]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/freescale/fec.c
net: fec: reset phy after pinctrl setup
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / freescale / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
b5680e0b 20 *
230dec61 21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
6f501b17
SH
41#include <linux/io.h>
42#include <linux/irq.h>
196719ec 43#include <linux/clk.h>
ead73183 44#include <linux/platform_device.h>
e6b043d5 45#include <linux/phy.h>
5eb32bd0 46#include <linux/fec.h>
ca2cc333
SG
47#include <linux/of.h>
48#include <linux/of_device.h>
49#include <linux/of_gpio.h>
50#include <linux/of_net.h>
b2bccee1 51#include <linux/pinctrl/consumer.h>
1da177e4 52
080853af 53#include <asm/cacheflush.h>
196719ec 54
b5680e0b 55#ifndef CONFIG_ARM
1da177e4
LT
56#include <asm/coldfire.h>
57#include <asm/mcfsim.h>
196719ec 58#endif
6f501b17 59
1da177e4 60#include "fec.h"
1da177e4 61
085e79ed 62#if defined(CONFIG_ARM)
196719ec
SH
63#define FEC_ALIGNMENT 0xf
64#else
65#define FEC_ALIGNMENT 0x3
66#endif
67
b5680e0b
SG
68#define DRIVER_NAME "fec"
69
70/* Controller is ENET-MAC */
71#define FEC_QUIRK_ENET_MAC (1 << 0)
72/* Controller needs driver to swap frame */
73#define FEC_QUIRK_SWAP_FRAME (1 << 1)
0ca1e290
SG
74/* Controller uses gasket */
75#define FEC_QUIRK_USE_GASKET (1 << 2)
230dec61
SG
76/* Controller has GBIT support */
77#define FEC_QUIRK_HAS_GBIT (1 << 3)
b5680e0b
SG
78
79static struct platform_device_id fec_devtype[] = {
80 {
0ca1e290 81 /* keep it for coldfire */
b5680e0b
SG
82 .name = DRIVER_NAME,
83 .driver_data = 0,
0ca1e290
SG
84 }, {
85 .name = "imx25-fec",
86 .driver_data = FEC_QUIRK_USE_GASKET,
87 }, {
88 .name = "imx27-fec",
89 .driver_data = 0,
b5680e0b
SG
90 }, {
91 .name = "imx28-fec",
92 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
230dec61
SG
93 }, {
94 .name = "imx6q-fec",
95 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
0ca1e290
SG
96 }, {
97 /* sentinel */
98 }
b5680e0b 99};
0ca1e290 100MODULE_DEVICE_TABLE(platform, fec_devtype);
b5680e0b 101
ca2cc333 102enum imx_fec_type {
a7dd3219 103 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
ca2cc333
SG
104 IMX27_FEC, /* runs on i.mx27/35/51 */
105 IMX28_FEC,
230dec61 106 IMX6Q_FEC,
ca2cc333
SG
107};
108
109static const struct of_device_id fec_dt_ids[] = {
110 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
111 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
112 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
230dec61 113 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
ca2cc333
SG
114 { /* sentinel */ }
115};
116MODULE_DEVICE_TABLE(of, fec_dt_ids);
117
49da97dc
SG
118static unsigned char macaddr[ETH_ALEN];
119module_param_array(macaddr, byte, NULL, 0);
120MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 121
49da97dc 122#if defined(CONFIG_M5272)
1da177e4
LT
123/*
124 * Some hardware gets it MAC address out of local flash memory.
125 * if this is non-zero then assume it is the address to get MAC from.
126 */
127#if defined(CONFIG_NETtel)
128#define FEC_FLASHMAC 0xf0006006
129#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
130#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
131#elif defined(CONFIG_CANCam)
132#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
133#elif defined (CONFIG_M5272C3)
134#define FEC_FLASHMAC (0xffe04000 + 4)
135#elif defined(CONFIG_MOD5272)
a7dd3219 136#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
137#else
138#define FEC_FLASHMAC 0
139#endif
43be6366 140#endif /* CONFIG_M5272 */
ead73183 141
1da177e4
LT
142/* The number of Tx and Rx buffers. These are allocated from the page
143 * pool. The code may assume these are power of two, so it it best
144 * to keep them that size.
145 * We don't need to allocate pages for the transmitter. We just use
146 * the skbuffer directly.
147 */
148#define FEC_ENET_RX_PAGES 8
149#define FEC_ENET_RX_FRSIZE 2048
150#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
151#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
152#define FEC_ENET_TX_FRSIZE 2048
153#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
154#define TX_RING_SIZE 16 /* Must be power of two */
155#define TX_RING_MOD_MASK 15 /* for this to work */
156
562d2f8c 157#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 158#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
159#endif
160
22f6b860 161/* Interrupt events/masks. */
1da177e4
LT
162#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
163#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
164#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
165#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
166#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
167#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
168#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
169#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
170#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
171#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
172
4bee1f9a
WS
173#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
174
1da177e4
LT
175/* The FEC stores dest/src/type, data, and checksum for receive packets.
176 */
177#define PKT_MAXBUF_SIZE 1518
178#define PKT_MINBUF_SIZE 64
179#define PKT_MAXBLR_SIZE 1520
180
c7c83d1c
XJ
181/* This device has up to three irqs on some platforms */
182#define FEC_IRQ_NUM 3
1da177e4
LT
183
184/*
6b265293 185 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
186 * size bits. Other FEC hardware does not, so we need to take that into
187 * account when setting it.
188 */
562d2f8c 189#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
085e79ed 190 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
1da177e4
LT
191#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
192#else
193#define OPT_FRAME_SIZE 0
194#endif
195
196/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
197 * tx_bd_base always point to the base of the buffer descriptors. The
198 * cur_rx and cur_tx point to the currently available buffer.
199 * The dirty_tx tracks the current buffer that is being sent by the
200 * controller. The cur_tx and dirty_tx are equal under both completely
201 * empty and completely full conditions. The empty/ready indicator in
202 * the buffer descriptor determines the actual condition.
203 */
204struct fec_enet_private {
205 /* Hardware registers of the FEC device */
f44d6305 206 void __iomem *hwp;
1da177e4 207
cb84d6e7
GU
208 struct net_device *netdev;
209
f4d40de3
SH
210 struct clk *clk_ipg;
211 struct clk *clk_ahb;
ead73183 212
1da177e4
LT
213 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
214 unsigned char *tx_bounce[TX_RING_SIZE];
215 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 216 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
217 ushort skb_cur;
218 ushort skb_dirty;
219
22f6b860 220 /* CPM dual port RAM relative addresses */
4661e75b 221 dma_addr_t bd_dma;
22f6b860 222 /* Address of Rx and Tx buffers */
2e28532f
SH
223 struct bufdesc *rx_bd_base;
224 struct bufdesc *tx_bd_base;
225 /* The next free ring entry */
db8880bc 226 struct bufdesc *cur_rx, *cur_tx;
22f6b860 227 /* The ring entries to be free()ed */
2e28532f
SH
228 struct bufdesc *dirty_tx;
229
1da177e4 230 uint tx_full;
3b2b74ca
SS
231 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
232 spinlock_t hw_lock;
1da177e4 233
db8880bc 234 struct platform_device *pdev;
1da177e4 235
e6b043d5 236 int opened;
43af940c 237 int dev_id;
1da177e4 238
e6b043d5 239 /* Phylib and MDIO interface */
db8880bc
UKK
240 struct mii_bus *mii_bus;
241 struct phy_device *phy_dev;
242 int mii_timeout;
243 uint phy_speed;
5eb32bd0 244 phy_interface_t phy_interface;
1da177e4 245 int link;
1da177e4 246 int full_duplex;
97b72e43 247 struct completion mdio_done;
7f5c6add 248 int irq[FEC_IRQ_NUM];
1da177e4
LT
249};
250
e6b043d5
BW
251/* FEC MII MMFR bits definition */
252#define FEC_MMFR_ST (1 << 30)
253#define FEC_MMFR_OP_READ (2 << 28)
254#define FEC_MMFR_OP_WRITE (1 << 28)
255#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
256#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
257#define FEC_MMFR_TA (2 << 16)
258#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 259
c3b084c2 260#define FEC_MII_TIMEOUT 30000 /* us */
1da177e4 261
22f6b860
SH
262/* Transmitter timeout */
263#define TX_TIMEOUT (2 * HZ)
1da177e4 264
e163cc97
LW
265static int mii_cnt;
266
b5680e0b
SG
267static void *swap_buffer(void *bufaddr, int len)
268{
269 int i;
270 unsigned int *buf = bufaddr;
271
272 for (i = 0; i < (len + 3) / 4; i++, buf++)
273 *buf = cpu_to_be32(*buf);
274
275 return bufaddr;
276}
277
c7621cb3 278static netdev_tx_t
c556167f 279fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1da177e4 280{
c556167f 281 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
282 const struct platform_device_id *id_entry =
283 platform_get_device_id(fep->pdev);
2e28532f 284 struct bufdesc *bdp;
9555b31e 285 void *bufaddr;
0e702ab3 286 unsigned short status;
3b2b74ca 287 unsigned long flags;
1da177e4 288
1da177e4
LT
289 if (!fep->link) {
290 /* Link is down or autonegotiation is in progress. */
5b548140 291 return NETDEV_TX_BUSY;
1da177e4
LT
292 }
293
3b2b74ca 294 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
295 /* Fill in a Tx ring entry */
296 bdp = fep->cur_tx;
297
0e702ab3 298 status = bdp->cbd_sc;
22f6b860 299
0e702ab3 300 if (status & BD_ENET_TX_READY) {
1da177e4 301 /* Ooops. All transmit buffers are full. Bail out.
c556167f 302 * This should not happen, since ndev->tbusy should be set.
1da177e4 303 */
c556167f 304 printk("%s: tx queue full!.\n", ndev->name);
3b2b74ca 305 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 306 return NETDEV_TX_BUSY;
1da177e4 307 }
1da177e4 308
22f6b860 309 /* Clear all of the status flags */
0e702ab3 310 status &= ~BD_ENET_TX_STATS;
1da177e4 311
22f6b860 312 /* Set buffer length and buffer pointer */
9555b31e 313 bufaddr = skb->data;
1da177e4
LT
314 bdp->cbd_datlen = skb->len;
315
316 /*
22f6b860
SH
317 * On some FEC implementations data must be aligned on
318 * 4-byte boundaries. Use bounce buffers to copy data
319 * and get it aligned. Ugh.
1da177e4 320 */
9555b31e 321 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
322 unsigned int index;
323 index = bdp - fep->tx_bd_base;
8a73b0bc 324 memcpy(fep->tx_bounce[index], skb->data, skb->len);
9555b31e 325 bufaddr = fep->tx_bounce[index];
1da177e4
LT
326 }
327
b5680e0b
SG
328 /*
329 * Some design made an incorrect assumption on endian mode of
330 * the system that it's running on. As the result, driver has to
331 * swap every frame going to and coming from the controller.
332 */
333 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
334 swap_buffer(bufaddr, skb->len);
335
22f6b860 336 /* Save skb pointer */
1da177e4
LT
337 fep->tx_skbuff[fep->skb_cur] = skb;
338
c556167f 339 ndev->stats.tx_bytes += skb->len;
1da177e4 340 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 341
1da177e4
LT
342 /* Push the data cache so the CPM does not get stale memory
343 * data.
344 */
d1ab1f54 345 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
f0b3fbea 346 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 347
0e702ab3
GU
348 /* Send it on its way. Tell FEC it's ready, interrupt when done,
349 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 350 */
0e702ab3 351 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 352 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 353 bdp->cbd_sc = status;
1da177e4 354
1da177e4 355 /* Trigger transmission start */
f44d6305 356 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 357
22f6b860
SH
358 /* If this was the last BD in the ring, start at the beginning again. */
359 if (status & BD_ENET_TX_WRAP)
1da177e4 360 bdp = fep->tx_bd_base;
22f6b860 361 else
1da177e4 362 bdp++;
1da177e4
LT
363
364 if (bdp == fep->dirty_tx) {
365 fep->tx_full = 1;
c556167f 366 netif_stop_queue(ndev);
1da177e4
LT
367 }
368
2e28532f 369 fep->cur_tx = bdp;
1da177e4 370
18a03b97
RC
371 skb_tx_timestamp(skb);
372
a0087a36
RC
373 spin_unlock_irqrestore(&fep->hw_lock, flags);
374
6ed10654 375 return NETDEV_TX_OK;
1da177e4
LT
376}
377
45993653
UKK
378/* This function is called to start or restart the FEC during a link
379 * change. This only happens when switching between half and full
380 * duplex.
381 */
1da177e4 382static void
45993653 383fec_restart(struct net_device *ndev, int duplex)
1da177e4 384{
c556167f 385 struct fec_enet_private *fep = netdev_priv(ndev);
45993653
UKK
386 const struct platform_device_id *id_entry =
387 platform_get_device_id(fep->pdev);
388 int i;
cd1f402c
UKK
389 u32 temp_mac[2];
390 u32 rcntl = OPT_FRAME_SIZE | 0x04;
230dec61 391 u32 ecntl = 0x2; /* ETHEREN */
1da177e4 392
45993653
UKK
393 /* Whack a reset. We should wait for this. */
394 writel(1, fep->hwp + FEC_ECNTRL);
395 udelay(10);
1da177e4 396
45993653
UKK
397 /*
398 * enet-mac reset will reset mac address registers too,
399 * so need to reconfigure it.
400 */
401 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
402 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
403 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
404 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
405 }
1da177e4 406
45993653
UKK
407 /* Clear any outstanding interrupt. */
408 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 409
45993653
UKK
410 /* Reset all multicast. */
411 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
412 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
413#ifndef CONFIG_M5272
414 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
415 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
416#endif
1da177e4 417
45993653
UKK
418 /* Set maximum receive buffer size. */
419 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 420
45993653
UKK
421 /* Set receive and transmit descriptor base. */
422 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
423 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
424 fep->hwp + FEC_X_DES_START);
425
426 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
427 fep->cur_rx = fep->rx_bd_base;
428
429 /* Reset SKB transmit buffers. */
430 fep->skb_cur = fep->skb_dirty = 0;
431 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
432 if (fep->tx_skbuff[i]) {
433 dev_kfree_skb_any(fep->tx_skbuff[i]);
434 fep->tx_skbuff[i] = NULL;
1da177e4 435 }
45993653 436 }
97b72e43 437
45993653
UKK
438 /* Enable MII mode */
439 if (duplex) {
cd1f402c 440 /* FD enable */
45993653
UKK
441 writel(0x04, fep->hwp + FEC_X_CNTRL);
442 } else {
cd1f402c
UKK
443 /* No Rcv on Xmit */
444 rcntl |= 0x02;
45993653
UKK
445 writel(0x0, fep->hwp + FEC_X_CNTRL);
446 }
cd1f402c 447
45993653
UKK
448 fep->full_duplex = duplex;
449
450 /* Set MII speed */
451 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
452
453 /*
454 * The phy interface and speed need to get configured
455 * differently on enet-mac.
456 */
457 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
cd1f402c
UKK
458 /* Enable flow control and length check */
459 rcntl |= 0x40000000 | 0x00000020;
45993653 460
230dec61
SG
461 /* RGMII, RMII or MII */
462 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
463 rcntl |= (1 << 6);
464 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
cd1f402c 465 rcntl |= (1 << 8);
45993653 466 else
cd1f402c 467 rcntl &= ~(1 << 8);
45993653 468
230dec61
SG
469 /* 1G, 100M or 10M */
470 if (fep->phy_dev) {
471 if (fep->phy_dev->speed == SPEED_1000)
472 ecntl |= (1 << 5);
473 else if (fep->phy_dev->speed == SPEED_100)
474 rcntl &= ~(1 << 9);
475 else
476 rcntl |= (1 << 9);
477 }
45993653
UKK
478 } else {
479#ifdef FEC_MIIGSK_ENR
0ca1e290 480 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
8d82f219 481 u32 cfgr;
45993653
UKK
482 /* disable the gasket and wait */
483 writel(0, fep->hwp + FEC_MIIGSK_ENR);
484 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
485 udelay(1);
486
487 /*
488 * configure the gasket:
489 * RMII, 50 MHz, no loopback, no echo
0ca1e290 490 * MII, 25 MHz, no loopback, no echo
45993653 491 */
8d82f219
EB
492 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
493 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
494 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
495 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
496 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
45993653
UKK
497
498 /* re-enable the gasket */
499 writel(2, fep->hwp + FEC_MIIGSK_ENR);
97b72e43 500 }
45993653
UKK
501#endif
502 }
cd1f402c 503 writel(rcntl, fep->hwp + FEC_R_CNTRL);
3b2b74ca 504
230dec61
SG
505 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
506 /* enable ENET endian swap */
507 ecntl |= (1 << 8);
508 /* enable ENET store and forward mode */
509 writel(1 << 8, fep->hwp + FEC_X_WMRK);
510 }
511
45993653 512 /* And last, enable the transmit and receive processing */
230dec61 513 writel(ecntl, fep->hwp + FEC_ECNTRL);
45993653
UKK
514 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
515
516 /* Enable interrupts we wish to service */
517 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
518}
519
520static void
521fec_stop(struct net_device *ndev)
522{
523 struct fec_enet_private *fep = netdev_priv(ndev);
230dec61
SG
524 const struct platform_device_id *id_entry =
525 platform_get_device_id(fep->pdev);
42431dc2 526 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
45993653
UKK
527
528 /* We cannot expect a graceful transmit stop without link !!! */
529 if (fep->link) {
530 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
531 udelay(10);
532 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
533 printk("fec_stop : Graceful transmit stop did not complete !\n");
534 }
535
536 /* Whack a reset. We should wait for this. */
537 writel(1, fep->hwp + FEC_ECNTRL);
538 udelay(10);
539 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
540 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
230dec61
SG
541
542 /* We have to keep ENET enabled to have MII interrupt stay working */
42431dc2 543 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
230dec61 544 writel(2, fep->hwp + FEC_ECNTRL);
42431dc2
LW
545 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
546 }
1da177e4
LT
547}
548
549
45993653
UKK
550static void
551fec_timeout(struct net_device *ndev)
552{
553 struct fec_enet_private *fep = netdev_priv(ndev);
554
555 ndev->stats.tx_errors++;
556
557 fec_restart(ndev, fep->full_duplex);
558 netif_wake_queue(ndev);
559}
560
1da177e4 561static void
c556167f 562fec_enet_tx(struct net_device *ndev)
1da177e4
LT
563{
564 struct fec_enet_private *fep;
2e28532f 565 struct bufdesc *bdp;
0e702ab3 566 unsigned short status;
1da177e4
LT
567 struct sk_buff *skb;
568
c556167f 569 fep = netdev_priv(ndev);
81538e74 570 spin_lock(&fep->hw_lock);
1da177e4
LT
571 bdp = fep->dirty_tx;
572
0e702ab3 573 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
574 if (bdp == fep->cur_tx && fep->tx_full == 0)
575 break;
576
d1ab1f54
UKK
577 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
578 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
f0b3fbea 579 bdp->cbd_bufaddr = 0;
1da177e4
LT
580
581 skb = fep->tx_skbuff[fep->skb_dirty];
582 /* Check for errors. */
0e702ab3 583 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
584 BD_ENET_TX_RL | BD_ENET_TX_UN |
585 BD_ENET_TX_CSL)) {
c556167f 586 ndev->stats.tx_errors++;
0e702ab3 587 if (status & BD_ENET_TX_HB) /* No heartbeat */
c556167f 588 ndev->stats.tx_heartbeat_errors++;
0e702ab3 589 if (status & BD_ENET_TX_LC) /* Late collision */
c556167f 590 ndev->stats.tx_window_errors++;
0e702ab3 591 if (status & BD_ENET_TX_RL) /* Retrans limit */
c556167f 592 ndev->stats.tx_aborted_errors++;
0e702ab3 593 if (status & BD_ENET_TX_UN) /* Underrun */
c556167f 594 ndev->stats.tx_fifo_errors++;
0e702ab3 595 if (status & BD_ENET_TX_CSL) /* Carrier lost */
c556167f 596 ndev->stats.tx_carrier_errors++;
1da177e4 597 } else {
c556167f 598 ndev->stats.tx_packets++;
1da177e4
LT
599 }
600
0e702ab3 601 if (status & BD_ENET_TX_READY)
1da177e4 602 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 603
1da177e4
LT
604 /* Deferred means some collisions occurred during transmit,
605 * but we eventually sent the packet OK.
606 */
0e702ab3 607 if (status & BD_ENET_TX_DEF)
c556167f 608 ndev->stats.collisions++;
6aa20a22 609
22f6b860 610 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
611 dev_kfree_skb_any(skb);
612 fep->tx_skbuff[fep->skb_dirty] = NULL;
613 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 614
22f6b860 615 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 616 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
617 bdp = fep->tx_bd_base;
618 else
619 bdp++;
6aa20a22 620
22f6b860 621 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
622 */
623 if (fep->tx_full) {
624 fep->tx_full = 0;
c556167f
UKK
625 if (netif_queue_stopped(ndev))
626 netif_wake_queue(ndev);
1da177e4
LT
627 }
628 }
2e28532f 629 fep->dirty_tx = bdp;
81538e74 630 spin_unlock(&fep->hw_lock);
1da177e4
LT
631}
632
633
634/* During a receive, the cur_rx points to the current incoming buffer.
635 * When we update through the ring, if the next incoming buffer has
636 * not been given to the system, we just set the empty indicator,
637 * effectively tossing the packet.
638 */
639static void
c556167f 640fec_enet_rx(struct net_device *ndev)
1da177e4 641{
c556167f 642 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
643 const struct platform_device_id *id_entry =
644 platform_get_device_id(fep->pdev);
2e28532f 645 struct bufdesc *bdp;
0e702ab3 646 unsigned short status;
1da177e4
LT
647 struct sk_buff *skb;
648 ushort pkt_len;
649 __u8 *data;
6aa20a22 650
0e702ab3
GU
651#ifdef CONFIG_M532x
652 flush_cache_all();
6aa20a22 653#endif
1da177e4 654
81538e74 655 spin_lock(&fep->hw_lock);
3b2b74ca 656
1da177e4
LT
657 /* First, grab all of the stats for the incoming packet.
658 * These get messed up if we get called due to a busy condition.
659 */
660 bdp = fep->cur_rx;
661
22f6b860 662 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 663
22f6b860
SH
664 /* Since we have allocated space to hold a complete frame,
665 * the last indicator should be set.
666 */
667 if ((status & BD_ENET_RX_LAST) == 0)
668 printk("FEC ENET: rcv is not +last\n");
1da177e4 669
22f6b860
SH
670 if (!fep->opened)
671 goto rx_processing_done;
1da177e4 672
22f6b860
SH
673 /* Check for errors. */
674 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 675 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
c556167f 676 ndev->stats.rx_errors++;
22f6b860
SH
677 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
678 /* Frame too long or too short. */
c556167f 679 ndev->stats.rx_length_errors++;
22f6b860
SH
680 }
681 if (status & BD_ENET_RX_NO) /* Frame alignment */
c556167f 682 ndev->stats.rx_frame_errors++;
22f6b860 683 if (status & BD_ENET_RX_CR) /* CRC Error */
c556167f 684 ndev->stats.rx_crc_errors++;
22f6b860 685 if (status & BD_ENET_RX_OV) /* FIFO overrun */
c556167f 686 ndev->stats.rx_fifo_errors++;
1da177e4 687 }
1da177e4 688
22f6b860
SH
689 /* Report late collisions as a frame error.
690 * On this error, the BD is closed, but we don't know what we
691 * have in the buffer. So, just drop this frame on the floor.
692 */
693 if (status & BD_ENET_RX_CL) {
c556167f
UKK
694 ndev->stats.rx_errors++;
695 ndev->stats.rx_frame_errors++;
22f6b860
SH
696 goto rx_processing_done;
697 }
1da177e4 698
22f6b860 699 /* Process the incoming frame. */
c556167f 700 ndev->stats.rx_packets++;
22f6b860 701 pkt_len = bdp->cbd_datlen;
c556167f 702 ndev->stats.rx_bytes += pkt_len;
22f6b860 703 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 704
d1ab1f54
UKK
705 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
706 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
ccdc4f19 707
b5680e0b
SG
708 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
709 swap_buffer(data, pkt_len);
710
22f6b860
SH
711 /* This does 16 byte alignment, exactly what we need.
712 * The packet length includes FCS, but we don't want to
713 * include that when passing upstream as it messes up
714 * bridging applications.
715 */
b72061a3 716 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1da177e4 717
8549889c 718 if (unlikely(!skb)) {
22f6b860 719 printk("%s: Memory squeeze, dropping packet.\n",
c556167f
UKK
720 ndev->name);
721 ndev->stats.rx_dropped++;
22f6b860 722 } else {
8549889c 723 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
724 skb_put(skb, pkt_len - 4); /* Make room */
725 skb_copy_to_linear_data(skb, data, pkt_len - 4);
c556167f 726 skb->protocol = eth_type_trans(skb, ndev);
18a03b97
RC
727 if (!skb_defer_rx_timestamp(skb))
728 netif_rx(skb);
22f6b860 729 }
f0b3fbea 730
d1ab1f54
UKK
731 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
732 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
22f6b860
SH
733rx_processing_done:
734 /* Clear the status flags for this buffer */
735 status &= ~BD_ENET_RX_STATS;
1da177e4 736
22f6b860
SH
737 /* Mark the buffer empty */
738 status |= BD_ENET_RX_EMPTY;
739 bdp->cbd_sc = status;
6aa20a22 740
22f6b860
SH
741 /* Update BD pointer to next entry */
742 if (status & BD_ENET_RX_WRAP)
743 bdp = fep->rx_bd_base;
744 else
745 bdp++;
746 /* Doing this here will keep the FEC running while we process
747 * incoming frames. On a heavily loaded network, we should be
748 * able to keep up at the expense of system resources.
749 */
750 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
751 }
2e28532f 752 fep->cur_rx = bdp;
1da177e4 753
81538e74 754 spin_unlock(&fep->hw_lock);
1da177e4
LT
755}
756
45993653
UKK
757static irqreturn_t
758fec_enet_interrupt(int irq, void *dev_id)
759{
760 struct net_device *ndev = dev_id;
761 struct fec_enet_private *fep = netdev_priv(ndev);
762 uint int_events;
763 irqreturn_t ret = IRQ_NONE;
764
765 do {
766 int_events = readl(fep->hwp + FEC_IEVENT);
767 writel(int_events, fep->hwp + FEC_IEVENT);
768
769 if (int_events & FEC_ENET_RXF) {
770 ret = IRQ_HANDLED;
771 fec_enet_rx(ndev);
772 }
773
774 /* Transmit OK, or non-fatal error. Update the buffer
775 * descriptors. FEC handles all errors, we just discover
776 * them as part of the transmit process.
777 */
778 if (int_events & FEC_ENET_TXF) {
779 ret = IRQ_HANDLED;
780 fec_enet_tx(ndev);
781 }
782
783 if (int_events & FEC_ENET_MII) {
784 ret = IRQ_HANDLED;
785 complete(&fep->mdio_done);
786 }
787 } while (int_events);
788
789 return ret;
790}
791
792
793
e6b043d5 794/* ------------------------------------------------------------------------- */
c556167f 795static void __inline__ fec_get_mac(struct net_device *ndev)
1da177e4 796{
c556167f 797 struct fec_enet_private *fep = netdev_priv(ndev);
49da97dc 798 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 799 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 800
49da97dc
SG
801 /*
802 * try to get mac address in following order:
803 *
804 * 1) module parameter via kernel command line in form
805 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
806 */
807 iap = macaddr;
808
ca2cc333
SG
809#ifdef CONFIG_OF
810 /*
811 * 2) from device tree data
812 */
813 if (!is_valid_ether_addr(iap)) {
814 struct device_node *np = fep->pdev->dev.of_node;
815 if (np) {
816 const char *mac = of_get_mac_address(np);
817 if (mac)
818 iap = (unsigned char *) mac;
819 }
820 }
821#endif
822
49da97dc 823 /*
ca2cc333 824 * 3) from flash or fuse (via platform data)
49da97dc
SG
825 */
826 if (!is_valid_ether_addr(iap)) {
827#ifdef CONFIG_M5272
828 if (FEC_FLASHMAC)
829 iap = (unsigned char *)FEC_FLASHMAC;
830#else
831 if (pdata)
589efdc7 832 iap = (unsigned char *)&pdata->mac;
49da97dc
SG
833#endif
834 }
835
836 /*
ca2cc333 837 * 4) FEC mac registers set by bootloader
49da97dc
SG
838 */
839 if (!is_valid_ether_addr(iap)) {
840 *((unsigned long *) &tmpaddr[0]) =
841 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
842 *((unsigned short *) &tmpaddr[4]) =
843 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 844 iap = &tmpaddr[0];
1da177e4
LT
845 }
846
c556167f 847 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1da177e4 848
49da97dc
SG
849 /* Adjust MAC if using macaddr */
850 if (iap == macaddr)
43af940c 851 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1da177e4
LT
852}
853
e6b043d5 854/* ------------------------------------------------------------------------- */
1da177e4 855
e6b043d5
BW
856/*
857 * Phy section
858 */
c556167f 859static void fec_enet_adjust_link(struct net_device *ndev)
1da177e4 860{
c556167f 861 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5
BW
862 struct phy_device *phy_dev = fep->phy_dev;
863 unsigned long flags;
1da177e4 864
e6b043d5 865 int status_change = 0;
1da177e4 866
e6b043d5 867 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 868
e6b043d5
BW
869 /* Prevent a state halted on mii error */
870 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
871 phy_dev->state = PHY_RESUMING;
872 goto spin_unlock;
873 }
1da177e4 874
e6b043d5
BW
875 /* Duplex link change */
876 if (phy_dev->link) {
877 if (fep->full_duplex != phy_dev->duplex) {
c556167f 878 fec_restart(ndev, phy_dev->duplex);
6ea0722f
LW
879 /* prevent unnecessary second fec_restart() below */
880 fep->link = phy_dev->link;
e6b043d5
BW
881 status_change = 1;
882 }
883 }
1da177e4 884
e6b043d5
BW
885 /* Link on or off change */
886 if (phy_dev->link != fep->link) {
887 fep->link = phy_dev->link;
888 if (phy_dev->link)
c556167f 889 fec_restart(ndev, phy_dev->duplex);
1da177e4 890 else
c556167f 891 fec_stop(ndev);
e6b043d5 892 status_change = 1;
1da177e4 893 }
6aa20a22 894
e6b043d5
BW
895spin_unlock:
896 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 897
e6b043d5
BW
898 if (status_change)
899 phy_print_status(phy_dev);
900}
1da177e4 901
e6b043d5 902static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 903{
e6b043d5 904 struct fec_enet_private *fep = bus->priv;
97b72e43 905 unsigned long time_left;
1da177e4 906
e6b043d5 907 fep->mii_timeout = 0;
97b72e43 908 init_completion(&fep->mdio_done);
e6b043d5
BW
909
910 /* start a read op */
911 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
912 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
913 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
914
915 /* wait for end of transfer */
97b72e43
BS
916 time_left = wait_for_completion_timeout(&fep->mdio_done,
917 usecs_to_jiffies(FEC_MII_TIMEOUT));
918 if (time_left == 0) {
919 fep->mii_timeout = 1;
920 printk(KERN_ERR "FEC: MDIO read timeout\n");
921 return -ETIMEDOUT;
1da177e4 922 }
1da177e4 923
e6b043d5
BW
924 /* return value */
925 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 926}
6aa20a22 927
e6b043d5
BW
928static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
929 u16 value)
1da177e4 930{
e6b043d5 931 struct fec_enet_private *fep = bus->priv;
97b72e43 932 unsigned long time_left;
1da177e4 933
e6b043d5 934 fep->mii_timeout = 0;
97b72e43 935 init_completion(&fep->mdio_done);
1da177e4 936
862f0982
SG
937 /* start a write op */
938 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
939 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
940 FEC_MMFR_TA | FEC_MMFR_DATA(value),
941 fep->hwp + FEC_MII_DATA);
942
943 /* wait for end of transfer */
97b72e43
BS
944 time_left = wait_for_completion_timeout(&fep->mdio_done,
945 usecs_to_jiffies(FEC_MII_TIMEOUT));
946 if (time_left == 0) {
947 fep->mii_timeout = 1;
948 printk(KERN_ERR "FEC: MDIO write timeout\n");
949 return -ETIMEDOUT;
e6b043d5 950 }
1da177e4 951
e6b043d5
BW
952 return 0;
953}
1da177e4 954
e6b043d5 955static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 956{
e6b043d5 957 return 0;
1da177e4
LT
958}
959
c556167f 960static int fec_enet_mii_probe(struct net_device *ndev)
562d2f8c 961{
c556167f 962 struct fec_enet_private *fep = netdev_priv(ndev);
230dec61
SG
963 const struct platform_device_id *id_entry =
964 platform_get_device_id(fep->pdev);
e6b043d5 965 struct phy_device *phy_dev = NULL;
6fcc040f
GU
966 char mdio_bus_id[MII_BUS_ID_SIZE];
967 char phy_name[MII_BUS_ID_SIZE + 3];
968 int phy_id;
43af940c 969 int dev_id = fep->dev_id;
562d2f8c 970
418bd0d4
BW
971 fep->phy_dev = NULL;
972
6fcc040f
GU
973 /* check for attached phy */
974 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
975 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
976 continue;
977 if (fep->mii_bus->phy_map[phy_id] == NULL)
978 continue;
979 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
980 continue;
b5680e0b
SG
981 if (dev_id--)
982 continue;
6fcc040f
GU
983 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
984 break;
e6b043d5 985 }
1da177e4 986
6fcc040f 987 if (phy_id >= PHY_MAX_ADDR) {
a7dd3219
LW
988 printk(KERN_INFO
989 "%s: no PHY, assuming direct connection to switch\n",
990 ndev->name);
ea51ade9 991 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
6fcc040f
GU
992 phy_id = 0;
993 }
994
a7ed07d5 995 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
c556167f 996 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
230dec61 997 fep->phy_interface);
6fcc040f 998 if (IS_ERR(phy_dev)) {
c556167f 999 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
6fcc040f 1000 return PTR_ERR(phy_dev);
e6b043d5 1001 }
1da177e4 1002
e6b043d5 1003 /* mask with MAC supported features */
230dec61
SG
1004 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
1005 phy_dev->supported &= PHY_GBIT_FEATURES;
1006 else
1007 phy_dev->supported &= PHY_BASIC_FEATURES;
1008
e6b043d5 1009 phy_dev->advertising = phy_dev->supported;
1da177e4 1010
e6b043d5
BW
1011 fep->phy_dev = phy_dev;
1012 fep->link = 0;
1013 fep->full_duplex = 0;
1da177e4 1014
a7dd3219
LW
1015 printk(KERN_INFO
1016 "%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1017 ndev->name,
418bd0d4
BW
1018 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1019 fep->phy_dev->irq);
1020
e6b043d5 1021 return 0;
1da177e4
LT
1022}
1023
e6b043d5 1024static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 1025{
b5680e0b 1026 static struct mii_bus *fec0_mii_bus;
c556167f
UKK
1027 struct net_device *ndev = platform_get_drvdata(pdev);
1028 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
1029 const struct platform_device_id *id_entry =
1030 platform_get_device_id(fep->pdev);
e6b043d5 1031 int err = -ENXIO, i;
6b265293 1032
b5680e0b
SG
1033 /*
1034 * The dual fec interfaces are not equivalent with enet-mac.
1035 * Here are the differences:
1036 *
1037 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1038 * - fec0 acts as the 1588 time master while fec1 is slave
1039 * - external phys can only be configured by fec0
1040 *
1041 * That is to say fec1 can not work independently. It only works
1042 * when fec0 is working. The reason behind this design is that the
1043 * second interface is added primarily for Switch mode.
1044 *
1045 * Because of the last point above, both phys are attached on fec0
1046 * mdio interface in board design, and need to be configured by
1047 * fec0 mii_bus.
1048 */
43af940c 1049 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
b5680e0b 1050 /* fec1 uses fec0 mii_bus */
e163cc97
LW
1051 if (mii_cnt && fec0_mii_bus) {
1052 fep->mii_bus = fec0_mii_bus;
1053 mii_cnt++;
1054 return 0;
1055 }
1056 return -ENOENT;
b5680e0b
SG
1057 }
1058
e6b043d5 1059 fep->mii_timeout = 0;
1da177e4 1060
e6b043d5
BW
1061 /*
1062 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
230dec61
SG
1063 *
1064 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1065 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1066 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1067 * document.
e6b043d5 1068 */
f4d40de3 1069 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
230dec61
SG
1070 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1071 fep->phy_speed--;
1072 fep->phy_speed <<= 1;
e6b043d5 1073 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 1074
e6b043d5
BW
1075 fep->mii_bus = mdiobus_alloc();
1076 if (fep->mii_bus == NULL) {
1077 err = -ENOMEM;
1078 goto err_out;
1da177e4
LT
1079 }
1080
e6b043d5
BW
1081 fep->mii_bus->name = "fec_enet_mii_bus";
1082 fep->mii_bus->read = fec_enet_mdio_read;
1083 fep->mii_bus->write = fec_enet_mdio_write;
1084 fep->mii_bus->reset = fec_enet_mdio_reset;
391420f7
FF
1085 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1086 pdev->name, fep->dev_id + 1);
e6b043d5
BW
1087 fep->mii_bus->priv = fep;
1088 fep->mii_bus->parent = &pdev->dev;
1089
1090 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1091 if (!fep->mii_bus->irq) {
1092 err = -ENOMEM;
1093 goto err_out_free_mdiobus;
1da177e4
LT
1094 }
1095
e6b043d5
BW
1096 for (i = 0; i < PHY_MAX_ADDR; i++)
1097 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 1098
e6b043d5
BW
1099 if (mdiobus_register(fep->mii_bus))
1100 goto err_out_free_mdio_irq;
1da177e4 1101
e163cc97
LW
1102 mii_cnt++;
1103
b5680e0b
SG
1104 /* save fec0 mii_bus */
1105 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1106 fec0_mii_bus = fep->mii_bus;
1107
e6b043d5 1108 return 0;
1da177e4 1109
e6b043d5
BW
1110err_out_free_mdio_irq:
1111 kfree(fep->mii_bus->irq);
1112err_out_free_mdiobus:
1113 mdiobus_free(fep->mii_bus);
1114err_out:
1115 return err;
1da177e4
LT
1116}
1117
e6b043d5 1118static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 1119{
e163cc97
LW
1120 if (--mii_cnt == 0) {
1121 mdiobus_unregister(fep->mii_bus);
1122 kfree(fep->mii_bus->irq);
1123 mdiobus_free(fep->mii_bus);
1124 }
1da177e4
LT
1125}
1126
c556167f 1127static int fec_enet_get_settings(struct net_device *ndev,
e6b043d5 1128 struct ethtool_cmd *cmd)
1da177e4 1129{
c556167f 1130 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1131 struct phy_device *phydev = fep->phy_dev;
1da177e4 1132
e6b043d5
BW
1133 if (!phydev)
1134 return -ENODEV;
1da177e4 1135
e6b043d5 1136 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
1137}
1138
c556167f 1139static int fec_enet_set_settings(struct net_device *ndev,
e6b043d5 1140 struct ethtool_cmd *cmd)
1da177e4 1141{
c556167f 1142 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1143 struct phy_device *phydev = fep->phy_dev;
1da177e4 1144
e6b043d5
BW
1145 if (!phydev)
1146 return -ENODEV;
1da177e4 1147
e6b043d5 1148 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
1149}
1150
c556167f 1151static void fec_enet_get_drvinfo(struct net_device *ndev,
e6b043d5 1152 struct ethtool_drvinfo *info)
1da177e4 1153{
c556167f 1154 struct fec_enet_private *fep = netdev_priv(ndev);
6aa20a22 1155
e6b043d5
BW
1156 strcpy(info->driver, fep->pdev->dev.driver->name);
1157 strcpy(info->version, "Revision: 1.0");
c556167f 1158 strcpy(info->bus_info, dev_name(&ndev->dev));
1da177e4
LT
1159}
1160
9b07be4b 1161static const struct ethtool_ops fec_enet_ethtool_ops = {
e6b043d5
BW
1162 .get_settings = fec_enet_get_settings,
1163 .set_settings = fec_enet_set_settings,
1164 .get_drvinfo = fec_enet_get_drvinfo,
1165 .get_link = ethtool_op_get_link,
ec567bca 1166 .get_ts_info = ethtool_op_get_ts_info,
e6b043d5 1167};
1da177e4 1168
c556167f 1169static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1da177e4 1170{
c556167f 1171 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1172 struct phy_device *phydev = fep->phy_dev;
1da177e4 1173
c556167f 1174 if (!netif_running(ndev))
e6b043d5 1175 return -EINVAL;
1da177e4 1176
e6b043d5
BW
1177 if (!phydev)
1178 return -ENODEV;
1179
28b04113 1180 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
1181}
1182
c556167f 1183static void fec_enet_free_buffers(struct net_device *ndev)
f0b3fbea 1184{
c556167f 1185 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1186 int i;
1187 struct sk_buff *skb;
1188 struct bufdesc *bdp;
1189
1190 bdp = fep->rx_bd_base;
1191 for (i = 0; i < RX_RING_SIZE; i++) {
1192 skb = fep->rx_skbuff[i];
1193
1194 if (bdp->cbd_bufaddr)
d1ab1f54 1195 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
f0b3fbea
SH
1196 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1197 if (skb)
1198 dev_kfree_skb(skb);
1199 bdp++;
1200 }
1201
1202 bdp = fep->tx_bd_base;
1203 for (i = 0; i < TX_RING_SIZE; i++)
1204 kfree(fep->tx_bounce[i]);
1205}
1206
c556167f 1207static int fec_enet_alloc_buffers(struct net_device *ndev)
f0b3fbea 1208{
c556167f 1209 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1210 int i;
1211 struct sk_buff *skb;
1212 struct bufdesc *bdp;
1213
1214 bdp = fep->rx_bd_base;
1215 for (i = 0; i < RX_RING_SIZE; i++) {
b72061a3 1216 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
f0b3fbea 1217 if (!skb) {
c556167f 1218 fec_enet_free_buffers(ndev);
f0b3fbea
SH
1219 return -ENOMEM;
1220 }
1221 fep->rx_skbuff[i] = skb;
1222
d1ab1f54 1223 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
f0b3fbea
SH
1224 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1225 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1226 bdp++;
1227 }
1228
1229 /* Set the last buffer to wrap. */
1230 bdp--;
1231 bdp->cbd_sc |= BD_SC_WRAP;
1232
1233 bdp = fep->tx_bd_base;
1234 for (i = 0; i < TX_RING_SIZE; i++) {
1235 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1236
1237 bdp->cbd_sc = 0;
1238 bdp->cbd_bufaddr = 0;
1239 bdp++;
1240 }
1241
1242 /* Set the last buffer to wrap. */
1243 bdp--;
1244 bdp->cbd_sc |= BD_SC_WRAP;
1245
1246 return 0;
1247}
1248
1da177e4 1249static int
c556167f 1250fec_enet_open(struct net_device *ndev)
1da177e4 1251{
c556167f 1252 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1253 int ret;
1da177e4
LT
1254
1255 /* I should reset the ring buffers here, but I don't yet know
1256 * a simple way to do that.
1257 */
1da177e4 1258
c556167f 1259 ret = fec_enet_alloc_buffers(ndev);
f0b3fbea
SH
1260 if (ret)
1261 return ret;
1262
418bd0d4 1263 /* Probe and connect to PHY when open the interface */
c556167f 1264 ret = fec_enet_mii_probe(ndev);
418bd0d4 1265 if (ret) {
c556167f 1266 fec_enet_free_buffers(ndev);
418bd0d4
BW
1267 return ret;
1268 }
e6b043d5 1269 phy_start(fep->phy_dev);
c556167f 1270 netif_start_queue(ndev);
1da177e4 1271 fep->opened = 1;
22f6b860 1272 return 0;
1da177e4
LT
1273}
1274
1275static int
c556167f 1276fec_enet_close(struct net_device *ndev)
1da177e4 1277{
c556167f 1278 struct fec_enet_private *fep = netdev_priv(ndev);
1da177e4 1279
22f6b860 1280 /* Don't know what to do yet. */
1da177e4 1281 fep->opened = 0;
c556167f
UKK
1282 netif_stop_queue(ndev);
1283 fec_stop(ndev);
1da177e4 1284
e497ba82
UKK
1285 if (fep->phy_dev) {
1286 phy_stop(fep->phy_dev);
418bd0d4 1287 phy_disconnect(fep->phy_dev);
e497ba82 1288 }
418bd0d4 1289
db8880bc 1290 fec_enet_free_buffers(ndev);
f0b3fbea 1291
1da177e4
LT
1292 return 0;
1293}
1294
1da177e4
LT
1295/* Set or clear the multicast filter for this adaptor.
1296 * Skeleton taken from sunlance driver.
1297 * The CPM Ethernet implementation allows Multicast as well as individual
1298 * MAC address filtering. Some of the drivers check to make sure it is
1299 * a group multicast address, and discard those that are not. I guess I
1300 * will do the same for now, but just remove the test if you want
1301 * individual filtering as well (do the upper net layers want or support
1302 * this kind of feature?).
1303 */
1304
1305#define HASH_BITS 6 /* #bits in hash */
1306#define CRC32_POLY 0xEDB88320
1307
c556167f 1308static void set_multicast_list(struct net_device *ndev)
1da177e4 1309{
c556167f 1310 struct fec_enet_private *fep = netdev_priv(ndev);
22bedad3 1311 struct netdev_hw_addr *ha;
48e2f183 1312 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
1313 unsigned char hash;
1314
c556167f 1315 if (ndev->flags & IFF_PROMISC) {
f44d6305
SH
1316 tmp = readl(fep->hwp + FEC_R_CNTRL);
1317 tmp |= 0x8;
1318 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
1319 return;
1320 }
1da177e4 1321
4e831836
SH
1322 tmp = readl(fep->hwp + FEC_R_CNTRL);
1323 tmp &= ~0x8;
1324 writel(tmp, fep->hwp + FEC_R_CNTRL);
1325
c556167f 1326 if (ndev->flags & IFF_ALLMULTI) {
4e831836
SH
1327 /* Catch all multicast addresses, so set the
1328 * filter to all 1's
1329 */
1330 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1331 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1332
1333 return;
1334 }
1335
1336 /* Clear filter and add the addresses in hash register
1337 */
1338 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1339 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1340
c556167f 1341 netdev_for_each_mc_addr(ha, ndev) {
4e831836
SH
1342 /* calculate crc32 value of mac address */
1343 crc = 0xffffffff;
1344
c556167f 1345 for (i = 0; i < ndev->addr_len; i++) {
22bedad3 1346 data = ha->addr[i];
4e831836
SH
1347 for (bit = 0; bit < 8; bit++, data >>= 1) {
1348 crc = (crc >> 1) ^
1349 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1350 }
1351 }
4e831836
SH
1352
1353 /* only upper 6 bits (HASH_BITS) are used
1354 * which point to specific bit in he hash registers
1355 */
1356 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1357
1358 if (hash > 31) {
1359 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1360 tmp |= 1 << (hash - 32);
1361 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1362 } else {
1363 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1364 tmp |= 1 << hash;
1365 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1366 }
1da177e4
LT
1367 }
1368}
1369
22f6b860 1370/* Set a MAC change in hardware. */
009fda83 1371static int
c556167f 1372fec_set_mac_address(struct net_device *ndev, void *p)
1da177e4 1373{
c556167f 1374 struct fec_enet_private *fep = netdev_priv(ndev);
009fda83
SH
1375 struct sockaddr *addr = p;
1376
1377 if (!is_valid_ether_addr(addr->sa_data))
1378 return -EADDRNOTAVAIL;
1379
c556167f 1380 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1da177e4 1381
c556167f
UKK
1382 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1383 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
f44d6305 1384 fep->hwp + FEC_ADDR_LOW);
c556167f 1385 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
7cff0943 1386 fep->hwp + FEC_ADDR_HIGH);
009fda83 1387 return 0;
1da177e4
LT
1388}
1389
7f5c6add
XJ
1390#ifdef CONFIG_NET_POLL_CONTROLLER
1391/*
1392 * fec_poll_controller: FEC Poll controller function
1393 * @dev: The FEC network adapter
1394 *
1395 * Polled functionality used by netconsole and others in non interrupt mode
1396 *
1397 */
1398void fec_poll_controller(struct net_device *dev)
1399{
1400 int i;
1401 struct fec_enet_private *fep = netdev_priv(dev);
1402
1403 for (i = 0; i < FEC_IRQ_NUM; i++) {
1404 if (fep->irq[i] > 0) {
1405 disable_irq(fep->irq[i]);
1406 fec_enet_interrupt(fep->irq[i], dev);
1407 enable_irq(fep->irq[i]);
1408 }
1409 }
1410}
1411#endif
1412
009fda83
SH
1413static const struct net_device_ops fec_netdev_ops = {
1414 .ndo_open = fec_enet_open,
1415 .ndo_stop = fec_enet_close,
1416 .ndo_start_xmit = fec_enet_start_xmit,
afc4b13d 1417 .ndo_set_rx_mode = set_multicast_list,
635ecaa7 1418 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1419 .ndo_validate_addr = eth_validate_addr,
1420 .ndo_tx_timeout = fec_timeout,
1421 .ndo_set_mac_address = fec_set_mac_address,
db8880bc 1422 .ndo_do_ioctl = fec_enet_ioctl,
7f5c6add
XJ
1423#ifdef CONFIG_NET_POLL_CONTROLLER
1424 .ndo_poll_controller = fec_poll_controller,
1425#endif
009fda83
SH
1426};
1427
1da177e4
LT
1428 /*
1429 * XXX: We need to clean up on failure exits here.
ead73183 1430 *
1da177e4 1431 */
c556167f 1432static int fec_enet_init(struct net_device *ndev)
1da177e4 1433{
c556167f 1434 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1435 struct bufdesc *cbd_base;
633e7533 1436 struct bufdesc *bdp;
f0b3fbea 1437 int i;
1da177e4 1438
8d4dd5cf
SH
1439 /* Allocate memory for buffer descriptors. */
1440 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1441 GFP_KERNEL);
1442 if (!cbd_base) {
562d2f8c
GU
1443 printk("FEC: allocate descriptor memory failed?\n");
1444 return -ENOMEM;
1445 }
1446
3b2b74ca 1447 spin_lock_init(&fep->hw_lock);
3b2b74ca 1448
c556167f 1449 fep->netdev = ndev;
1da177e4 1450
49da97dc 1451 /* Get the Ethernet address */
c556167f 1452 fec_get_mac(ndev);
1da177e4 1453
8d4dd5cf 1454 /* Set receive and transmit descriptor base. */
1da177e4
LT
1455 fep->rx_bd_base = cbd_base;
1456 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1457
22f6b860 1458 /* The FEC Ethernet specific entries in the device structure */
c556167f
UKK
1459 ndev->watchdog_timeo = TX_TIMEOUT;
1460 ndev->netdev_ops = &fec_netdev_ops;
1461 ndev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1462
1463 /* Initialize the receive buffer descriptors. */
1464 bdp = fep->rx_bd_base;
1465 for (i = 0; i < RX_RING_SIZE; i++) {
1466
1467 /* Initialize the BD for every fragment in the page. */
1468 bdp->cbd_sc = 0;
1469 bdp++;
1470 }
1471
1472 /* Set the last buffer to wrap */
1473 bdp--;
1474 bdp->cbd_sc |= BD_SC_WRAP;
1475
1476 /* ...and the same for transmit */
1477 bdp = fep->tx_bd_base;
1478 for (i = 0; i < TX_RING_SIZE; i++) {
1479
1480 /* Initialize the BD for every fragment in the page. */
1481 bdp->cbd_sc = 0;
1482 bdp->cbd_bufaddr = 0;
1483 bdp++;
1484 }
1485
1486 /* Set the last buffer to wrap */
1487 bdp--;
1488 bdp->cbd_sc |= BD_SC_WRAP;
1489
c556167f 1490 fec_restart(ndev, 0);
1da177e4 1491
1da177e4
LT
1492 return 0;
1493}
1494
ca2cc333
SG
1495#ifdef CONFIG_OF
1496static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
1497{
1498 struct device_node *np = pdev->dev.of_node;
1499
1500 if (np)
1501 return of_get_phy_mode(np);
1502
1503 return -ENODEV;
1504}
1505
a9b2c8ef 1506static void __devinit fec_reset_phy(struct platform_device *pdev)
ca2cc333
SG
1507{
1508 int err, phy_reset;
1509 struct device_node *np = pdev->dev.of_node;
1510
1511 if (!np)
a9b2c8ef 1512 return;
ca2cc333
SG
1513
1514 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1515 err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
1516 if (err) {
a9b2c8ef
SG
1517 pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
1518 return;
ca2cc333
SG
1519 }
1520 msleep(1);
1521 gpio_set_value(phy_reset, 1);
ca2cc333
SG
1522}
1523#else /* CONFIG_OF */
1524static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
1525{
1526 return -ENODEV;
1527}
1528
a9b2c8ef 1529static inline void fec_reset_phy(struct platform_device *pdev)
ca2cc333
SG
1530{
1531 /*
1532 * In case of platform probe, the reset has been done
1533 * by machine code.
1534 */
ca2cc333
SG
1535}
1536#endif /* CONFIG_OF */
1537
ead73183
SH
1538static int __devinit
1539fec_probe(struct platform_device *pdev)
1540{
1541 struct fec_enet_private *fep;
5eb32bd0 1542 struct fec_platform_data *pdata;
ead73183
SH
1543 struct net_device *ndev;
1544 int i, irq, ret = 0;
1545 struct resource *r;
ca2cc333 1546 const struct of_device_id *of_id;
43af940c 1547 static int dev_id;
b2bccee1 1548 struct pinctrl *pinctrl;
ca2cc333
SG
1549
1550 of_id = of_match_device(fec_dt_ids, &pdev->dev);
1551 if (of_id)
1552 pdev->id_entry = of_id->data;
ead73183
SH
1553
1554 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1555 if (!r)
1556 return -ENXIO;
1557
1558 r = request_mem_region(r->start, resource_size(r), pdev->name);
1559 if (!r)
1560 return -EBUSY;
1561
1562 /* Init network device */
1563 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
28e2188e
UKK
1564 if (!ndev) {
1565 ret = -ENOMEM;
1566 goto failed_alloc_etherdev;
1567 }
ead73183
SH
1568
1569 SET_NETDEV_DEV(ndev, &pdev->dev);
1570
1571 /* setup board info structure */
1572 fep = netdev_priv(ndev);
ead73183 1573
24e531b4 1574 fep->hwp = ioremap(r->start, resource_size(r));
e6b043d5 1575 fep->pdev = pdev;
43af940c 1576 fep->dev_id = dev_id++;
ead73183 1577
24e531b4 1578 if (!fep->hwp) {
ead73183
SH
1579 ret = -ENOMEM;
1580 goto failed_ioremap;
1581 }
1582
1583 platform_set_drvdata(pdev, ndev);
1584
ca2cc333
SG
1585 ret = fec_get_phy_mode_dt(pdev);
1586 if (ret < 0) {
1587 pdata = pdev->dev.platform_data;
1588 if (pdata)
1589 fep->phy_interface = pdata->phy;
1590 else
1591 fep->phy_interface = PHY_INTERFACE_MODE_MII;
1592 } else {
1593 fep->phy_interface = ret;
1594 }
1595
c7c83d1c 1596 for (i = 0; i < FEC_IRQ_NUM; i++) {
ead73183 1597 irq = platform_get_irq(pdev, i);
86f9f2c8
LW
1598 if (irq < 0) {
1599 if (i)
1600 break;
1601 ret = irq;
1602 goto failed_irq;
1603 }
ead73183
SH
1604 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1605 if (ret) {
b2b09ad6 1606 while (--i >= 0) {
ead73183
SH
1607 irq = platform_get_irq(pdev, i);
1608 free_irq(irq, ndev);
ead73183
SH
1609 }
1610 goto failed_irq;
1611 }
1612 }
1613
b2bccee1
SG
1614 pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1615 if (IS_ERR(pinctrl)) {
1616 ret = PTR_ERR(pinctrl);
1617 goto failed_pin;
1618 }
1619
f4d40de3
SH
1620 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1621 if (IS_ERR(fep->clk_ipg)) {
1622 ret = PTR_ERR(fep->clk_ipg);
ead73183
SH
1623 goto failed_clk;
1624 }
f4d40de3
SH
1625
1626 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1627 if (IS_ERR(fep->clk_ahb)) {
1628 ret = PTR_ERR(fep->clk_ahb);
1629 goto failed_clk;
1630 }
1631
1632 clk_prepare_enable(fep->clk_ahb);
1633 clk_prepare_enable(fep->clk_ipg);
ead73183 1634
2ca9b2aa
SG
1635 fec_reset_phy(pdev);
1636
8649a230 1637 ret = fec_enet_init(ndev);
ead73183
SH
1638 if (ret)
1639 goto failed_init;
1640
e6b043d5
BW
1641 ret = fec_enet_mii_init(pdev);
1642 if (ret)
1643 goto failed_mii_init;
1644
03c698c9
OS
1645 /* Carrier starts down, phylib will bring it up */
1646 netif_carrier_off(ndev);
1647
ead73183
SH
1648 ret = register_netdev(ndev);
1649 if (ret)
1650 goto failed_register;
1651
1652 return 0;
1653
1654failed_register:
e6b043d5
BW
1655 fec_enet_mii_remove(fep);
1656failed_mii_init:
ead73183 1657failed_init:
f4d40de3
SH
1658 clk_disable_unprepare(fep->clk_ahb);
1659 clk_disable_unprepare(fep->clk_ipg);
b2bccee1 1660failed_pin:
ead73183 1661failed_clk:
c7c83d1c 1662 for (i = 0; i < FEC_IRQ_NUM; i++) {
ead73183
SH
1663 irq = platform_get_irq(pdev, i);
1664 if (irq > 0)
1665 free_irq(irq, ndev);
1666 }
1667failed_irq:
24e531b4 1668 iounmap(fep->hwp);
ead73183
SH
1669failed_ioremap:
1670 free_netdev(ndev);
28e2188e
UKK
1671failed_alloc_etherdev:
1672 release_mem_region(r->start, resource_size(r));
ead73183
SH
1673
1674 return ret;
1675}
1676
1677static int __devexit
1678fec_drv_remove(struct platform_device *pdev)
1679{
1680 struct net_device *ndev = platform_get_drvdata(pdev);
1681 struct fec_enet_private *fep = netdev_priv(ndev);
28e2188e 1682 struct resource *r;
e163cc97 1683 int i;
ead73183 1684
e163cc97 1685 unregister_netdev(ndev);
e6b043d5 1686 fec_enet_mii_remove(fep);
e163cc97
LW
1687 for (i = 0; i < FEC_IRQ_NUM; i++) {
1688 int irq = platform_get_irq(pdev, i);
1689 if (irq > 0)
1690 free_irq(irq, ndev);
1691 }
f4d40de3
SH
1692 clk_disable_unprepare(fep->clk_ahb);
1693 clk_disable_unprepare(fep->clk_ipg);
24e531b4 1694 iounmap(fep->hwp);
ead73183 1695 free_netdev(ndev);
28e2188e
UKK
1696
1697 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1698 BUG_ON(!r);
1699 release_mem_region(r->start, resource_size(r));
1700
b3cde36c
UKK
1701 platform_set_drvdata(pdev, NULL);
1702
ead73183
SH
1703 return 0;
1704}
1705
59d4289b 1706#ifdef CONFIG_PM
ead73183 1707static int
87cad5c3 1708fec_suspend(struct device *dev)
ead73183 1709{
87cad5c3 1710 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1711 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1712
04e5216d
UKK
1713 if (netif_running(ndev)) {
1714 fec_stop(ndev);
1715 netif_device_detach(ndev);
ead73183 1716 }
f4d40de3
SH
1717 clk_disable_unprepare(fep->clk_ahb);
1718 clk_disable_unprepare(fep->clk_ipg);
04e5216d 1719
ead73183
SH
1720 return 0;
1721}
1722
1723static int
87cad5c3 1724fec_resume(struct device *dev)
ead73183 1725{
87cad5c3 1726 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1727 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1728
f4d40de3
SH
1729 clk_prepare_enable(fep->clk_ahb);
1730 clk_prepare_enable(fep->clk_ipg);
04e5216d
UKK
1731 if (netif_running(ndev)) {
1732 fec_restart(ndev, fep->full_duplex);
1733 netif_device_attach(ndev);
ead73183 1734 }
04e5216d 1735
ead73183
SH
1736 return 0;
1737}
1738
59d4289b
DK
1739static const struct dev_pm_ops fec_pm_ops = {
1740 .suspend = fec_suspend,
1741 .resume = fec_resume,
1742 .freeze = fec_suspend,
1743 .thaw = fec_resume,
1744 .poweroff = fec_suspend,
1745 .restore = fec_resume,
1746};
87cad5c3 1747#endif
59d4289b 1748
ead73183
SH
1749static struct platform_driver fec_driver = {
1750 .driver = {
b5680e0b 1751 .name = DRIVER_NAME,
87cad5c3
EB
1752 .owner = THIS_MODULE,
1753#ifdef CONFIG_PM
1754 .pm = &fec_pm_ops,
1755#endif
ca2cc333 1756 .of_match_table = fec_dt_ids,
ead73183 1757 },
b5680e0b 1758 .id_table = fec_devtype,
87cad5c3
EB
1759 .probe = fec_probe,
1760 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1761};
1762
aaca2377 1763module_platform_driver(fec_driver);
1da177e4
LT
1764
1765MODULE_LICENSE("GPL");