]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c
net: split netdev features to separate header
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
be839e39
CL
36#include <linux/module.h>
37#include <linux/moduleparam.h>
38#include <linux/init.h>
39#include <linux/pci.h>
40#include <linux/dma-mapping.h>
41#include <linux/netdevice.h>
42#include <linux/etherdevice.h>
43#include <linux/debugfs.h>
44#include <linux/ethtool.h>
45
46#include "t4vf_common.h"
47#include "t4vf_defs.h"
48
49#include "../cxgb4/t4_regs.h"
50#include "../cxgb4/t4_msg.h"
51
52/*
53 * Generic information about the driver.
54 */
55#define DRV_VERSION "1.0.0"
56#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
57
58/*
59 * Module Parameters.
60 * ==================
61 */
62
63/*
64 * Default ethtool "message level" for adapters.
65 */
66#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
67 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
68 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
69
70static int dflt_msg_enable = DFLT_MSG_ENABLE;
71
72module_param(dflt_msg_enable, int, 0644);
73MODULE_PARM_DESC(dflt_msg_enable,
74 "default adapter ethtool message level bitmap");
75
76/*
77 * The driver uses the best interrupt scheme available on a platform in the
78 * order MSI-X then MSI. This parameter determines which of these schemes the
79 * driver may consider as follows:
80 *
81 * msi = 2: choose from among MSI-X and MSI
82 * msi = 1: only consider MSI interrupts
83 *
84 * Note that unlike the Physical Function driver, this Virtual Function driver
85 * does _not_ support legacy INTx interrupts (this limitation is mandated by
86 * the PCI-E SR-IOV standard).
87 */
88#define MSI_MSIX 2
89#define MSI_MSI 1
90#define MSI_DEFAULT MSI_MSIX
91
92static int msi = MSI_DEFAULT;
93
94module_param(msi, int, 0644);
95MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
96
97/*
98 * Fundamental constants.
99 * ======================
100 */
101
102enum {
103 MAX_TXQ_ENTRIES = 16384,
104 MAX_RSPQ_ENTRIES = 16384,
105 MAX_RX_BUFFERS = 16384,
106
107 MIN_TXQ_ENTRIES = 32,
108 MIN_RSPQ_ENTRIES = 128,
109 MIN_FL_ENTRIES = 16,
110
111 /*
112 * For purposes of manipulating the Free List size we need to
113 * recognize that Free Lists are actually Egress Queues (the host
114 * produces free buffers which the hardware consumes), Egress Queues
115 * indices are all in units of Egress Context Units bytes, and free
116 * list entries are 64-bit PCI DMA addresses. And since the state of
117 * the Producer Index == the Consumer Index implies an EMPTY list, we
118 * always have at least one Egress Unit's worth of Free List entries
119 * unused. See sge.c for more details ...
120 */
121 EQ_UNIT = SGE_EQ_IDXSIZE,
122 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
123 MIN_FL_RESID = FL_PER_EQ_UNIT,
124};
125
126/*
127 * Global driver state.
128 * ====================
129 */
130
131static struct dentry *cxgb4vf_debugfs_root;
132
133/*
134 * OS "Callback" functions.
135 * ========================
136 */
137
138/*
139 * The link status has changed on the indicated "port" (Virtual Interface).
140 */
141void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
142{
143 struct net_device *dev = adapter->port[pidx];
144
145 /*
146 * If the port is disabled or the current recorded "link up"
147 * status matches the new status, just return.
148 */
149 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
150 return;
151
152 /*
153 * Tell the OS that the link status has changed and print a short
154 * informative message on the console about the event.
155 */
156 if (link_ok) {
157 const char *s;
158 const char *fc;
159 const struct port_info *pi = netdev_priv(dev);
160
161 netif_carrier_on(dev);
162
163 switch (pi->link_cfg.speed) {
164 case SPEED_10000:
165 s = "10Gbps";
166 break;
167
168 case SPEED_1000:
169 s = "1000Mbps";
170 break;
171
172 case SPEED_100:
173 s = "100Mbps";
174 break;
175
176 default:
177 s = "unknown";
178 break;
179 }
180
181 switch (pi->link_cfg.fc) {
182 case PAUSE_RX:
183 fc = "RX";
184 break;
185
186 case PAUSE_TX:
187 fc = "TX";
188 break;
189
190 case PAUSE_RX|PAUSE_TX:
191 fc = "RX/TX";
192 break;
193
194 default:
195 fc = "no";
196 break;
197 }
198
199 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
200 dev->name, s, fc);
201 } else {
202 netif_carrier_off(dev);
203 printk(KERN_INFO "%s: link down\n", dev->name);
204 }
205}
206
207/*
208 * Net device operations.
209 * ======================
210 */
211
be839e39 212
87737663 213
be839e39
CL
214
215/*
216 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
217 * Interface).
218 */
219static int link_start(struct net_device *dev)
220{
221 int ret;
222 struct port_info *pi = netdev_priv(dev);
223
224 /*
225 * We do not set address filters and promiscuity here, the stack does
87737663 226 * that step explicitly. Enable vlan accel.
be839e39 227 */
87737663 228 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
be839e39
CL
229 true);
230 if (ret == 0) {
231 ret = t4vf_change_mac(pi->adapter, pi->viid,
232 pi->xact_addr_filt, dev->dev_addr, true);
233 if (ret >= 0) {
234 pi->xact_addr_filt = ret;
235 ret = 0;
236 }
237 }
238
239 /*
240 * We don't need to actually "start the link" itself since the
241 * firmware will do that for us when the first Virtual Interface
242 * is enabled on a port.
243 */
244 if (ret == 0)
245 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
246 return ret;
247}
248
249/*
250 * Name the MSI-X interrupts.
251 */
252static void name_msix_vecs(struct adapter *adapter)
253{
254 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
255 int pidx;
256
257 /*
258 * Firmware events.
259 */
260 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
261 "%s-FWeventq", adapter->name);
262 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
263
264 /*
265 * Ethernet queues.
266 */
267 for_each_port(adapter, pidx) {
268 struct net_device *dev = adapter->port[pidx];
269 const struct port_info *pi = netdev_priv(dev);
270 int qs, msi;
271
caedda35 272 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
be839e39
CL
273 snprintf(adapter->msix_info[msi].desc, namelen,
274 "%s-%d", dev->name, qs);
275 adapter->msix_info[msi].desc[namelen] = 0;
276 }
277 }
278}
279
280/*
281 * Request all of our MSI-X resources.
282 */
283static int request_msix_queue_irqs(struct adapter *adapter)
284{
285 struct sge *s = &adapter->sge;
286 int rxq, msi, err;
287
288 /*
289 * Firmware events.
290 */
291 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
292 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
293 if (err)
294 return err;
295
296 /*
297 * Ethernet queues.
298 */
caedda35 299 msi = MSIX_IQFLINT;
be839e39
CL
300 for_each_ethrxq(s, rxq) {
301 err = request_irq(adapter->msix_info[msi].vec,
302 t4vf_sge_intr_msix, 0,
303 adapter->msix_info[msi].desc,
304 &s->ethrxq[rxq].rspq);
305 if (err)
306 goto err_free_irqs;
307 msi++;
308 }
309 return 0;
310
311err_free_irqs:
312 while (--rxq >= 0)
313 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
314 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
315 return err;
316}
317
318/*
319 * Free our MSI-X resources.
320 */
321static void free_msix_queue_irqs(struct adapter *adapter)
322{
323 struct sge *s = &adapter->sge;
324 int rxq, msi;
325
326 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
caedda35 327 msi = MSIX_IQFLINT;
be839e39
CL
328 for_each_ethrxq(s, rxq)
329 free_irq(adapter->msix_info[msi++].vec,
330 &s->ethrxq[rxq].rspq);
331}
332
333/*
334 * Turn on NAPI and start up interrupts on a response queue.
335 */
336static void qenable(struct sge_rspq *rspq)
337{
338 napi_enable(&rspq->napi);
339
340 /*
341 * 0-increment the Going To Sleep register to start the timer and
342 * enable interrupts.
343 */
344 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
345 CIDXINC(0) |
346 SEINTARM(rspq->intr_params) |
347 INGRESSQID(rspq->cntxt_id));
348}
349
350/*
351 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
352 */
353static void enable_rx(struct adapter *adapter)
354{
355 int rxq;
356 struct sge *s = &adapter->sge;
357
358 for_each_ethrxq(s, rxq)
359 qenable(&s->ethrxq[rxq].rspq);
360 qenable(&s->fw_evtq);
361
362 /*
363 * The interrupt queue doesn't use NAPI so we do the 0-increment of
364 * its Going To Sleep register here to get it started.
365 */
366 if (adapter->flags & USING_MSI)
367 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
368 CIDXINC(0) |
369 SEINTARM(s->intrq.intr_params) |
370 INGRESSQID(s->intrq.cntxt_id));
371
372}
373
374/*
375 * Wait until all NAPI handlers are descheduled.
376 */
377static void quiesce_rx(struct adapter *adapter)
378{
379 struct sge *s = &adapter->sge;
380 int rxq;
381
382 for_each_ethrxq(s, rxq)
383 napi_disable(&s->ethrxq[rxq].rspq.napi);
384 napi_disable(&s->fw_evtq.napi);
385}
386
387/*
388 * Response queue handler for the firmware event queue.
389 */
390static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
391 const struct pkt_gl *gl)
392{
393 /*
394 * Extract response opcode and get pointer to CPL message body.
395 */
396 struct adapter *adapter = rspq->adapter;
397 u8 opcode = ((const struct rss_header *)rsp)->opcode;
398 void *cpl = (void *)(rsp + 1);
399
400 switch (opcode) {
401 case CPL_FW6_MSG: {
402 /*
403 * We've received an asynchronous message from the firmware.
404 */
405 const struct cpl_fw6_msg *fw_msg = cpl;
406 if (fw_msg->type == FW6_TYPE_CMD_RPL)
407 t4vf_handle_fw_rpl(adapter, fw_msg->data);
408 break;
409 }
410
411 case CPL_SGE_EGR_UPDATE: {
412 /*
7f9dd2fa
CL
413 * We've received an Egress Queue Status Update message. We
414 * get these, if the SGE is configured to send these when the
415 * firmware passes certain points in processing our TX
416 * Ethernet Queue or if we make an explicit request for one.
417 * We use these updates to determine when we may need to
418 * restart a TX Ethernet Queue which was stopped for lack of
419 * free TX Queue Descriptors ...
be839e39
CL
420 */
421 const struct cpl_sge_egr_update *p = (void *)cpl;
422 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
423 struct sge *s = &adapter->sge;
424 struct sge_txq *tq;
425 struct sge_eth_txq *txq;
426 unsigned int eq_idx;
be839e39
CL
427
428 /*
429 * Perform sanity checking on the Queue ID to make sure it
430 * really refers to one of our TX Ethernet Egress Queues which
431 * is active and matches the queue's ID. None of these error
432 * conditions should ever happen so we may want to either make
433 * them fatal and/or conditionalized under DEBUG.
434 */
435 eq_idx = EQ_IDX(s, qid);
436 if (unlikely(eq_idx >= MAX_EGRQ)) {
437 dev_err(adapter->pdev_dev,
438 "Egress Update QID %d out of range\n", qid);
439 break;
440 }
441 tq = s->egr_map[eq_idx];
442 if (unlikely(tq == NULL)) {
443 dev_err(adapter->pdev_dev,
444 "Egress Update QID %d TXQ=NULL\n", qid);
445 break;
446 }
447 txq = container_of(tq, struct sge_eth_txq, q);
448 if (unlikely(tq->abs_id != qid)) {
449 dev_err(adapter->pdev_dev,
450 "Egress Update QID %d refers to TXQ %d\n",
451 qid, tq->abs_id);
452 break;
453 }
454
be839e39
CL
455 /*
456 * Restart a stopped TX Queue which has less than half of its
457 * TX ring in use ...
458 */
459 txq->q.restarts++;
460 netif_tx_wake_queue(txq->txq);
461 break;
462 }
463
464 default:
465 dev_err(adapter->pdev_dev,
466 "unexpected CPL %#x on FW event queue\n", opcode);
467 }
468
469 return 0;
470}
471
472/*
473 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
474 * to use and initializes them. We support multiple "Queue Sets" per port if
475 * we have MSI-X, otherwise just one queue set per port.
476 */
477static int setup_sge_queues(struct adapter *adapter)
478{
479 struct sge *s = &adapter->sge;
480 int err, pidx, msix;
481
482 /*
483 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
484 * state.
485 */
486 bitmap_zero(s->starving_fl, MAX_EGRQ);
487
488 /*
489 * If we're using MSI interrupt mode we need to set up a "forwarded
490 * interrupt" queue which we'll set up with our MSI vector. The rest
491 * of the ingress queues will be set up to forward their interrupts to
492 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
493 * the intrq's queue ID as the interrupt forwarding queue for the
494 * subsequent calls ...
495 */
496 if (adapter->flags & USING_MSI) {
497 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
498 adapter->port[0], 0, NULL, NULL);
499 if (err)
500 goto err_free_queues;
501 }
502
503 /*
504 * Allocate our ingress queue for asynchronous firmware messages.
505 */
506 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
507 MSIX_FW, NULL, fwevtq_handler);
508 if (err)
509 goto err_free_queues;
510
511 /*
512 * Allocate each "port"'s initial Queue Sets. These can be changed
513 * later on ... up to the point where any interface on the adapter is
514 * brought up at which point lots of things get nailed down
515 * permanently ...
516 */
caedda35 517 msix = MSIX_IQFLINT;
be839e39
CL
518 for_each_port(adapter, pidx) {
519 struct net_device *dev = adapter->port[pidx];
520 struct port_info *pi = netdev_priv(dev);
521 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
522 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
523 int qs;
524
c8639a82 525 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
526 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
527 dev, msix++,
528 &rxq->fl, t4vf_ethrx_handler);
529 if (err)
530 goto err_free_queues;
531
532 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
533 netdev_get_tx_queue(dev, qs),
534 s->fw_evtq.cntxt_id);
535 if (err)
536 goto err_free_queues;
537
538 rxq->rspq.idx = qs;
539 memset(&rxq->stats, 0, sizeof(rxq->stats));
540 }
541 }
542
543 /*
544 * Create the reverse mappings for the queues.
545 */
546 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
547 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
548 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
549 for_each_port(adapter, pidx) {
550 struct net_device *dev = adapter->port[pidx];
551 struct port_info *pi = netdev_priv(dev);
552 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
553 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
554 int qs;
555
c8639a82 556 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
557 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
558 EQ_MAP(s, txq->q.abs_id) = &txq->q;
559
560 /*
561 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
562 * for Free Lists but since all of the Egress Queues
563 * (including Free Lists) have Relative Queue IDs
564 * which are computed as Absolute - Base Queue ID, we
565 * can synthesize the Absolute Queue IDs for the Free
566 * Lists. This is useful for debugging purposes when
567 * we want to dump Queue Contexts via the PF Driver.
568 */
569 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
570 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
571 }
572 }
573 return 0;
574
575err_free_queues:
576 t4vf_free_sge_resources(adapter);
577 return err;
578}
579
580/*
581 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
582 * queues. We configure the RSS CPU lookup table to distribute to the number
583 * of HW receive queues, and the response queue lookup table to narrow that
584 * down to the response queues actually configured for each "port" (Virtual
585 * Interface). We always configure the RSS mapping for all ports since the
586 * mapping table has plenty of entries.
587 */
588static int setup_rss(struct adapter *adapter)
589{
590 int pidx;
591
592 for_each_port(adapter, pidx) {
593 struct port_info *pi = adap2pinfo(adapter, pidx);
594 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
595 u16 rss[MAX_PORT_QSETS];
596 int qs, err;
597
598 for (qs = 0; qs < pi->nqsets; qs++)
599 rss[qs] = rxq[qs].rspq.abs_id;
600
601 err = t4vf_config_rss_range(adapter, pi->viid,
602 0, pi->rss_size, rss, pi->nqsets);
603 if (err)
604 return err;
605
606 /*
607 * Perform Global RSS Mode-specific initialization.
608 */
609 switch (adapter->params.rss.mode) {
610 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
611 /*
612 * If Tunnel All Lookup isn't specified in the global
613 * RSS Configuration, then we need to specify a
614 * default Ingress Queue for any ingress packets which
615 * aren't hashed. We'll use our first ingress queue
616 * ...
617 */
618 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
619 union rss_vi_config config;
620 err = t4vf_read_rss_vi_config(adapter,
621 pi->viid,
622 &config);
623 if (err)
624 return err;
625 config.basicvirtual.defaultq =
626 rxq[0].rspq.abs_id;
627 err = t4vf_write_rss_vi_config(adapter,
628 pi->viid,
629 &config);
630 if (err)
631 return err;
632 }
633 break;
634 }
635 }
636
637 return 0;
638}
639
640/*
641 * Bring the adapter up. Called whenever we go from no "ports" open to having
642 * one open. This function performs the actions necessary to make an adapter
643 * operational, such as completing the initialization of HW modules, and
644 * enabling interrupts. Must be called with the rtnl lock held. (Note that
645 * this is called "cxgb_up" in the PF Driver.)
646 */
647static int adapter_up(struct adapter *adapter)
648{
649 int err;
650
651 /*
652 * If this is the first time we've been called, perform basic
653 * adapter setup. Once we've done this, many of our adapter
654 * parameters can no longer be changed ...
655 */
656 if ((adapter->flags & FULL_INIT_DONE) == 0) {
657 err = setup_sge_queues(adapter);
658 if (err)
659 return err;
660 err = setup_rss(adapter);
661 if (err) {
662 t4vf_free_sge_resources(adapter);
663 return err;
664 }
665
666 if (adapter->flags & USING_MSIX)
667 name_msix_vecs(adapter);
668 adapter->flags |= FULL_INIT_DONE;
669 }
670
671 /*
672 * Acquire our interrupt resources. We only support MSI-X and MSI.
673 */
674 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
675 if (adapter->flags & USING_MSIX)
676 err = request_msix_queue_irqs(adapter);
677 else
678 err = request_irq(adapter->pdev->irq,
679 t4vf_intr_handler(adapter), 0,
680 adapter->name, adapter);
681 if (err) {
682 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
683 err);
684 return err;
685 }
686
687 /*
688 * Enable NAPI ingress processing and return success.
689 */
690 enable_rx(adapter);
691 t4vf_sge_start(adapter);
692 return 0;
693}
694
695/*
696 * Bring the adapter down. Called whenever the last "port" (Virtual
697 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
698 * Driver.)
699 */
700static void adapter_down(struct adapter *adapter)
701{
702 /*
703 * Free interrupt resources.
704 */
705 if (adapter->flags & USING_MSIX)
706 free_msix_queue_irqs(adapter);
707 else
708 free_irq(adapter->pdev->irq, adapter);
709
710 /*
711 * Wait for NAPI handlers to finish.
712 */
713 quiesce_rx(adapter);
714}
715
716/*
717 * Start up a net device.
718 */
719static int cxgb4vf_open(struct net_device *dev)
720{
721 int err;
722 struct port_info *pi = netdev_priv(dev);
723 struct adapter *adapter = pi->adapter;
724
725 /*
726 * If this is the first interface that we're opening on the "adapter",
727 * bring the "adapter" up now.
728 */
729 if (adapter->open_device_map == 0) {
730 err = adapter_up(adapter);
731 if (err)
732 return err;
733 }
734
735 /*
736 * Note that this interface is up and start everything up ...
737 */
003ab674
BH
738 netif_set_real_num_tx_queues(dev, pi->nqsets);
739 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
740 if (err)
343a8d13 741 goto err_unwind;
e7a3795f
CL
742 err = link_start(dev);
743 if (err)
343a8d13
CL
744 goto err_unwind;
745
be839e39 746 netif_tx_start_all_queues(dev);
343a8d13 747 set_bit(pi->port_id, &adapter->open_device_map);
be839e39 748 return 0;
343a8d13
CL
749
750err_unwind:
751 if (adapter->open_device_map == 0)
752 adapter_down(adapter);
753 return err;
be839e39
CL
754}
755
756/*
757 * Shut down a net device. This routine is called "cxgb_close" in the PF
758 * Driver ...
759 */
760static int cxgb4vf_stop(struct net_device *dev)
761{
be839e39
CL
762 struct port_info *pi = netdev_priv(dev);
763 struct adapter *adapter = pi->adapter;
764
765 netif_tx_stop_all_queues(dev);
766 netif_carrier_off(dev);
343a8d13 767 t4vf_enable_vi(adapter, pi->viid, false, false);
be839e39
CL
768 pi->link_cfg.link_ok = 0;
769
770 clear_bit(pi->port_id, &adapter->open_device_map);
771 if (adapter->open_device_map == 0)
772 adapter_down(adapter);
773 return 0;
774}
775
776/*
777 * Translate our basic statistics into the standard "ifconfig" statistics.
778 */
779static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
780{
781 struct t4vf_port_stats stats;
782 struct port_info *pi = netdev2pinfo(dev);
783 struct adapter *adapter = pi->adapter;
784 struct net_device_stats *ns = &dev->stats;
785 int err;
786
787 spin_lock(&adapter->stats_lock);
788 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
789 spin_unlock(&adapter->stats_lock);
790
791 memset(ns, 0, sizeof(*ns));
792 if (err)
793 return ns;
794
795 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
796 stats.tx_ucast_bytes + stats.tx_offload_bytes);
797 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
798 stats.tx_ucast_frames + stats.tx_offload_frames);
799 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
800 stats.rx_ucast_bytes);
801 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
802 stats.rx_ucast_frames);
803 ns->multicast = stats.rx_mcast_frames;
804 ns->tx_errors = stats.tx_drop_frames;
805 ns->rx_errors = stats.rx_err_frames;
806
807 return ns;
808}
809
810/*
42eb59d3
CL
811 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
812 * at a specified offset within the list, into an array of addrss pointers and
813 * return the number collected.
be839e39 814 */
42eb59d3
CL
815static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
816 const u8 **addr,
817 unsigned int offset,
818 unsigned int maxaddrs)
be839e39 819{
42eb59d3 820 unsigned int index = 0;
be839e39
CL
821 unsigned int naddr = 0;
822 const struct netdev_hw_addr *ha;
823
42eb59d3
CL
824 for_each_dev_addr(dev, ha)
825 if (index++ >= offset) {
826 addr[naddr++] = ha->addr;
827 if (naddr >= maxaddrs)
828 break;
829 }
be839e39
CL
830 return naddr;
831}
832
833/*
42eb59d3
CL
834 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
835 * at a specified offset within the list, into an array of addrss pointers and
836 * return the number collected.
be839e39 837 */
42eb59d3
CL
838static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
839 const u8 **addr,
840 unsigned int offset,
841 unsigned int maxaddrs)
be839e39 842{
42eb59d3 843 unsigned int index = 0;
be839e39
CL
844 unsigned int naddr = 0;
845 const struct netdev_hw_addr *ha;
846
42eb59d3
CL
847 netdev_for_each_mc_addr(ha, dev)
848 if (index++ >= offset) {
849 addr[naddr++] = ha->addr;
850 if (naddr >= maxaddrs)
851 break;
852 }
be839e39
CL
853 return naddr;
854}
855
856/*
857 * Configure the exact and hash address filters to handle a port's multicast
858 * and secondary unicast MAC addresses.
859 */
860static int set_addr_filters(const struct net_device *dev, bool sleep)
861{
862 u64 mhash = 0;
863 u64 uhash = 0;
864 bool free = true;
42eb59d3 865 unsigned int offset, naddr;
be839e39 866 const u8 *addr[7];
42eb59d3 867 int ret;
be839e39
CL
868 const struct port_info *pi = netdev_priv(dev);
869
870 /* first do the secondary unicast addresses */
42eb59d3
CL
871 for (offset = 0; ; offset += naddr) {
872 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
873 ARRAY_SIZE(addr));
874 if (naddr == 0)
875 break;
876
be839e39 877 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 878 naddr, addr, NULL, &uhash, sleep);
be839e39
CL
879 if (ret < 0)
880 return ret;
881
882 free = false;
883 }
884
885 /* next set up the multicast addresses */
42eb59d3
CL
886 for (offset = 0; ; offset += naddr) {
887 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
888 ARRAY_SIZE(addr));
889 if (naddr == 0)
890 break;
891
be839e39 892 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
42eb59d3 893 naddr, addr, NULL, &mhash, sleep);
be839e39
CL
894 if (ret < 0)
895 return ret;
42eb59d3 896 free = false;
be839e39
CL
897 }
898
899 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
900 uhash | mhash, sleep);
901}
902
903/*
904 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
905 * If @mtu is -1 it is left unchanged.
906 */
907static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
908{
909 int ret;
910 struct port_info *pi = netdev_priv(dev);
911
912 ret = set_addr_filters(dev, sleep_ok);
913 if (ret == 0)
914 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
915 (dev->flags & IFF_PROMISC) != 0,
916 (dev->flags & IFF_ALLMULTI) != 0,
917 1, -1, sleep_ok);
918 return ret;
919}
920
921/*
922 * Set the current receive modes on the device.
923 */
924static void cxgb4vf_set_rxmode(struct net_device *dev)
925{
926 /* unfortunately we can't return errors to the stack */
927 set_rxmode(dev, -1, false);
928}
929
930/*
931 * Find the entry in the interrupt holdoff timer value array which comes
932 * closest to the specified interrupt holdoff value.
933 */
934static int closest_timer(const struct sge *s, int us)
935{
936 int i, timer_idx = 0, min_delta = INT_MAX;
937
938 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
939 int delta = us - s->timer_val[i];
940 if (delta < 0)
941 delta = -delta;
942 if (delta < min_delta) {
943 min_delta = delta;
944 timer_idx = i;
945 }
946 }
947 return timer_idx;
948}
949
950static int closest_thres(const struct sge *s, int thres)
951{
952 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
953
954 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
955 delta = thres - s->counter_val[i];
956 if (delta < 0)
957 delta = -delta;
958 if (delta < min_delta) {
959 min_delta = delta;
960 pktcnt_idx = i;
961 }
962 }
963 return pktcnt_idx;
964}
965
966/*
967 * Return a queue's interrupt hold-off time in us. 0 means no timer.
968 */
969static unsigned int qtimer_val(const struct adapter *adapter,
970 const struct sge_rspq *rspq)
971{
972 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
973
974 return timer_idx < SGE_NTIMERS
975 ? adapter->sge.timer_val[timer_idx]
976 : 0;
977}
978
979/**
980 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
981 * @adapter: the adapter
982 * @rspq: the RX response queue
983 * @us: the hold-off time in us, or 0 to disable timer
984 * @cnt: the hold-off packet count, or 0 to disable counter
985 *
986 * Sets an RX response queue's interrupt hold-off time and packet count.
987 * At least one of the two needs to be enabled for the queue to generate
988 * interrupts.
989 */
990static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
991 unsigned int us, unsigned int cnt)
992{
993 unsigned int timer_idx;
994
995 /*
996 * If both the interrupt holdoff timer and count are specified as
997 * zero, default to a holdoff count of 1 ...
998 */
999 if ((us | cnt) == 0)
1000 cnt = 1;
1001
1002 /*
1003 * If an interrupt holdoff count has been specified, then find the
1004 * closest configured holdoff count and use that. If the response
1005 * queue has already been created, then update its queue context
1006 * parameters ...
1007 */
1008 if (cnt) {
1009 int err;
1010 u32 v, pktcnt_idx;
1011
1012 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1013 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1014 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1015 FW_PARAMS_PARAM_X(
1016 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1017 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1018 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1019 if (err)
1020 return err;
1021 }
1022 rspq->pktcnt_idx = pktcnt_idx;
1023 }
1024
1025 /*
1026 * Compute the closest holdoff timer index from the supplied holdoff
1027 * timer value.
1028 */
1029 timer_idx = (us == 0
1030 ? SGE_TIMER_RSTRT_CNTR
1031 : closest_timer(&adapter->sge, us));
1032
1033 /*
1034 * Update the response queue's interrupt coalescing parameters and
1035 * return success.
1036 */
1037 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1038 (cnt > 0 ? QINTR_CNT_EN : 0));
1039 return 0;
1040}
1041
1042/*
1043 * Return a version number to identify the type of adapter. The scheme is:
1044 * - bits 0..9: chip version
1045 * - bits 10..15: chip revision
1046 */
1047static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1048{
1049 /*
1050 * Chip version 4, revision 0x3f (cxgb4vf).
1051 */
1052 return 4 | (0x3f << 10);
1053}
1054
1055/*
1056 * Execute the specified ioctl command.
1057 */
1058static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1059{
1060 int ret = 0;
1061
1062 switch (cmd) {
1063 /*
1064 * The VF Driver doesn't have access to any of the other
1065 * common Ethernet device ioctl()'s (like reading/writing
1066 * PHY registers, etc.
1067 */
1068
1069 default:
1070 ret = -EOPNOTSUPP;
1071 break;
1072 }
1073 return ret;
1074}
1075
1076/*
1077 * Change the device's MTU.
1078 */
1079static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1080{
1081 int ret;
1082 struct port_info *pi = netdev_priv(dev);
1083
1084 /* accommodate SACK */
1085 if (new_mtu < 81)
1086 return -EINVAL;
1087
1088 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1089 -1, -1, -1, -1, true);
1090 if (!ret)
1091 dev->mtu = new_mtu;
1092 return ret;
1093}
1094
87737663
JP
1095static u32 cxgb4vf_fix_features(struct net_device *dev, u32 features)
1096{
1097 /*
1098 * Since there is no support for separate rx/tx vlan accel
1099 * enable/disable make sure tx flag is always in same state as rx.
1100 */
1101 if (features & NETIF_F_HW_VLAN_RX)
1102 features |= NETIF_F_HW_VLAN_TX;
1103 else
1104 features &= ~NETIF_F_HW_VLAN_TX;
1105
1106 return features;
1107}
1108
1109static int cxgb4vf_set_features(struct net_device *dev, u32 features)
1110{
1111 struct port_info *pi = netdev_priv(dev);
1112 u32 changed = dev->features ^ features;
1113
1114 if (changed & NETIF_F_HW_VLAN_RX)
1115 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1116 features & NETIF_F_HW_VLAN_TX, 0);
1117
1118 return 0;
1119}
1120
be839e39
CL
1121/*
1122 * Change the devices MAC address.
1123 */
1124static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1125{
1126 int ret;
1127 struct sockaddr *addr = _addr;
1128 struct port_info *pi = netdev_priv(dev);
1129
1130 if (!is_valid_ether_addr(addr->sa_data))
1131 return -EINVAL;
1132
1133 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1134 addr->sa_data, true);
1135 if (ret < 0)
1136 return ret;
1137
1138 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1139 pi->xact_addr_filt = ret;
1140 return 0;
1141}
1142
be839e39
CL
1143#ifdef CONFIG_NET_POLL_CONTROLLER
1144/*
1145 * Poll all of our receive queues. This is called outside of normal interrupt
1146 * context.
1147 */
1148static void cxgb4vf_poll_controller(struct net_device *dev)
1149{
1150 struct port_info *pi = netdev_priv(dev);
1151 struct adapter *adapter = pi->adapter;
1152
1153 if (adapter->flags & USING_MSIX) {
1154 struct sge_eth_rxq *rxq;
1155 int nqsets;
1156
1157 rxq = &adapter->sge.ethrxq[pi->first_qset];
1158 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1159 t4vf_sge_intr_msix(0, &rxq->rspq);
1160 rxq++;
1161 }
1162 } else
1163 t4vf_intr_handler(adapter)(0, adapter);
1164}
1165#endif
1166
1167/*
1168 * Ethtool operations.
1169 * ===================
1170 *
1171 * Note that we don't support any ethtool operations which change the physical
1172 * state of the port to which we're linked.
1173 */
1174
1175/*
1176 * Return current port link settings.
1177 */
1178static int cxgb4vf_get_settings(struct net_device *dev,
1179 struct ethtool_cmd *cmd)
1180{
1181 const struct port_info *pi = netdev_priv(dev);
1182
1183 cmd->supported = pi->link_cfg.supported;
1184 cmd->advertising = pi->link_cfg.advertising;
70739497
DD
1185 ethtool_cmd_speed_set(cmd,
1186 netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
be839e39
CL
1187 cmd->duplex = DUPLEX_FULL;
1188
1189 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1190 cmd->phy_address = pi->port_id;
1191 cmd->transceiver = XCVR_EXTERNAL;
1192 cmd->autoneg = pi->link_cfg.autoneg;
1193 cmd->maxtxpkt = 0;
1194 cmd->maxrxpkt = 0;
1195 return 0;
1196}
1197
1198/*
1199 * Return our driver information.
1200 */
1201static void cxgb4vf_get_drvinfo(struct net_device *dev,
1202 struct ethtool_drvinfo *drvinfo)
1203{
1204 struct adapter *adapter = netdev2adap(dev);
1205
23020ab3
RJ
1206 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1207 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1208 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1209 sizeof(drvinfo->bus_info));
be839e39
CL
1210 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1211 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1212 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1213 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1214 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1215 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1216 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1217 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1218 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1219 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1220}
1221
1222/*
1223 * Return current adapter message level.
1224 */
1225static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1226{
1227 return netdev2adap(dev)->msg_enable;
1228}
1229
1230/*
1231 * Set current adapter message level.
1232 */
1233static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1234{
1235 netdev2adap(dev)->msg_enable = msglevel;
1236}
1237
1238/*
1239 * Return the device's current Queue Set ring size parameters along with the
1240 * allowed maximum values. Since ethtool doesn't understand the concept of
1241 * multi-queue devices, we just return the current values associated with the
1242 * first Queue Set.
1243 */
1244static void cxgb4vf_get_ringparam(struct net_device *dev,
1245 struct ethtool_ringparam *rp)
1246{
1247 const struct port_info *pi = netdev_priv(dev);
1248 const struct sge *s = &pi->adapter->sge;
1249
1250 rp->rx_max_pending = MAX_RX_BUFFERS;
1251 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1252 rp->rx_jumbo_max_pending = 0;
1253 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1254
1255 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1256 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1257 rp->rx_jumbo_pending = 0;
1258 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1259}
1260
1261/*
1262 * Set the Queue Set ring size parameters for the device. Again, since
1263 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1264 * apply these new values across all of the Queue Sets associated with the
1265 * device -- after vetting them of course!
1266 */
1267static int cxgb4vf_set_ringparam(struct net_device *dev,
1268 struct ethtool_ringparam *rp)
1269{
1270 const struct port_info *pi = netdev_priv(dev);
1271 struct adapter *adapter = pi->adapter;
1272 struct sge *s = &adapter->sge;
1273 int qs;
1274
1275 if (rp->rx_pending > MAX_RX_BUFFERS ||
1276 rp->rx_jumbo_pending ||
1277 rp->tx_pending > MAX_TXQ_ENTRIES ||
1278 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1279 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1280 rp->rx_pending < MIN_FL_ENTRIES ||
1281 rp->tx_pending < MIN_TXQ_ENTRIES)
1282 return -EINVAL;
1283
1284 if (adapter->flags & FULL_INIT_DONE)
1285 return -EBUSY;
1286
1287 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1288 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1289 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1290 s->ethtxq[qs].q.size = rp->tx_pending;
1291 }
1292 return 0;
1293}
1294
1295/*
1296 * Return the interrupt holdoff timer and count for the first Queue Set on the
1297 * device. Our extension ioctl() (the cxgbtool interface) allows the
1298 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1299 */
1300static int cxgb4vf_get_coalesce(struct net_device *dev,
1301 struct ethtool_coalesce *coalesce)
1302{
1303 const struct port_info *pi = netdev_priv(dev);
1304 const struct adapter *adapter = pi->adapter;
1305 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1306
1307 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1308 coalesce->rx_max_coalesced_frames =
1309 ((rspq->intr_params & QINTR_CNT_EN)
1310 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1311 : 0);
1312 return 0;
1313}
1314
1315/*
1316 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1317 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1318 * the interrupt holdoff timer on any of the device's Queue Sets.
1319 */
1320static int cxgb4vf_set_coalesce(struct net_device *dev,
1321 struct ethtool_coalesce *coalesce)
1322{
1323 const struct port_info *pi = netdev_priv(dev);
1324 struct adapter *adapter = pi->adapter;
1325
1326 return set_rxq_intr_params(adapter,
1327 &adapter->sge.ethrxq[pi->first_qset].rspq,
1328 coalesce->rx_coalesce_usecs,
1329 coalesce->rx_max_coalesced_frames);
1330}
1331
1332/*
1333 * Report current port link pause parameter settings.
1334 */
1335static void cxgb4vf_get_pauseparam(struct net_device *dev,
1336 struct ethtool_pauseparam *pauseparam)
1337{
1338 struct port_info *pi = netdev_priv(dev);
1339
1340 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1341 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1342 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1343}
1344
be839e39
CL
1345/*
1346 * Identify the port by blinking the port's LED.
1347 */
857a3d0f
DM
1348static int cxgb4vf_phys_id(struct net_device *dev,
1349 enum ethtool_phys_id_state state)
be839e39 1350{
857a3d0f 1351 unsigned int val;
be839e39
CL
1352 struct port_info *pi = netdev_priv(dev);
1353
857a3d0f
DM
1354 if (state == ETHTOOL_ID_ACTIVE)
1355 val = 0xffff;
1356 else if (state == ETHTOOL_ID_INACTIVE)
1357 val = 0;
1358 else
1359 return -EINVAL;
1360
1361 return t4vf_identify_port(pi->adapter, pi->viid, val);
be839e39
CL
1362}
1363
1364/*
1365 * Port stats maintained per queue of the port.
1366 */
1367struct queue_port_stats {
1368 u64 tso;
1369 u64 tx_csum;
1370 u64 rx_csum;
1371 u64 vlan_ex;
1372 u64 vlan_ins;
f12fe353
CL
1373 u64 lro_pkts;
1374 u64 lro_merged;
be839e39
CL
1375};
1376
1377/*
1378 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1379 * these need to match the order of statistics returned by
1380 * t4vf_get_port_stats().
1381 */
1382static const char stats_strings[][ETH_GSTRING_LEN] = {
1383 /*
1384 * These must match the layout of the t4vf_port_stats structure.
1385 */
1386 "TxBroadcastBytes ",
1387 "TxBroadcastFrames ",
1388 "TxMulticastBytes ",
1389 "TxMulticastFrames ",
1390 "TxUnicastBytes ",
1391 "TxUnicastFrames ",
1392 "TxDroppedFrames ",
1393 "TxOffloadBytes ",
1394 "TxOffloadFrames ",
1395 "RxBroadcastBytes ",
1396 "RxBroadcastFrames ",
1397 "RxMulticastBytes ",
1398 "RxMulticastFrames ",
1399 "RxUnicastBytes ",
1400 "RxUnicastFrames ",
1401 "RxErrorFrames ",
1402
1403 /*
1404 * These are accumulated per-queue statistics and must match the
1405 * order of the fields in the queue_port_stats structure.
1406 */
1407 "TSO ",
1408 "TxCsumOffload ",
1409 "RxCsumGood ",
1410 "VLANextractions ",
1411 "VLANinsertions ",
f12fe353
CL
1412 "GROPackets ",
1413 "GROMerged ",
be839e39
CL
1414};
1415
1416/*
1417 * Return the number of statistics in the specified statistics set.
1418 */
1419static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1420{
1421 switch (sset) {
1422 case ETH_SS_STATS:
1423 return ARRAY_SIZE(stats_strings);
1424 default:
1425 return -EOPNOTSUPP;
1426 }
1427 /*NOTREACHED*/
1428}
1429
1430/*
1431 * Return the strings for the specified statistics set.
1432 */
1433static void cxgb4vf_get_strings(struct net_device *dev,
1434 u32 sset,
1435 u8 *data)
1436{
1437 switch (sset) {
1438 case ETH_SS_STATS:
1439 memcpy(data, stats_strings, sizeof(stats_strings));
1440 break;
1441 }
1442}
1443
1444/*
1445 * Small utility routine to accumulate queue statistics across the queues of
1446 * a "port".
1447 */
1448static void collect_sge_port_stats(const struct adapter *adapter,
1449 const struct port_info *pi,
1450 struct queue_port_stats *stats)
1451{
1452 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1453 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1454 int qs;
1455
1456 memset(stats, 0, sizeof(*stats));
1457 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1458 stats->tso += txq->tso;
1459 stats->tx_csum += txq->tx_cso;
1460 stats->rx_csum += rxq->stats.rx_cso;
1461 stats->vlan_ex += rxq->stats.vlan_ex;
1462 stats->vlan_ins += txq->vlan_ins;
f12fe353
CL
1463 stats->lro_pkts += rxq->stats.lro_pkts;
1464 stats->lro_merged += rxq->stats.lro_merged;
be839e39
CL
1465 }
1466}
1467
1468/*
1469 * Return the ETH_SS_STATS statistics set.
1470 */
1471static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1472 struct ethtool_stats *stats,
1473 u64 *data)
1474{
1475 struct port_info *pi = netdev2pinfo(dev);
1476 struct adapter *adapter = pi->adapter;
1477 int err = t4vf_get_port_stats(adapter, pi->pidx,
1478 (struct t4vf_port_stats *)data);
1479 if (err)
1480 memset(data, 0, sizeof(struct t4vf_port_stats));
1481
1482 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1483 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1484}
1485
1486/*
1487 * Return the size of our register map.
1488 */
1489static int cxgb4vf_get_regs_len(struct net_device *dev)
1490{
1491 return T4VF_REGMAP_SIZE;
1492}
1493
1494/*
1495 * Dump a block of registers, start to end inclusive, into a buffer.
1496 */
1497static void reg_block_dump(struct adapter *adapter, void *regbuf,
1498 unsigned int start, unsigned int end)
1499{
1500 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1501
1502 for ( ; start <= end; start += sizeof(u32)) {
1503 /*
1504 * Avoid reading the Mailbox Control register since that
1505 * can trigger a Mailbox Ownership Arbitration cycle and
1506 * interfere with communication with the firmware.
1507 */
1508 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1509 *bp++ = 0xffff;
1510 else
1511 *bp++ = t4_read_reg(adapter, start);
1512 }
1513}
1514
1515/*
1516 * Copy our entire register map into the provided buffer.
1517 */
1518static void cxgb4vf_get_regs(struct net_device *dev,
1519 struct ethtool_regs *regs,
1520 void *regbuf)
1521{
1522 struct adapter *adapter = netdev2adap(dev);
1523
1524 regs->version = mk_adap_vers(adapter);
1525
1526 /*
1527 * Fill in register buffer with our register map.
1528 */
1529 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1530
1531 reg_block_dump(adapter, regbuf,
1532 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1533 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1534 reg_block_dump(adapter, regbuf,
1535 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1536 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1537 reg_block_dump(adapter, regbuf,
1538 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1539 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1540 reg_block_dump(adapter, regbuf,
1541 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1542 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1543
1544 reg_block_dump(adapter, regbuf,
1545 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1546 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1547}
1548
1549/*
1550 * Report current Wake On LAN settings.
1551 */
1552static void cxgb4vf_get_wol(struct net_device *dev,
1553 struct ethtool_wolinfo *wol)
1554{
1555 wol->supported = 0;
1556 wol->wolopts = 0;
1557 memset(&wol->sopass, 0, sizeof(wol->sopass));
1558}
1559
410989f6
CL
1560/*
1561 * TCP Segmentation Offload flags which we support.
1562 */
1563#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1564
be839e39
CL
1565static struct ethtool_ops cxgb4vf_ethtool_ops = {
1566 .get_settings = cxgb4vf_get_settings,
1567 .get_drvinfo = cxgb4vf_get_drvinfo,
1568 .get_msglevel = cxgb4vf_get_msglevel,
1569 .set_msglevel = cxgb4vf_set_msglevel,
1570 .get_ringparam = cxgb4vf_get_ringparam,
1571 .set_ringparam = cxgb4vf_set_ringparam,
1572 .get_coalesce = cxgb4vf_get_coalesce,
1573 .set_coalesce = cxgb4vf_set_coalesce,
1574 .get_pauseparam = cxgb4vf_get_pauseparam,
be839e39
CL
1575 .get_link = ethtool_op_get_link,
1576 .get_strings = cxgb4vf_get_strings,
857a3d0f 1577 .set_phys_id = cxgb4vf_phys_id,
be839e39
CL
1578 .get_sset_count = cxgb4vf_get_sset_count,
1579 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1580 .get_regs_len = cxgb4vf_get_regs_len,
1581 .get_regs = cxgb4vf_get_regs,
1582 .get_wol = cxgb4vf_get_wol,
be839e39
CL
1583};
1584
1585/*
1586 * /sys/kernel/debug/cxgb4vf support code and data.
1587 * ================================================
1588 */
1589
1590/*
1591 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1592 */
1593#define QPL 4
1594
1595static int sge_qinfo_show(struct seq_file *seq, void *v)
1596{
1597 struct adapter *adapter = seq->private;
1598 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1599 int qs, r = (uintptr_t)v - 1;
1600
1601 if (r)
1602 seq_putc(seq, '\n');
1603
1604 #define S3(fmt_spec, s, v) \
1605 do {\
1606 seq_printf(seq, "%-12s", s); \
1607 for (qs = 0; qs < n; ++qs) \
1608 seq_printf(seq, " %16" fmt_spec, v); \
1609 seq_putc(seq, '\n'); \
1610 } while (0)
1611 #define S(s, v) S3("s", s, v)
1612 #define T(s, v) S3("u", s, txq[qs].v)
1613 #define R(s, v) S3("u", s, rxq[qs].v)
1614
1615 if (r < eth_entries) {
1616 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1617 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1618 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1619
1620 S("QType:", "Ethernet");
1621 S("Interface:",
1622 (rxq[qs].rspq.netdev
1623 ? rxq[qs].rspq.netdev->name
1624 : "N/A"));
1625 S3("d", "Port:",
1626 (rxq[qs].rspq.netdev
1627 ? ((struct port_info *)
1628 netdev_priv(rxq[qs].rspq.netdev))->port_id
1629 : -1));
1630 T("TxQ ID:", q.abs_id);
1631 T("TxQ size:", q.size);
1632 T("TxQ inuse:", q.in_use);
1633 T("TxQ PIdx:", q.pidx);
1634 T("TxQ CIdx:", q.cidx);
1635 R("RspQ ID:", rspq.abs_id);
1636 R("RspQ size:", rspq.size);
1637 R("RspQE size:", rspq.iqe_len);
1638 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1639 S3("u", "Intr pktcnt:",
1640 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1641 R("RspQ CIdx:", rspq.cidx);
1642 R("RspQ Gen:", rspq.gen);
1643 R("FL ID:", fl.abs_id);
1644 R("FL size:", fl.size - MIN_FL_RESID);
1645 R("FL avail:", fl.avail);
1646 R("FL PIdx:", fl.pidx);
1647 R("FL CIdx:", fl.cidx);
1648 return 0;
1649 }
1650
1651 r -= eth_entries;
1652 if (r == 0) {
1653 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1654
1655 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1656 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1657 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1658 qtimer_val(adapter, evtq));
1659 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1660 adapter->sge.counter_val[evtq->pktcnt_idx]);
1661 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1662 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1663 } else if (r == 1) {
1664 const struct sge_rspq *intrq = &adapter->sge.intrq;
1665
1666 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1667 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1668 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1669 qtimer_val(adapter, intrq));
1670 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1671 adapter->sge.counter_val[intrq->pktcnt_idx]);
1672 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1673 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1674 }
1675
1676 #undef R
1677 #undef T
1678 #undef S
1679 #undef S3
1680
1681 return 0;
1682}
1683
1684/*
1685 * Return the number of "entries" in our "file". We group the multi-Queue
1686 * sections with QPL Queue Sets per "entry". The sections of the output are:
1687 *
1688 * Ethernet RX/TX Queue Sets
1689 * Firmware Event Queue
1690 * Forwarded Interrupt Queue (if in MSI mode)
1691 */
1692static int sge_queue_entries(const struct adapter *adapter)
1693{
1694 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1695 ((adapter->flags & USING_MSI) != 0);
1696}
1697
1698static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1699{
1700 int entries = sge_queue_entries(seq->private);
1701
1702 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1703}
1704
1705static void sge_queue_stop(struct seq_file *seq, void *v)
1706{
1707}
1708
1709static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1710{
1711 int entries = sge_queue_entries(seq->private);
1712
1713 ++*pos;
1714 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1715}
1716
1717static const struct seq_operations sge_qinfo_seq_ops = {
1718 .start = sge_queue_start,
1719 .next = sge_queue_next,
1720 .stop = sge_queue_stop,
1721 .show = sge_qinfo_show
1722};
1723
1724static int sge_qinfo_open(struct inode *inode, struct file *file)
1725{
1726 int res = seq_open(file, &sge_qinfo_seq_ops);
1727
1728 if (!res) {
1729 struct seq_file *seq = file->private_data;
1730 seq->private = inode->i_private;
1731 }
1732 return res;
1733}
1734
1735static const struct file_operations sge_qinfo_debugfs_fops = {
1736 .owner = THIS_MODULE,
1737 .open = sge_qinfo_open,
1738 .read = seq_read,
1739 .llseek = seq_lseek,
1740 .release = seq_release,
1741};
1742
1743/*
1744 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1745 */
1746#define QPL 4
1747
1748static int sge_qstats_show(struct seq_file *seq, void *v)
1749{
1750 struct adapter *adapter = seq->private;
1751 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1752 int qs, r = (uintptr_t)v - 1;
1753
1754 if (r)
1755 seq_putc(seq, '\n');
1756
1757 #define S3(fmt, s, v) \
1758 do { \
1759 seq_printf(seq, "%-16s", s); \
1760 for (qs = 0; qs < n; ++qs) \
1761 seq_printf(seq, " %8" fmt, v); \
1762 seq_putc(seq, '\n'); \
1763 } while (0)
1764 #define S(s, v) S3("s", s, v)
1765
1766 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1767 #define T(s, v) T3("lu", s, v)
1768
1769 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1770 #define R(s, v) R3("lu", s, v)
1771
1772 if (r < eth_entries) {
1773 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1774 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1775 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1776
1777 S("QType:", "Ethernet");
1778 S("Interface:",
1779 (rxq[qs].rspq.netdev
1780 ? rxq[qs].rspq.netdev->name
1781 : "N/A"));
68dc9d36 1782 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1783 R("RxPackets:", stats.pkts);
1784 R("RxCSO:", stats.rx_cso);
1785 R("VLANxtract:", stats.vlan_ex);
1786 R("LROmerged:", stats.lro_merged);
1787 R("LROpackets:", stats.lro_pkts);
1788 R("RxDrops:", stats.rx_drops);
1789 T("TSO:", tso);
1790 T("TxCSO:", tx_cso);
1791 T("VLANins:", vlan_ins);
1792 T("TxQFull:", q.stops);
1793 T("TxQRestarts:", q.restarts);
1794 T("TxMapErr:", mapping_err);
1795 R("FLAllocErr:", fl.alloc_failed);
1796 R("FLLrgAlcErr:", fl.large_alloc_failed);
1797 R("FLStarving:", fl.starving);
1798 return 0;
1799 }
1800
1801 r -= eth_entries;
1802 if (r == 0) {
1803 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1804
1805 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1806 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1807 evtq->unhandled_irqs);
be839e39
CL
1808 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1809 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1810 } else if (r == 1) {
1811 const struct sge_rspq *intrq = &adapter->sge.intrq;
1812
1813 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1814 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1815 intrq->unhandled_irqs);
be839e39
CL
1816 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1817 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1818 }
1819
1820 #undef R
1821 #undef T
1822 #undef S
1823 #undef R3
1824 #undef T3
1825 #undef S3
1826
1827 return 0;
1828}
1829
1830/*
1831 * Return the number of "entries" in our "file". We group the multi-Queue
1832 * sections with QPL Queue Sets per "entry". The sections of the output are:
1833 *
1834 * Ethernet RX/TX Queue Sets
1835 * Firmware Event Queue
1836 * Forwarded Interrupt Queue (if in MSI mode)
1837 */
1838static int sge_qstats_entries(const struct adapter *adapter)
1839{
1840 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1841 ((adapter->flags & USING_MSI) != 0);
1842}
1843
1844static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1845{
1846 int entries = sge_qstats_entries(seq->private);
1847
1848 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1849}
1850
1851static void sge_qstats_stop(struct seq_file *seq, void *v)
1852{
1853}
1854
1855static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1856{
1857 int entries = sge_qstats_entries(seq->private);
1858
1859 (*pos)++;
1860 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1861}
1862
1863static const struct seq_operations sge_qstats_seq_ops = {
1864 .start = sge_qstats_start,
1865 .next = sge_qstats_next,
1866 .stop = sge_qstats_stop,
1867 .show = sge_qstats_show
1868};
1869
1870static int sge_qstats_open(struct inode *inode, struct file *file)
1871{
1872 int res = seq_open(file, &sge_qstats_seq_ops);
1873
1874 if (res == 0) {
1875 struct seq_file *seq = file->private_data;
1876 seq->private = inode->i_private;
1877 }
1878 return res;
1879}
1880
1881static const struct file_operations sge_qstats_proc_fops = {
1882 .owner = THIS_MODULE,
1883 .open = sge_qstats_open,
1884 .read = seq_read,
1885 .llseek = seq_lseek,
1886 .release = seq_release,
1887};
1888
1889/*
1890 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1891 */
1892static int resources_show(struct seq_file *seq, void *v)
1893{
1894 struct adapter *adapter = seq->private;
1895 struct vf_resources *vfres = &adapter->params.vfres;
1896
1897 #define S(desc, fmt, var) \
1898 seq_printf(seq, "%-60s " fmt "\n", \
1899 desc " (" #var "):", vfres->var)
1900
1901 S("Virtual Interfaces", "%d", nvi);
1902 S("Egress Queues", "%d", neq);
1903 S("Ethernet Control", "%d", nethctrl);
1904 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1905 S("Ingress Queues", "%d", niq);
1906 S("Traffic Class", "%d", tc);
1907 S("Port Access Rights Mask", "%#x", pmask);
1908 S("MAC Address Filters", "%d", nexactf);
1909 S("Firmware Command Read Capabilities", "%#x", r_caps);
1910 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1911
1912 #undef S
1913
1914 return 0;
1915}
1916
1917static int resources_open(struct inode *inode, struct file *file)
1918{
1919 return single_open(file, resources_show, inode->i_private);
1920}
1921
1922static const struct file_operations resources_proc_fops = {
1923 .owner = THIS_MODULE,
1924 .open = resources_open,
1925 .read = seq_read,
1926 .llseek = seq_lseek,
1927 .release = single_release,
1928};
1929
1930/*
1931 * Show Virtual Interfaces.
1932 */
1933static int interfaces_show(struct seq_file *seq, void *v)
1934{
1935 if (v == SEQ_START_TOKEN) {
1936 seq_puts(seq, "Interface Port VIID\n");
1937 } else {
1938 struct adapter *adapter = seq->private;
1939 int pidx = (uintptr_t)v - 2;
1940 struct net_device *dev = adapter->port[pidx];
1941 struct port_info *pi = netdev_priv(dev);
1942
1943 seq_printf(seq, "%9s %4d %#5x\n",
1944 dev->name, pi->port_id, pi->viid);
1945 }
1946 return 0;
1947}
1948
1949static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1950{
1951 return pos <= adapter->params.nports
1952 ? (void *)(uintptr_t)(pos + 1)
1953 : NULL;
1954}
1955
1956static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1957{
1958 return *pos
1959 ? interfaces_get_idx(seq->private, *pos)
1960 : SEQ_START_TOKEN;
1961}
1962
1963static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1964{
1965 (*pos)++;
1966 return interfaces_get_idx(seq->private, *pos);
1967}
1968
1969static void interfaces_stop(struct seq_file *seq, void *v)
1970{
1971}
1972
1973static const struct seq_operations interfaces_seq_ops = {
1974 .start = interfaces_start,
1975 .next = interfaces_next,
1976 .stop = interfaces_stop,
1977 .show = interfaces_show
1978};
1979
1980static int interfaces_open(struct inode *inode, struct file *file)
1981{
1982 int res = seq_open(file, &interfaces_seq_ops);
1983
1984 if (res == 0) {
1985 struct seq_file *seq = file->private_data;
1986 seq->private = inode->i_private;
1987 }
1988 return res;
1989}
1990
1991static const struct file_operations interfaces_proc_fops = {
1992 .owner = THIS_MODULE,
1993 .open = interfaces_open,
1994 .read = seq_read,
1995 .llseek = seq_lseek,
1996 .release = seq_release,
1997};
1998
1999/*
2000 * /sys/kernel/debugfs/cxgb4vf/ files list.
2001 */
2002struct cxgb4vf_debugfs_entry {
2003 const char *name; /* name of debugfs node */
2004 mode_t mode; /* file system mode */
2005 const struct file_operations *fops;
2006};
2007
2008static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2009 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2010 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2011 { "resources", S_IRUGO, &resources_proc_fops },
2012 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2013};
2014
2015/*
2016 * Module and device initialization and cleanup code.
2017 * ==================================================
2018 */
2019
2020/*
2021 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2022 * directory (debugfs_root) has already been set up.
2023 */
2024static int __devinit setup_debugfs(struct adapter *adapter)
2025{
2026 int i;
2027
843635e0 2028 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
be839e39
CL
2029
2030 /*
2031 * Debugfs support is best effort.
2032 */
2033 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2034 (void)debugfs_create_file(debugfs_files[i].name,
2035 debugfs_files[i].mode,
2036 adapter->debugfs_root,
2037 (void *)adapter,
2038 debugfs_files[i].fops);
2039
2040 return 0;
2041}
2042
2043/*
2044 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2045 * it to our caller to tear down the directory (debugfs_root).
2046 */
4204875d 2047static void cleanup_debugfs(struct adapter *adapter)
be839e39 2048{
843635e0 2049 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
be839e39
CL
2050
2051 /*
2052 * Unlike our sister routine cleanup_proc(), we don't need to remove
2053 * individual entries because a call will be made to
2054 * debugfs_remove_recursive(). We just need to clean up any ancillary
2055 * persistent state.
2056 */
2057 /* nothing to do */
2058}
2059
2060/*
2061 * Perform early "adapter" initialization. This is where we discover what
2062 * adapter parameters we're going to be using and initialize basic adapter
2063 * hardware support.
2064 */
4204875d 2065static int __devinit adap_init0(struct adapter *adapter)
be839e39
CL
2066{
2067 struct vf_resources *vfres = &adapter->params.vfres;
2068 struct sge_params *sge_params = &adapter->params.sge;
2069 struct sge *s = &adapter->sge;
2070 unsigned int ethqsets;
2071 int err;
2072
2073 /*
2074 * Wait for the device to become ready before proceeding ...
2075 */
2076 err = t4vf_wait_dev_ready(adapter);
2077 if (err) {
2078 dev_err(adapter->pdev_dev, "device didn't become ready:"
2079 " err=%d\n", err);
2080 return err;
2081 }
2082
e68e6133
CL
2083 /*
2084 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2085 * 2.6.31 and later we can't call pci_reset_function() in order to
2086 * issue an FLR because of a self- deadlock on the device semaphore.
2087 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2088 * cases where they're needed -- for instance, some versions of KVM
2089 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2090 * use the firmware based reset in order to reset any per function
2091 * state.
2092 */
2093 err = t4vf_fw_reset(adapter);
2094 if (err < 0) {
2095 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2096 return err;
2097 }
2098
be839e39
CL
2099 /*
2100 * Grab basic operational parameters. These will predominantly have
2101 * been set up by the Physical Function Driver or will be hard coded
2102 * into the adapter. We just have to live with them ... Note that
2103 * we _must_ get our VPD parameters before our SGE parameters because
2104 * we need to know the adapter's core clock from the VPD in order to
2105 * properly decode the SGE Timer Values.
2106 */
2107 err = t4vf_get_dev_params(adapter);
2108 if (err) {
2109 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2110 " device parameters: err=%d\n", err);
2111 return err;
2112 }
2113 err = t4vf_get_vpd_params(adapter);
2114 if (err) {
2115 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2116 " VPD parameters: err=%d\n", err);
2117 return err;
2118 }
2119 err = t4vf_get_sge_params(adapter);
2120 if (err) {
2121 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2122 " SGE parameters: err=%d\n", err);
2123 return err;
2124 }
2125 err = t4vf_get_rss_glb_config(adapter);
2126 if (err) {
2127 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2128 " RSS parameters: err=%d\n", err);
2129 return err;
2130 }
2131 if (adapter->params.rss.mode !=
2132 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2133 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2134 " mode %d\n", adapter->params.rss.mode);
2135 return -EINVAL;
2136 }
2137 err = t4vf_sge_init(adapter);
2138 if (err) {
2139 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2140 " err=%d\n", err);
2141 return err;
2142 }
2143
2144 /*
2145 * Retrieve our RX interrupt holdoff timer values and counter
2146 * threshold values from the SGE parameters.
2147 */
2148 s->timer_val[0] = core_ticks_to_us(adapter,
2149 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2150 s->timer_val[1] = core_ticks_to_us(adapter,
2151 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2152 s->timer_val[2] = core_ticks_to_us(adapter,
2153 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2154 s->timer_val[3] = core_ticks_to_us(adapter,
2155 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2156 s->timer_val[4] = core_ticks_to_us(adapter,
2157 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2158 s->timer_val[5] = core_ticks_to_us(adapter,
2159 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2160
2161 s->counter_val[0] =
2162 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2163 s->counter_val[1] =
2164 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2165 s->counter_val[2] =
2166 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2167 s->counter_val[3] =
2168 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2169
2170 /*
2171 * Grab our Virtual Interface resource allocation, extract the
2172 * features that we're interested in and do a bit of sanity testing on
2173 * what we discover.
2174 */
2175 err = t4vf_get_vfres(adapter);
2176 if (err) {
2177 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2178 " resources: err=%d\n", err);
2179 return err;
2180 }
2181
2182 /*
2183 * The number of "ports" which we support is equal to the number of
2184 * Virtual Interfaces with which we've been provisioned.
2185 */
2186 adapter->params.nports = vfres->nvi;
2187 if (adapter->params.nports > MAX_NPORTS) {
2188 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2189 " virtual interfaces\n", MAX_NPORTS,
2190 adapter->params.nports);
2191 adapter->params.nports = MAX_NPORTS;
2192 }
2193
2194 /*
2195 * We need to reserve a number of the ingress queues with Free List
2196 * and Interrupt capabilities for special interrupt purposes (like
2197 * asynchronous firmware messages, or forwarded interrupts if we're
2198 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2199 * matched up one-for-one with Ethernet/Control egress queues in order
2200 * to form "Queue Sets" which will be aportioned between the "ports".
2201 * For each Queue Set, we'll need the ability to allocate two Egress
2202 * Contexts -- one for the Ingress Queue Free List and one for the TX
2203 * Ethernet Queue.
2204 */
2205 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2206 if (vfres->nethctrl != ethqsets) {
2207 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2208 " ingress/egress queues (%d/%d); using minimum for"
2209 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2210 ethqsets = min(vfres->nethctrl, ethqsets);
2211 }
2212 if (vfres->neq < ethqsets*2) {
2213 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2214 " to support Queue Sets (%d); reducing allowed Queue"
2215 " Sets\n", vfres->neq, ethqsets);
2216 ethqsets = vfres->neq/2;
2217 }
2218 if (ethqsets > MAX_ETH_QSETS) {
2219 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2220 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2221 ethqsets = MAX_ETH_QSETS;
2222 }
2223 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2224 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2225 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2226 }
2227 adapter->sge.max_ethqsets = ethqsets;
2228
2229 /*
2230 * Check for various parameter sanity issues. Most checks simply
2231 * result in us using fewer resources than our provissioning but we
2232 * do need at least one "port" with which to work ...
2233 */
2234 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2235 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2236 " virtual interfaces (too few Queue Sets)\n",
2237 adapter->sge.max_ethqsets, adapter->params.nports);
2238 adapter->params.nports = adapter->sge.max_ethqsets;
2239 }
2240 if (adapter->params.nports == 0) {
2241 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2242 "usable!\n");
2243 return -EINVAL;
2244 }
2245 return 0;
2246}
2247
2248static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2249 u8 pkt_cnt_idx, unsigned int size,
2250 unsigned int iqe_size)
2251{
2252 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2253 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2254 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2255 ? pkt_cnt_idx
2256 : 0);
2257 rspq->iqe_len = iqe_size;
2258 rspq->size = size;
2259}
2260
2261/*
2262 * Perform default configuration of DMA queues depending on the number and
2263 * type of ports we found and the number of available CPUs. Most settings can
2264 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2265 * being brought up for the first time.
2266 */
2267static void __devinit cfg_queues(struct adapter *adapter)
2268{
2269 struct sge *s = &adapter->sge;
2270 int q10g, n10g, qidx, pidx, qs;
c710245c 2271 size_t iqe_size;
be839e39
CL
2272
2273 /*
2274 * We should not be called till we know how many Queue Sets we can
2275 * support. In particular, this means that we need to know what kind
2276 * of interrupts we'll be using ...
2277 */
2278 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2279
2280 /*
2281 * Count the number of 10GbE Virtual Interfaces that we have.
2282 */
2283 n10g = 0;
2284 for_each_port(adapter, pidx)
2285 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2286
2287 /*
2288 * We default to 1 queue per non-10G port and up to # of cores queues
2289 * per 10G port.
2290 */
2291 if (n10g == 0)
2292 q10g = 0;
2293 else {
2294 int n1g = (adapter->params.nports - n10g);
2295 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2296 if (q10g > num_online_cpus())
2297 q10g = num_online_cpus();
2298 }
2299
2300 /*
2301 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2302 * The layout will be established in setup_sge_queues() when the
2303 * adapter is brough up for the first time.
2304 */
2305 qidx = 0;
2306 for_each_port(adapter, pidx) {
2307 struct port_info *pi = adap2pinfo(adapter, pidx);
2308
2309 pi->first_qset = qidx;
2310 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2311 qidx += pi->nqsets;
2312 }
2313 s->ethqsets = qidx;
2314
c710245c
CL
2315 /*
2316 * The Ingress Queue Entry Size for our various Response Queues needs
2317 * to be big enough to accommodate the largest message we can receive
2318 * from the chip/firmware; which is 64 bytes ...
2319 */
2320 iqe_size = 64;
2321
be839e39
CL
2322 /*
2323 * Set up default Queue Set parameters ... Start off with the
2324 * shortest interrupt holdoff timer.
2325 */
2326 for (qs = 0; qs < s->max_ethqsets; qs++) {
2327 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2328 struct sge_eth_txq *txq = &s->ethtxq[qs];
2329
c710245c 2330 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
be839e39
CL
2331 rxq->fl.size = 72;
2332 txq->q.size = 1024;
2333 }
2334
2335 /*
2336 * The firmware event queue is used for link state changes and
2337 * notifications of TX DMA completions.
2338 */
c710245c 2339 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
be839e39
CL
2340
2341 /*
2342 * The forwarded interrupt queue is used when we're in MSI interrupt
2343 * mode. In this mode all interrupts associated with RX queues will
2344 * be forwarded to a single queue which we'll associate with our MSI
2345 * interrupt vector. The messages dropped in the forwarded interrupt
2346 * queue will indicate which ingress queue needs servicing ... This
2347 * queue needs to be large enough to accommodate all of the ingress
2348 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2349 * from equalling the CIDX if every ingress queue has an outstanding
2350 * interrupt). The queue doesn't need to be any larger because no
2351 * ingress queue will ever have more than one outstanding interrupt at
2352 * any time ...
2353 */
2354 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
c710245c 2355 iqe_size);
be839e39
CL
2356}
2357
2358/*
2359 * Reduce the number of Ethernet queues across all ports to at most n.
2360 * n provides at least one queue per port.
2361 */
2362static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2363{
2364 int i;
2365 struct port_info *pi;
2366
2367 /*
2368 * While we have too many active Ether Queue Sets, interate across the
2369 * "ports" and reduce their individual Queue Set allocations.
2370 */
2371 BUG_ON(n < adapter->params.nports);
2372 while (n < adapter->sge.ethqsets)
2373 for_each_port(adapter, i) {
2374 pi = adap2pinfo(adapter, i);
2375 if (pi->nqsets > 1) {
2376 pi->nqsets--;
2377 adapter->sge.ethqsets--;
2378 if (adapter->sge.ethqsets <= n)
2379 break;
2380 }
2381 }
2382
2383 /*
2384 * Reassign the starting Queue Sets for each of the "ports" ...
2385 */
2386 n = 0;
2387 for_each_port(adapter, i) {
2388 pi = adap2pinfo(adapter, i);
2389 pi->first_qset = n;
2390 n += pi->nqsets;
2391 }
2392}
2393
2394/*
2395 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2396 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2397 * need. Minimally we need one for every Virtual Interface plus those needed
2398 * for our "extras". Note that this process may lower the maximum number of
2399 * allowed Queue Sets ...
2400 */
2401static int __devinit enable_msix(struct adapter *adapter)
2402{
2403 int i, err, want, need;
2404 struct msix_entry entries[MSIX_ENTRIES];
2405 struct sge *s = &adapter->sge;
2406
2407 for (i = 0; i < MSIX_ENTRIES; ++i)
2408 entries[i].entry = i;
2409
2410 /*
2411 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2412 * plus those needed for our "extras" (for example, the firmware
2413 * message queue). We _need_ at least one "Queue Set" per Virtual
2414 * Interface plus those needed for our "extras". So now we get to see
2415 * if the song is right ...
2416 */
2417 want = s->max_ethqsets + MSIX_EXTRAS;
2418 need = adapter->params.nports + MSIX_EXTRAS;
2419 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2420 want = err;
2421
2422 if (err == 0) {
2423 int nqsets = want - MSIX_EXTRAS;
2424 if (nqsets < s->max_ethqsets) {
2425 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2426 " for %d Queue Sets\n", nqsets);
2427 s->max_ethqsets = nqsets;
2428 if (nqsets < s->ethqsets)
2429 reduce_ethqs(adapter, nqsets);
2430 }
2431 for (i = 0; i < want; ++i)
2432 adapter->msix_info[i].vec = entries[i].vector;
2433 } else if (err > 0) {
2434 pci_disable_msix(adapter->pdev);
2435 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2436 " not using MSI-X\n", err);
2437 }
2438 return err;
2439}
2440
be839e39
CL
2441static const struct net_device_ops cxgb4vf_netdev_ops = {
2442 .ndo_open = cxgb4vf_open,
2443 .ndo_stop = cxgb4vf_stop,
2444 .ndo_start_xmit = t4vf_eth_xmit,
2445 .ndo_get_stats = cxgb4vf_get_stats,
2446 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2447 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2448 .ndo_validate_addr = eth_validate_addr,
2449 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2450 .ndo_change_mtu = cxgb4vf_change_mtu,
87737663
JP
2451 .ndo_fix_features = cxgb4vf_fix_features,
2452 .ndo_set_features = cxgb4vf_set_features,
be839e39
CL
2453#ifdef CONFIG_NET_POLL_CONTROLLER
2454 .ndo_poll_controller = cxgb4vf_poll_controller,
2455#endif
2456};
be839e39
CL
2457
2458/*
2459 * "Probe" a device: initialize a device and construct all kernel and driver
2460 * state needed to manage the device. This routine is called "init_one" in
2461 * the PF Driver ...
2462 */
2463static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2464 const struct pci_device_id *ent)
2465{
2466 static int version_printed;
2467
2468 int pci_using_dac;
2469 int err, pidx;
2470 unsigned int pmask;
2471 struct adapter *adapter;
2472 struct port_info *pi;
2473 struct net_device *netdev;
2474
be839e39
CL
2475 /*
2476 * Print our driver banner the first time we're called to initialize a
2477 * device.
2478 */
2479 if (version_printed == 0) {
2480 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2481 version_printed = 1;
2482 }
2483
2484 /*
7a0c2029 2485 * Initialize generic PCI device state.
be839e39 2486 */
7a0c2029 2487 err = pci_enable_device(pdev);
be839e39 2488 if (err) {
7a0c2029 2489 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2490 return err;
2491 }
2492
2493 /*
7a0c2029
KV
2494 * Reserve PCI resources for the device. If we can't get them some
2495 * other driver may have already claimed the device ...
be839e39 2496 */
7a0c2029 2497 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2498 if (err) {
7a0c2029
KV
2499 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2500 goto err_disable_device;
be839e39
CL
2501 }
2502
2503 /*
2504 * Set up our DMA mask: try for 64-bit address masking first and
2505 * fall back to 32-bit if we can't get 64 bits ...
2506 */
2507 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2508 if (err == 0) {
2509 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2510 if (err) {
2511 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2512 " coherent allocations\n");
7a0c2029 2513 goto err_release_regions;
be839e39
CL
2514 }
2515 pci_using_dac = 1;
2516 } else {
2517 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2518 if (err != 0) {
2519 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2520 goto err_release_regions;
be839e39
CL
2521 }
2522 pci_using_dac = 0;
2523 }
2524
2525 /*
2526 * Enable bus mastering for the device ...
2527 */
2528 pci_set_master(pdev);
2529
2530 /*
2531 * Allocate our adapter data structure and attach it to the device.
2532 */
2533 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2534 if (!adapter) {
2535 err = -ENOMEM;
7a0c2029 2536 goto err_release_regions;
be839e39
CL
2537 }
2538 pci_set_drvdata(pdev, adapter);
2539 adapter->pdev = pdev;
2540 adapter->pdev_dev = &pdev->dev;
2541
2542 /*
2543 * Initialize SMP data synchronization resources.
2544 */
2545 spin_lock_init(&adapter->stats_lock);
2546
2547 /*
2548 * Map our I/O registers in BAR0.
2549 */
2550 adapter->regs = pci_ioremap_bar(pdev, 0);
2551 if (!adapter->regs) {
2552 dev_err(&pdev->dev, "cannot map device registers\n");
2553 err = -ENOMEM;
2554 goto err_free_adapter;
2555 }
2556
2557 /*
2558 * Initialize adapter level features.
2559 */
2560 adapter->name = pci_name(pdev);
2561 adapter->msg_enable = dflt_msg_enable;
2562 err = adap_init0(adapter);
2563 if (err)
2564 goto err_unmap_bar;
2565
2566 /*
2567 * Allocate our "adapter ports" and stitch everything together.
2568 */
2569 pmask = adapter->params.vfres.pmask;
2570 for_each_port(adapter, pidx) {
2571 int port_id, viid;
2572
2573 /*
2574 * We simplistically allocate our virtual interfaces
2575 * sequentially across the port numbers to which we have
2576 * access rights. This should be configurable in some manner
2577 * ...
2578 */
2579 if (pmask == 0)
2580 break;
2581 port_id = ffs(pmask) - 1;
2582 pmask &= ~(1 << port_id);
2583 viid = t4vf_alloc_vi(adapter, port_id);
2584 if (viid < 0) {
2585 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2586 " err=%d\n", port_id, viid);
2587 err = viid;
2588 goto err_free_dev;
2589 }
2590
2591 /*
2592 * Allocate our network device and stitch things together.
2593 */
2594 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2595 MAX_PORT_QSETS);
2596 if (netdev == NULL) {
2597 dev_err(&pdev->dev, "cannot allocate netdev for"
2598 " port %d\n", port_id);
2599 t4vf_free_vi(adapter, viid);
2600 err = -ENOMEM;
2601 goto err_free_dev;
2602 }
2603 adapter->port[pidx] = netdev;
2604 SET_NETDEV_DEV(netdev, &pdev->dev);
2605 pi = netdev_priv(netdev);
2606 pi->adapter = adapter;
2607 pi->pidx = pidx;
2608 pi->port_id = port_id;
2609 pi->viid = viid;
2610
2611 /*
2612 * Initialize the starting state of our "port" and register
2613 * it.
2614 */
2615 pi->xact_addr_filt = -1;
be839e39 2616 netif_carrier_off(netdev);
be839e39
CL
2617 netdev->irq = pdev->irq;
2618
2ed28baa
MM
2619 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2620 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
87737663 2621 NETIF_F_HW_VLAN_RX | NETIF_F_RXCSUM;
2ed28baa
MM
2622 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2623 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2624 NETIF_F_HIGHDMA;
87737663 2625 netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_TX;
be839e39
CL
2626 if (pci_using_dac)
2627 netdev->features |= NETIF_F_HIGHDMA;
be839e39 2628
01789349
JP
2629 netdev->priv_flags |= IFF_UNICAST_FLT;
2630
be839e39 2631 netdev->netdev_ops = &cxgb4vf_netdev_ops;
be839e39
CL
2632 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2633
2634 /*
2635 * Initialize the hardware/software state for the port.
2636 */
2637 err = t4vf_port_init(adapter, pidx);
2638 if (err) {
2639 dev_err(&pdev->dev, "cannot initialize port %d\n",
2640 pidx);
2641 goto err_free_dev;
2642 }
2643 }
2644
2645 /*
2646 * The "card" is now ready to go. If any errors occur during device
2647 * registration we do not fail the whole "card" but rather proceed
2648 * only with the ports we manage to register successfully. However we
2649 * must register at least one net device.
2650 */
2651 for_each_port(adapter, pidx) {
2652 netdev = adapter->port[pidx];
2653 if (netdev == NULL)
2654 continue;
2655
2656 err = register_netdev(netdev);
2657 if (err) {
2658 dev_warn(&pdev->dev, "cannot register net device %s,"
2659 " skipping\n", netdev->name);
2660 continue;
2661 }
2662
2663 set_bit(pidx, &adapter->registered_device_map);
2664 }
2665 if (adapter->registered_device_map == 0) {
2666 dev_err(&pdev->dev, "could not register any net devices\n");
2667 goto err_free_dev;
2668 }
2669
2670 /*
2671 * Set up our debugfs entries.
2672 */
843635e0 2673 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
be839e39
CL
2674 adapter->debugfs_root =
2675 debugfs_create_dir(pci_name(pdev),
2676 cxgb4vf_debugfs_root);
843635e0 2677 if (IS_ERR_OR_NULL(adapter->debugfs_root))
be839e39
CL
2678 dev_warn(&pdev->dev, "could not create debugfs"
2679 " directory");
2680 else
2681 setup_debugfs(adapter);
2682 }
2683
2684 /*
2685 * See what interrupts we'll be using. If we've been configured to
2686 * use MSI-X interrupts, try to enable them but fall back to using
2687 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2688 * get MSI interrupts we bail with the error.
2689 */
2690 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2691 adapter->flags |= USING_MSIX;
2692 else {
2693 err = pci_enable_msi(pdev);
2694 if (err) {
2695 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2696 " err=%d\n",
2697 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2698 goto err_free_debugfs;
2699 }
2700 adapter->flags |= USING_MSI;
2701 }
2702
2703 /*
2704 * Now that we know how many "ports" we have and what their types are,
2705 * and how many Queue Sets we can support, we can configure our queue
2706 * resources.
2707 */
2708 cfg_queues(adapter);
2709
2710 /*
25985edc 2711 * Print a short notice on the existence and configuration of the new
be839e39
CL
2712 * VF network device ...
2713 */
2714 for_each_port(adapter, pidx) {
2715 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2716 adapter->port[pidx]->name,
2717 (adapter->flags & USING_MSIX) ? "MSI-X" :
2718 (adapter->flags & USING_MSI) ? "MSI" : "");
2719 }
2720
2721 /*
2722 * Return success!
2723 */
2724 return 0;
2725
2726 /*
2727 * Error recovery and exit code. Unwind state that's been created
2728 * so far and return the error.
2729 */
2730
2731err_free_debugfs:
843635e0 2732 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
be839e39
CL
2733 cleanup_debugfs(adapter);
2734 debugfs_remove_recursive(adapter->debugfs_root);
2735 }
2736
2737err_free_dev:
2738 for_each_port(adapter, pidx) {
2739 netdev = adapter->port[pidx];
2740 if (netdev == NULL)
2741 continue;
2742 pi = netdev_priv(netdev);
2743 t4vf_free_vi(adapter, pi->viid);
2744 if (test_bit(pidx, &adapter->registered_device_map))
2745 unregister_netdev(netdev);
2746 free_netdev(netdev);
2747 }
2748
2749err_unmap_bar:
2750 iounmap(adapter->regs);
2751
2752err_free_adapter:
2753 kfree(adapter);
2754 pci_set_drvdata(pdev, NULL);
2755
be839e39
CL
2756err_release_regions:
2757 pci_release_regions(pdev);
2758 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2759 pci_clear_master(pdev);
2760
2761err_disable_device:
2762 pci_disable_device(pdev);
be839e39 2763
be839e39
CL
2764 return err;
2765}
2766
2767/*
2768 * "Remove" a device: tear down all kernel and driver state created in the
2769 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2770 * that this is called "remove_one" in the PF Driver.)
2771 */
2772static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2773{
2774 struct adapter *adapter = pci_get_drvdata(pdev);
2775
2776 /*
2777 * Tear down driver state associated with device.
2778 */
2779 if (adapter) {
2780 int pidx;
2781
2782 /*
2783 * Stop all of our activity. Unregister network port,
2784 * disable interrupts, etc.
2785 */
2786 for_each_port(adapter, pidx)
2787 if (test_bit(pidx, &adapter->registered_device_map))
2788 unregister_netdev(adapter->port[pidx]);
2789 t4vf_sge_stop(adapter);
2790 if (adapter->flags & USING_MSIX) {
2791 pci_disable_msix(adapter->pdev);
2792 adapter->flags &= ~USING_MSIX;
2793 } else if (adapter->flags & USING_MSI) {
2794 pci_disable_msi(adapter->pdev);
2795 adapter->flags &= ~USING_MSI;
2796 }
2797
2798 /*
2799 * Tear down our debugfs entries.
2800 */
843635e0 2801 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
be839e39
CL
2802 cleanup_debugfs(adapter);
2803 debugfs_remove_recursive(adapter->debugfs_root);
2804 }
2805
2806 /*
2807 * Free all of the various resources which we've acquired ...
2808 */
2809 t4vf_free_sge_resources(adapter);
2810 for_each_port(adapter, pidx) {
2811 struct net_device *netdev = adapter->port[pidx];
2812 struct port_info *pi;
2813
2814 if (netdev == NULL)
2815 continue;
2816
2817 pi = netdev_priv(netdev);
2818 t4vf_free_vi(adapter, pi->viid);
2819 free_netdev(netdev);
2820 }
2821 iounmap(adapter->regs);
2822 kfree(adapter);
2823 pci_set_drvdata(pdev, NULL);
2824 }
2825
2826 /*
2827 * Disable the device and release its PCI resources.
2828 */
2829 pci_disable_device(pdev);
2830 pci_clear_master(pdev);
2831 pci_release_regions(pdev);
2832}
2833
7e9c2629
CL
2834/*
2835 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2836 * delivery.
2837 */
2838static void __devexit cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2839{
2840 struct adapter *adapter;
2841 int pidx;
2842
2843 adapter = pci_get_drvdata(pdev);
2844 if (!adapter)
2845 return;
2846
2847 /*
2848 * Disable all Virtual Interfaces. This will shut down the
2849 * delivery of all ingress packets into the chip for these
2850 * Virtual Interfaces.
2851 */
2852 for_each_port(adapter, pidx) {
2853 struct net_device *netdev;
2854 struct port_info *pi;
2855
2856 if (!test_bit(pidx, &adapter->registered_device_map))
2857 continue;
2858
2859 netdev = adapter->port[pidx];
2860 if (!netdev)
2861 continue;
2862
2863 pi = netdev_priv(netdev);
2864 t4vf_enable_vi(adapter, pi->viid, false, false);
2865 }
2866
2867 /*
2868 * Free up all Queues which will prevent further DMA and
2869 * Interrupts allowing various internal pathways to drain.
2870 */
2871 t4vf_free_sge_resources(adapter);
2872}
2873
be839e39
CL
2874/*
2875 * PCI Device registration data structures.
2876 */
2877#define CH_DEVICE(devid, idx) \
2878 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2879
2880static struct pci_device_id cxgb4vf_pci_tbl[] = {
2881 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2882 CH_DEVICE(0x4800, 0), /* T440-dbg */
2883 CH_DEVICE(0x4801, 0), /* T420-cr */
2884 CH_DEVICE(0x4802, 0), /* T422-cr */
8b6edf87
CL
2885 CH_DEVICE(0x4803, 0), /* T440-cr */
2886 CH_DEVICE(0x4804, 0), /* T420-bch */
2887 CH_DEVICE(0x4805, 0), /* T440-bch */
2888 CH_DEVICE(0x4806, 0), /* T460-ch */
2889 CH_DEVICE(0x4807, 0), /* T420-so */
2890 CH_DEVICE(0x4808, 0), /* T420-cx */
2891 CH_DEVICE(0x4809, 0), /* T420-bt */
2892 CH_DEVICE(0x480a, 0), /* T404-bt */
be839e39
CL
2893 { 0, }
2894};
2895
2896MODULE_DESCRIPTION(DRV_DESC);
2897MODULE_AUTHOR("Chelsio Communications");
2898MODULE_LICENSE("Dual BSD/GPL");
2899MODULE_VERSION(DRV_VERSION);
2900MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2901
2902static struct pci_driver cxgb4vf_driver = {
2903 .name = KBUILD_MODNAME,
2904 .id_table = cxgb4vf_pci_tbl,
2905 .probe = cxgb4vf_pci_probe,
2906 .remove = __devexit_p(cxgb4vf_pci_remove),
7e9c2629 2907 .shutdown = __devexit_p(cxgb4vf_pci_shutdown),
be839e39
CL
2908};
2909
2910/*
2911 * Initialize global driver state.
2912 */
2913static int __init cxgb4vf_module_init(void)
2914{
2915 int ret;
2916
bb14a1af
CL
2917 /*
2918 * Vet our module parameters.
2919 */
2920 if (msi != MSI_MSIX && msi != MSI_MSI) {
2921 printk(KERN_WARNING KBUILD_MODNAME
2922 ": bad module parameter msi=%d; must be %d"
2923 " (MSI-X or MSI) or %d (MSI)\n",
2924 msi, MSI_MSIX, MSI_MSI);
2925 return -EINVAL;
2926 }
2927
be839e39
CL
2928 /* Debugfs support is optional, just warn if this fails */
2929 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
843635e0 2930 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
be839e39
CL
2931 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2932 " debugfs entry, continuing\n");
2933
2934 ret = pci_register_driver(&cxgb4vf_driver);
843635e0 2935 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
be839e39
CL
2936 debugfs_remove(cxgb4vf_debugfs_root);
2937 return ret;
2938}
2939
2940/*
2941 * Tear down global driver state.
2942 */
2943static void __exit cxgb4vf_module_exit(void)
2944{
2945 pci_unregister_driver(&cxgb4vf_driver);
2946 debugfs_remove(cxgb4vf_debugfs_root);
2947}
2948
2949module_init(cxgb4vf_module_init);
2950module_exit(cxgb4vf_module_exit);