]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/freescale/fec.c
Merge tag 'devicetree-for-linus' of git://git.secretlab.ca/git/linux-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / freescale / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
b5680e0b 20 *
230dec61 21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
6f501b17
SH
41#include <linux/io.h>
42#include <linux/irq.h>
196719ec 43#include <linux/clk.h>
ead73183 44#include <linux/platform_device.h>
e6b043d5 45#include <linux/phy.h>
5eb32bd0 46#include <linux/fec.h>
ca2cc333
SG
47#include <linux/of.h>
48#include <linux/of_device.h>
49#include <linux/of_gpio.h>
50#include <linux/of_net.h>
1da177e4 51
080853af 52#include <asm/cacheflush.h>
196719ec 53
b5680e0b 54#ifndef CONFIG_ARM
1da177e4
LT
55#include <asm/coldfire.h>
56#include <asm/mcfsim.h>
196719ec 57#endif
6f501b17 58
1da177e4 59#include "fec.h"
1da177e4 60
085e79ed 61#if defined(CONFIG_ARM)
196719ec
SH
62#define FEC_ALIGNMENT 0xf
63#else
64#define FEC_ALIGNMENT 0x3
65#endif
66
b5680e0b
SG
67#define DRIVER_NAME "fec"
68
69/* Controller is ENET-MAC */
70#define FEC_QUIRK_ENET_MAC (1 << 0)
71/* Controller needs driver to swap frame */
72#define FEC_QUIRK_SWAP_FRAME (1 << 1)
0ca1e290
SG
73/* Controller uses gasket */
74#define FEC_QUIRK_USE_GASKET (1 << 2)
230dec61
SG
75/* Controller has GBIT support */
76#define FEC_QUIRK_HAS_GBIT (1 << 3)
b5680e0b
SG
77
78static struct platform_device_id fec_devtype[] = {
79 {
0ca1e290 80 /* keep it for coldfire */
b5680e0b
SG
81 .name = DRIVER_NAME,
82 .driver_data = 0,
0ca1e290
SG
83 }, {
84 .name = "imx25-fec",
85 .driver_data = FEC_QUIRK_USE_GASKET,
86 }, {
87 .name = "imx27-fec",
88 .driver_data = 0,
b5680e0b
SG
89 }, {
90 .name = "imx28-fec",
91 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
230dec61
SG
92 }, {
93 .name = "imx6q-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
0ca1e290
SG
95 }, {
96 /* sentinel */
97 }
b5680e0b 98};
0ca1e290 99MODULE_DEVICE_TABLE(platform, fec_devtype);
b5680e0b 100
ca2cc333 101enum imx_fec_type {
a7dd3219 102 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
ca2cc333
SG
103 IMX27_FEC, /* runs on i.mx27/35/51 */
104 IMX28_FEC,
230dec61 105 IMX6Q_FEC,
ca2cc333
SG
106};
107
108static const struct of_device_id fec_dt_ids[] = {
109 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
110 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
111 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
230dec61 112 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
ca2cc333
SG
113 { /* sentinel */ }
114};
115MODULE_DEVICE_TABLE(of, fec_dt_ids);
116
49da97dc
SG
117static unsigned char macaddr[ETH_ALEN];
118module_param_array(macaddr, byte, NULL, 0);
119MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 120
49da97dc 121#if defined(CONFIG_M5272)
1da177e4
LT
122/*
123 * Some hardware gets it MAC address out of local flash memory.
124 * if this is non-zero then assume it is the address to get MAC from.
125 */
126#if defined(CONFIG_NETtel)
127#define FEC_FLASHMAC 0xf0006006
128#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
129#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
130#elif defined(CONFIG_CANCam)
131#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
132#elif defined (CONFIG_M5272C3)
133#define FEC_FLASHMAC (0xffe04000 + 4)
134#elif defined(CONFIG_MOD5272)
a7dd3219 135#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
136#else
137#define FEC_FLASHMAC 0
138#endif
43be6366 139#endif /* CONFIG_M5272 */
ead73183 140
1da177e4
LT
141/* The number of Tx and Rx buffers. These are allocated from the page
142 * pool. The code may assume these are power of two, so it it best
143 * to keep them that size.
144 * We don't need to allocate pages for the transmitter. We just use
145 * the skbuffer directly.
146 */
147#define FEC_ENET_RX_PAGES 8
148#define FEC_ENET_RX_FRSIZE 2048
149#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
150#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
151#define FEC_ENET_TX_FRSIZE 2048
152#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
153#define TX_RING_SIZE 16 /* Must be power of two */
154#define TX_RING_MOD_MASK 15 /* for this to work */
155
562d2f8c 156#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 157#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
158#endif
159
22f6b860 160/* Interrupt events/masks. */
1da177e4
LT
161#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
162#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
163#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
164#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
165#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
166#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
167#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
168#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
169#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
170#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
171
4bee1f9a
WS
172#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
173
1da177e4
LT
174/* The FEC stores dest/src/type, data, and checksum for receive packets.
175 */
176#define PKT_MAXBUF_SIZE 1518
177#define PKT_MINBUF_SIZE 64
178#define PKT_MAXBLR_SIZE 1520
179
c7c83d1c
XJ
180/* This device has up to three irqs on some platforms */
181#define FEC_IRQ_NUM 3
1da177e4
LT
182
183/*
6b265293 184 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
185 * size bits. Other FEC hardware does not, so we need to take that into
186 * account when setting it.
187 */
562d2f8c 188#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
085e79ed 189 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
1da177e4
LT
190#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
191#else
192#define OPT_FRAME_SIZE 0
193#endif
194
195/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
196 * tx_bd_base always point to the base of the buffer descriptors. The
197 * cur_rx and cur_tx point to the currently available buffer.
198 * The dirty_tx tracks the current buffer that is being sent by the
199 * controller. The cur_tx and dirty_tx are equal under both completely
200 * empty and completely full conditions. The empty/ready indicator in
201 * the buffer descriptor determines the actual condition.
202 */
203struct fec_enet_private {
204 /* Hardware registers of the FEC device */
f44d6305 205 void __iomem *hwp;
1da177e4 206
cb84d6e7
GU
207 struct net_device *netdev;
208
ead73183
SH
209 struct clk *clk;
210
1da177e4
LT
211 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
212 unsigned char *tx_bounce[TX_RING_SIZE];
213 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 214 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
215 ushort skb_cur;
216 ushort skb_dirty;
217
22f6b860 218 /* CPM dual port RAM relative addresses */
4661e75b 219 dma_addr_t bd_dma;
22f6b860 220 /* Address of Rx and Tx buffers */
2e28532f
SH
221 struct bufdesc *rx_bd_base;
222 struct bufdesc *tx_bd_base;
223 /* The next free ring entry */
db8880bc 224 struct bufdesc *cur_rx, *cur_tx;
22f6b860 225 /* The ring entries to be free()ed */
2e28532f
SH
226 struct bufdesc *dirty_tx;
227
1da177e4 228 uint tx_full;
3b2b74ca
SS
229 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
230 spinlock_t hw_lock;
1da177e4 231
db8880bc 232 struct platform_device *pdev;
1da177e4 233
e6b043d5 234 int opened;
43af940c 235 int dev_id;
1da177e4 236
e6b043d5 237 /* Phylib and MDIO interface */
db8880bc
UKK
238 struct mii_bus *mii_bus;
239 struct phy_device *phy_dev;
240 int mii_timeout;
241 uint phy_speed;
5eb32bd0 242 phy_interface_t phy_interface;
1da177e4 243 int link;
1da177e4 244 int full_duplex;
97b72e43 245 struct completion mdio_done;
7f5c6add 246 int irq[FEC_IRQ_NUM];
1da177e4
LT
247};
248
e6b043d5
BW
249/* FEC MII MMFR bits definition */
250#define FEC_MMFR_ST (1 << 30)
251#define FEC_MMFR_OP_READ (2 << 28)
252#define FEC_MMFR_OP_WRITE (1 << 28)
253#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
254#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
255#define FEC_MMFR_TA (2 << 16)
256#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 257
c3b084c2 258#define FEC_MII_TIMEOUT 30000 /* us */
1da177e4 259
22f6b860
SH
260/* Transmitter timeout */
261#define TX_TIMEOUT (2 * HZ)
1da177e4 262
e163cc97
LW
263static int mii_cnt;
264
b5680e0b
SG
265static void *swap_buffer(void *bufaddr, int len)
266{
267 int i;
268 unsigned int *buf = bufaddr;
269
270 for (i = 0; i < (len + 3) / 4; i++, buf++)
271 *buf = cpu_to_be32(*buf);
272
273 return bufaddr;
274}
275
c7621cb3 276static netdev_tx_t
c556167f 277fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1da177e4 278{
c556167f 279 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
280 const struct platform_device_id *id_entry =
281 platform_get_device_id(fep->pdev);
2e28532f 282 struct bufdesc *bdp;
9555b31e 283 void *bufaddr;
0e702ab3 284 unsigned short status;
3b2b74ca 285 unsigned long flags;
1da177e4 286
1da177e4
LT
287 if (!fep->link) {
288 /* Link is down or autonegotiation is in progress. */
5b548140 289 return NETDEV_TX_BUSY;
1da177e4
LT
290 }
291
3b2b74ca 292 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
293 /* Fill in a Tx ring entry */
294 bdp = fep->cur_tx;
295
0e702ab3 296 status = bdp->cbd_sc;
22f6b860 297
0e702ab3 298 if (status & BD_ENET_TX_READY) {
1da177e4 299 /* Ooops. All transmit buffers are full. Bail out.
c556167f 300 * This should not happen, since ndev->tbusy should be set.
1da177e4 301 */
c556167f 302 printk("%s: tx queue full!.\n", ndev->name);
3b2b74ca 303 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 304 return NETDEV_TX_BUSY;
1da177e4 305 }
1da177e4 306
22f6b860 307 /* Clear all of the status flags */
0e702ab3 308 status &= ~BD_ENET_TX_STATS;
1da177e4 309
22f6b860 310 /* Set buffer length and buffer pointer */
9555b31e 311 bufaddr = skb->data;
1da177e4
LT
312 bdp->cbd_datlen = skb->len;
313
314 /*
22f6b860
SH
315 * On some FEC implementations data must be aligned on
316 * 4-byte boundaries. Use bounce buffers to copy data
317 * and get it aligned. Ugh.
1da177e4 318 */
9555b31e 319 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
320 unsigned int index;
321 index = bdp - fep->tx_bd_base;
8a73b0bc 322 memcpy(fep->tx_bounce[index], skb->data, skb->len);
9555b31e 323 bufaddr = fep->tx_bounce[index];
1da177e4
LT
324 }
325
b5680e0b
SG
326 /*
327 * Some design made an incorrect assumption on endian mode of
328 * the system that it's running on. As the result, driver has to
329 * swap every frame going to and coming from the controller.
330 */
331 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
332 swap_buffer(bufaddr, skb->len);
333
22f6b860 334 /* Save skb pointer */
1da177e4
LT
335 fep->tx_skbuff[fep->skb_cur] = skb;
336
c556167f 337 ndev->stats.tx_bytes += skb->len;
1da177e4 338 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 339
1da177e4
LT
340 /* Push the data cache so the CPM does not get stale memory
341 * data.
342 */
d1ab1f54 343 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
f0b3fbea 344 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 345
0e702ab3
GU
346 /* Send it on its way. Tell FEC it's ready, interrupt when done,
347 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 348 */
0e702ab3 349 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 350 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 351 bdp->cbd_sc = status;
1da177e4 352
1da177e4 353 /* Trigger transmission start */
f44d6305 354 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 355
22f6b860
SH
356 /* If this was the last BD in the ring, start at the beginning again. */
357 if (status & BD_ENET_TX_WRAP)
1da177e4 358 bdp = fep->tx_bd_base;
22f6b860 359 else
1da177e4 360 bdp++;
1da177e4
LT
361
362 if (bdp == fep->dirty_tx) {
363 fep->tx_full = 1;
c556167f 364 netif_stop_queue(ndev);
1da177e4
LT
365 }
366
2e28532f 367 fep->cur_tx = bdp;
1da177e4 368
18a03b97
RC
369 skb_tx_timestamp(skb);
370
a0087a36
RC
371 spin_unlock_irqrestore(&fep->hw_lock, flags);
372
6ed10654 373 return NETDEV_TX_OK;
1da177e4
LT
374}
375
45993653
UKK
376/* This function is called to start or restart the FEC during a link
377 * change. This only happens when switching between half and full
378 * duplex.
379 */
1da177e4 380static void
45993653 381fec_restart(struct net_device *ndev, int duplex)
1da177e4 382{
c556167f 383 struct fec_enet_private *fep = netdev_priv(ndev);
45993653
UKK
384 const struct platform_device_id *id_entry =
385 platform_get_device_id(fep->pdev);
386 int i;
cd1f402c
UKK
387 u32 temp_mac[2];
388 u32 rcntl = OPT_FRAME_SIZE | 0x04;
230dec61 389 u32 ecntl = 0x2; /* ETHEREN */
1da177e4 390
45993653
UKK
391 /* Whack a reset. We should wait for this. */
392 writel(1, fep->hwp + FEC_ECNTRL);
393 udelay(10);
1da177e4 394
45993653
UKK
395 /*
396 * enet-mac reset will reset mac address registers too,
397 * so need to reconfigure it.
398 */
399 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
400 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
401 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
402 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
403 }
1da177e4 404
45993653
UKK
405 /* Clear any outstanding interrupt. */
406 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 407
45993653
UKK
408 /* Reset all multicast. */
409 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
410 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
411#ifndef CONFIG_M5272
412 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
413 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
414#endif
1da177e4 415
45993653
UKK
416 /* Set maximum receive buffer size. */
417 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 418
45993653
UKK
419 /* Set receive and transmit descriptor base. */
420 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
421 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
422 fep->hwp + FEC_X_DES_START);
423
424 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
425 fep->cur_rx = fep->rx_bd_base;
426
427 /* Reset SKB transmit buffers. */
428 fep->skb_cur = fep->skb_dirty = 0;
429 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
430 if (fep->tx_skbuff[i]) {
431 dev_kfree_skb_any(fep->tx_skbuff[i]);
432 fep->tx_skbuff[i] = NULL;
1da177e4 433 }
45993653 434 }
97b72e43 435
45993653
UKK
436 /* Enable MII mode */
437 if (duplex) {
cd1f402c 438 /* FD enable */
45993653
UKK
439 writel(0x04, fep->hwp + FEC_X_CNTRL);
440 } else {
cd1f402c
UKK
441 /* No Rcv on Xmit */
442 rcntl |= 0x02;
45993653
UKK
443 writel(0x0, fep->hwp + FEC_X_CNTRL);
444 }
cd1f402c 445
45993653
UKK
446 fep->full_duplex = duplex;
447
448 /* Set MII speed */
449 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
450
451 /*
452 * The phy interface and speed need to get configured
453 * differently on enet-mac.
454 */
455 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
cd1f402c
UKK
456 /* Enable flow control and length check */
457 rcntl |= 0x40000000 | 0x00000020;
45993653 458
230dec61
SG
459 /* RGMII, RMII or MII */
460 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
461 rcntl |= (1 << 6);
462 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
cd1f402c 463 rcntl |= (1 << 8);
45993653 464 else
cd1f402c 465 rcntl &= ~(1 << 8);
45993653 466
230dec61
SG
467 /* 1G, 100M or 10M */
468 if (fep->phy_dev) {
469 if (fep->phy_dev->speed == SPEED_1000)
470 ecntl |= (1 << 5);
471 else if (fep->phy_dev->speed == SPEED_100)
472 rcntl &= ~(1 << 9);
473 else
474 rcntl |= (1 << 9);
475 }
45993653
UKK
476 } else {
477#ifdef FEC_MIIGSK_ENR
0ca1e290 478 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
45993653
UKK
479 /* disable the gasket and wait */
480 writel(0, fep->hwp + FEC_MIIGSK_ENR);
481 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
482 udelay(1);
483
484 /*
485 * configure the gasket:
486 * RMII, 50 MHz, no loopback, no echo
0ca1e290 487 * MII, 25 MHz, no loopback, no echo
45993653 488 */
0ca1e290
SG
489 writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
490 1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
491
45993653
UKK
492
493 /* re-enable the gasket */
494 writel(2, fep->hwp + FEC_MIIGSK_ENR);
97b72e43 495 }
45993653
UKK
496#endif
497 }
cd1f402c 498 writel(rcntl, fep->hwp + FEC_R_CNTRL);
3b2b74ca 499
230dec61
SG
500 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
501 /* enable ENET endian swap */
502 ecntl |= (1 << 8);
503 /* enable ENET store and forward mode */
504 writel(1 << 8, fep->hwp + FEC_X_WMRK);
505 }
506
45993653 507 /* And last, enable the transmit and receive processing */
230dec61 508 writel(ecntl, fep->hwp + FEC_ECNTRL);
45993653
UKK
509 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
510
511 /* Enable interrupts we wish to service */
512 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
513}
514
515static void
516fec_stop(struct net_device *ndev)
517{
518 struct fec_enet_private *fep = netdev_priv(ndev);
230dec61
SG
519 const struct platform_device_id *id_entry =
520 platform_get_device_id(fep->pdev);
42431dc2 521 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
45993653
UKK
522
523 /* We cannot expect a graceful transmit stop without link !!! */
524 if (fep->link) {
525 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
526 udelay(10);
527 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
528 printk("fec_stop : Graceful transmit stop did not complete !\n");
529 }
530
531 /* Whack a reset. We should wait for this. */
532 writel(1, fep->hwp + FEC_ECNTRL);
533 udelay(10);
534 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
535 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
230dec61
SG
536
537 /* We have to keep ENET enabled to have MII interrupt stay working */
42431dc2 538 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
230dec61 539 writel(2, fep->hwp + FEC_ECNTRL);
42431dc2
LW
540 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
541 }
1da177e4
LT
542}
543
544
45993653
UKK
545static void
546fec_timeout(struct net_device *ndev)
547{
548 struct fec_enet_private *fep = netdev_priv(ndev);
549
550 ndev->stats.tx_errors++;
551
552 fec_restart(ndev, fep->full_duplex);
553 netif_wake_queue(ndev);
554}
555
1da177e4 556static void
c556167f 557fec_enet_tx(struct net_device *ndev)
1da177e4
LT
558{
559 struct fec_enet_private *fep;
2e28532f 560 struct bufdesc *bdp;
0e702ab3 561 unsigned short status;
1da177e4
LT
562 struct sk_buff *skb;
563
c556167f 564 fep = netdev_priv(ndev);
81538e74 565 spin_lock(&fep->hw_lock);
1da177e4
LT
566 bdp = fep->dirty_tx;
567
0e702ab3 568 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
569 if (bdp == fep->cur_tx && fep->tx_full == 0)
570 break;
571
d1ab1f54
UKK
572 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
573 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
f0b3fbea 574 bdp->cbd_bufaddr = 0;
1da177e4
LT
575
576 skb = fep->tx_skbuff[fep->skb_dirty];
577 /* Check for errors. */
0e702ab3 578 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
579 BD_ENET_TX_RL | BD_ENET_TX_UN |
580 BD_ENET_TX_CSL)) {
c556167f 581 ndev->stats.tx_errors++;
0e702ab3 582 if (status & BD_ENET_TX_HB) /* No heartbeat */
c556167f 583 ndev->stats.tx_heartbeat_errors++;
0e702ab3 584 if (status & BD_ENET_TX_LC) /* Late collision */
c556167f 585 ndev->stats.tx_window_errors++;
0e702ab3 586 if (status & BD_ENET_TX_RL) /* Retrans limit */
c556167f 587 ndev->stats.tx_aborted_errors++;
0e702ab3 588 if (status & BD_ENET_TX_UN) /* Underrun */
c556167f 589 ndev->stats.tx_fifo_errors++;
0e702ab3 590 if (status & BD_ENET_TX_CSL) /* Carrier lost */
c556167f 591 ndev->stats.tx_carrier_errors++;
1da177e4 592 } else {
c556167f 593 ndev->stats.tx_packets++;
1da177e4
LT
594 }
595
0e702ab3 596 if (status & BD_ENET_TX_READY)
1da177e4 597 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 598
1da177e4
LT
599 /* Deferred means some collisions occurred during transmit,
600 * but we eventually sent the packet OK.
601 */
0e702ab3 602 if (status & BD_ENET_TX_DEF)
c556167f 603 ndev->stats.collisions++;
6aa20a22 604
22f6b860 605 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
606 dev_kfree_skb_any(skb);
607 fep->tx_skbuff[fep->skb_dirty] = NULL;
608 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 609
22f6b860 610 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 611 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
612 bdp = fep->tx_bd_base;
613 else
614 bdp++;
6aa20a22 615
22f6b860 616 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
617 */
618 if (fep->tx_full) {
619 fep->tx_full = 0;
c556167f
UKK
620 if (netif_queue_stopped(ndev))
621 netif_wake_queue(ndev);
1da177e4
LT
622 }
623 }
2e28532f 624 fep->dirty_tx = bdp;
81538e74 625 spin_unlock(&fep->hw_lock);
1da177e4
LT
626}
627
628
629/* During a receive, the cur_rx points to the current incoming buffer.
630 * When we update through the ring, if the next incoming buffer has
631 * not been given to the system, we just set the empty indicator,
632 * effectively tossing the packet.
633 */
634static void
c556167f 635fec_enet_rx(struct net_device *ndev)
1da177e4 636{
c556167f 637 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
638 const struct platform_device_id *id_entry =
639 platform_get_device_id(fep->pdev);
2e28532f 640 struct bufdesc *bdp;
0e702ab3 641 unsigned short status;
1da177e4
LT
642 struct sk_buff *skb;
643 ushort pkt_len;
644 __u8 *data;
6aa20a22 645
0e702ab3
GU
646#ifdef CONFIG_M532x
647 flush_cache_all();
6aa20a22 648#endif
1da177e4 649
81538e74 650 spin_lock(&fep->hw_lock);
3b2b74ca 651
1da177e4
LT
652 /* First, grab all of the stats for the incoming packet.
653 * These get messed up if we get called due to a busy condition.
654 */
655 bdp = fep->cur_rx;
656
22f6b860 657 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 658
22f6b860
SH
659 /* Since we have allocated space to hold a complete frame,
660 * the last indicator should be set.
661 */
662 if ((status & BD_ENET_RX_LAST) == 0)
663 printk("FEC ENET: rcv is not +last\n");
1da177e4 664
22f6b860
SH
665 if (!fep->opened)
666 goto rx_processing_done;
1da177e4 667
22f6b860
SH
668 /* Check for errors. */
669 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 670 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
c556167f 671 ndev->stats.rx_errors++;
22f6b860
SH
672 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
673 /* Frame too long or too short. */
c556167f 674 ndev->stats.rx_length_errors++;
22f6b860
SH
675 }
676 if (status & BD_ENET_RX_NO) /* Frame alignment */
c556167f 677 ndev->stats.rx_frame_errors++;
22f6b860 678 if (status & BD_ENET_RX_CR) /* CRC Error */
c556167f 679 ndev->stats.rx_crc_errors++;
22f6b860 680 if (status & BD_ENET_RX_OV) /* FIFO overrun */
c556167f 681 ndev->stats.rx_fifo_errors++;
1da177e4 682 }
1da177e4 683
22f6b860
SH
684 /* Report late collisions as a frame error.
685 * On this error, the BD is closed, but we don't know what we
686 * have in the buffer. So, just drop this frame on the floor.
687 */
688 if (status & BD_ENET_RX_CL) {
c556167f
UKK
689 ndev->stats.rx_errors++;
690 ndev->stats.rx_frame_errors++;
22f6b860
SH
691 goto rx_processing_done;
692 }
1da177e4 693
22f6b860 694 /* Process the incoming frame. */
c556167f 695 ndev->stats.rx_packets++;
22f6b860 696 pkt_len = bdp->cbd_datlen;
c556167f 697 ndev->stats.rx_bytes += pkt_len;
22f6b860 698 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 699
d1ab1f54
UKK
700 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
701 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
ccdc4f19 702
b5680e0b
SG
703 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
704 swap_buffer(data, pkt_len);
705
22f6b860
SH
706 /* This does 16 byte alignment, exactly what we need.
707 * The packet length includes FCS, but we don't want to
708 * include that when passing upstream as it messes up
709 * bridging applications.
710 */
8549889c 711 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 712
8549889c 713 if (unlikely(!skb)) {
22f6b860 714 printk("%s: Memory squeeze, dropping packet.\n",
c556167f
UKK
715 ndev->name);
716 ndev->stats.rx_dropped++;
22f6b860 717 } else {
8549889c 718 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
719 skb_put(skb, pkt_len - 4); /* Make room */
720 skb_copy_to_linear_data(skb, data, pkt_len - 4);
c556167f 721 skb->protocol = eth_type_trans(skb, ndev);
18a03b97
RC
722 if (!skb_defer_rx_timestamp(skb))
723 netif_rx(skb);
22f6b860 724 }
f0b3fbea 725
d1ab1f54
UKK
726 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
727 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
22f6b860
SH
728rx_processing_done:
729 /* Clear the status flags for this buffer */
730 status &= ~BD_ENET_RX_STATS;
1da177e4 731
22f6b860
SH
732 /* Mark the buffer empty */
733 status |= BD_ENET_RX_EMPTY;
734 bdp->cbd_sc = status;
6aa20a22 735
22f6b860
SH
736 /* Update BD pointer to next entry */
737 if (status & BD_ENET_RX_WRAP)
738 bdp = fep->rx_bd_base;
739 else
740 bdp++;
741 /* Doing this here will keep the FEC running while we process
742 * incoming frames. On a heavily loaded network, we should be
743 * able to keep up at the expense of system resources.
744 */
745 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
746 }
2e28532f 747 fep->cur_rx = bdp;
1da177e4 748
81538e74 749 spin_unlock(&fep->hw_lock);
1da177e4
LT
750}
751
45993653
UKK
752static irqreturn_t
753fec_enet_interrupt(int irq, void *dev_id)
754{
755 struct net_device *ndev = dev_id;
756 struct fec_enet_private *fep = netdev_priv(ndev);
757 uint int_events;
758 irqreturn_t ret = IRQ_NONE;
759
760 do {
761 int_events = readl(fep->hwp + FEC_IEVENT);
762 writel(int_events, fep->hwp + FEC_IEVENT);
763
764 if (int_events & FEC_ENET_RXF) {
765 ret = IRQ_HANDLED;
766 fec_enet_rx(ndev);
767 }
768
769 /* Transmit OK, or non-fatal error. Update the buffer
770 * descriptors. FEC handles all errors, we just discover
771 * them as part of the transmit process.
772 */
773 if (int_events & FEC_ENET_TXF) {
774 ret = IRQ_HANDLED;
775 fec_enet_tx(ndev);
776 }
777
778 if (int_events & FEC_ENET_MII) {
779 ret = IRQ_HANDLED;
780 complete(&fep->mdio_done);
781 }
782 } while (int_events);
783
784 return ret;
785}
786
787
788
e6b043d5 789/* ------------------------------------------------------------------------- */
c556167f 790static void __inline__ fec_get_mac(struct net_device *ndev)
1da177e4 791{
c556167f 792 struct fec_enet_private *fep = netdev_priv(ndev);
49da97dc 793 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 794 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 795
49da97dc
SG
796 /*
797 * try to get mac address in following order:
798 *
799 * 1) module parameter via kernel command line in form
800 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
801 */
802 iap = macaddr;
803
ca2cc333
SG
804#ifdef CONFIG_OF
805 /*
806 * 2) from device tree data
807 */
808 if (!is_valid_ether_addr(iap)) {
809 struct device_node *np = fep->pdev->dev.of_node;
810 if (np) {
811 const char *mac = of_get_mac_address(np);
812 if (mac)
813 iap = (unsigned char *) mac;
814 }
815 }
816#endif
817
49da97dc 818 /*
ca2cc333 819 * 3) from flash or fuse (via platform data)
49da97dc
SG
820 */
821 if (!is_valid_ether_addr(iap)) {
822#ifdef CONFIG_M5272
823 if (FEC_FLASHMAC)
824 iap = (unsigned char *)FEC_FLASHMAC;
825#else
826 if (pdata)
589efdc7 827 iap = (unsigned char *)&pdata->mac;
49da97dc
SG
828#endif
829 }
830
831 /*
ca2cc333 832 * 4) FEC mac registers set by bootloader
49da97dc
SG
833 */
834 if (!is_valid_ether_addr(iap)) {
835 *((unsigned long *) &tmpaddr[0]) =
836 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
837 *((unsigned short *) &tmpaddr[4]) =
838 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 839 iap = &tmpaddr[0];
1da177e4
LT
840 }
841
c556167f 842 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1da177e4 843
49da97dc
SG
844 /* Adjust MAC if using macaddr */
845 if (iap == macaddr)
43af940c 846 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1da177e4
LT
847}
848
e6b043d5 849/* ------------------------------------------------------------------------- */
1da177e4 850
e6b043d5
BW
851/*
852 * Phy section
853 */
c556167f 854static void fec_enet_adjust_link(struct net_device *ndev)
1da177e4 855{
c556167f 856 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5
BW
857 struct phy_device *phy_dev = fep->phy_dev;
858 unsigned long flags;
1da177e4 859
e6b043d5 860 int status_change = 0;
1da177e4 861
e6b043d5 862 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 863
e6b043d5
BW
864 /* Prevent a state halted on mii error */
865 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
866 phy_dev->state = PHY_RESUMING;
867 goto spin_unlock;
868 }
1da177e4 869
e6b043d5
BW
870 /* Duplex link change */
871 if (phy_dev->link) {
872 if (fep->full_duplex != phy_dev->duplex) {
c556167f 873 fec_restart(ndev, phy_dev->duplex);
6ea0722f
LW
874 /* prevent unnecessary second fec_restart() below */
875 fep->link = phy_dev->link;
e6b043d5
BW
876 status_change = 1;
877 }
878 }
1da177e4 879
e6b043d5
BW
880 /* Link on or off change */
881 if (phy_dev->link != fep->link) {
882 fep->link = phy_dev->link;
883 if (phy_dev->link)
c556167f 884 fec_restart(ndev, phy_dev->duplex);
1da177e4 885 else
c556167f 886 fec_stop(ndev);
e6b043d5 887 status_change = 1;
1da177e4 888 }
6aa20a22 889
e6b043d5
BW
890spin_unlock:
891 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 892
e6b043d5
BW
893 if (status_change)
894 phy_print_status(phy_dev);
895}
1da177e4 896
e6b043d5 897static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 898{
e6b043d5 899 struct fec_enet_private *fep = bus->priv;
97b72e43 900 unsigned long time_left;
1da177e4 901
e6b043d5 902 fep->mii_timeout = 0;
97b72e43 903 init_completion(&fep->mdio_done);
e6b043d5
BW
904
905 /* start a read op */
906 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
907 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
908 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
909
910 /* wait for end of transfer */
97b72e43
BS
911 time_left = wait_for_completion_timeout(&fep->mdio_done,
912 usecs_to_jiffies(FEC_MII_TIMEOUT));
913 if (time_left == 0) {
914 fep->mii_timeout = 1;
915 printk(KERN_ERR "FEC: MDIO read timeout\n");
916 return -ETIMEDOUT;
1da177e4 917 }
1da177e4 918
e6b043d5
BW
919 /* return value */
920 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 921}
6aa20a22 922
e6b043d5
BW
923static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
924 u16 value)
1da177e4 925{
e6b043d5 926 struct fec_enet_private *fep = bus->priv;
97b72e43 927 unsigned long time_left;
1da177e4 928
e6b043d5 929 fep->mii_timeout = 0;
97b72e43 930 init_completion(&fep->mdio_done);
1da177e4 931
862f0982
SG
932 /* start a write op */
933 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
934 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
935 FEC_MMFR_TA | FEC_MMFR_DATA(value),
936 fep->hwp + FEC_MII_DATA);
937
938 /* wait for end of transfer */
97b72e43
BS
939 time_left = wait_for_completion_timeout(&fep->mdio_done,
940 usecs_to_jiffies(FEC_MII_TIMEOUT));
941 if (time_left == 0) {
942 fep->mii_timeout = 1;
943 printk(KERN_ERR "FEC: MDIO write timeout\n");
944 return -ETIMEDOUT;
e6b043d5 945 }
1da177e4 946
e6b043d5
BW
947 return 0;
948}
1da177e4 949
e6b043d5 950static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 951{
e6b043d5 952 return 0;
1da177e4
LT
953}
954
c556167f 955static int fec_enet_mii_probe(struct net_device *ndev)
562d2f8c 956{
c556167f 957 struct fec_enet_private *fep = netdev_priv(ndev);
230dec61
SG
958 const struct platform_device_id *id_entry =
959 platform_get_device_id(fep->pdev);
e6b043d5 960 struct phy_device *phy_dev = NULL;
6fcc040f
GU
961 char mdio_bus_id[MII_BUS_ID_SIZE];
962 char phy_name[MII_BUS_ID_SIZE + 3];
963 int phy_id;
43af940c 964 int dev_id = fep->dev_id;
562d2f8c 965
418bd0d4
BW
966 fep->phy_dev = NULL;
967
6fcc040f
GU
968 /* check for attached phy */
969 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
970 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
971 continue;
972 if (fep->mii_bus->phy_map[phy_id] == NULL)
973 continue;
974 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
975 continue;
b5680e0b
SG
976 if (dev_id--)
977 continue;
6fcc040f
GU
978 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
979 break;
e6b043d5 980 }
1da177e4 981
6fcc040f 982 if (phy_id >= PHY_MAX_ADDR) {
a7dd3219
LW
983 printk(KERN_INFO
984 "%s: no PHY, assuming direct connection to switch\n",
985 ndev->name);
6fcc040f
GU
986 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
987 phy_id = 0;
988 }
989
990 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
c556167f 991 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
230dec61 992 fep->phy_interface);
6fcc040f 993 if (IS_ERR(phy_dev)) {
c556167f 994 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
6fcc040f 995 return PTR_ERR(phy_dev);
e6b043d5 996 }
1da177e4 997
e6b043d5 998 /* mask with MAC supported features */
230dec61
SG
999 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
1000 phy_dev->supported &= PHY_GBIT_FEATURES;
1001 else
1002 phy_dev->supported &= PHY_BASIC_FEATURES;
1003
e6b043d5 1004 phy_dev->advertising = phy_dev->supported;
1da177e4 1005
e6b043d5
BW
1006 fep->phy_dev = phy_dev;
1007 fep->link = 0;
1008 fep->full_duplex = 0;
1da177e4 1009
a7dd3219
LW
1010 printk(KERN_INFO
1011 "%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1012 ndev->name,
418bd0d4
BW
1013 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1014 fep->phy_dev->irq);
1015
e6b043d5 1016 return 0;
1da177e4
LT
1017}
1018
e6b043d5 1019static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 1020{
b5680e0b 1021 static struct mii_bus *fec0_mii_bus;
c556167f
UKK
1022 struct net_device *ndev = platform_get_drvdata(pdev);
1023 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
1024 const struct platform_device_id *id_entry =
1025 platform_get_device_id(fep->pdev);
e6b043d5 1026 int err = -ENXIO, i;
6b265293 1027
b5680e0b
SG
1028 /*
1029 * The dual fec interfaces are not equivalent with enet-mac.
1030 * Here are the differences:
1031 *
1032 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1033 * - fec0 acts as the 1588 time master while fec1 is slave
1034 * - external phys can only be configured by fec0
1035 *
1036 * That is to say fec1 can not work independently. It only works
1037 * when fec0 is working. The reason behind this design is that the
1038 * second interface is added primarily for Switch mode.
1039 *
1040 * Because of the last point above, both phys are attached on fec0
1041 * mdio interface in board design, and need to be configured by
1042 * fec0 mii_bus.
1043 */
43af940c 1044 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
b5680e0b 1045 /* fec1 uses fec0 mii_bus */
e163cc97
LW
1046 if (mii_cnt && fec0_mii_bus) {
1047 fep->mii_bus = fec0_mii_bus;
1048 mii_cnt++;
1049 return 0;
1050 }
1051 return -ENOENT;
b5680e0b
SG
1052 }
1053
e6b043d5 1054 fep->mii_timeout = 0;
1da177e4 1055
e6b043d5
BW
1056 /*
1057 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
230dec61
SG
1058 *
1059 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1060 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1061 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1062 * document.
e6b043d5 1063 */
230dec61
SG
1064 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
1065 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1066 fep->phy_speed--;
1067 fep->phy_speed <<= 1;
e6b043d5 1068 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 1069
e6b043d5
BW
1070 fep->mii_bus = mdiobus_alloc();
1071 if (fep->mii_bus == NULL) {
1072 err = -ENOMEM;
1073 goto err_out;
1da177e4
LT
1074 }
1075
e6b043d5
BW
1076 fep->mii_bus->name = "fec_enet_mii_bus";
1077 fep->mii_bus->read = fec_enet_mdio_read;
1078 fep->mii_bus->write = fec_enet_mdio_write;
1079 fep->mii_bus->reset = fec_enet_mdio_reset;
43af940c 1080 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", fep->dev_id + 1);
e6b043d5
BW
1081 fep->mii_bus->priv = fep;
1082 fep->mii_bus->parent = &pdev->dev;
1083
1084 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1085 if (!fep->mii_bus->irq) {
1086 err = -ENOMEM;
1087 goto err_out_free_mdiobus;
1da177e4
LT
1088 }
1089
e6b043d5
BW
1090 for (i = 0; i < PHY_MAX_ADDR; i++)
1091 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 1092
e6b043d5
BW
1093 if (mdiobus_register(fep->mii_bus))
1094 goto err_out_free_mdio_irq;
1da177e4 1095
e163cc97
LW
1096 mii_cnt++;
1097
b5680e0b
SG
1098 /* save fec0 mii_bus */
1099 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1100 fec0_mii_bus = fep->mii_bus;
1101
e6b043d5 1102 return 0;
1da177e4 1103
e6b043d5
BW
1104err_out_free_mdio_irq:
1105 kfree(fep->mii_bus->irq);
1106err_out_free_mdiobus:
1107 mdiobus_free(fep->mii_bus);
1108err_out:
1109 return err;
1da177e4
LT
1110}
1111
e6b043d5 1112static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 1113{
e163cc97
LW
1114 if (--mii_cnt == 0) {
1115 mdiobus_unregister(fep->mii_bus);
1116 kfree(fep->mii_bus->irq);
1117 mdiobus_free(fep->mii_bus);
1118 }
1da177e4
LT
1119}
1120
c556167f 1121static int fec_enet_get_settings(struct net_device *ndev,
e6b043d5 1122 struct ethtool_cmd *cmd)
1da177e4 1123{
c556167f 1124 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1125 struct phy_device *phydev = fep->phy_dev;
1da177e4 1126
e6b043d5
BW
1127 if (!phydev)
1128 return -ENODEV;
1da177e4 1129
e6b043d5 1130 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
1131}
1132
c556167f 1133static int fec_enet_set_settings(struct net_device *ndev,
e6b043d5 1134 struct ethtool_cmd *cmd)
1da177e4 1135{
c556167f 1136 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1137 struct phy_device *phydev = fep->phy_dev;
1da177e4 1138
e6b043d5
BW
1139 if (!phydev)
1140 return -ENODEV;
1da177e4 1141
e6b043d5 1142 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
1143}
1144
c556167f 1145static void fec_enet_get_drvinfo(struct net_device *ndev,
e6b043d5 1146 struct ethtool_drvinfo *info)
1da177e4 1147{
c556167f 1148 struct fec_enet_private *fep = netdev_priv(ndev);
6aa20a22 1149
e6b043d5
BW
1150 strcpy(info->driver, fep->pdev->dev.driver->name);
1151 strcpy(info->version, "Revision: 1.0");
c556167f 1152 strcpy(info->bus_info, dev_name(&ndev->dev));
1da177e4
LT
1153}
1154
9b07be4b 1155static const struct ethtool_ops fec_enet_ethtool_ops = {
e6b043d5
BW
1156 .get_settings = fec_enet_get_settings,
1157 .set_settings = fec_enet_set_settings,
1158 .get_drvinfo = fec_enet_get_drvinfo,
1159 .get_link = ethtool_op_get_link,
1160};
1da177e4 1161
c556167f 1162static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1da177e4 1163{
c556167f 1164 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1165 struct phy_device *phydev = fep->phy_dev;
1da177e4 1166
c556167f 1167 if (!netif_running(ndev))
e6b043d5 1168 return -EINVAL;
1da177e4 1169
e6b043d5
BW
1170 if (!phydev)
1171 return -ENODEV;
1172
28b04113 1173 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
1174}
1175
c556167f 1176static void fec_enet_free_buffers(struct net_device *ndev)
f0b3fbea 1177{
c556167f 1178 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1179 int i;
1180 struct sk_buff *skb;
1181 struct bufdesc *bdp;
1182
1183 bdp = fep->rx_bd_base;
1184 for (i = 0; i < RX_RING_SIZE; i++) {
1185 skb = fep->rx_skbuff[i];
1186
1187 if (bdp->cbd_bufaddr)
d1ab1f54 1188 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
f0b3fbea
SH
1189 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1190 if (skb)
1191 dev_kfree_skb(skb);
1192 bdp++;
1193 }
1194
1195 bdp = fep->tx_bd_base;
1196 for (i = 0; i < TX_RING_SIZE; i++)
1197 kfree(fep->tx_bounce[i]);
1198}
1199
c556167f 1200static int fec_enet_alloc_buffers(struct net_device *ndev)
f0b3fbea 1201{
c556167f 1202 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1203 int i;
1204 struct sk_buff *skb;
1205 struct bufdesc *bdp;
1206
1207 bdp = fep->rx_bd_base;
1208 for (i = 0; i < RX_RING_SIZE; i++) {
1209 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1210 if (!skb) {
c556167f 1211 fec_enet_free_buffers(ndev);
f0b3fbea
SH
1212 return -ENOMEM;
1213 }
1214 fep->rx_skbuff[i] = skb;
1215
d1ab1f54 1216 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
f0b3fbea
SH
1217 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1218 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1219 bdp++;
1220 }
1221
1222 /* Set the last buffer to wrap. */
1223 bdp--;
1224 bdp->cbd_sc |= BD_SC_WRAP;
1225
1226 bdp = fep->tx_bd_base;
1227 for (i = 0; i < TX_RING_SIZE; i++) {
1228 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1229
1230 bdp->cbd_sc = 0;
1231 bdp->cbd_bufaddr = 0;
1232 bdp++;
1233 }
1234
1235 /* Set the last buffer to wrap. */
1236 bdp--;
1237 bdp->cbd_sc |= BD_SC_WRAP;
1238
1239 return 0;
1240}
1241
1da177e4 1242static int
c556167f 1243fec_enet_open(struct net_device *ndev)
1da177e4 1244{
c556167f 1245 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1246 int ret;
1da177e4
LT
1247
1248 /* I should reset the ring buffers here, but I don't yet know
1249 * a simple way to do that.
1250 */
1da177e4 1251
c556167f 1252 ret = fec_enet_alloc_buffers(ndev);
f0b3fbea
SH
1253 if (ret)
1254 return ret;
1255
418bd0d4 1256 /* Probe and connect to PHY when open the interface */
c556167f 1257 ret = fec_enet_mii_probe(ndev);
418bd0d4 1258 if (ret) {
c556167f 1259 fec_enet_free_buffers(ndev);
418bd0d4
BW
1260 return ret;
1261 }
e6b043d5 1262 phy_start(fep->phy_dev);
c556167f 1263 netif_start_queue(ndev);
1da177e4 1264 fep->opened = 1;
22f6b860 1265 return 0;
1da177e4
LT
1266}
1267
1268static int
c556167f 1269fec_enet_close(struct net_device *ndev)
1da177e4 1270{
c556167f 1271 struct fec_enet_private *fep = netdev_priv(ndev);
1da177e4 1272
22f6b860 1273 /* Don't know what to do yet. */
1da177e4 1274 fep->opened = 0;
c556167f
UKK
1275 netif_stop_queue(ndev);
1276 fec_stop(ndev);
1da177e4 1277
e497ba82
UKK
1278 if (fep->phy_dev) {
1279 phy_stop(fep->phy_dev);
418bd0d4 1280 phy_disconnect(fep->phy_dev);
e497ba82 1281 }
418bd0d4 1282
db8880bc 1283 fec_enet_free_buffers(ndev);
f0b3fbea 1284
1da177e4
LT
1285 return 0;
1286}
1287
1da177e4
LT
1288/* Set or clear the multicast filter for this adaptor.
1289 * Skeleton taken from sunlance driver.
1290 * The CPM Ethernet implementation allows Multicast as well as individual
1291 * MAC address filtering. Some of the drivers check to make sure it is
1292 * a group multicast address, and discard those that are not. I guess I
1293 * will do the same for now, but just remove the test if you want
1294 * individual filtering as well (do the upper net layers want or support
1295 * this kind of feature?).
1296 */
1297
1298#define HASH_BITS 6 /* #bits in hash */
1299#define CRC32_POLY 0xEDB88320
1300
c556167f 1301static void set_multicast_list(struct net_device *ndev)
1da177e4 1302{
c556167f 1303 struct fec_enet_private *fep = netdev_priv(ndev);
22bedad3 1304 struct netdev_hw_addr *ha;
48e2f183 1305 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
1306 unsigned char hash;
1307
c556167f 1308 if (ndev->flags & IFF_PROMISC) {
f44d6305
SH
1309 tmp = readl(fep->hwp + FEC_R_CNTRL);
1310 tmp |= 0x8;
1311 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
1312 return;
1313 }
1da177e4 1314
4e831836
SH
1315 tmp = readl(fep->hwp + FEC_R_CNTRL);
1316 tmp &= ~0x8;
1317 writel(tmp, fep->hwp + FEC_R_CNTRL);
1318
c556167f 1319 if (ndev->flags & IFF_ALLMULTI) {
4e831836
SH
1320 /* Catch all multicast addresses, so set the
1321 * filter to all 1's
1322 */
1323 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1324 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1325
1326 return;
1327 }
1328
1329 /* Clear filter and add the addresses in hash register
1330 */
1331 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1332 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1333
c556167f 1334 netdev_for_each_mc_addr(ha, ndev) {
4e831836
SH
1335 /* calculate crc32 value of mac address */
1336 crc = 0xffffffff;
1337
c556167f 1338 for (i = 0; i < ndev->addr_len; i++) {
22bedad3 1339 data = ha->addr[i];
4e831836
SH
1340 for (bit = 0; bit < 8; bit++, data >>= 1) {
1341 crc = (crc >> 1) ^
1342 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1343 }
1344 }
4e831836
SH
1345
1346 /* only upper 6 bits (HASH_BITS) are used
1347 * which point to specific bit in he hash registers
1348 */
1349 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1350
1351 if (hash > 31) {
1352 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1353 tmp |= 1 << (hash - 32);
1354 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1355 } else {
1356 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1357 tmp |= 1 << hash;
1358 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1359 }
1da177e4
LT
1360 }
1361}
1362
22f6b860 1363/* Set a MAC change in hardware. */
009fda83 1364static int
c556167f 1365fec_set_mac_address(struct net_device *ndev, void *p)
1da177e4 1366{
c556167f 1367 struct fec_enet_private *fep = netdev_priv(ndev);
009fda83
SH
1368 struct sockaddr *addr = p;
1369
1370 if (!is_valid_ether_addr(addr->sa_data))
1371 return -EADDRNOTAVAIL;
1372
c556167f 1373 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1da177e4 1374
c556167f
UKK
1375 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1376 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
f44d6305 1377 fep->hwp + FEC_ADDR_LOW);
c556167f 1378 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
7cff0943 1379 fep->hwp + FEC_ADDR_HIGH);
009fda83 1380 return 0;
1da177e4
LT
1381}
1382
7f5c6add
XJ
1383#ifdef CONFIG_NET_POLL_CONTROLLER
1384/*
1385 * fec_poll_controller: FEC Poll controller function
1386 * @dev: The FEC network adapter
1387 *
1388 * Polled functionality used by netconsole and others in non interrupt mode
1389 *
1390 */
1391void fec_poll_controller(struct net_device *dev)
1392{
1393 int i;
1394 struct fec_enet_private *fep = netdev_priv(dev);
1395
1396 for (i = 0; i < FEC_IRQ_NUM; i++) {
1397 if (fep->irq[i] > 0) {
1398 disable_irq(fep->irq[i]);
1399 fec_enet_interrupt(fep->irq[i], dev);
1400 enable_irq(fep->irq[i]);
1401 }
1402 }
1403}
1404#endif
1405
009fda83
SH
1406static const struct net_device_ops fec_netdev_ops = {
1407 .ndo_open = fec_enet_open,
1408 .ndo_stop = fec_enet_close,
1409 .ndo_start_xmit = fec_enet_start_xmit,
afc4b13d 1410 .ndo_set_rx_mode = set_multicast_list,
635ecaa7 1411 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1412 .ndo_validate_addr = eth_validate_addr,
1413 .ndo_tx_timeout = fec_timeout,
1414 .ndo_set_mac_address = fec_set_mac_address,
db8880bc 1415 .ndo_do_ioctl = fec_enet_ioctl,
7f5c6add
XJ
1416#ifdef CONFIG_NET_POLL_CONTROLLER
1417 .ndo_poll_controller = fec_poll_controller,
1418#endif
009fda83
SH
1419};
1420
1da177e4
LT
1421 /*
1422 * XXX: We need to clean up on failure exits here.
ead73183 1423 *
1da177e4 1424 */
c556167f 1425static int fec_enet_init(struct net_device *ndev)
1da177e4 1426{
c556167f 1427 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1428 struct bufdesc *cbd_base;
633e7533 1429 struct bufdesc *bdp;
f0b3fbea 1430 int i;
1da177e4 1431
8d4dd5cf
SH
1432 /* Allocate memory for buffer descriptors. */
1433 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1434 GFP_KERNEL);
1435 if (!cbd_base) {
562d2f8c
GU
1436 printk("FEC: allocate descriptor memory failed?\n");
1437 return -ENOMEM;
1438 }
1439
3b2b74ca 1440 spin_lock_init(&fep->hw_lock);
3b2b74ca 1441
c556167f 1442 fep->netdev = ndev;
1da177e4 1443
49da97dc 1444 /* Get the Ethernet address */
c556167f 1445 fec_get_mac(ndev);
1da177e4 1446
8d4dd5cf 1447 /* Set receive and transmit descriptor base. */
1da177e4
LT
1448 fep->rx_bd_base = cbd_base;
1449 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1450
22f6b860 1451 /* The FEC Ethernet specific entries in the device structure */
c556167f
UKK
1452 ndev->watchdog_timeo = TX_TIMEOUT;
1453 ndev->netdev_ops = &fec_netdev_ops;
1454 ndev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1455
1456 /* Initialize the receive buffer descriptors. */
1457 bdp = fep->rx_bd_base;
1458 for (i = 0; i < RX_RING_SIZE; i++) {
1459
1460 /* Initialize the BD for every fragment in the page. */
1461 bdp->cbd_sc = 0;
1462 bdp++;
1463 }
1464
1465 /* Set the last buffer to wrap */
1466 bdp--;
1467 bdp->cbd_sc |= BD_SC_WRAP;
1468
1469 /* ...and the same for transmit */
1470 bdp = fep->tx_bd_base;
1471 for (i = 0; i < TX_RING_SIZE; i++) {
1472
1473 /* Initialize the BD for every fragment in the page. */
1474 bdp->cbd_sc = 0;
1475 bdp->cbd_bufaddr = 0;
1476 bdp++;
1477 }
1478
1479 /* Set the last buffer to wrap */
1480 bdp--;
1481 bdp->cbd_sc |= BD_SC_WRAP;
1482
c556167f 1483 fec_restart(ndev, 0);
1da177e4 1484
1da177e4
LT
1485 return 0;
1486}
1487
ca2cc333
SG
1488#ifdef CONFIG_OF
1489static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
1490{
1491 struct device_node *np = pdev->dev.of_node;
1492
1493 if (np)
1494 return of_get_phy_mode(np);
1495
1496 return -ENODEV;
1497}
1498
a9b2c8ef 1499static void __devinit fec_reset_phy(struct platform_device *pdev)
ca2cc333
SG
1500{
1501 int err, phy_reset;
1502 struct device_node *np = pdev->dev.of_node;
1503
1504 if (!np)
a9b2c8ef 1505 return;
ca2cc333
SG
1506
1507 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1508 err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
1509 if (err) {
a9b2c8ef
SG
1510 pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
1511 return;
ca2cc333
SG
1512 }
1513 msleep(1);
1514 gpio_set_value(phy_reset, 1);
ca2cc333
SG
1515}
1516#else /* CONFIG_OF */
1517static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
1518{
1519 return -ENODEV;
1520}
1521
a9b2c8ef 1522static inline void fec_reset_phy(struct platform_device *pdev)
ca2cc333
SG
1523{
1524 /*
1525 * In case of platform probe, the reset has been done
1526 * by machine code.
1527 */
ca2cc333
SG
1528}
1529#endif /* CONFIG_OF */
1530
ead73183
SH
1531static int __devinit
1532fec_probe(struct platform_device *pdev)
1533{
1534 struct fec_enet_private *fep;
5eb32bd0 1535 struct fec_platform_data *pdata;
ead73183
SH
1536 struct net_device *ndev;
1537 int i, irq, ret = 0;
1538 struct resource *r;
ca2cc333 1539 const struct of_device_id *of_id;
43af940c 1540 static int dev_id;
ca2cc333
SG
1541
1542 of_id = of_match_device(fec_dt_ids, &pdev->dev);
1543 if (of_id)
1544 pdev->id_entry = of_id->data;
ead73183
SH
1545
1546 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1547 if (!r)
1548 return -ENXIO;
1549
1550 r = request_mem_region(r->start, resource_size(r), pdev->name);
1551 if (!r)
1552 return -EBUSY;
1553
1554 /* Init network device */
1555 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
28e2188e
UKK
1556 if (!ndev) {
1557 ret = -ENOMEM;
1558 goto failed_alloc_etherdev;
1559 }
ead73183
SH
1560
1561 SET_NETDEV_DEV(ndev, &pdev->dev);
1562
1563 /* setup board info structure */
1564 fep = netdev_priv(ndev);
ead73183 1565
24e531b4 1566 fep->hwp = ioremap(r->start, resource_size(r));
e6b043d5 1567 fep->pdev = pdev;
43af940c 1568 fep->dev_id = dev_id++;
ead73183 1569
24e531b4 1570 if (!fep->hwp) {
ead73183
SH
1571 ret = -ENOMEM;
1572 goto failed_ioremap;
1573 }
1574
1575 platform_set_drvdata(pdev, ndev);
1576
ca2cc333
SG
1577 ret = fec_get_phy_mode_dt(pdev);
1578 if (ret < 0) {
1579 pdata = pdev->dev.platform_data;
1580 if (pdata)
1581 fep->phy_interface = pdata->phy;
1582 else
1583 fep->phy_interface = PHY_INTERFACE_MODE_MII;
1584 } else {
1585 fep->phy_interface = ret;
1586 }
1587
1588 fec_reset_phy(pdev);
5eb32bd0 1589
c7c83d1c 1590 for (i = 0; i < FEC_IRQ_NUM; i++) {
ead73183 1591 irq = platform_get_irq(pdev, i);
86f9f2c8
LW
1592 if (irq < 0) {
1593 if (i)
1594 break;
1595 ret = irq;
1596 goto failed_irq;
1597 }
ead73183
SH
1598 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1599 if (ret) {
b2b09ad6 1600 while (--i >= 0) {
ead73183
SH
1601 irq = platform_get_irq(pdev, i);
1602 free_irq(irq, ndev);
ead73183
SH
1603 }
1604 goto failed_irq;
1605 }
1606 }
1607
5b1436c1 1608 fep->clk = clk_get(&pdev->dev, NULL);
ead73183
SH
1609 if (IS_ERR(fep->clk)) {
1610 ret = PTR_ERR(fep->clk);
1611 goto failed_clk;
1612 }
1613 clk_enable(fep->clk);
1614
8649a230 1615 ret = fec_enet_init(ndev);
ead73183
SH
1616 if (ret)
1617 goto failed_init;
1618
e6b043d5
BW
1619 ret = fec_enet_mii_init(pdev);
1620 if (ret)
1621 goto failed_mii_init;
1622
03c698c9
OS
1623 /* Carrier starts down, phylib will bring it up */
1624 netif_carrier_off(ndev);
1625
ead73183
SH
1626 ret = register_netdev(ndev);
1627 if (ret)
1628 goto failed_register;
1629
1630 return 0;
1631
1632failed_register:
e6b043d5
BW
1633 fec_enet_mii_remove(fep);
1634failed_mii_init:
ead73183
SH
1635failed_init:
1636 clk_disable(fep->clk);
1637 clk_put(fep->clk);
1638failed_clk:
c7c83d1c 1639 for (i = 0; i < FEC_IRQ_NUM; i++) {
ead73183
SH
1640 irq = platform_get_irq(pdev, i);
1641 if (irq > 0)
1642 free_irq(irq, ndev);
1643 }
1644failed_irq:
24e531b4 1645 iounmap(fep->hwp);
ead73183
SH
1646failed_ioremap:
1647 free_netdev(ndev);
28e2188e
UKK
1648failed_alloc_etherdev:
1649 release_mem_region(r->start, resource_size(r));
ead73183
SH
1650
1651 return ret;
1652}
1653
1654static int __devexit
1655fec_drv_remove(struct platform_device *pdev)
1656{
1657 struct net_device *ndev = platform_get_drvdata(pdev);
1658 struct fec_enet_private *fep = netdev_priv(ndev);
28e2188e 1659 struct resource *r;
e163cc97 1660 int i;
ead73183 1661
e163cc97 1662 unregister_netdev(ndev);
e6b043d5 1663 fec_enet_mii_remove(fep);
e163cc97
LW
1664 for (i = 0; i < FEC_IRQ_NUM; i++) {
1665 int irq = platform_get_irq(pdev, i);
1666 if (irq > 0)
1667 free_irq(irq, ndev);
1668 }
ead73183
SH
1669 clk_disable(fep->clk);
1670 clk_put(fep->clk);
24e531b4 1671 iounmap(fep->hwp);
ead73183 1672 free_netdev(ndev);
28e2188e
UKK
1673
1674 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1675 BUG_ON(!r);
1676 release_mem_region(r->start, resource_size(r));
1677
b3cde36c
UKK
1678 platform_set_drvdata(pdev, NULL);
1679
ead73183
SH
1680 return 0;
1681}
1682
59d4289b 1683#ifdef CONFIG_PM
ead73183 1684static int
87cad5c3 1685fec_suspend(struct device *dev)
ead73183 1686{
87cad5c3 1687 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1688 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1689
04e5216d
UKK
1690 if (netif_running(ndev)) {
1691 fec_stop(ndev);
1692 netif_device_detach(ndev);
ead73183 1693 }
04e5216d
UKK
1694 clk_disable(fep->clk);
1695
ead73183
SH
1696 return 0;
1697}
1698
1699static int
87cad5c3 1700fec_resume(struct device *dev)
ead73183 1701{
87cad5c3 1702 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1703 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1704
04e5216d
UKK
1705 clk_enable(fep->clk);
1706 if (netif_running(ndev)) {
1707 fec_restart(ndev, fep->full_duplex);
1708 netif_device_attach(ndev);
ead73183 1709 }
04e5216d 1710
ead73183
SH
1711 return 0;
1712}
1713
59d4289b
DK
1714static const struct dev_pm_ops fec_pm_ops = {
1715 .suspend = fec_suspend,
1716 .resume = fec_resume,
1717 .freeze = fec_suspend,
1718 .thaw = fec_resume,
1719 .poweroff = fec_suspend,
1720 .restore = fec_resume,
1721};
87cad5c3 1722#endif
59d4289b 1723
ead73183
SH
1724static struct platform_driver fec_driver = {
1725 .driver = {
b5680e0b 1726 .name = DRIVER_NAME,
87cad5c3
EB
1727 .owner = THIS_MODULE,
1728#ifdef CONFIG_PM
1729 .pm = &fec_pm_ops,
1730#endif
ca2cc333 1731 .of_match_table = fec_dt_ids,
ead73183 1732 },
b5680e0b 1733 .id_table = fec_devtype,
87cad5c3
EB
1734 .probe = fec_probe,
1735 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1736};
1737
1738static int __init
1739fec_enet_module_init(void)
1740{
1741 printk(KERN_INFO "FEC Ethernet Driver\n");
1742
1743 return platform_driver_register(&fec_driver);
1744}
1745
1746static void __exit
1747fec_enet_cleanup(void)
1748{
1749 platform_driver_unregister(&fec_driver);
1750}
1751
1752module_exit(fec_enet_cleanup);
1da177e4
LT
1753module_init(fec_enet_module_init);
1754
1755MODULE_LICENSE("GPL");