,
2032 0xd2a0, 0xd2b4,
2033 0xd2c0, 0xd2d4,
2034 0xd2e0, 0xd2f4,
2035 0xd300, 0xd31c,
ab4b583b
HS
2036 0xdfc0, 0xdfe0,
2037 0xe000, 0xf008,
2038 0x11000, 0x11014,
8119c018
HS
2039 0x11048, 0x1106c,
2040 0x11074, 0x11088,
2041 0x11098, 0x11120,
2042 0x1112c, 0x1117c,
2043 0x11190, 0x112e0,
ab4b583b 2044 0x11300, 0x1130c,
5b4e83e1 2045 0x12000, 0x1206c,
ab4b583b
HS
2046 0x19040, 0x1906c,
2047 0x19078, 0x19080,
8119c018
HS
2048 0x1908c, 0x190e8,
2049 0x190f0, 0x190f8,
2050 0x19100, 0x19110,
2051 0x19120, 0x19124,
2052 0x19150, 0x19194,
2053 0x1919c, 0x191b0,
ab4b583b 2054 0x191d0, 0x191e8,
676d6a75
HS
2055 0x19238, 0x19290,
2056 0x192a4, 0x192b0,
8119c018
HS
2057 0x192bc, 0x192bc,
2058 0x19348, 0x1934c,
2059 0x193f8, 0x19418,
2060 0x19420, 0x19428,
2061 0x19430, 0x19444,
2062 0x1944c, 0x1946c,
2063 0x19474, 0x19474,
ab4b583b
HS
2064 0x19490, 0x194cc,
2065 0x194f0, 0x194f8,
8119c018
HS
2066 0x19c00, 0x19c48,
2067 0x19c50, 0x19c80,
2068 0x19c94, 0x19c98,
2069 0x19ca0, 0x19cbc,
2070 0x19ce4, 0x19ce4,
2071 0x19cf0, 0x19cf8,
2072 0x19d00, 0x19d28,
ab4b583b 2073 0x19d50, 0x19d78,
8119c018
HS
2074 0x19d94, 0x19d98,
2075 0x19da0, 0x19dc8,
ab4b583b
HS
2076 0x19df0, 0x19e10,
2077 0x19e50, 0x19e6c,
8119c018
HS
2078 0x19ea0, 0x19ebc,
2079 0x19ec4, 0x19ef4,
2080 0x19f04, 0x19f2c,
2081 0x19f34, 0x19f34,
ab4b583b
HS
2082 0x19f40, 0x19f50,
2083 0x19f90, 0x19fac,
8119c018
HS
2084 0x19fc4, 0x19fc8,
2085 0x19fd0, 0x19fe4,
2086 0x1a000, 0x1a004,
2087 0x1a010, 0x1a06c,
2088 0x1a0b0, 0x1a0e4,
2089 0x1a0ec, 0x1a0f8,
2090 0x1a100, 0x1a108,
2091 0x1a114, 0x1a120,
2092 0x1a128, 0x1a130,
2093 0x1a138, 0x1a138,
ab4b583b
HS
2094 0x1a190, 0x1a1c4,
2095 0x1a1fc, 0x1a1fc,
2096 0x1e008, 0x1e00c,
8119c018
HS
2097 0x1e040, 0x1e044,
2098 0x1e04c, 0x1e04c,
ab4b583b
HS
2099 0x1e284, 0x1e290,
2100 0x1e2c0, 0x1e2c0,
2101 0x1e2e0, 0x1e2e0,
2102 0x1e300, 0x1e384,
2103 0x1e3c0, 0x1e3c8,
2104 0x1e408, 0x1e40c,
8119c018
HS
2105 0x1e440, 0x1e444,
2106 0x1e44c, 0x1e44c,
ab4b583b
HS
2107 0x1e684, 0x1e690,
2108 0x1e6c0, 0x1e6c0,
2109 0x1e6e0, 0x1e6e0,
2110 0x1e700, 0x1e784,
2111 0x1e7c0, 0x1e7c8,
2112 0x1e808, 0x1e80c,
8119c018
HS
2113 0x1e840, 0x1e844,
2114 0x1e84c, 0x1e84c,
ab4b583b
HS
2115 0x1ea84, 0x1ea90,
2116 0x1eac0, 0x1eac0,
2117 0x1eae0, 0x1eae0,
2118 0x1eb00, 0x1eb84,
2119 0x1ebc0, 0x1ebc8,
2120 0x1ec08, 0x1ec0c,
8119c018
HS
2121 0x1ec40, 0x1ec44,
2122 0x1ec4c, 0x1ec4c,
ab4b583b
HS
2123 0x1ee84, 0x1ee90,
2124 0x1eec0, 0x1eec0,
2125 0x1eee0, 0x1eee0,
2126 0x1ef00, 0x1ef84,
2127 0x1efc0, 0x1efc8,
2128 0x1f008, 0x1f00c,
8119c018
HS
2129 0x1f040, 0x1f044,
2130 0x1f04c, 0x1f04c,
ab4b583b
HS
2131 0x1f284, 0x1f290,
2132 0x1f2c0, 0x1f2c0,
2133 0x1f2e0, 0x1f2e0,
2134 0x1f300, 0x1f384,
2135 0x1f3c0, 0x1f3c8,
2136 0x1f408, 0x1f40c,
8119c018
HS
2137 0x1f440, 0x1f444,
2138 0x1f44c, 0x1f44c,
ab4b583b
HS
2139 0x1f684, 0x1f690,
2140 0x1f6c0, 0x1f6c0,
2141 0x1f6e0, 0x1f6e0,
2142 0x1f700, 0x1f784,
2143 0x1f7c0, 0x1f7c8,
2144 0x1f808, 0x1f80c,
8119c018
HS
2145 0x1f840, 0x1f844,
2146 0x1f84c, 0x1f84c,
ab4b583b
HS
2147 0x1fa84, 0x1fa90,
2148 0x1fac0, 0x1fac0,
2149 0x1fae0, 0x1fae0,
2150 0x1fb00, 0x1fb84,
2151 0x1fbc0, 0x1fbc8,
2152 0x1fc08, 0x1fc0c,
8119c018
HS
2153 0x1fc40, 0x1fc44,
2154 0x1fc4c, 0x1fc4c,
ab4b583b
HS
2155 0x1fe84, 0x1fe90,
2156 0x1fec0, 0x1fec0,
2157 0x1fee0, 0x1fee0,
2158 0x1ff00, 0x1ff84,
2159 0x1ffc0, 0x1ffc8,
8119c018
HS
2160 0x30000, 0x30030,
2161 0x30038, 0x30038,
2162 0x30040, 0x30040,
2163 0x30048, 0x30048,
2164 0x30050, 0x30050,
2165 0x3005c, 0x30060,
2166 0x30068, 0x30068,
2167 0x30070, 0x30070,
2168 0x30100, 0x30168,
2169 0x30190, 0x301a0,
2170 0x301a8, 0x301b8,
2171 0x301c4, 0x301c8,
2172 0x301d0, 0x301d0,
f109ff11 2173 0x30200, 0x30320,
8119c018
HS
2174 0x30400, 0x304b4,
2175 0x304c0, 0x3052c,
ab4b583b 2176 0x30540, 0x3061c,
8119c018 2177 0x30800, 0x308a0,
ab4b583b
HS
2178 0x308c0, 0x30908,
2179 0x30910, 0x309b8,
2180 0x30a00, 0x30a04,
8119c018
HS
2181 0x30a0c, 0x30a14,
2182 0x30a1c, 0x30a2c,
ab4b583b 2183 0x30a44, 0x30a50,
8119c018
HS
2184 0x30a74, 0x30a74,
2185 0x30a7c, 0x30afc,
2186 0x30b08, 0x30c24,
2187 0x30d00, 0x30d14,
2188 0x30d1c, 0x30d3c,
2189 0x30d44, 0x30d4c,
2190 0x30d54, 0x30d74,
2191 0x30d7c, 0x30d7c,
ab4b583b
HS
2192 0x30de0, 0x30de0,
2193 0x30e00, 0x30ed4,
2194 0x30f00, 0x30fa4,
2195 0x30fc0, 0x30fc4,
2196 0x31000, 0x31004,
2197 0x31080, 0x310fc,
2198 0x31208, 0x31220,
2199 0x3123c, 0x31254,
2200 0x31300, 0x31300,
2201 0x31308, 0x3131c,
2202 0x31338, 0x3133c,
2203 0x31380, 0x31380,
2204 0x31388, 0x313a8,
2205 0x313b4, 0x313b4,
2206 0x31400, 0x31420,
2207 0x31438, 0x3143c,
2208 0x31480, 0x31480,
2209 0x314a8, 0x314a8,
2210 0x314b0, 0x314b4,
2211 0x314c8, 0x314d4,
2212 0x31a40, 0x31a4c,
2213 0x31af0, 0x31b20,
2214 0x31b38, 0x31b3c,
2215 0x31b80, 0x31b80,
2216 0x31ba8, 0x31ba8,
2217 0x31bb0, 0x31bb4,
2218 0x31bc8, 0x31bd4,
2219 0x32140, 0x3218c,
8119c018
HS
2220 0x321f0, 0x321f4,
2221 0x32200, 0x32200,
ab4b583b
HS
2222 0x32218, 0x32218,
2223 0x32400, 0x32400,
2224 0x32408, 0x3241c,
2225 0x32618, 0x32620,
2226 0x32664, 0x32664,
2227 0x326a8, 0x326a8,
2228 0x326ec, 0x326ec,
2229 0x32a00, 0x32abc,
8119c018
HS
2230 0x32b00, 0x32b38,
2231 0x32b40, 0x32b58,
2232 0x32b60, 0x32b78,
ab4b583b
HS
2233 0x32c00, 0x32c00,
2234 0x32c08, 0x32c3c,
2235 0x32e00, 0x32e2c,
2236 0x32f00, 0x32f2c,
8119c018
HS
2237 0x33000, 0x3302c,
2238 0x33034, 0x33050,
2239 0x33058, 0x33058,
2240 0x33060, 0x3308c,
2241 0x3309c, 0x330ac,
2242 0x330c0, 0x330c0,
2243 0x330c8, 0x330d0,
2244 0x330d8, 0x330e0,
2245 0x330ec, 0x3312c,
2246 0x33134, 0x33150,
2247 0x33158, 0x33158,
2248 0x33160, 0x3318c,
2249 0x3319c, 0x331ac,
2250 0x331c0, 0x331c0,
2251 0x331c8, 0x331d0,
2252 0x331d8, 0x331e0,
2253 0x331ec, 0x33290,
2254 0x33298, 0x332c4,
2255 0x332e4, 0x33390,
2256 0x33398, 0x333c4,
2257 0x333e4, 0x3342c,
2258 0x33434, 0x33450,
2259 0x33458, 0x33458,
2260 0x33460, 0x3348c,
2261 0x3349c, 0x334ac,
2262 0x334c0, 0x334c0,
2263 0x334c8, 0x334d0,
2264 0x334d8, 0x334e0,
2265 0x334ec, 0x3352c,
2266 0x33534, 0x33550,
2267 0x33558, 0x33558,
2268 0x33560, 0x3358c,
2269 0x3359c, 0x335ac,
2270 0x335c0, 0x335c0,
2271 0x335c8, 0x335d0,
2272 0x335d8, 0x335e0,
2273 0x335ec, 0x33690,
2274 0x33698, 0x336c4,
2275 0x336e4, 0x33790,
2276 0x33798, 0x337c4,
ab4b583b
HS
2277 0x337e4, 0x337fc,
2278 0x33814, 0x33814,
2279 0x33854, 0x33868,
2280 0x33880, 0x3388c,
2281 0x338c0, 0x338d0,
2282 0x338e8, 0x338ec,
8119c018
HS
2283 0x33900, 0x3392c,
2284 0x33934, 0x33950,
2285 0x33958, 0x33958,
2286 0x33960, 0x3398c,
2287 0x3399c, 0x339ac,
2288 0x339c0, 0x339c0,
2289 0x339c8, 0x339d0,
2290 0x339d8, 0x339e0,
2291 0x339ec, 0x33a90,
2292 0x33a98, 0x33ac4,
ab4b583b 2293 0x33ae4, 0x33b10,
8119c018
HS
2294 0x33b24, 0x33b28,
2295 0x33b38, 0x33b50,
ab4b583b 2296 0x33bf0, 0x33c10,
8119c018
HS
2297 0x33c24, 0x33c28,
2298 0x33c38, 0x33c50,
ab4b583b 2299 0x33cf0, 0x33cfc,
8119c018
HS
2300 0x34000, 0x34030,
2301 0x34038, 0x34038,
2302 0x34040, 0x34040,
2303 0x34048, 0x34048,
2304 0x34050, 0x34050,
2305 0x3405c, 0x34060,
2306 0x34068, 0x34068,
2307 0x34070, 0x34070,
2308 0x34100, 0x34168,
2309 0x34190, 0x341a0,
2310 0x341a8, 0x341b8,
2311 0x341c4, 0x341c8,
2312 0x341d0, 0x341d0,
f109ff11 2313 0x34200, 0x34320,
8119c018
HS
2314 0x34400, 0x344b4,
2315 0x344c0, 0x3452c,
ab4b583b 2316 0x34540, 0x3461c,
8119c018 2317 0x34800, 0x348a0,
ab4b583b
HS
2318 0x348c0, 0x34908,
2319 0x34910, 0x349b8,
2320 0x34a00, 0x34a04,
8119c018
HS
2321 0x34a0c, 0x34a14,
2322 0x34a1c, 0x34a2c,
ab4b583b 2323 0x34a44, 0x34a50,
8119c018
HS
2324 0x34a74, 0x34a74,
2325 0x34a7c, 0x34afc,
2326 0x34b08, 0x34c24,
2327 0x34d00, 0x34d14,
2328 0x34d1c, 0x34d3c,
2329 0x34d44, 0x34d4c,
2330 0x34d54, 0x34d74,
2331 0x34d7c, 0x34d7c,
ab4b583b
HS
2332 0x34de0, 0x34de0,
2333 0x34e00, 0x34ed4,
2334 0x34f00, 0x34fa4,
2335 0x34fc0, 0x34fc4,
2336 0x35000, 0x35004,
2337 0x35080, 0x350fc,
2338 0x35208, 0x35220,
2339 0x3523c, 0x35254,
2340 0x35300, 0x35300,
2341 0x35308, 0x3531c,
2342 0x35338, 0x3533c,
2343 0x35380, 0x35380,
2344 0x35388, 0x353a8,
2345 0x353b4, 0x353b4,
2346 0x35400, 0x35420,
2347 0x35438, 0x3543c,
2348 0x35480, 0x35480,
2349 0x354a8, 0x354a8,
2350 0x354b0, 0x354b4,
2351 0x354c8, 0x354d4,
2352 0x35a40, 0x35a4c,
2353 0x35af0, 0x35b20,
2354 0x35b38, 0x35b3c,
2355 0x35b80, 0x35b80,
2356 0x35ba8, 0x35ba8,
2357 0x35bb0, 0x35bb4,
2358 0x35bc8, 0x35bd4,
2359 0x36140, 0x3618c,
8119c018
HS
2360 0x361f0, 0x361f4,
2361 0x36200, 0x36200,
ab4b583b
HS
2362 0x36218, 0x36218,
2363 0x36400, 0x36400,
2364 0x36408, 0x3641c,
2365 0x36618, 0x36620,
2366 0x36664, 0x36664,
2367 0x366a8, 0x366a8,
2368 0x366ec, 0x366ec,
2369 0x36a00, 0x36abc,
8119c018
HS
2370 0x36b00, 0x36b38,
2371 0x36b40, 0x36b58,
2372 0x36b60, 0x36b78,
ab4b583b
HS
2373 0x36c00, 0x36c00,
2374 0x36c08, 0x36c3c,
2375 0x36e00, 0x36e2c,
2376 0x36f00, 0x36f2c,
8119c018
HS
2377 0x37000, 0x3702c,
2378 0x37034, 0x37050,
2379 0x37058, 0x37058,
2380 0x37060, 0x3708c,
2381 0x3709c, 0x370ac,
2382 0x370c0, 0x370c0,
2383 0x370c8, 0x370d0,
2384 0x370d8, 0x370e0,
2385 0x370ec, 0x3712c,
2386 0x37134, 0x37150,
2387 0x37158, 0x37158,
2388 0x37160, 0x3718c,
2389 0x3719c, 0x371ac,
2390 0x371c0, 0x371c0,
2391 0x371c8, 0x371d0,
2392 0x371d8, 0x371e0,
2393 0x371ec, 0x37290,
2394 0x37298, 0x372c4,
2395 0x372e4, 0x37390,
2396 0x37398, 0x373c4,
2397 0x373e4, 0x3742c,
2398 0x37434, 0x37450,
2399 0x37458, 0x37458,
2400 0x37460, 0x3748c,
2401 0x3749c, 0x374ac,
2402 0x374c0, 0x374c0,
2403 0x374c8, 0x374d0,
2404 0x374d8, 0x374e0,
2405 0x374ec, 0x3752c,
2406 0x37534, 0x37550,
2407 0x37558, 0x37558,
2408 0x37560, 0x3758c,
2409 0x3759c, 0x375ac,
2410 0x375c0, 0x375c0,
2411 0x375c8, 0x375d0,
2412 0x375d8, 0x375e0,
2413 0x375ec, 0x37690,
2414 0x37698, 0x376c4,
2415 0x376e4, 0x37790,
2416 0x37798, 0x377c4,
ab4b583b
HS
2417 0x377e4, 0x377fc,
2418 0x37814, 0x37814,
2419 0x37854, 0x37868,
2420 0x37880, 0x3788c,
2421 0x378c0, 0x378d0,
2422 0x378e8, 0x378ec,
8119c018
HS
2423 0x37900, 0x3792c,
2424 0x37934, 0x37950,
2425 0x37958, 0x37958,
2426 0x37960, 0x3798c,
2427 0x3799c, 0x379ac,
2428 0x379c0, 0x379c0,
2429 0x379c8, 0x379d0,
2430 0x379d8, 0x379e0,
2431 0x379ec, 0x37a90,
2432 0x37a98, 0x37ac4,
ab4b583b 2433 0x37ae4, 0x37b10,
8119c018
HS
2434 0x37b24, 0x37b28,
2435 0x37b38, 0x37b50,
ab4b583b 2436 0x37bf0, 0x37c10,
8119c018
HS
2437 0x37c24, 0x37c28,
2438 0x37c38, 0x37c50,
ab4b583b
HS
2439 0x37cf0, 0x37cfc,
2440 0x40040, 0x40040,
2441 0x40080, 0x40084,
2442 0x40100, 0x40100,
2443 0x40140, 0x401bc,
2444 0x40200, 0x40214,
2445 0x40228, 0x40228,
2446 0x40240, 0x40258,
2447 0x40280, 0x40280,
2448 0x40304, 0x40304,
2449 0x40330, 0x4033c,
676d6a75
HS
2450 0x41304, 0x413b8,
2451 0x413c0, 0x413c8,
8119c018
HS
2452 0x413d0, 0x413dc,
2453 0x413f0, 0x413f0,
2454 0x41400, 0x4140c,
2455 0x41414, 0x4141c,
ab4b583b
HS
2456 0x41480, 0x414d0,
2457 0x44000, 0x4407c,
8119c018
HS
2458 0x440c0, 0x441ac,
2459 0x441b4, 0x4427c,
2460 0x442c0, 0x443ac,
2461 0x443b4, 0x4447c,
2462 0x444c0, 0x445ac,
2463 0x445b4, 0x4467c,
2464 0x446c0, 0x447ac,
2465 0x447b4, 0x4487c,
2466 0x448c0, 0x449ac,
2467 0x449b4, 0x44a7c,
2468 0x44ac0, 0x44bac,
2469 0x44bb4, 0x44c7c,
2470 0x44cc0, 0x44dac,
2471 0x44db4, 0x44e7c,
2472 0x44ec0, 0x44fac,
2473 0x44fb4, 0x4507c,
2474 0x450c0, 0x451ac,
2475 0x451b4, 0x451fc,
2476 0x45800, 0x45804,
2477 0x45810, 0x45830,
2478 0x45840, 0x45860,
2479 0x45868, 0x45868,
ab4b583b
HS
2480 0x45880, 0x45884,
2481 0x458a0, 0x458b0,
8119c018
HS
2482 0x45a00, 0x45a04,
2483 0x45a10, 0x45a30,
2484 0x45a40, 0x45a60,
2485 0x45a68, 0x45a68,
ab4b583b
HS
2486 0x45a80, 0x45a84,
2487 0x45aa0, 0x45ab0,
2488 0x460c0, 0x460e4,
8119c018
HS
2489 0x47000, 0x4703c,
2490 0x47044, 0x4708c,
ab4b583b 2491 0x47200, 0x47250,
8119c018
HS
2492 0x47400, 0x47408,
2493 0x47414, 0x47420,
ab4b583b 2494 0x47600, 0x47618,
8119c018
HS
2495 0x47800, 0x47814,
2496 0x47820, 0x4782c,
2497 0x50000, 0x50084,
2498 0x50090, 0x500cc,
2499 0x50300, 0x50384,
ab4b583b 2500 0x50400, 0x50400,
8119c018
HS
2501 0x50800, 0x50884,
2502 0x50890, 0x508cc,
2503 0x50b00, 0x50b84,
ab4b583b 2504 0x50c00, 0x50c00,
8119c018
HS
2505 0x51000, 0x51020,
2506 0x51028, 0x510b0,
ab4b583b
HS
2507 0x51300, 0x51324,
2508 };
2509
812034f1
HS
2510 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511 const unsigned int *reg_ranges;
2512 int reg_ranges_size, range;
2513 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514
2515 /* Select the right set of register ranges to dump depending on the
2516 * adapter chip type.
2517 */
2518 switch (chip_version) {
2519 case CHELSIO_T4:
2520 reg_ranges = t4_reg_ranges;
2521 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522 break;
2523
2524 case CHELSIO_T5:
2525 reg_ranges = t5_reg_ranges;
2526 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527 break;
2528
ab4b583b
HS
2529 case CHELSIO_T6:
2530 reg_ranges = t6_reg_ranges;
2531 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532 break;
2533
812034f1
HS
2534 default:
2535 dev_err(adap->pdev_dev,
2536 "Unsupported chip version %d\n", chip_version);
2537 return;
2538 }
2539
2540 /* Clear the register buffer and insert the appropriate register
2541 * values selected by the above register ranges.
2542 */
2543 memset(buf, 0, buf_size);
2544 for (range = 0; range < reg_ranges_size; range += 2) {
2545 unsigned int reg = reg_ranges[range];
2546 unsigned int last_reg = reg_ranges[range + 1];
2547 u32 *bufp = (u32 *)((char *)buf + reg);
2548
2549 /* Iterate across the register range filling in the register
2550 * buffer but don't write past the end of the register buffer.
2551 */
2552 while (reg <= last_reg && bufp < buf_end) {
2553 *bufp++ = t4_read_reg(adap, reg);
2554 reg += sizeof(u32);
2555 }
2556 }
2557}
2558
56d36be4 2559#define EEPROM_STAT_ADDR 0x7bfc
67e65879 2560#define VPD_SIZE 0x800
47ce9c48
SR
2561#define VPD_BASE 0x400
2562#define VPD_BASE_OLD 0
0a57a536 2563#define VPD_LEN 1024
63a92fe6 2564#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
2565
2566/**
2567 * t4_seeprom_wp - enable/disable EEPROM write protection
2568 * @adapter: the adapter
2569 * @enable: whether to enable or disable write protection
2570 *
2571 * Enables or disables write protection on the serial EEPROM.
2572 */
2573int t4_seeprom_wp(struct adapter *adapter, bool enable)
2574{
2575 unsigned int v = enable ? 0xc : 0;
2576 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2577 return ret < 0 ? ret : 0;
2578}
2579
2580/**
098ef6c2 2581 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
56d36be4
DM
2582 * @adapter: adapter to read
2583 * @p: where to store the parameters
2584 *
2585 * Reads card parameters stored in VPD EEPROM.
2586 */
098ef6c2 2587int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 2588{
098ef6c2
HS
2589 int i, ret = 0, addr;
2590 int ec, sn, pn, na;
8c357ebd 2591 u8 *vpd, csum;
23d88e1d 2592 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 2593
8c357ebd
VP
2594 vpd = vmalloc(VPD_LEN);
2595 if (!vpd)
2596 return -ENOMEM;
2597
67e65879
HS
2598 /* We have two VPD data structures stored in the adapter VPD area.
2599 * By default, Linux calculates the size of the VPD area by traversing
2600 * the first VPD area at offset 0x0, so we need to tell the OS what
2601 * our real VPD size is.
2602 */
2603 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2604 if (ret < 0)
2605 goto out;
2606
098ef6c2
HS
2607 /* Card information normally starts at VPD_BASE but early cards had
2608 * it at 0.
2609 */
47ce9c48
SR
2610 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2611 if (ret < 0)
2612 goto out;
63a92fe6
HS
2613
2614 /* The VPD shall have a unique identifier specified by the PCI SIG.
2615 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2616 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2617 * is expected to automatically put this entry at the
2618 * beginning of the VPD.
2619 */
2620 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
2621
2622 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 2623 if (ret < 0)
8c357ebd 2624 goto out;
56d36be4 2625
23d88e1d
DM
2626 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2627 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
2628 ret = -EINVAL;
2629 goto out;
23d88e1d
DM
2630 }
2631
2632 id_len = pci_vpd_lrdt_size(vpd);
2633 if (id_len > ID_LEN)
2634 id_len = ID_LEN;
2635
2636 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2637 if (i < 0) {
2638 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
2639 ret = -EINVAL;
2640 goto out;
23d88e1d
DM
2641 }
2642
2643 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2644 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2645 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 2646 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
2647 ret = -EINVAL;
2648 goto out;
226ec5fd
DM
2649 }
2650
2651#define FIND_VPD_KW(var, name) do { \
23d88e1d 2652 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
2653 if (var < 0) { \
2654 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
2655 ret = -EINVAL; \
2656 goto out; \
226ec5fd
DM
2657 } \
2658 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2659} while (0)
2660
2661 FIND_VPD_KW(i, "RV");
2662 for (csum = 0; i >= 0; i--)
2663 csum += vpd[i];
56d36be4
DM
2664
2665 if (csum) {
2666 dev_err(adapter->pdev_dev,
2667 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
2668 ret = -EINVAL;
2669 goto out;
56d36be4
DM
2670 }
2671
226ec5fd
DM
2672 FIND_VPD_KW(ec, "EC");
2673 FIND_VPD_KW(sn, "SN");
a94cd705 2674 FIND_VPD_KW(pn, "PN");
098ef6c2 2675 FIND_VPD_KW(na, "NA");
226ec5fd
DM
2676#undef FIND_VPD_KW
2677
23d88e1d 2678 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 2679 strim(p->id);
226ec5fd 2680 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 2681 strim(p->ec);
226ec5fd
DM
2682 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2683 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 2684 strim(p->sn);
63a92fe6 2685 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
2686 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2687 strim(p->pn);
098ef6c2
HS
2688 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2689 strim((char *)p->na);
636f9d37 2690
098ef6c2
HS
2691out:
2692 vfree(vpd);
2693 return ret;
2694}
2695
2696/**
2697 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2698 * @adapter: adapter to read
2699 * @p: where to store the parameters
2700 *
2701 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2702 * Clock. This can only be called after a connection to the firmware
2703 * is established.
2704 */
2705int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2706{
2707 u32 cclk_param, cclk_val;
2708 int ret;
2709
2710 /* Grab the raw VPD parameters.
2711 */
2712 ret = t4_get_raw_vpd_params(adapter, p);
2713 if (ret)
2714 return ret;
2715
2716 /* Ask firmware for the Core Clock since it knows how to translate the
636f9d37
VP
2717 * Reference Clock ('V2') VPD field into a Core Clock value ...
2718 */
5167865a
HS
2719 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2720 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
098ef6c2 2721 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
636f9d37 2722 1, &cclk_param, &cclk_val);
8c357ebd 2723
636f9d37
VP
2724 if (ret)
2725 return ret;
2726 p->cclk = cclk_val;
2727
56d36be4
DM
2728 return 0;
2729}
2730
2731/* serial flash and firmware constants */
2732enum {
2733 SF_ATTEMPTS = 10, /* max retries for SF operations */
2734
2735 /* flash command opcodes */
2736 SF_PROG_PAGE = 2, /* program page */
2737 SF_WR_DISABLE = 4, /* disable writes */
2738 SF_RD_STATUS = 5, /* read status register */
2739 SF_WR_ENABLE = 6, /* enable writes */
2740 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 2741 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
2742 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2743
6f1d7210 2744 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
2745};
2746
2747/**
2748 * sf1_read - read data from the serial flash
2749 * @adapter: the adapter
2750 * @byte_cnt: number of bytes to read
2751 * @cont: whether another operation will be chained
2752 * @lock: whether to lock SF for PL access only
2753 * @valp: where to store the read data
2754 *
2755 * Reads up to 4 bytes of data from the serial flash. The location of
2756 * the read needs to be specified prior to calling this by issuing the
2757 * appropriate commands to the serial flash.
2758 */
2759static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2760 int lock, u32 *valp)
2761{
2762 int ret;
2763
2764 if (!byte_cnt || byte_cnt > 4)
2765 return -EINVAL;
0d804338 2766 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2767 return -EBUSY;
0d804338
HS
2768 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2769 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2770 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 2771 if (!ret)
0d804338 2772 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
2773 return ret;
2774}
2775
2776/**
2777 * sf1_write - write data to the serial flash
2778 * @adapter: the adapter
2779 * @byte_cnt: number of bytes to write
2780 * @cont: whether another operation will be chained
2781 * @lock: whether to lock SF for PL access only
2782 * @val: value to write
2783 *
2784 * Writes up to 4 bytes of data to the serial flash. The location of
2785 * the write needs to be specified prior to calling this by issuing the
2786 * appropriate commands to the serial flash.
2787 */
2788static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2789 int lock, u32 val)
2790{
2791 if (!byte_cnt || byte_cnt > 4)
2792 return -EINVAL;
0d804338 2793 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2794 return -EBUSY;
0d804338
HS
2795 t4_write_reg(adapter, SF_DATA_A, val);
2796 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2797 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2798 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
2799}
2800
2801/**
2802 * flash_wait_op - wait for a flash operation to complete
2803 * @adapter: the adapter
2804 * @attempts: max number of polls of the status register
2805 * @delay: delay between polls in ms
2806 *
2807 * Wait for a flash operation to complete by polling the status register.
2808 */
2809static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2810{
2811 int ret;
2812 u32 status;
2813
2814 while (1) {
2815 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2816 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2817 return ret;
2818 if (!(status & 1))
2819 return 0;
2820 if (--attempts == 0)
2821 return -EAGAIN;
2822 if (delay)
2823 msleep(delay);
2824 }
2825}
2826
2827/**
2828 * t4_read_flash - read words from serial flash
2829 * @adapter: the adapter
2830 * @addr: the start address for the read
2831 * @nwords: how many 32-bit words to read
2832 * @data: where to store the read data
2833 * @byte_oriented: whether to store data as bytes or as words
2834 *
2835 * Read the specified number of 32-bit words from the serial flash.
2836 * If @byte_oriented is set the read data is stored as a byte array
2837 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 2838 * natural endianness.
56d36be4 2839 */
49216c1c
HS
2840int t4_read_flash(struct adapter *adapter, unsigned int addr,
2841 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
2842{
2843 int ret;
2844
900a6596 2845 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
2846 return -EINVAL;
2847
2848 addr = swab32(addr) | SF_RD_DATA_FAST;
2849
2850 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2851 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2852 return ret;
2853
2854 for ( ; nwords; nwords--, data++) {
2855 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2856 if (nwords == 1)
0d804338 2857 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2858 if (ret)
2859 return ret;
2860 if (byte_oriented)
f404f80c 2861 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
2862 }
2863 return 0;
2864}
2865
2866/**
2867 * t4_write_flash - write up to a page of data to the serial flash
2868 * @adapter: the adapter
2869 * @addr: the start address to write
2870 * @n: length of data to write in bytes
2871 * @data: the data to write
2872 *
2873 * Writes up to a page of data (256 bytes) to the serial flash starting
2874 * at the given address. All the data must be written to the same page.
2875 */
2876static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2877 unsigned int n, const u8 *data)
2878{
2879 int ret;
2880 u32 buf[64];
2881 unsigned int i, c, left, val, offset = addr & 0xff;
2882
900a6596 2883 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
2884 return -EINVAL;
2885
2886 val = swab32(addr) | SF_PROG_PAGE;
2887
2888 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2889 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2890 goto unlock;
2891
2892 for (left = n; left; left -= c) {
2893 c = min(left, 4U);
2894 for (val = 0, i = 0; i < c; ++i)
2895 val = (val << 8) + *data++;
2896
2897 ret = sf1_write(adapter, c, c != left, 1, val);
2898 if (ret)
2899 goto unlock;
2900 }
900a6596 2901 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
2902 if (ret)
2903 goto unlock;
2904
0d804338 2905 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2906
2907 /* Read the page to verify the write succeeded */
2908 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2909 if (ret)
2910 return ret;
2911
2912 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2913 dev_err(adapter->pdev_dev,
2914 "failed to correctly write the flash page at %#x\n",
2915 addr);
2916 return -EIO;
2917 }
2918 return 0;
2919
2920unlock:
0d804338 2921 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2922 return ret;
2923}
2924
2925/**
16e47624 2926 * t4_get_fw_version - read the firmware version
56d36be4
DM
2927 * @adapter: the adapter
2928 * @vers: where to place the version
2929 *
2930 * Reads the FW version from flash.
2931 */
16e47624 2932int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 2933{
16e47624
HS
2934 return t4_read_flash(adapter, FLASH_FW_START +
2935 offsetof(struct fw_hdr, fw_ver), 1,
2936 vers, 0);
56d36be4
DM
2937}
2938
0de72738
HS
2939/**
2940 * t4_get_bs_version - read the firmware bootstrap version
2941 * @adapter: the adapter
2942 * @vers: where to place the version
2943 *
2944 * Reads the FW Bootstrap version from flash.
2945 */
2946int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2947{
2948 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2949 offsetof(struct fw_hdr, fw_ver), 1,
2950 vers, 0);
2951}
2952
56d36be4 2953/**
16e47624 2954 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
2955 * @adapter: the adapter
2956 * @vers: where to place the version
2957 *
2958 * Reads the TP microcode version from flash.
2959 */
16e47624 2960int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 2961{
16e47624 2962 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 2963 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
2964 1, vers, 0);
2965}
2966
ba3f8cd5
HS
2967/**
2968 * t4_get_exprom_version - return the Expansion ROM version (if any)
2969 * @adapter: the adapter
2970 * @vers: where to place the version
2971 *
2972 * Reads the Expansion ROM header from FLASH and returns the version
2973 * number (if present) through the @vers return value pointer. We return
2974 * this in the Firmware Version Format since it's convenient. Return
2975 * 0 on success, -ENOENT if no Expansion ROM is present.
2976 */
2977int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2978{
2979 struct exprom_header {
2980 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2981 unsigned char hdr_ver[4]; /* Expansion ROM version */
2982 } *hdr;
2983 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2984 sizeof(u32))];
2985 int ret;
2986
2987 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2988 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2989 0);
2990 if (ret)
2991 return ret;
2992
2993 hdr = (struct exprom_header *)exprom_header_buf;
2994 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2995 return -ENOENT;
2996
2997 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2998 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2999 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3000 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3001 return 0;
3002}
3003
a69265e9
HS
3004/**
3005 * t4_check_fw_version - check if the FW is supported with this driver
3006 * @adap: the adapter
3007 *
3008 * Checks if an adapter's FW is compatible with the driver. Returns 0
3009 * if there's exact match, a negative error if the version could not be
3010 * read or there's a major version mismatch
3011 */
3012int t4_check_fw_version(struct adapter *adap)
3013{
21d11bd6 3014 int i, ret, major, minor, micro;
a69265e9
HS
3015 int exp_major, exp_minor, exp_micro;
3016 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3017
3018 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
21d11bd6
HS
3019 /* Try multiple times before returning error */
3020 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3021 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3022
a69265e9
HS
3023 if (ret)
3024 return ret;
3025
3026 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3027 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3028 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3029
3030 switch (chip_version) {
3031 case CHELSIO_T4:
3032 exp_major = T4FW_MIN_VERSION_MAJOR;
3033 exp_minor = T4FW_MIN_VERSION_MINOR;
3034 exp_micro = T4FW_MIN_VERSION_MICRO;
3035 break;
3036 case CHELSIO_T5:
3037 exp_major = T5FW_MIN_VERSION_MAJOR;
3038 exp_minor = T5FW_MIN_VERSION_MINOR;
3039 exp_micro = T5FW_MIN_VERSION_MICRO;
3040 break;
3041 case CHELSIO_T6:
3042 exp_major = T6FW_MIN_VERSION_MAJOR;
3043 exp_minor = T6FW_MIN_VERSION_MINOR;
3044 exp_micro = T6FW_MIN_VERSION_MICRO;
3045 break;
3046 default:
3047 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3048 adap->chip);
3049 return -EINVAL;
3050 }
3051
3052 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3053 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3054 dev_err(adap->pdev_dev,
3055 "Card has firmware version %u.%u.%u, minimum "
3056 "supported firmware is %u.%u.%u.\n", major, minor,
3057 micro, exp_major, exp_minor, exp_micro);
3058 return -EFAULT;
3059 }
3060 return 0;
3061}
3062
16e47624
HS
3063/* Is the given firmware API compatible with the one the driver was compiled
3064 * with?
56d36be4 3065 */
16e47624 3066static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 3067{
56d36be4 3068
16e47624
HS
3069 /* short circuit if it's the exact same firmware version */
3070 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3071 return 1;
56d36be4 3072
16e47624
HS
3073#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3074 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3075 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3076 return 1;
3077#undef SAME_INTF
0a57a536 3078
16e47624
HS
3079 return 0;
3080}
56d36be4 3081
16e47624
HS
3082/* The firmware in the filesystem is usable, but should it be installed?
3083 * This routine explains itself in detail if it indicates the filesystem
3084 * firmware should be installed.
3085 */
3086static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3087 int k, int c)
3088{
3089 const char *reason;
3090
3091 if (!card_fw_usable) {
3092 reason = "incompatible or unusable";
3093 goto install;
e69972f5
JH
3094 }
3095
16e47624
HS
3096 if (k > c) {
3097 reason = "older than the version supported with this driver";
3098 goto install;
56d36be4
DM
3099 }
3100
16e47624
HS
3101 return 0;
3102
3103install:
3104 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3105 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
3106 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3107 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3108 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3109 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 3110
56d36be4
DM
3111 return 1;
3112}
3113
16e47624
HS
3114int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3115 const u8 *fw_data, unsigned int fw_size,
3116 struct fw_hdr *card_fw, enum dev_state state,
3117 int *reset)
3118{
3119 int ret, card_fw_usable, fs_fw_usable;
3120 const struct fw_hdr *fs_fw;
3121 const struct fw_hdr *drv_fw;
3122
3123 drv_fw = &fw_info->fw_hdr;
3124
3125 /* Read the header of the firmware on the card */
3126 ret = -t4_read_flash(adap, FLASH_FW_START,
3127 sizeof(*card_fw) / sizeof(uint32_t),
3128 (uint32_t *)card_fw, 1);
3129 if (ret == 0) {
3130 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3131 } else {
3132 dev_err(adap->pdev_dev,
3133 "Unable to read card's firmware header: %d\n", ret);
3134 card_fw_usable = 0;
3135 }
3136
3137 if (fw_data != NULL) {
3138 fs_fw = (const void *)fw_data;
3139 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3140 } else {
3141 fs_fw = NULL;
3142 fs_fw_usable = 0;
3143 }
3144
3145 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3146 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3147 /* Common case: the firmware on the card is an exact match and
3148 * the filesystem one is an exact match too, or the filesystem
3149 * one is absent/incompatible.
3150 */
3151 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3152 should_install_fs_fw(adap, card_fw_usable,
3153 be32_to_cpu(fs_fw->fw_ver),
3154 be32_to_cpu(card_fw->fw_ver))) {
3155 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3156 fw_size, 0);
3157 if (ret != 0) {
3158 dev_err(adap->pdev_dev,
3159 "failed to install firmware: %d\n", ret);
3160 goto bye;
3161 }
3162
3163 /* Installed successfully, update the cached header too. */
e3d50738 3164 *card_fw = *fs_fw;
16e47624
HS
3165 card_fw_usable = 1;
3166 *reset = 0; /* already reset as part of load_fw */
3167 }
3168
3169 if (!card_fw_usable) {
3170 uint32_t d, c, k;
3171
3172 d = be32_to_cpu(drv_fw->fw_ver);
3173 c = be32_to_cpu(card_fw->fw_ver);
3174 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3175
3176 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3177 "chip state %d, "
3178 "driver compiled with %d.%d.%d.%d, "
3179 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3180 state,
b2e1a3f0
HS
3181 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3182 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3183 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3184 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3185 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3186 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
3187 ret = EINVAL;
3188 goto bye;
3189 }
3190
3191 /* We're using whatever's on the card and it's known to be good. */
3192 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3193 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3194
3195bye:
3196 return ret;
3197}
3198
56d36be4
DM
3199/**
3200 * t4_flash_erase_sectors - erase a range of flash sectors
3201 * @adapter: the adapter
3202 * @start: the first sector to erase
3203 * @end: the last sector to erase
3204 *
3205 * Erases the sectors in the given inclusive range.
3206 */
3207static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3208{
3209 int ret = 0;
3210
c0d5b8cf
HS
3211 if (end >= adapter->params.sf_nsec)
3212 return -EINVAL;
3213
56d36be4
DM
3214 while (start <= end) {
3215 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3216 (ret = sf1_write(adapter, 4, 0, 1,
3217 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 3218 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
3219 dev_err(adapter->pdev_dev,
3220 "erase of flash sector %d failed, error %d\n",
3221 start, ret);
3222 break;
3223 }
3224 start++;
3225 }
0d804338 3226 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3227 return ret;
3228}
3229
636f9d37
VP
3230/**
3231 * t4_flash_cfg_addr - return the address of the flash configuration file
3232 * @adapter: the adapter
3233 *
3234 * Return the address within the flash where the Firmware Configuration
3235 * File is stored.
3236 */
3237unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3238{
3239 if (adapter->params.sf_size == 0x100000)
3240 return FLASH_FPGA_CFG_START;
3241 else
3242 return FLASH_CFG_START;
3243}
3244
79af221d
HS
3245/* Return TRUE if the specified firmware matches the adapter. I.e. T4
3246 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3247 * and emit an error message for mismatched firmware to save our caller the
3248 * effort ...
3249 */
3250static bool t4_fw_matches_chip(const struct adapter *adap,
3251 const struct fw_hdr *hdr)
3252{
3253 /* The expression below will return FALSE for any unsupported adapter
3254 * which will keep us "honest" in the future ...
3255 */
3256 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
3257 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3258 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
3259 return true;
3260
3261 dev_err(adap->pdev_dev,
3262 "FW image (%d) is not suitable for this adapter (%d)\n",
3263 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3264 return false;
3265}
3266
56d36be4
DM
3267/**
3268 * t4_load_fw - download firmware
3269 * @adap: the adapter
3270 * @fw_data: the firmware image to write
3271 * @size: image size
3272 *
3273 * Write the supplied firmware image to the card's serial flash.
3274 */
3275int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3276{
3277 u32 csum;
3278 int ret, addr;
3279 unsigned int i;
3280 u8 first_page[SF_PAGE_SIZE];
404d9e3f 3281 const __be32 *p = (const __be32 *)fw_data;
56d36be4 3282 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
3283 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3284 unsigned int fw_img_start = adap->params.sf_fw_start;
3285 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
3286
3287 if (!size) {
3288 dev_err(adap->pdev_dev, "FW image has no data\n");
3289 return -EINVAL;
3290 }
3291 if (size & 511) {
3292 dev_err(adap->pdev_dev,
3293 "FW image size not multiple of 512 bytes\n");
3294 return -EINVAL;
3295 }
f404f80c 3296 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
3297 dev_err(adap->pdev_dev,
3298 "FW image size differs from size in FW header\n");
3299 return -EINVAL;
3300 }
3301 if (size > FW_MAX_SIZE) {
3302 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3303 FW_MAX_SIZE);
3304 return -EFBIG;
3305 }
79af221d
HS
3306 if (!t4_fw_matches_chip(adap, hdr))
3307 return -EINVAL;
56d36be4
DM
3308
3309 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 3310 csum += be32_to_cpu(p[i]);
56d36be4
DM
3311
3312 if (csum != 0xffffffff) {
3313 dev_err(adap->pdev_dev,
3314 "corrupted firmware image, checksum %#x\n", csum);
3315 return -EINVAL;
3316 }
3317
900a6596
DM
3318 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3319 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
3320 if (ret)
3321 goto out;
3322
3323 /*
3324 * We write the correct version at the end so the driver can see a bad
3325 * version if the FW write fails. Start by writing a copy of the
3326 * first page with a bad version.
3327 */
3328 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 3329 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 3330 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
3331 if (ret)
3332 goto out;
3333
900a6596 3334 addr = fw_img_start;
56d36be4
DM
3335 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3336 addr += SF_PAGE_SIZE;
3337 fw_data += SF_PAGE_SIZE;
3338 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3339 if (ret)
3340 goto out;
3341 }
3342
3343 ret = t4_write_flash(adap,
900a6596 3344 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
3345 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3346out:
3347 if (ret)
3348 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3349 ret);
dff04bce
HS
3350 else
3351 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
3352 return ret;
3353}
3354
01b69614
HS
3355/**
3356 * t4_phy_fw_ver - return current PHY firmware version
3357 * @adap: the adapter
3358 * @phy_fw_ver: return value buffer for PHY firmware version
3359 *
3360 * Returns the current version of external PHY firmware on the
3361 * adapter.
3362 */
3363int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3364{
3365 u32 param, val;
3366 int ret;
3367
3368 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3369 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3370 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3371 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 3372 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3373 &param, &val);
3374 if (ret < 0)
3375 return ret;
3376 *phy_fw_ver = val;
3377 return 0;
3378}
3379
3380/**
3381 * t4_load_phy_fw - download port PHY firmware
3382 * @adap: the adapter
3383 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3384 * @win_lock: the lock to use to guard the memory copy
3385 * @phy_fw_version: function to check PHY firmware versions
3386 * @phy_fw_data: the PHY firmware image to write
3387 * @phy_fw_size: image size
3388 *
3389 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3390 * @phy_fw_version is supplied, then it will be used to determine if
3391 * it's necessary to perform the transfer by comparing the version
3392 * of any existing adapter PHY firmware with that of the passed in
3393 * PHY firmware image. If @win_lock is non-NULL then it will be used
3394 * around the call to t4_memory_rw() which transfers the PHY firmware
3395 * to the adapter.
3396 *
3397 * A negative error number will be returned if an error occurs. If
3398 * version number support is available and there's no need to upgrade
3399 * the firmware, 0 will be returned. If firmware is successfully
3400 * transferred to the adapter, 1 will be retured.
3401 *
3402 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3403 * a result, a RESET of the adapter would cause that RAM to lose its
3404 * contents. Thus, loading PHY firmware on such adapters must happen
3405 * after any FW_RESET_CMDs ...
3406 */
3407int t4_load_phy_fw(struct adapter *adap,
3408 int win, spinlock_t *win_lock,
3409 int (*phy_fw_version)(const u8 *, size_t),
3410 const u8 *phy_fw_data, size_t phy_fw_size)
3411{
3412 unsigned long mtype = 0, maddr = 0;
3413 u32 param, val;
3414 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3415 int ret;
3416
3417 /* If we have version number support, then check to see if the adapter
3418 * already has up-to-date PHY firmware loaded.
3419 */
3420 if (phy_fw_version) {
3421 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3422 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3423 if (ret < 0)
3424 return ret;
3425
3426 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3427 CH_WARN(adap, "PHY Firmware already up-to-date, "
3428 "version %#x\n", cur_phy_fw_ver);
3429 return 0;
3430 }
3431 }
3432
3433 /* Ask the firmware where it wants us to copy the PHY firmware image.
3434 * The size of the file requires a special version of the READ coommand
3435 * which will pass the file size via the values field in PARAMS_CMD and
3436 * retrieve the return value from firmware and place it in the same
3437 * buffer values
3438 */
3439 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3440 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3441 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3442 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3443 val = phy_fw_size;
b2612722 3444 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3445 &param, &val, 1);
3446 if (ret < 0)
3447 return ret;
3448 mtype = val >> 8;
3449 maddr = (val & 0xff) << 16;
3450
3451 /* Copy the supplied PHY Firmware image to the adapter memory location
3452 * allocated by the adapter firmware.
3453 */
3454 if (win_lock)
3455 spin_lock_bh(win_lock);
3456 ret = t4_memory_rw(adap, win, mtype, maddr,
3457 phy_fw_size, (__be32 *)phy_fw_data,
3458 T4_MEMORY_WRITE);
3459 if (win_lock)
3460 spin_unlock_bh(win_lock);
3461 if (ret)
3462 return ret;
3463
3464 /* Tell the firmware that the PHY firmware image has been written to
3465 * RAM and it can now start copying it over to the PHYs. The chip
3466 * firmware will RESET the affected PHYs as part of this operation
3467 * leaving them running the new PHY firmware image.
3468 */
3469 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3470 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3471 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3472 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 3473 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3474 &param, &val, 30000);
3475
3476 /* If we have version number support, then check to see that the new
3477 * firmware got loaded properly.
3478 */
3479 if (phy_fw_version) {
3480 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3481 if (ret < 0)
3482 return ret;
3483
3484 if (cur_phy_fw_ver != new_phy_fw_vers) {
3485 CH_WARN(adap, "PHY Firmware did not update: "
3486 "version on adapter %#x, "
3487 "version flashed %#x\n",
3488 cur_phy_fw_ver, new_phy_fw_vers);
3489 return -ENXIO;
3490 }
3491 }
3492
3493 return 1;
3494}
3495
49216c1c
HS
3496/**
3497 * t4_fwcache - firmware cache operation
3498 * @adap: the adapter
3499 * @op : the operation (flush or flush and invalidate)
3500 */
3501int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3502{
3503 struct fw_params_cmd c;
3504
3505 memset(&c, 0, sizeof(c));
3506 c.op_to_vfn =
3507 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3508 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 3509 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
3510 FW_PARAMS_CMD_VFN_V(0));
3511 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3512 c.param[0].mnem =
3513 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3514 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3515 c.param[0].val = (__force __be32)op;
3516
3517 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3518}
3519
19689609
HS
3520void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3521 unsigned int *pif_req_wrptr,
3522 unsigned int *pif_rsp_wrptr)
3523{
3524 int i, j;
3525 u32 cfg, val, req, rsp;
3526
3527 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3528 if (cfg & LADBGEN_F)
3529 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3530
3531 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3532 req = POLADBGWRPTR_G(val);
3533 rsp = PILADBGWRPTR_G(val);
3534 if (pif_req_wrptr)
3535 *pif_req_wrptr = req;
3536 if (pif_rsp_wrptr)
3537 *pif_rsp_wrptr = rsp;
3538
3539 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3540 for (j = 0; j < 6; j++) {
3541 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3542 PILADBGRDPTR_V(rsp));
3543 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3544 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3545 req++;
3546 rsp++;
3547 }
3548 req = (req + 2) & POLADBGRDPTR_M;
3549 rsp = (rsp + 2) & PILADBGRDPTR_M;
3550 }
3551 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3552}
3553
26fae93f
HS
3554void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3555{
3556 u32 cfg;
3557 int i, j, idx;
3558
3559 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3560 if (cfg & LADBGEN_F)
3561 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3562
3563 for (i = 0; i < CIM_MALA_SIZE; i++) {
3564 for (j = 0; j < 5; j++) {
3565 idx = 8 * i + j;
3566 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3567 PILADBGRDPTR_V(idx));
3568 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3569 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3570 }
3571 }
3572 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3573}
3574
797ff0f5
HS
3575void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3576{
3577 unsigned int i, j;
3578
3579 for (i = 0; i < 8; i++) {
3580 u32 *p = la_buf + i;
3581
3582 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3583 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3584 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3585 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3586 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3587 }
3588}
3589
56d36be4 3590#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
72aca4bf
KS
3591 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3592 FW_PORT_CAP_ANEG)
56d36be4
DM
3593
3594/**
4036da90 3595 * t4_link_l1cfg - apply link configuration to MAC/PHY
56d36be4
DM
3596 * @phy: the PHY to setup
3597 * @mac: the MAC to setup
3598 * @lc: the requested link configuration
3599 *
3600 * Set up a port's MAC and PHY according to a desired link configuration.
3601 * - If the PHY can auto-negotiate first decide what to advertise, then
3602 * enable/disable auto-negotiation as desired, and reset.
3603 * - If the PHY does not auto-negotiate just reset it.
3604 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3605 * otherwise do it later based on the outcome of auto-negotiation.
3606 */
4036da90 3607int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
56d36be4
DM
3608 struct link_config *lc)
3609{
3610 struct fw_port_cmd c;
2b5fb1f2 3611 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
56d36be4
DM
3612
3613 lc->link_ok = 0;
3614 if (lc->requested_fc & PAUSE_RX)
3615 fc |= FW_PORT_CAP_FC_RX;
3616 if (lc->requested_fc & PAUSE_TX)
3617 fc |= FW_PORT_CAP_FC_TX;
3618
3619 memset(&c, 0, sizeof(c));
f404f80c
HS
3620 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3621 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3622 FW_PORT_CMD_PORTID_V(port));
3623 c.action_to_len16 =
3624 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3625 FW_LEN16(c));
56d36be4
DM
3626
3627 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
f404f80c
HS
3628 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3629 fc);
56d36be4
DM
3630 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3631 } else if (lc->autoneg == AUTONEG_DISABLE) {
f404f80c 3632 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
56d36be4
DM
3633 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3634 } else
f404f80c 3635 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
56d36be4
DM
3636
3637 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3638}
3639
3640/**
3641 * t4_restart_aneg - restart autonegotiation
3642 * @adap: the adapter
3643 * @mbox: mbox to use for the FW command
3644 * @port: the port id
3645 *
3646 * Restarts autonegotiation for the selected port.
3647 */
3648int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3649{
3650 struct fw_port_cmd c;
3651
3652 memset(&c, 0, sizeof(c));
f404f80c
HS
3653 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3654 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3655 FW_PORT_CMD_PORTID_V(port));
3656 c.action_to_len16 =
3657 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3658 FW_LEN16(c));
3659 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
3660 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3661}
3662
8caa1e84
VP
3663typedef void (*int_handler_t)(struct adapter *adap);
3664
56d36be4
DM
3665struct intr_info {
3666 unsigned int mask; /* bits to check in interrupt status */
3667 const char *msg; /* message to print or NULL */
3668 short stat_idx; /* stat counter to increment or -1 */
3669 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 3670 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
3671};
3672
3673/**
3674 * t4_handle_intr_status - table driven interrupt handler
3675 * @adapter: the adapter that generated the interrupt
3676 * @reg: the interrupt status register to process
3677 * @acts: table of interrupt actions
3678 *
3679 * A table driven interrupt handler that applies a set of masks to an
3680 * interrupt status word and performs the corresponding actions if the
25985edc 3681 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
3682 * optionally emitting a warning or alert message. The table is terminated
3683 * by an entry specifying mask 0. Returns the number of fatal interrupt
3684 * conditions.
3685 */
3686static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3687 const struct intr_info *acts)
3688{
3689 int fatal = 0;
3690 unsigned int mask = 0;
3691 unsigned int status = t4_read_reg(adapter, reg);
3692
3693 for ( ; acts->mask; ++acts) {
3694 if (!(status & acts->mask))
3695 continue;
3696 if (acts->fatal) {
3697 fatal++;
3698 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3699 status & acts->mask);
3700 } else if (acts->msg && printk_ratelimit())
3701 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3702 status & acts->mask);
8caa1e84
VP
3703 if (acts->int_handler)
3704 acts->int_handler(adapter);
56d36be4
DM
3705 mask |= acts->mask;
3706 }
3707 status &= mask;
3708 if (status) /* clear processed interrupts */
3709 t4_write_reg(adapter, reg, status);
3710 return fatal;
3711}
3712
3713/*
3714 * Interrupt handler for the PCIE module.
3715 */
3716static void pcie_intr_handler(struct adapter *adapter)
3717{
005b5717 3718 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
3719 { RNPP_F, "RXNP array parity error", -1, 1 },
3720 { RPCP_F, "RXPC array parity error", -1, 1 },
3721 { RCIP_F, "RXCIF array parity error", -1, 1 },
3722 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3723 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
3724 { 0 }
3725 };
005b5717 3726 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
3727 { TPCP_F, "TXPC array parity error", -1, 1 },
3728 { TNPP_F, "TXNP array parity error", -1, 1 },
3729 { TFTP_F, "TXFT array parity error", -1, 1 },
3730 { TCAP_F, "TXCA array parity error", -1, 1 },
3731 { TCIP_F, "TXCIF array parity error", -1, 1 },
3732 { RCAP_F, "RXCA array parity error", -1, 1 },
3733 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3734 { RDPE_F, "Rx data parity error", -1, 1 },
3735 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
3736 { 0 }
3737 };
005b5717 3738 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
3739 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3740 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3741 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3742 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3743 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3744 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3745 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3746 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3747 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3748 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3749 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3750 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3751 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3752 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3753 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3754 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3755 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3756 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3757 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3758 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3759 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3760 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3761 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3762 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3763 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3764 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3765 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3766 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3767 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3768 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3769 -1, 0 },
56d36be4
DM
3770 { 0 }
3771 };
3772
0a57a536 3773 static struct intr_info t5_pcie_intr_info[] = {
f061de42 3774 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 3775 -1, 1 },
f061de42
HS
3776 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3777 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3778 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3779 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3780 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3781 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3782 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 3783 -1, 1 },
f061de42 3784 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 3785 -1, 1 },
f061de42
HS
3786 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3787 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3788 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3789 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3790 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 3791 -1, 1 },
f061de42
HS
3792 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3793 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3794 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3795 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3796 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3797 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3798 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3799 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3800 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3801 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3802 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 3803 -1, 1 },
f061de42
HS
3804 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3805 -1, 1 },
3806 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3807 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3808 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3809 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
3810 { 0 }
3811 };
3812
56d36be4
DM
3813 int fat;
3814
9bb59b96
HS
3815 if (is_t4(adapter->params.chip))
3816 fat = t4_handle_intr_status(adapter,
f061de42
HS
3817 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3818 sysbus_intr_info) +
9bb59b96 3819 t4_handle_intr_status(adapter,
f061de42
HS
3820 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3821 pcie_port_intr_info) +
3822 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
3823 pcie_intr_info);
3824 else
f061de42 3825 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 3826 t5_pcie_intr_info);
0a57a536 3827
56d36be4
DM
3828 if (fat)
3829 t4_fatal_err(adapter);
3830}
3831
3832/*
3833 * TP interrupt handler.
3834 */
3835static void tp_intr_handler(struct adapter *adapter)
3836{
005b5717 3837 static const struct intr_info tp_intr_info[] = {
56d36be4 3838 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 3839 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
3840 { 0 }
3841 };
3842
837e4a42 3843 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
3844 t4_fatal_err(adapter);
3845}
3846
3847/*
3848 * SGE interrupt handler.
3849 */
3850static void sge_intr_handler(struct adapter *adapter)
3851{
3852 u64 v;
3ccc6cf7 3853 u32 err;
56d36be4 3854
005b5717 3855 static const struct intr_info sge_intr_info[] = {
f612b815 3856 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 3857 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 3858 { ERR_INVALID_CIDX_INC_F,
56d36be4 3859 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
3860 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3861 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 3862 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 3863 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 3864 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 3865 0 },
f612b815 3866 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 3867 0 },
f612b815 3868 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 3869 0 },
f612b815 3870 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 3871 0 },
f612b815 3872 { ERR_ING_CTXT_PRIO_F,
56d36be4 3873 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
3874 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3875 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
3876 { 0 }
3877 };
3878
3ccc6cf7
HS
3879 static struct intr_info t4t5_sge_intr_info[] = {
3880 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3881 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3882 { ERR_EGR_CTXT_PRIO_F,
3883 "SGE too many priority egress contexts", -1, 0 },
3884 { 0 }
3885 };
3886
f612b815
HS
3887 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3888 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
3889 if (v) {
3890 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 3891 (unsigned long long)v);
f612b815
HS
3892 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3893 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
3894 }
3895
3ccc6cf7
HS
3896 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3897 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3898 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3899 t4t5_sge_intr_info);
3900
3901 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3902 if (err & ERROR_QID_VALID_F) {
3903 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3904 ERROR_QID_G(err));
3905 if (err & UNCAPTURED_ERROR_F)
3906 dev_err(adapter->pdev_dev,
3907 "SGE UNCAPTURED_ERROR set (clearing)\n");
3908 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3909 UNCAPTURED_ERROR_F);
3910 }
3911
3912 if (v != 0)
56d36be4
DM
3913 t4_fatal_err(adapter);
3914}
3915
89c3a86c
HS
3916#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3917 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3918#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3919 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3920
56d36be4
DM
3921/*
3922 * CIM interrupt handler.
3923 */
3924static void cim_intr_handler(struct adapter *adapter)
3925{
005b5717 3926 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
3927 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3928 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3929 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3930 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3931 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3932 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3933 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
56d36be4
DM
3934 { 0 }
3935 };
005b5717 3936 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
3937 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3938 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3939 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3940 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3941 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3942 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3943 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3944 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3945 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3946 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3947 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3948 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3949 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3950 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3951 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3952 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3953 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3954 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3955 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3956 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3957 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3958 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3959 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3960 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3961 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3962 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3963 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3964 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
3965 { 0 }
3966 };
3967
3968 int fat;
3969
f061de42 3970 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d
HS
3971 t4_report_fw_error(adapter);
3972
89c3a86c 3973 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 3974 cim_intr_info) +
89c3a86c 3975 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
3976 cim_upintr_info);
3977 if (fat)
3978 t4_fatal_err(adapter);
3979}
3980
3981/*
3982 * ULP RX interrupt handler.
3983 */
3984static void ulprx_intr_handler(struct adapter *adapter)
3985{
005b5717 3986 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 3987 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
3988 { 0x7fffff, "ULPRX parity error", -1, 1 },
3989 { 0 }
3990 };
3991
0d804338 3992 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
3993 t4_fatal_err(adapter);
3994}
3995
3996/*
3997 * ULP TX interrupt handler.
3998 */
3999static void ulptx_intr_handler(struct adapter *adapter)
4000{
005b5717 4001 static const struct intr_info ulptx_intr_info[] = {
837e4a42 4002 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 4003 0 },
837e4a42 4004 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 4005 0 },
837e4a42 4006 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 4007 0 },
837e4a42 4008 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
4009 0 },
4010 { 0xfffffff, "ULPTX parity error", -1, 1 },
4011 { 0 }
4012 };
4013
837e4a42 4014 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
4015 t4_fatal_err(adapter);
4016}
4017
4018/*
4019 * PM TX interrupt handler.
4020 */
4021static void pmtx_intr_handler(struct adapter *adapter)
4022{
005b5717 4023 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
4024 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4025 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4026 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4027 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4028 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4029 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4030 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4031 -1, 1 },
4032 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4033 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
4034 { 0 }
4035 };
4036
837e4a42 4037 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
4038 t4_fatal_err(adapter);
4039}
4040
4041/*
4042 * PM RX interrupt handler.
4043 */
4044static void pmrx_intr_handler(struct adapter *adapter)
4045{
005b5717 4046 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
4047 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4048 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4049 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4050 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4051 -1, 1 },
4052 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4053 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
4054 { 0 }
4055 };
4056
837e4a42 4057 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
4058 t4_fatal_err(adapter);
4059}
4060
4061/*
4062 * CPL switch interrupt handler.
4063 */
4064static void cplsw_intr_handler(struct adapter *adapter)
4065{
005b5717 4066 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
4067 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4068 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4069 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4070 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4071 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4072 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
4073 { 0 }
4074 };
4075
0d804338 4076 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
4077 t4_fatal_err(adapter);
4078}
4079
4080/*
4081 * LE interrupt handler.
4082 */
4083static void le_intr_handler(struct adapter *adap)
4084{
3ccc6cf7 4085 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 4086 static const struct intr_info le_intr_info[] = {
0d804338
HS
4087 { LIPMISS_F, "LE LIP miss", -1, 0 },
4088 { LIP0_F, "LE 0 LIP error", -1, 0 },
4089 { PARITYERR_F, "LE parity error", -1, 1 },
4090 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4091 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
4092 { 0 }
4093 };
4094
3ccc6cf7
HS
4095 static struct intr_info t6_le_intr_info[] = {
4096 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4097 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4098 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4099 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4100 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4101 { 0 }
4102 };
4103
4104 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4105 (chip <= CHELSIO_T5) ?
4106 le_intr_info : t6_le_intr_info))
56d36be4
DM
4107 t4_fatal_err(adap);
4108}
4109
4110/*
4111 * MPS interrupt handler.
4112 */
4113static void mps_intr_handler(struct adapter *adapter)
4114{
005b5717 4115 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
4116 { 0xffffff, "MPS Rx parity error", -1, 1 },
4117 { 0 }
4118 };
005b5717 4119 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
4120 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4121 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4122 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4123 -1, 1 },
4124 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4125 -1, 1 },
4126 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4127 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4128 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
4129 { 0 }
4130 };
005b5717 4131 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
4132 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4133 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4134 -1, 1 },
4135 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
4136 { 0 }
4137 };
005b5717 4138 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
4139 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4140 { 0 }
4141 };
005b5717 4142 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
4143 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4144 { 0 }
4145 };
005b5717 4146 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
4147 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4148 { 0 }
4149 };
005b5717 4150 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
4151 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4152 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4153 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
4154 { 0 }
4155 };
4156
4157 int fat;
4158
837e4a42 4159 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 4160 mps_rx_intr_info) +
837e4a42 4161 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 4162 mps_tx_intr_info) +
837e4a42 4163 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 4164 mps_trc_intr_info) +
837e4a42 4165 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 4166 mps_stat_sram_intr_info) +
837e4a42 4167 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 4168 mps_stat_tx_intr_info) +
837e4a42 4169 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 4170 mps_stat_rx_intr_info) +
837e4a42 4171 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
4172 mps_cls_intr_info);
4173
837e4a42
HS
4174 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4175 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
4176 if (fat)
4177 t4_fatal_err(adapter);
4178}
4179
89c3a86c
HS
4180#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4181 ECC_UE_INT_CAUSE_F)
56d36be4
DM
4182
4183/*
4184 * EDC/MC interrupt handler.
4185 */
4186static void mem_intr_handler(struct adapter *adapter, int idx)
4187{
822dd8a8 4188 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
4189
4190 unsigned int addr, cnt_addr, v;
4191
4192 if (idx <= MEM_EDC1) {
89c3a86c
HS
4193 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4194 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
4195 } else if (idx == MEM_MC) {
4196 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
4197 addr = MC_INT_CAUSE_A;
4198 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 4199 } else {
89c3a86c
HS
4200 addr = MC_P_INT_CAUSE_A;
4201 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 4202 }
56d36be4 4203 } else {
89c3a86c
HS
4204 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4205 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
4206 }
4207
4208 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 4209 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
4210 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4211 name[idx]);
89c3a86c
HS
4212 if (v & ECC_CE_INT_CAUSE_F) {
4213 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 4214
bf8ebb67
HS
4215 t4_edc_err_read(adapter, idx);
4216
89c3a86c 4217 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
4218 if (printk_ratelimit())
4219 dev_warn(adapter->pdev_dev,
4220 "%u %s correctable ECC data error%s\n",
4221 cnt, name[idx], cnt > 1 ? "s" : "");
4222 }
89c3a86c 4223 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
4224 dev_alert(adapter->pdev_dev,
4225 "%s uncorrectable ECC data error\n", name[idx]);
4226
4227 t4_write_reg(adapter, addr, v);
89c3a86c 4228 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
4229 t4_fatal_err(adapter);
4230}
4231
4232/*
4233 * MA interrupt handler.
4234 */
4235static void ma_intr_handler(struct adapter *adap)
4236{
89c3a86c 4237 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 4238
89c3a86c 4239 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
4240 dev_alert(adap->pdev_dev,
4241 "MA parity error, parity status %#x\n",
89c3a86c 4242 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
4243 if (is_t5(adap->params.chip))
4244 dev_alert(adap->pdev_dev,
4245 "MA parity error, parity status %#x\n",
4246 t4_read_reg(adap,
89c3a86c 4247 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 4248 }
89c3a86c
HS
4249 if (status & MEM_WRAP_INT_CAUSE_F) {
4250 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
4251 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4252 "client %u to address %#x\n",
89c3a86c
HS
4253 MEM_WRAP_CLIENT_NUM_G(v),
4254 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 4255 }
89c3a86c 4256 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
4257 t4_fatal_err(adap);
4258}
4259
4260/*
4261 * SMB interrupt handler.
4262 */
4263static void smb_intr_handler(struct adapter *adap)
4264{
005b5717 4265 static const struct intr_info smb_intr_info[] = {
0d804338
HS
4266 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4267 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4268 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
4269 { 0 }
4270 };
4271
0d804338 4272 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
4273 t4_fatal_err(adap);
4274}
4275
4276/*
4277 * NC-SI interrupt handler.
4278 */
4279static void ncsi_intr_handler(struct adapter *adap)
4280{
005b5717 4281 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
4282 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4283 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4284 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4285 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
4286 { 0 }
4287 };
4288
0d804338 4289 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
4290 t4_fatal_err(adap);
4291}
4292
4293/*
4294 * XGMAC interrupt handler.
4295 */
4296static void xgmac_intr_handler(struct adapter *adap, int port)
4297{
0a57a536
SR
4298 u32 v, int_cause_reg;
4299
d14807dd 4300 if (is_t4(adap->params.chip))
0d804338 4301 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 4302 else
0d804338 4303 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
4304
4305 v = t4_read_reg(adap, int_cause_reg);
56d36be4 4306
0d804338 4307 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
4308 if (!v)
4309 return;
4310
0d804338 4311 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
4312 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4313 port);
0d804338 4314 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
4315 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4316 port);
0d804338 4317 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
4318 t4_fatal_err(adap);
4319}
4320
4321/*
4322 * PL interrupt handler.
4323 */
4324static void pl_intr_handler(struct adapter *adap)
4325{
005b5717 4326 static const struct intr_info pl_intr_info[] = {
0d804338
HS
4327 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4328 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
4329 { 0 }
4330 };
4331
0d804338 4332 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
4333 t4_fatal_err(adap);
4334}
4335
0d804338
HS
4336#define PF_INTR_MASK (PFSW_F)
4337#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4338 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4339 CPL_SWITCH_F | SGE_F | ULP_TX_F)
56d36be4
DM
4340
4341/**
4342 * t4_slow_intr_handler - control path interrupt handler
4343 * @adapter: the adapter
4344 *
4345 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4346 * The designation 'slow' is because it involves register reads, while
4347 * data interrupts typically don't involve any MMIOs.
4348 */
4349int t4_slow_intr_handler(struct adapter *adapter)
4350{
0d804338 4351 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
4352
4353 if (!(cause & GLBL_INTR_MASK))
4354 return 0;
0d804338 4355 if (cause & CIM_F)
56d36be4 4356 cim_intr_handler(adapter);
0d804338 4357 if (cause & MPS_F)
56d36be4 4358 mps_intr_handler(adapter);
0d804338 4359 if (cause & NCSI_F)
56d36be4 4360 ncsi_intr_handler(adapter);
0d804338 4361 if (cause & PL_F)
56d36be4 4362 pl_intr_handler(adapter);
0d804338 4363 if (cause & SMB_F)
56d36be4 4364 smb_intr_handler(adapter);
0d804338 4365 if (cause & XGMAC0_F)
56d36be4 4366 xgmac_intr_handler(adapter, 0);
0d804338 4367 if (cause & XGMAC1_F)
56d36be4 4368 xgmac_intr_handler(adapter, 1);
0d804338 4369 if (cause & XGMAC_KR0_F)
56d36be4 4370 xgmac_intr_handler(adapter, 2);
0d804338 4371 if (cause & XGMAC_KR1_F)
56d36be4 4372 xgmac_intr_handler(adapter, 3);
0d804338 4373 if (cause & PCIE_F)
56d36be4 4374 pcie_intr_handler(adapter);
0d804338 4375 if (cause & MC_F)
56d36be4 4376 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 4377 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 4378 mem_intr_handler(adapter, MEM_MC1);
0d804338 4379 if (cause & EDC0_F)
56d36be4 4380 mem_intr_handler(adapter, MEM_EDC0);
0d804338 4381 if (cause & EDC1_F)
56d36be4 4382 mem_intr_handler(adapter, MEM_EDC1);
0d804338 4383 if (cause & LE_F)
56d36be4 4384 le_intr_handler(adapter);
0d804338 4385 if (cause & TP_F)
56d36be4 4386 tp_intr_handler(adapter);
0d804338 4387 if (cause & MA_F)
56d36be4 4388 ma_intr_handler(adapter);
0d804338 4389 if (cause & PM_TX_F)
56d36be4 4390 pmtx_intr_handler(adapter);
0d804338 4391 if (cause & PM_RX_F)
56d36be4 4392 pmrx_intr_handler(adapter);
0d804338 4393 if (cause & ULP_RX_F)
56d36be4 4394 ulprx_intr_handler(adapter);
0d804338 4395 if (cause & CPL_SWITCH_F)
56d36be4 4396 cplsw_intr_handler(adapter);
0d804338 4397 if (cause & SGE_F)
56d36be4 4398 sge_intr_handler(adapter);
0d804338 4399 if (cause & ULP_TX_F)
56d36be4
DM
4400 ulptx_intr_handler(adapter);
4401
4402 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
4403 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4404 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
4405 return 1;
4406}
4407
4408/**
4409 * t4_intr_enable - enable interrupts
4410 * @adapter: the adapter whose interrupts should be enabled
4411 *
4412 * Enable PF-specific interrupts for the calling function and the top-level
4413 * interrupt concentrator for global interrupts. Interrupts are already
4414 * enabled at each module, here we just enable the roots of the interrupt
4415 * hierarchies.
4416 *
4417 * Note: this function should be called only when the driver manages
4418 * non PF-specific interrupts from the various HW modules. Only one PCI
4419 * function at a time should be doing this.
4420 */
4421void t4_intr_enable(struct adapter *adapter)
4422{
3ccc6cf7 4423 u32 val = 0;
d86bd29e
HS
4424 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4425 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4426 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4427
3ccc6cf7
HS
4428 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4429 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
4430 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4431 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 4432 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
4433 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4434 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4435 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 4436 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
4437 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4438 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
4439}
4440
4441/**
4442 * t4_intr_disable - disable interrupts
4443 * @adapter: the adapter whose interrupts should be disabled
4444 *
4445 * Disable interrupts. We only disable the top-level interrupt
4446 * concentrators. The caller must be a PCI function managing global
4447 * interrupts.
4448 */
4449void t4_intr_disable(struct adapter *adapter)
4450{
d86bd29e
HS
4451 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4452 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4453 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4454
0d804338
HS
4455 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4456 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
4457}
4458
56d36be4
DM
4459/**
4460 * t4_config_rss_range - configure a portion of the RSS mapping table
4461 * @adapter: the adapter
4462 * @mbox: mbox to use for the FW command
4463 * @viid: virtual interface whose RSS subtable is to be written
4464 * @start: start entry in the table to write
4465 * @n: how many table entries to write
4466 * @rspq: values for the response queue lookup table
4467 * @nrspq: number of values in @rspq
4468 *
4469 * Programs the selected part of the VI's RSS mapping table with the
4470 * provided values. If @nrspq < @n the supplied values are used repeatedly
4471 * until the full table range is populated.
4472 *
4473 * The caller must ensure the values in @rspq are in the range allowed for
4474 * @viid.
4475 */
4476int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4477 int start, int n, const u16 *rspq, unsigned int nrspq)
4478{
4479 int ret;
4480 const u16 *rsp = rspq;
4481 const u16 *rsp_end = rspq + nrspq;
4482 struct fw_rss_ind_tbl_cmd cmd;
4483
4484 memset(&cmd, 0, sizeof(cmd));
f404f80c 4485 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 4486 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 4487 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 4488 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
4489
4490 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4491 while (n > 0) {
4492 int nq = min(n, 32);
4493 __be32 *qp = &cmd.iq0_to_iq2;
4494
f404f80c
HS
4495 cmd.niqid = cpu_to_be16(nq);
4496 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
4497
4498 start += nq;
4499 n -= nq;
4500
4501 while (nq > 0) {
4502 unsigned int v;
4503
b2e1a3f0 4504 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
4505 if (++rsp >= rsp_end)
4506 rsp = rspq;
b2e1a3f0 4507 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
4508 if (++rsp >= rsp_end)
4509 rsp = rspq;
b2e1a3f0 4510 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
4511 if (++rsp >= rsp_end)
4512 rsp = rspq;
4513
f404f80c 4514 *qp++ = cpu_to_be32(v);
56d36be4
DM
4515 nq -= 3;
4516 }
4517
4518 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4519 if (ret)
4520 return ret;
4521 }
4522 return 0;
4523}
4524
4525/**
4526 * t4_config_glbl_rss - configure the global RSS mode
4527 * @adapter: the adapter
4528 * @mbox: mbox to use for the FW command
4529 * @mode: global RSS mode
4530 * @flags: mode-specific flags
4531 *
4532 * Sets the global RSS mode.
4533 */
4534int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4535 unsigned int flags)
4536{
4537 struct fw_rss_glb_config_cmd c;
4538
4539 memset(&c, 0, sizeof(c));
f404f80c
HS
4540 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4541 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4542 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 4543 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
4544 c.u.manual.mode_pkd =
4545 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
4546 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4547 c.u.basicvirtual.mode_pkd =
f404f80c
HS
4548 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4549 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
4550 } else
4551 return -EINVAL;
4552 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4553}
4554
c035e183
HS
4555/**
4556 * t4_config_vi_rss - configure per VI RSS settings
4557 * @adapter: the adapter
4558 * @mbox: mbox to use for the FW command
4559 * @viid: the VI id
4560 * @flags: RSS flags
4561 * @defq: id of the default RSS queue for the VI.
4562 *
4563 * Configures VI-specific RSS properties.
4564 */
4565int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4566 unsigned int flags, unsigned int defq)
4567{
4568 struct fw_rss_vi_config_cmd c;
4569
4570 memset(&c, 0, sizeof(c));
4571 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4572 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4573 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4574 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4575 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4576 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4577 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4578}
4579
688ea5fe
HS
4580/* Read an RSS table row */
4581static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4582{
4583 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4584 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4585 5, 0, val);
4586}
4587
4588/**
4589 * t4_read_rss - read the contents of the RSS mapping table
4590 * @adapter: the adapter
4591 * @map: holds the contents of the RSS mapping table
4592 *
4593 * Reads the contents of the RSS hash->queue mapping table.
4594 */
4595int t4_read_rss(struct adapter *adapter, u16 *map)
4596{
4597 u32 val;
4598 int i, ret;
4599
4600 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4601 ret = rd_rss_row(adapter, i, &val);
4602 if (ret)
4603 return ret;
4604 *map++ = LKPTBLQUEUE0_G(val);
4605 *map++ = LKPTBLQUEUE1_G(val);
4606 }
4607 return 0;
4608}
4609
0b2c2a93
HS
4610static unsigned int t4_use_ldst(struct adapter *adap)
4611{
4612 return (adap->flags & FW_OK) || !adap->use_bd;
4613}
4614
c1e9af0c
HS
4615/**
4616 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4617 * @adap: the adapter
4618 * @vals: where the indirect register values are stored/written
4619 * @nregs: how many indirect registers to read/write
4620 * @start_idx: index of first indirect register to read/write
4621 * @rw: Read (1) or Write (0)
4622 *
4623 * Access TP PIO registers through LDST
4624 */
4625static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4626 unsigned int start_index, unsigned int rw)
4627{
4628 int ret, i;
4629 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4630 struct fw_ldst_cmd c;
4631
4632 for (i = 0 ; i < nregs; i++) {
4633 memset(&c, 0, sizeof(c));
4634 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4635 FW_CMD_REQUEST_F |
4636 (rw ? FW_CMD_READ_F :
4637 FW_CMD_WRITE_F) |
4638 FW_LDST_CMD_ADDRSPACE_V(cmd));
4639 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4640
4641 c.u.addrval.addr = cpu_to_be32(start_index + i);
4642 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4643 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4644 if (!ret && rw)
4645 vals[i] = be32_to_cpu(c.u.addrval.val);
4646 }
4647}
4648
688ea5fe
HS
4649/**
4650 * t4_read_rss_key - read the global RSS key
4651 * @adap: the adapter
4652 * @key: 10-entry array holding the 320-bit RSS key
4653 *
4654 * Reads the global 320-bit RSS key.
4655 */
4656void t4_read_rss_key(struct adapter *adap, u32 *key)
4657{
0b2c2a93 4658 if (t4_use_ldst(adap))
c1e9af0c
HS
4659 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4660 else
4661 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4662 TP_RSS_SECRET_KEY0_A);
688ea5fe
HS
4663}
4664
4665/**
4666 * t4_write_rss_key - program one of the RSS keys
4667 * @adap: the adapter
4668 * @key: 10-entry array holding the 320-bit RSS key
4669 * @idx: which RSS key to write
4670 *
4671 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4672 * 0..15 the corresponding entry in the RSS key table is written,
4673 * otherwise the global RSS key is written.
4674 */
4675void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4676{
3ccc6cf7
HS
4677 u8 rss_key_addr_cnt = 16;
4678 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4679
4680 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4681 * allows access to key addresses 16-63 by using KeyWrAddrX
4682 * as index[5:4](upper 2) into key table
4683 */
4684 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4685 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4686 rss_key_addr_cnt = 32;
4687
0b2c2a93 4688 if (t4_use_ldst(adap))
c1e9af0c
HS
4689 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4690 else
4691 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4692 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
4693
4694 if (idx >= 0 && idx < rss_key_addr_cnt) {
4695 if (rss_key_addr_cnt > 16)
4696 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4697 KEYWRADDRX_V(idx >> 4) |
4698 T6_VFWRADDR_V(idx) | KEYWREN_F);
4699 else
4700 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4701 KEYWRADDR_V(idx) | KEYWREN_F);
4702 }
688ea5fe
HS
4703}
4704
4705/**
4706 * t4_read_rss_pf_config - read PF RSS Configuration Table
4707 * @adapter: the adapter
4708 * @index: the entry in the PF RSS table to read
4709 * @valp: where to store the returned value
4710 *
4711 * Reads the PF RSS Configuration Table at the specified index and returns
4712 * the value found there.
4713 */
4714void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4715 u32 *valp)
4716{
0b2c2a93 4717 if (t4_use_ldst(adapter))
c1e9af0c
HS
4718 t4_fw_tp_pio_rw(adapter, valp, 1,
4719 TP_RSS_PF0_CONFIG_A + index, 1);
4720 else
4721 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4722 valp, 1, TP_RSS_PF0_CONFIG_A + index);
688ea5fe
HS
4723}
4724
4725/**
4726 * t4_read_rss_vf_config - read VF RSS Configuration Table
4727 * @adapter: the adapter
4728 * @index: the entry in the VF RSS table to read
4729 * @vfl: where to store the returned VFL
4730 * @vfh: where to store the returned VFH
4731 *
4732 * Reads the VF RSS Configuration Table at the specified index and returns
4733 * the (VFL, VFH) values found there.
4734 */
4735void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4736 u32 *vfl, u32 *vfh)
4737{
4738 u32 vrt, mask, data;
4739
3ccc6cf7
HS
4740 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4741 mask = VFWRADDR_V(VFWRADDR_M);
4742 data = VFWRADDR_V(index);
4743 } else {
4744 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4745 data = T6_VFWRADDR_V(index);
4746 }
688ea5fe
HS
4747
4748 /* Request that the index'th VF Table values be read into VFL/VFH.
4749 */
4750 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4751 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4752 vrt |= data | VFRDEN_F;
4753 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4754
4755 /* Grab the VFL/VFH values ...
4756 */
0b2c2a93 4757 if (t4_use_ldst(adapter)) {
c1e9af0c
HS
4758 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4759 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4760 } else {
4761 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4762 vfl, 1, TP_RSS_VFL_CONFIG_A);
4763 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4764 vfh, 1, TP_RSS_VFH_CONFIG_A);
4765 }
688ea5fe
HS
4766}
4767
4768/**
4769 * t4_read_rss_pf_map - read PF RSS Map
4770 * @adapter: the adapter
4771 *
4772 * Reads the PF RSS Map register and returns its value.
4773 */
4774u32 t4_read_rss_pf_map(struct adapter *adapter)
4775{
4776 u32 pfmap;
4777
0b2c2a93 4778 if (t4_use_ldst(adapter))
c1e9af0c
HS
4779 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4780 else
4781 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4782 &pfmap, 1, TP_RSS_PF_MAP_A);
688ea5fe
HS
4783 return pfmap;
4784}
4785
4786/**
4787 * t4_read_rss_pf_mask - read PF RSS Mask
4788 * @adapter: the adapter
4789 *
4790 * Reads the PF RSS Mask register and returns its value.
4791 */
4792u32 t4_read_rss_pf_mask(struct adapter *adapter)
4793{
4794 u32 pfmask;
4795
0b2c2a93 4796 if (t4_use_ldst(adapter))
c1e9af0c
HS
4797 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4798 else
4799 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4800 &pfmask, 1, TP_RSS_PF_MSK_A);
688ea5fe
HS
4801 return pfmask;
4802}
4803
56d36be4
DM
4804/**
4805 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4806 * @adap: the adapter
4807 * @v4: holds the TCP/IP counter values
4808 * @v6: holds the TCP/IPv6 counter values
4809 *
4810 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4811 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4812 */
4813void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4814 struct tp_tcp_stats *v6)
4815{
837e4a42 4816 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 4817
837e4a42 4818#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
4819#define STAT(x) val[STAT_IDX(x)]
4820#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4821
4822 if (v4) {
837e4a42
HS
4823 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4824 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
4825 v4->tcp_out_rsts = STAT(OUT_RST);
4826 v4->tcp_in_segs = STAT64(IN_SEG);
4827 v4->tcp_out_segs = STAT64(OUT_SEG);
4828 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4829 }
4830 if (v6) {
837e4a42
HS
4831 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4832 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
4833 v6->tcp_out_rsts = STAT(OUT_RST);
4834 v6->tcp_in_segs = STAT64(IN_SEG);
4835 v6->tcp_out_segs = STAT64(OUT_SEG);
4836 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4837 }
4838#undef STAT64
4839#undef STAT
4840#undef STAT_IDX
4841}
4842
a4cfd929
HS
4843/**
4844 * t4_tp_get_err_stats - read TP's error MIB counters
4845 * @adap: the adapter
4846 * @st: holds the counter values
4847 *
4848 * Returns the values of TP's error counters.
4849 */
4850void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4851{
df459ebc
HS
4852 int nchan = adap->params.arch.nchan;
4853
4854 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4855 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4856 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4857 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4858 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4859 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4860 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4861 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4862 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4863 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4864 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4865 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4866 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4867 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4868 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4869 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4870
a4cfd929
HS
4871 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4872 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4873}
4874
a6222975
HS
4875/**
4876 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4877 * @adap: the adapter
4878 * @st: holds the counter values
4879 *
4880 * Returns the values of TP's CPL counters.
4881 */
4882void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4883{
df459ebc
HS
4884 int nchan = adap->params.arch.nchan;
4885
4886 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4887 nchan, TP_MIB_CPL_IN_REQ_0_A);
4888 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4889 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4890
a6222975
HS
4891}
4892
a4cfd929
HS
4893/**
4894 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4895 * @adap: the adapter
4896 * @st: holds the counter values
4897 *
4898 * Returns the values of TP's RDMA counters.
4899 */
4900void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4901{
4902 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4903 2, TP_MIB_RQE_DFR_PKT_A);
4904}
4905
a6222975
HS
4906/**
4907 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4908 * @adap: the adapter
4909 * @idx: the port index
4910 * @st: holds the counter values
4911 *
4912 * Returns the values of TP's FCoE counters for the selected port.
4913 */
4914void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4915 struct tp_fcoe_stats *st)
4916{
4917 u32 val[2];
4918
4919 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4920 1, TP_MIB_FCOE_DDP_0_A + idx);
4921 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4922 1, TP_MIB_FCOE_DROP_0_A + idx);
4923 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4924 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4925 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4926}
4927
a4cfd929
HS
4928/**
4929 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4930 * @adap: the adapter
4931 * @st: holds the counter values
4932 *
4933 * Returns the values of TP's counters for non-TCP directly-placed packets.
4934 */
4935void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4936{
4937 u32 val[4];
4938
4939 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4940 TP_MIB_USM_PKTS_A);
4941 st->frames = val[0];
4942 st->drops = val[1];
4943 st->octets = ((u64)val[2] << 32) | val[3];
4944}
4945
56d36be4
DM
4946/**
4947 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4948 * @adap: the adapter
4949 * @mtus: where to store the MTU values
4950 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4951 *
4952 * Reads the HW path MTU table.
4953 */
4954void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4955{
4956 u32 v;
4957 int i;
4958
4959 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
4960 t4_write_reg(adap, TP_MTU_TABLE_A,
4961 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4962 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4963 mtus[i] = MTUVALUE_G(v);
56d36be4 4964 if (mtu_log)
837e4a42 4965 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
4966 }
4967}
4968
bad43792
HS
4969/**
4970 * t4_read_cong_tbl - reads the congestion control table
4971 * @adap: the adapter
4972 * @incr: where to store the alpha values
4973 *
4974 * Reads the additive increments programmed into the HW congestion
4975 * control table.
4976 */
4977void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4978{
4979 unsigned int mtu, w;
4980
4981 for (mtu = 0; mtu < NMTUS; ++mtu)
4982 for (w = 0; w < NCCTRL_WIN; ++w) {
4983 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4984 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4985 incr[mtu][w] = (u16)t4_read_reg(adap,
4986 TP_CCTRL_TABLE_A) & 0x1fff;
4987 }
4988}
4989
636f9d37
VP
4990/**
4991 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4992 * @adap: the adapter
4993 * @addr: the indirect TP register address
4994 * @mask: specifies the field within the register to modify
4995 * @val: new value for the field
4996 *
4997 * Sets a field of an indirect TP register to the given value.
4998 */
4999void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5000 unsigned int mask, unsigned int val)
5001{
837e4a42
HS
5002 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5003 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5004 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
5005}
5006
56d36be4
DM
5007/**
5008 * init_cong_ctrl - initialize congestion control parameters
5009 * @a: the alpha values for congestion control
5010 * @b: the beta values for congestion control
5011 *
5012 * Initialize the congestion control parameters.
5013 */
91744948 5014static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
5015{
5016 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5017 a[9] = 2;
5018 a[10] = 3;
5019 a[11] = 4;
5020 a[12] = 5;
5021 a[13] = 6;
5022 a[14] = 7;
5023 a[15] = 8;
5024 a[16] = 9;
5025 a[17] = 10;
5026 a[18] = 14;
5027 a[19] = 17;
5028 a[20] = 21;
5029 a[21] = 25;
5030 a[22] = 30;
5031 a[23] = 35;
5032 a[24] = 45;
5033 a[25] = 60;
5034 a[26] = 80;
5035 a[27] = 100;
5036 a[28] = 200;
5037 a[29] = 300;
5038 a[30] = 400;
5039 a[31] = 500;
5040
5041 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5042 b[9] = b[10] = 1;
5043 b[11] = b[12] = 2;
5044 b[13] = b[14] = b[15] = b[16] = 3;
5045 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5046 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5047 b[28] = b[29] = 6;
5048 b[30] = b[31] = 7;
5049}
5050
5051/* The minimum additive increment value for the congestion control table */
5052#define CC_MIN_INCR 2U
5053
5054/**
5055 * t4_load_mtus - write the MTU and congestion control HW tables
5056 * @adap: the adapter
5057 * @mtus: the values for the MTU table
5058 * @alpha: the values for the congestion control alpha parameter
5059 * @beta: the values for the congestion control beta parameter
5060 *
5061 * Write the HW MTU table with the supplied MTUs and the high-speed
5062 * congestion control table with the supplied alpha, beta, and MTUs.
5063 * We write the two tables together because the additive increments
5064 * depend on the MTUs.
5065 */
5066void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5067 const unsigned short *alpha, const unsigned short *beta)
5068{
5069 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5070 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5071 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5072 28672, 40960, 57344, 81920, 114688, 163840, 229376
5073 };
5074
5075 unsigned int i, w;
5076
5077 for (i = 0; i < NMTUS; ++i) {
5078 unsigned int mtu = mtus[i];
5079 unsigned int log2 = fls(mtu);
5080
5081 if (!(mtu & ((1 << log2) >> 2))) /* round */
5082 log2--;
837e4a42
HS
5083 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5084 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
5085
5086 for (w = 0; w < NCCTRL_WIN; ++w) {
5087 unsigned int inc;
5088
5089 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5090 CC_MIN_INCR);
5091
837e4a42 5092 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
5093 (w << 16) | (beta[w] << 13) | inc);
5094 }
5095 }
5096}
5097
7864026b
HS
5098/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5099 * clocks. The formula is
5100 *
5101 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5102 *
5103 * which is equivalent to
5104 *
5105 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5106 */
5107static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5108{
5109 u64 v = bytes256 * adap->params.vpd.cclk;
5110
5111 return v * 62 + v / 2;
5112}
5113
5114/**
5115 * t4_get_chan_txrate - get the current per channel Tx rates
5116 * @adap: the adapter
5117 * @nic_rate: rates for NIC traffic
5118 * @ofld_rate: rates for offloaded traffic
5119 *
5120 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5121 * for each channel.
5122 */
5123void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5124{
5125 u32 v;
5126
5127 v = t4_read_reg(adap, TP_TX_TRATE_A);
5128 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5129 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5130 if (adap->params.arch.nchan == NCHAN) {
5131 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5132 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5133 }
5134
5135 v = t4_read_reg(adap, TP_TX_ORATE_A);
5136 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5137 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5138 if (adap->params.arch.nchan == NCHAN) {
5139 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5140 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5141 }
5142}
5143
8e3d04fd
HS
5144/**
5145 * t4_set_trace_filter - configure one of the tracing filters
5146 * @adap: the adapter
5147 * @tp: the desired trace filter parameters
5148 * @idx: which filter to configure
5149 * @enable: whether to enable or disable the filter
5150 *
5151 * Configures one of the tracing filters available in HW. If @enable is
5152 * %0 @tp is not examined and may be %NULL. The user is responsible to
5153 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5154 */
5155int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5156 int idx, int enable)
5157{
5158 int i, ofst = idx * 4;
5159 u32 data_reg, mask_reg, cfg;
5160 u32 multitrc = TRCMULTIFILTER_F;
5161
5162 if (!enable) {
5163 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5164 return 0;
5165 }
5166
5167 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5168 if (cfg & TRCMULTIFILTER_F) {
5169 /* If multiple tracers are enabled, then maximum
5170 * capture size is 2.5KB (FIFO size of a single channel)
5171 * minus 2 flits for CPL_TRACE_PKT header.
5172 */
5173 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5174 return -EINVAL;
5175 } else {
5176 /* If multiple tracers are disabled, to avoid deadlocks
5177 * maximum packet capture size of 9600 bytes is recommended.
5178 * Also in this mode, only trace0 can be enabled and running.
5179 */
5180 multitrc = 0;
5181 if (tp->snap_len > 9600 || idx)
5182 return -EINVAL;
5183 }
5184
5185 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5186 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5187 tp->min_len > TFMINPKTSIZE_M)
5188 return -EINVAL;
5189
5190 /* stop the tracer we'll be changing */
5191 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5192
5193 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5194 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5195 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5196
5197 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5198 t4_write_reg(adap, data_reg, tp->data[i]);
5199 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5200 }
5201 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5202 TFCAPTUREMAX_V(tp->snap_len) |
5203 TFMINPKTSIZE_V(tp->min_len));
5204 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5205 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5206 (is_t4(adap->params.chip) ?
5207 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5208 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5209 T5_TFINVERTMATCH_V(tp->invert)));
5210
5211 return 0;
5212}
5213
5214/**
5215 * t4_get_trace_filter - query one of the tracing filters
5216 * @adap: the adapter
5217 * @tp: the current trace filter parameters
5218 * @idx: which trace filter to query
5219 * @enabled: non-zero if the filter is enabled
5220 *
5221 * Returns the current settings of one of the HW tracing filters.
5222 */
5223void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5224 int *enabled)
5225{
5226 u32 ctla, ctlb;
5227 int i, ofst = idx * 4;
5228 u32 data_reg, mask_reg;
5229
5230 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5231 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5232
5233 if (is_t4(adap->params.chip)) {
5234 *enabled = !!(ctla & TFEN_F);
5235 tp->port = TFPORT_G(ctla);
5236 tp->invert = !!(ctla & TFINVERTMATCH_F);
5237 } else {
5238 *enabled = !!(ctla & T5_TFEN_F);
5239 tp->port = T5_TFPORT_G(ctla);
5240 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5241 }
5242 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5243 tp->min_len = TFMINPKTSIZE_G(ctlb);
5244 tp->skip_ofst = TFOFFSET_G(ctla);
5245 tp->skip_len = TFLENGTH_G(ctla);
5246
5247 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5248 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5249 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5250
5251 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5252 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5253 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5254 }
5255}
5256
b3bbe36a
HS
5257/**
5258 * t4_pmtx_get_stats - returns the HW stats from PMTX
5259 * @adap: the adapter
5260 * @cnt: where to store the count statistics
5261 * @cycles: where to store the cycle statistics
5262 *
5263 * Returns performance statistics from PMTX.
5264 */
5265void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5266{
5267 int i;
5268 u32 data[2];
5269
44588560 5270 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5271 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5272 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5273 if (is_t4(adap->params.chip)) {
5274 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5275 } else {
5276 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5277 PM_TX_DBG_DATA_A, data, 2,
5278 PM_TX_DBG_STAT_MSB_A);
5279 cycles[i] = (((u64)data[0] << 32) | data[1]);
5280 }
5281 }
5282}
5283
5284/**
5285 * t4_pmrx_get_stats - returns the HW stats from PMRX
5286 * @adap: the adapter
5287 * @cnt: where to store the count statistics
5288 * @cycles: where to store the cycle statistics
5289 *
5290 * Returns performance statistics from PMRX.
5291 */
5292void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5293{
5294 int i;
5295 u32 data[2];
5296
44588560 5297 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5298 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5299 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5300 if (is_t4(adap->params.chip)) {
5301 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5302 } else {
5303 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5304 PM_RX_DBG_DATA_A, data, 2,
5305 PM_RX_DBG_STAT_MSB_A);
5306 cycles[i] = (((u64)data[0] << 32) | data[1]);
5307 }
5308 }
5309}
5310
56d36be4 5311/**
145ef8a5 5312 * t4_get_mps_bg_map - return the buffer groups associated with a port
56d36be4
DM
5313 * @adap: the adapter
5314 * @idx: the port index
5315 *
5316 * Returns a bitmap indicating which MPS buffer groups are associated
5317 * with the given port. Bit i is set if buffer group i is used by the
5318 * port.
5319 */
145ef8a5 5320unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
56d36be4 5321{
837e4a42 5322 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
56d36be4
DM
5323
5324 if (n == 0)
5325 return idx == 0 ? 0xf : 0;
e9faeab8
HS
5326 /* In T6 (which is a 2 port card),
5327 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5328 * For 2 port T4/T5 adapter,
5329 * port 0 is mapped to channel 0 and 1,
5330 * port 1 is mapped to channel 2 and 3.
5331 */
5332 if ((n == 1) &&
5333 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
56d36be4
DM
5334 return idx < 2 ? (3 << (2 * idx)) : 0;
5335 return 1 << idx;
5336}
5337
72aca4bf
KS
5338/**
5339 * t4_get_port_type_description - return Port Type string description
5340 * @port_type: firmware Port Type enumeration
5341 */
5342const char *t4_get_port_type_description(enum fw_port_type port_type)
5343{
5344 static const char *const port_type_description[] = {
5345 "R XFI",
5346 "R XAUI",
5347 "T SGMII",
5348 "T XFI",
5349 "T XAUI",
5350 "KX4",
5351 "CX4",
5352 "KX",
5353 "KR",
5354 "R SFP+",
5355 "KR/KX",
5356 "KR/KX/KX4",
5357 "R QSFP_10G",
5aa80e51 5358 "R QSA",
72aca4bf
KS
5359 "R QSFP",
5360 "R BP40_BA",
5361 };
5362
5363 if (port_type < ARRAY_SIZE(port_type_description))
5364 return port_type_description[port_type];
5365 return "UNKNOWN";
5366}
5367
a4cfd929
HS
5368/**
5369 * t4_get_port_stats_offset - collect port stats relative to a previous
5370 * snapshot
5371 * @adap: The adapter
5372 * @idx: The port
5373 * @stats: Current stats to fill
5374 * @offset: Previous stats snapshot
5375 */
5376void t4_get_port_stats_offset(struct adapter *adap, int idx,
5377 struct port_stats *stats,
5378 struct port_stats *offset)
5379{
5380 u64 *s, *o;
5381 int i;
5382
5383 t4_get_port_stats(adap, idx, stats);
5384 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5385 i < (sizeof(struct port_stats) / sizeof(u64));
5386 i++, s++, o++)
5387 *s -= *o;
5388}
5389
56d36be4
DM
5390/**
5391 * t4_get_port_stats - collect port statistics
5392 * @adap: the adapter
5393 * @idx: the port index
5394 * @p: the stats structure to fill
5395 *
5396 * Collect statistics related to the given port from HW.
5397 */
5398void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5399{
145ef8a5 5400 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4
DM
5401
5402#define GET_STAT(name) \
0a57a536 5403 t4_read_reg64(adap, \
d14807dd 5404 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 5405 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
5406#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5407
5408 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5409 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5410 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5411 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5412 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5413 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5414 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5415 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5416 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5417 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5418 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5419 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5420 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5421 p->tx_drop = GET_STAT(TX_PORT_DROP);
5422 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5423 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5424 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5425 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5426 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5427 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5428 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5429 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5430 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5431
5432 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5433 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5434 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5435 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5436 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5437 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5438 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5439 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5440 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5441 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5442 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5443 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5444 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5445 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5446 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5447 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5448 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5449 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5450 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5451 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5452 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5453 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5454 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5455 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5456 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5457 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5458 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5459
5460 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5461 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5462 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5463 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5464 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5465 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5466 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5467 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5468
5469#undef GET_STAT
5470#undef GET_STAT_COM
5471}
5472
56d36be4 5473/**
65046e84 5474 * t4_get_lb_stats - collect loopback port statistics
56d36be4 5475 * @adap: the adapter
65046e84
HS
5476 * @idx: the loopback port index
5477 * @p: the stats structure to fill
56d36be4 5478 *
65046e84 5479 * Return HW statistics for the given loopback port.
56d36be4 5480 */
65046e84 5481void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
56d36be4 5482{
65046e84 5483 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4 5484
65046e84
HS
5485#define GET_STAT(name) \
5486 t4_read_reg64(adap, \
0d804338 5487 (is_t4(adap->params.chip) ? \
65046e84
HS
5488 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5489 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5490#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
56d36be4 5491
65046e84
HS
5492 p->octets = GET_STAT(BYTES);
5493 p->frames = GET_STAT(FRAMES);
5494 p->bcast_frames = GET_STAT(BCAST);
5495 p->mcast_frames = GET_STAT(MCAST);
5496 p->ucast_frames = GET_STAT(UCAST);
5497 p->error_frames = GET_STAT(ERROR);
5498
5499 p->frames_64 = GET_STAT(64B);
5500 p->frames_65_127 = GET_STAT(65B_127B);
5501 p->frames_128_255 = GET_STAT(128B_255B);
5502 p->frames_256_511 = GET_STAT(256B_511B);
5503 p->frames_512_1023 = GET_STAT(512B_1023B);
5504 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5505 p->frames_1519_max = GET_STAT(1519B_MAX);
5506 p->drop = GET_STAT(DROP_FRAMES);
5507
5508 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5509 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5510 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5511 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5512 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5513 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5514 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5515 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
56d36be4 5516
65046e84
HS
5517#undef GET_STAT
5518#undef GET_STAT_COM
56d36be4
DM
5519}
5520
f2b7e78d
VP
5521/* t4_mk_filtdelwr - create a delete filter WR
5522 * @ftid: the filter ID
5523 * @wr: the filter work request to populate
5524 * @qid: ingress queue to receive the delete notification
5525 *
5526 * Creates a filter work request to delete the supplied filter. If @qid is
5527 * negative the delete notification is suppressed.
5528 */
5529void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5530{
5531 memset(wr, 0, sizeof(*wr));
f404f80c
HS
5532 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5533 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5534 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5535 FW_FILTER_WR_NOREPLY_V(qid < 0));
5536 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 5537 if (qid >= 0)
f404f80c
HS
5538 wr->rx_chan_rx_rpl_iq =
5539 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
5540}
5541
56d36be4 5542#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
5543 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5544 FW_CMD_REQUEST_F | \
5545 FW_CMD_##rd_wr##_F); \
5546 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
5547} while (0)
5548
8caa1e84
VP
5549int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5550 u32 addr, u32 val)
5551{
f404f80c 5552 u32 ldst_addrspace;
8caa1e84
VP
5553 struct fw_ldst_cmd c;
5554
5555 memset(&c, 0, sizeof(c));
f404f80c
HS
5556 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5557 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5558 FW_CMD_REQUEST_F |
5559 FW_CMD_WRITE_F |
5560 ldst_addrspace);
5561 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5562 c.u.addrval.addr = cpu_to_be32(addr);
5563 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
5564
5565 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5566}
5567
56d36be4
DM
5568/**
5569 * t4_mdio_rd - read a PHY register through MDIO
5570 * @adap: the adapter
5571 * @mbox: mailbox to use for the FW command
5572 * @phy_addr: the PHY address
5573 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5574 * @reg: the register to read
5575 * @valp: where to store the value
5576 *
5577 * Issues a FW command through the given mailbox to read a PHY register.
5578 */
5579int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5580 unsigned int mmd, unsigned int reg, u16 *valp)
5581{
5582 int ret;
f404f80c 5583 u32 ldst_addrspace;
56d36be4
DM
5584 struct fw_ldst_cmd c;
5585
5586 memset(&c, 0, sizeof(c));
f404f80c
HS
5587 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5588 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5589 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5590 ldst_addrspace);
5591 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5592 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5593 FW_LDST_CMD_MMD_V(mmd));
5594 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
5595
5596 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5597 if (ret == 0)
f404f80c 5598 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
5599 return ret;
5600}
5601
5602/**
5603 * t4_mdio_wr - write a PHY register through MDIO
5604 * @adap: the adapter
5605 * @mbox: mailbox to use for the FW command
5606 * @phy_addr: the PHY address
5607 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5608 * @reg: the register to write
5609 * @valp: value to write
5610 *
5611 * Issues a FW command through the given mailbox to write a PHY register.
5612 */
5613int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5614 unsigned int mmd, unsigned int reg, u16 val)
5615{
f404f80c 5616 u32 ldst_addrspace;
56d36be4
DM
5617 struct fw_ldst_cmd c;
5618
5619 memset(&c, 0, sizeof(c));
f404f80c
HS
5620 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5621 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5622 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5623 ldst_addrspace);
5624 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5625 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5626 FW_LDST_CMD_MMD_V(mmd));
5627 c.u.mdio.raddr = cpu_to_be16(reg);
5628 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
5629
5630 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5631}
5632
68bce192
KS
5633/**
5634 * t4_sge_decode_idma_state - decode the idma state
5635 * @adap: the adapter
5636 * @state: the state idma is stuck in
5637 */
5638void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5639{
5640 static const char * const t4_decode[] = {
5641 "IDMA_IDLE",
5642 "IDMA_PUSH_MORE_CPL_FIFO",
5643 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5644 "Not used",
5645 "IDMA_PHYSADDR_SEND_PCIEHDR",
5646 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5647 "IDMA_PHYSADDR_SEND_PAYLOAD",
5648 "IDMA_SEND_FIFO_TO_IMSG",
5649 "IDMA_FL_REQ_DATA_FL_PREP",
5650 "IDMA_FL_REQ_DATA_FL",
5651 "IDMA_FL_DROP",
5652 "IDMA_FL_H_REQ_HEADER_FL",
5653 "IDMA_FL_H_SEND_PCIEHDR",
5654 "IDMA_FL_H_PUSH_CPL_FIFO",
5655 "IDMA_FL_H_SEND_CPL",
5656 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5657 "IDMA_FL_H_SEND_IP_HDR",
5658 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5659 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5660 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5661 "IDMA_FL_D_SEND_PCIEHDR",
5662 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5663 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5664 "IDMA_FL_SEND_PCIEHDR",
5665 "IDMA_FL_PUSH_CPL_FIFO",
5666 "IDMA_FL_SEND_CPL",
5667 "IDMA_FL_SEND_PAYLOAD_FIRST",
5668 "IDMA_FL_SEND_PAYLOAD",
5669 "IDMA_FL_REQ_NEXT_DATA_FL",
5670 "IDMA_FL_SEND_NEXT_PCIEHDR",
5671 "IDMA_FL_SEND_PADDING",
5672 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5673 "IDMA_FL_SEND_FIFO_TO_IMSG",
5674 "IDMA_FL_REQ_DATAFL_DONE",
5675 "IDMA_FL_REQ_HEADERFL_DONE",
5676 };
5677 static const char * const t5_decode[] = {
5678 "IDMA_IDLE",
5679 "IDMA_ALMOST_IDLE",
5680 "IDMA_PUSH_MORE_CPL_FIFO",
5681 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5682 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5683 "IDMA_PHYSADDR_SEND_PCIEHDR",
5684 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5685 "IDMA_PHYSADDR_SEND_PAYLOAD",
5686 "IDMA_SEND_FIFO_TO_IMSG",
5687 "IDMA_FL_REQ_DATA_FL",
5688 "IDMA_FL_DROP",
5689 "IDMA_FL_DROP_SEND_INC",
5690 "IDMA_FL_H_REQ_HEADER_FL",
5691 "IDMA_FL_H_SEND_PCIEHDR",
5692 "IDMA_FL_H_PUSH_CPL_FIFO",
5693 "IDMA_FL_H_SEND_CPL",
5694 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5695 "IDMA_FL_H_SEND_IP_HDR",
5696 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5697 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5698 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5699 "IDMA_FL_D_SEND_PCIEHDR",
5700 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5701 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5702 "IDMA_FL_SEND_PCIEHDR",
5703 "IDMA_FL_PUSH_CPL_FIFO",
5704 "IDMA_FL_SEND_CPL",
5705 "IDMA_FL_SEND_PAYLOAD_FIRST",
5706 "IDMA_FL_SEND_PAYLOAD",
5707 "IDMA_FL_REQ_NEXT_DATA_FL",
5708 "IDMA_FL_SEND_NEXT_PCIEHDR",
5709 "IDMA_FL_SEND_PADDING",
5710 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5711 };
6df39753
HS
5712 static const char * const t6_decode[] = {
5713 "IDMA_IDLE",
5714 "IDMA_PUSH_MORE_CPL_FIFO",
5715 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5716 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5717 "IDMA_PHYSADDR_SEND_PCIEHDR",
5718 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5719 "IDMA_PHYSADDR_SEND_PAYLOAD",
5720 "IDMA_FL_REQ_DATA_FL",
5721 "IDMA_FL_DROP",
5722 "IDMA_FL_DROP_SEND_INC",
5723 "IDMA_FL_H_REQ_HEADER_FL",
5724 "IDMA_FL_H_SEND_PCIEHDR",
5725 "IDMA_FL_H_PUSH_CPL_FIFO",
5726 "IDMA_FL_H_SEND_CPL",
5727 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5728 "IDMA_FL_H_SEND_IP_HDR",
5729 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5730 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5731 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5732 "IDMA_FL_D_SEND_PCIEHDR",
5733 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5734 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5735 "IDMA_FL_SEND_PCIEHDR",
5736 "IDMA_FL_PUSH_CPL_FIFO",
5737 "IDMA_FL_SEND_CPL",
5738 "IDMA_FL_SEND_PAYLOAD_FIRST",
5739 "IDMA_FL_SEND_PAYLOAD",
5740 "IDMA_FL_REQ_NEXT_DATA_FL",
5741 "IDMA_FL_SEND_NEXT_PCIEHDR",
5742 "IDMA_FL_SEND_PADDING",
5743 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5744 };
68bce192 5745 static const u32 sge_regs[] = {
f061de42
HS
5746 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5747 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5748 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
5749 };
5750 const char **sge_idma_decode;
5751 int sge_idma_decode_nstates;
5752 int i;
6df39753
HS
5753 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5754
5755 /* Select the right set of decode strings to dump depending on the
5756 * adapter chip type.
5757 */
5758 switch (chip_version) {
5759 case CHELSIO_T4:
5760 sge_idma_decode = (const char **)t4_decode;
5761 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5762 break;
5763
5764 case CHELSIO_T5:
5765 sge_idma_decode = (const char **)t5_decode;
5766 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5767 break;
5768
5769 case CHELSIO_T6:
5770 sge_idma_decode = (const char **)t6_decode;
5771 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5772 break;
5773
5774 default:
5775 dev_err(adapter->pdev_dev,
5776 "Unsupported chip version %d\n", chip_version);
5777 return;
5778 }
68bce192
KS
5779
5780 if (is_t4(adapter->params.chip)) {
5781 sge_idma_decode = (const char **)t4_decode;
5782 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5783 } else {
5784 sge_idma_decode = (const char **)t5_decode;
5785 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5786 }
5787
5788 if (state < sge_idma_decode_nstates)
5789 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5790 else
5791 CH_WARN(adapter, "idma state %d unknown\n", state);
5792
5793 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5794 CH_WARN(adapter, "SGE register %#x value %#x\n",
5795 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5796}
5797
5d700ecb
HS
5798/**
5799 * t4_sge_ctxt_flush - flush the SGE context cache
5800 * @adap: the adapter
5801 * @mbox: mailbox to use for the FW command
5802 *
5803 * Issues a FW command through the given mailbox to flush the
5804 * SGE context cache.
5805 */
5806int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5807{
5808 int ret;
5809 u32 ldst_addrspace;
5810 struct fw_ldst_cmd c;
5811
5812 memset(&c, 0, sizeof(c));
5813 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5814 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5815 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5816 ldst_addrspace);
5817 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5818 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5819
5820 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5821 return ret;
5822}
5823
56d36be4 5824/**
636f9d37
VP
5825 * t4_fw_hello - establish communication with FW
5826 * @adap: the adapter
5827 * @mbox: mailbox to use for the FW command
5828 * @evt_mbox: mailbox to receive async FW events
5829 * @master: specifies the caller's willingness to be the device master
5830 * @state: returns the current device state (if non-NULL)
56d36be4 5831 *
636f9d37
VP
5832 * Issues a command to establish communication with FW. Returns either
5833 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
5834 */
5835int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5836 enum dev_master master, enum dev_state *state)
5837{
5838 int ret;
5839 struct fw_hello_cmd c;
636f9d37
VP
5840 u32 v;
5841 unsigned int master_mbox;
5842 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 5843
636f9d37
VP
5844retry:
5845 memset(&c, 0, sizeof(c));
56d36be4 5846 INIT_CMD(c, HELLO, WRITE);
f404f80c 5847 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
5848 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5849 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
5850 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5851 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
5852 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5853 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5854 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 5855
636f9d37
VP
5856 /*
5857 * Issue the HELLO command to the firmware. If it's not successful
5858 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
5859 * the HELLO until we exhaust our retry limit. If we do exceed our
5860 * retry limit, check to see if the firmware left us any error
5861 * information and report that if so.
636f9d37 5862 */
56d36be4 5863 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
5864 if (ret < 0) {
5865 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5866 goto retry;
f061de42 5867 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 5868 t4_report_fw_error(adap);
636f9d37
VP
5869 return ret;
5870 }
5871
f404f80c 5872 v = be32_to_cpu(c.err_to_clearinit);
5167865a 5873 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 5874 if (state) {
5167865a 5875 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 5876 *state = DEV_STATE_ERR;
5167865a 5877 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 5878 *state = DEV_STATE_INIT;
56d36be4
DM
5879 else
5880 *state = DEV_STATE_UNINIT;
5881 }
636f9d37
VP
5882
5883 /*
5884 * If we're not the Master PF then we need to wait around for the
5885 * Master PF Driver to finish setting up the adapter.
5886 *
5887 * Note that we also do this wait if we're a non-Master-capable PF and
5888 * there is no current Master PF; a Master PF may show up momentarily
5889 * and we wouldn't want to fail pointlessly. (This can happen when an
5890 * OS loads lots of different drivers rapidly at the same time). In
5891 * this case, the Master PF returned by the firmware will be
b2e1a3f0 5892 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 5893 */
5167865a 5894 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
5895 master_mbox != mbox) {
5896 int waiting = FW_CMD_HELLO_TIMEOUT;
5897
5898 /*
5899 * Wait for the firmware to either indicate an error or
5900 * initialized state. If we see either of these we bail out
5901 * and report the issue to the caller. If we exhaust the
5902 * "hello timeout" and we haven't exhausted our retries, try
5903 * again. Otherwise bail with a timeout error.
5904 */
5905 for (;;) {
5906 u32 pcie_fw;
5907
5908 msleep(50);
5909 waiting -= 50;
5910
5911 /*
5912 * If neither Error nor Initialialized are indicated
5913 * by the firmware keep waiting till we exaust our
5914 * timeout ... and then retry if we haven't exhausted
5915 * our retries ...
5916 */
f061de42
HS
5917 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5918 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
5919 if (waiting <= 0) {
5920 if (retries-- > 0)
5921 goto retry;
5922
5923 return -ETIMEDOUT;
5924 }
5925 continue;
5926 }
5927
5928 /*
5929 * We either have an Error or Initialized condition
5930 * report errors preferentially.
5931 */
5932 if (state) {
f061de42 5933 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 5934 *state = DEV_STATE_ERR;
f061de42 5935 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
5936 *state = DEV_STATE_INIT;
5937 }
5938
5939 /*
5940 * If we arrived before a Master PF was selected and
5941 * there's not a valid Master PF, grab its identity
5942 * for our caller.
5943 */
b2e1a3f0 5944 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 5945 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 5946 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
5947 break;
5948 }
5949 }
5950
5951 return master_mbox;
56d36be4
DM
5952}
5953
5954/**
5955 * t4_fw_bye - end communication with FW
5956 * @adap: the adapter
5957 * @mbox: mailbox to use for the FW command
5958 *
5959 * Issues a command to terminate communication with FW.
5960 */
5961int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5962{
5963 struct fw_bye_cmd c;
5964
0062b15c 5965 memset(&c, 0, sizeof(c));
56d36be4
DM
5966 INIT_CMD(c, BYE, WRITE);
5967 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5968}
5969
5970/**
5971 * t4_init_cmd - ask FW to initialize the device
5972 * @adap: the adapter
5973 * @mbox: mailbox to use for the FW command
5974 *
5975 * Issues a command to FW to partially initialize the device. This
5976 * performs initialization that generally doesn't depend on user input.
5977 */
5978int t4_early_init(struct adapter *adap, unsigned int mbox)
5979{
5980 struct fw_initialize_cmd c;
5981
0062b15c 5982 memset(&c, 0, sizeof(c));
56d36be4
DM
5983 INIT_CMD(c, INITIALIZE, WRITE);
5984 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5985}
5986
5987/**
5988 * t4_fw_reset - issue a reset to FW
5989 * @adap: the adapter
5990 * @mbox: mailbox to use for the FW command
5991 * @reset: specifies the type of reset to perform
5992 *
5993 * Issues a reset command of the specified type to FW.
5994 */
5995int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5996{
5997 struct fw_reset_cmd c;
5998
0062b15c 5999 memset(&c, 0, sizeof(c));
56d36be4 6000 INIT_CMD(c, RESET, WRITE);
f404f80c 6001 c.val = cpu_to_be32(reset);
56d36be4
DM
6002 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6003}
6004
26f7cbc0
VP
6005/**
6006 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6007 * @adap: the adapter
6008 * @mbox: mailbox to use for the FW RESET command (if desired)
6009 * @force: force uP into RESET even if FW RESET command fails
6010 *
6011 * Issues a RESET command to firmware (if desired) with a HALT indication
6012 * and then puts the microprocessor into RESET state. The RESET command
6013 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 6014 * PCIE_FW_MASTER_M).
26f7cbc0
VP
6015 *
6016 * This is generally used in order for the host to safely manipulate the
6017 * adapter without fear of conflicting with whatever the firmware might
6018 * be doing. The only way out of this state is to RESTART the firmware
6019 * ...
6020 */
de5b8677 6021static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
6022{
6023 int ret = 0;
6024
6025 /*
6026 * If a legitimate mailbox is provided, issue a RESET command
6027 * with a HALT indication.
6028 */
b2e1a3f0 6029 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
6030 struct fw_reset_cmd c;
6031
6032 memset(&c, 0, sizeof(c));
6033 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
6034 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6035 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
6036 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6037 }
6038
6039 /*
6040 * Normally we won't complete the operation if the firmware RESET
6041 * command fails but if our caller insists we'll go ahead and put the
6042 * uP into RESET. This can be useful if the firmware is hung or even
6043 * missing ... We'll have to take the risk of putting the uP into
6044 * RESET without the cooperation of firmware in that case.
6045 *
6046 * We also force the firmware's HALT flag to be on in case we bypassed
6047 * the firmware RESET command above or we're dealing with old firmware
6048 * which doesn't have the HALT capability. This will serve as a flag
6049 * for the incoming firmware to know that it's coming out of a HALT
6050 * rather than a RESET ... if it's new enough to understand that ...
6051 */
6052 if (ret == 0 || force) {
89c3a86c 6053 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 6054 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 6055 PCIE_FW_HALT_F);
26f7cbc0
VP
6056 }
6057
6058 /*
6059 * And we always return the result of the firmware RESET command
6060 * even when we force the uP into RESET ...
6061 */
6062 return ret;
6063}
6064
6065/**
6066 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6067 * @adap: the adapter
6068 * @reset: if we want to do a RESET to restart things
6069 *
6070 * Restart firmware previously halted by t4_fw_halt(). On successful
6071 * return the previous PF Master remains as the new PF Master and there
6072 * is no need to issue a new HELLO command, etc.
6073 *
6074 * We do this in two ways:
6075 *
6076 * 1. If we're dealing with newer firmware we'll simply want to take
6077 * the chip's microprocessor out of RESET. This will cause the
6078 * firmware to start up from its start vector. And then we'll loop
6079 * until the firmware indicates it's started again (PCIE_FW.HALT
6080 * reset to 0) or we timeout.
6081 *
6082 * 2. If we're dealing with older firmware then we'll need to RESET
6083 * the chip since older firmware won't recognize the PCIE_FW.HALT
6084 * flag and automatically RESET itself on startup.
6085 */
de5b8677 6086static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
6087{
6088 if (reset) {
6089 /*
6090 * Since we're directing the RESET instead of the firmware
6091 * doing it automatically, we need to clear the PCIE_FW.HALT
6092 * bit.
6093 */
f061de42 6094 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
6095
6096 /*
6097 * If we've been given a valid mailbox, first try to get the
6098 * firmware to do the RESET. If that works, great and we can
6099 * return success. Otherwise, if we haven't been given a
6100 * valid mailbox or the RESET command failed, fall back to
6101 * hitting the chip with a hammer.
6102 */
b2e1a3f0 6103 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 6104 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
6105 msleep(100);
6106 if (t4_fw_reset(adap, mbox,
0d804338 6107 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
6108 return 0;
6109 }
6110
0d804338 6111 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
6112 msleep(2000);
6113 } else {
6114 int ms;
6115
89c3a86c 6116 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 6117 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 6118 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
6119 return 0;
6120 msleep(100);
6121 ms += 100;
6122 }
6123 return -ETIMEDOUT;
6124 }
6125 return 0;
6126}
6127
6128/**
6129 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6130 * @adap: the adapter
6131 * @mbox: mailbox to use for the FW RESET command (if desired)
6132 * @fw_data: the firmware image to write
6133 * @size: image size
6134 * @force: force upgrade even if firmware doesn't cooperate
6135 *
6136 * Perform all of the steps necessary for upgrading an adapter's
6137 * firmware image. Normally this requires the cooperation of the
6138 * existing firmware in order to halt all existing activities
6139 * but if an invalid mailbox token is passed in we skip that step
6140 * (though we'll still put the adapter microprocessor into RESET in
6141 * that case).
6142 *
6143 * On successful return the new firmware will have been loaded and
6144 * the adapter will have been fully RESET losing all previous setup
6145 * state. On unsuccessful return the adapter may be completely hosed ...
6146 * positive errno indicates that the adapter is ~probably~ intact, a
6147 * negative errno indicates that things are looking bad ...
6148 */
22c0b963
HS
6149int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6150 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
6151{
6152 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6153 int reset, ret;
6154
79af221d
HS
6155 if (!t4_fw_matches_chip(adap, fw_hdr))
6156 return -EINVAL;
6157
26f7cbc0
VP
6158 ret = t4_fw_halt(adap, mbox, force);
6159 if (ret < 0 && !force)
6160 return ret;
6161
6162 ret = t4_load_fw(adap, fw_data, size);
6163 if (ret < 0)
6164 return ret;
6165
6166 /*
6167 * Older versions of the firmware don't understand the new
6168 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6169 * restart. So for newly loaded older firmware we'll have to do the
6170 * RESET for it so it starts up on a clean slate. We can tell if
6171 * the newly loaded firmware will handle this right by checking
6172 * its header flags to see if it advertises the capability.
6173 */
f404f80c 6174 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26f7cbc0
VP
6175 return t4_fw_restart(adap, mbox, reset);
6176}
6177
acac5962
HS
6178/**
6179 * t4_fl_pkt_align - return the fl packet alignment
6180 * @adap: the adapter
6181 *
6182 * T4 has a single field to specify the packing and padding boundary.
6183 * T5 onwards has separate fields for this and hence the alignment for
6184 * next packet offset is maximum of these two.
6185 *
6186 */
6187int t4_fl_pkt_align(struct adapter *adap)
6188{
6189 u32 sge_control, sge_control2;
6190 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6191
6192 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6193
6194 /* T4 uses a single control field to specify both the PCIe Padding and
6195 * Packing Boundary. T5 introduced the ability to specify these
6196 * separately. The actual Ingress Packet Data alignment boundary
6197 * within Packed Buffer Mode is the maximum of these two
6198 * specifications. (Note that it makes no real practical sense to
6199 * have the Pading Boudary be larger than the Packing Boundary but you
6200 * could set the chip up that way and, in fact, legacy T4 code would
6201 * end doing this because it would initialize the Padding Boundary and
6202 * leave the Packing Boundary initialized to 0 (16 bytes).)
6203 * Padding Boundary values in T6 starts from 8B,
6204 * where as it is 32B for T4 and T5.
6205 */
6206 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6207 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6208 else
6209 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6210
6211 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6212
6213 fl_align = ingpadboundary;
6214 if (!is_t4(adap->params.chip)) {
6215 /* T5 has a weird interpretation of one of the PCIe Packing
6216 * Boundary values. No idea why ...
6217 */
6218 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6219 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6220 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6221 ingpackboundary = 16;
6222 else
6223 ingpackboundary = 1 << (ingpackboundary +
6224 INGPACKBOUNDARY_SHIFT_X);
6225
6226 fl_align = max(ingpadboundary, ingpackboundary);
6227 }
6228 return fl_align;
6229}
6230
636f9d37
VP
6231/**
6232 * t4_fixup_host_params - fix up host-dependent parameters
6233 * @adap: the adapter
6234 * @page_size: the host's Base Page Size
6235 * @cache_line_size: the host's Cache Line Size
6236 *
6237 * Various registers in T4 contain values which are dependent on the
6238 * host's Base Page and Cache Line Sizes. This function will fix all of
6239 * those registers with the appropriate values as passed in ...
6240 */
6241int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6242 unsigned int cache_line_size)
6243{
6244 unsigned int page_shift = fls(page_size) - 1;
6245 unsigned int sge_hps = page_shift - 10;
6246 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6247 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6248 unsigned int fl_align_log = fls(fl_align) - 1;
acac5962 6249 unsigned int ingpad;
636f9d37 6250
f612b815
HS
6251 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6252 HOSTPAGESIZEPF0_V(sge_hps) |
6253 HOSTPAGESIZEPF1_V(sge_hps) |
6254 HOSTPAGESIZEPF2_V(sge_hps) |
6255 HOSTPAGESIZEPF3_V(sge_hps) |
6256 HOSTPAGESIZEPF4_V(sge_hps) |
6257 HOSTPAGESIZEPF5_V(sge_hps) |
6258 HOSTPAGESIZEPF6_V(sge_hps) |
6259 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 6260
ce8f407a 6261 if (is_t4(adap->params.chip)) {
f612b815
HS
6262 t4_set_reg_field(adap, SGE_CONTROL_A,
6263 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6264 EGRSTATUSPAGESIZE_F,
6265 INGPADBOUNDARY_V(fl_align_log -
6266 INGPADBOUNDARY_SHIFT_X) |
6267 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6268 } else {
6269 /* T5 introduced the separation of the Free List Padding and
6270 * Packing Boundaries. Thus, we can select a smaller Padding
6271 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6272 * Bandwidth, and use a Packing Boundary which is large enough
6273 * to avoid false sharing between CPUs, etc.
6274 *
6275 * For the PCI Link, the smaller the Padding Boundary the
6276 * better. For the Memory Controller, a smaller Padding
6277 * Boundary is better until we cross under the Memory Line
6278 * Size (the minimum unit of transfer to/from Memory). If we
6279 * have a Padding Boundary which is smaller than the Memory
6280 * Line Size, that'll involve a Read-Modify-Write cycle on the
6281 * Memory Controller which is never good. For T5 the smallest
6282 * Padding Boundary which we can select is 32 bytes which is
6283 * larger than any known Memory Controller Line Size so we'll
6284 * use that.
6285 *
6286 * T5 has a different interpretation of the "0" value for the
6287 * Packing Boundary. This corresponds to 16 bytes instead of
6288 * the expected 32 bytes. We never have a Packing Boundary
6289 * less than 32 bytes so we can't use that special value but
6290 * on the other hand, if we wanted 32 bytes, the best we can
6291 * really do is 64 bytes.
6292 */
6293 if (fl_align <= 32) {
6294 fl_align = 64;
6295 fl_align_log = 6;
6296 }
acac5962
HS
6297
6298 if (is_t5(adap->params.chip))
6299 ingpad = INGPCIEBOUNDARY_32B_X;
6300 else
6301 ingpad = T6_INGPADBOUNDARY_32B_X;
6302
f612b815
HS
6303 t4_set_reg_field(adap, SGE_CONTROL_A,
6304 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6305 EGRSTATUSPAGESIZE_F,
acac5962 6306 INGPADBOUNDARY_V(ingpad) |
f612b815 6307 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6308 t4_set_reg_field(adap, SGE_CONTROL2_A,
6309 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6310 INGPACKBOUNDARY_V(fl_align_log -
f612b815 6311 INGPACKBOUNDARY_SHIFT_X));
ce8f407a 6312 }
636f9d37
VP
6313 /*
6314 * Adjust various SGE Free List Host Buffer Sizes.
6315 *
6316 * This is something of a crock since we're using fixed indices into
6317 * the array which are also known by the sge.c code and the T4
6318 * Firmware Configuration File. We need to come up with a much better
6319 * approach to managing this array. For now, the first four entries
6320 * are:
6321 *
6322 * 0: Host Page Size
6323 * 1: 64KB
6324 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6325 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6326 *
6327 * For the single-MTU buffers in unpacked mode we need to include
6328 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6329 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 6330 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
6331 * Default Firmware Configuration File but we need to adjust it for
6332 * this host's cache line size.
6333 */
f612b815
HS
6334 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6335 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6336 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 6337 & ~(fl_align-1));
f612b815
HS
6338 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6339 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
6340 & ~(fl_align-1));
6341
0d804338 6342 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
6343
6344 return 0;
6345}
6346
6347/**
6348 * t4_fw_initialize - ask FW to initialize the device
6349 * @adap: the adapter
6350 * @mbox: mailbox to use for the FW command
6351 *
6352 * Issues a command to FW to partially initialize the device. This
6353 * performs initialization that generally doesn't depend on user input.
6354 */
6355int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6356{
6357 struct fw_initialize_cmd c;
6358
6359 memset(&c, 0, sizeof(c));
6360 INIT_CMD(c, INITIALIZE, WRITE);
6361 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6362}
6363
56d36be4 6364/**
01b69614 6365 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
6366 * @adap: the adapter
6367 * @mbox: mailbox to use for the FW command
6368 * @pf: the PF
6369 * @vf: the VF
6370 * @nparams: the number of parameters
6371 * @params: the parameter names
6372 * @val: the parameter values
01b69614 6373 * @rw: Write and read flag
56d36be4
DM
6374 *
6375 * Reads the value of FW or device parameters. Up to 7 parameters can be
6376 * queried at once.
6377 */
01b69614
HS
6378int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6379 unsigned int vf, unsigned int nparams, const u32 *params,
6380 u32 *val, int rw)
56d36be4
DM
6381{
6382 int i, ret;
6383 struct fw_params_cmd c;
6384 __be32 *p = &c.param[0].mnem;
6385
6386 if (nparams > 7)
6387 return -EINVAL;
6388
6389 memset(&c, 0, sizeof(c));
f404f80c
HS
6390 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6391 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6392 FW_PARAMS_CMD_PFN_V(pf) |
6393 FW_PARAMS_CMD_VFN_V(vf));
6394 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6395
01b69614
HS
6396 for (i = 0; i < nparams; i++) {
6397 *p++ = cpu_to_be32(*params++);
6398 if (rw)
6399 *p = cpu_to_be32(*(val + i));
6400 p++;
6401 }
56d36be4
DM
6402
6403 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6404 if (ret == 0)
6405 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 6406 *val++ = be32_to_cpu(*p);
56d36be4
DM
6407 return ret;
6408}
6409
01b69614
HS
6410int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6411 unsigned int vf, unsigned int nparams, const u32 *params,
6412 u32 *val)
6413{
6414 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6415}
6416
688848b1 6417/**
01b69614 6418 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
6419 * @adap: the adapter
6420 * @mbox: mailbox to use for the FW command
6421 * @pf: the PF
6422 * @vf: the VF
6423 * @nparams: the number of parameters
6424 * @params: the parameter names
6425 * @val: the parameter values
01b69614 6426 * @timeout: the timeout time
688848b1 6427 *
688848b1
AB
6428 * Sets the value of FW or device parameters. Up to 7 parameters can be
6429 * specified at once.
6430 */
01b69614 6431int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
6432 unsigned int pf, unsigned int vf,
6433 unsigned int nparams, const u32 *params,
01b69614 6434 const u32 *val, int timeout)
688848b1
AB
6435{
6436 struct fw_params_cmd c;
6437 __be32 *p = &c.param[0].mnem;
6438
6439 if (nparams > 7)
6440 return -EINVAL;
6441
6442 memset(&c, 0, sizeof(c));
e2ac9628 6443 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
6444 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6445 FW_PARAMS_CMD_PFN_V(pf) |
6446 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
6447 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6448
6449 while (nparams--) {
6450 *p++ = cpu_to_be32(*params++);
6451 *p++ = cpu_to_be32(*val++);
6452 }
6453
01b69614 6454 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
6455}
6456
56d36be4
DM
6457/**
6458 * t4_set_params - sets FW or device parameters
6459 * @adap: the adapter
6460 * @mbox: mailbox to use for the FW command
6461 * @pf: the PF
6462 * @vf: the VF
6463 * @nparams: the number of parameters
6464 * @params: the parameter names
6465 * @val: the parameter values
6466 *
6467 * Sets the value of FW or device parameters. Up to 7 parameters can be
6468 * specified at once.
6469 */
6470int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6471 unsigned int vf, unsigned int nparams, const u32 *params,
6472 const u32 *val)
6473{
01b69614
HS
6474 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6475 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
6476}
6477
6478/**
6479 * t4_cfg_pfvf - configure PF/VF resource limits
6480 * @adap: the adapter
6481 * @mbox: mailbox to use for the FW command
6482 * @pf: the PF being configured
6483 * @vf: the VF being configured
6484 * @txq: the max number of egress queues
6485 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6486 * @rxqi: the max number of interrupt-capable ingress queues
6487 * @rxq: the max number of interruptless ingress queues
6488 * @tc: the PCI traffic class
6489 * @vi: the max number of virtual interfaces
6490 * @cmask: the channel access rights mask for the PF/VF
6491 * @pmask: the port access rights mask for the PF/VF
6492 * @nexact: the maximum number of exact MPS filters
6493 * @rcaps: read capabilities
6494 * @wxcaps: write/execute capabilities
6495 *
6496 * Configures resource limits and capabilities for a physical or virtual
6497 * function.
6498 */
6499int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6500 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6501 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6502 unsigned int vi, unsigned int cmask, unsigned int pmask,
6503 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6504{
6505 struct fw_pfvf_cmd c;
6506
6507 memset(&c, 0, sizeof(c));
f404f80c
HS
6508 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6509 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6510 FW_PFVF_CMD_VFN_V(vf));
6511 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6512 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6513 FW_PFVF_CMD_NIQ_V(rxq));
6514 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6515 FW_PFVF_CMD_PMASK_V(pmask) |
6516 FW_PFVF_CMD_NEQ_V(txq));
6517 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6518 FW_PFVF_CMD_NVI_V(vi) |
6519 FW_PFVF_CMD_NEXACTF_V(nexact));
6520 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6521 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6522 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
6523 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6524}
6525
6526/**
6527 * t4_alloc_vi - allocate a virtual interface
6528 * @adap: the adapter
6529 * @mbox: mailbox to use for the FW command
6530 * @port: physical port associated with the VI
6531 * @pf: the PF owning the VI
6532 * @vf: the VF owning the VI
6533 * @nmac: number of MAC addresses needed (1 to 5)
6534 * @mac: the MAC addresses of the VI
6535 * @rss_size: size of RSS table slice associated with this VI
6536 *
6537 * Allocates a virtual interface for the given physical port. If @mac is
6538 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6539 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6540 * stored consecutively so the space needed is @nmac * 6 bytes.
6541 * Returns a negative error number or the non-negative VI id.
6542 */
6543int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6544 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6545 unsigned int *rss_size)
6546{
6547 int ret;
6548 struct fw_vi_cmd c;
6549
6550 memset(&c, 0, sizeof(c));
f404f80c
HS
6551 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6552 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6553 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6554 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 6555 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
6556 c.nmac = nmac - 1;
6557
6558 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6559 if (ret)
6560 return ret;
6561
6562 if (mac) {
6563 memcpy(mac, c.mac, sizeof(c.mac));
6564 switch (nmac) {
6565 case 5:
6566 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6567 case 4:
6568 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6569 case 3:
6570 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6571 case 2:
6572 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6573 }
6574 }
6575 if (rss_size)
f404f80c
HS
6576 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6577 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
6578}
6579
4f3a0fcf
HS
6580/**
6581 * t4_free_vi - free a virtual interface
6582 * @adap: the adapter
6583 * @mbox: mailbox to use for the FW command
6584 * @pf: the PF owning the VI
6585 * @vf: the VF owning the VI
6586 * @viid: virtual interface identifiler
6587 *
6588 * Free a previously allocated virtual interface.
6589 */
6590int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6591 unsigned int vf, unsigned int viid)
6592{
6593 struct fw_vi_cmd c;
6594
6595 memset(&c, 0, sizeof(c));
6596 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6597 FW_CMD_REQUEST_F |
6598 FW_CMD_EXEC_F |
6599 FW_VI_CMD_PFN_V(pf) |
6600 FW_VI_CMD_VFN_V(vf));
6601 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6602 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6603
6604 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
56d36be4
DM
6605}
6606
56d36be4
DM
6607/**
6608 * t4_set_rxmode - set Rx properties of a virtual interface
6609 * @adap: the adapter
6610 * @mbox: mailbox to use for the FW command
6611 * @viid: the VI id
6612 * @mtu: the new MTU or -1
6613 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6614 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6615 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 6616 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
6617 * @sleep_ok: if true we may sleep while awaiting command completion
6618 *
6619 * Sets Rx properties of a virtual interface.
6620 */
6621int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
6622 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6623 bool sleep_ok)
56d36be4
DM
6624{
6625 struct fw_vi_rxmode_cmd c;
6626
6627 /* convert to FW values */
6628 if (mtu < 0)
6629 mtu = FW_RXMODE_MTU_NO_CHG;
6630 if (promisc < 0)
2b5fb1f2 6631 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 6632 if (all_multi < 0)
2b5fb1f2 6633 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 6634 if (bcast < 0)
2b5fb1f2 6635 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 6636 if (vlanex < 0)
2b5fb1f2 6637 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
6638
6639 memset(&c, 0, sizeof(c));
f404f80c
HS
6640 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6641 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6642 FW_VI_RXMODE_CMD_VIID_V(viid));
6643 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6644 c.mtu_to_vlanexen =
6645 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6646 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6647 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6648 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6649 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
6650 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6651}
6652
6653/**
6654 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6655 * @adap: the adapter
6656 * @mbox: mailbox to use for the FW command
6657 * @viid: the VI id
6658 * @free: if true any existing filters for this VI id are first removed
6659 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6660 * @addr: the MAC address(es)
6661 * @idx: where to store the index of each allocated filter
6662 * @hash: pointer to hash address filter bitmap
6663 * @sleep_ok: call is allowed to sleep
6664 *
6665 * Allocates an exact-match filter for each of the supplied addresses and
6666 * sets it to the corresponding address. If @idx is not %NULL it should
6667 * have at least @naddr entries, each of which will be set to the index of
6668 * the filter allocated for the corresponding MAC address. If a filter
6669 * could not be allocated for an address its index is set to 0xffff.
6670 * If @hash is not %NULL addresses that fail to allocate an exact filter
6671 * are hashed and update the hash filter bitmap pointed at by @hash.
6672 *
6673 * Returns a negative error number or the number of filters allocated.
6674 */
6675int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6676 unsigned int viid, bool free, unsigned int naddr,
6677 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6678{
3ccc6cf7 6679 int offset, ret = 0;
56d36be4 6680 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
6681 unsigned int nfilters = 0;
6682 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6683 unsigned int rem = naddr;
56d36be4 6684
3ccc6cf7 6685 if (naddr > max_naddr)
56d36be4
DM
6686 return -EINVAL;
6687
3ccc6cf7
HS
6688 for (offset = 0; offset < naddr ; /**/) {
6689 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6690 rem : ARRAY_SIZE(c.u.exact));
6691 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6692 u.exact[fw_naddr]), 16);
6693 struct fw_vi_mac_exact *p;
6694 int i;
56d36be4 6695
3ccc6cf7
HS
6696 memset(&c, 0, sizeof(c));
6697 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6698 FW_CMD_REQUEST_F |
6699 FW_CMD_WRITE_F |
6700 FW_CMD_EXEC_V(free) |
6701 FW_VI_MAC_CMD_VIID_V(viid));
6702 c.freemacs_to_len16 =
6703 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6704 FW_CMD_LEN16_V(len16));
6705
6706 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6707 p->valid_to_idx =
6708 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6709 FW_VI_MAC_CMD_IDX_V(
6710 FW_VI_MAC_ADD_MAC));
6711 memcpy(p->macaddr, addr[offset + i],
6712 sizeof(p->macaddr));
6713 }
56d36be4 6714
3ccc6cf7
HS
6715 /* It's okay if we run out of space in our MAC address arena.
6716 * Some of the addresses we submit may get stored so we need
6717 * to run through the reply to see what the results were ...
6718 */
6719 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6720 if (ret && ret != -FW_ENOMEM)
6721 break;
56d36be4 6722
3ccc6cf7
HS
6723 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6724 u16 index = FW_VI_MAC_CMD_IDX_G(
6725 be16_to_cpu(p->valid_to_idx));
6726
6727 if (idx)
6728 idx[offset + i] = (index >= max_naddr ?
6729 0xffff : index);
6730 if (index < max_naddr)
6731 nfilters++;
6732 else if (hash)
6733 *hash |= (1ULL <<
6734 hash_mac_addr(addr[offset + i]));
6735 }
56d36be4 6736
3ccc6cf7
HS
6737 free = false;
6738 offset += fw_naddr;
6739 rem -= fw_naddr;
56d36be4 6740 }
3ccc6cf7
HS
6741
6742 if (ret == 0 || ret == -FW_ENOMEM)
6743 ret = nfilters;
56d36be4
DM
6744 return ret;
6745}
6746
fc08a01a
HS
6747/**
6748 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
6749 * @adap: the adapter
6750 * @mbox: mailbox to use for the FW command
6751 * @viid: the VI id
6752 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6753 * @addr: the MAC address(es)
6754 * @sleep_ok: call is allowed to sleep
6755 *
6756 * Frees the exact-match filter for each of the supplied addresses
6757 *
6758 * Returns a negative error number or the number of filters freed.
6759 */
6760int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6761 unsigned int viid, unsigned int naddr,
6762 const u8 **addr, bool sleep_ok)
6763{
6764 int offset, ret = 0;
6765 struct fw_vi_mac_cmd c;
6766 unsigned int nfilters = 0;
6767 unsigned int max_naddr = is_t4(adap->params.chip) ?
6768 NUM_MPS_CLS_SRAM_L_INSTANCES :
6769 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6770 unsigned int rem = naddr;
6771
6772 if (naddr > max_naddr)
6773 return -EINVAL;
6774
6775 for (offset = 0; offset < (int)naddr ; /**/) {
6776 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6777 ? rem
6778 : ARRAY_SIZE(c.u.exact));
6779 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6780 u.exact[fw_naddr]), 16);
6781 struct fw_vi_mac_exact *p;
6782 int i;
6783
6784 memset(&c, 0, sizeof(c));
6785 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6786 FW_CMD_REQUEST_F |
6787 FW_CMD_WRITE_F |
6788 FW_CMD_EXEC_V(0) |
6789 FW_VI_MAC_CMD_VIID_V(viid));
6790 c.freemacs_to_len16 =
6791 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6792 FW_CMD_LEN16_V(len16));
6793
6794 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6795 p->valid_to_idx = cpu_to_be16(
6796 FW_VI_MAC_CMD_VALID_F |
6797 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6798 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6799 }
6800
6801 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6802 if (ret)
6803 break;
6804
6805 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6806 u16 index = FW_VI_MAC_CMD_IDX_G(
6807 be16_to_cpu(p->valid_to_idx));
6808
6809 if (index < max_naddr)
6810 nfilters++;
6811 }
6812
6813 offset += fw_naddr;
6814 rem -= fw_naddr;
6815 }
6816
6817 if (ret == 0)
6818 ret = nfilters;
6819 return ret;
6820}
6821
56d36be4
DM
6822/**
6823 * t4_change_mac - modifies the exact-match filter for a MAC address
6824 * @adap: the adapter
6825 * @mbox: mailbox to use for the FW command
6826 * @viid: the VI id
6827 * @idx: index of existing filter for old value of MAC address, or -1
6828 * @addr: the new MAC address value
6829 * @persist: whether a new MAC allocation should be persistent
6830 * @add_smt: if true also add the address to the HW SMT
6831 *
6832 * Modifies an exact-match filter and sets it to the new MAC address.
6833 * Note that in general it is not possible to modify the value of a given
6834 * filter so the generic way to modify an address filter is to free the one
6835 * being used by the old address value and allocate a new filter for the
6836 * new address value. @idx can be -1 if the address is a new addition.
6837 *
6838 * Returns a negative error number or the index of the filter with the new
6839 * MAC value.
6840 */
6841int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6842 int idx, const u8 *addr, bool persist, bool add_smt)
6843{
6844 int ret, mode;
6845 struct fw_vi_mac_cmd c;
6846 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 6847 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
6848
6849 if (idx < 0) /* new allocation */
6850 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6851 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6852
6853 memset(&c, 0, sizeof(c));
f404f80c
HS
6854 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6855 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6856 FW_VI_MAC_CMD_VIID_V(viid));
6857 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6858 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6859 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6860 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
6861 memcpy(p->macaddr, addr, sizeof(p->macaddr));
6862
6863 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6864 if (ret == 0) {
f404f80c 6865 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 6866 if (ret >= max_mac_addr)
56d36be4
DM
6867 ret = -ENOMEM;
6868 }
6869 return ret;
6870}
6871
6872/**
6873 * t4_set_addr_hash - program the MAC inexact-match hash filter
6874 * @adap: the adapter
6875 * @mbox: mailbox to use for the FW command
6876 * @viid: the VI id
6877 * @ucast: whether the hash filter should also match unicast addresses
6878 * @vec: the value to be written to the hash filter
6879 * @sleep_ok: call is allowed to sleep
6880 *
6881 * Sets the 64-bit inexact-match hash filter for a virtual interface.
6882 */
6883int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6884 bool ucast, u64 vec, bool sleep_ok)
6885{
6886 struct fw_vi_mac_cmd c;
6887
6888 memset(&c, 0, sizeof(c));
f404f80c
HS
6889 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6890 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6891 FW_VI_ENABLE_CMD_VIID_V(viid));
6892 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6893 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6894 FW_CMD_LEN16_V(1));
56d36be4
DM
6895 c.u.hash.hashvec = cpu_to_be64(vec);
6896 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6897}
6898
688848b1
AB
6899/**
6900 * t4_enable_vi_params - enable/disable a virtual interface
6901 * @adap: the adapter
6902 * @mbox: mailbox to use for the FW command
6903 * @viid: the VI id
6904 * @rx_en: 1=enable Rx, 0=disable Rx
6905 * @tx_en: 1=enable Tx, 0=disable Tx
6906 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
6907 *
6908 * Enables/disables a virtual interface. Note that setting DCB Enable
6909 * only makes sense when enabling a Virtual Interface ...
6910 */
6911int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6912 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6913{
6914 struct fw_vi_enable_cmd c;
6915
6916 memset(&c, 0, sizeof(c));
f404f80c
HS
6917 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6918 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6919 FW_VI_ENABLE_CMD_VIID_V(viid));
6920 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6921 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6922 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6923 FW_LEN16(c));
30f00847 6924 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
6925}
6926
56d36be4
DM
6927/**
6928 * t4_enable_vi - enable/disable a virtual interface
6929 * @adap: the adapter
6930 * @mbox: mailbox to use for the FW command
6931 * @viid: the VI id
6932 * @rx_en: 1=enable Rx, 0=disable Rx
6933 * @tx_en: 1=enable Tx, 0=disable Tx
6934 *
6935 * Enables/disables a virtual interface.
6936 */
6937int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6938 bool rx_en, bool tx_en)
6939{
688848b1 6940 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
6941}
6942
6943/**
6944 * t4_identify_port - identify a VI's port by blinking its LED
6945 * @adap: the adapter
6946 * @mbox: mailbox to use for the FW command
6947 * @viid: the VI id
6948 * @nblinks: how many times to blink LED at 2.5 Hz
6949 *
6950 * Identifies a VI's port by blinking its LED.
6951 */
6952int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6953 unsigned int nblinks)
6954{
6955 struct fw_vi_enable_cmd c;
6956
0062b15c 6957 memset(&c, 0, sizeof(c));
f404f80c
HS
6958 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6959 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6960 FW_VI_ENABLE_CMD_VIID_V(viid));
6961 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6962 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 6963 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
6964}
6965
ebf4dc2b
HS
6966/**
6967 * t4_iq_stop - stop an ingress queue and its FLs
6968 * @adap: the adapter
6969 * @mbox: mailbox to use for the FW command
6970 * @pf: the PF owning the queues
6971 * @vf: the VF owning the queues
6972 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
6973 * @iqid: ingress queue id
6974 * @fl0id: FL0 queue id or 0xffff if no attached FL0
6975 * @fl1id: FL1 queue id or 0xffff if no attached FL1
6976 *
6977 * Stops an ingress queue and its associated FLs, if any. This causes
6978 * any current or future data/messages destined for these queues to be
6979 * tossed.
6980 */
6981int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
6982 unsigned int vf, unsigned int iqtype, unsigned int iqid,
6983 unsigned int fl0id, unsigned int fl1id)
6984{
6985 struct fw_iq_cmd c;
6986
6987 memset(&c, 0, sizeof(c));
6988 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6989 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6990 FW_IQ_CMD_VFN_V(vf));
6991 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
6992 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6993 c.iqid = cpu_to_be16(iqid);
6994 c.fl0id = cpu_to_be16(fl0id);
6995 c.fl1id = cpu_to_be16(fl1id);
6996 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6997}
6998
56d36be4
DM
6999/**
7000 * t4_iq_free - free an ingress queue and its FLs
7001 * @adap: the adapter
7002 * @mbox: mailbox to use for the FW command
7003 * @pf: the PF owning the queues
7004 * @vf: the VF owning the queues
7005 * @iqtype: the ingress queue type
7006 * @iqid: ingress queue id
7007 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7008 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7009 *
7010 * Frees an ingress queue and its associated FLs, if any.
7011 */
7012int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7013 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7014 unsigned int fl0id, unsigned int fl1id)
7015{
7016 struct fw_iq_cmd c;
7017
7018 memset(&c, 0, sizeof(c));
f404f80c
HS
7019 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7020 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7021 FW_IQ_CMD_VFN_V(vf));
7022 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7023 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7024 c.iqid = cpu_to_be16(iqid);
7025 c.fl0id = cpu_to_be16(fl0id);
7026 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
7027 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7028}
7029
7030/**
7031 * t4_eth_eq_free - free an Ethernet egress queue
7032 * @adap: the adapter
7033 * @mbox: mailbox to use for the FW command
7034 * @pf: the PF owning the queue
7035 * @vf: the VF owning the queue
7036 * @eqid: egress queue id
7037 *
7038 * Frees an Ethernet egress queue.
7039 */
7040int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7041 unsigned int vf, unsigned int eqid)
7042{
7043 struct fw_eq_eth_cmd c;
7044
7045 memset(&c, 0, sizeof(c));
f404f80c
HS
7046 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7047 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7048 FW_EQ_ETH_CMD_PFN_V(pf) |
7049 FW_EQ_ETH_CMD_VFN_V(vf));
7050 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7051 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
7052 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7053}
7054
7055/**
7056 * t4_ctrl_eq_free - free a control egress queue
7057 * @adap: the adapter
7058 * @mbox: mailbox to use for the FW command
7059 * @pf: the PF owning the queue
7060 * @vf: the VF owning the queue
7061 * @eqid: egress queue id
7062 *
7063 * Frees a control egress queue.
7064 */
7065int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7066 unsigned int vf, unsigned int eqid)
7067{
7068 struct fw_eq_ctrl_cmd c;
7069
7070 memset(&c, 0, sizeof(c));
f404f80c
HS
7071 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7072 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7073 FW_EQ_CTRL_CMD_PFN_V(pf) |
7074 FW_EQ_CTRL_CMD_VFN_V(vf));
7075 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7076 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
7077 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7078}
7079
7080/**
7081 * t4_ofld_eq_free - free an offload egress queue
7082 * @adap: the adapter
7083 * @mbox: mailbox to use for the FW command
7084 * @pf: the PF owning the queue
7085 * @vf: the VF owning the queue
7086 * @eqid: egress queue id
7087 *
7088 * Frees a control egress queue.
7089 */
7090int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7091 unsigned int vf, unsigned int eqid)
7092{
7093 struct fw_eq_ofld_cmd c;
7094
7095 memset(&c, 0, sizeof(c));
f404f80c
HS
7096 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7097 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7098 FW_EQ_OFLD_CMD_PFN_V(pf) |
7099 FW_EQ_OFLD_CMD_VFN_V(vf));
7100 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7101 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
7102 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7103}
7104
ddc7740d
HS
7105/**
7106 * t4_link_down_rc_str - return a string for a Link Down Reason Code
7107 * @adap: the adapter
7108 * @link_down_rc: Link Down Reason Code
7109 *
7110 * Returns a string representation of the Link Down Reason Code.
7111 */
7112static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7113{
7114 static const char * const reason[] = {
7115 "Link Down",
7116 "Remote Fault",
7117 "Auto-negotiation Failure",
7118 "Reserved",
7119 "Insufficient Airflow",
7120 "Unable To Determine Reason",
7121 "No RX Signal Detected",
7122 "Reserved",
7123 };
7124
7125 if (link_down_rc >= ARRAY_SIZE(reason))
7126 return "Bad Reason Code";
7127
7128 return reason[link_down_rc];
7129}
7130
56d36be4 7131/**
23853a0a
HS
7132 * t4_handle_get_port_info - process a FW reply message
7133 * @pi: the port info
56d36be4
DM
7134 * @rpl: start of the FW message
7135 *
23853a0a
HS
7136 * Processes a GET_PORT_INFO FW reply message.
7137 */
7138void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7139{
7140 const struct fw_port_cmd *p = (const void *)rpl;
7141 struct adapter *adap = pi->adapter;
7142
7143 /* link/module state change message */
7144 int speed = 0, fc = 0;
7145 struct link_config *lc;
7146 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7147 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7148 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7149
7150 if (stat & FW_PORT_CMD_RXPAUSE_F)
7151 fc |= PAUSE_RX;
7152 if (stat & FW_PORT_CMD_TXPAUSE_F)
7153 fc |= PAUSE_TX;
7154 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7155 speed = 100;
7156 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7157 speed = 1000;
7158 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7159 speed = 10000;
7160 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7161 speed = 40000;
7162
7163 lc = &pi->link_cfg;
7164
7165 if (mod != pi->mod_type) {
7166 pi->mod_type = mod;
7167 t4_os_portmod_changed(adap, pi->port_id);
7168 }
7169 if (link_ok != lc->link_ok || speed != lc->speed ||
7170 fc != lc->fc) { /* something changed */
ddc7740d
HS
7171 if (!link_ok && lc->link_ok) {
7172 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7173
7174 lc->link_down_rc = rc;
7175 dev_warn(adap->pdev_dev,
7176 "Port %d link down, reason: %s\n",
7177 pi->port_id, t4_link_down_rc_str(rc));
7178 }
23853a0a
HS
7179 lc->link_ok = link_ok;
7180 lc->speed = speed;
7181 lc->fc = fc;
7182 lc->supported = be16_to_cpu(p->u.info.pcap);
7183 t4_os_link_changed(adap, pi->port_id, link_ok);
7184 }
7185}
7186
7187/**
7188 * t4_handle_fw_rpl - process a FW reply message
7189 * @adap: the adapter
7190 * @rpl: start of the FW message
7191 *
7192 * Processes a FW message, such as link state change messages.
56d36be4
DM
7193 */
7194int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7195{
7196 u8 opcode = *(const u8 *)rpl;
7197
23853a0a
HS
7198 /* This might be a port command ... this simplifies the following
7199 * conditionals ... We can get away with pre-dereferencing
7200 * action_to_len16 because it's in the first 16 bytes and all messages
7201 * will be at least that long.
7202 */
7203 const struct fw_port_cmd *p = (const void *)rpl;
7204 unsigned int action =
7205 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7206
7207 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7208 int i;
f404f80c 7209 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
23853a0a
HS
7210 struct port_info *pi = NULL;
7211
7212 for_each_port(adap, i) {
7213 pi = adap2pinfo(adap, i);
7214 if (pi->tx_chan == chan)
7215 break;
56d36be4 7216 }
23853a0a
HS
7217
7218 t4_handle_get_port_info(pi, rpl);
7219 } else {
7220 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7221 return -EINVAL;
56d36be4
DM
7222 }
7223 return 0;
7224}
7225
1dd06ae8 7226static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
7227{
7228 u16 val;
56d36be4 7229
e5c8ae5f
JL
7230 if (pci_is_pcie(adapter->pdev)) {
7231 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
7232 p->speed = val & PCI_EXP_LNKSTA_CLS;
7233 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7234 }
7235}
7236
7237/**
7238 * init_link_config - initialize a link's SW state
7239 * @lc: structure holding the link state
7240 * @caps: link capabilities
7241 *
7242 * Initializes the SW state maintained for each link, including the link's
7243 * capabilities and default speed/flow-control/autonegotiation settings.
7244 */
1dd06ae8 7245static void init_link_config(struct link_config *lc, unsigned int caps)
56d36be4
DM
7246{
7247 lc->supported = caps;
7248 lc->requested_speed = 0;
7249 lc->speed = 0;
7250 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7251 if (lc->supported & FW_PORT_CAP_ANEG) {
7252 lc->advertising = lc->supported & ADVERT_MASK;
7253 lc->autoneg = AUTONEG_ENABLE;
7254 lc->requested_fc |= PAUSE_AUTONEG;
7255 } else {
7256 lc->advertising = 0;
7257 lc->autoneg = AUTONEG_DISABLE;
7258 }
7259}
7260
8203b509
HS
7261#define CIM_PF_NOACCESS 0xeeeeeeee
7262
7263int t4_wait_dev_ready(void __iomem *regs)
56d36be4 7264{
8203b509
HS
7265 u32 whoami;
7266
0d804338 7267 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7268 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 7269 return 0;
8203b509 7270
56d36be4 7271 msleep(500);
0d804338 7272 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7273 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
7274}
7275
fe2ee139
HS
7276struct flash_desc {
7277 u32 vendor_and_model_id;
7278 u32 size_mb;
7279};
7280
91744948 7281static int get_flash_params(struct adapter *adap)
900a6596 7282{
fe2ee139
HS
7283 /* Table for non-Numonix supported flash parts. Numonix parts are left
7284 * to the preexisting code. All flash parts have 64KB sectors.
7285 */
7286 static struct flash_desc supported_flash[] = {
7287 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7288 };
7289
900a6596
DM
7290 int ret;
7291 u32 info;
7292
7293 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7294 if (!ret)
7295 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 7296 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
7297 if (ret)
7298 return ret;
7299
fe2ee139
HS
7300 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7301 if (supported_flash[ret].vendor_and_model_id == info) {
7302 adap->params.sf_size = supported_flash[ret].size_mb;
7303 adap->params.sf_nsec =
7304 adap->params.sf_size / SF_SEC_SIZE;
7305 return 0;
7306 }
7307
900a6596
DM
7308 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7309 return -EINVAL;
7310 info >>= 16; /* log2 of size */
7311 if (info >= 0x14 && info < 0x18)
7312 adap->params.sf_nsec = 1 << (info - 16);
7313 else if (info == 0x18)
7314 adap->params.sf_nsec = 64;
7315 else
7316 return -EINVAL;
7317 adap->params.sf_size = 1 << info;
7318 adap->params.sf_fw_start =
89c3a86c 7319 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
7320
7321 if (adap->params.sf_size < FLASH_MIN_SIZE)
7322 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7323 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
7324 return 0;
7325}
7326
eca0f6ee
HS
7327static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7328{
7329 u16 val;
7330 u32 pcie_cap;
7331
7332 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7333 if (pcie_cap) {
7334 pci_read_config_word(adapter->pdev,
7335 pcie_cap + PCI_EXP_DEVCTL2, &val);
7336 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7337 val |= range;
7338 pci_write_config_word(adapter->pdev,
7339 pcie_cap + PCI_EXP_DEVCTL2, val);
7340 }
7341}
7342
56d36be4
DM
7343/**
7344 * t4_prep_adapter - prepare SW and HW for operation
7345 * @adapter: the adapter
7346 * @reset: if true perform a HW reset
7347 *
7348 * Initialize adapter SW state for the various HW modules, set initial
7349 * values for some adapter tunables, take PHYs out of reset, and
7350 * initialize the MDIO interface.
7351 */
91744948 7352int t4_prep_adapter(struct adapter *adapter)
56d36be4 7353{
0a57a536
SR
7354 int ret, ver;
7355 uint16_t device_id;
d14807dd 7356 u32 pl_rev;
56d36be4 7357
56d36be4 7358 get_pci_mode(adapter, &adapter->params.pci);
0d804338 7359 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 7360
900a6596
DM
7361 ret = get_flash_params(adapter);
7362 if (ret < 0) {
7363 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7364 return ret;
7365 }
7366
0a57a536
SR
7367 /* Retrieve adapter's device ID
7368 */
7369 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7370 ver = device_id >> 12;
d14807dd 7371 adapter->params.chip = 0;
0a57a536
SR
7372 switch (ver) {
7373 case CHELSIO_T4:
d14807dd 7374 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
7375 adapter->params.arch.sge_fl_db = DBPRIO_F;
7376 adapter->params.arch.mps_tcam_size =
7377 NUM_MPS_CLS_SRAM_L_INSTANCES;
7378 adapter->params.arch.mps_rplc_size = 128;
7379 adapter->params.arch.nchan = NCHAN;
44588560 7380 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7381 adapter->params.arch.vfcount = 128;
2216d014
HS
7382 /* Congestion map is for 4 channels so that
7383 * MPS can have 4 priority per port.
7384 */
7385 adapter->params.arch.cng_ch_bits_log = 2;
0a57a536
SR
7386 break;
7387 case CHELSIO_T5:
d14807dd 7388 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
7389 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7390 adapter->params.arch.mps_tcam_size =
7391 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7392 adapter->params.arch.mps_rplc_size = 128;
7393 adapter->params.arch.nchan = NCHAN;
44588560 7394 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7395 adapter->params.arch.vfcount = 128;
2216d014 7396 adapter->params.arch.cng_ch_bits_log = 2;
3ccc6cf7
HS
7397 break;
7398 case CHELSIO_T6:
7399 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7400 adapter->params.arch.sge_fl_db = 0;
7401 adapter->params.arch.mps_tcam_size =
7402 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7403 adapter->params.arch.mps_rplc_size = 256;
7404 adapter->params.arch.nchan = 2;
44588560 7405 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
3ccc6cf7 7406 adapter->params.arch.vfcount = 256;
2216d014
HS
7407 /* Congestion map will be for 2 channels so that
7408 * MPS can have 8 priority per port.
7409 */
7410 adapter->params.arch.cng_ch_bits_log = 3;
0a57a536
SR
7411 break;
7412 default:
7413 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7414 device_id);
7415 return -EINVAL;
7416 }
7417
f1ff24aa 7418 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
7419 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7420
7421 /*
7422 * Default port for debugging in case we can't reach FW.
7423 */
7424 adapter->params.nports = 1;
7425 adapter->params.portvec = 1;
636f9d37 7426 adapter->params.vpd.cclk = 50000;
eca0f6ee
HS
7427
7428 /* Set pci completion timeout value to 4 seconds. */
7429 set_pcie_completion_timeout(adapter, 0xd);
56d36be4
DM
7430 return 0;
7431}
7432
e85c9a7a 7433/**
b2612722 7434 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
7435 * @adapter: the adapter
7436 * @qid: the Queue ID
7437 * @qtype: the Ingress or Egress type for @qid
66cf188e 7438 * @user: true if this request is for a user mode queue
e85c9a7a
HS
7439 * @pbar2_qoffset: BAR2 Queue Offset
7440 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7441 *
7442 * Returns the BAR2 SGE Queue Registers information associated with the
7443 * indicated Absolute Queue ID. These are passed back in return value
7444 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7445 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7446 *
7447 * This may return an error which indicates that BAR2 SGE Queue
7448 * registers aren't available. If an error is not returned, then the
7449 * following values are returned:
7450 *
7451 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7452 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7453 *
7454 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7455 * require the "Inferred Queue ID" ability may be used. E.g. the
7456 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7457 * then these "Inferred Queue ID" register may not be used.
7458 */
b2612722 7459int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
7460 unsigned int qid,
7461 enum t4_bar2_qtype qtype,
66cf188e 7462 int user,
e85c9a7a
HS
7463 u64 *pbar2_qoffset,
7464 unsigned int *pbar2_qid)
7465{
7466 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7467 u64 bar2_page_offset, bar2_qoffset;
7468 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7469
66cf188e
H
7470 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7471 if (!user && is_t4(adapter->params.chip))
e85c9a7a
HS
7472 return -EINVAL;
7473
7474 /* Get our SGE Page Size parameters.
7475 */
7476 page_shift = adapter->params.sge.hps + 10;
7477 page_size = 1 << page_shift;
7478
7479 /* Get the right Queues per Page parameters for our Queue.
7480 */
7481 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7482 ? adapter->params.sge.eq_qpp
7483 : adapter->params.sge.iq_qpp);
7484 qpp_mask = (1 << qpp_shift) - 1;
7485
7486 /* Calculate the basics of the BAR2 SGE Queue register area:
7487 * o The BAR2 page the Queue registers will be in.
7488 * o The BAR2 Queue ID.
7489 * o The BAR2 Queue ID Offset into the BAR2 page.
7490 */
513d1a1d 7491 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
7492 bar2_qid = qid & qpp_mask;
7493 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7494
7495 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7496 * hardware will infer the Absolute Queue ID simply from the writes to
7497 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7498 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7499 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7500 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7501 * from the BAR2 Page and BAR2 Queue ID.
7502 *
7503 * One important censequence of this is that some BAR2 SGE registers
7504 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7505 * there. But other registers synthesize the SGE Queue ID purely
7506 * from the writes to the registers -- the Write Combined Doorbell
7507 * Buffer is a good example. These BAR2 SGE Registers are only
7508 * available for those BAR2 SGE Register areas where the SGE Absolute
7509 * Queue ID can be inferred from simple writes.
7510 */
7511 bar2_qoffset = bar2_page_offset;
7512 bar2_qinferred = (bar2_qid_offset < page_size);
7513 if (bar2_qinferred) {
7514 bar2_qoffset += bar2_qid_offset;
7515 bar2_qid = 0;
7516 }
7517
7518 *pbar2_qoffset = bar2_qoffset;
7519 *pbar2_qid = bar2_qid;
7520 return 0;
7521}
7522
ae469b68
HS
7523/**
7524 * t4_init_devlog_params - initialize adapter->params.devlog
7525 * @adap: the adapter
7526 *
7527 * Initialize various fields of the adapter's Firmware Device Log
7528 * Parameters structure.
7529 */
7530int t4_init_devlog_params(struct adapter *adap)
7531{
7532 struct devlog_params *dparams = &adap->params.devlog;
7533 u32 pf_dparams;
7534 unsigned int devlog_meminfo;
7535 struct fw_devlog_cmd devlog_cmd;
7536 int ret;
7537
7538 /* If we're dealing with newer firmware, the Device Log Paramerters
7539 * are stored in a designated register which allows us to access the
7540 * Device Log even if we can't talk to the firmware.
7541 */
7542 pf_dparams =
7543 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7544 if (pf_dparams) {
7545 unsigned int nentries, nentries128;
7546
7547 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7548 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7549
7550 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7551 nentries = (nentries128 + 1) * 128;
7552 dparams->size = nentries * sizeof(struct fw_devlog_e);
7553
7554 return 0;
7555 }
7556
7557 /* Otherwise, ask the firmware for it's Device Log Parameters.
7558 */
7559 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
7560 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7561 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7562 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
7563 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7564 &devlog_cmd);
7565 if (ret)
7566 return ret;
7567
f404f80c
HS
7568 devlog_meminfo =
7569 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
7570 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7571 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 7572 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
7573
7574 return 0;
7575}
7576
e85c9a7a
HS
7577/**
7578 * t4_init_sge_params - initialize adap->params.sge
7579 * @adapter: the adapter
7580 *
7581 * Initialize various fields of the adapter's SGE Parameters structure.
7582 */
7583int t4_init_sge_params(struct adapter *adapter)
7584{
7585 struct sge_params *sge_params = &adapter->params.sge;
7586 u32 hps, qpp;
7587 unsigned int s_hps, s_qpp;
7588
7589 /* Extract the SGE Page Size for our PF.
7590 */
f612b815 7591 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 7592 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 7593 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
7594 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7595
7596 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7597 */
7598 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 7599 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
7600 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7601 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 7602 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 7603 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
7604
7605 return 0;
7606}
7607
dcf7b6f5
KS
7608/**
7609 * t4_init_tp_params - initialize adap->params.tp
7610 * @adap: the adapter
7611 *
7612 * Initialize various fields of the adapter's TP Parameters structure.
7613 */
7614int t4_init_tp_params(struct adapter *adap)
7615{
7616 int chan;
7617 u32 v;
7618
837e4a42
HS
7619 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7620 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7621 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
7622
7623 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7624 for (chan = 0; chan < NCHAN; chan++)
7625 adap->params.tp.tx_modq[chan] = chan;
7626
7627 /* Cache the adapter's Compressed Filter Mode and global Incress
7628 * Configuration.
7629 */
0b2c2a93 7630 if (t4_use_ldst(adap)) {
c1e9af0c
HS
7631 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7632 TP_VLAN_PRI_MAP_A, 1);
7633 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7634 TP_INGRESS_CONFIG_A, 1);
7635 } else {
7636 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7637 &adap->params.tp.vlan_pri_map, 1,
7638 TP_VLAN_PRI_MAP_A);
7639 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7640 &adap->params.tp.ingress_config, 1,
7641 TP_INGRESS_CONFIG_A);
7642 }
dcf7b6f5
KS
7643
7644 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7645 * shift positions of several elements of the Compressed Filter Tuple
7646 * for this adapter which we need frequently ...
7647 */
0d804338
HS
7648 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7649 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7650 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 7651 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 7652 PROTOCOL_F);
dcf7b6f5
KS
7653
7654 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 7655 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 7656 */
0d804338 7657 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
7658 adap->params.tp.vnic_shift = -1;
7659
7660 return 0;
7661}
7662
7663/**
7664 * t4_filter_field_shift - calculate filter field shift
7665 * @adap: the adapter
7666 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7667 *
7668 * Return the shift position of a filter field within the Compressed
7669 * Filter Tuple. The filter field is specified via its selection bit
7670 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7671 */
7672int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7673{
7674 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7675 unsigned int sel;
7676 int field_shift;
7677
7678 if ((filter_mode & filter_sel) == 0)
7679 return -1;
7680
7681 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7682 switch (filter_mode & sel) {
0d804338
HS
7683 case FCOE_F:
7684 field_shift += FT_FCOE_W;
dcf7b6f5 7685 break;
0d804338
HS
7686 case PORT_F:
7687 field_shift += FT_PORT_W;
dcf7b6f5 7688 break;
0d804338
HS
7689 case VNIC_ID_F:
7690 field_shift += FT_VNIC_ID_W;
dcf7b6f5 7691 break;
0d804338
HS
7692 case VLAN_F:
7693 field_shift += FT_VLAN_W;
dcf7b6f5 7694 break;
0d804338
HS
7695 case TOS_F:
7696 field_shift += FT_TOS_W;
dcf7b6f5 7697 break;
0d804338
HS
7698 case PROTOCOL_F:
7699 field_shift += FT_PROTOCOL_W;
dcf7b6f5 7700 break;
0d804338
HS
7701 case ETHERTYPE_F:
7702 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 7703 break;
0d804338
HS
7704 case MACMATCH_F:
7705 field_shift += FT_MACMATCH_W;
dcf7b6f5 7706 break;
0d804338
HS
7707 case MPSHITTYPE_F:
7708 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 7709 break;
0d804338
HS
7710 case FRAGMENTATION_F:
7711 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
7712 break;
7713 }
7714 }
7715 return field_shift;
7716}
7717
c035e183
HS
7718int t4_init_rss_mode(struct adapter *adap, int mbox)
7719{
7720 int i, ret;
7721 struct fw_rss_vi_config_cmd rvc;
7722
7723 memset(&rvc, 0, sizeof(rvc));
7724
7725 for_each_port(adap, i) {
7726 struct port_info *p = adap2pinfo(adap, i);
7727
f404f80c
HS
7728 rvc.op_to_viid =
7729 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7730 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7731 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7732 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
7733 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7734 if (ret)
7735 return ret;
f404f80c 7736 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
7737 }
7738 return 0;
7739}
7740
c3e324e3
HS
7741/**
7742 * t4_init_portinfo - allocate a virtual interface amd initialize port_info
7743 * @pi: the port_info
7744 * @mbox: mailbox to use for the FW command
7745 * @port: physical port associated with the VI
7746 * @pf: the PF owning the VI
7747 * @vf: the VF owning the VI
7748 * @mac: the MAC address of the VI
7749 *
7750 * Allocates a virtual interface for the given physical port. If @mac is
7751 * not %NULL it contains the MAC address of the VI as assigned by FW.
7752 * @mac should be large enough to hold an Ethernet address.
7753 * Returns < 0 on error.
7754 */
7755int t4_init_portinfo(struct port_info *pi, int mbox,
7756 int port, int pf, int vf, u8 mac[])
56d36be4 7757{
c3e324e3 7758 int ret;
56d36be4 7759 struct fw_port_cmd c;
c3e324e3 7760 unsigned int rss_size;
56d36be4
DM
7761
7762 memset(&c, 0, sizeof(c));
c3e324e3
HS
7763 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7764 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7765 FW_PORT_CMD_PORTID_V(port));
7766 c.action_to_len16 = cpu_to_be32(
7767 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7768 FW_LEN16(c));
7769 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7770 if (ret)
7771 return ret;
7772
7773 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7774 if (ret < 0)
7775 return ret;
7776
7777 pi->viid = ret;
7778 pi->tx_chan = port;
7779 pi->lport = port;
7780 pi->rss_size = rss_size;
7781
7782 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7783 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7784 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7785 pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7786 pi->mod_type = FW_PORT_MOD_TYPE_NA;
7787
7788 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7789 return 0;
7790}
7791
7792int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7793{
7794 u8 addr[6];
7795 int ret, i, j = 0;
56d36be4
DM
7796
7797 for_each_port(adap, i) {
c3e324e3 7798 struct port_info *pi = adap2pinfo(adap, i);
56d36be4
DM
7799
7800 while ((adap->params.portvec & (1 << j)) == 0)
7801 j++;
7802
c3e324e3 7803 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
56d36be4
DM
7804 if (ret)
7805 return ret;
7806
56d36be4 7807 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
40c9f8ab 7808 adap->port[i]->dev_port = j;
56d36be4
DM
7809 j++;
7810 }
7811 return 0;
7812}
f1ff24aa 7813
74b3092c
HS
7814/**
7815 * t4_read_cimq_cfg - read CIM queue configuration
7816 * @adap: the adapter
7817 * @base: holds the queue base addresses in bytes
7818 * @size: holds the queue sizes in bytes
7819 * @thres: holds the queue full thresholds in bytes
7820 *
7821 * Returns the current configuration of the CIM queues, starting with
7822 * the IBQs, then the OBQs.
7823 */
7824void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7825{
7826 unsigned int i, v;
7827 int cim_num_obq = is_t4(adap->params.chip) ?
7828 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7829
7830 for (i = 0; i < CIM_NUM_IBQ; i++) {
7831 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7832 QUENUMSELECT_V(i));
7833 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7834 /* value is in 256-byte units */
7835 *base++ = CIMQBASE_G(v) * 256;
7836 *size++ = CIMQSIZE_G(v) * 256;
7837 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7838 }
7839 for (i = 0; i < cim_num_obq; i++) {
7840 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7841 QUENUMSELECT_V(i));
7842 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7843 /* value is in 256-byte units */
7844 *base++ = CIMQBASE_G(v) * 256;
7845 *size++ = CIMQSIZE_G(v) * 256;
7846 }
7847}
7848
e5f0e43b
HS
7849/**
7850 * t4_read_cim_ibq - read the contents of a CIM inbound queue
7851 * @adap: the adapter
7852 * @qid: the queue index
7853 * @data: where to store the queue contents
7854 * @n: capacity of @data in 32-bit words
7855 *
7856 * Reads the contents of the selected CIM queue starting at address 0 up
7857 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7858 * error and the number of 32-bit words actually read on success.
7859 */
7860int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7861{
7862 int i, err, attempts;
7863 unsigned int addr;
7864 const unsigned int nwords = CIM_IBQ_SIZE * 4;
7865
7866 if (qid > 5 || (n & 3))
7867 return -EINVAL;
7868
7869 addr = qid * nwords;
7870 if (n > nwords)
7871 n = nwords;
7872
7873 /* It might take 3-10ms before the IBQ debug read access is allowed.
7874 * Wait for 1 Sec with a delay of 1 usec.
7875 */
7876 attempts = 1000000;
7877
7878 for (i = 0; i < n; i++, addr++) {
7879 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7880 IBQDBGEN_F);
7881 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7882 attempts, 1);
7883 if (err)
7884 return err;
7885 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7886 }
7887 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
7888 return i;
7889}
7890
7891/**
7892 * t4_read_cim_obq - read the contents of a CIM outbound queue
7893 * @adap: the adapter
7894 * @qid: the queue index
7895 * @data: where to store the queue contents
7896 * @n: capacity of @data in 32-bit words
7897 *
7898 * Reads the contents of the selected CIM queue starting at address 0 up
7899 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7900 * error and the number of 32-bit words actually read on success.
7901 */
7902int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7903{
7904 int i, err;
7905 unsigned int addr, v, nwords;
7906 int cim_num_obq = is_t4(adap->params.chip) ?
7907 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7908
7909 if ((qid > (cim_num_obq - 1)) || (n & 3))
7910 return -EINVAL;
7911
7912 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7913 QUENUMSELECT_V(qid));
7914 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7915
7916 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
7917 nwords = CIMQSIZE_G(v) * 64; /* same */
7918 if (n > nwords)
7919 n = nwords;
7920
7921 for (i = 0; i < n; i++, addr++) {
7922 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7923 OBQDBGEN_F);
7924 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7925 2, 1);
7926 if (err)
7927 return err;
7928 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7929 }
7930 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
7931 return i;
7932}
7933
f1ff24aa
HS
7934/**
7935 * t4_cim_read - read a block from CIM internal address space
7936 * @adap: the adapter
7937 * @addr: the start address within the CIM address space
7938 * @n: number of words to read
7939 * @valp: where to store the result
7940 *
7941 * Reads a block of 4-byte words from the CIM intenal address space.
7942 */
7943int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7944 unsigned int *valp)
7945{
7946 int ret = 0;
7947
7948 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7949 return -EBUSY;
7950
7951 for ( ; !ret && n--; addr += 4) {
7952 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7953 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7954 0, 5, 2);
7955 if (!ret)
7956 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7957 }
7958 return ret;
7959}
7960
7961/**
7962 * t4_cim_write - write a block into CIM internal address space
7963 * @adap: the adapter
7964 * @addr: the start address within the CIM address space
7965 * @n: number of words to write
7966 * @valp: set of values to write
7967 *
7968 * Writes a block of 4-byte words into the CIM intenal address space.
7969 */
7970int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7971 const unsigned int *valp)
7972{
7973 int ret = 0;
7974
7975 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7976 return -EBUSY;
7977
7978 for ( ; !ret && n--; addr += 4) {
7979 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7980 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7981 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7982 0, 5, 2);
7983 }
7984 return ret;
7985}
7986
7987static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7988 unsigned int val)
7989{
7990 return t4_cim_write(adap, addr, 1, &val);
7991}
7992
7993/**
7994 * t4_cim_read_la - read CIM LA capture buffer
7995 * @adap: the adapter
7996 * @la_buf: where to store the LA data
7997 * @wrptr: the HW write pointer within the capture buffer
7998 *
7999 * Reads the contents of the CIM LA buffer with the most recent entry at
8000 * the end of the returned data and with the entry at @wrptr first.
8001 * We try to leave the LA in the running state we find it in.
8002 */
8003int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8004{
8005 int i, ret;
8006 unsigned int cfg, val, idx;
8007
8008 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8009 if (ret)
8010 return ret;
8011
8012 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
8013 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8014 if (ret)
8015 return ret;
8016 }
8017
8018 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8019 if (ret)
8020 goto restart;
8021
8022 idx = UPDBGLAWRPTR_G(val);
8023 if (wrptr)
8024 *wrptr = idx;
8025
8026 for (i = 0; i < adap->params.cim_la_size; i++) {
8027 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8028 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8029 if (ret)
8030 break;
8031 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8032 if (ret)
8033 break;
8034 if (val & UPDBGLARDEN_F) {
8035 ret = -ETIMEDOUT;
8036 break;
8037 }
8038 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8039 if (ret)
8040 break;
8041 idx = (idx + 1) & UPDBGLARDPTR_M;
8042 }
8043restart:
8044 if (cfg & UPDBGLAEN_F) {
8045 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8046 cfg & ~UPDBGLARDEN_F);
8047 if (!ret)
8048 ret = r;
8049 }
8050 return ret;
8051}
2d277b3b
HS
8052
8053/**
8054 * t4_tp_read_la - read TP LA capture buffer
8055 * @adap: the adapter
8056 * @la_buf: where to store the LA data
8057 * @wrptr: the HW write pointer within the capture buffer
8058 *
8059 * Reads the contents of the TP LA buffer with the most recent entry at
8060 * the end of the returned data and with the entry at @wrptr first.
8061 * We leave the LA in the running state we find it in.
8062 */
8063void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8064{
8065 bool last_incomplete;
8066 unsigned int i, cfg, val, idx;
8067
8068 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8069 if (cfg & DBGLAENABLE_F) /* freeze LA */
8070 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8071 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8072
8073 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8074 idx = DBGLAWPTR_G(val);
8075 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8076 if (last_incomplete)
8077 idx = (idx + 1) & DBGLARPTR_M;
8078 if (wrptr)
8079 *wrptr = idx;
8080
8081 val &= 0xffff;
8082 val &= ~DBGLARPTR_V(DBGLARPTR_M);
8083 val |= adap->params.tp.la_mask;
8084
8085 for (i = 0; i < TPLA_SIZE; i++) {
8086 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8087 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8088 idx = (idx + 1) & DBGLARPTR_M;
8089 }
8090
8091 /* Wipe out last entry if it isn't valid */
8092 if (last_incomplete)
8093 la_buf[TPLA_SIZE - 1] = ~0ULL;
8094
8095 if (cfg & DBGLAENABLE_F) /* restore running state */
8096 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8097 cfg | adap->params.tp.la_mask);
8098}
a3bfb617
HS
8099
8100/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8101 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
8102 * state for more than the Warning Threshold then we'll issue a warning about
8103 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
8104 * appears to be hung every Warning Repeat second till the situation clears.
8105 * If the situation clears, we'll note that as well.
8106 */
8107#define SGE_IDMA_WARN_THRESH 1
8108#define SGE_IDMA_WARN_REPEAT 300
8109
8110/**
8111 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8112 * @adapter: the adapter
8113 * @idma: the adapter IDMA Monitor state
8114 *
8115 * Initialize the state of an SGE Ingress DMA Monitor.
8116 */
8117void t4_idma_monitor_init(struct adapter *adapter,
8118 struct sge_idma_monitor_state *idma)
8119{
8120 /* Initialize the state variables for detecting an SGE Ingress DMA
8121 * hang. The SGE has internal counters which count up on each clock
8122 * tick whenever the SGE finds its Ingress DMA State Engines in the
8123 * same state they were on the previous clock tick. The clock used is
8124 * the Core Clock so we have a limit on the maximum "time" they can
8125 * record; typically a very small number of seconds. For instance,
8126 * with a 600MHz Core Clock, we can only count up to a bit more than
8127 * 7s. So we'll synthesize a larger counter in order to not run the
8128 * risk of having the "timers" overflow and give us the flexibility to
8129 * maintain a Hung SGE State Machine of our own which operates across
8130 * a longer time frame.
8131 */
8132 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8133 idma->idma_stalled[0] = 0;
8134 idma->idma_stalled[1] = 0;
8135}
8136
8137/**
8138 * t4_idma_monitor - monitor SGE Ingress DMA state
8139 * @adapter: the adapter
8140 * @idma: the adapter IDMA Monitor state
8141 * @hz: number of ticks/second
8142 * @ticks: number of ticks since the last IDMA Monitor call
8143 */
8144void t4_idma_monitor(struct adapter *adapter,
8145 struct sge_idma_monitor_state *idma,
8146 int hz, int ticks)
8147{
8148 int i, idma_same_state_cnt[2];
8149
8150 /* Read the SGE Debug Ingress DMA Same State Count registers. These
8151 * are counters inside the SGE which count up on each clock when the
8152 * SGE finds its Ingress DMA State Engines in the same states they
8153 * were in the previous clock. The counters will peg out at
8154 * 0xffffffff without wrapping around so once they pass the 1s
8155 * threshold they'll stay above that till the IDMA state changes.
8156 */
8157 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8158 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8159 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8160
8161 for (i = 0; i < 2; i++) {
8162 u32 debug0, debug11;
8163
8164 /* If the Ingress DMA Same State Counter ("timer") is less
8165 * than 1s, then we can reset our synthesized Stall Timer and
8166 * continue. If we have previously emitted warnings about a
8167 * potential stalled Ingress Queue, issue a note indicating
8168 * that the Ingress Queue has resumed forward progress.
8169 */
8170 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8171 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8172 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8173 "resumed after %d seconds\n",
8174 i, idma->idma_qid[i],
8175 idma->idma_stalled[i] / hz);
8176 idma->idma_stalled[i] = 0;
8177 continue;
8178 }
8179
8180 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8181 * domain. The first time we get here it'll be because we
8182 * passed the 1s Threshold; each additional time it'll be
8183 * because the RX Timer Callback is being fired on its regular
8184 * schedule.
8185 *
8186 * If the stall is below our Potential Hung Ingress Queue
8187 * Warning Threshold, continue.
8188 */
8189 if (idma->idma_stalled[i] == 0) {
8190 idma->idma_stalled[i] = hz;
8191 idma->idma_warn[i] = 0;
8192 } else {
8193 idma->idma_stalled[i] += ticks;
8194 idma->idma_warn[i] -= ticks;
8195 }
8196
8197 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8198 continue;
8199
8200 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8201 */
8202 if (idma->idma_warn[i] > 0)
8203 continue;
8204 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8205
8206 /* Read and save the SGE IDMA State and Queue ID information.
8207 * We do this every time in case it changes across time ...
8208 * can't be too careful ...
8209 */
8210 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8211 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8212 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8213
8214 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8215 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8216 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8217
8218 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8219 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8220 i, idma->idma_qid[i], idma->idma_state[i],
8221 idma->idma_stalled[i] / hz,
8222 debug0, debug11);
8223 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8224 }
8225}