]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/dlink/sundance.c
net: introduce IFF_UNICAST_FLT private flag
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / dlink / sundance.c
CommitLineData
1da177e4
LT
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
03a8c661 19 [link no longer provides useful info -jgarzik]
e714d99c
PDM
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
1da177e4 22
1da177e4
LT
23*/
24
25#define DRV_NAME "sundance"
d5b20697
AG
26#define DRV_VERSION "1.2"
27#define DRV_RELDATE "11-Sep-2006"
1da177e4
LT
28
29
30/* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
f71e1309 35static const int multicast_filter_limit = 32;
1da177e4
LT
36
37/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41static int rx_copybreak;
42static int flowctrl=1;
43
44/* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55*/
56#define MAX_UNITS 8
57static char *media[MAX_UNITS];
58
59
60/* Operational parameters that are set at compile time. */
61
62/* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68#define TX_RING_SIZE 32
69#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70#define RX_RING_SIZE 64
71#define RX_BUDGET 32
72#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75/* Operational parameters that usually are not changed. */
76/* Time in jiffies before concluding the transmitter is hung. */
77#define TX_TIMEOUT (4*HZ)
78#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80/* Include files, designed to support most kernel versions 2.0.0 and later. */
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/string.h>
84#include <linux/timer.h>
85#include <linux/errno.h>
86#include <linux/ioport.h>
1da177e4
LT
87#include <linux/interrupt.h>
88#include <linux/pci.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/skbuff.h>
92#include <linux/init.h>
93#include <linux/bitops.h>
94#include <asm/uaccess.h>
95#include <asm/processor.h> /* Processor type for cache alignment. */
96#include <asm/io.h>
97#include <linux/delay.h>
98#include <linux/spinlock.h>
0c8a745f 99#include <linux/dma-mapping.h>
1da177e4
LT
100#include <linux/crc32.h>
101#include <linux/ethtool.h>
102#include <linux/mii.h>
1da177e4
LT
103
104/* These identify the driver base version and may not be removed. */
3af0fe39
SH
105static const char version[] __devinitconst =
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
1da177e4
LT
108
109MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111MODULE_LICENSE("GPL");
112
113module_param(debug, int, 0);
114module_param(rx_copybreak, int, 0);
115module_param_array(media, charp, NULL, 0);
116module_param(flowctrl, int, 0);
117MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
120
121/*
122 Theory of Operation
123
124I. Board Compatibility
125
126This driver is designed for the Sundance Technologies "Alta" ST201 chip.
127
128II. Board-specific settings
129
130III. Driver operation
131
132IIIa. Ring buffers
133
134This driver uses two statically allocated fixed-size descriptor lists
135formed into rings by a branch from the final descriptor to the beginning of
136the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137Some chips explicitly use only 2^N sized rings, while others use a
138'next descriptor' pointer that the driver forms into rings.
139
140IIIb/c. Transmit/Receive Structure
141
142This driver uses a zero-copy receive and transmit scheme.
143The driver allocates full frame size skbuffs for the Rx ring buffers at
144open() time and passes the skb->data field to the chip as receive data
145buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146a fresh skbuff is allocated and the frame is copied to the new skbuff.
147When the incoming frame is larger, the skbuff is passed directly up the
148protocol stack. Buffers consumed this way are replaced by newly allocated
149skbuffs in a later phase of receives.
150
151The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152using a full-sized skbuff for small frames vs. the copying costs of larger
153frames. New boards are typically used in generously configured machines
154and the underfilled buffers have negligible impact compared to the benefit of
155a single allocation size, so the default value of zero results in never
156copying packets. When copying is done, the cost is usually mitigated by using
157a combined copy/checksum routine. Copying also preloads the cache, which is
158most useful with small frames.
159
160A subtle aspect of the operation is that the IP header at offset 14 in an
161ethernet frame isn't longword aligned for further processing.
162Unaligned buffers are permitted by the Sundance hardware, so
163frames are received into the skbuff at an offset of "+2", 16-byte aligning
164the IP header.
165
166IIId. Synchronization
167
168The driver runs as two independent, single-threaded flows of control. One
169is the send-packet routine, which enforces single-threaded use by the
170dev->tbusy flag. The other thread is the interrupt handler, which is single
171threaded by the hardware and interrupt handling software.
172
173The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176the 'lp->tx_full' flag.
177
178The interrupt handler has exclusive control over the Rx ring and records stats
179from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181clears both the tx_full and tbusy flags.
182
183IV. Notes
184
185IVb. References
186
187The Sundance ST201 datasheet, preliminary version.
b71b95ef
PDM
188The Kendin KS8723 datasheet, preliminary version.
189The ICplus IP100 datasheet, preliminary version.
190http://www.scyld.com/expert/100mbps.html
191http://www.scyld.com/expert/NWay.html
1da177e4
LT
192
193IVc. Errata
194
195*/
196
197/* Work-around for Kendin chip bugs. */
198#ifndef CONFIG_SUNDANCE_MMIO
199#define USE_IO_OPS 1
200#endif
201
a3aa1884 202static DEFINE_PCI_DEVICE_TABLE(sundance_pci_tbl) = {
46009c8b
JG
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
210 { }
1da177e4
LT
211};
212MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213
214enum {
215 netdev_io_size = 128
216};
217
218struct pci_id_info {
219 const char *name;
220};
46009c8b 221static const struct pci_id_info pci_id_tbl[] __devinitdata = {
1da177e4
LT
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
1668b19f 228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
46009c8b 229 { } /* terminate list. */
1da177e4
LT
230};
231
232/* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
234
235/* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
242*/
243enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
1da177e4
LT
260 FlashAddr = 0x40,
261 FlashData = 0x44,
262 TxStatus = 0x46,
263 TxFrameId = 0x47,
264 DownCounter = 0x18,
265 IntrClear = 0x4a,
266 IntrEnable = 0x4c,
267 IntrStatus = 0x4e,
268 MACCtrl0 = 0x50,
269 MACCtrl1 = 0x52,
270 StationAddr = 0x54,
271 MaxFrameSize = 0x5A,
272 RxMode = 0x5c,
273 MIICtrl = 0x5e,
274 MulticastFilter0 = 0x60,
275 MulticastFilter1 = 0x64,
276 RxOctetsLow = 0x68,
277 RxOctetsHigh = 0x6a,
278 TxOctetsLow = 0x6c,
279 TxOctetsHigh = 0x6e,
280 TxFramesOK = 0x70,
281 RxFramesOK = 0x72,
282 StatsCarrierError = 0x74,
283 StatsLateColl = 0x75,
284 StatsMultiColl = 0x76,
285 StatsOneColl = 0x77,
286 StatsTxDefer = 0x78,
287 RxMissed = 0x79,
288 StatsTxXSDefer = 0x7a,
289 StatsTxAbort = 0x7b,
290 StatsBcastTx = 0x7c,
291 StatsBcastRx = 0x7d,
292 StatsMcastTx = 0x7e,
293 StatsMcastRx = 0x7f,
294 /* Aliased and bogus values! */
295 RxStatus = 0x0c,
296};
24de5285
DK
297
298#define ASIC_HI_WORD(x) ((x) + 2)
299
1da177e4
LT
300enum ASICCtrl_HiWord_bit {
301 GlobalReset = 0x0001,
302 RxReset = 0x0002,
303 TxReset = 0x0004,
304 DMAReset = 0x0008,
305 FIFOReset = 0x0010,
306 NetworkReset = 0x0020,
307 HostReset = 0x0040,
308 ResetBusy = 0x0400,
309};
310
311/* Bits in the interrupt status/mask registers. */
312enum intr_status_bits {
313 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
314 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
315 IntrDrvRqst=0x0040,
316 StatsMax=0x0080, LinkChange=0x0100,
317 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
318};
319
320/* Bits in the RxMode register. */
321enum rx_mode_bits {
322 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
323 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
324};
325/* Bits in MACCtrl. */
326enum mac_ctrl0_bits {
327 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
328 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
329};
330enum mac_ctrl1_bits {
331 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
332 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
333 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
334};
335
336/* The Rx and Tx buffer descriptors. */
337/* Note that using only 32 bit fields simplifies conversion to big-endian
338 architectures. */
339struct netdev_desc {
14c9d9b0
AV
340 __le32 next_desc;
341 __le32 status;
342 struct desc_frag { __le32 addr, length; } frag[1];
1da177e4
LT
343};
344
345/* Bits in netdev_desc.status */
346enum desc_status_bits {
347 DescOwn=0x8000,
348 DescEndPacket=0x4000,
349 DescEndRing=0x2000,
350 LastFrag=0x80000000,
351 DescIntrOnTx=0x8000,
352 DescIntrOnDMADone=0x80000000,
353 DisableAlign = 0x00000001,
354};
355
356#define PRIV_ALIGN 15 /* Required alignment mask */
357/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
358 within the structure. */
359#define MII_CNT 4
360struct netdev_private {
361 /* Descriptor rings first for alignment. */
362 struct netdev_desc *rx_ring;
363 struct netdev_desc *tx_ring;
364 struct sk_buff* rx_skbuff[RX_RING_SIZE];
365 struct sk_buff* tx_skbuff[TX_RING_SIZE];
366 dma_addr_t tx_ring_dma;
367 dma_addr_t rx_ring_dma;
1da177e4 368 struct timer_list timer; /* Media monitoring timer. */
725a4a46
DK
369 /* ethtool extra stats */
370 struct {
371 u64 tx_multiple_collisions;
372 u64 tx_single_collisions;
373 u64 tx_late_collisions;
374 u64 tx_deferred;
375 u64 tx_deferred_excessive;
376 u64 tx_aborted;
377 u64 tx_bcasts;
378 u64 rx_bcasts;
379 u64 tx_mcasts;
380 u64 rx_mcasts;
381 } xstats;
1da177e4
LT
382 /* Frequently used values: keep some adjacent for cache effect. */
383 spinlock_t lock;
1da177e4
LT
384 int msg_enable;
385 int chip_id;
386 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
387 unsigned int rx_buf_sz; /* Based on MTU+slack. */
388 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
389 unsigned int cur_tx, dirty_tx;
390 /* These values are keep track of the transceiver/media in use. */
391 unsigned int flowctrl:1;
392 unsigned int default_port:4; /* Last dev->if_port value. */
393 unsigned int an_enable:1;
394 unsigned int speed;
395 struct tasklet_struct rx_tasklet;
396 struct tasklet_struct tx_tasklet;
397 int budget;
398 int cur_task;
399 /* Multicast and receive mode. */
400 spinlock_t mcastlock; /* SMP lock multicast updates. */
401 u16 mcast_filter[4];
402 /* MII transceiver section. */
403 struct mii_if_info mii_if;
404 int mii_preamble_required;
405 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
406 struct pci_dev *pci_dev;
407 void __iomem *base;
7b738b55 408 spinlock_t statlock;
1da177e4
LT
409};
410
411/* The station address location in the EEPROM. */
412#define EEPROM_SA_OFFSET 0x10
413#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
414 IntrDrvRqst | IntrTxDone | StatsMax | \
415 LinkChange)
416
417static int change_mtu(struct net_device *dev, int new_mtu);
418static int eeprom_read(void __iomem *ioaddr, int location);
419static int mdio_read(struct net_device *dev, int phy_id, int location);
420static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
50500155 421static int mdio_wait_link(struct net_device *dev, int wait);
1da177e4
LT
422static int netdev_open(struct net_device *dev);
423static void check_duplex(struct net_device *dev);
424static void netdev_timer(unsigned long data);
425static void tx_timeout(struct net_device *dev);
426static void init_ring(struct net_device *dev);
61357325 427static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
1da177e4 428static int reset_tx (struct net_device *dev);
7d12e780 429static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
430static void rx_poll(unsigned long data);
431static void tx_poll(unsigned long data);
432static void refill_rx (struct net_device *dev);
433static void netdev_error(struct net_device *dev, int intr_status);
434static void netdev_error(struct net_device *dev, int intr_status);
435static void set_rx_mode(struct net_device *dev);
436static int __set_mac_addr(struct net_device *dev);
4b4f5467 437static int sundance_set_mac_addr(struct net_device *dev, void *data);
1da177e4
LT
438static struct net_device_stats *get_stats(struct net_device *dev);
439static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440static int netdev_close(struct net_device *dev);
7282d491 441static const struct ethtool_ops ethtool_ops;
1da177e4 442
b71b95ef
PDM
443static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
444{
445 struct netdev_private *np = netdev_priv(dev);
446 void __iomem *ioaddr = np->base + ASICCtrl;
447 int countdown;
448
449 /* ST201 documentation states ASICCtrl is a 32bit register */
450 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
451 /* ST201 documentation states reset can take up to 1 ms */
452 countdown = 10 + 1;
453 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
454 if (--countdown == 0) {
455 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
456 break;
457 }
458 udelay(100);
459 }
460}
461
633a277e
SH
462static const struct net_device_ops netdev_ops = {
463 .ndo_open = netdev_open,
464 .ndo_stop = netdev_close,
465 .ndo_start_xmit = start_tx,
466 .ndo_get_stats = get_stats,
467 .ndo_set_multicast_list = set_rx_mode,
468 .ndo_do_ioctl = netdev_ioctl,
469 .ndo_tx_timeout = tx_timeout,
470 .ndo_change_mtu = change_mtu,
4b4f5467 471 .ndo_set_mac_address = sundance_set_mac_addr,
633a277e
SH
472 .ndo_validate_addr = eth_validate_addr,
473};
474
1da177e4
LT
475static int __devinit sundance_probe1 (struct pci_dev *pdev,
476 const struct pci_device_id *ent)
477{
478 struct net_device *dev;
479 struct netdev_private *np;
480 static int card_idx;
481 int chip_idx = ent->driver_data;
482 int irq;
483 int i;
484 void __iomem *ioaddr;
485 u16 mii_ctl;
486 void *ring_space;
487 dma_addr_t ring_dma;
488#ifdef USE_IO_OPS
489 int bar = 0;
490#else
491 int bar = 1;
492#endif
ac1d49f8 493 int phy, phy_end, phy_idx = 0;
1da177e4
LT
494
495/* when built into the kernel, we only print version if device is found */
496#ifndef MODULE
497 static int printed_version;
498 if (!printed_version++)
499 printk(version);
500#endif
501
502 if (pci_enable_device(pdev))
503 return -EIO;
504 pci_set_master(pdev);
505
506 irq = pdev->irq;
507
508 dev = alloc_etherdev(sizeof(*np));
509 if (!dev)
510 return -ENOMEM;
1da177e4
LT
511 SET_NETDEV_DEV(dev, &pdev->dev);
512
513 if (pci_request_regions(pdev, DRV_NAME))
514 goto err_out_netdev;
515
516 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
517 if (!ioaddr)
518 goto err_out_res;
519
520 for (i = 0; i < 3; i++)
14c9d9b0
AV
521 ((__le16 *)dev->dev_addr)[i] =
522 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
30d60a82 523 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4
LT
524
525 dev->base_addr = (unsigned long)ioaddr;
526 dev->irq = irq;
527
528 np = netdev_priv(dev);
529 np->base = ioaddr;
530 np->pci_dev = pdev;
531 np->chip_id = chip_idx;
532 np->msg_enable = (1 << debug) - 1;
533 spin_lock_init(&np->lock);
7b738b55 534 spin_lock_init(&np->statlock);
1da177e4
LT
535 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
536 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
537
0c8a745f
DK
538 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
539 &ring_dma, GFP_KERNEL);
1da177e4
LT
540 if (!ring_space)
541 goto err_out_cleardev;
542 np->tx_ring = (struct netdev_desc *)ring_space;
543 np->tx_ring_dma = ring_dma;
544
0c8a745f
DK
545 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
546 &ring_dma, GFP_KERNEL);
1da177e4
LT
547 if (!ring_space)
548 goto err_out_unmap_tx;
549 np->rx_ring = (struct netdev_desc *)ring_space;
550 np->rx_ring_dma = ring_dma;
551
552 np->mii_if.dev = dev;
553 np->mii_if.mdio_read = mdio_read;
554 np->mii_if.mdio_write = mdio_write;
555 np->mii_if.phy_id_mask = 0x1f;
556 np->mii_if.reg_num_mask = 0x1f;
557
558 /* The chip-specific entries in the device structure. */
633a277e 559 dev->netdev_ops = &netdev_ops;
1da177e4 560 SET_ETHTOOL_OPS(dev, &ethtool_ops);
1da177e4 561 dev->watchdog_timeo = TX_TIMEOUT;
633a277e 562
1da177e4
LT
563 pci_set_drvdata(pdev, dev);
564
1da177e4
LT
565 i = register_netdev(dev);
566 if (i)
567 goto err_out_unmap_rx;
568
e174961c 569 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 570 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
e174961c 571 dev->dev_addr, irq);
1da177e4 572
67ec2f80
JL
573 np->phys[0] = 1; /* Default setting */
574 np->mii_preamble_required++;
ac1d49f8 575
0d615ec2
ACM
576 /*
577 * It seems some phys doesn't deal well with address 0 being accessed
ac1d49f8 578 * first
0d615ec2 579 */
ac1d49f8
JG
580 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
581 phy = 0;
582 phy_end = 31;
583 } else {
584 phy = 1;
585 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
586 }
587 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
b06c093e 588 int phyx = phy & 0x1f;
0d615ec2 589 int mii_status = mdio_read(dev, phyx, MII_BMSR);
67ec2f80 590 if (mii_status != 0xffff && mii_status != 0x0000) {
b06c093e
JL
591 np->phys[phy_idx++] = phyx;
592 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
67ec2f80
JL
593 if ((mii_status & 0x0040) == 0)
594 np->mii_preamble_required++;
595 printk(KERN_INFO "%s: MII PHY found at address %d, status "
596 "0x%4.4x advertising %4.4x.\n",
b06c093e 597 dev->name, phyx, mii_status, np->mii_if.advertising);
1da177e4 598 }
67ec2f80
JL
599 }
600 np->mii_preamble_required--;
1da177e4 601
67ec2f80
JL
602 if (phy_idx == 0) {
603 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
604 dev->name, ioread32(ioaddr + ASICCtrl));
605 goto err_out_unregister;
1da177e4
LT
606 }
607
67ec2f80
JL
608 np->mii_if.phy_id = np->phys[0];
609
1da177e4
LT
610 /* Parse override configuration */
611 np->an_enable = 1;
612 if (card_idx < MAX_UNITS) {
613 if (media[card_idx] != NULL) {
614 np->an_enable = 0;
615 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
616 strcmp (media[card_idx], "4") == 0) {
617 np->speed = 100;
618 np->mii_if.full_duplex = 1;
8e95a202
JP
619 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
620 strcmp (media[card_idx], "3") == 0) {
1da177e4
LT
621 np->speed = 100;
622 np->mii_if.full_duplex = 0;
623 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
624 strcmp (media[card_idx], "2") == 0) {
625 np->speed = 10;
626 np->mii_if.full_duplex = 1;
627 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
628 strcmp (media[card_idx], "1") == 0) {
629 np->speed = 10;
630 np->mii_if.full_duplex = 0;
631 } else {
632 np->an_enable = 1;
633 }
634 }
635 if (flowctrl == 1)
636 np->flowctrl = 1;
637 }
638
639 /* Fibre PHY? */
640 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
641 /* Default 100Mbps Full */
642 if (np->an_enable) {
643 np->speed = 100;
644 np->mii_if.full_duplex = 1;
645 np->an_enable = 0;
646 }
647 }
648 /* Reset PHY */
649 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
650 mdelay (300);
651 /* If flow control enabled, we need to advertise it.*/
652 if (np->flowctrl)
653 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
654 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
655 /* Force media type */
656 if (!np->an_enable) {
657 mii_ctl = 0;
658 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
659 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
660 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
661 printk (KERN_INFO "Override speed=%d, %s duplex\n",
662 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
663
664 }
665
666 /* Perhaps move the reset here? */
667 /* Reset the chip to erase previous misconfiguration. */
668 if (netif_msg_hw(np))
669 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
e714d99c 670 sundance_reset(dev, 0x00ff << 16);
1da177e4
LT
671 if (netif_msg_hw(np))
672 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
673
674 card_idx++;
675 return 0;
676
677err_out_unregister:
678 unregister_netdev(dev);
679err_out_unmap_rx:
0c8a745f
DK
680 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
681 np->rx_ring, np->rx_ring_dma);
1da177e4 682err_out_unmap_tx:
0c8a745f
DK
683 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
684 np->tx_ring, np->tx_ring_dma);
1da177e4
LT
685err_out_cleardev:
686 pci_set_drvdata(pdev, NULL);
687 pci_iounmap(pdev, ioaddr);
688err_out_res:
689 pci_release_regions(pdev);
690err_out_netdev:
691 free_netdev (dev);
692 return -ENODEV;
693}
694
695static int change_mtu(struct net_device *dev, int new_mtu)
696{
697 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
698 return -EINVAL;
699 if (netif_running(dev))
700 return -EBUSY;
701 dev->mtu = new_mtu;
702 return 0;
703}
704
705#define eeprom_delay(ee_addr) ioread32(ee_addr)
706/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
707static int __devinit eeprom_read(void __iomem *ioaddr, int location)
708{
709 int boguscnt = 10000; /* Typical 1900 ticks. */
710 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
711 do {
712 eeprom_delay(ioaddr + EECtrl);
713 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
714 return ioread16(ioaddr + EEData);
715 }
716 } while (--boguscnt > 0);
717 return 0;
718}
719
720/* MII transceiver control section.
721 Read and write the MII registers using software-generated serial
722 MDIO protocol. See the MII specifications or DP83840A data sheet
723 for details.
724
725 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
726 met by back-to-back 33Mhz PCI cycles. */
727#define mdio_delay() ioread8(mdio_addr)
728
729enum mii_reg_bits {
730 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
731};
732#define MDIO_EnbIn (0)
733#define MDIO_WRITE0 (MDIO_EnbOutput)
734#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
735
736/* Generate the preamble required for initial synchronization and
737 a few older transceivers. */
738static void mdio_sync(void __iomem *mdio_addr)
739{
740 int bits = 32;
741
742 /* Establish sync by sending at least 32 logic ones. */
743 while (--bits >= 0) {
744 iowrite8(MDIO_WRITE1, mdio_addr);
745 mdio_delay();
746 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
747 mdio_delay();
748 }
749}
750
751static int mdio_read(struct net_device *dev, int phy_id, int location)
752{
753 struct netdev_private *np = netdev_priv(dev);
754 void __iomem *mdio_addr = np->base + MIICtrl;
755 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
756 int i, retval = 0;
757
758 if (np->mii_preamble_required)
759 mdio_sync(mdio_addr);
760
761 /* Shift the read command bits out. */
762 for (i = 15; i >= 0; i--) {
763 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
764
765 iowrite8(dataval, mdio_addr);
766 mdio_delay();
767 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
768 mdio_delay();
769 }
770 /* Read the two transition, 16 data, and wire-idle bits. */
771 for (i = 19; i > 0; i--) {
772 iowrite8(MDIO_EnbIn, mdio_addr);
773 mdio_delay();
774 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
775 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
776 mdio_delay();
777 }
778 return (retval>>1) & 0xffff;
779}
780
781static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
782{
783 struct netdev_private *np = netdev_priv(dev);
784 void __iomem *mdio_addr = np->base + MIICtrl;
785 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
786 int i;
787
788 if (np->mii_preamble_required)
789 mdio_sync(mdio_addr);
790
791 /* Shift the command bits out. */
792 for (i = 31; i >= 0; i--) {
793 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
794
795 iowrite8(dataval, mdio_addr);
796 mdio_delay();
797 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
798 mdio_delay();
799 }
800 /* Clear out extra bits. */
801 for (i = 2; i > 0; i--) {
802 iowrite8(MDIO_EnbIn, mdio_addr);
803 mdio_delay();
804 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
805 mdio_delay();
806 }
1da177e4
LT
807}
808
50500155
DN
809static int mdio_wait_link(struct net_device *dev, int wait)
810{
811 int bmsr;
812 int phy_id;
813 struct netdev_private *np;
814
815 np = netdev_priv(dev);
816 phy_id = np->phys[0];
817
818 do {
819 bmsr = mdio_read(dev, phy_id, MII_BMSR);
820 if (bmsr & 0x0004)
821 return 0;
822 mdelay(1);
823 } while (--wait > 0);
824 return -1;
825}
826
1da177e4
LT
827static int netdev_open(struct net_device *dev)
828{
829 struct netdev_private *np = netdev_priv(dev);
830 void __iomem *ioaddr = np->base;
acd70c2b 831 unsigned long flags;
1da177e4
LT
832 int i;
833
834 /* Do we need to reset the chip??? */
835
a0607fd3 836 i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
837 if (i)
838 return i;
839
840 if (netif_msg_ifup(np))
841 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
842 dev->name, dev->irq);
843 init_ring(dev);
844
845 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
846 /* The Tx list pointer is written as packets are queued. */
847
848 /* Initialize other registers. */
849 __set_mac_addr(dev);
850#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
851 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
852#else
853 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
854#endif
855 if (dev->mtu > 2047)
856 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
857
858 /* Configure the PCI bus bursts and FIFO thresholds. */
859
860 if (dev->if_port == 0)
861 dev->if_port = np->default_port;
862
863 spin_lock_init(&np->mcastlock);
864
865 set_rx_mode(dev);
866 iowrite16(0, ioaddr + IntrEnable);
867 iowrite16(0, ioaddr + DownCounter);
868 /* Set the chip to poll every N*320nsec. */
869 iowrite8(100, ioaddr + RxDMAPollPeriod);
870 iowrite8(127, ioaddr + TxDMAPollPeriod);
871 /* Fix DFE-580TX packet drop issue */
44c10138 872 if (np->pci_dev->revision >= 0x14)
1da177e4
LT
873 iowrite8(0x01, ioaddr + DebugCtrl1);
874 netif_start_queue(dev);
875
acd70c2b
JH
876 spin_lock_irqsave(&np->lock, flags);
877 reset_tx(dev);
878 spin_unlock_irqrestore(&np->lock, flags);
879
1da177e4
LT
880 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
881
882 if (netif_msg_ifup(np))
883 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
884 "MAC Control %x, %4.4x %4.4x.\n",
885 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
886 ioread32(ioaddr + MACCtrl0),
887 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
888
889 /* Set the timer to check for link beat. */
890 init_timer(&np->timer);
891 np->timer.expires = jiffies + 3*HZ;
892 np->timer.data = (unsigned long)dev;
c061b18d 893 np->timer.function = netdev_timer; /* timer handler */
1da177e4
LT
894 add_timer(&np->timer);
895
896 /* Enable interrupts by setting the interrupt mask. */
897 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
898
899 return 0;
900}
901
902static void check_duplex(struct net_device *dev)
903{
904 struct netdev_private *np = netdev_priv(dev);
905 void __iomem *ioaddr = np->base;
906 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
907 int negotiated = mii_lpa & np->mii_if.advertising;
908 int duplex;
909
910 /* Force media */
911 if (!np->an_enable || mii_lpa == 0xffff) {
912 if (np->mii_if.full_duplex)
913 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
914 ioaddr + MACCtrl0);
915 return;
916 }
917
918 /* Autonegotiation */
919 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
920 if (np->mii_if.full_duplex != duplex) {
921 np->mii_if.full_duplex = duplex;
922 if (netif_msg_link(np))
923 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
924 "negotiated capability %4.4x.\n", dev->name,
925 duplex ? "full" : "half", np->phys[0], negotiated);
62660e28 926 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
1da177e4
LT
927 }
928}
929
930static void netdev_timer(unsigned long data)
931{
932 struct net_device *dev = (struct net_device *)data;
933 struct netdev_private *np = netdev_priv(dev);
934 void __iomem *ioaddr = np->base;
935 int next_tick = 10*HZ;
936
937 if (netif_msg_timer(np)) {
938 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
939 "Tx %x Rx %x.\n",
940 dev->name, ioread16(ioaddr + IntrEnable),
941 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
942 }
943 check_duplex(dev);
944 np->timer.expires = jiffies + next_tick;
945 add_timer(&np->timer);
946}
947
948static void tx_timeout(struct net_device *dev)
949{
950 struct netdev_private *np = netdev_priv(dev);
951 void __iomem *ioaddr = np->base;
952 unsigned long flag;
6aa20a22 953
1da177e4
LT
954 netif_stop_queue(dev);
955 tasklet_disable(&np->tx_tasklet);
956 iowrite16(0, ioaddr + IntrEnable);
957 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
958 "TxFrameId %2.2x,"
959 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
960 ioread8(ioaddr + TxFrameId));
961
962 {
963 int i;
964 for (i=0; i<TX_RING_SIZE; i++) {
965 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
966 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
967 le32_to_cpu(np->tx_ring[i].next_desc),
968 le32_to_cpu(np->tx_ring[i].status),
969 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
6aa20a22 970 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1da177e4
LT
971 le32_to_cpu(np->tx_ring[i].frag[0].length));
972 }
6aa20a22
JG
973 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
974 ioread32(np->base + TxListPtr),
1da177e4 975 netif_queue_stopped(dev));
6aa20a22 976 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1da177e4
LT
977 np->cur_tx, np->cur_tx % TX_RING_SIZE,
978 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
979 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
980 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
981 }
982 spin_lock_irqsave(&np->lock, flag);
983
984 /* Stop and restart the chip's Tx processes . */
985 reset_tx(dev);
986 spin_unlock_irqrestore(&np->lock, flag);
987
988 dev->if_port = 0;
989
1ae5dc34 990 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 991 dev->stats.tx_errors++;
1da177e4
LT
992 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
993 netif_wake_queue(dev);
994 }
995 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
996 tasklet_enable(&np->tx_tasklet);
997}
998
999
1000/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1001static void init_ring(struct net_device *dev)
1002{
1003 struct netdev_private *np = netdev_priv(dev);
1004 int i;
1005
1006 np->cur_rx = np->cur_tx = 0;
1007 np->dirty_rx = np->dirty_tx = 0;
1008 np->cur_task = 0;
1009
1010 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1011
1012 /* Initialize all Rx descriptors. */
1013 for (i = 0; i < RX_RING_SIZE; i++) {
1014 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1015 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1016 np->rx_ring[i].status = 0;
1017 np->rx_ring[i].frag[0].length = 0;
1018 np->rx_skbuff[i] = NULL;
1019 }
1020
1021 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1022 for (i = 0; i < RX_RING_SIZE; i++) {
78a36f25 1023 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + 2);
1da177e4
LT
1024 np->rx_skbuff[i] = skb;
1025 if (skb == NULL)
1026 break;
1027 skb->dev = dev; /* Mark as being used by this device. */
1028 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1029 np->rx_ring[i].frag[0].addr = cpu_to_le32(
0c8a745f
DK
1030 dma_map_single(&np->pci_dev->dev, skb->data,
1031 np->rx_buf_sz, DMA_FROM_DEVICE));
d91dc279
DK
1032 if (dma_mapping_error(&np->pci_dev->dev,
1033 np->rx_ring[i].frag[0].addr)) {
1034 dev_kfree_skb(skb);
1035 np->rx_skbuff[i] = NULL;
1036 break;
1037 }
1da177e4
LT
1038 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1039 }
1040 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1041
1042 for (i = 0; i < TX_RING_SIZE; i++) {
1043 np->tx_skbuff[i] = NULL;
1044 np->tx_ring[i].status = 0;
1045 }
1da177e4
LT
1046}
1047
1048static void tx_poll (unsigned long data)
1049{
1050 struct net_device *dev = (struct net_device *)data;
1051 struct netdev_private *np = netdev_priv(dev);
1052 unsigned head = np->cur_task % TX_RING_SIZE;
6aa20a22 1053 struct netdev_desc *txdesc =
1da177e4 1054 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
6aa20a22 1055
1da177e4
LT
1056 /* Chain the next pointer */
1057 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1058 int entry = np->cur_task % TX_RING_SIZE;
1059 txdesc = &np->tx_ring[entry];
1060 if (np->last_tx) {
1061 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1062 entry*sizeof(struct netdev_desc));
1063 }
1064 np->last_tx = txdesc;
1065 }
1066 /* Indicate the latest descriptor of tx ring */
1067 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1068
1069 if (ioread32 (np->base + TxListPtr) == 0)
1070 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1071 np->base + TxListPtr);
1da177e4
LT
1072}
1073
61357325 1074static netdev_tx_t
1da177e4
LT
1075start_tx (struct sk_buff *skb, struct net_device *dev)
1076{
1077 struct netdev_private *np = netdev_priv(dev);
1078 struct netdev_desc *txdesc;
1079 unsigned entry;
1080
1081 /* Calculate the next Tx descriptor entry. */
1082 entry = np->cur_tx % TX_RING_SIZE;
1083 np->tx_skbuff[entry] = skb;
1084 txdesc = &np->tx_ring[entry];
1085
1086 txdesc->next_desc = 0;
1087 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
0c8a745f
DK
1088 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1089 skb->data, skb->len, DMA_TO_DEVICE));
d91dc279
DK
1090 if (dma_mapping_error(&np->pci_dev->dev,
1091 txdesc->frag[0].addr))
1092 goto drop_frame;
1da177e4
LT
1093 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1094
1095 /* Increment cur_tx before tasklet_schedule() */
1096 np->cur_tx++;
1097 mb();
1098 /* Schedule a tx_poll() task */
1099 tasklet_schedule(&np->tx_tasklet);
1100
1101 /* On some architectures: explicitly flush cache lines here. */
8e95a202
JP
1102 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1103 !netif_queue_stopped(dev)) {
1da177e4
LT
1104 /* do nothing */
1105 } else {
1106 netif_stop_queue (dev);
1107 }
1da177e4
LT
1108 if (netif_msg_tx_queued(np)) {
1109 printk (KERN_DEBUG
1110 "%s: Transmit frame #%d queued in slot %d.\n",
1111 dev->name, np->cur_tx, entry);
1112 }
6ed10654 1113 return NETDEV_TX_OK;
d91dc279
DK
1114
1115drop_frame:
1116 dev_kfree_skb(skb);
1117 np->tx_skbuff[entry] = NULL;
1118 dev->stats.tx_dropped++;
1119 return NETDEV_TX_OK;
1da177e4
LT
1120}
1121
1122/* Reset hardware tx and free all of tx buffers */
1123static int
1124reset_tx (struct net_device *dev)
1125{
1126 struct netdev_private *np = netdev_priv(dev);
1127 void __iomem *ioaddr = np->base;
1128 struct sk_buff *skb;
1129 int i;
6aa20a22 1130
1da177e4
LT
1131 /* Reset tx logic, TxListPtr will be cleaned */
1132 iowrite16 (TxDisable, ioaddr + MACCtrl1);
e714d99c
PDM
1133 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1134
1da177e4
LT
1135 /* free all tx skbuff */
1136 for (i = 0; i < TX_RING_SIZE; i++) {
2109f89f
JH
1137 np->tx_ring[i].next_desc = 0;
1138
1da177e4
LT
1139 skb = np->tx_skbuff[i];
1140 if (skb) {
0c8a745f 1141 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1142 le32_to_cpu(np->tx_ring[i].frag[0].addr),
0c8a745f 1143 skb->len, DMA_TO_DEVICE);
a9478e38 1144 dev_kfree_skb_any(skb);
1da177e4 1145 np->tx_skbuff[i] = NULL;
553e2335 1146 dev->stats.tx_dropped++;
1da177e4
LT
1147 }
1148 }
1149 np->cur_tx = np->dirty_tx = 0;
1150 np->cur_task = 0;
2109f89f 1151
bca79eb7 1152 np->last_tx = NULL;
2109f89f
JH
1153 iowrite8(127, ioaddr + TxDMAPollPeriod);
1154
1da177e4
LT
1155 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1156 return 0;
1157}
1158
6aa20a22 1159/* The interrupt handler cleans up after the Tx thread,
1da177e4 1160 and schedule a Rx thread work */
7d12e780 1161static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1162{
1163 struct net_device *dev = (struct net_device *)dev_instance;
1164 struct netdev_private *np = netdev_priv(dev);
1165 void __iomem *ioaddr = np->base;
1166 int hw_frame_id;
1167 int tx_cnt;
1168 int tx_status;
1169 int handled = 0;
e242040d 1170 int i;
1da177e4
LT
1171
1172
1173 do {
1174 int intr_status = ioread16(ioaddr + IntrStatus);
1175 iowrite16(intr_status, ioaddr + IntrStatus);
1176
1177 if (netif_msg_intr(np))
1178 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1179 dev->name, intr_status);
1180
1181 if (!(intr_status & DEFAULT_INTR))
1182 break;
1183
1184 handled = 1;
1185
1186 if (intr_status & (IntrRxDMADone)) {
1187 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1188 ioaddr + IntrEnable);
1189 if (np->budget < 0)
1190 np->budget = RX_BUDGET;
1191 tasklet_schedule(&np->rx_tasklet);
1192 }
1193 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1194 tx_status = ioread16 (ioaddr + TxStatus);
1195 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1196 if (netif_msg_tx_done(np))
1197 printk
1198 ("%s: Transmit status is %2.2x.\n",
1199 dev->name, tx_status);
1200 if (tx_status & 0x1e) {
b71b95ef
PDM
1201 if (netif_msg_tx_err(np))
1202 printk("%s: Transmit error status %4.4x.\n",
1203 dev->name, tx_status);
553e2335 1204 dev->stats.tx_errors++;
1da177e4 1205 if (tx_status & 0x10)
553e2335 1206 dev->stats.tx_fifo_errors++;
1da177e4 1207 if (tx_status & 0x08)
553e2335 1208 dev->stats.collisions++;
b71b95ef 1209 if (tx_status & 0x04)
553e2335 1210 dev->stats.tx_fifo_errors++;
1da177e4 1211 if (tx_status & 0x02)
553e2335 1212 dev->stats.tx_window_errors++;
e242040d 1213
b71b95ef
PDM
1214 /*
1215 ** This reset has been verified on
1216 ** DFE-580TX boards ! phdm@macqel.be.
1217 */
1218 if (tx_status & 0x10) { /* TxUnderrun */
b71b95ef
PDM
1219 /* Restart Tx FIFO and transmitter */
1220 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
b71b95ef 1221 /* No need to reset the Tx pointer here */
1da177e4 1222 }
2109f89f
JH
1223 /* Restart the Tx. Need to make sure tx enabled */
1224 i = 10;
1225 do {
1226 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1227 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1228 break;
1229 mdelay(1);
1230 } while (--i);
1da177e4
LT
1231 }
1232 /* Yup, this is a documentation bug. It cost me *hours*. */
1233 iowrite16 (0, ioaddr + TxStatus);
1234 if (tx_cnt < 0) {
1235 iowrite32(5000, ioaddr + DownCounter);
1236 break;
1237 }
1238 tx_status = ioread16 (ioaddr + TxStatus);
1239 }
1240 hw_frame_id = (tx_status >> 8) & 0xff;
1241 } else {
1242 hw_frame_id = ioread8(ioaddr + TxFrameId);
1243 }
6aa20a22 1244
44c10138 1245 if (np->pci_dev->revision >= 0x14) {
1da177e4
LT
1246 spin_lock(&np->lock);
1247 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1248 int entry = np->dirty_tx % TX_RING_SIZE;
1249 struct sk_buff *skb;
1250 int sw_frame_id;
1251 sw_frame_id = (le32_to_cpu(
1252 np->tx_ring[entry].status) >> 2) & 0xff;
1253 if (sw_frame_id == hw_frame_id &&
1254 !(le32_to_cpu(np->tx_ring[entry].status)
1255 & 0x00010000))
1256 break;
6aa20a22 1257 if (sw_frame_id == (hw_frame_id + 1) %
1da177e4
LT
1258 TX_RING_SIZE)
1259 break;
1260 skb = np->tx_skbuff[entry];
1261 /* Free the original skb. */
0c8a745f 1262 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1263 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
0c8a745f 1264 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1265 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1266 np->tx_skbuff[entry] = NULL;
1267 np->tx_ring[entry].frag[0].addr = 0;
1268 np->tx_ring[entry].frag[0].length = 0;
1269 }
1270 spin_unlock(&np->lock);
1271 } else {
1272 spin_lock(&np->lock);
1273 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1274 int entry = np->dirty_tx % TX_RING_SIZE;
1275 struct sk_buff *skb;
6aa20a22 1276 if (!(le32_to_cpu(np->tx_ring[entry].status)
1da177e4
LT
1277 & 0x00010000))
1278 break;
1279 skb = np->tx_skbuff[entry];
1280 /* Free the original skb. */
0c8a745f 1281 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1282 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
0c8a745f 1283 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1284 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1285 np->tx_skbuff[entry] = NULL;
1286 np->tx_ring[entry].frag[0].addr = 0;
1287 np->tx_ring[entry].frag[0].length = 0;
1288 }
1289 spin_unlock(&np->lock);
1290 }
6aa20a22 1291
1da177e4
LT
1292 if (netif_queue_stopped(dev) &&
1293 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1294 /* The ring is no longer full, clear busy flag. */
1295 netif_wake_queue (dev);
1296 }
1297 /* Abnormal error summary/uncommon events handlers. */
1298 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1299 netdev_error(dev, intr_status);
1300 } while (0);
1301 if (netif_msg_intr(np))
1302 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1303 dev->name, ioread16(ioaddr + IntrStatus));
1304 return IRQ_RETVAL(handled);
1305}
1306
1307static void rx_poll(unsigned long data)
1308{
1309 struct net_device *dev = (struct net_device *)data;
1310 struct netdev_private *np = netdev_priv(dev);
1311 int entry = np->cur_rx % RX_RING_SIZE;
1312 int boguscnt = np->budget;
1313 void __iomem *ioaddr = np->base;
1314 int received = 0;
1315
1316 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1317 while (1) {
1318 struct netdev_desc *desc = &(np->rx_ring[entry]);
1319 u32 frame_status = le32_to_cpu(desc->status);
1320 int pkt_len;
1321
1322 if (--boguscnt < 0) {
1323 goto not_done;
1324 }
1325 if (!(frame_status & DescOwn))
1326 break;
1327 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1328 if (netif_msg_rx_status(np))
1329 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1330 frame_status);
1331 if (frame_status & 0x001f4000) {
1332 /* There was a error. */
1333 if (netif_msg_rx_err(np))
1334 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1335 frame_status);
553e2335
ED
1336 dev->stats.rx_errors++;
1337 if (frame_status & 0x00100000)
1338 dev->stats.rx_length_errors++;
1339 if (frame_status & 0x00010000)
1340 dev->stats.rx_fifo_errors++;
1341 if (frame_status & 0x00060000)
1342 dev->stats.rx_frame_errors++;
1343 if (frame_status & 0x00080000)
1344 dev->stats.rx_crc_errors++;
1da177e4
LT
1345 if (frame_status & 0x00100000) {
1346 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1347 " status %8.8x.\n",
1348 dev->name, frame_status);
1349 }
1350 } else {
1351 struct sk_buff *skb;
1352#ifndef final_version
1353 if (netif_msg_rx_status(np))
1354 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1355 ", bogus_cnt %d.\n",
1356 pkt_len, boguscnt);
1357#endif
1358 /* Check if the packet is long enough to accept without copying
1359 to a minimally-sized skbuff. */
8e95a202
JP
1360 if (pkt_len < rx_copybreak &&
1361 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4 1362 skb_reserve(skb, 2); /* 16 byte align the IP header */
0c8a745f
DK
1363 dma_sync_single_for_cpu(&np->pci_dev->dev,
1364 le32_to_cpu(desc->frag[0].addr),
1365 np->rx_buf_sz, DMA_FROM_DEVICE);
8c7b7faa 1366 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
0c8a745f
DK
1367 dma_sync_single_for_device(&np->pci_dev->dev,
1368 le32_to_cpu(desc->frag[0].addr),
1369 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1370 skb_put(skb, pkt_len);
1371 } else {
0c8a745f 1372 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1373 le32_to_cpu(desc->frag[0].addr),
0c8a745f 1374 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1375 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1376 np->rx_skbuff[entry] = NULL;
1377 }
1378 skb->protocol = eth_type_trans(skb, dev);
1379 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1380 netif_rx(skb);
1da177e4
LT
1381 }
1382 entry = (entry + 1) % RX_RING_SIZE;
1383 received++;
1384 }
1385 np->cur_rx = entry;
1386 refill_rx (dev);
1387 np->budget -= received;
1388 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1389 return;
1390
1391not_done:
1392 np->cur_rx = entry;
1393 refill_rx (dev);
1394 if (!received)
1395 received = 1;
1396 np->budget -= received;
1397 if (np->budget <= 0)
1398 np->budget = RX_BUDGET;
1399 tasklet_schedule(&np->rx_tasklet);
1da177e4
LT
1400}
1401
1402static void refill_rx (struct net_device *dev)
1403{
1404 struct netdev_private *np = netdev_priv(dev);
1405 int entry;
1406 int cnt = 0;
1407
1408 /* Refill the Rx ring buffers. */
1409 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1410 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1411 struct sk_buff *skb;
1412 entry = np->dirty_rx % RX_RING_SIZE;
1413 if (np->rx_skbuff[entry] == NULL) {
78a36f25 1414 skb = dev_alloc_skb(np->rx_buf_sz + 2);
1da177e4
LT
1415 np->rx_skbuff[entry] = skb;
1416 if (skb == NULL)
1417 break; /* Better luck next round. */
1418 skb->dev = dev; /* Mark as being used by this device. */
1419 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1420 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
0c8a745f
DK
1421 dma_map_single(&np->pci_dev->dev, skb->data,
1422 np->rx_buf_sz, DMA_FROM_DEVICE));
d91dc279
DK
1423 if (dma_mapping_error(&np->pci_dev->dev,
1424 np->rx_ring[entry].frag[0].addr)) {
1425 dev_kfree_skb_irq(skb);
1426 np->rx_skbuff[entry] = NULL;
1427 break;
1428 }
1da177e4
LT
1429 }
1430 /* Perhaps we need not reset this field. */
1431 np->rx_ring[entry].frag[0].length =
1432 cpu_to_le32(np->rx_buf_sz | LastFrag);
1433 np->rx_ring[entry].status = 0;
1434 cnt++;
1435 }
1da177e4
LT
1436}
1437static void netdev_error(struct net_device *dev, int intr_status)
1438{
1439 struct netdev_private *np = netdev_priv(dev);
1440 void __iomem *ioaddr = np->base;
1441 u16 mii_ctl, mii_advertise, mii_lpa;
1442 int speed;
1443
1444 if (intr_status & LinkChange) {
50500155
DN
1445 if (mdio_wait_link(dev, 10) == 0) {
1446 printk(KERN_INFO "%s: Link up\n", dev->name);
1447 if (np->an_enable) {
1448 mii_advertise = mdio_read(dev, np->phys[0],
1449 MII_ADVERTISE);
1450 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1451 mii_advertise &= mii_lpa;
1452 printk(KERN_INFO "%s: Link changed: ",
1453 dev->name);
1454 if (mii_advertise & ADVERTISE_100FULL) {
1455 np->speed = 100;
1456 printk("100Mbps, full duplex\n");
1457 } else if (mii_advertise & ADVERTISE_100HALF) {
1458 np->speed = 100;
1459 printk("100Mbps, half duplex\n");
1460 } else if (mii_advertise & ADVERTISE_10FULL) {
1461 np->speed = 10;
1462 printk("10Mbps, full duplex\n");
1463 } else if (mii_advertise & ADVERTISE_10HALF) {
1464 np->speed = 10;
1465 printk("10Mbps, half duplex\n");
1466 } else
1467 printk("\n");
1da177e4 1468
50500155
DN
1469 } else {
1470 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1471 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1472 np->speed = speed;
1473 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1474 dev->name, speed);
1475 printk("%s duplex.\n",
1476 (mii_ctl & BMCR_FULLDPLX) ?
1477 "full" : "half");
1478 }
1479 check_duplex(dev);
1480 if (np->flowctrl && np->mii_if.full_duplex) {
1481 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1482 ioaddr + MulticastFilter1+2);
1483 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1484 ioaddr + MACCtrl0);
1485 }
1486 netif_carrier_on(dev);
1da177e4 1487 } else {
50500155
DN
1488 printk(KERN_INFO "%s: Link down\n", dev->name);
1489 netif_carrier_off(dev);
1da177e4
LT
1490 }
1491 }
1492 if (intr_status & StatsMax) {
1493 get_stats(dev);
1494 }
1495 if (intr_status & IntrPCIErr) {
1496 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1497 dev->name, intr_status);
1498 /* We must do a global reset of DMA to continue. */
1499 }
1500}
1501
1502static struct net_device_stats *get_stats(struct net_device *dev)
1503{
1504 struct netdev_private *np = netdev_priv(dev);
1505 void __iomem *ioaddr = np->base;
7b738b55 1506 unsigned long flags;
725a4a46 1507 u8 late_coll, single_coll, mult_coll;
1da177e4 1508
7b738b55 1509 spin_lock_irqsave(&np->statlock, flags);
1da177e4 1510 /* The chip only need report frame silently dropped. */
553e2335
ED
1511 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1512 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1513 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
553e2335 1514 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
725a4a46
DK
1515
1516 mult_coll = ioread8(ioaddr + StatsMultiColl);
1517 np->xstats.tx_multiple_collisions += mult_coll;
1518 single_coll = ioread8(ioaddr + StatsOneColl);
1519 np->xstats.tx_single_collisions += single_coll;
1520 late_coll = ioread8(ioaddr + StatsLateColl);
1521 np->xstats.tx_late_collisions += late_coll;
1522 dev->stats.collisions += mult_coll
1523 + single_coll
1524 + late_coll;
1525
1526 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1527 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1528 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1529 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1530 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1531 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1532 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1533
553e2335
ED
1534 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1535 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1536 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1537 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1da177e4 1538
7b738b55
ED
1539 spin_unlock_irqrestore(&np->statlock, flags);
1540
553e2335 1541 return &dev->stats;
1da177e4
LT
1542}
1543
1544static void set_rx_mode(struct net_device *dev)
1545{
1546 struct netdev_private *np = netdev_priv(dev);
1547 void __iomem *ioaddr = np->base;
1548 u16 mc_filter[4]; /* Multicast hash filter */
1549 u32 rx_mode;
1550 int i;
1551
1552 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1553 memset(mc_filter, 0xff, sizeof(mc_filter));
1554 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
4cd24eaf 1555 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1556 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1557 /* Too many to match, or accept all multicasts. */
1558 memset(mc_filter, 0xff, sizeof(mc_filter));
1559 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
4cd24eaf 1560 } else if (!netdev_mc_empty(dev)) {
22bedad3 1561 struct netdev_hw_addr *ha;
1da177e4
LT
1562 int bit;
1563 int index;
1564 int crc;
1565 memset (mc_filter, 0, sizeof (mc_filter));
22bedad3
JP
1566 netdev_for_each_mc_addr(ha, dev) {
1567 crc = ether_crc_le(ETH_ALEN, ha->addr);
1da177e4
LT
1568 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1569 if (crc & 0x80000000) index |= 1 << bit;
1570 mc_filter[index/16] |= (1 << (index % 16));
1571 }
1572 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1573 } else {
1574 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1575 return;
1576 }
1577 if (np->mii_if.full_duplex && np->flowctrl)
1578 mc_filter[3] |= 0x0200;
1579
1580 for (i = 0; i < 4; i++)
1581 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1582 iowrite8(rx_mode, ioaddr + RxMode);
1583}
1584
1585static int __set_mac_addr(struct net_device *dev)
1586{
1587 struct netdev_private *np = netdev_priv(dev);
1588 u16 addr16;
1589
1590 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1591 iowrite16(addr16, np->base + StationAddr);
1592 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1593 iowrite16(addr16, np->base + StationAddr+2);
1594 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1595 iowrite16(addr16, np->base + StationAddr+4);
1596 return 0;
1597}
1598
4b4f5467
DK
1599/* Invoked with rtnl_lock held */
1600static int sundance_set_mac_addr(struct net_device *dev, void *data)
1601{
1602 const struct sockaddr *addr = data;
1603
1604 if (!is_valid_ether_addr(addr->sa_data))
1605 return -EINVAL;
1606 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1607 __set_mac_addr(dev);
1608
1609 return 0;
1610}
1611
725a4a46
DK
1612static const struct {
1613 const char name[ETH_GSTRING_LEN];
1614} sundance_stats[] = {
1615 { "tx_multiple_collisions" },
1616 { "tx_single_collisions" },
1617 { "tx_late_collisions" },
1618 { "tx_deferred" },
1619 { "tx_deferred_excessive" },
1620 { "tx_aborted" },
1621 { "tx_bcasts" },
1622 { "rx_bcasts" },
1623 { "tx_mcasts" },
1624 { "rx_mcasts" },
1625};
1626
1da177e4
LT
1627static int check_if_running(struct net_device *dev)
1628{
1629 if (!netif_running(dev))
1630 return -EINVAL;
1631 return 0;
1632}
1633
1634static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1635{
1636 struct netdev_private *np = netdev_priv(dev);
1637 strcpy(info->driver, DRV_NAME);
1638 strcpy(info->version, DRV_VERSION);
1639 strcpy(info->bus_info, pci_name(np->pci_dev));
1640}
1641
1642static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1643{
1644 struct netdev_private *np = netdev_priv(dev);
1645 spin_lock_irq(&np->lock);
1646 mii_ethtool_gset(&np->mii_if, ecmd);
1647 spin_unlock_irq(&np->lock);
1648 return 0;
1649}
1650
1651static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1652{
1653 struct netdev_private *np = netdev_priv(dev);
1654 int res;
1655 spin_lock_irq(&np->lock);
1656 res = mii_ethtool_sset(&np->mii_if, ecmd);
1657 spin_unlock_irq(&np->lock);
1658 return res;
1659}
1660
1661static int nway_reset(struct net_device *dev)
1662{
1663 struct netdev_private *np = netdev_priv(dev);
1664 return mii_nway_restart(&np->mii_if);
1665}
1666
1667static u32 get_link(struct net_device *dev)
1668{
1669 struct netdev_private *np = netdev_priv(dev);
1670 return mii_link_ok(&np->mii_if);
1671}
1672
1673static u32 get_msglevel(struct net_device *dev)
1674{
1675 struct netdev_private *np = netdev_priv(dev);
1676 return np->msg_enable;
1677}
1678
1679static void set_msglevel(struct net_device *dev, u32 val)
1680{
1681 struct netdev_private *np = netdev_priv(dev);
1682 np->msg_enable = val;
1683}
1684
725a4a46
DK
1685static void get_strings(struct net_device *dev, u32 stringset,
1686 u8 *data)
1687{
1688 if (stringset == ETH_SS_STATS)
1689 memcpy(data, sundance_stats, sizeof(sundance_stats));
1690}
1691
1692static int get_sset_count(struct net_device *dev, int sset)
1693{
1694 switch (sset) {
1695 case ETH_SS_STATS:
1696 return ARRAY_SIZE(sundance_stats);
1697 default:
1698 return -EOPNOTSUPP;
1699 }
1700}
1701
1702static void get_ethtool_stats(struct net_device *dev,
1703 struct ethtool_stats *stats, u64 *data)
1704{
1705 struct netdev_private *np = netdev_priv(dev);
1706 int i = 0;
1707
1708 get_stats(dev);
1709 data[i++] = np->xstats.tx_multiple_collisions;
1710 data[i++] = np->xstats.tx_single_collisions;
1711 data[i++] = np->xstats.tx_late_collisions;
1712 data[i++] = np->xstats.tx_deferred;
1713 data[i++] = np->xstats.tx_deferred_excessive;
1714 data[i++] = np->xstats.tx_aborted;
1715 data[i++] = np->xstats.tx_bcasts;
1716 data[i++] = np->xstats.rx_bcasts;
1717 data[i++] = np->xstats.tx_mcasts;
1718 data[i++] = np->xstats.rx_mcasts;
1719}
1720
7282d491 1721static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1722 .begin = check_if_running,
1723 .get_drvinfo = get_drvinfo,
1724 .get_settings = get_settings,
1725 .set_settings = set_settings,
1726 .nway_reset = nway_reset,
1727 .get_link = get_link,
1728 .get_msglevel = get_msglevel,
1729 .set_msglevel = set_msglevel,
725a4a46
DK
1730 .get_strings = get_strings,
1731 .get_sset_count = get_sset_count,
1732 .get_ethtool_stats = get_ethtool_stats,
1da177e4
LT
1733};
1734
1735static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1736{
1737 struct netdev_private *np = netdev_priv(dev);
1da177e4 1738 int rc;
1da177e4
LT
1739
1740 if (!netif_running(dev))
1741 return -EINVAL;
1742
1743 spin_lock_irq(&np->lock);
1744 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1745 spin_unlock_irq(&np->lock);
1da177e4
LT
1746
1747 return rc;
1748}
1749
1750static int netdev_close(struct net_device *dev)
1751{
1752 struct netdev_private *np = netdev_priv(dev);
1753 void __iomem *ioaddr = np->base;
1754 struct sk_buff *skb;
1755 int i;
1756
31f817e9
JH
1757 /* Wait and kill tasklet */
1758 tasklet_kill(&np->rx_tasklet);
1759 tasklet_kill(&np->tx_tasklet);
1760 np->cur_tx = 0;
1761 np->dirty_tx = 0;
1762 np->cur_task = 0;
bca79eb7 1763 np->last_tx = NULL;
31f817e9 1764
1da177e4
LT
1765 netif_stop_queue(dev);
1766
1767 if (netif_msg_ifdown(np)) {
1768 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1769 "Rx %4.4x Int %2.2x.\n",
1770 dev->name, ioread8(ioaddr + TxStatus),
1771 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1772 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1773 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1774 }
1775
1776 /* Disable interrupts by clearing the interrupt mask. */
1777 iowrite16(0x0000, ioaddr + IntrEnable);
1778
acd70c2b
JH
1779 /* Disable Rx and Tx DMA for safely release resource */
1780 iowrite32(0x500, ioaddr + DMACtrl);
1781
1da177e4
LT
1782 /* Stop the chip's Tx and Rx processes. */
1783 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1784
31f817e9
JH
1785 for (i = 2000; i > 0; i--) {
1786 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1787 break;
1788 mdelay(1);
1789 }
1790
1791 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
24de5285 1792 ioaddr + ASIC_HI_WORD(ASICCtrl));
31f817e9
JH
1793
1794 for (i = 2000; i > 0; i--) {
24de5285 1795 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
31f817e9
JH
1796 break;
1797 mdelay(1);
1798 }
1da177e4
LT
1799
1800#ifdef __i386__
1801 if (netif_msg_hw(np)) {
ad361c98 1802 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1da177e4
LT
1803 (int)(np->tx_ring_dma));
1804 for (i = 0; i < TX_RING_SIZE; i++)
ad361c98 1805 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1da177e4
LT
1806 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1807 np->tx_ring[i].frag[0].length);
ad361c98 1808 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1da177e4
LT
1809 (int)(np->rx_ring_dma));
1810 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1811 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1812 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1813 np->rx_ring[i].frag[0].length);
1814 }
1815 }
1816#endif /* __i386__ debugging only */
1817
1818 free_irq(dev->irq, dev);
1819
1820 del_timer_sync(&np->timer);
1821
1822 /* Free all the skbuffs in the Rx queue. */
1823 for (i = 0; i < RX_RING_SIZE; i++) {
1824 np->rx_ring[i].status = 0;
1da177e4
LT
1825 skb = np->rx_skbuff[i];
1826 if (skb) {
0c8a745f 1827 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1828 le32_to_cpu(np->rx_ring[i].frag[0].addr),
0c8a745f 1829 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1830 dev_kfree_skb(skb);
1831 np->rx_skbuff[i] = NULL;
1832 }
14c9d9b0 1833 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1da177e4
LT
1834 }
1835 for (i = 0; i < TX_RING_SIZE; i++) {
31f817e9 1836 np->tx_ring[i].next_desc = 0;
1da177e4
LT
1837 skb = np->tx_skbuff[i];
1838 if (skb) {
0c8a745f 1839 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1840 le32_to_cpu(np->tx_ring[i].frag[0].addr),
0c8a745f 1841 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1842 dev_kfree_skb(skb);
1843 np->tx_skbuff[i] = NULL;
1844 }
1845 }
1846
1847 return 0;
1848}
1849
1850static void __devexit sundance_remove1 (struct pci_dev *pdev)
1851{
1852 struct net_device *dev = pci_get_drvdata(pdev);
1853
1854 if (dev) {
0c8a745f
DK
1855 struct netdev_private *np = netdev_priv(dev);
1856 unregister_netdev(dev);
1857 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1858 np->rx_ring, np->rx_ring_dma);
1859 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1860 np->tx_ring, np->tx_ring_dma);
1861 pci_iounmap(pdev, np->base);
1862 pci_release_regions(pdev);
1863 free_netdev(dev);
1864 pci_set_drvdata(pdev, NULL);
1da177e4
LT
1865 }
1866}
1867
61a21455
DK
1868#ifdef CONFIG_PM
1869
1870static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1871{
1872 struct net_device *dev = pci_get_drvdata(pci_dev);
1873
1874 if (!netif_running(dev))
1875 return 0;
1876
1877 netdev_close(dev);
1878 netif_device_detach(dev);
1879
1880 pci_save_state(pci_dev);
1881 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1882
1883 return 0;
1884}
1885
1886static int sundance_resume(struct pci_dev *pci_dev)
1887{
1888 struct net_device *dev = pci_get_drvdata(pci_dev);
1889 int err = 0;
1890
1891 if (!netif_running(dev))
1892 return 0;
1893
1894 pci_set_power_state(pci_dev, PCI_D0);
1895 pci_restore_state(pci_dev);
1896
1897 err = netdev_open(dev);
1898 if (err) {
1899 printk(KERN_ERR "%s: Can't resume interface!\n",
1900 dev->name);
1901 goto out;
1902 }
1903
1904 netif_device_attach(dev);
1905
1906out:
1907 return err;
1908}
1909
1910#endif /* CONFIG_PM */
1911
1da177e4
LT
1912static struct pci_driver sundance_driver = {
1913 .name = DRV_NAME,
1914 .id_table = sundance_pci_tbl,
1915 .probe = sundance_probe1,
1916 .remove = __devexit_p(sundance_remove1),
61a21455
DK
1917#ifdef CONFIG_PM
1918 .suspend = sundance_suspend,
1919 .resume = sundance_resume,
1920#endif /* CONFIG_PM */
1da177e4
LT
1921};
1922
1923static int __init sundance_init(void)
1924{
1925/* when a module, this is printed whether or not devices are found in probe */
1926#ifdef MODULE
1927 printk(version);
1928#endif
29917620 1929 return pci_register_driver(&sundance_driver);
1da177e4
LT
1930}
1931
1932static void __exit sundance_exit(void)
1933{
1934 pci_unregister_driver(&sundance_driver);
1935}
1936
1937module_init(sundance_init);
1938module_exit(sundance_exit);
1939
1940