]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c
cxgb4: Add info print to display number of MSI-X vectors allocated
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
428ac43f
JP
36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
be839e39
CL
38#include <linux/module.h>
39#include <linux/moduleparam.h>
40#include <linux/init.h>
41#include <linux/pci.h>
42#include <linux/dma-mapping.h>
43#include <linux/netdevice.h>
44#include <linux/etherdevice.h>
45#include <linux/debugfs.h>
46#include <linux/ethtool.h>
5ad24def 47#include <linux/mdio.h>
be839e39
CL
48
49#include "t4vf_common.h"
50#include "t4vf_defs.h"
51
52#include "../cxgb4/t4_regs.h"
53#include "../cxgb4/t4_msg.h"
54
55/*
56 * Generic information about the driver.
57 */
622c62b5
SR
58#define DRV_VERSION "2.0.0-ko"
59#define DRV_DESC "Chelsio T4/T5 Virtual Function (VF) Network Driver"
be839e39
CL
60
61/*
62 * Module Parameters.
63 * ==================
64 */
65
66/*
67 * Default ethtool "message level" for adapters.
68 */
69#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72
73static int dflt_msg_enable = DFLT_MSG_ENABLE;
74
75module_param(dflt_msg_enable, int, 0644);
76MODULE_PARM_DESC(dflt_msg_enable,
77 "default adapter ethtool message level bitmap");
78
79/*
80 * The driver uses the best interrupt scheme available on a platform in the
81 * order MSI-X then MSI. This parameter determines which of these schemes the
82 * driver may consider as follows:
83 *
84 * msi = 2: choose from among MSI-X and MSI
85 * msi = 1: only consider MSI interrupts
86 *
87 * Note that unlike the Physical Function driver, this Virtual Function driver
88 * does _not_ support legacy INTx interrupts (this limitation is mandated by
89 * the PCI-E SR-IOV standard).
90 */
91#define MSI_MSIX 2
92#define MSI_MSI 1
93#define MSI_DEFAULT MSI_MSIX
94
95static int msi = MSI_DEFAULT;
96
97module_param(msi, int, 0644);
98MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
99
100/*
101 * Fundamental constants.
102 * ======================
103 */
104
105enum {
106 MAX_TXQ_ENTRIES = 16384,
107 MAX_RSPQ_ENTRIES = 16384,
108 MAX_RX_BUFFERS = 16384,
109
110 MIN_TXQ_ENTRIES = 32,
111 MIN_RSPQ_ENTRIES = 128,
112 MIN_FL_ENTRIES = 16,
113
114 /*
115 * For purposes of manipulating the Free List size we need to
116 * recognize that Free Lists are actually Egress Queues (the host
117 * produces free buffers which the hardware consumes), Egress Queues
118 * indices are all in units of Egress Context Units bytes, and free
119 * list entries are 64-bit PCI DMA addresses. And since the state of
120 * the Producer Index == the Consumer Index implies an EMPTY list, we
121 * always have at least one Egress Unit's worth of Free List entries
122 * unused. See sge.c for more details ...
123 */
124 EQ_UNIT = SGE_EQ_IDXSIZE,
125 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
126 MIN_FL_RESID = FL_PER_EQ_UNIT,
127};
128
129/*
130 * Global driver state.
131 * ====================
132 */
133
134static struct dentry *cxgb4vf_debugfs_root;
135
136/*
137 * OS "Callback" functions.
138 * ========================
139 */
140
141/*
142 * The link status has changed on the indicated "port" (Virtual Interface).
143 */
144void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
145{
146 struct net_device *dev = adapter->port[pidx];
147
148 /*
149 * If the port is disabled or the current recorded "link up"
150 * status matches the new status, just return.
151 */
152 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
153 return;
154
155 /*
156 * Tell the OS that the link status has changed and print a short
157 * informative message on the console about the event.
158 */
159 if (link_ok) {
160 const char *s;
161 const char *fc;
162 const struct port_info *pi = netdev_priv(dev);
163
164 netif_carrier_on(dev);
165
166 switch (pi->link_cfg.speed) {
897d55df
HS
167 case 40000:
168 s = "40Gbps";
169 break;
170
171 case 10000:
be839e39
CL
172 s = "10Gbps";
173 break;
174
897d55df 175 case 1000:
be839e39
CL
176 s = "1000Mbps";
177 break;
178
897d55df 179 case 100:
be839e39
CL
180 s = "100Mbps";
181 break;
182
183 default:
184 s = "unknown";
185 break;
186 }
187
188 switch (pi->link_cfg.fc) {
189 case PAUSE_RX:
190 fc = "RX";
191 break;
192
193 case PAUSE_TX:
194 fc = "TX";
195 break;
196
197 case PAUSE_RX|PAUSE_TX:
198 fc = "RX/TX";
199 break;
200
201 default:
202 fc = "no";
203 break;
204 }
205
428ac43f 206 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
be839e39
CL
207 } else {
208 netif_carrier_off(dev);
428ac43f 209 netdev_info(dev, "link down\n");
be839e39
CL
210 }
211}
212
5ad24def
HS
213/*
214 * THe port module type has changed on the indicated "port" (Virtual
215 * Interface).
216 */
217void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
218{
219 static const char * const mod_str[] = {
220 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
221 };
222 const struct net_device *dev = adapter->port[pidx];
223 const struct port_info *pi = netdev_priv(dev);
224
225 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
226 dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
227 dev->name);
228 else if (pi->mod_type < ARRAY_SIZE(mod_str))
229 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
230 dev->name, mod_str[pi->mod_type]);
231 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
232 dev_info(adapter->pdev_dev, "%s: unsupported optical port "
233 "module inserted\n", dev->name);
234 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
235 dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
236 "forcing TWINAX\n", dev->name);
237 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
238 dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
239 dev->name);
240 else
241 dev_info(adapter->pdev_dev, "%s: unknown module type %d "
242 "inserted\n", dev->name, pi->mod_type);
243}
244
be839e39
CL
245/*
246 * Net device operations.
247 * ======================
248 */
249
be839e39 250
87737663 251
be839e39
CL
252
253/*
254 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
255 * Interface).
256 */
257static int link_start(struct net_device *dev)
258{
259 int ret;
260 struct port_info *pi = netdev_priv(dev);
261
262 /*
263 * We do not set address filters and promiscuity here, the stack does
87737663 264 * that step explicitly. Enable vlan accel.
be839e39 265 */
87737663 266 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
be839e39
CL
267 true);
268 if (ret == 0) {
269 ret = t4vf_change_mac(pi->adapter, pi->viid,
270 pi->xact_addr_filt, dev->dev_addr, true);
271 if (ret >= 0) {
272 pi->xact_addr_filt = ret;
273 ret = 0;
274 }
275 }
276
277 /*
278 * We don't need to actually "start the link" itself since the
279 * firmware will do that for us when the first Virtual Interface
280 * is enabled on a port.
281 */
282 if (ret == 0)
283 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
284 return ret;
285}
286
287/*
288 * Name the MSI-X interrupts.
289 */
290static void name_msix_vecs(struct adapter *adapter)
291{
292 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
293 int pidx;
294
295 /*
296 * Firmware events.
297 */
298 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
299 "%s-FWeventq", adapter->name);
300 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
301
302 /*
303 * Ethernet queues.
304 */
305 for_each_port(adapter, pidx) {
306 struct net_device *dev = adapter->port[pidx];
307 const struct port_info *pi = netdev_priv(dev);
308 int qs, msi;
309
caedda35 310 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
be839e39
CL
311 snprintf(adapter->msix_info[msi].desc, namelen,
312 "%s-%d", dev->name, qs);
313 adapter->msix_info[msi].desc[namelen] = 0;
314 }
315 }
316}
317
318/*
319 * Request all of our MSI-X resources.
320 */
321static int request_msix_queue_irqs(struct adapter *adapter)
322{
323 struct sge *s = &adapter->sge;
324 int rxq, msi, err;
325
326 /*
327 * Firmware events.
328 */
329 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
330 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
331 if (err)
332 return err;
333
334 /*
335 * Ethernet queues.
336 */
caedda35 337 msi = MSIX_IQFLINT;
be839e39
CL
338 for_each_ethrxq(s, rxq) {
339 err = request_irq(adapter->msix_info[msi].vec,
340 t4vf_sge_intr_msix, 0,
341 adapter->msix_info[msi].desc,
342 &s->ethrxq[rxq].rspq);
343 if (err)
344 goto err_free_irqs;
345 msi++;
346 }
347 return 0;
348
349err_free_irqs:
350 while (--rxq >= 0)
351 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
352 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
353 return err;
354}
355
356/*
357 * Free our MSI-X resources.
358 */
359static void free_msix_queue_irqs(struct adapter *adapter)
360{
361 struct sge *s = &adapter->sge;
362 int rxq, msi;
363
364 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
caedda35 365 msi = MSIX_IQFLINT;
be839e39
CL
366 for_each_ethrxq(s, rxq)
367 free_irq(adapter->msix_info[msi++].vec,
368 &s->ethrxq[rxq].rspq);
369}
370
371/*
372 * Turn on NAPI and start up interrupts on a response queue.
373 */
374static void qenable(struct sge_rspq *rspq)
375{
376 napi_enable(&rspq->napi);
377
378 /*
379 * 0-increment the Going To Sleep register to start the timer and
380 * enable interrupts.
381 */
382 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
f612b815
HS
383 CIDXINC_V(0) |
384 SEINTARM_V(rspq->intr_params) |
385 INGRESSQID_V(rspq->cntxt_id));
be839e39
CL
386}
387
388/*
389 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
390 */
391static void enable_rx(struct adapter *adapter)
392{
393 int rxq;
394 struct sge *s = &adapter->sge;
395
396 for_each_ethrxq(s, rxq)
397 qenable(&s->ethrxq[rxq].rspq);
398 qenable(&s->fw_evtq);
399
400 /*
401 * The interrupt queue doesn't use NAPI so we do the 0-increment of
402 * its Going To Sleep register here to get it started.
403 */
404 if (adapter->flags & USING_MSI)
405 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
f612b815
HS
406 CIDXINC_V(0) |
407 SEINTARM_V(s->intrq.intr_params) |
408 INGRESSQID_V(s->intrq.cntxt_id));
be839e39
CL
409
410}
411
412/*
413 * Wait until all NAPI handlers are descheduled.
414 */
415static void quiesce_rx(struct adapter *adapter)
416{
417 struct sge *s = &adapter->sge;
418 int rxq;
419
420 for_each_ethrxq(s, rxq)
421 napi_disable(&s->ethrxq[rxq].rspq.napi);
422 napi_disable(&s->fw_evtq.napi);
423}
424
425/*
426 * Response queue handler for the firmware event queue.
427 */
428static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
429 const struct pkt_gl *gl)
430{
431 /*
432 * Extract response opcode and get pointer to CPL message body.
433 */
434 struct adapter *adapter = rspq->adapter;
435 u8 opcode = ((const struct rss_header *)rsp)->opcode;
436 void *cpl = (void *)(rsp + 1);
437
438 switch (opcode) {
439 case CPL_FW6_MSG: {
440 /*
441 * We've received an asynchronous message from the firmware.
442 */
443 const struct cpl_fw6_msg *fw_msg = cpl;
444 if (fw_msg->type == FW6_TYPE_CMD_RPL)
445 t4vf_handle_fw_rpl(adapter, fw_msg->data);
446 break;
447 }
448
94dace10
VP
449 case CPL_FW4_MSG: {
450 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
451 */
452 const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
6c53e938 453 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
94dace10
VP
454 if (opcode != CPL_SGE_EGR_UPDATE) {
455 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
456 , opcode);
457 break;
458 }
459 cpl = (void *)p;
460 /*FALLTHROUGH*/
461 }
462
be839e39
CL
463 case CPL_SGE_EGR_UPDATE: {
464 /*
7f9dd2fa
CL
465 * We've received an Egress Queue Status Update message. We
466 * get these, if the SGE is configured to send these when the
467 * firmware passes certain points in processing our TX
468 * Ethernet Queue or if we make an explicit request for one.
469 * We use these updates to determine when we may need to
470 * restart a TX Ethernet Queue which was stopped for lack of
471 * free TX Queue Descriptors ...
be839e39 472 */
64699336 473 const struct cpl_sge_egr_update *p = cpl;
bdc590b9 474 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
be839e39
CL
475 struct sge *s = &adapter->sge;
476 struct sge_txq *tq;
477 struct sge_eth_txq *txq;
478 unsigned int eq_idx;
be839e39
CL
479
480 /*
481 * Perform sanity checking on the Queue ID to make sure it
482 * really refers to one of our TX Ethernet Egress Queues which
483 * is active and matches the queue's ID. None of these error
484 * conditions should ever happen so we may want to either make
485 * them fatal and/or conditionalized under DEBUG.
486 */
487 eq_idx = EQ_IDX(s, qid);
488 if (unlikely(eq_idx >= MAX_EGRQ)) {
489 dev_err(adapter->pdev_dev,
490 "Egress Update QID %d out of range\n", qid);
491 break;
492 }
493 tq = s->egr_map[eq_idx];
494 if (unlikely(tq == NULL)) {
495 dev_err(adapter->pdev_dev,
496 "Egress Update QID %d TXQ=NULL\n", qid);
497 break;
498 }
499 txq = container_of(tq, struct sge_eth_txq, q);
500 if (unlikely(tq->abs_id != qid)) {
501 dev_err(adapter->pdev_dev,
502 "Egress Update QID %d refers to TXQ %d\n",
503 qid, tq->abs_id);
504 break;
505 }
506
be839e39
CL
507 /*
508 * Restart a stopped TX Queue which has less than half of its
509 * TX ring in use ...
510 */
511 txq->q.restarts++;
512 netif_tx_wake_queue(txq->txq);
513 break;
514 }
515
516 default:
517 dev_err(adapter->pdev_dev,
518 "unexpected CPL %#x on FW event queue\n", opcode);
519 }
520
521 return 0;
522}
523
524/*
525 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
526 * to use and initializes them. We support multiple "Queue Sets" per port if
527 * we have MSI-X, otherwise just one queue set per port.
528 */
529static int setup_sge_queues(struct adapter *adapter)
530{
531 struct sge *s = &adapter->sge;
532 int err, pidx, msix;
533
534 /*
535 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
536 * state.
537 */
538 bitmap_zero(s->starving_fl, MAX_EGRQ);
539
540 /*
541 * If we're using MSI interrupt mode we need to set up a "forwarded
542 * interrupt" queue which we'll set up with our MSI vector. The rest
543 * of the ingress queues will be set up to forward their interrupts to
544 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
545 * the intrq's queue ID as the interrupt forwarding queue for the
546 * subsequent calls ...
547 */
548 if (adapter->flags & USING_MSI) {
549 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
550 adapter->port[0], 0, NULL, NULL);
551 if (err)
552 goto err_free_queues;
553 }
554
555 /*
556 * Allocate our ingress queue for asynchronous firmware messages.
557 */
558 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
559 MSIX_FW, NULL, fwevtq_handler);
560 if (err)
561 goto err_free_queues;
562
563 /*
564 * Allocate each "port"'s initial Queue Sets. These can be changed
565 * later on ... up to the point where any interface on the adapter is
566 * brought up at which point lots of things get nailed down
567 * permanently ...
568 */
caedda35 569 msix = MSIX_IQFLINT;
be839e39
CL
570 for_each_port(adapter, pidx) {
571 struct net_device *dev = adapter->port[pidx];
572 struct port_info *pi = netdev_priv(dev);
573 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
574 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
575 int qs;
576
c8639a82 577 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
578 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
579 dev, msix++,
580 &rxq->fl, t4vf_ethrx_handler);
581 if (err)
582 goto err_free_queues;
583
584 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
585 netdev_get_tx_queue(dev, qs),
586 s->fw_evtq.cntxt_id);
587 if (err)
588 goto err_free_queues;
589
590 rxq->rspq.idx = qs;
591 memset(&rxq->stats, 0, sizeof(rxq->stats));
592 }
593 }
594
595 /*
596 * Create the reverse mappings for the queues.
597 */
598 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
599 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
600 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
601 for_each_port(adapter, pidx) {
602 struct net_device *dev = adapter->port[pidx];
603 struct port_info *pi = netdev_priv(dev);
604 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
605 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
606 int qs;
607
c8639a82 608 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
609 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
610 EQ_MAP(s, txq->q.abs_id) = &txq->q;
611
612 /*
613 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
614 * for Free Lists but since all of the Egress Queues
615 * (including Free Lists) have Relative Queue IDs
616 * which are computed as Absolute - Base Queue ID, we
617 * can synthesize the Absolute Queue IDs for the Free
618 * Lists. This is useful for debugging purposes when
619 * we want to dump Queue Contexts via the PF Driver.
620 */
621 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
622 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
623 }
624 }
625 return 0;
626
627err_free_queues:
628 t4vf_free_sge_resources(adapter);
629 return err;
630}
631
632/*
633 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
634 * queues. We configure the RSS CPU lookup table to distribute to the number
635 * of HW receive queues, and the response queue lookup table to narrow that
636 * down to the response queues actually configured for each "port" (Virtual
637 * Interface). We always configure the RSS mapping for all ports since the
638 * mapping table has plenty of entries.
639 */
640static int setup_rss(struct adapter *adapter)
641{
642 int pidx;
643
644 for_each_port(adapter, pidx) {
645 struct port_info *pi = adap2pinfo(adapter, pidx);
646 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
647 u16 rss[MAX_PORT_QSETS];
648 int qs, err;
649
650 for (qs = 0; qs < pi->nqsets; qs++)
651 rss[qs] = rxq[qs].rspq.abs_id;
652
653 err = t4vf_config_rss_range(adapter, pi->viid,
654 0, pi->rss_size, rss, pi->nqsets);
655 if (err)
656 return err;
657
658 /*
659 * Perform Global RSS Mode-specific initialization.
660 */
661 switch (adapter->params.rss.mode) {
662 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
663 /*
664 * If Tunnel All Lookup isn't specified in the global
665 * RSS Configuration, then we need to specify a
666 * default Ingress Queue for any ingress packets which
667 * aren't hashed. We'll use our first ingress queue
668 * ...
669 */
670 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
671 union rss_vi_config config;
672 err = t4vf_read_rss_vi_config(adapter,
673 pi->viid,
674 &config);
675 if (err)
676 return err;
677 config.basicvirtual.defaultq =
678 rxq[0].rspq.abs_id;
679 err = t4vf_write_rss_vi_config(adapter,
680 pi->viid,
681 &config);
682 if (err)
683 return err;
684 }
685 break;
686 }
687 }
688
689 return 0;
690}
691
692/*
693 * Bring the adapter up. Called whenever we go from no "ports" open to having
694 * one open. This function performs the actions necessary to make an adapter
695 * operational, such as completing the initialization of HW modules, and
696 * enabling interrupts. Must be called with the rtnl lock held. (Note that
697 * this is called "cxgb_up" in the PF Driver.)
698 */
699static int adapter_up(struct adapter *adapter)
700{
701 int err;
702
703 /*
704 * If this is the first time we've been called, perform basic
705 * adapter setup. Once we've done this, many of our adapter
706 * parameters can no longer be changed ...
707 */
708 if ((adapter->flags & FULL_INIT_DONE) == 0) {
709 err = setup_sge_queues(adapter);
710 if (err)
711 return err;
712 err = setup_rss(adapter);
713 if (err) {
714 t4vf_free_sge_resources(adapter);
715 return err;
716 }
717
718 if (adapter->flags & USING_MSIX)
719 name_msix_vecs(adapter);
720 adapter->flags |= FULL_INIT_DONE;
721 }
722
723 /*
724 * Acquire our interrupt resources. We only support MSI-X and MSI.
725 */
726 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
727 if (adapter->flags & USING_MSIX)
728 err = request_msix_queue_irqs(adapter);
729 else
730 err = request_irq(adapter->pdev->irq,
731 t4vf_intr_handler(adapter), 0,
732 adapter->name, adapter);
733 if (err) {
734 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
735 err);
736 return err;
737 }
738
739 /*
740 * Enable NAPI ingress processing and return success.
741 */
742 enable_rx(adapter);
743 t4vf_sge_start(adapter);
744 return 0;
745}
746
747/*
748 * Bring the adapter down. Called whenever the last "port" (Virtual
749 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
750 * Driver.)
751 */
752static void adapter_down(struct adapter *adapter)
753{
754 /*
755 * Free interrupt resources.
756 */
757 if (adapter->flags & USING_MSIX)
758 free_msix_queue_irqs(adapter);
759 else
760 free_irq(adapter->pdev->irq, adapter);
761
762 /*
763 * Wait for NAPI handlers to finish.
764 */
765 quiesce_rx(adapter);
766}
767
768/*
769 * Start up a net device.
770 */
771static int cxgb4vf_open(struct net_device *dev)
772{
773 int err;
774 struct port_info *pi = netdev_priv(dev);
775 struct adapter *adapter = pi->adapter;
776
777 /*
778 * If this is the first interface that we're opening on the "adapter",
779 * bring the "adapter" up now.
780 */
781 if (adapter->open_device_map == 0) {
782 err = adapter_up(adapter);
783 if (err)
784 return err;
785 }
786
787 /*
788 * Note that this interface is up and start everything up ...
789 */
003ab674
BH
790 netif_set_real_num_tx_queues(dev, pi->nqsets);
791 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
792 if (err)
343a8d13 793 goto err_unwind;
e7a3795f
CL
794 err = link_start(dev);
795 if (err)
343a8d13
CL
796 goto err_unwind;
797
be839e39 798 netif_tx_start_all_queues(dev);
343a8d13 799 set_bit(pi->port_id, &adapter->open_device_map);
be839e39 800 return 0;
343a8d13
CL
801
802err_unwind:
803 if (adapter->open_device_map == 0)
804 adapter_down(adapter);
805 return err;
be839e39
CL
806}
807
808/*
809 * Shut down a net device. This routine is called "cxgb_close" in the PF
810 * Driver ...
811 */
812static int cxgb4vf_stop(struct net_device *dev)
813{
be839e39
CL
814 struct port_info *pi = netdev_priv(dev);
815 struct adapter *adapter = pi->adapter;
816
817 netif_tx_stop_all_queues(dev);
818 netif_carrier_off(dev);
343a8d13 819 t4vf_enable_vi(adapter, pi->viid, false, false);
be839e39
CL
820 pi->link_cfg.link_ok = 0;
821
822 clear_bit(pi->port_id, &adapter->open_device_map);
823 if (adapter->open_device_map == 0)
824 adapter_down(adapter);
825 return 0;
826}
827
828/*
829 * Translate our basic statistics into the standard "ifconfig" statistics.
830 */
831static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
832{
833 struct t4vf_port_stats stats;
834 struct port_info *pi = netdev2pinfo(dev);
835 struct adapter *adapter = pi->adapter;
836 struct net_device_stats *ns = &dev->stats;
837 int err;
838
839 spin_lock(&adapter->stats_lock);
840 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
841 spin_unlock(&adapter->stats_lock);
842
843 memset(ns, 0, sizeof(*ns));
844 if (err)
845 return ns;
846
847 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
848 stats.tx_ucast_bytes + stats.tx_offload_bytes);
849 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
850 stats.tx_ucast_frames + stats.tx_offload_frames);
851 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
852 stats.rx_ucast_bytes);
853 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
854 stats.rx_ucast_frames);
855 ns->multicast = stats.rx_mcast_frames;
856 ns->tx_errors = stats.tx_drop_frames;
857 ns->rx_errors = stats.rx_err_frames;
858
859 return ns;
860}
861
862/*
42eb59d3
CL
863 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
864 * at a specified offset within the list, into an array of addrss pointers and
865 * return the number collected.
be839e39 866 */
42eb59d3
CL
867static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
868 const u8 **addr,
869 unsigned int offset,
870 unsigned int maxaddrs)
be839e39 871{
42eb59d3 872 unsigned int index = 0;
be839e39
CL
873 unsigned int naddr = 0;
874 const struct netdev_hw_addr *ha;
875
42eb59d3
CL
876 for_each_dev_addr(dev, ha)
877 if (index++ >= offset) {
878 addr[naddr++] = ha->addr;
879 if (naddr >= maxaddrs)
880 break;
881 }
be839e39
CL
882 return naddr;
883}
884
885/*
42eb59d3
CL
886 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
887 * at a specified offset within the list, into an array of addrss pointers and
888 * return the number collected.
be839e39 889 */
42eb59d3
CL
890static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
891 const u8 **addr,
892 unsigned int offset,
893 unsigned int maxaddrs)
be839e39 894{
42eb59d3 895 unsigned int index = 0;
be839e39
CL
896 unsigned int naddr = 0;
897 const struct netdev_hw_addr *ha;
898
42eb59d3
CL
899 netdev_for_each_mc_addr(ha, dev)
900 if (index++ >= offset) {
901 addr[naddr++] = ha->addr;
902 if (naddr >= maxaddrs)
903 break;
904 }
be839e39
CL
905 return naddr;
906}
907
908/*
909 * Configure the exact and hash address filters to handle a port's multicast
910 * and secondary unicast MAC addresses.
911 */
912static int set_addr_filters(const struct net_device *dev, bool sleep)
913{
914 u64 mhash = 0;
915 u64 uhash = 0;
916 bool free = true;
42eb59d3 917 unsigned int offset, naddr;
be839e39 918 const u8 *addr[7];
42eb59d3 919 int ret;
be839e39
CL
920 const struct port_info *pi = netdev_priv(dev);
921
922 /* first do the secondary unicast addresses */
42eb59d3
CL
923 for (offset = 0; ; offset += naddr) {
924 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
925 ARRAY_SIZE(addr));
926 if (naddr == 0)
927 break;
928
be839e39 929 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 930 naddr, addr, NULL, &uhash, sleep);
be839e39
CL
931 if (ret < 0)
932 return ret;
933
934 free = false;
935 }
936
937 /* next set up the multicast addresses */
42eb59d3
CL
938 for (offset = 0; ; offset += naddr) {
939 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
940 ARRAY_SIZE(addr));
941 if (naddr == 0)
942 break;
943
be839e39 944 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 945 naddr, addr, NULL, &mhash, sleep);
be839e39
CL
946 if (ret < 0)
947 return ret;
42eb59d3 948 free = false;
be839e39
CL
949 }
950
951 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
952 uhash | mhash, sleep);
953}
954
955/*
956 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
957 * If @mtu is -1 it is left unchanged.
958 */
959static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
960{
961 int ret;
962 struct port_info *pi = netdev_priv(dev);
963
964 ret = set_addr_filters(dev, sleep_ok);
965 if (ret == 0)
966 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
967 (dev->flags & IFF_PROMISC) != 0,
968 (dev->flags & IFF_ALLMULTI) != 0,
969 1, -1, sleep_ok);
970 return ret;
971}
972
973/*
974 * Set the current receive modes on the device.
975 */
976static void cxgb4vf_set_rxmode(struct net_device *dev)
977{
978 /* unfortunately we can't return errors to the stack */
979 set_rxmode(dev, -1, false);
980}
981
982/*
983 * Find the entry in the interrupt holdoff timer value array which comes
984 * closest to the specified interrupt holdoff value.
985 */
986static int closest_timer(const struct sge *s, int us)
987{
988 int i, timer_idx = 0, min_delta = INT_MAX;
989
990 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
991 int delta = us - s->timer_val[i];
992 if (delta < 0)
993 delta = -delta;
994 if (delta < min_delta) {
995 min_delta = delta;
996 timer_idx = i;
997 }
998 }
999 return timer_idx;
1000}
1001
1002static int closest_thres(const struct sge *s, int thres)
1003{
1004 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1005
1006 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1007 delta = thres - s->counter_val[i];
1008 if (delta < 0)
1009 delta = -delta;
1010 if (delta < min_delta) {
1011 min_delta = delta;
1012 pktcnt_idx = i;
1013 }
1014 }
1015 return pktcnt_idx;
1016}
1017
1018/*
1019 * Return a queue's interrupt hold-off time in us. 0 means no timer.
1020 */
1021static unsigned int qtimer_val(const struct adapter *adapter,
1022 const struct sge_rspq *rspq)
1023{
1ecc7b7a 1024 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
be839e39
CL
1025
1026 return timer_idx < SGE_NTIMERS
1027 ? adapter->sge.timer_val[timer_idx]
1028 : 0;
1029}
1030
1031/**
1032 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1033 * @adapter: the adapter
1034 * @rspq: the RX response queue
1035 * @us: the hold-off time in us, or 0 to disable timer
1036 * @cnt: the hold-off packet count, or 0 to disable counter
1037 *
1038 * Sets an RX response queue's interrupt hold-off time and packet count.
1039 * At least one of the two needs to be enabled for the queue to generate
1040 * interrupts.
1041 */
1042static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1043 unsigned int us, unsigned int cnt)
1044{
1045 unsigned int timer_idx;
1046
1047 /*
1048 * If both the interrupt holdoff timer and count are specified as
1049 * zero, default to a holdoff count of 1 ...
1050 */
1051 if ((us | cnt) == 0)
1052 cnt = 1;
1053
1054 /*
1055 * If an interrupt holdoff count has been specified, then find the
1056 * closest configured holdoff count and use that. If the response
1057 * queue has already been created, then update its queue context
1058 * parameters ...
1059 */
1060 if (cnt) {
1061 int err;
1062 u32 v, pktcnt_idx;
1063
1064 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1065 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
5167865a
HS
1066 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1067 FW_PARAMS_PARAM_X_V(
be839e39 1068 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
5167865a 1069 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
be839e39
CL
1070 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1071 if (err)
1072 return err;
1073 }
1074 rspq->pktcnt_idx = pktcnt_idx;
1075 }
1076
1077 /*
1078 * Compute the closest holdoff timer index from the supplied holdoff
1079 * timer value.
1080 */
1081 timer_idx = (us == 0
1082 ? SGE_TIMER_RSTRT_CNTR
1083 : closest_timer(&adapter->sge, us));
1084
1085 /*
1086 * Update the response queue's interrupt coalescing parameters and
1087 * return success.
1088 */
1ecc7b7a
HS
1089 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1090 QINTR_CNT_EN_V(cnt > 0));
be839e39
CL
1091 return 0;
1092}
1093
1094/*
1095 * Return a version number to identify the type of adapter. The scheme is:
1096 * - bits 0..9: chip version
1097 * - bits 10..15: chip revision
1098 */
1099static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1100{
1101 /*
1102 * Chip version 4, revision 0x3f (cxgb4vf).
1103 */
70ee3666 1104 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
be839e39
CL
1105}
1106
1107/*
1108 * Execute the specified ioctl command.
1109 */
1110static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1111{
1112 int ret = 0;
1113
1114 switch (cmd) {
1115 /*
1116 * The VF Driver doesn't have access to any of the other
1117 * common Ethernet device ioctl()'s (like reading/writing
1118 * PHY registers, etc.
1119 */
1120
1121 default:
1122 ret = -EOPNOTSUPP;
1123 break;
1124 }
1125 return ret;
1126}
1127
1128/*
1129 * Change the device's MTU.
1130 */
1131static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1132{
1133 int ret;
1134 struct port_info *pi = netdev_priv(dev);
1135
1136 /* accommodate SACK */
1137 if (new_mtu < 81)
1138 return -EINVAL;
1139
1140 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1141 -1, -1, -1, -1, true);
1142 if (!ret)
1143 dev->mtu = new_mtu;
1144 return ret;
1145}
1146
c8f44aff
MM
1147static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1148 netdev_features_t features)
87737663
JP
1149{
1150 /*
1151 * Since there is no support for separate rx/tx vlan accel
1152 * enable/disable make sure tx flag is always in same state as rx.
1153 */
f646968f
PM
1154 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1155 features |= NETIF_F_HW_VLAN_CTAG_TX;
87737663 1156 else
f646968f 1157 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
87737663
JP
1158
1159 return features;
1160}
1161
c8f44aff
MM
1162static int cxgb4vf_set_features(struct net_device *dev,
1163 netdev_features_t features)
87737663
JP
1164{
1165 struct port_info *pi = netdev_priv(dev);
c8f44aff 1166 netdev_features_t changed = dev->features ^ features;
87737663 1167
f646968f 1168 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
87737663 1169 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
f646968f 1170 features & NETIF_F_HW_VLAN_CTAG_TX, 0);
87737663
JP
1171
1172 return 0;
1173}
1174
be839e39
CL
1175/*
1176 * Change the devices MAC address.
1177 */
1178static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1179{
1180 int ret;
1181 struct sockaddr *addr = _addr;
1182 struct port_info *pi = netdev_priv(dev);
1183
1184 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 1185 return -EADDRNOTAVAIL;
be839e39
CL
1186
1187 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1188 addr->sa_data, true);
1189 if (ret < 0)
1190 return ret;
1191
1192 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1193 pi->xact_addr_filt = ret;
1194 return 0;
1195}
1196
be839e39
CL
1197#ifdef CONFIG_NET_POLL_CONTROLLER
1198/*
1199 * Poll all of our receive queues. This is called outside of normal interrupt
1200 * context.
1201 */
1202static void cxgb4vf_poll_controller(struct net_device *dev)
1203{
1204 struct port_info *pi = netdev_priv(dev);
1205 struct adapter *adapter = pi->adapter;
1206
1207 if (adapter->flags & USING_MSIX) {
1208 struct sge_eth_rxq *rxq;
1209 int nqsets;
1210
1211 rxq = &adapter->sge.ethrxq[pi->first_qset];
1212 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1213 t4vf_sge_intr_msix(0, &rxq->rspq);
1214 rxq++;
1215 }
1216 } else
1217 t4vf_intr_handler(adapter)(0, adapter);
1218}
1219#endif
1220
1221/*
1222 * Ethtool operations.
1223 * ===================
1224 *
1225 * Note that we don't support any ethtool operations which change the physical
1226 * state of the port to which we're linked.
1227 */
1228
5ad24def
HS
1229static unsigned int t4vf_from_fw_linkcaps(enum fw_port_type type,
1230 unsigned int caps)
be839e39 1231{
5ad24def
HS
1232 unsigned int v = 0;
1233
1234 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1235 type == FW_PORT_TYPE_BT_XAUI) {
1236 v |= SUPPORTED_TP;
1237 if (caps & FW_PORT_CAP_SPEED_100M)
1238 v |= SUPPORTED_100baseT_Full;
1239 if (caps & FW_PORT_CAP_SPEED_1G)
1240 v |= SUPPORTED_1000baseT_Full;
1241 if (caps & FW_PORT_CAP_SPEED_10G)
1242 v |= SUPPORTED_10000baseT_Full;
1243 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1244 v |= SUPPORTED_Backplane;
1245 if (caps & FW_PORT_CAP_SPEED_1G)
1246 v |= SUPPORTED_1000baseKX_Full;
1247 if (caps & FW_PORT_CAP_SPEED_10G)
1248 v |= SUPPORTED_10000baseKX4_Full;
1249 } else if (type == FW_PORT_TYPE_KR)
1250 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1251 else if (type == FW_PORT_TYPE_BP_AP)
1252 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1253 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1254 else if (type == FW_PORT_TYPE_BP4_AP)
1255 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1256 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1257 SUPPORTED_10000baseKX4_Full;
1258 else if (type == FW_PORT_TYPE_FIBER_XFI ||
1259 type == FW_PORT_TYPE_FIBER_XAUI ||
1260 type == FW_PORT_TYPE_SFP ||
1261 type == FW_PORT_TYPE_QSFP_10G ||
1262 type == FW_PORT_TYPE_QSA) {
1263 v |= SUPPORTED_FIBRE;
1264 if (caps & FW_PORT_CAP_SPEED_1G)
1265 v |= SUPPORTED_1000baseT_Full;
1266 if (caps & FW_PORT_CAP_SPEED_10G)
1267 v |= SUPPORTED_10000baseT_Full;
1268 } else if (type == FW_PORT_TYPE_BP40_BA ||
1269 type == FW_PORT_TYPE_QSFP) {
1270 v |= SUPPORTED_40000baseSR4_Full;
1271 v |= SUPPORTED_FIBRE;
1272 }
1273
1274 if (caps & FW_PORT_CAP_ANEG)
1275 v |= SUPPORTED_Autoneg;
1276 return v;
1277}
be839e39 1278
5ad24def
HS
1279static int cxgb4vf_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1280{
1281 const struct port_info *p = netdev_priv(dev);
1282
1283 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1284 p->port_type == FW_PORT_TYPE_BT_XFI ||
1285 p->port_type == FW_PORT_TYPE_BT_XAUI)
1286 cmd->port = PORT_TP;
1287 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1288 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1289 cmd->port = PORT_FIBRE;
1290 else if (p->port_type == FW_PORT_TYPE_SFP ||
1291 p->port_type == FW_PORT_TYPE_QSFP_10G ||
1292 p->port_type == FW_PORT_TYPE_QSA ||
1293 p->port_type == FW_PORT_TYPE_QSFP) {
1294 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
1295 p->mod_type == FW_PORT_MOD_TYPE_SR ||
1296 p->mod_type == FW_PORT_MOD_TYPE_ER ||
1297 p->mod_type == FW_PORT_MOD_TYPE_LRM)
1298 cmd->port = PORT_FIBRE;
1299 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1300 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1301 cmd->port = PORT_DA;
1302 else
1303 cmd->port = PORT_OTHER;
1304 } else
1305 cmd->port = PORT_OTHER;
1306
1307 if (p->mdio_addr >= 0) {
1308 cmd->phy_address = p->mdio_addr;
1309 cmd->transceiver = XCVR_EXTERNAL;
1310 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1311 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1312 } else {
1313 cmd->phy_address = 0; /* not really, but no better option */
1314 cmd->transceiver = XCVR_INTERNAL;
1315 cmd->mdio_support = 0;
1316 }
1317
1318 cmd->supported = t4vf_from_fw_linkcaps(p->port_type,
1319 p->link_cfg.supported);
1320 cmd->advertising = t4vf_from_fw_linkcaps(p->port_type,
1321 p->link_cfg.advertising);
70739497 1322 ethtool_cmd_speed_set(cmd,
5ad24def 1323 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
be839e39 1324 cmd->duplex = DUPLEX_FULL;
5ad24def 1325 cmd->autoneg = p->link_cfg.autoneg;
be839e39
CL
1326 cmd->maxtxpkt = 0;
1327 cmd->maxrxpkt = 0;
1328 return 0;
1329}
1330
1331/*
1332 * Return our driver information.
1333 */
1334static void cxgb4vf_get_drvinfo(struct net_device *dev,
1335 struct ethtool_drvinfo *drvinfo)
1336{
1337 struct adapter *adapter = netdev2adap(dev);
1338
23020ab3
RJ
1339 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1340 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1341 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1342 sizeof(drvinfo->bus_info));
be839e39
CL
1343 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1344 "%u.%u.%u.%u, TP %u.%u.%u.%u",
b2e1a3f0
HS
1345 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1346 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1347 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1348 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1349 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1350 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1351 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1352 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
be839e39
CL
1353}
1354
1355/*
1356 * Return current adapter message level.
1357 */
1358static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1359{
1360 return netdev2adap(dev)->msg_enable;
1361}
1362
1363/*
1364 * Set current adapter message level.
1365 */
1366static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1367{
1368 netdev2adap(dev)->msg_enable = msglevel;
1369}
1370
1371/*
1372 * Return the device's current Queue Set ring size parameters along with the
1373 * allowed maximum values. Since ethtool doesn't understand the concept of
1374 * multi-queue devices, we just return the current values associated with the
1375 * first Queue Set.
1376 */
1377static void cxgb4vf_get_ringparam(struct net_device *dev,
1378 struct ethtool_ringparam *rp)
1379{
1380 const struct port_info *pi = netdev_priv(dev);
1381 const struct sge *s = &pi->adapter->sge;
1382
1383 rp->rx_max_pending = MAX_RX_BUFFERS;
1384 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1385 rp->rx_jumbo_max_pending = 0;
1386 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1387
1388 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1389 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1390 rp->rx_jumbo_pending = 0;
1391 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1392}
1393
1394/*
1395 * Set the Queue Set ring size parameters for the device. Again, since
1396 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1397 * apply these new values across all of the Queue Sets associated with the
1398 * device -- after vetting them of course!
1399 */
1400static int cxgb4vf_set_ringparam(struct net_device *dev,
1401 struct ethtool_ringparam *rp)
1402{
1403 const struct port_info *pi = netdev_priv(dev);
1404 struct adapter *adapter = pi->adapter;
1405 struct sge *s = &adapter->sge;
1406 int qs;
1407
1408 if (rp->rx_pending > MAX_RX_BUFFERS ||
1409 rp->rx_jumbo_pending ||
1410 rp->tx_pending > MAX_TXQ_ENTRIES ||
1411 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1412 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1413 rp->rx_pending < MIN_FL_ENTRIES ||
1414 rp->tx_pending < MIN_TXQ_ENTRIES)
1415 return -EINVAL;
1416
1417 if (adapter->flags & FULL_INIT_DONE)
1418 return -EBUSY;
1419
1420 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1421 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1422 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1423 s->ethtxq[qs].q.size = rp->tx_pending;
1424 }
1425 return 0;
1426}
1427
1428/*
1429 * Return the interrupt holdoff timer and count for the first Queue Set on the
1430 * device. Our extension ioctl() (the cxgbtool interface) allows the
1431 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1432 */
1433static int cxgb4vf_get_coalesce(struct net_device *dev,
1434 struct ethtool_coalesce *coalesce)
1435{
1436 const struct port_info *pi = netdev_priv(dev);
1437 const struct adapter *adapter = pi->adapter;
1438 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1439
1440 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1441 coalesce->rx_max_coalesced_frames =
1ecc7b7a 1442 ((rspq->intr_params & QINTR_CNT_EN_F)
be839e39
CL
1443 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1444 : 0);
1445 return 0;
1446}
1447
1448/*
1449 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1450 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1451 * the interrupt holdoff timer on any of the device's Queue Sets.
1452 */
1453static int cxgb4vf_set_coalesce(struct net_device *dev,
1454 struct ethtool_coalesce *coalesce)
1455{
1456 const struct port_info *pi = netdev_priv(dev);
1457 struct adapter *adapter = pi->adapter;
1458
1459 return set_rxq_intr_params(adapter,
1460 &adapter->sge.ethrxq[pi->first_qset].rspq,
1461 coalesce->rx_coalesce_usecs,
1462 coalesce->rx_max_coalesced_frames);
1463}
1464
1465/*
1466 * Report current port link pause parameter settings.
1467 */
1468static void cxgb4vf_get_pauseparam(struct net_device *dev,
1469 struct ethtool_pauseparam *pauseparam)
1470{
1471 struct port_info *pi = netdev_priv(dev);
1472
1473 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1474 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1475 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1476}
1477
be839e39
CL
1478/*
1479 * Identify the port by blinking the port's LED.
1480 */
857a3d0f
DM
1481static int cxgb4vf_phys_id(struct net_device *dev,
1482 enum ethtool_phys_id_state state)
be839e39 1483{
857a3d0f 1484 unsigned int val;
be839e39
CL
1485 struct port_info *pi = netdev_priv(dev);
1486
857a3d0f
DM
1487 if (state == ETHTOOL_ID_ACTIVE)
1488 val = 0xffff;
1489 else if (state == ETHTOOL_ID_INACTIVE)
1490 val = 0;
1491 else
1492 return -EINVAL;
1493
1494 return t4vf_identify_port(pi->adapter, pi->viid, val);
be839e39
CL
1495}
1496
1497/*
1498 * Port stats maintained per queue of the port.
1499 */
1500struct queue_port_stats {
1501 u64 tso;
1502 u64 tx_csum;
1503 u64 rx_csum;
1504 u64 vlan_ex;
1505 u64 vlan_ins;
f12fe353
CL
1506 u64 lro_pkts;
1507 u64 lro_merged;
be839e39
CL
1508};
1509
1510/*
1511 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1512 * these need to match the order of statistics returned by
1513 * t4vf_get_port_stats().
1514 */
1515static const char stats_strings[][ETH_GSTRING_LEN] = {
1516 /*
1517 * These must match the layout of the t4vf_port_stats structure.
1518 */
1519 "TxBroadcastBytes ",
1520 "TxBroadcastFrames ",
1521 "TxMulticastBytes ",
1522 "TxMulticastFrames ",
1523 "TxUnicastBytes ",
1524 "TxUnicastFrames ",
1525 "TxDroppedFrames ",
1526 "TxOffloadBytes ",
1527 "TxOffloadFrames ",
1528 "RxBroadcastBytes ",
1529 "RxBroadcastFrames ",
1530 "RxMulticastBytes ",
1531 "RxMulticastFrames ",
1532 "RxUnicastBytes ",
1533 "RxUnicastFrames ",
1534 "RxErrorFrames ",
1535
1536 /*
1537 * These are accumulated per-queue statistics and must match the
1538 * order of the fields in the queue_port_stats structure.
1539 */
1540 "TSO ",
1541 "TxCsumOffload ",
1542 "RxCsumGood ",
1543 "VLANextractions ",
1544 "VLANinsertions ",
f12fe353
CL
1545 "GROPackets ",
1546 "GROMerged ",
be839e39
CL
1547};
1548
1549/*
1550 * Return the number of statistics in the specified statistics set.
1551 */
1552static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1553{
1554 switch (sset) {
1555 case ETH_SS_STATS:
1556 return ARRAY_SIZE(stats_strings);
1557 default:
1558 return -EOPNOTSUPP;
1559 }
1560 /*NOTREACHED*/
1561}
1562
1563/*
1564 * Return the strings for the specified statistics set.
1565 */
1566static void cxgb4vf_get_strings(struct net_device *dev,
1567 u32 sset,
1568 u8 *data)
1569{
1570 switch (sset) {
1571 case ETH_SS_STATS:
1572 memcpy(data, stats_strings, sizeof(stats_strings));
1573 break;
1574 }
1575}
1576
1577/*
1578 * Small utility routine to accumulate queue statistics across the queues of
1579 * a "port".
1580 */
1581static void collect_sge_port_stats(const struct adapter *adapter,
1582 const struct port_info *pi,
1583 struct queue_port_stats *stats)
1584{
1585 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1586 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1587 int qs;
1588
1589 memset(stats, 0, sizeof(*stats));
1590 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1591 stats->tso += txq->tso;
1592 stats->tx_csum += txq->tx_cso;
1593 stats->rx_csum += rxq->stats.rx_cso;
1594 stats->vlan_ex += rxq->stats.vlan_ex;
1595 stats->vlan_ins += txq->vlan_ins;
f12fe353
CL
1596 stats->lro_pkts += rxq->stats.lro_pkts;
1597 stats->lro_merged += rxq->stats.lro_merged;
be839e39
CL
1598 }
1599}
1600
1601/*
1602 * Return the ETH_SS_STATS statistics set.
1603 */
1604static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1605 struct ethtool_stats *stats,
1606 u64 *data)
1607{
1608 struct port_info *pi = netdev2pinfo(dev);
1609 struct adapter *adapter = pi->adapter;
1610 int err = t4vf_get_port_stats(adapter, pi->pidx,
1611 (struct t4vf_port_stats *)data);
1612 if (err)
1613 memset(data, 0, sizeof(struct t4vf_port_stats));
1614
1615 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1616 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1617}
1618
1619/*
1620 * Return the size of our register map.
1621 */
1622static int cxgb4vf_get_regs_len(struct net_device *dev)
1623{
1624 return T4VF_REGMAP_SIZE;
1625}
1626
1627/*
1628 * Dump a block of registers, start to end inclusive, into a buffer.
1629 */
1630static void reg_block_dump(struct adapter *adapter, void *regbuf,
1631 unsigned int start, unsigned int end)
1632{
1633 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1634
1635 for ( ; start <= end; start += sizeof(u32)) {
1636 /*
1637 * Avoid reading the Mailbox Control register since that
1638 * can trigger a Mailbox Ownership Arbitration cycle and
1639 * interfere with communication with the firmware.
1640 */
1641 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1642 *bp++ = 0xffff;
1643 else
1644 *bp++ = t4_read_reg(adapter, start);
1645 }
1646}
1647
1648/*
1649 * Copy our entire register map into the provided buffer.
1650 */
1651static void cxgb4vf_get_regs(struct net_device *dev,
1652 struct ethtool_regs *regs,
1653 void *regbuf)
1654{
1655 struct adapter *adapter = netdev2adap(dev);
1656
1657 regs->version = mk_adap_vers(adapter);
1658
1659 /*
1660 * Fill in register buffer with our register map.
1661 */
1662 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1663
1664 reg_block_dump(adapter, regbuf,
1665 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1666 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1667 reg_block_dump(adapter, regbuf,
1668 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1669 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
70ee3666
HS
1670
1671 /* T5 adds new registers in the PL Register map.
1672 */
be839e39
CL
1673 reg_block_dump(adapter, regbuf,
1674 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
70ee3666 1675 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
0d804338 1676 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
be839e39
CL
1677 reg_block_dump(adapter, regbuf,
1678 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1679 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1680
1681 reg_block_dump(adapter, regbuf,
1682 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1683 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1684}
1685
1686/*
1687 * Report current Wake On LAN settings.
1688 */
1689static void cxgb4vf_get_wol(struct net_device *dev,
1690 struct ethtool_wolinfo *wol)
1691{
1692 wol->supported = 0;
1693 wol->wolopts = 0;
1694 memset(&wol->sopass, 0, sizeof(wol->sopass));
1695}
1696
410989f6
CL
1697/*
1698 * TCP Segmentation Offload flags which we support.
1699 */
1700#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1701
9b07be4b 1702static const struct ethtool_ops cxgb4vf_ethtool_ops = {
be839e39
CL
1703 .get_settings = cxgb4vf_get_settings,
1704 .get_drvinfo = cxgb4vf_get_drvinfo,
1705 .get_msglevel = cxgb4vf_get_msglevel,
1706 .set_msglevel = cxgb4vf_set_msglevel,
1707 .get_ringparam = cxgb4vf_get_ringparam,
1708 .set_ringparam = cxgb4vf_set_ringparam,
1709 .get_coalesce = cxgb4vf_get_coalesce,
1710 .set_coalesce = cxgb4vf_set_coalesce,
1711 .get_pauseparam = cxgb4vf_get_pauseparam,
be839e39
CL
1712 .get_link = ethtool_op_get_link,
1713 .get_strings = cxgb4vf_get_strings,
857a3d0f 1714 .set_phys_id = cxgb4vf_phys_id,
be839e39
CL
1715 .get_sset_count = cxgb4vf_get_sset_count,
1716 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1717 .get_regs_len = cxgb4vf_get_regs_len,
1718 .get_regs = cxgb4vf_get_regs,
1719 .get_wol = cxgb4vf_get_wol,
be839e39
CL
1720};
1721
1722/*
1723 * /sys/kernel/debug/cxgb4vf support code and data.
1724 * ================================================
1725 */
1726
1727/*
1728 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1729 */
1730#define QPL 4
1731
1732static int sge_qinfo_show(struct seq_file *seq, void *v)
1733{
1734 struct adapter *adapter = seq->private;
1735 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1736 int qs, r = (uintptr_t)v - 1;
1737
1738 if (r)
1739 seq_putc(seq, '\n');
1740
1741 #define S3(fmt_spec, s, v) \
1742 do {\
1743 seq_printf(seq, "%-12s", s); \
1744 for (qs = 0; qs < n; ++qs) \
1745 seq_printf(seq, " %16" fmt_spec, v); \
1746 seq_putc(seq, '\n'); \
1747 } while (0)
1748 #define S(s, v) S3("s", s, v)
1749 #define T(s, v) S3("u", s, txq[qs].v)
1750 #define R(s, v) S3("u", s, rxq[qs].v)
1751
1752 if (r < eth_entries) {
1753 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1754 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1755 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1756
1757 S("QType:", "Ethernet");
1758 S("Interface:",
1759 (rxq[qs].rspq.netdev
1760 ? rxq[qs].rspq.netdev->name
1761 : "N/A"));
1762 S3("d", "Port:",
1763 (rxq[qs].rspq.netdev
1764 ? ((struct port_info *)
1765 netdev_priv(rxq[qs].rspq.netdev))->port_id
1766 : -1));
1767 T("TxQ ID:", q.abs_id);
1768 T("TxQ size:", q.size);
1769 T("TxQ inuse:", q.in_use);
1770 T("TxQ PIdx:", q.pidx);
1771 T("TxQ CIdx:", q.cidx);
1772 R("RspQ ID:", rspq.abs_id);
1773 R("RspQ size:", rspq.size);
1774 R("RspQE size:", rspq.iqe_len);
1775 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1776 S3("u", "Intr pktcnt:",
1777 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1778 R("RspQ CIdx:", rspq.cidx);
1779 R("RspQ Gen:", rspq.gen);
1780 R("FL ID:", fl.abs_id);
1781 R("FL size:", fl.size - MIN_FL_RESID);
1782 R("FL avail:", fl.avail);
1783 R("FL PIdx:", fl.pidx);
1784 R("FL CIdx:", fl.cidx);
1785 return 0;
1786 }
1787
1788 r -= eth_entries;
1789 if (r == 0) {
1790 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1791
1792 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1793 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1794 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1795 qtimer_val(adapter, evtq));
1796 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1797 adapter->sge.counter_val[evtq->pktcnt_idx]);
1798 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1799 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1800 } else if (r == 1) {
1801 const struct sge_rspq *intrq = &adapter->sge.intrq;
1802
1803 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1804 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1805 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1806 qtimer_val(adapter, intrq));
1807 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1808 adapter->sge.counter_val[intrq->pktcnt_idx]);
1809 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1810 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1811 }
1812
1813 #undef R
1814 #undef T
1815 #undef S
1816 #undef S3
1817
1818 return 0;
1819}
1820
1821/*
1822 * Return the number of "entries" in our "file". We group the multi-Queue
1823 * sections with QPL Queue Sets per "entry". The sections of the output are:
1824 *
1825 * Ethernet RX/TX Queue Sets
1826 * Firmware Event Queue
1827 * Forwarded Interrupt Queue (if in MSI mode)
1828 */
1829static int sge_queue_entries(const struct adapter *adapter)
1830{
1831 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1832 ((adapter->flags & USING_MSI) != 0);
1833}
1834
1835static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1836{
1837 int entries = sge_queue_entries(seq->private);
1838
1839 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1840}
1841
1842static void sge_queue_stop(struct seq_file *seq, void *v)
1843{
1844}
1845
1846static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1847{
1848 int entries = sge_queue_entries(seq->private);
1849
1850 ++*pos;
1851 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1852}
1853
1854static const struct seq_operations sge_qinfo_seq_ops = {
1855 .start = sge_queue_start,
1856 .next = sge_queue_next,
1857 .stop = sge_queue_stop,
1858 .show = sge_qinfo_show
1859};
1860
1861static int sge_qinfo_open(struct inode *inode, struct file *file)
1862{
1863 int res = seq_open(file, &sge_qinfo_seq_ops);
1864
1865 if (!res) {
1866 struct seq_file *seq = file->private_data;
1867 seq->private = inode->i_private;
1868 }
1869 return res;
1870}
1871
1872static const struct file_operations sge_qinfo_debugfs_fops = {
1873 .owner = THIS_MODULE,
1874 .open = sge_qinfo_open,
1875 .read = seq_read,
1876 .llseek = seq_lseek,
1877 .release = seq_release,
1878};
1879
1880/*
1881 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1882 */
1883#define QPL 4
1884
1885static int sge_qstats_show(struct seq_file *seq, void *v)
1886{
1887 struct adapter *adapter = seq->private;
1888 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1889 int qs, r = (uintptr_t)v - 1;
1890
1891 if (r)
1892 seq_putc(seq, '\n');
1893
1894 #define S3(fmt, s, v) \
1895 do { \
1896 seq_printf(seq, "%-16s", s); \
1897 for (qs = 0; qs < n; ++qs) \
1898 seq_printf(seq, " %8" fmt, v); \
1899 seq_putc(seq, '\n'); \
1900 } while (0)
1901 #define S(s, v) S3("s", s, v)
1902
1903 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1904 #define T(s, v) T3("lu", s, v)
1905
1906 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1907 #define R(s, v) R3("lu", s, v)
1908
1909 if (r < eth_entries) {
1910 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1911 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1912 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1913
1914 S("QType:", "Ethernet");
1915 S("Interface:",
1916 (rxq[qs].rspq.netdev
1917 ? rxq[qs].rspq.netdev->name
1918 : "N/A"));
68dc9d36 1919 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1920 R("RxPackets:", stats.pkts);
1921 R("RxCSO:", stats.rx_cso);
1922 R("VLANxtract:", stats.vlan_ex);
1923 R("LROmerged:", stats.lro_merged);
1924 R("LROpackets:", stats.lro_pkts);
1925 R("RxDrops:", stats.rx_drops);
1926 T("TSO:", tso);
1927 T("TxCSO:", tx_cso);
1928 T("VLANins:", vlan_ins);
1929 T("TxQFull:", q.stops);
1930 T("TxQRestarts:", q.restarts);
1931 T("TxMapErr:", mapping_err);
1932 R("FLAllocErr:", fl.alloc_failed);
1933 R("FLLrgAlcErr:", fl.large_alloc_failed);
1934 R("FLStarving:", fl.starving);
1935 return 0;
1936 }
1937
1938 r -= eth_entries;
1939 if (r == 0) {
1940 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1941
1942 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1943 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1944 evtq->unhandled_irqs);
be839e39
CL
1945 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1946 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1947 } else if (r == 1) {
1948 const struct sge_rspq *intrq = &adapter->sge.intrq;
1949
1950 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1951 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1952 intrq->unhandled_irqs);
be839e39
CL
1953 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1954 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1955 }
1956
1957 #undef R
1958 #undef T
1959 #undef S
1960 #undef R3
1961 #undef T3
1962 #undef S3
1963
1964 return 0;
1965}
1966
1967/*
1968 * Return the number of "entries" in our "file". We group the multi-Queue
1969 * sections with QPL Queue Sets per "entry". The sections of the output are:
1970 *
1971 * Ethernet RX/TX Queue Sets
1972 * Firmware Event Queue
1973 * Forwarded Interrupt Queue (if in MSI mode)
1974 */
1975static int sge_qstats_entries(const struct adapter *adapter)
1976{
1977 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1978 ((adapter->flags & USING_MSI) != 0);
1979}
1980
1981static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1982{
1983 int entries = sge_qstats_entries(seq->private);
1984
1985 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1986}
1987
1988static void sge_qstats_stop(struct seq_file *seq, void *v)
1989{
1990}
1991
1992static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1993{
1994 int entries = sge_qstats_entries(seq->private);
1995
1996 (*pos)++;
1997 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1998}
1999
2000static const struct seq_operations sge_qstats_seq_ops = {
2001 .start = sge_qstats_start,
2002 .next = sge_qstats_next,
2003 .stop = sge_qstats_stop,
2004 .show = sge_qstats_show
2005};
2006
2007static int sge_qstats_open(struct inode *inode, struct file *file)
2008{
2009 int res = seq_open(file, &sge_qstats_seq_ops);
2010
2011 if (res == 0) {
2012 struct seq_file *seq = file->private_data;
2013 seq->private = inode->i_private;
2014 }
2015 return res;
2016}
2017
2018static const struct file_operations sge_qstats_proc_fops = {
2019 .owner = THIS_MODULE,
2020 .open = sge_qstats_open,
2021 .read = seq_read,
2022 .llseek = seq_lseek,
2023 .release = seq_release,
2024};
2025
2026/*
2027 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2028 */
2029static int resources_show(struct seq_file *seq, void *v)
2030{
2031 struct adapter *adapter = seq->private;
2032 struct vf_resources *vfres = &adapter->params.vfres;
2033
2034 #define S(desc, fmt, var) \
2035 seq_printf(seq, "%-60s " fmt "\n", \
2036 desc " (" #var "):", vfres->var)
2037
2038 S("Virtual Interfaces", "%d", nvi);
2039 S("Egress Queues", "%d", neq);
2040 S("Ethernet Control", "%d", nethctrl);
2041 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2042 S("Ingress Queues", "%d", niq);
2043 S("Traffic Class", "%d", tc);
2044 S("Port Access Rights Mask", "%#x", pmask);
2045 S("MAC Address Filters", "%d", nexactf);
2046 S("Firmware Command Read Capabilities", "%#x", r_caps);
2047 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2048
2049 #undef S
2050
2051 return 0;
2052}
2053
2054static int resources_open(struct inode *inode, struct file *file)
2055{
2056 return single_open(file, resources_show, inode->i_private);
2057}
2058
2059static const struct file_operations resources_proc_fops = {
2060 .owner = THIS_MODULE,
2061 .open = resources_open,
2062 .read = seq_read,
2063 .llseek = seq_lseek,
2064 .release = single_release,
2065};
2066
2067/*
2068 * Show Virtual Interfaces.
2069 */
2070static int interfaces_show(struct seq_file *seq, void *v)
2071{
2072 if (v == SEQ_START_TOKEN) {
2073 seq_puts(seq, "Interface Port VIID\n");
2074 } else {
2075 struct adapter *adapter = seq->private;
2076 int pidx = (uintptr_t)v - 2;
2077 struct net_device *dev = adapter->port[pidx];
2078 struct port_info *pi = netdev_priv(dev);
2079
2080 seq_printf(seq, "%9s %4d %#5x\n",
2081 dev->name, pi->port_id, pi->viid);
2082 }
2083 return 0;
2084}
2085
2086static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2087{
2088 return pos <= adapter->params.nports
2089 ? (void *)(uintptr_t)(pos + 1)
2090 : NULL;
2091}
2092
2093static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2094{
2095 return *pos
2096 ? interfaces_get_idx(seq->private, *pos)
2097 : SEQ_START_TOKEN;
2098}
2099
2100static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2101{
2102 (*pos)++;
2103 return interfaces_get_idx(seq->private, *pos);
2104}
2105
2106static void interfaces_stop(struct seq_file *seq, void *v)
2107{
2108}
2109
2110static const struct seq_operations interfaces_seq_ops = {
2111 .start = interfaces_start,
2112 .next = interfaces_next,
2113 .stop = interfaces_stop,
2114 .show = interfaces_show
2115};
2116
2117static int interfaces_open(struct inode *inode, struct file *file)
2118{
2119 int res = seq_open(file, &interfaces_seq_ops);
2120
2121 if (res == 0) {
2122 struct seq_file *seq = file->private_data;
2123 seq->private = inode->i_private;
2124 }
2125 return res;
2126}
2127
2128static const struct file_operations interfaces_proc_fops = {
2129 .owner = THIS_MODULE,
2130 .open = interfaces_open,
2131 .read = seq_read,
2132 .llseek = seq_lseek,
2133 .release = seq_release,
2134};
2135
2136/*
2137 * /sys/kernel/debugfs/cxgb4vf/ files list.
2138 */
2139struct cxgb4vf_debugfs_entry {
2140 const char *name; /* name of debugfs node */
f4ae40a6 2141 umode_t mode; /* file system mode */
be839e39
CL
2142 const struct file_operations *fops;
2143};
2144
2145static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2146 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2147 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2148 { "resources", S_IRUGO, &resources_proc_fops },
2149 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2150};
2151
2152/*
2153 * Module and device initialization and cleanup code.
2154 * ==================================================
2155 */
2156
2157/*
2158 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2159 * directory (debugfs_root) has already been set up.
2160 */
d289f864 2161static int setup_debugfs(struct adapter *adapter)
be839e39
CL
2162{
2163 int i;
2164
843635e0 2165 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
be839e39
CL
2166
2167 /*
2168 * Debugfs support is best effort.
2169 */
2170 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2171 (void)debugfs_create_file(debugfs_files[i].name,
2172 debugfs_files[i].mode,
2173 adapter->debugfs_root,
2174 (void *)adapter,
2175 debugfs_files[i].fops);
2176
2177 return 0;
2178}
2179
2180/*
2181 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2182 * it to our caller to tear down the directory (debugfs_root).
2183 */
4204875d 2184static void cleanup_debugfs(struct adapter *adapter)
be839e39 2185{
843635e0 2186 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
be839e39
CL
2187
2188 /*
2189 * Unlike our sister routine cleanup_proc(), we don't need to remove
2190 * individual entries because a call will be made to
2191 * debugfs_remove_recursive(). We just need to clean up any ancillary
2192 * persistent state.
2193 */
2194 /* nothing to do */
2195}
2196
2197/*
2198 * Perform early "adapter" initialization. This is where we discover what
2199 * adapter parameters we're going to be using and initialize basic adapter
2200 * hardware support.
2201 */
d289f864 2202static int adap_init0(struct adapter *adapter)
be839e39
CL
2203{
2204 struct vf_resources *vfres = &adapter->params.vfres;
2205 struct sge_params *sge_params = &adapter->params.sge;
2206 struct sge *s = &adapter->sge;
2207 unsigned int ethqsets;
2208 int err;
94dace10 2209 u32 param, val = 0;
be839e39
CL
2210
2211 /*
2212 * Wait for the device to become ready before proceeding ...
2213 */
2214 err = t4vf_wait_dev_ready(adapter);
2215 if (err) {
2216 dev_err(adapter->pdev_dev, "device didn't become ready:"
2217 " err=%d\n", err);
2218 return err;
2219 }
2220
e68e6133
CL
2221 /*
2222 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2223 * 2.6.31 and later we can't call pci_reset_function() in order to
2224 * issue an FLR because of a self- deadlock on the device semaphore.
2225 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2226 * cases where they're needed -- for instance, some versions of KVM
2227 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2228 * use the firmware based reset in order to reset any per function
2229 * state.
2230 */
2231 err = t4vf_fw_reset(adapter);
2232 if (err < 0) {
2233 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2234 return err;
2235 }
2236
be839e39
CL
2237 /*
2238 * Grab basic operational parameters. These will predominantly have
2239 * been set up by the Physical Function Driver or will be hard coded
2240 * into the adapter. We just have to live with them ... Note that
2241 * we _must_ get our VPD parameters before our SGE parameters because
2242 * we need to know the adapter's core clock from the VPD in order to
2243 * properly decode the SGE Timer Values.
2244 */
2245 err = t4vf_get_dev_params(adapter);
2246 if (err) {
2247 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2248 " device parameters: err=%d\n", err);
2249 return err;
2250 }
2251 err = t4vf_get_vpd_params(adapter);
2252 if (err) {
2253 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2254 " VPD parameters: err=%d\n", err);
2255 return err;
2256 }
2257 err = t4vf_get_sge_params(adapter);
2258 if (err) {
2259 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2260 " SGE parameters: err=%d\n", err);
2261 return err;
2262 }
2263 err = t4vf_get_rss_glb_config(adapter);
2264 if (err) {
2265 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2266 " RSS parameters: err=%d\n", err);
2267 return err;
2268 }
2269 if (adapter->params.rss.mode !=
2270 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2271 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2272 " mode %d\n", adapter->params.rss.mode);
2273 return -EINVAL;
2274 }
2275 err = t4vf_sge_init(adapter);
2276 if (err) {
2277 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2278 " err=%d\n", err);
2279 return err;
2280 }
2281
94dace10
VP
2282 /* If we're running on newer firmware, let it know that we're
2283 * prepared to deal with encapsulated CPL messages. Older
2284 * firmware won't understand this and we'll just get
2285 * unencapsulated messages ...
2286 */
5167865a
HS
2287 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2288 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
94dace10
VP
2289 val = 1;
2290 (void) t4vf_set_params(adapter, 1, &param, &val);
2291
be839e39
CL
2292 /*
2293 * Retrieve our RX interrupt holdoff timer values and counter
2294 * threshold values from the SGE parameters.
2295 */
2296 s->timer_val[0] = core_ticks_to_us(adapter,
f061de42 2297 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
be839e39 2298 s->timer_val[1] = core_ticks_to_us(adapter,
f061de42 2299 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
be839e39 2300 s->timer_val[2] = core_ticks_to_us(adapter,
f061de42 2301 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
be839e39 2302 s->timer_val[3] = core_ticks_to_us(adapter,
f061de42 2303 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
be839e39 2304 s->timer_val[4] = core_ticks_to_us(adapter,
f061de42 2305 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
be839e39 2306 s->timer_val[5] = core_ticks_to_us(adapter,
f061de42 2307 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
be839e39 2308
f612b815
HS
2309 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2310 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2311 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2312 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
be839e39
CL
2313
2314 /*
2315 * Grab our Virtual Interface resource allocation, extract the
2316 * features that we're interested in and do a bit of sanity testing on
2317 * what we discover.
2318 */
2319 err = t4vf_get_vfres(adapter);
2320 if (err) {
2321 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2322 " resources: err=%d\n", err);
2323 return err;
2324 }
2325
2326 /*
2327 * The number of "ports" which we support is equal to the number of
2328 * Virtual Interfaces with which we've been provisioned.
2329 */
2330 adapter->params.nports = vfres->nvi;
2331 if (adapter->params.nports > MAX_NPORTS) {
2332 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2333 " virtual interfaces\n", MAX_NPORTS,
2334 adapter->params.nports);
2335 adapter->params.nports = MAX_NPORTS;
2336 }
2337
2338 /*
2339 * We need to reserve a number of the ingress queues with Free List
2340 * and Interrupt capabilities for special interrupt purposes (like
2341 * asynchronous firmware messages, or forwarded interrupts if we're
2342 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2343 * matched up one-for-one with Ethernet/Control egress queues in order
2344 * to form "Queue Sets" which will be aportioned between the "ports".
2345 * For each Queue Set, we'll need the ability to allocate two Egress
2346 * Contexts -- one for the Ingress Queue Free List and one for the TX
2347 * Ethernet Queue.
2348 */
2349 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2350 if (vfres->nethctrl != ethqsets) {
2351 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2352 " ingress/egress queues (%d/%d); using minimum for"
2353 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2354 ethqsets = min(vfres->nethctrl, ethqsets);
2355 }
2356 if (vfres->neq < ethqsets*2) {
2357 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2358 " to support Queue Sets (%d); reducing allowed Queue"
2359 " Sets\n", vfres->neq, ethqsets);
2360 ethqsets = vfres->neq/2;
2361 }
2362 if (ethqsets > MAX_ETH_QSETS) {
2363 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2364 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2365 ethqsets = MAX_ETH_QSETS;
2366 }
2367 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2368 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2369 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2370 }
2371 adapter->sge.max_ethqsets = ethqsets;
2372
2373 /*
2374 * Check for various parameter sanity issues. Most checks simply
2375 * result in us using fewer resources than our provissioning but we
2376 * do need at least one "port" with which to work ...
2377 */
2378 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2379 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2380 " virtual interfaces (too few Queue Sets)\n",
2381 adapter->sge.max_ethqsets, adapter->params.nports);
2382 adapter->params.nports = adapter->sge.max_ethqsets;
2383 }
2384 if (adapter->params.nports == 0) {
2385 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2386 "usable!\n");
2387 return -EINVAL;
2388 }
2389 return 0;
2390}
2391
2392static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2393 u8 pkt_cnt_idx, unsigned int size,
2394 unsigned int iqe_size)
2395{
1ecc7b7a
HS
2396 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2397 (pkt_cnt_idx < SGE_NCOUNTERS ?
2398 QINTR_CNT_EN_F : 0));
be839e39
CL
2399 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2400 ? pkt_cnt_idx
2401 : 0);
2402 rspq->iqe_len = iqe_size;
2403 rspq->size = size;
2404}
2405
2406/*
2407 * Perform default configuration of DMA queues depending on the number and
2408 * type of ports we found and the number of available CPUs. Most settings can
2409 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2410 * being brought up for the first time.
2411 */
d289f864 2412static void cfg_queues(struct adapter *adapter)
be839e39
CL
2413{
2414 struct sge *s = &adapter->sge;
2415 int q10g, n10g, qidx, pidx, qs;
c710245c 2416 size_t iqe_size;
be839e39
CL
2417
2418 /*
2419 * We should not be called till we know how many Queue Sets we can
2420 * support. In particular, this means that we need to know what kind
2421 * of interrupts we'll be using ...
2422 */
2423 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2424
2425 /*
2426 * Count the number of 10GbE Virtual Interfaces that we have.
2427 */
2428 n10g = 0;
2429 for_each_port(adapter, pidx)
14b3812f 2430 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
be839e39
CL
2431
2432 /*
2433 * We default to 1 queue per non-10G port and up to # of cores queues
2434 * per 10G port.
2435 */
2436 if (n10g == 0)
2437 q10g = 0;
2438 else {
2439 int n1g = (adapter->params.nports - n10g);
2440 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2441 if (q10g > num_online_cpus())
2442 q10g = num_online_cpus();
2443 }
2444
2445 /*
2446 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2447 * The layout will be established in setup_sge_queues() when the
2448 * adapter is brough up for the first time.
2449 */
2450 qidx = 0;
2451 for_each_port(adapter, pidx) {
2452 struct port_info *pi = adap2pinfo(adapter, pidx);
2453
2454 pi->first_qset = qidx;
897d55df 2455 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
be839e39
CL
2456 qidx += pi->nqsets;
2457 }
2458 s->ethqsets = qidx;
2459
c710245c
CL
2460 /*
2461 * The Ingress Queue Entry Size for our various Response Queues needs
2462 * to be big enough to accommodate the largest message we can receive
2463 * from the chip/firmware; which is 64 bytes ...
2464 */
2465 iqe_size = 64;
2466
be839e39
CL
2467 /*
2468 * Set up default Queue Set parameters ... Start off with the
2469 * shortest interrupt holdoff timer.
2470 */
2471 for (qs = 0; qs < s->max_ethqsets; qs++) {
2472 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2473 struct sge_eth_txq *txq = &s->ethtxq[qs];
2474
c710245c 2475 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
be839e39
CL
2476 rxq->fl.size = 72;
2477 txq->q.size = 1024;
2478 }
2479
2480 /*
2481 * The firmware event queue is used for link state changes and
2482 * notifications of TX DMA completions.
2483 */
c710245c 2484 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
be839e39
CL
2485
2486 /*
2487 * The forwarded interrupt queue is used when we're in MSI interrupt
2488 * mode. In this mode all interrupts associated with RX queues will
2489 * be forwarded to a single queue which we'll associate with our MSI
2490 * interrupt vector. The messages dropped in the forwarded interrupt
2491 * queue will indicate which ingress queue needs servicing ... This
2492 * queue needs to be large enough to accommodate all of the ingress
2493 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2494 * from equalling the CIDX if every ingress queue has an outstanding
2495 * interrupt). The queue doesn't need to be any larger because no
2496 * ingress queue will ever have more than one outstanding interrupt at
2497 * any time ...
2498 */
2499 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
c710245c 2500 iqe_size);
be839e39
CL
2501}
2502
2503/*
2504 * Reduce the number of Ethernet queues across all ports to at most n.
2505 * n provides at least one queue per port.
2506 */
d289f864 2507static void reduce_ethqs(struct adapter *adapter, int n)
be839e39
CL
2508{
2509 int i;
2510 struct port_info *pi;
2511
2512 /*
2513 * While we have too many active Ether Queue Sets, interate across the
2514 * "ports" and reduce their individual Queue Set allocations.
2515 */
2516 BUG_ON(n < adapter->params.nports);
2517 while (n < adapter->sge.ethqsets)
2518 for_each_port(adapter, i) {
2519 pi = adap2pinfo(adapter, i);
2520 if (pi->nqsets > 1) {
2521 pi->nqsets--;
2522 adapter->sge.ethqsets--;
2523 if (adapter->sge.ethqsets <= n)
2524 break;
2525 }
2526 }
2527
2528 /*
2529 * Reassign the starting Queue Sets for each of the "ports" ...
2530 */
2531 n = 0;
2532 for_each_port(adapter, i) {
2533 pi = adap2pinfo(adapter, i);
2534 pi->first_qset = n;
2535 n += pi->nqsets;
2536 }
2537}
2538
2539/*
2540 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2541 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2542 * need. Minimally we need one for every Virtual Interface plus those needed
2543 * for our "extras". Note that this process may lower the maximum number of
2544 * allowed Queue Sets ...
2545 */
d289f864 2546static int enable_msix(struct adapter *adapter)
be839e39 2547{
bd663689 2548 int i, want, need, nqsets;
be839e39
CL
2549 struct msix_entry entries[MSIX_ENTRIES];
2550 struct sge *s = &adapter->sge;
2551
2552 for (i = 0; i < MSIX_ENTRIES; ++i)
2553 entries[i].entry = i;
2554
2555 /*
2556 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2557 * plus those needed for our "extras" (for example, the firmware
2558 * message queue). We _need_ at least one "Queue Set" per Virtual
2559 * Interface plus those needed for our "extras". So now we get to see
2560 * if the song is right ...
2561 */
2562 want = s->max_ethqsets + MSIX_EXTRAS;
2563 need = adapter->params.nports + MSIX_EXTRAS;
bd663689
AG
2564
2565 want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2566 if (want < 0)
2567 return want;
2568
2569 nqsets = want - MSIX_EXTRAS;
2570 if (nqsets < s->max_ethqsets) {
2571 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2572 " for %d Queue Sets\n", nqsets);
2573 s->max_ethqsets = nqsets;
2574 if (nqsets < s->ethqsets)
2575 reduce_ethqs(adapter, nqsets);
be839e39 2576 }
bd663689
AG
2577 for (i = 0; i < want; ++i)
2578 adapter->msix_info[i].vec = entries[i].vector;
2579
2580 return 0;
be839e39
CL
2581}
2582
be839e39
CL
2583static const struct net_device_ops cxgb4vf_netdev_ops = {
2584 .ndo_open = cxgb4vf_open,
2585 .ndo_stop = cxgb4vf_stop,
2586 .ndo_start_xmit = t4vf_eth_xmit,
2587 .ndo_get_stats = cxgb4vf_get_stats,
2588 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2589 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2590 .ndo_validate_addr = eth_validate_addr,
2591 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2592 .ndo_change_mtu = cxgb4vf_change_mtu,
87737663
JP
2593 .ndo_fix_features = cxgb4vf_fix_features,
2594 .ndo_set_features = cxgb4vf_set_features,
be839e39
CL
2595#ifdef CONFIG_NET_POLL_CONTROLLER
2596 .ndo_poll_controller = cxgb4vf_poll_controller,
2597#endif
2598};
be839e39
CL
2599
2600/*
2601 * "Probe" a device: initialize a device and construct all kernel and driver
2602 * state needed to manage the device. This routine is called "init_one" in
2603 * the PF Driver ...
2604 */
d289f864 2605static int cxgb4vf_pci_probe(struct pci_dev *pdev,
1dd06ae8 2606 const struct pci_device_id *ent)
be839e39 2607{
be839e39
CL
2608 int pci_using_dac;
2609 int err, pidx;
2610 unsigned int pmask;
2611 struct adapter *adapter;
2612 struct port_info *pi;
2613 struct net_device *netdev;
2614
be839e39
CL
2615 /*
2616 * Print our driver banner the first time we're called to initialize a
2617 * device.
2618 */
428ac43f 2619 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
be839e39
CL
2620
2621 /*
7a0c2029 2622 * Initialize generic PCI device state.
be839e39 2623 */
7a0c2029 2624 err = pci_enable_device(pdev);
be839e39 2625 if (err) {
7a0c2029 2626 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2627 return err;
2628 }
2629
2630 /*
7a0c2029
KV
2631 * Reserve PCI resources for the device. If we can't get them some
2632 * other driver may have already claimed the device ...
be839e39 2633 */
7a0c2029 2634 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2635 if (err) {
7a0c2029
KV
2636 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2637 goto err_disable_device;
be839e39
CL
2638 }
2639
2640 /*
2641 * Set up our DMA mask: try for 64-bit address masking first and
2642 * fall back to 32-bit if we can't get 64 bits ...
2643 */
2644 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2645 if (err == 0) {
2646 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2647 if (err) {
2648 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2649 " coherent allocations\n");
7a0c2029 2650 goto err_release_regions;
be839e39
CL
2651 }
2652 pci_using_dac = 1;
2653 } else {
2654 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2655 if (err != 0) {
2656 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2657 goto err_release_regions;
be839e39
CL
2658 }
2659 pci_using_dac = 0;
2660 }
2661
2662 /*
2663 * Enable bus mastering for the device ...
2664 */
2665 pci_set_master(pdev);
2666
2667 /*
2668 * Allocate our adapter data structure and attach it to the device.
2669 */
2670 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2671 if (!adapter) {
2672 err = -ENOMEM;
7a0c2029 2673 goto err_release_regions;
be839e39
CL
2674 }
2675 pci_set_drvdata(pdev, adapter);
2676 adapter->pdev = pdev;
2677 adapter->pdev_dev = &pdev->dev;
2678
2679 /*
2680 * Initialize SMP data synchronization resources.
2681 */
2682 spin_lock_init(&adapter->stats_lock);
2683
2684 /*
2685 * Map our I/O registers in BAR0.
2686 */
2687 adapter->regs = pci_ioremap_bar(pdev, 0);
2688 if (!adapter->regs) {
2689 dev_err(&pdev->dev, "cannot map device registers\n");
2690 err = -ENOMEM;
2691 goto err_free_adapter;
2692 }
2693
e0a8b34a
HS
2694 /* Wait for the device to become ready before proceeding ...
2695 */
2696 err = t4vf_prep_adapter(adapter);
2697 if (err) {
2698 dev_err(adapter->pdev_dev, "device didn't become ready:"
2699 " err=%d\n", err);
2700 goto err_unmap_bar0;
2701 }
2702
2703 /* For T5 and later we want to use the new BAR-based User Doorbells,
2704 * so we need to map BAR2 here ...
2705 */
2706 if (!is_t4(adapter->params.chip)) {
2707 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2708 pci_resource_len(pdev, 2));
2709 if (!adapter->bar2) {
2710 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2711 err = -ENOMEM;
2712 goto err_unmap_bar0;
2713 }
2714 }
be839e39
CL
2715 /*
2716 * Initialize adapter level features.
2717 */
2718 adapter->name = pci_name(pdev);
2719 adapter->msg_enable = dflt_msg_enable;
2720 err = adap_init0(adapter);
2721 if (err)
2722 goto err_unmap_bar;
2723
2724 /*
2725 * Allocate our "adapter ports" and stitch everything together.
2726 */
2727 pmask = adapter->params.vfres.pmask;
2728 for_each_port(adapter, pidx) {
2729 int port_id, viid;
2730
2731 /*
2732 * We simplistically allocate our virtual interfaces
2733 * sequentially across the port numbers to which we have
2734 * access rights. This should be configurable in some manner
2735 * ...
2736 */
2737 if (pmask == 0)
2738 break;
2739 port_id = ffs(pmask) - 1;
2740 pmask &= ~(1 << port_id);
2741 viid = t4vf_alloc_vi(adapter, port_id);
2742 if (viid < 0) {
2743 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2744 " err=%d\n", port_id, viid);
2745 err = viid;
2746 goto err_free_dev;
2747 }
2748
2749 /*
2750 * Allocate our network device and stitch things together.
2751 */
2752 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2753 MAX_PORT_QSETS);
2754 if (netdev == NULL) {
be839e39
CL
2755 t4vf_free_vi(adapter, viid);
2756 err = -ENOMEM;
2757 goto err_free_dev;
2758 }
2759 adapter->port[pidx] = netdev;
2760 SET_NETDEV_DEV(netdev, &pdev->dev);
2761 pi = netdev_priv(netdev);
2762 pi->adapter = adapter;
2763 pi->pidx = pidx;
2764 pi->port_id = port_id;
2765 pi->viid = viid;
2766
2767 /*
2768 * Initialize the starting state of our "port" and register
2769 * it.
2770 */
2771 pi->xact_addr_filt = -1;
be839e39 2772 netif_carrier_off(netdev);
be839e39
CL
2773 netdev->irq = pdev->irq;
2774
2ed28baa
MM
2775 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2776 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
f646968f 2777 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2ed28baa
MM
2778 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2779 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2780 NETIF_F_HIGHDMA;
f646968f
PM
2781 netdev->features = netdev->hw_features |
2782 NETIF_F_HW_VLAN_CTAG_TX;
be839e39
CL
2783 if (pci_using_dac)
2784 netdev->features |= NETIF_F_HIGHDMA;
be839e39 2785
01789349
JP
2786 netdev->priv_flags |= IFF_UNICAST_FLT;
2787
be839e39 2788 netdev->netdev_ops = &cxgb4vf_netdev_ops;
7ad24ea4 2789 netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
be839e39
CL
2790
2791 /*
2792 * Initialize the hardware/software state for the port.
2793 */
2794 err = t4vf_port_init(adapter, pidx);
2795 if (err) {
2796 dev_err(&pdev->dev, "cannot initialize port %d\n",
2797 pidx);
2798 goto err_free_dev;
2799 }
2800 }
2801
2802 /*
2803 * The "card" is now ready to go. If any errors occur during device
2804 * registration we do not fail the whole "card" but rather proceed
2805 * only with the ports we manage to register successfully. However we
2806 * must register at least one net device.
2807 */
2808 for_each_port(adapter, pidx) {
2809 netdev = adapter->port[pidx];
2810 if (netdev == NULL)
2811 continue;
2812
2813 err = register_netdev(netdev);
2814 if (err) {
2815 dev_warn(&pdev->dev, "cannot register net device %s,"
2816 " skipping\n", netdev->name);
2817 continue;
2818 }
2819
2820 set_bit(pidx, &adapter->registered_device_map);
2821 }
2822 if (adapter->registered_device_map == 0) {
2823 dev_err(&pdev->dev, "could not register any net devices\n");
2824 goto err_free_dev;
2825 }
2826
2827 /*
2828 * Set up our debugfs entries.
2829 */
843635e0 2830 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
be839e39
CL
2831 adapter->debugfs_root =
2832 debugfs_create_dir(pci_name(pdev),
2833 cxgb4vf_debugfs_root);
843635e0 2834 if (IS_ERR_OR_NULL(adapter->debugfs_root))
be839e39
CL
2835 dev_warn(&pdev->dev, "could not create debugfs"
2836 " directory");
2837 else
2838 setup_debugfs(adapter);
2839 }
2840
2841 /*
2842 * See what interrupts we'll be using. If we've been configured to
2843 * use MSI-X interrupts, try to enable them but fall back to using
2844 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2845 * get MSI interrupts we bail with the error.
2846 */
2847 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2848 adapter->flags |= USING_MSIX;
2849 else {
2850 err = pci_enable_msi(pdev);
2851 if (err) {
2852 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2853 " err=%d\n",
2854 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2855 goto err_free_debugfs;
2856 }
2857 adapter->flags |= USING_MSI;
2858 }
2859
2860 /*
2861 * Now that we know how many "ports" we have and what their types are,
2862 * and how many Queue Sets we can support, we can configure our queue
2863 * resources.
2864 */
2865 cfg_queues(adapter);
2866
2867 /*
25985edc 2868 * Print a short notice on the existence and configuration of the new
be839e39
CL
2869 * VF network device ...
2870 */
2871 for_each_port(adapter, pidx) {
2872 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2873 adapter->port[pidx]->name,
2874 (adapter->flags & USING_MSIX) ? "MSI-X" :
2875 (adapter->flags & USING_MSI) ? "MSI" : "");
2876 }
2877
2878 /*
2879 * Return success!
2880 */
2881 return 0;
2882
2883 /*
2884 * Error recovery and exit code. Unwind state that's been created
2885 * so far and return the error.
2886 */
2887
2888err_free_debugfs:
843635e0 2889 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
be839e39
CL
2890 cleanup_debugfs(adapter);
2891 debugfs_remove_recursive(adapter->debugfs_root);
2892 }
2893
2894err_free_dev:
2895 for_each_port(adapter, pidx) {
2896 netdev = adapter->port[pidx];
2897 if (netdev == NULL)
2898 continue;
2899 pi = netdev_priv(netdev);
2900 t4vf_free_vi(adapter, pi->viid);
2901 if (test_bit(pidx, &adapter->registered_device_map))
2902 unregister_netdev(netdev);
2903 free_netdev(netdev);
2904 }
2905
2906err_unmap_bar:
e0a8b34a
HS
2907 if (!is_t4(adapter->params.chip))
2908 iounmap(adapter->bar2);
2909
2910err_unmap_bar0:
be839e39
CL
2911 iounmap(adapter->regs);
2912
2913err_free_adapter:
2914 kfree(adapter);
be839e39 2915
be839e39
CL
2916err_release_regions:
2917 pci_release_regions(pdev);
7a0c2029
KV
2918 pci_clear_master(pdev);
2919
2920err_disable_device:
2921 pci_disable_device(pdev);
be839e39 2922
be839e39
CL
2923 return err;
2924}
2925
2926/*
2927 * "Remove" a device: tear down all kernel and driver state created in the
2928 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2929 * that this is called "remove_one" in the PF Driver.)
2930 */
d289f864 2931static void cxgb4vf_pci_remove(struct pci_dev *pdev)
be839e39
CL
2932{
2933 struct adapter *adapter = pci_get_drvdata(pdev);
2934
2935 /*
2936 * Tear down driver state associated with device.
2937 */
2938 if (adapter) {
2939 int pidx;
2940
2941 /*
2942 * Stop all of our activity. Unregister network port,
2943 * disable interrupts, etc.
2944 */
2945 for_each_port(adapter, pidx)
2946 if (test_bit(pidx, &adapter->registered_device_map))
2947 unregister_netdev(adapter->port[pidx]);
2948 t4vf_sge_stop(adapter);
2949 if (adapter->flags & USING_MSIX) {
2950 pci_disable_msix(adapter->pdev);
2951 adapter->flags &= ~USING_MSIX;
2952 } else if (adapter->flags & USING_MSI) {
2953 pci_disable_msi(adapter->pdev);
2954 adapter->flags &= ~USING_MSI;
2955 }
2956
2957 /*
2958 * Tear down our debugfs entries.
2959 */
843635e0 2960 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
be839e39
CL
2961 cleanup_debugfs(adapter);
2962 debugfs_remove_recursive(adapter->debugfs_root);
2963 }
2964
2965 /*
2966 * Free all of the various resources which we've acquired ...
2967 */
2968 t4vf_free_sge_resources(adapter);
2969 for_each_port(adapter, pidx) {
2970 struct net_device *netdev = adapter->port[pidx];
2971 struct port_info *pi;
2972
2973 if (netdev == NULL)
2974 continue;
2975
2976 pi = netdev_priv(netdev);
2977 t4vf_free_vi(adapter, pi->viid);
2978 free_netdev(netdev);
2979 }
2980 iounmap(adapter->regs);
e0a8b34a
HS
2981 if (!is_t4(adapter->params.chip))
2982 iounmap(adapter->bar2);
be839e39 2983 kfree(adapter);
be839e39
CL
2984 }
2985
2986 /*
2987 * Disable the device and release its PCI resources.
2988 */
2989 pci_disable_device(pdev);
2990 pci_clear_master(pdev);
2991 pci_release_regions(pdev);
2992}
2993
7e9c2629
CL
2994/*
2995 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2996 * delivery.
2997 */
d289f864 2998static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
7e9c2629
CL
2999{
3000 struct adapter *adapter;
3001 int pidx;
3002
3003 adapter = pci_get_drvdata(pdev);
3004 if (!adapter)
3005 return;
3006
c2a19856 3007 /* Disable all Virtual Interfaces. This will shut down the
7e9c2629
CL
3008 * delivery of all ingress packets into the chip for these
3009 * Virtual Interfaces.
3010 */
c2a19856
HS
3011 for_each_port(adapter, pidx)
3012 if (test_bit(pidx, &adapter->registered_device_map))
3013 unregister_netdev(adapter->port[pidx]);
7e9c2629 3014
c2a19856
HS
3015 /* Free up all Queues which will prevent further DMA and
3016 * Interrupts allowing various internal pathways to drain.
3017 */
3018 t4vf_sge_stop(adapter);
3019 if (adapter->flags & USING_MSIX) {
3020 pci_disable_msix(adapter->pdev);
3021 adapter->flags &= ~USING_MSIX;
3022 } else if (adapter->flags & USING_MSI) {
3023 pci_disable_msi(adapter->pdev);
3024 adapter->flags &= ~USING_MSI;
7e9c2629
CL
3025 }
3026
3027 /*
3028 * Free up all Queues which will prevent further DMA and
3029 * Interrupts allowing various internal pathways to drain.
3030 */
3031 t4vf_free_sge_resources(adapter);
c2a19856 3032 pci_set_drvdata(pdev, NULL);
7e9c2629
CL
3033}
3034
3fedeab1
HS
3035/* Macros needed to support the PCI Device ID Table ...
3036 */
3037#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 3038 static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3fedeab1
HS
3039#define CH_PCI_DEVICE_ID_FUNCTION 0x8
3040
3041#define CH_PCI_ID_TABLE_ENTRY(devid) \
3042 { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3043
3044#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3045
3046#include "../cxgb4/t4_pci_id_tbl.h"
be839e39
CL
3047
3048MODULE_DESCRIPTION(DRV_DESC);
3049MODULE_AUTHOR("Chelsio Communications");
3050MODULE_LICENSE("Dual BSD/GPL");
3051MODULE_VERSION(DRV_VERSION);
3052MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3053
3054static struct pci_driver cxgb4vf_driver = {
3055 .name = KBUILD_MODNAME,
3056 .id_table = cxgb4vf_pci_tbl,
3057 .probe = cxgb4vf_pci_probe,
d289f864
BP
3058 .remove = cxgb4vf_pci_remove,
3059 .shutdown = cxgb4vf_pci_shutdown,
be839e39
CL
3060};
3061
3062/*
3063 * Initialize global driver state.
3064 */
3065static int __init cxgb4vf_module_init(void)
3066{
3067 int ret;
3068
bb14a1af
CL
3069 /*
3070 * Vet our module parameters.
3071 */
3072 if (msi != MSI_MSIX && msi != MSI_MSI) {
428ac43f
JP
3073 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3074 msi, MSI_MSIX, MSI_MSI);
bb14a1af
CL
3075 return -EINVAL;
3076 }
3077
be839e39
CL
3078 /* Debugfs support is optional, just warn if this fails */
3079 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
843635e0 3080 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
428ac43f 3081 pr_warn("could not create debugfs entry, continuing\n");
be839e39
CL
3082
3083 ret = pci_register_driver(&cxgb4vf_driver);
843635e0 3084 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
be839e39
CL
3085 debugfs_remove(cxgb4vf_debugfs_root);
3086 return ret;
3087}
3088
3089/*
3090 * Tear down global driver state.
3091 */
3092static void __exit cxgb4vf_module_exit(void)
3093{
3094 pci_unregister_driver(&cxgb4vf_driver);
3095 debugfs_remove(cxgb4vf_debugfs_root);
3096}
3097
3098module_init(cxgb4vf_module_init);
3099module_exit(cxgb4vf_module_exit);