]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/intel/e1000e/82571.c
e1000e: cleanup: remove unnecessary assignments just before returning
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
f5e261e6 4 Copyright(c) 1999 - 2012 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
d9c76f99 55#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
ff10e13c
CW
56#define E1000_BASE1000T_STATUS 10
57#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58#define E1000_RECEIVE_ERROR_COUNTER 21
59#define E1000_RECEIVE_ERROR_MAX 0xFFFF
bc7f75fa 60
4662e82b
BA
61#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
bc7f75fa
AK
63static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 66static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
67static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 73static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
74static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 76static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 77static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
1b98c2bb
BA
78static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
77996d1d
BA
81static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
bc7f75fa
AK
83
84/**
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
bc7f75fa
AK
87 **/
88static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89{
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val;
92
318a94d6 93 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
94 phy->type = e1000_phy_none;
95 return 0;
96 }
97
98 phy->addr = 1;
99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 phy->reset_delay_us = 100;
101
17f208de
BA
102 phy->ops.power_up = e1000_power_up_phy_copper;
103 phy->ops.power_down = e1000_power_down_phy_copper_82571;
104
bc7f75fa
AK
105 switch (hw->mac.type) {
106 case e1000_82571:
107 case e1000_82572:
108 phy->type = e1000_phy_igp_2;
109 break;
110 case e1000_82573:
111 phy->type = e1000_phy_m88;
112 break;
4662e82b 113 case e1000_82574:
8c81c9c3 114 case e1000_82583:
4662e82b 115 phy->type = e1000_phy_bm;
1b98c2bb
BA
116 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 phy->ops.release = e1000_put_hw_semaphore_82574;
77996d1d
BA
118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
4662e82b 120 break;
bc7f75fa
AK
121 default:
122 return -E1000_ERR_PHY;
123 break;
124 }
125
126 /* This can only be done after all function pointers are setup. */
127 ret_val = e1000_get_phy_id_82571(hw);
dd93f95e
BA
128 if (ret_val) {
129 e_dbg("Error getting PHY ID\n");
130 return ret_val;
131 }
bc7f75fa
AK
132
133 /* Verify phy id */
134 switch (hw->mac.type) {
135 case e1000_82571:
136 case e1000_82572:
137 if (phy->id != IGP01E1000_I_PHY_ID)
dd93f95e 138 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
139 break;
140 case e1000_82573:
141 if (phy->id != M88E1111_I_PHY_ID)
dd93f95e 142 ret_val = -E1000_ERR_PHY;
bc7f75fa 143 break;
4662e82b 144 case e1000_82574:
8c81c9c3 145 case e1000_82583:
4662e82b 146 if (phy->id != BME1000_E_PHY_ID_R2)
dd93f95e 147 ret_val = -E1000_ERR_PHY;
4662e82b 148 break;
bc7f75fa 149 default:
dd93f95e 150 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
151 break;
152 }
153
dd93f95e
BA
154 if (ret_val)
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157 return ret_val;
bc7f75fa
AK
158}
159
160/**
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
bc7f75fa
AK
163 **/
164static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165{
166 struct e1000_nvm_info *nvm = &hw->nvm;
167 u32 eecd = er32(EECD);
168 u16 size;
169
170 nvm->opcode_bits = 8;
171 nvm->delay_usec = 1;
172 switch (nvm->override) {
173 case e1000_nvm_override_spi_large:
174 nvm->page_size = 32;
175 nvm->address_bits = 16;
176 break;
177 case e1000_nvm_override_spi_small:
178 nvm->page_size = 8;
179 nvm->address_bits = 8;
180 break;
181 default:
182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 break;
185 }
186
187 switch (hw->mac.type) {
188 case e1000_82573:
4662e82b 189 case e1000_82574:
8c81c9c3 190 case e1000_82583:
bc7f75fa
AK
191 if (((eecd >> 15) & 0x3) == 0x3) {
192 nvm->type = e1000_nvm_flash_hw;
193 nvm->word_size = 2048;
ad68076e
BA
194 /*
195 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
196 * to Flash update issue.
197 */
198 eecd &= ~E1000_EECD_AUPDEN;
199 ew32(EECD, eecd);
200 break;
201 }
202 /* Fall Through */
203 default:
ad68076e 204 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
207 /*
208 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
bc7f75fa
AK
216 nvm->word_size = 1 << size;
217 break;
218 }
219
1b98c2bb
BA
220 /* Function Pointers */
221 switch (hw->mac.type) {
222 case e1000_82574:
223 case e1000_82583:
224 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 nvm->ops.release = e1000_put_hw_semaphore_82574;
226 break;
227 default:
228 break;
229 }
230
bc7f75fa
AK
231 return 0;
232}
233
234/**
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
bc7f75fa 237 **/
ec34c170 238static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
bc7f75fa 239{
bc7f75fa 240 struct e1000_mac_info *mac = &hw->mac;
23a2d1b2
DG
241 u32 swsm = 0;
242 u32 swsm2 = 0;
243 bool force_clear_smbi = false;
bc7f75fa 244
66092f59 245 /* Set media type and media-dependent function pointers */
ec34c170 246 switch (hw->adapter->pdev->device) {
bc7f75fa
AK
247 case E1000_DEV_ID_82571EB_FIBER:
248 case E1000_DEV_ID_82572EI_FIBER:
249 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 250 hw->phy.media_type = e1000_media_type_fiber;
66092f59
BA
251 mac->ops.setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 mac->ops.get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
256 break;
257 case E1000_DEV_ID_82571EB_SERDES:
040babf9
AK
258 case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 case E1000_DEV_ID_82571EB_SERDES_QUAD:
66092f59 260 case E1000_DEV_ID_82572EI_SERDES:
318a94d6 261 hw->phy.media_type = e1000_media_type_internal_serdes;
66092f59
BA
262 mac->ops.setup_physical_interface =
263 e1000_setup_fiber_serdes_link_82571;
264 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 mac->ops.get_link_up_info =
266 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
267 break;
268 default:
318a94d6 269 hw->phy.media_type = e1000_media_type_copper;
66092f59
BA
270 mac->ops.setup_physical_interface =
271 e1000_setup_copper_link_82571;
272 mac->ops.check_for_link = e1000e_check_for_copper_link;
273 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
bc7f75fa
AK
274 break;
275 }
276
277 /* Set mta register count */
278 mac->mta_reg_count = 128;
279 /* Set rar entry count */
280 mac->rar_entry_count = E1000_RAR_ENTRIES;
f464ba87
BA
281 /* Adaptive IFS supported */
282 mac->adaptive_ifs = true;
bc7f75fa 283
66092f59 284 /* MAC-specific function pointers */
4662e82b 285 switch (hw->mac.type) {
f4d2dd4c 286 case e1000_82573:
66092f59
BA
287 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 mac->ops.led_on = e1000e_led_on_generic;
290 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
291
292 /* FWSM register */
293 mac->has_fwsm = true;
294 /*
295 * ARC supported; valid only if manageability features are
296 * enabled.
297 */
298 mac->arc_subsystem_valid =
299 (er32(FWSM) & E1000_FWSM_MODE_MASK)
300 ? true : false;
f4d2dd4c 301 break;
4662e82b 302 case e1000_82574:
8c81c9c3 303 case e1000_82583:
66092f59
BA
304 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
305 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
306 mac->ops.led_on = e1000_led_on_82574;
4662e82b
BA
307 break;
308 default:
66092f59
BA
309 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
310 mac->ops.led_on = e1000e_led_on_generic;
311 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
312
313 /* FWSM register */
314 mac->has_fwsm = true;
4662e82b
BA
315 break;
316 }
317
23a2d1b2
DG
318 /*
319 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
b595076a 320 * first NVM or PHY access. This should be done for single-port
23a2d1b2
DG
321 * devices, and for one port only on dual-port devices so that
322 * for those devices we can still use the SMBI lock to synchronize
323 * inter-port accesses to the PHY & NVM.
324 */
325 switch (hw->mac.type) {
326 case e1000_82571:
327 case e1000_82572:
328 swsm2 = er32(SWSM2);
329
330 if (!(swsm2 & E1000_SWSM2_LOCK)) {
331 /* Only do this for the first interface on this card */
66092f59 332 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
23a2d1b2 333 force_clear_smbi = true;
66092f59 334 } else {
23a2d1b2 335 force_clear_smbi = false;
66092f59 336 }
23a2d1b2
DG
337 break;
338 default:
339 force_clear_smbi = true;
340 break;
341 }
342
343 if (force_clear_smbi) {
344 /* Make sure SWSM.SMBI is clear */
345 swsm = er32(SWSM);
346 if (swsm & E1000_SWSM_SMBI) {
347 /* This bit should not be set on a first interface, and
348 * indicates that the bootagent or EFI code has
349 * improperly left this bit enabled
350 */
3bb99fe2 351 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
352 }
353 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
354 }
355
356 /*
2c73e1fe 357 * Initialize device specific counter of SMBI acquisition
23a2d1b2
DG
358 * timeouts.
359 */
360 hw->dev_spec.e82571.smb_counter = 0;
361
bc7f75fa
AK
362 return 0;
363}
364
69e3fd8c 365static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
366{
367 struct e1000_hw *hw = &adapter->hw;
368 static int global_quad_port_a; /* global port a indication */
369 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
370 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
371 s32 rc;
372
ec34c170 373 rc = e1000_init_mac_params_82571(hw);
bc7f75fa
AK
374 if (rc)
375 return rc;
376
377 rc = e1000_init_nvm_params_82571(hw);
378 if (rc)
379 return rc;
380
381 rc = e1000_init_phy_params_82571(hw);
382 if (rc)
383 return rc;
384
385 /* tag quad port adapters first, it's used below */
386 switch (pdev->device) {
387 case E1000_DEV_ID_82571EB_QUAD_COPPER:
388 case E1000_DEV_ID_82571EB_QUAD_FIBER:
389 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 390 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
391 adapter->flags |= FLAG_IS_QUAD_PORT;
392 /* mark the first port */
393 if (global_quad_port_a == 0)
394 adapter->flags |= FLAG_IS_QUAD_PORT_A;
395 /* Reset for multiple quad port adapters */
396 global_quad_port_a++;
397 if (global_quad_port_a == 4)
398 global_quad_port_a = 0;
399 break;
400 default:
401 break;
402 }
403
404 switch (adapter->hw.mac.type) {
405 case e1000_82571:
406 /* these dual ports don't have WoL on port B at all */
407 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
408 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
409 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
410 (is_port_b))
411 adapter->flags &= ~FLAG_HAS_WOL;
412 /* quad ports only support WoL on port A */
413 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 414 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 415 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
416 /* Does not support WoL on any port */
417 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
418 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 419 break;
bc7f75fa
AK
420 case e1000_82573:
421 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
422 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
423 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
424 }
425 break;
426 default:
427 break;
428 }
429
430 return 0;
431}
432
433/**
434 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
435 * @hw: pointer to the HW structure
436 *
437 * Reads the PHY registers and stores the PHY ID and possibly the PHY
438 * revision in the hardware structure.
439 **/
440static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
441{
442 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
443 s32 ret_val;
444 u16 phy_id = 0;
bc7f75fa
AK
445
446 switch (hw->mac.type) {
447 case e1000_82571:
448 case e1000_82572:
ad68076e
BA
449 /*
450 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
451 * In this case, we cannot access the PHY until the
452 * configuration is done. So we explicitly set the
ad68076e
BA
453 * PHY ID.
454 */
bc7f75fa
AK
455 phy->id = IGP01E1000_I_PHY_ID;
456 break;
457 case e1000_82573:
458 return e1000e_get_phy_id(hw);
459 break;
4662e82b 460 case e1000_82574:
8c81c9c3 461 case e1000_82583:
4662e82b
BA
462 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
463 if (ret_val)
464 return ret_val;
465
466 phy->id = (u32)(phy_id << 16);
467 udelay(20);
468 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
469 if (ret_val)
470 return ret_val;
471
472 phy->id |= (u32)(phy_id);
473 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
474 break;
bc7f75fa
AK
475 default:
476 return -E1000_ERR_PHY;
477 break;
478 }
479
480 return 0;
481}
482
483/**
484 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
485 * @hw: pointer to the HW structure
486 *
487 * Acquire the HW semaphore to access the PHY or NVM
488 **/
489static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
490{
491 u32 swsm;
23a2d1b2
DG
492 s32 sw_timeout = hw->nvm.word_size + 1;
493 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
494 s32 i = 0;
495
23a2d1b2
DG
496 /*
497 * If we have timedout 3 times on trying to acquire
498 * the inter-port SMBI semaphore, there is old code
499 * operating on the other port, and it is not
500 * releasing SMBI. Modify the number of times that
501 * we try for the semaphore to interwork with this
502 * older code.
503 */
504 if (hw->dev_spec.e82571.smb_counter > 2)
505 sw_timeout = 1;
506
507 /* Get the SW semaphore */
508 while (i < sw_timeout) {
509 swsm = er32(SWSM);
510 if (!(swsm & E1000_SWSM_SMBI))
511 break;
512
513 udelay(50);
514 i++;
515 }
516
517 if (i == sw_timeout) {
3bb99fe2 518 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
519 hw->dev_spec.e82571.smb_counter++;
520 }
bc7f75fa 521 /* Get the FW semaphore. */
23a2d1b2 522 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
523 swsm = er32(SWSM);
524 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
525
526 /* Semaphore acquired if bit latched */
527 if (er32(SWSM) & E1000_SWSM_SWESMBI)
528 break;
529
530 udelay(50);
531 }
532
23a2d1b2 533 if (i == fw_timeout) {
bc7f75fa 534 /* Release semaphores */
23a2d1b2 535 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 536 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
537 return -E1000_ERR_NVM;
538 }
539
540 return 0;
541}
542
543/**
544 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
545 * @hw: pointer to the HW structure
546 *
547 * Release hardware semaphore used to access the PHY or NVM
548 **/
549static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
550{
551 u32 swsm;
552
553 swsm = er32(SWSM);
23a2d1b2 554 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
555 ew32(SWSM, swsm);
556}
1b98c2bb
BA
557/**
558 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
559 * @hw: pointer to the HW structure
560 *
561 * Acquire the HW semaphore during reset.
562 *
563 **/
564static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
565{
566 u32 extcnf_ctrl;
567 s32 ret_val = 0;
568 s32 i = 0;
569
570 extcnf_ctrl = er32(EXTCNF_CTRL);
571 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
572 do {
573 ew32(EXTCNF_CTRL, extcnf_ctrl);
574 extcnf_ctrl = er32(EXTCNF_CTRL);
575
576 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
577 break;
578
579 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
580
1bba4386 581 usleep_range(2000, 4000);
1b98c2bb
BA
582 i++;
583 } while (i < MDIO_OWNERSHIP_TIMEOUT);
584
585 if (i == MDIO_OWNERSHIP_TIMEOUT) {
586 /* Release semaphores */
587 e1000_put_hw_semaphore_82573(hw);
588 e_dbg("Driver can't access the PHY\n");
589 ret_val = -E1000_ERR_PHY;
590 goto out;
591 }
592
593out:
594 return ret_val;
595}
596
597/**
598 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
599 * @hw: pointer to the HW structure
600 *
601 * Release hardware semaphore used during reset.
602 *
603 **/
604static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
605{
606 u32 extcnf_ctrl;
607
608 extcnf_ctrl = er32(EXTCNF_CTRL);
609 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
610 ew32(EXTCNF_CTRL, extcnf_ctrl);
611}
612
613static DEFINE_MUTEX(swflag_mutex);
614
615/**
616 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
617 * @hw: pointer to the HW structure
618 *
619 * Acquire the HW semaphore to access the PHY or NVM.
620 *
621 **/
622static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
623{
624 s32 ret_val;
625
626 mutex_lock(&swflag_mutex);
627 ret_val = e1000_get_hw_semaphore_82573(hw);
628 if (ret_val)
629 mutex_unlock(&swflag_mutex);
630 return ret_val;
631}
632
633/**
634 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
635 * @hw: pointer to the HW structure
636 *
637 * Release hardware semaphore used to access the PHY or NVM
638 *
639 **/
640static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
641{
642 e1000_put_hw_semaphore_82573(hw);
643 mutex_unlock(&swflag_mutex);
644}
bc7f75fa 645
77996d1d
BA
646/**
647 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
648 * @hw: pointer to the HW structure
649 * @active: true to enable LPLU, false to disable
650 *
651 * Sets the LPLU D0 state according to the active flag.
652 * LPLU will not be activated unless the
653 * device autonegotiation advertisement meets standards of
654 * either 10 or 10/100 or 10/100/1000 at all duplexes.
655 * This is a function pointer entry point only called by
656 * PHY setup routines.
657 **/
658static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
659{
660 u16 data = er32(POEMB);
661
662 if (active)
663 data |= E1000_PHY_CTRL_D0A_LPLU;
664 else
665 data &= ~E1000_PHY_CTRL_D0A_LPLU;
666
667 ew32(POEMB, data);
668 return 0;
669}
670
671/**
672 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
673 * @hw: pointer to the HW structure
674 * @active: boolean used to enable/disable lplu
675 *
676 * The low power link up (lplu) state is set to the power management level D3
677 * when active is true, else clear lplu for D3. LPLU
678 * is used during Dx states where the power conservation is most important.
679 * During driver activity, SmartSpeed should be enabled so performance is
680 * maintained.
681 **/
682static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
683{
684 u16 data = er32(POEMB);
685
686 if (!active) {
687 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
688 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
689 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
690 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
691 data |= E1000_PHY_CTRL_NOND0A_LPLU;
692 }
693
694 ew32(POEMB, data);
695 return 0;
696}
697
bc7f75fa
AK
698/**
699 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
700 * @hw: pointer to the HW structure
701 *
702 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
703 * Then for non-82573 hardware, set the EEPROM access request bit and wait
704 * for EEPROM access grant bit. If the access grant bit is not set, release
705 * hardware semaphore.
706 **/
707static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
708{
709 s32 ret_val;
710
711 ret_val = e1000_get_hw_semaphore_82571(hw);
712 if (ret_val)
713 return ret_val;
714
8c81c9c3
AD
715 switch (hw->mac.type) {
716 case e1000_82573:
8c81c9c3
AD
717 break;
718 default:
bc7f75fa 719 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
720 break;
721 }
bc7f75fa
AK
722
723 if (ret_val)
724 e1000_put_hw_semaphore_82571(hw);
725
726 return ret_val;
727}
728
729/**
730 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
731 * @hw: pointer to the HW structure
732 *
733 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
734 **/
735static void e1000_release_nvm_82571(struct e1000_hw *hw)
736{
737 e1000e_release_nvm(hw);
738 e1000_put_hw_semaphore_82571(hw);
739}
740
741/**
742 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
743 * @hw: pointer to the HW structure
744 * @offset: offset within the EEPROM to be written to
745 * @words: number of words to write
746 * @data: 16 bit word(s) to be written to the EEPROM
747 *
748 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
749 *
750 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 751 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
752 **/
753static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
754 u16 *data)
755{
756 s32 ret_val;
757
758 switch (hw->mac.type) {
759 case e1000_82573:
4662e82b 760 case e1000_82574:
8c81c9c3 761 case e1000_82583:
bc7f75fa
AK
762 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
763 break;
764 case e1000_82571:
765 case e1000_82572:
766 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
767 break;
768 default:
769 ret_val = -E1000_ERR_NVM;
770 break;
771 }
772
773 return ret_val;
774}
775
776/**
777 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
778 * @hw: pointer to the HW structure
779 *
780 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
781 * up to the checksum. Then calculates the EEPROM checksum and writes the
782 * value to the EEPROM.
783 **/
784static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
785{
786 u32 eecd;
787 s32 ret_val;
788 u16 i;
789
790 ret_val = e1000e_update_nvm_checksum_generic(hw);
791 if (ret_val)
792 return ret_val;
793
ad68076e
BA
794 /*
795 * If our nvm is an EEPROM, then we're done
796 * otherwise, commit the checksum to the flash NVM.
797 */
bc7f75fa
AK
798 if (hw->nvm.type != e1000_nvm_flash_hw)
799 return ret_val;
800
801 /* Check for pending operations. */
802 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 803 usleep_range(1000, 2000);
bc7f75fa
AK
804 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
805 break;
806 }
807
808 if (i == E1000_FLASH_UPDATES)
809 return -E1000_ERR_NVM;
810
811 /* Reset the firmware if using STM opcode. */
812 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
813 /*
814 * The enabling of and the actual reset must be done
bc7f75fa
AK
815 * in two write cycles.
816 */
817 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
818 e1e_flush();
819 ew32(HICR, E1000_HICR_FW_RESET);
820 }
821
822 /* Commit the write to flash */
823 eecd = er32(EECD) | E1000_EECD_FLUPD;
824 ew32(EECD, eecd);
825
826 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 827 usleep_range(1000, 2000);
bc7f75fa
AK
828 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
829 break;
830 }
831
832 if (i == E1000_FLASH_UPDATES)
833 return -E1000_ERR_NVM;
834
835 return 0;
836}
837
838/**
839 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
840 * @hw: pointer to the HW structure
841 *
842 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
843 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
844 **/
845static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
846{
847 if (hw->nvm.type == e1000_nvm_flash_hw)
848 e1000_fix_nvm_checksum_82571(hw);
849
850 return e1000e_validate_nvm_checksum_generic(hw);
851}
852
853/**
854 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
855 * @hw: pointer to the HW structure
856 * @offset: offset within the EEPROM to be written to
857 * @words: number of words to write
858 * @data: 16 bit word(s) to be written to the EEPROM
859 *
860 * After checking for invalid values, poll the EEPROM to ensure the previous
861 * command has completed before trying to write the next word. After write
862 * poll for completion.
863 *
864 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 865 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
866 **/
867static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
868 u16 words, u16 *data)
869{
870 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 871 u32 i, eewr = 0;
bc7f75fa
AK
872 s32 ret_val = 0;
873
ad68076e
BA
874 /*
875 * A check for invalid values: offset too large, too many words,
876 * and not enough words.
877 */
bc7f75fa
AK
878 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
879 (words == 0)) {
3bb99fe2 880 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
881 return -E1000_ERR_NVM;
882 }
883
884 for (i = 0; i < words; i++) {
885 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
886 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
887 E1000_NVM_RW_REG_START;
888
889 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
890 if (ret_val)
891 break;
892
893 ew32(EEWR, eewr);
894
895 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
896 if (ret_val)
897 break;
898 }
899
900 return ret_val;
901}
902
903/**
904 * e1000_get_cfg_done_82571 - Poll for configuration done
905 * @hw: pointer to the HW structure
906 *
907 * Reads the management control register for the config done bit to be set.
908 **/
909static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
910{
911 s32 timeout = PHY_CFG_TIMEOUT;
912
913 while (timeout) {
914 if (er32(EEMNGCTL) &
915 E1000_NVM_CFG_DONE_PORT_0)
916 break;
1bba4386 917 usleep_range(1000, 2000);
bc7f75fa
AK
918 timeout--;
919 }
920 if (!timeout) {
3bb99fe2 921 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
922 return -E1000_ERR_RESET;
923 }
924
925 return 0;
926}
927
928/**
929 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
930 * @hw: pointer to the HW structure
564ea9bb 931 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
932 *
933 * Sets the LPLU D0 state according to the active flag. When activating LPLU
934 * this function also disables smart speed and vice versa. LPLU will not be
935 * activated unless the device autonegotiation advertisement meets standards
936 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
937 * pointer entry point only called by PHY setup routines.
938 **/
939static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
940{
941 struct e1000_phy_info *phy = &hw->phy;
942 s32 ret_val;
943 u16 data;
944
945 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
946 if (ret_val)
947 return ret_val;
948
949 if (active) {
950 data |= IGP02E1000_PM_D0_LPLU;
951 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
952 if (ret_val)
953 return ret_val;
954
955 /* When LPLU is enabled, we should disable SmartSpeed */
956 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
957 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
958 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
959 if (ret_val)
960 return ret_val;
961 } else {
962 data &= ~IGP02E1000_PM_D0_LPLU;
963 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
964 /*
965 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
966 * during Dx states where the power conservation is most
967 * important. During driver activity we should enable
ad68076e
BA
968 * SmartSpeed, so performance is maintained.
969 */
bc7f75fa
AK
970 if (phy->smart_speed == e1000_smart_speed_on) {
971 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 972 &data);
bc7f75fa
AK
973 if (ret_val)
974 return ret_val;
975
976 data |= IGP01E1000_PSCFR_SMART_SPEED;
977 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 978 data);
bc7f75fa
AK
979 if (ret_val)
980 return ret_val;
981 } else if (phy->smart_speed == e1000_smart_speed_off) {
982 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 983 &data);
bc7f75fa
AK
984 if (ret_val)
985 return ret_val;
986
987 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
988 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 989 data);
bc7f75fa
AK
990 if (ret_val)
991 return ret_val;
992 }
993 }
994
995 return 0;
996}
997
998/**
999 * e1000_reset_hw_82571 - Reset hardware
1000 * @hw: pointer to the HW structure
1001 *
fe401674 1002 * This resets the hardware into a known state.
bc7f75fa
AK
1003 **/
1004static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1005{
dd93f95e 1006 u32 ctrl, ctrl_ext;
bc7f75fa 1007 s32 ret_val;
bc7f75fa 1008
ad68076e
BA
1009 /*
1010 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
1011 * on the last TLP read/write transaction when MAC is reset.
1012 */
1013 ret_val = e1000e_disable_pcie_master(hw);
1014 if (ret_val)
3bb99fe2 1015 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 1016
3bb99fe2 1017 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
1018 ew32(IMC, 0xffffffff);
1019
1020 ew32(RCTL, 0);
1021 ew32(TCTL, E1000_TCTL_PSP);
1022 e1e_flush();
1023
1bba4386 1024 usleep_range(10000, 20000);
bc7f75fa 1025
ad68076e
BA
1026 /*
1027 * Must acquire the MDIO ownership before MAC reset.
1028 * Ownership defaults to firmware after a reset.
1029 */
8c81c9c3
AD
1030 switch (hw->mac.type) {
1031 case e1000_82573:
1b98c2bb
BA
1032 ret_val = e1000_get_hw_semaphore_82573(hw);
1033 break;
8c81c9c3
AD
1034 case e1000_82574:
1035 case e1000_82583:
1b98c2bb 1036 ret_val = e1000_get_hw_semaphore_82574(hw);
8c81c9c3
AD
1037 break;
1038 default:
1039 break;
bc7f75fa 1040 }
1b98c2bb
BA
1041 if (ret_val)
1042 e_dbg("Cannot acquire MDIO ownership\n");
bc7f75fa
AK
1043
1044 ctrl = er32(CTRL);
1045
3bb99fe2 1046 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
1047 ew32(CTRL, ctrl | E1000_CTRL_RST);
1048
1b98c2bb
BA
1049 /* Must release MDIO ownership and mutex after MAC reset. */
1050 switch (hw->mac.type) {
1051 case e1000_82574:
1052 case e1000_82583:
1053 e1000_put_hw_semaphore_82574(hw);
1054 break;
1055 default:
1056 break;
1057 }
1058
bc7f75fa
AK
1059 if (hw->nvm.type == e1000_nvm_flash_hw) {
1060 udelay(10);
1061 ctrl_ext = er32(CTRL_EXT);
1062 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1063 ew32(CTRL_EXT, ctrl_ext);
1064 e1e_flush();
1065 }
1066
1067 ret_val = e1000e_get_auto_rd_done(hw);
1068 if (ret_val)
1069 /* We don't want to continue accessing MAC registers. */
1070 return ret_val;
1071
ad68076e
BA
1072 /*
1073 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
1074 * Need to wait for Phy configuration completion before accessing
1075 * NVM and Phy.
1076 */
8c81c9c3
AD
1077
1078 switch (hw->mac.type) {
1079 case e1000_82573:
1080 case e1000_82574:
1081 case e1000_82583:
bc7f75fa 1082 msleep(25);
8c81c9c3
AD
1083 break;
1084 default:
1085 break;
1086 }
bc7f75fa
AK
1087
1088 /* Clear any pending interrupt events. */
1089 ew32(IMC, 0xffffffff);
dd93f95e 1090 er32(ICR);
bc7f75fa 1091
1aef70ef
BA
1092 if (hw->mac.type == e1000_82571) {
1093 /* Install any alternate MAC address into RAR0 */
1094 ret_val = e1000_check_alt_mac_addr_generic(hw);
1095 if (ret_val)
1096 return ret_val;
608f8a0d 1097
1aef70ef
BA
1098 e1000e_set_laa_state_82571(hw, true);
1099 }
93ca1610 1100
c9523379 1101 /* Reinitialize the 82571 serdes link state machine */
1102 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1103 hw->mac.serdes_link_state = e1000_serdes_link_down;
1104
bc7f75fa
AK
1105 return 0;
1106}
1107
1108/**
1109 * e1000_init_hw_82571 - Initialize hardware
1110 * @hw: pointer to the HW structure
1111 *
1112 * This inits the hardware readying it for operation.
1113 **/
1114static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1115{
1116 struct e1000_mac_info *mac = &hw->mac;
1117 u32 reg_data;
1118 s32 ret_val;
a708dd88 1119 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
1120
1121 e1000_initialize_hw_bits_82571(hw);
1122
1123 /* Initialize identification LED */
1124 ret_val = e1000e_id_led_init(hw);
de39b752 1125 if (ret_val)
3bb99fe2 1126 e_dbg("Error initializing identification LED\n");
de39b752 1127 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
1128
1129 /* Disabling VLAN filtering */
3bb99fe2 1130 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 1131 mac->ops.clear_vfta(hw);
bc7f75fa
AK
1132
1133 /* Setup the receive address. */
ad68076e
BA
1134 /*
1135 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
1136 * 82571, we must reserve a RAR for it to work around an issue where
1137 * resetting one port will reload the MAC on the other port.
1138 */
1139 if (e1000e_get_laa_state_82571(hw))
1140 rar_count--;
1141 e1000e_init_rx_addrs(hw, rar_count);
1142
1143 /* Zero out the Multicast HASH table */
3bb99fe2 1144 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
1145 for (i = 0; i < mac->mta_reg_count; i++)
1146 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1147
1148 /* Setup link and flow control */
1149 ret_val = e1000_setup_link_82571(hw);
1150
1151 /* Set the transmit descriptor write-back policy */
e9ec2c0f 1152 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
1153 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1154 E1000_TXDCTL_FULL_TX_DESC_WB |
1155 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1156 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
1157
1158 /* ...for both queues. */
8c81c9c3
AD
1159 switch (mac->type) {
1160 case e1000_82573:
a65a4a0d
BA
1161 e1000e_enable_tx_pkt_filtering(hw);
1162 /* fall through */
8c81c9c3
AD
1163 case e1000_82574:
1164 case e1000_82583:
8c81c9c3
AD
1165 reg_data = er32(GCR);
1166 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1167 ew32(GCR, reg_data);
1168 break;
1169 default:
e9ec2c0f 1170 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1171 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1172 E1000_TXDCTL_FULL_TX_DESC_WB |
1173 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1174 ew32(TXDCTL(1), reg_data);
8c81c9c3 1175 break;
bc7f75fa
AK
1176 }
1177
ad68076e
BA
1178 /*
1179 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1180 * important that we do this after we have tried to establish link
1181 * because the symbol error count will increment wildly if there
1182 * is no link.
1183 */
1184 e1000_clear_hw_cntrs_82571(hw);
1185
1186 return ret_val;
1187}
1188
1189/**
1190 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1191 * @hw: pointer to the HW structure
1192 *
1193 * Initializes required hardware-dependent bits needed for normal operation.
1194 **/
1195static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1196{
1197 u32 reg;
1198
1199 /* Transmit Descriptor Control 0 */
e9ec2c0f 1200 reg = er32(TXDCTL(0));
bc7f75fa 1201 reg |= (1 << 22);
e9ec2c0f 1202 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1203
1204 /* Transmit Descriptor Control 1 */
e9ec2c0f 1205 reg = er32(TXDCTL(1));
bc7f75fa 1206 reg |= (1 << 22);
e9ec2c0f 1207 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1208
1209 /* Transmit Arbitration Control 0 */
e9ec2c0f 1210 reg = er32(TARC(0));
bc7f75fa
AK
1211 reg &= ~(0xF << 27); /* 30:27 */
1212 switch (hw->mac.type) {
1213 case e1000_82571:
1214 case e1000_82572:
1215 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1216 break;
d6cb17d5
BA
1217 case e1000_82574:
1218 case e1000_82583:
1219 reg |= (1 << 26);
1220 break;
bc7f75fa
AK
1221 default:
1222 break;
1223 }
e9ec2c0f 1224 ew32(TARC(0), reg);
bc7f75fa
AK
1225
1226 /* Transmit Arbitration Control 1 */
e9ec2c0f 1227 reg = er32(TARC(1));
bc7f75fa
AK
1228 switch (hw->mac.type) {
1229 case e1000_82571:
1230 case e1000_82572:
1231 reg &= ~((1 << 29) | (1 << 30));
1232 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1233 if (er32(TCTL) & E1000_TCTL_MULR)
1234 reg &= ~(1 << 28);
1235 else
1236 reg |= (1 << 28);
e9ec2c0f 1237 ew32(TARC(1), reg);
bc7f75fa
AK
1238 break;
1239 default:
1240 break;
1241 }
1242
1243 /* Device Control */
8c81c9c3
AD
1244 switch (hw->mac.type) {
1245 case e1000_82573:
1246 case e1000_82574:
1247 case e1000_82583:
bc7f75fa
AK
1248 reg = er32(CTRL);
1249 reg &= ~(1 << 29);
1250 ew32(CTRL, reg);
8c81c9c3
AD
1251 break;
1252 default:
1253 break;
bc7f75fa
AK
1254 }
1255
1256 /* Extended Device Control */
8c81c9c3
AD
1257 switch (hw->mac.type) {
1258 case e1000_82573:
1259 case e1000_82574:
1260 case e1000_82583:
bc7f75fa
AK
1261 reg = er32(CTRL_EXT);
1262 reg &= ~(1 << 23);
1263 reg |= (1 << 22);
1264 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1265 break;
1266 default:
1267 break;
bc7f75fa 1268 }
4662e82b 1269
6ea7ae1d
AD
1270 if (hw->mac.type == e1000_82571) {
1271 reg = er32(PBA_ECC);
1272 reg |= E1000_PBA_ECC_CORR_EN;
1273 ew32(PBA_ECC, reg);
1274 }
5df3f0ea 1275 /*
1276 * Workaround for hardware errata.
1277 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1278 */
1279
1280 if ((hw->mac.type == e1000_82571) ||
1281 (hw->mac.type == e1000_82572)) {
1282 reg = er32(CTRL_EXT);
1283 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1284 ew32(CTRL_EXT, reg);
1285 }
1286
6ea7ae1d 1287
78272bba 1288 /* PCI-Ex Control Registers */
8c81c9c3
AD
1289 switch (hw->mac.type) {
1290 case e1000_82574:
1291 case e1000_82583:
4662e82b
BA
1292 reg = er32(GCR);
1293 reg |= (1 << 22);
1294 ew32(GCR, reg);
78272bba 1295
84efb7b9
BA
1296 /*
1297 * Workaround for hardware errata.
1298 * apply workaround for hardware errata documented in errata
1299 * docs Fixes issue where some error prone or unreliable PCIe
1300 * completions are occurring, particularly with ASPM enabled.
af667a29 1301 * Without fix, issue can cause Tx timeouts.
84efb7b9 1302 */
78272bba
JB
1303 reg = er32(GCR2);
1304 reg |= 1;
1305 ew32(GCR2, reg);
8c81c9c3
AD
1306 break;
1307 default:
1308 break;
4662e82b 1309 }
bc7f75fa
AK
1310}
1311
1312/**
caaddaf8 1313 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1314 * @hw: pointer to the HW structure
1315 *
1316 * Clears the register array which contains the VLAN filter table by
1317 * setting all the values to 0.
1318 **/
caaddaf8 1319static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1320{
1321 u32 offset;
1322 u32 vfta_value = 0;
1323 u32 vfta_offset = 0;
1324 u32 vfta_bit_in_reg = 0;
1325
8c81c9c3
AD
1326 switch (hw->mac.type) {
1327 case e1000_82573:
1328 case e1000_82574:
1329 case e1000_82583:
bc7f75fa 1330 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1331 /*
1332 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1333 * a single VLAN ID. The following operations
1334 * determine which 32b entry (i.e. offset) into the
1335 * array we want to set the VLAN ID (i.e. bit) of
1336 * the manageability unit.
1337 */
1338 vfta_offset = (hw->mng_cookie.vlan_id >>
1339 E1000_VFTA_ENTRY_SHIFT) &
1340 E1000_VFTA_ENTRY_MASK;
1341 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1342 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1343 }
8c81c9c3
AD
1344 break;
1345 default:
1346 break;
bc7f75fa
AK
1347 }
1348 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1349 /*
1350 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1351 * manageability VLAN ID, then clear all bits except that of
1352 * the manageability unit.
1353 */
1354 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1355 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1356 e1e_flush();
1357 }
1358}
1359
4662e82b
BA
1360/**
1361 * e1000_check_mng_mode_82574 - Check manageability is enabled
1362 * @hw: pointer to the HW structure
1363 *
1364 * Reads the NVM Initialization Control Word 2 and returns true
1365 * (>0) if any manageability is enabled, else false (0).
1366 **/
1367static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1368{
1369 u16 data;
1370
1371 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1372 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1373}
1374
1375/**
1376 * e1000_led_on_82574 - Turn LED on
1377 * @hw: pointer to the HW structure
1378 *
1379 * Turn LED on.
1380 **/
1381static s32 e1000_led_on_82574(struct e1000_hw *hw)
1382{
1383 u32 ctrl;
1384 u32 i;
1385
1386 ctrl = hw->mac.ledctl_mode2;
1387 if (!(E1000_STATUS_LU & er32(STATUS))) {
1388 /*
1389 * If no link, then turn LED on by setting the invert bit
1390 * for each LED that's "on" (0x0E) in ledctl_mode2.
1391 */
1392 for (i = 0; i < 4; i++)
1393 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1394 E1000_LEDCTL_MODE_LED_ON)
1395 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1396 }
1397 ew32(LEDCTL, ctrl);
1398
1399 return 0;
1400}
1401
ff10e13c
CW
1402/**
1403 * e1000_check_phy_82574 - check 82574 phy hung state
1404 * @hw: pointer to the HW structure
1405 *
1406 * Returns whether phy is hung or not
1407 **/
1408bool e1000_check_phy_82574(struct e1000_hw *hw)
1409{
1410 u16 status_1kbt = 0;
1411 u16 receive_errors = 0;
1412 bool phy_hung = false;
1413 s32 ret_val = 0;
1414
1415 /*
1416 * Read PHY Receive Error counter first, if its is max - all F's then
1417 * read the Base1000T status register If both are max then PHY is hung.
1418 */
1419 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1420
1421 if (ret_val)
1422 goto out;
1423 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1424 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1425 if (ret_val)
1426 goto out;
1427 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1428 E1000_IDLE_ERROR_COUNT_MASK)
1429 phy_hung = true;
1430 }
1431out:
1432 return phy_hung;
1433}
1434
bc7f75fa
AK
1435/**
1436 * e1000_setup_link_82571 - Setup flow control and link settings
1437 * @hw: pointer to the HW structure
1438 *
1439 * Determines which flow control settings to use, then configures flow
1440 * control. Calls the appropriate media-specific link configuration
1441 * function. Assuming the adapter has a valid link partner, a valid link
1442 * should be established. Assumes the hardware has previously been reset
1443 * and the transmitter and receiver are not enabled.
1444 **/
1445static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1446{
ad68076e
BA
1447 /*
1448 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1449 * the default flow control setting, so we explicitly
1450 * set it to full.
1451 */
8c81c9c3
AD
1452 switch (hw->mac.type) {
1453 case e1000_82573:
1454 case e1000_82574:
1455 case e1000_82583:
1456 if (hw->fc.requested_mode == e1000_fc_default)
1457 hw->fc.requested_mode = e1000_fc_full;
1458 break;
1459 default:
1460 break;
1461 }
bc7f75fa
AK
1462
1463 return e1000e_setup_link(hw);
1464}
1465
1466/**
1467 * e1000_setup_copper_link_82571 - Configure copper link settings
1468 * @hw: pointer to the HW structure
1469 *
1470 * Configures the link for auto-neg or forced speed and duplex. Then we check
1471 * for link, once link is established calls to configure collision distance
1472 * and flow control are called.
1473 **/
1474static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1475{
1476 u32 ctrl;
bc7f75fa
AK
1477 s32 ret_val;
1478
1479 ctrl = er32(CTRL);
1480 ctrl |= E1000_CTRL_SLU;
1481 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1482 ew32(CTRL, ctrl);
1483
1484 switch (hw->phy.type) {
1485 case e1000_phy_m88:
4662e82b 1486 case e1000_phy_bm:
bc7f75fa
AK
1487 ret_val = e1000e_copper_link_setup_m88(hw);
1488 break;
1489 case e1000_phy_igp_2:
1490 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1491 break;
1492 default:
1493 return -E1000_ERR_PHY;
1494 break;
1495 }
1496
1497 if (ret_val)
1498 return ret_val;
1499
7eb61d81 1500 return e1000e_setup_copper_link(hw);
bc7f75fa
AK
1501}
1502
1503/**
1504 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1505 * @hw: pointer to the HW structure
1506 *
1507 * Configures collision distance and flow control for fiber and serdes links.
1508 * Upon successful setup, poll for link.
1509 **/
1510static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1511{
1512 switch (hw->mac.type) {
1513 case e1000_82571:
1514 case e1000_82572:
ad68076e
BA
1515 /*
1516 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1517 * of reset to take the adapter out of that mode. So we
1518 * have to explicitly take the adapter out of loopback
489815ce 1519 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1520 * if another tool failed to take it out of loopback mode.
1521 */
ad68076e 1522 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1523 break;
1524 default:
1525 break;
1526 }
1527
1528 return e1000e_setup_fiber_serdes_link(hw);
1529}
1530
c9523379 1531/**
1532 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1533 * @hw: pointer to the HW structure
1534 *
1a40d5c1
BA
1535 * Reports the link state as up or down.
1536 *
1537 * If autonegotiation is supported by the link partner, the link state is
1538 * determined by the result of autonegotiation. This is the most likely case.
1539 * If autonegotiation is not supported by the link partner, and the link
1540 * has a valid signal, force the link up.
1541 *
1542 * The link state is represented internally here by 4 states:
1543 *
1544 * 1) down
1545 * 2) autoneg_progress
3ad2f3fb 1546 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1547 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1548 *
c9523379 1549 **/
f6370117 1550static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1551{
1552 struct e1000_mac_info *mac = &hw->mac;
1553 u32 rxcw;
1554 u32 ctrl;
1555 u32 status;
d9c76f99
BA
1556 u32 txcw;
1557 u32 i;
c9523379 1558 s32 ret_val = 0;
1559
1560 ctrl = er32(CTRL);
1561 status = er32(STATUS);
1562 rxcw = er32(RXCW);
1563
1564 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1565
1566 /* Receiver is synchronized with no invalid bits. */
1567 switch (mac->serdes_link_state) {
1568 case e1000_serdes_link_autoneg_complete:
1569 if (!(status & E1000_STATUS_LU)) {
1570 /*
1571 * We have lost link, retry autoneg before
1572 * reporting link failure
1573 */
1574 mac->serdes_link_state =
1575 e1000_serdes_link_autoneg_progress;
1a40d5c1 1576 mac->serdes_has_link = false;
3bb99fe2 1577 e_dbg("AN_UP -> AN_PROG\n");
a82a14f4
BA
1578 } else {
1579 mac->serdes_has_link = true;
c9523379 1580 }
a82a14f4 1581 break;
c9523379 1582
1583 case e1000_serdes_link_forced_up:
1584 /*
1585 * If we are receiving /C/ ordered sets, re-enable
1586 * auto-negotiation in the TXCW register and disable
1587 * forced link in the Device Control register in an
1588 * attempt to auto-negotiate with our link partner.
d478eb44
BA
1589 * If the partner code word is null, stop forcing
1590 * and restart auto negotiation.
c9523379 1591 */
d478eb44 1592 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
c9523379 1593 /* Enable autoneg, and unforce link up */
1594 ew32(TXCW, mac->txcw);
1a40d5c1 1595 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1596 mac->serdes_link_state =
1597 e1000_serdes_link_autoneg_progress;
1a40d5c1 1598 mac->serdes_has_link = false;
3bb99fe2 1599 e_dbg("FORCED_UP -> AN_PROG\n");
a82a14f4
BA
1600 } else {
1601 mac->serdes_has_link = true;
c9523379 1602 }
1603 break;
1604
1605 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1606 if (rxcw & E1000_RXCW_C) {
1607 /*
1608 * We received /C/ ordered sets, meaning the
1609 * link partner has autonegotiated, and we can
1610 * trust the Link Up (LU) status bit.
1611 */
1612 if (status & E1000_STATUS_LU) {
1613 mac->serdes_link_state =
1614 e1000_serdes_link_autoneg_complete;
1615 e_dbg("AN_PROG -> AN_UP\n");
1616 mac->serdes_has_link = true;
1617 } else {
1618 /* Autoneg completed, but failed. */
1619 mac->serdes_link_state =
1620 e1000_serdes_link_down;
1621 e_dbg("AN_PROG -> DOWN\n");
1622 }
c9523379 1623 } else {
1624 /*
1a40d5c1
BA
1625 * The link partner did not autoneg.
1626 * Force link up and full duplex, and change
1627 * state to forced.
c9523379 1628 */
1a40d5c1 1629 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1630 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1631 ew32(CTRL, ctrl);
1632
1633 /* Configure Flow Control after link up. */
1a40d5c1 1634 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1635 if (ret_val) {
3bb99fe2 1636 e_dbg("Error config flow control\n");
c9523379 1637 break;
1638 }
1639 mac->serdes_link_state =
1640 e1000_serdes_link_forced_up;
1a40d5c1 1641 mac->serdes_has_link = true;
3bb99fe2 1642 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1643 }
c9523379 1644 break;
1645
1646 case e1000_serdes_link_down:
1647 default:
1a40d5c1
BA
1648 /*
1649 * The link was down but the receiver has now gained
c9523379 1650 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1651 * up.
1652 */
c9523379 1653 ew32(TXCW, mac->txcw);
1a40d5c1 1654 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1655 mac->serdes_link_state =
1656 e1000_serdes_link_autoneg_progress;
a82a14f4 1657 mac->serdes_has_link = false;
3bb99fe2 1658 e_dbg("DOWN -> AN_PROG\n");
c9523379 1659 break;
1660 }
1661 } else {
1662 if (!(rxcw & E1000_RXCW_SYNCH)) {
1663 mac->serdes_has_link = false;
1664 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1665 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1666 } else {
1667 /*
d9c76f99
BA
1668 * Check several times, if Sync and Config
1669 * both are consistently 1 then simply ignore
1670 * the Invalid bit and restart Autoneg
c9523379 1671 */
d9c76f99
BA
1672 for (i = 0; i < AN_RETRY_COUNT; i++) {
1673 udelay(10);
1674 rxcw = er32(RXCW);
1675 if ((rxcw & E1000_RXCW_IV) &&
1676 !((rxcw & E1000_RXCW_SYNCH) &&
1677 (rxcw & E1000_RXCW_C))) {
1678 mac->serdes_has_link = false;
1679 mac->serdes_link_state =
1680 e1000_serdes_link_down;
1681 e_dbg("ANYSTATE -> DOWN\n");
1682 break;
1683 }
1684 }
1685
1686 if (i == AN_RETRY_COUNT) {
1687 txcw = er32(TXCW);
1688 txcw |= E1000_TXCW_ANE;
1689 ew32(TXCW, txcw);
1690 mac->serdes_link_state =
1691 e1000_serdes_link_autoneg_progress;
c9523379 1692 mac->serdes_has_link = false;
d9c76f99 1693 e_dbg("ANYSTATE -> AN_PROG\n");
c9523379 1694 }
1695 }
1696 }
1697
1698 return ret_val;
1699}
1700
bc7f75fa
AK
1701/**
1702 * e1000_valid_led_default_82571 - Verify a valid default LED config
1703 * @hw: pointer to the HW structure
1704 * @data: pointer to the NVM (EEPROM)
1705 *
1706 * Read the EEPROM for the current default LED configuration. If the
1707 * LED configuration is not valid, set to a valid LED configuration.
1708 **/
1709static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1710{
1711 s32 ret_val;
1712
1713 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1714 if (ret_val) {
3bb99fe2 1715 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1716 return ret_val;
1717 }
1718
8c81c9c3
AD
1719 switch (hw->mac.type) {
1720 case e1000_82573:
1721 case e1000_82574:
1722 case e1000_82583:
1723 if (*data == ID_LED_RESERVED_F746)
1724 *data = ID_LED_DEFAULT_82573;
1725 break;
1726 default:
1727 if (*data == ID_LED_RESERVED_0000 ||
1728 *data == ID_LED_RESERVED_FFFF)
1729 *data = ID_LED_DEFAULT;
1730 break;
1731 }
bc7f75fa
AK
1732
1733 return 0;
1734}
1735
1736/**
1737 * e1000e_get_laa_state_82571 - Get locally administered address state
1738 * @hw: pointer to the HW structure
1739 *
489815ce 1740 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1741 **/
1742bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1743{
1744 if (hw->mac.type != e1000_82571)
564ea9bb 1745 return false;
bc7f75fa
AK
1746
1747 return hw->dev_spec.e82571.laa_is_present;
1748}
1749
1750/**
1751 * e1000e_set_laa_state_82571 - Set locally administered address state
1752 * @hw: pointer to the HW structure
1753 * @state: enable/disable locally administered address
1754 *
5ff5b664 1755 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1756 **/
1757void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1758{
1759 if (hw->mac.type != e1000_82571)
1760 return;
1761
1762 hw->dev_spec.e82571.laa_is_present = state;
1763
1764 /* If workaround is activated... */
1765 if (state)
ad68076e
BA
1766 /*
1767 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1768 * between the time RAR[0] gets clobbered and the time it
1769 * gets fixed, the actual LAA is in one of the RARs and no
1770 * incoming packets directed to this port are dropped.
1771 * Eventually the LAA will be in RAR[0] and RAR[14].
1772 */
1773 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1774}
1775
1776/**
1777 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1778 * @hw: pointer to the HW structure
1779 *
1780 * Verifies that the EEPROM has completed the update. After updating the
1781 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1782 * the checksum fix is not implemented, we need to set the bit and update
1783 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1784 * we need to return bad checksum.
1785 **/
1786static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1787{
1788 struct e1000_nvm_info *nvm = &hw->nvm;
1789 s32 ret_val;
1790 u16 data;
1791
1792 if (nvm->type != e1000_nvm_flash_hw)
1793 return 0;
1794
ad68076e
BA
1795 /*
1796 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1797 * 10h-12h. Checksum may need to be fixed.
1798 */
1799 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1800 if (ret_val)
1801 return ret_val;
1802
1803 if (!(data & 0x10)) {
ad68076e
BA
1804 /*
1805 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1806 * when the checksum has already been fixed. If
1807 * the checksum is still wrong and this bit is a
1808 * 1, we need to return bad checksum. Otherwise,
1809 * we need to set this bit to a 1 and update the
1810 * checksum.
1811 */
1812 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1813 if (ret_val)
1814 return ret_val;
1815
1816 if (!(data & 0x8000)) {
1817 data |= 0x8000;
1818 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1819 if (ret_val)
1820 return ret_val;
1821 ret_val = e1000e_update_nvm_checksum(hw);
1822 }
1823 }
1824
1825 return 0;
1826}
1827
608f8a0d
BA
1828/**
1829 * e1000_read_mac_addr_82571 - Read device MAC address
1830 * @hw: pointer to the HW structure
1831 **/
1832static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1833{
1834 s32 ret_val = 0;
1835
1aef70ef
BA
1836 if (hw->mac.type == e1000_82571) {
1837 /*
1838 * If there's an alternate MAC address place it in RAR0
1839 * so that it will override the Si installed default perm
1840 * address.
1841 */
1842 ret_val = e1000_check_alt_mac_addr_generic(hw);
1843 if (ret_val)
1844 goto out;
1845 }
608f8a0d
BA
1846
1847 ret_val = e1000_read_mac_addr_generic(hw);
1848
1849out:
1850 return ret_val;
1851}
1852
17f208de
BA
1853/**
1854 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1855 * @hw: pointer to the HW structure
1856 *
1857 * In the case of a PHY power down to save power, or to turn off link during a
1858 * driver unload, or wake on lan is not enabled, remove the link.
1859 **/
1860static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1861{
1862 struct e1000_phy_info *phy = &hw->phy;
1863 struct e1000_mac_info *mac = &hw->mac;
1864
668018d7 1865 if (!phy->ops.check_reset_block)
17f208de
BA
1866 return;
1867
1868 /* If the management interface is not enabled, then power down */
1869 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1870 e1000_power_down_phy_copper(hw);
17f208de
BA
1871}
1872
bc7f75fa
AK
1873/**
1874 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1875 * @hw: pointer to the HW structure
1876 *
1877 * Clears the hardware counters by reading the counter registers.
1878 **/
1879static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1880{
bc7f75fa
AK
1881 e1000e_clear_hw_cntrs_base(hw);
1882
99673d9b
BA
1883 er32(PRC64);
1884 er32(PRC127);
1885 er32(PRC255);
1886 er32(PRC511);
1887 er32(PRC1023);
1888 er32(PRC1522);
1889 er32(PTC64);
1890 er32(PTC127);
1891 er32(PTC255);
1892 er32(PTC511);
1893 er32(PTC1023);
1894 er32(PTC1522);
1895
1896 er32(ALGNERRC);
1897 er32(RXERRC);
1898 er32(TNCRS);
1899 er32(CEXTERR);
1900 er32(TSCTC);
1901 er32(TSCTFC);
1902
1903 er32(MGTPRC);
1904 er32(MGTPDC);
1905 er32(MGTPTC);
1906
1907 er32(IAC);
1908 er32(ICRXOC);
1909
1910 er32(ICRXPTC);
1911 er32(ICRXATC);
1912 er32(ICTXPTC);
1913 er32(ICTXATC);
1914 er32(ICTXQEC);
1915 er32(ICTXQMTC);
1916 er32(ICRXDMTC);
bc7f75fa
AK
1917}
1918
8ce9d6c7 1919static const struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1920 /* .check_mng_mode: mac type dependent */
bc7f75fa 1921 /* .check_for_link: media type dependent */
a4f58f54 1922 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1923 .cleanup_led = e1000e_cleanup_led_generic,
1924 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1925 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1926 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1927 /* .get_link_up_info: media type dependent */
4662e82b 1928 /* .led_on: mac type dependent */
bc7f75fa 1929 .led_off = e1000e_led_off_generic,
ab8932f3 1930 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1931 .write_vfta = e1000_write_vfta_generic,
1932 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1933 .reset_hw = e1000_reset_hw_82571,
1934 .init_hw = e1000_init_hw_82571,
1935 .setup_link = e1000_setup_link_82571,
1936 /* .setup_physical_interface: media type dependent */
a4f58f54 1937 .setup_led = e1000e_setup_led_generic,
608f8a0d 1938 .read_mac_addr = e1000_read_mac_addr_82571,
bc7f75fa
AK
1939};
1940
8ce9d6c7 1941static const struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1942 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1943 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1944 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1945 .commit = NULL,
bc7f75fa
AK
1946 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1947 .get_cfg_done = e1000_get_cfg_done_82571,
1948 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1949 .get_info = e1000e_get_phy_info_igp,
1950 .read_reg = e1000e_read_phy_reg_igp,
1951 .release = e1000_put_hw_semaphore_82571,
1952 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1953 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1954 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1955 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1956 .cfg_on_link_up = NULL,
bc7f75fa
AK
1957};
1958
8ce9d6c7 1959static const struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1960 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1961 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1962 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1963 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1964 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1965 .get_cfg_done = e1000e_get_cfg_done,
1966 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1967 .get_info = e1000e_get_phy_info_m88,
1968 .read_reg = e1000e_read_phy_reg_m88,
1969 .release = e1000_put_hw_semaphore_82571,
1970 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1971 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1972 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1973 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1974 .cfg_on_link_up = NULL,
bc7f75fa
AK
1975};
1976
8ce9d6c7 1977static const struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1978 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1979 .check_polarity = e1000_check_polarity_m88,
4662e82b 1980 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1981 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1982 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1983 .get_cfg_done = e1000e_get_cfg_done,
1984 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1985 .get_info = e1000e_get_phy_info_m88,
1986 .read_reg = e1000e_read_phy_reg_bm2,
1987 .release = e1000_put_hw_semaphore_82571,
1988 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1989 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1990 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1991 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1992 .cfg_on_link_up = NULL,
4662e82b
BA
1993};
1994
8ce9d6c7 1995static const struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1996 .acquire = e1000_acquire_nvm_82571,
1997 .read = e1000e_read_nvm_eerd,
1998 .release = e1000_release_nvm_82571,
1999 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 2000 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
2001 .validate = e1000_validate_nvm_checksum_82571,
2002 .write = e1000_write_nvm_82571,
bc7f75fa
AK
2003};
2004
8ce9d6c7 2005const struct e1000_info e1000_82571_info = {
bc7f75fa
AK
2006 .mac = e1000_82571,
2007 .flags = FLAG_HAS_HW_VLAN_FILTER
2008 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
2009 | FLAG_HAS_WOL
2010 | FLAG_APME_IN_CTRL3
bc7f75fa 2011 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
2012 | FLAG_HAS_SMART_POWER_DOWN
2013 | FLAG_RESET_OVERWRITES_LAA /* errata */
2014 | FLAG_TARC_SPEED_MODE_BIT /* errata */
2015 | FLAG_APME_CHECK_PORT_B,
3a3b7586
JB
2016 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2017 | FLAG2_DMA_BURST,
bc7f75fa 2018 .pba = 38,
2adc55c9 2019 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 2020 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2021 .mac_ops = &e82571_mac_ops,
2022 .phy_ops = &e82_phy_ops_igp,
2023 .nvm_ops = &e82571_nvm_ops,
2024};
2025
8ce9d6c7 2026const struct e1000_info e1000_82572_info = {
bc7f75fa
AK
2027 .mac = e1000_82572,
2028 .flags = FLAG_HAS_HW_VLAN_FILTER
2029 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
2030 | FLAG_HAS_WOL
2031 | FLAG_APME_IN_CTRL3
bc7f75fa 2032 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 2033 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
3a3b7586
JB
2034 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2035 | FLAG2_DMA_BURST,
bc7f75fa 2036 .pba = 38,
2adc55c9 2037 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 2038 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2039 .mac_ops = &e82571_mac_ops,
2040 .phy_ops = &e82_phy_ops_igp,
2041 .nvm_ops = &e82571_nvm_ops,
2042};
2043
8ce9d6c7 2044const struct e1000_info e1000_82573_info = {
bc7f75fa
AK
2045 .mac = e1000_82573,
2046 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
2047 | FLAG_HAS_WOL
2048 | FLAG_APME_IN_CTRL3
bc7f75fa
AK
2049 | FLAG_HAS_SMART_POWER_DOWN
2050 | FLAG_HAS_AMT
bc7f75fa 2051 | FLAG_HAS_SWSM_ON_LOAD,
78cd29d5
BA
2052 .flags2 = FLAG2_DISABLE_ASPM_L1
2053 | FLAG2_DISABLE_ASPM_L0S,
bc7f75fa 2054 .pba = 20,
2adc55c9 2055 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 2056 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2057 .mac_ops = &e82571_mac_ops,
2058 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 2059 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
2060};
2061
8ce9d6c7 2062const struct e1000_info e1000_82574_info = {
4662e82b
BA
2063 .mac = e1000_82574,
2064 .flags = FLAG_HAS_HW_VLAN_FILTER
2065 | FLAG_HAS_MSIX
2066 | FLAG_HAS_JUMBO_FRAMES
2067 | FLAG_HAS_WOL
2068 | FLAG_APME_IN_CTRL3
4662e82b
BA
2069 | FLAG_HAS_SMART_POWER_DOWN
2070 | FLAG_HAS_AMT
2071 | FLAG_HAS_CTRLEXT_ON_LOAD,
78cd29d5 2072 .flags2 = FLAG2_CHECK_PHY_HANG
7f99ae63
BA
2073 | FLAG2_DISABLE_ASPM_L0S
2074 | FLAG2_NO_DISABLE_RX,
ed5c2b0b 2075 .pba = 32,
a825e00c 2076 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
2077 .get_variants = e1000_get_variants_82571,
2078 .mac_ops = &e82571_mac_ops,
2079 .phy_ops = &e82_phy_ops_bm,
2080 .nvm_ops = &e82571_nvm_ops,
2081};
2082
8ce9d6c7 2083const struct e1000_info e1000_82583_info = {
8c81c9c3
AD
2084 .mac = e1000_82583,
2085 .flags = FLAG_HAS_HW_VLAN_FILTER
2086 | FLAG_HAS_WOL
2087 | FLAG_APME_IN_CTRL3
8c81c9c3
AD
2088 | FLAG_HAS_SMART_POWER_DOWN
2089 | FLAG_HAS_AMT
a3d72d5d 2090 | FLAG_HAS_JUMBO_FRAMES
8c81c9c3 2091 | FLAG_HAS_CTRLEXT_ON_LOAD,
7f99ae63
BA
2092 .flags2 = FLAG2_DISABLE_ASPM_L0S
2093 | FLAG2_NO_DISABLE_RX,
ed5c2b0b 2094 .pba = 32,
a3d72d5d 2095 .max_hw_frame_size = DEFAULT_JUMBO,
8c81c9c3
AD
2096 .get_variants = e1000_get_variants_82571,
2097 .mac_ops = &e82571_mac_ops,
2098 .phy_ops = &e82_phy_ops_bm,
2099 .nvm_ops = &e82571_nvm_ops,
2100};
2101