]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/intel/e1000e/82571.c
e1000e: cleanup: rename e1000e_id_led_init() and call as function pointer
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
f5e261e6 4 Copyright(c) 1999 - 2012 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
d9c76f99 55#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
ff10e13c
CW
56#define E1000_BASE1000T_STATUS 10
57#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58#define E1000_RECEIVE_ERROR_COUNTER 21
59#define E1000_RECEIVE_ERROR_MAX 0xFFFF
bc7f75fa 60
4662e82b
BA
61#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
bc7f75fa
AK
63static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 66static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
67static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 73static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
74static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 76static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 77static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
1b98c2bb
BA
78static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
77996d1d
BA
81static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
bc7f75fa
AK
83
84/**
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
bc7f75fa
AK
87 **/
88static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89{
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val;
92
318a94d6 93 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
94 phy->type = e1000_phy_none;
95 return 0;
96 }
97
98 phy->addr = 1;
99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 phy->reset_delay_us = 100;
101
17f208de
BA
102 phy->ops.power_up = e1000_power_up_phy_copper;
103 phy->ops.power_down = e1000_power_down_phy_copper_82571;
104
bc7f75fa
AK
105 switch (hw->mac.type) {
106 case e1000_82571:
107 case e1000_82572:
108 phy->type = e1000_phy_igp_2;
109 break;
110 case e1000_82573:
111 phy->type = e1000_phy_m88;
112 break;
4662e82b 113 case e1000_82574:
8c81c9c3 114 case e1000_82583:
4662e82b 115 phy->type = e1000_phy_bm;
1b98c2bb
BA
116 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 phy->ops.release = e1000_put_hw_semaphore_82574;
77996d1d
BA
118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
4662e82b 120 break;
bc7f75fa
AK
121 default:
122 return -E1000_ERR_PHY;
123 break;
124 }
125
126 /* This can only be done after all function pointers are setup. */
127 ret_val = e1000_get_phy_id_82571(hw);
dd93f95e
BA
128 if (ret_val) {
129 e_dbg("Error getting PHY ID\n");
130 return ret_val;
131 }
bc7f75fa
AK
132
133 /* Verify phy id */
134 switch (hw->mac.type) {
135 case e1000_82571:
136 case e1000_82572:
137 if (phy->id != IGP01E1000_I_PHY_ID)
dd93f95e 138 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
139 break;
140 case e1000_82573:
141 if (phy->id != M88E1111_I_PHY_ID)
dd93f95e 142 ret_val = -E1000_ERR_PHY;
bc7f75fa 143 break;
4662e82b 144 case e1000_82574:
8c81c9c3 145 case e1000_82583:
4662e82b 146 if (phy->id != BME1000_E_PHY_ID_R2)
dd93f95e 147 ret_val = -E1000_ERR_PHY;
4662e82b 148 break;
bc7f75fa 149 default:
dd93f95e 150 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
151 break;
152 }
153
dd93f95e
BA
154 if (ret_val)
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157 return ret_val;
bc7f75fa
AK
158}
159
160/**
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
bc7f75fa
AK
163 **/
164static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165{
166 struct e1000_nvm_info *nvm = &hw->nvm;
167 u32 eecd = er32(EECD);
168 u16 size;
169
170 nvm->opcode_bits = 8;
171 nvm->delay_usec = 1;
172 switch (nvm->override) {
173 case e1000_nvm_override_spi_large:
174 nvm->page_size = 32;
175 nvm->address_bits = 16;
176 break;
177 case e1000_nvm_override_spi_small:
178 nvm->page_size = 8;
179 nvm->address_bits = 8;
180 break;
181 default:
182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 break;
185 }
186
187 switch (hw->mac.type) {
188 case e1000_82573:
4662e82b 189 case e1000_82574:
8c81c9c3 190 case e1000_82583:
bc7f75fa
AK
191 if (((eecd >> 15) & 0x3) == 0x3) {
192 nvm->type = e1000_nvm_flash_hw;
193 nvm->word_size = 2048;
ad68076e
BA
194 /*
195 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
196 * to Flash update issue.
197 */
198 eecd &= ~E1000_EECD_AUPDEN;
199 ew32(EECD, eecd);
200 break;
201 }
202 /* Fall Through */
203 default:
ad68076e 204 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
207 /*
208 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
bc7f75fa
AK
216 nvm->word_size = 1 << size;
217 break;
218 }
219
1b98c2bb
BA
220 /* Function Pointers */
221 switch (hw->mac.type) {
222 case e1000_82574:
223 case e1000_82583:
224 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 nvm->ops.release = e1000_put_hw_semaphore_82574;
226 break;
227 default:
228 break;
229 }
230
bc7f75fa
AK
231 return 0;
232}
233
234/**
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
bc7f75fa 237 **/
ec34c170 238static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
bc7f75fa 239{
bc7f75fa 240 struct e1000_mac_info *mac = &hw->mac;
23a2d1b2
DG
241 u32 swsm = 0;
242 u32 swsm2 = 0;
243 bool force_clear_smbi = false;
bc7f75fa 244
66092f59 245 /* Set media type and media-dependent function pointers */
ec34c170 246 switch (hw->adapter->pdev->device) {
bc7f75fa
AK
247 case E1000_DEV_ID_82571EB_FIBER:
248 case E1000_DEV_ID_82572EI_FIBER:
249 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 250 hw->phy.media_type = e1000_media_type_fiber;
66092f59
BA
251 mac->ops.setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 mac->ops.get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
256 break;
257 case E1000_DEV_ID_82571EB_SERDES:
040babf9
AK
258 case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 case E1000_DEV_ID_82571EB_SERDES_QUAD:
66092f59 260 case E1000_DEV_ID_82572EI_SERDES:
318a94d6 261 hw->phy.media_type = e1000_media_type_internal_serdes;
66092f59
BA
262 mac->ops.setup_physical_interface =
263 e1000_setup_fiber_serdes_link_82571;
264 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 mac->ops.get_link_up_info =
266 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
267 break;
268 default:
318a94d6 269 hw->phy.media_type = e1000_media_type_copper;
66092f59
BA
270 mac->ops.setup_physical_interface =
271 e1000_setup_copper_link_82571;
272 mac->ops.check_for_link = e1000e_check_for_copper_link;
273 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
bc7f75fa
AK
274 break;
275 }
276
277 /* Set mta register count */
278 mac->mta_reg_count = 128;
279 /* Set rar entry count */
280 mac->rar_entry_count = E1000_RAR_ENTRIES;
f464ba87
BA
281 /* Adaptive IFS supported */
282 mac->adaptive_ifs = true;
bc7f75fa 283
66092f59 284 /* MAC-specific function pointers */
4662e82b 285 switch (hw->mac.type) {
f4d2dd4c 286 case e1000_82573:
66092f59
BA
287 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 mac->ops.led_on = e1000e_led_on_generic;
290 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
291
292 /* FWSM register */
293 mac->has_fwsm = true;
294 /*
295 * ARC supported; valid only if manageability features are
296 * enabled.
297 */
298 mac->arc_subsystem_valid =
299 (er32(FWSM) & E1000_FWSM_MODE_MASK)
300 ? true : false;
f4d2dd4c 301 break;
4662e82b 302 case e1000_82574:
8c81c9c3 303 case e1000_82583:
66092f59
BA
304 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
305 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
306 mac->ops.led_on = e1000_led_on_82574;
4662e82b
BA
307 break;
308 default:
66092f59
BA
309 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
310 mac->ops.led_on = e1000e_led_on_generic;
311 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
312
313 /* FWSM register */
314 mac->has_fwsm = true;
4662e82b
BA
315 break;
316 }
317
23a2d1b2
DG
318 /*
319 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
b595076a 320 * first NVM or PHY access. This should be done for single-port
23a2d1b2
DG
321 * devices, and for one port only on dual-port devices so that
322 * for those devices we can still use the SMBI lock to synchronize
323 * inter-port accesses to the PHY & NVM.
324 */
325 switch (hw->mac.type) {
326 case e1000_82571:
327 case e1000_82572:
328 swsm2 = er32(SWSM2);
329
330 if (!(swsm2 & E1000_SWSM2_LOCK)) {
331 /* Only do this for the first interface on this card */
66092f59 332 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
23a2d1b2 333 force_clear_smbi = true;
66092f59 334 } else {
23a2d1b2 335 force_clear_smbi = false;
66092f59 336 }
23a2d1b2
DG
337 break;
338 default:
339 force_clear_smbi = true;
340 break;
341 }
342
343 if (force_clear_smbi) {
344 /* Make sure SWSM.SMBI is clear */
345 swsm = er32(SWSM);
346 if (swsm & E1000_SWSM_SMBI) {
347 /* This bit should not be set on a first interface, and
348 * indicates that the bootagent or EFI code has
349 * improperly left this bit enabled
350 */
3bb99fe2 351 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
352 }
353 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
354 }
355
356 /*
2c73e1fe 357 * Initialize device specific counter of SMBI acquisition
23a2d1b2
DG
358 * timeouts.
359 */
360 hw->dev_spec.e82571.smb_counter = 0;
361
bc7f75fa
AK
362 return 0;
363}
364
69e3fd8c 365static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
366{
367 struct e1000_hw *hw = &adapter->hw;
368 static int global_quad_port_a; /* global port a indication */
369 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
370 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
371 s32 rc;
372
ec34c170 373 rc = e1000_init_mac_params_82571(hw);
bc7f75fa
AK
374 if (rc)
375 return rc;
376
377 rc = e1000_init_nvm_params_82571(hw);
378 if (rc)
379 return rc;
380
381 rc = e1000_init_phy_params_82571(hw);
382 if (rc)
383 return rc;
384
385 /* tag quad port adapters first, it's used below */
386 switch (pdev->device) {
387 case E1000_DEV_ID_82571EB_QUAD_COPPER:
388 case E1000_DEV_ID_82571EB_QUAD_FIBER:
389 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 390 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
391 adapter->flags |= FLAG_IS_QUAD_PORT;
392 /* mark the first port */
393 if (global_quad_port_a == 0)
394 adapter->flags |= FLAG_IS_QUAD_PORT_A;
395 /* Reset for multiple quad port adapters */
396 global_quad_port_a++;
397 if (global_quad_port_a == 4)
398 global_quad_port_a = 0;
399 break;
400 default:
401 break;
402 }
403
404 switch (adapter->hw.mac.type) {
405 case e1000_82571:
406 /* these dual ports don't have WoL on port B at all */
407 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
408 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
409 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
410 (is_port_b))
411 adapter->flags &= ~FLAG_HAS_WOL;
412 /* quad ports only support WoL on port A */
413 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 414 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 415 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
416 /* Does not support WoL on any port */
417 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
418 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 419 break;
bc7f75fa
AK
420 case e1000_82573:
421 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
422 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
423 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
424 }
425 break;
426 default:
427 break;
428 }
429
430 return 0;
431}
432
433/**
434 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
435 * @hw: pointer to the HW structure
436 *
437 * Reads the PHY registers and stores the PHY ID and possibly the PHY
438 * revision in the hardware structure.
439 **/
440static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
441{
442 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
443 s32 ret_val;
444 u16 phy_id = 0;
bc7f75fa
AK
445
446 switch (hw->mac.type) {
447 case e1000_82571:
448 case e1000_82572:
ad68076e
BA
449 /*
450 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
451 * In this case, we cannot access the PHY until the
452 * configuration is done. So we explicitly set the
ad68076e
BA
453 * PHY ID.
454 */
bc7f75fa
AK
455 phy->id = IGP01E1000_I_PHY_ID;
456 break;
457 case e1000_82573:
458 return e1000e_get_phy_id(hw);
459 break;
4662e82b 460 case e1000_82574:
8c81c9c3 461 case e1000_82583:
4662e82b
BA
462 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
463 if (ret_val)
464 return ret_val;
465
466 phy->id = (u32)(phy_id << 16);
467 udelay(20);
468 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
469 if (ret_val)
470 return ret_val;
471
472 phy->id |= (u32)(phy_id);
473 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
474 break;
bc7f75fa
AK
475 default:
476 return -E1000_ERR_PHY;
477 break;
478 }
479
480 return 0;
481}
482
483/**
484 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
485 * @hw: pointer to the HW structure
486 *
487 * Acquire the HW semaphore to access the PHY or NVM
488 **/
489static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
490{
491 u32 swsm;
23a2d1b2
DG
492 s32 sw_timeout = hw->nvm.word_size + 1;
493 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
494 s32 i = 0;
495
23a2d1b2
DG
496 /*
497 * If we have timedout 3 times on trying to acquire
498 * the inter-port SMBI semaphore, there is old code
499 * operating on the other port, and it is not
500 * releasing SMBI. Modify the number of times that
501 * we try for the semaphore to interwork with this
502 * older code.
503 */
504 if (hw->dev_spec.e82571.smb_counter > 2)
505 sw_timeout = 1;
506
507 /* Get the SW semaphore */
508 while (i < sw_timeout) {
509 swsm = er32(SWSM);
510 if (!(swsm & E1000_SWSM_SMBI))
511 break;
512
513 udelay(50);
514 i++;
515 }
516
517 if (i == sw_timeout) {
3bb99fe2 518 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
519 hw->dev_spec.e82571.smb_counter++;
520 }
bc7f75fa 521 /* Get the FW semaphore. */
23a2d1b2 522 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
523 swsm = er32(SWSM);
524 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
525
526 /* Semaphore acquired if bit latched */
527 if (er32(SWSM) & E1000_SWSM_SWESMBI)
528 break;
529
530 udelay(50);
531 }
532
23a2d1b2 533 if (i == fw_timeout) {
bc7f75fa 534 /* Release semaphores */
23a2d1b2 535 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 536 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
537 return -E1000_ERR_NVM;
538 }
539
540 return 0;
541}
542
543/**
544 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
545 * @hw: pointer to the HW structure
546 *
547 * Release hardware semaphore used to access the PHY or NVM
548 **/
549static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
550{
551 u32 swsm;
552
553 swsm = er32(SWSM);
23a2d1b2 554 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
555 ew32(SWSM, swsm);
556}
1b98c2bb
BA
557/**
558 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
559 * @hw: pointer to the HW structure
560 *
561 * Acquire the HW semaphore during reset.
562 *
563 **/
564static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
565{
566 u32 extcnf_ctrl;
1b98c2bb
BA
567 s32 i = 0;
568
569 extcnf_ctrl = er32(EXTCNF_CTRL);
570 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
571 do {
572 ew32(EXTCNF_CTRL, extcnf_ctrl);
573 extcnf_ctrl = er32(EXTCNF_CTRL);
574
575 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
576 break;
577
578 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
579
1bba4386 580 usleep_range(2000, 4000);
1b98c2bb
BA
581 i++;
582 } while (i < MDIO_OWNERSHIP_TIMEOUT);
583
584 if (i == MDIO_OWNERSHIP_TIMEOUT) {
585 /* Release semaphores */
586 e1000_put_hw_semaphore_82573(hw);
587 e_dbg("Driver can't access the PHY\n");
5015e53a 588 return -E1000_ERR_PHY;
1b98c2bb
BA
589 }
590
5015e53a 591 return 0;
1b98c2bb
BA
592}
593
594/**
595 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
596 * @hw: pointer to the HW structure
597 *
598 * Release hardware semaphore used during reset.
599 *
600 **/
601static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
602{
603 u32 extcnf_ctrl;
604
605 extcnf_ctrl = er32(EXTCNF_CTRL);
606 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
607 ew32(EXTCNF_CTRL, extcnf_ctrl);
608}
609
610static DEFINE_MUTEX(swflag_mutex);
611
612/**
613 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
614 * @hw: pointer to the HW structure
615 *
616 * Acquire the HW semaphore to access the PHY or NVM.
617 *
618 **/
619static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
620{
621 s32 ret_val;
622
623 mutex_lock(&swflag_mutex);
624 ret_val = e1000_get_hw_semaphore_82573(hw);
625 if (ret_val)
626 mutex_unlock(&swflag_mutex);
627 return ret_val;
628}
629
630/**
631 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
632 * @hw: pointer to the HW structure
633 *
634 * Release hardware semaphore used to access the PHY or NVM
635 *
636 **/
637static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
638{
639 e1000_put_hw_semaphore_82573(hw);
640 mutex_unlock(&swflag_mutex);
641}
bc7f75fa 642
77996d1d
BA
643/**
644 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
645 * @hw: pointer to the HW structure
646 * @active: true to enable LPLU, false to disable
647 *
648 * Sets the LPLU D0 state according to the active flag.
649 * LPLU will not be activated unless the
650 * device autonegotiation advertisement meets standards of
651 * either 10 or 10/100 or 10/100/1000 at all duplexes.
652 * This is a function pointer entry point only called by
653 * PHY setup routines.
654 **/
655static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
656{
657 u16 data = er32(POEMB);
658
659 if (active)
660 data |= E1000_PHY_CTRL_D0A_LPLU;
661 else
662 data &= ~E1000_PHY_CTRL_D0A_LPLU;
663
664 ew32(POEMB, data);
665 return 0;
666}
667
668/**
669 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
670 * @hw: pointer to the HW structure
671 * @active: boolean used to enable/disable lplu
672 *
673 * The low power link up (lplu) state is set to the power management level D3
674 * when active is true, else clear lplu for D3. LPLU
675 * is used during Dx states where the power conservation is most important.
676 * During driver activity, SmartSpeed should be enabled so performance is
677 * maintained.
678 **/
679static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
680{
681 u16 data = er32(POEMB);
682
683 if (!active) {
684 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
685 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
686 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
687 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
688 data |= E1000_PHY_CTRL_NOND0A_LPLU;
689 }
690
691 ew32(POEMB, data);
692 return 0;
693}
694
bc7f75fa
AK
695/**
696 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
697 * @hw: pointer to the HW structure
698 *
699 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
700 * Then for non-82573 hardware, set the EEPROM access request bit and wait
701 * for EEPROM access grant bit. If the access grant bit is not set, release
702 * hardware semaphore.
703 **/
704static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
705{
706 s32 ret_val;
707
708 ret_val = e1000_get_hw_semaphore_82571(hw);
709 if (ret_val)
710 return ret_val;
711
8c81c9c3
AD
712 switch (hw->mac.type) {
713 case e1000_82573:
8c81c9c3
AD
714 break;
715 default:
bc7f75fa 716 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
717 break;
718 }
bc7f75fa
AK
719
720 if (ret_val)
721 e1000_put_hw_semaphore_82571(hw);
722
723 return ret_val;
724}
725
726/**
727 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
728 * @hw: pointer to the HW structure
729 *
730 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
731 **/
732static void e1000_release_nvm_82571(struct e1000_hw *hw)
733{
734 e1000e_release_nvm(hw);
735 e1000_put_hw_semaphore_82571(hw);
736}
737
738/**
739 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
740 * @hw: pointer to the HW structure
741 * @offset: offset within the EEPROM to be written to
742 * @words: number of words to write
743 * @data: 16 bit word(s) to be written to the EEPROM
744 *
745 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
746 *
747 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 748 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
749 **/
750static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
751 u16 *data)
752{
753 s32 ret_val;
754
755 switch (hw->mac.type) {
756 case e1000_82573:
4662e82b 757 case e1000_82574:
8c81c9c3 758 case e1000_82583:
bc7f75fa
AK
759 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
760 break;
761 case e1000_82571:
762 case e1000_82572:
763 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
764 break;
765 default:
766 ret_val = -E1000_ERR_NVM;
767 break;
768 }
769
770 return ret_val;
771}
772
773/**
774 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
775 * @hw: pointer to the HW structure
776 *
777 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
778 * up to the checksum. Then calculates the EEPROM checksum and writes the
779 * value to the EEPROM.
780 **/
781static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
782{
783 u32 eecd;
784 s32 ret_val;
785 u16 i;
786
787 ret_val = e1000e_update_nvm_checksum_generic(hw);
788 if (ret_val)
789 return ret_val;
790
ad68076e
BA
791 /*
792 * If our nvm is an EEPROM, then we're done
793 * otherwise, commit the checksum to the flash NVM.
794 */
bc7f75fa 795 if (hw->nvm.type != e1000_nvm_flash_hw)
82607255 796 return 0;
bc7f75fa
AK
797
798 /* Check for pending operations. */
799 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 800 usleep_range(1000, 2000);
bc7f75fa
AK
801 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
802 break;
803 }
804
805 if (i == E1000_FLASH_UPDATES)
806 return -E1000_ERR_NVM;
807
808 /* Reset the firmware if using STM opcode. */
809 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
810 /*
811 * The enabling of and the actual reset must be done
bc7f75fa
AK
812 * in two write cycles.
813 */
814 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
815 e1e_flush();
816 ew32(HICR, E1000_HICR_FW_RESET);
817 }
818
819 /* Commit the write to flash */
820 eecd = er32(EECD) | E1000_EECD_FLUPD;
821 ew32(EECD, eecd);
822
823 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 824 usleep_range(1000, 2000);
bc7f75fa
AK
825 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
826 break;
827 }
828
829 if (i == E1000_FLASH_UPDATES)
830 return -E1000_ERR_NVM;
831
832 return 0;
833}
834
835/**
836 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
837 * @hw: pointer to the HW structure
838 *
839 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
840 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
841 **/
842static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
843{
844 if (hw->nvm.type == e1000_nvm_flash_hw)
845 e1000_fix_nvm_checksum_82571(hw);
846
847 return e1000e_validate_nvm_checksum_generic(hw);
848}
849
850/**
851 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
852 * @hw: pointer to the HW structure
853 * @offset: offset within the EEPROM to be written to
854 * @words: number of words to write
855 * @data: 16 bit word(s) to be written to the EEPROM
856 *
857 * After checking for invalid values, poll the EEPROM to ensure the previous
858 * command has completed before trying to write the next word. After write
859 * poll for completion.
860 *
861 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 862 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
863 **/
864static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
865 u16 words, u16 *data)
866{
867 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 868 u32 i, eewr = 0;
bc7f75fa
AK
869 s32 ret_val = 0;
870
ad68076e
BA
871 /*
872 * A check for invalid values: offset too large, too many words,
873 * and not enough words.
874 */
bc7f75fa
AK
875 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
876 (words == 0)) {
3bb99fe2 877 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
878 return -E1000_ERR_NVM;
879 }
880
881 for (i = 0; i < words; i++) {
882 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
883 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
884 E1000_NVM_RW_REG_START;
885
886 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
887 if (ret_val)
888 break;
889
890 ew32(EEWR, eewr);
891
892 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
893 if (ret_val)
894 break;
895 }
896
897 return ret_val;
898}
899
900/**
901 * e1000_get_cfg_done_82571 - Poll for configuration done
902 * @hw: pointer to the HW structure
903 *
904 * Reads the management control register for the config done bit to be set.
905 **/
906static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
907{
908 s32 timeout = PHY_CFG_TIMEOUT;
909
910 while (timeout) {
911 if (er32(EEMNGCTL) &
912 E1000_NVM_CFG_DONE_PORT_0)
913 break;
1bba4386 914 usleep_range(1000, 2000);
bc7f75fa
AK
915 timeout--;
916 }
917 if (!timeout) {
3bb99fe2 918 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
919 return -E1000_ERR_RESET;
920 }
921
922 return 0;
923}
924
925/**
926 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
927 * @hw: pointer to the HW structure
564ea9bb 928 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
929 *
930 * Sets the LPLU D0 state according to the active flag. When activating LPLU
931 * this function also disables smart speed and vice versa. LPLU will not be
932 * activated unless the device autonegotiation advertisement meets standards
933 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
934 * pointer entry point only called by PHY setup routines.
935 **/
936static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
937{
938 struct e1000_phy_info *phy = &hw->phy;
939 s32 ret_val;
940 u16 data;
941
942 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
943 if (ret_val)
944 return ret_val;
945
946 if (active) {
947 data |= IGP02E1000_PM_D0_LPLU;
948 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
949 if (ret_val)
950 return ret_val;
951
952 /* When LPLU is enabled, we should disable SmartSpeed */
953 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
954 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
955 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
956 if (ret_val)
957 return ret_val;
958 } else {
959 data &= ~IGP02E1000_PM_D0_LPLU;
960 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
961 /*
962 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
963 * during Dx states where the power conservation is most
964 * important. During driver activity we should enable
ad68076e
BA
965 * SmartSpeed, so performance is maintained.
966 */
bc7f75fa
AK
967 if (phy->smart_speed == e1000_smart_speed_on) {
968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 969 &data);
bc7f75fa
AK
970 if (ret_val)
971 return ret_val;
972
973 data |= IGP01E1000_PSCFR_SMART_SPEED;
974 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 975 data);
bc7f75fa
AK
976 if (ret_val)
977 return ret_val;
978 } else if (phy->smart_speed == e1000_smart_speed_off) {
979 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 980 &data);
bc7f75fa
AK
981 if (ret_val)
982 return ret_val;
983
984 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
985 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 986 data);
bc7f75fa
AK
987 if (ret_val)
988 return ret_val;
989 }
990 }
991
992 return 0;
993}
994
995/**
996 * e1000_reset_hw_82571 - Reset hardware
997 * @hw: pointer to the HW structure
998 *
fe401674 999 * This resets the hardware into a known state.
bc7f75fa
AK
1000 **/
1001static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1002{
dd93f95e 1003 u32 ctrl, ctrl_ext;
bc7f75fa 1004 s32 ret_val;
bc7f75fa 1005
ad68076e
BA
1006 /*
1007 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
1008 * on the last TLP read/write transaction when MAC is reset.
1009 */
1010 ret_val = e1000e_disable_pcie_master(hw);
1011 if (ret_val)
3bb99fe2 1012 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 1013
3bb99fe2 1014 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
1015 ew32(IMC, 0xffffffff);
1016
1017 ew32(RCTL, 0);
1018 ew32(TCTL, E1000_TCTL_PSP);
1019 e1e_flush();
1020
1bba4386 1021 usleep_range(10000, 20000);
bc7f75fa 1022
ad68076e
BA
1023 /*
1024 * Must acquire the MDIO ownership before MAC reset.
1025 * Ownership defaults to firmware after a reset.
1026 */
8c81c9c3
AD
1027 switch (hw->mac.type) {
1028 case e1000_82573:
1b98c2bb
BA
1029 ret_val = e1000_get_hw_semaphore_82573(hw);
1030 break;
8c81c9c3
AD
1031 case e1000_82574:
1032 case e1000_82583:
1b98c2bb 1033 ret_val = e1000_get_hw_semaphore_82574(hw);
8c81c9c3
AD
1034 break;
1035 default:
1036 break;
bc7f75fa 1037 }
1b98c2bb
BA
1038 if (ret_val)
1039 e_dbg("Cannot acquire MDIO ownership\n");
bc7f75fa
AK
1040
1041 ctrl = er32(CTRL);
1042
3bb99fe2 1043 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
1044 ew32(CTRL, ctrl | E1000_CTRL_RST);
1045
1b98c2bb
BA
1046 /* Must release MDIO ownership and mutex after MAC reset. */
1047 switch (hw->mac.type) {
1048 case e1000_82574:
1049 case e1000_82583:
1050 e1000_put_hw_semaphore_82574(hw);
1051 break;
1052 default:
1053 break;
1054 }
1055
bc7f75fa
AK
1056 if (hw->nvm.type == e1000_nvm_flash_hw) {
1057 udelay(10);
1058 ctrl_ext = er32(CTRL_EXT);
1059 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1060 ew32(CTRL_EXT, ctrl_ext);
1061 e1e_flush();
1062 }
1063
1064 ret_val = e1000e_get_auto_rd_done(hw);
1065 if (ret_val)
1066 /* We don't want to continue accessing MAC registers. */
1067 return ret_val;
1068
ad68076e
BA
1069 /*
1070 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
1071 * Need to wait for Phy configuration completion before accessing
1072 * NVM and Phy.
1073 */
8c81c9c3
AD
1074
1075 switch (hw->mac.type) {
1076 case e1000_82573:
1077 case e1000_82574:
1078 case e1000_82583:
bc7f75fa 1079 msleep(25);
8c81c9c3
AD
1080 break;
1081 default:
1082 break;
1083 }
bc7f75fa
AK
1084
1085 /* Clear any pending interrupt events. */
1086 ew32(IMC, 0xffffffff);
dd93f95e 1087 er32(ICR);
bc7f75fa 1088
1aef70ef
BA
1089 if (hw->mac.type == e1000_82571) {
1090 /* Install any alternate MAC address into RAR0 */
1091 ret_val = e1000_check_alt_mac_addr_generic(hw);
1092 if (ret_val)
1093 return ret_val;
608f8a0d 1094
1aef70ef
BA
1095 e1000e_set_laa_state_82571(hw, true);
1096 }
93ca1610 1097
c9523379 1098 /* Reinitialize the 82571 serdes link state machine */
1099 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1100 hw->mac.serdes_link_state = e1000_serdes_link_down;
1101
bc7f75fa
AK
1102 return 0;
1103}
1104
1105/**
1106 * e1000_init_hw_82571 - Initialize hardware
1107 * @hw: pointer to the HW structure
1108 *
1109 * This inits the hardware readying it for operation.
1110 **/
1111static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1112{
1113 struct e1000_mac_info *mac = &hw->mac;
1114 u32 reg_data;
1115 s32 ret_val;
a708dd88 1116 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
1117
1118 e1000_initialize_hw_bits_82571(hw);
1119
1120 /* Initialize identification LED */
d1964eb1 1121 ret_val = mac->ops.id_led_init(hw);
de39b752 1122 if (ret_val)
3bb99fe2 1123 e_dbg("Error initializing identification LED\n");
de39b752 1124 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
1125
1126 /* Disabling VLAN filtering */
3bb99fe2 1127 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 1128 mac->ops.clear_vfta(hw);
bc7f75fa
AK
1129
1130 /* Setup the receive address. */
ad68076e
BA
1131 /*
1132 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
1133 * 82571, we must reserve a RAR for it to work around an issue where
1134 * resetting one port will reload the MAC on the other port.
1135 */
1136 if (e1000e_get_laa_state_82571(hw))
1137 rar_count--;
1138 e1000e_init_rx_addrs(hw, rar_count);
1139
1140 /* Zero out the Multicast HASH table */
3bb99fe2 1141 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
1142 for (i = 0; i < mac->mta_reg_count; i++)
1143 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1144
1145 /* Setup link and flow control */
1146 ret_val = e1000_setup_link_82571(hw);
1147
1148 /* Set the transmit descriptor write-back policy */
e9ec2c0f 1149 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
1150 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1151 E1000_TXDCTL_FULL_TX_DESC_WB |
1152 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1153 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
1154
1155 /* ...for both queues. */
8c81c9c3
AD
1156 switch (mac->type) {
1157 case e1000_82573:
a65a4a0d
BA
1158 e1000e_enable_tx_pkt_filtering(hw);
1159 /* fall through */
8c81c9c3
AD
1160 case e1000_82574:
1161 case e1000_82583:
8c81c9c3
AD
1162 reg_data = er32(GCR);
1163 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1164 ew32(GCR, reg_data);
1165 break;
1166 default:
e9ec2c0f 1167 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1168 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1169 E1000_TXDCTL_FULL_TX_DESC_WB |
1170 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1171 ew32(TXDCTL(1), reg_data);
8c81c9c3 1172 break;
bc7f75fa
AK
1173 }
1174
ad68076e
BA
1175 /*
1176 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1177 * important that we do this after we have tried to establish link
1178 * because the symbol error count will increment wildly if there
1179 * is no link.
1180 */
1181 e1000_clear_hw_cntrs_82571(hw);
1182
1183 return ret_val;
1184}
1185
1186/**
1187 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1188 * @hw: pointer to the HW structure
1189 *
1190 * Initializes required hardware-dependent bits needed for normal operation.
1191 **/
1192static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1193{
1194 u32 reg;
1195
1196 /* Transmit Descriptor Control 0 */
e9ec2c0f 1197 reg = er32(TXDCTL(0));
bc7f75fa 1198 reg |= (1 << 22);
e9ec2c0f 1199 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1200
1201 /* Transmit Descriptor Control 1 */
e9ec2c0f 1202 reg = er32(TXDCTL(1));
bc7f75fa 1203 reg |= (1 << 22);
e9ec2c0f 1204 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1205
1206 /* Transmit Arbitration Control 0 */
e9ec2c0f 1207 reg = er32(TARC(0));
bc7f75fa
AK
1208 reg &= ~(0xF << 27); /* 30:27 */
1209 switch (hw->mac.type) {
1210 case e1000_82571:
1211 case e1000_82572:
1212 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1213 break;
d6cb17d5
BA
1214 case e1000_82574:
1215 case e1000_82583:
1216 reg |= (1 << 26);
1217 break;
bc7f75fa
AK
1218 default:
1219 break;
1220 }
e9ec2c0f 1221 ew32(TARC(0), reg);
bc7f75fa
AK
1222
1223 /* Transmit Arbitration Control 1 */
e9ec2c0f 1224 reg = er32(TARC(1));
bc7f75fa
AK
1225 switch (hw->mac.type) {
1226 case e1000_82571:
1227 case e1000_82572:
1228 reg &= ~((1 << 29) | (1 << 30));
1229 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1230 if (er32(TCTL) & E1000_TCTL_MULR)
1231 reg &= ~(1 << 28);
1232 else
1233 reg |= (1 << 28);
e9ec2c0f 1234 ew32(TARC(1), reg);
bc7f75fa
AK
1235 break;
1236 default:
1237 break;
1238 }
1239
1240 /* Device Control */
8c81c9c3
AD
1241 switch (hw->mac.type) {
1242 case e1000_82573:
1243 case e1000_82574:
1244 case e1000_82583:
bc7f75fa
AK
1245 reg = er32(CTRL);
1246 reg &= ~(1 << 29);
1247 ew32(CTRL, reg);
8c81c9c3
AD
1248 break;
1249 default:
1250 break;
bc7f75fa
AK
1251 }
1252
1253 /* Extended Device Control */
8c81c9c3
AD
1254 switch (hw->mac.type) {
1255 case e1000_82573:
1256 case e1000_82574:
1257 case e1000_82583:
bc7f75fa
AK
1258 reg = er32(CTRL_EXT);
1259 reg &= ~(1 << 23);
1260 reg |= (1 << 22);
1261 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1262 break;
1263 default:
1264 break;
bc7f75fa 1265 }
4662e82b 1266
6ea7ae1d
AD
1267 if (hw->mac.type == e1000_82571) {
1268 reg = er32(PBA_ECC);
1269 reg |= E1000_PBA_ECC_CORR_EN;
1270 ew32(PBA_ECC, reg);
1271 }
5df3f0ea 1272 /*
1273 * Workaround for hardware errata.
1274 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1275 */
1276
1277 if ((hw->mac.type == e1000_82571) ||
1278 (hw->mac.type == e1000_82572)) {
1279 reg = er32(CTRL_EXT);
1280 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1281 ew32(CTRL_EXT, reg);
1282 }
1283
6ea7ae1d 1284
78272bba 1285 /* PCI-Ex Control Registers */
8c81c9c3
AD
1286 switch (hw->mac.type) {
1287 case e1000_82574:
1288 case e1000_82583:
4662e82b
BA
1289 reg = er32(GCR);
1290 reg |= (1 << 22);
1291 ew32(GCR, reg);
78272bba 1292
84efb7b9
BA
1293 /*
1294 * Workaround for hardware errata.
1295 * apply workaround for hardware errata documented in errata
1296 * docs Fixes issue where some error prone or unreliable PCIe
1297 * completions are occurring, particularly with ASPM enabled.
af667a29 1298 * Without fix, issue can cause Tx timeouts.
84efb7b9 1299 */
78272bba
JB
1300 reg = er32(GCR2);
1301 reg |= 1;
1302 ew32(GCR2, reg);
8c81c9c3
AD
1303 break;
1304 default:
1305 break;
4662e82b 1306 }
bc7f75fa
AK
1307}
1308
1309/**
caaddaf8 1310 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1311 * @hw: pointer to the HW structure
1312 *
1313 * Clears the register array which contains the VLAN filter table by
1314 * setting all the values to 0.
1315 **/
caaddaf8 1316static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1317{
1318 u32 offset;
1319 u32 vfta_value = 0;
1320 u32 vfta_offset = 0;
1321 u32 vfta_bit_in_reg = 0;
1322
8c81c9c3
AD
1323 switch (hw->mac.type) {
1324 case e1000_82573:
1325 case e1000_82574:
1326 case e1000_82583:
bc7f75fa 1327 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1328 /*
1329 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1330 * a single VLAN ID. The following operations
1331 * determine which 32b entry (i.e. offset) into the
1332 * array we want to set the VLAN ID (i.e. bit) of
1333 * the manageability unit.
1334 */
1335 vfta_offset = (hw->mng_cookie.vlan_id >>
1336 E1000_VFTA_ENTRY_SHIFT) &
1337 E1000_VFTA_ENTRY_MASK;
1338 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1339 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1340 }
8c81c9c3
AD
1341 break;
1342 default:
1343 break;
bc7f75fa
AK
1344 }
1345 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1346 /*
1347 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1348 * manageability VLAN ID, then clear all bits except that of
1349 * the manageability unit.
1350 */
1351 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1352 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1353 e1e_flush();
1354 }
1355}
1356
4662e82b
BA
1357/**
1358 * e1000_check_mng_mode_82574 - Check manageability is enabled
1359 * @hw: pointer to the HW structure
1360 *
1361 * Reads the NVM Initialization Control Word 2 and returns true
1362 * (>0) if any manageability is enabled, else false (0).
1363 **/
1364static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1365{
1366 u16 data;
1367
1368 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1369 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1370}
1371
1372/**
1373 * e1000_led_on_82574 - Turn LED on
1374 * @hw: pointer to the HW structure
1375 *
1376 * Turn LED on.
1377 **/
1378static s32 e1000_led_on_82574(struct e1000_hw *hw)
1379{
1380 u32 ctrl;
1381 u32 i;
1382
1383 ctrl = hw->mac.ledctl_mode2;
1384 if (!(E1000_STATUS_LU & er32(STATUS))) {
1385 /*
1386 * If no link, then turn LED on by setting the invert bit
1387 * for each LED that's "on" (0x0E) in ledctl_mode2.
1388 */
1389 for (i = 0; i < 4; i++)
1390 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1391 E1000_LEDCTL_MODE_LED_ON)
1392 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1393 }
1394 ew32(LEDCTL, ctrl);
1395
1396 return 0;
1397}
1398
ff10e13c
CW
1399/**
1400 * e1000_check_phy_82574 - check 82574 phy hung state
1401 * @hw: pointer to the HW structure
1402 *
1403 * Returns whether phy is hung or not
1404 **/
1405bool e1000_check_phy_82574(struct e1000_hw *hw)
1406{
1407 u16 status_1kbt = 0;
1408 u16 receive_errors = 0;
ff10e13c
CW
1409 s32 ret_val = 0;
1410
1411 /*
1412 * Read PHY Receive Error counter first, if its is max - all F's then
1413 * read the Base1000T status register If both are max then PHY is hung.
1414 */
1415 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
ff10e13c 1416 if (ret_val)
5015e53a 1417 return false;
ff10e13c
CW
1418 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1419 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1420 if (ret_val)
5015e53a 1421 return false;
ff10e13c
CW
1422 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1423 E1000_IDLE_ERROR_COUNT_MASK)
5015e53a 1424 return true;
ff10e13c 1425 }
5015e53a
BA
1426
1427 return false;
ff10e13c
CW
1428}
1429
bc7f75fa
AK
1430/**
1431 * e1000_setup_link_82571 - Setup flow control and link settings
1432 * @hw: pointer to the HW structure
1433 *
1434 * Determines which flow control settings to use, then configures flow
1435 * control. Calls the appropriate media-specific link configuration
1436 * function. Assuming the adapter has a valid link partner, a valid link
1437 * should be established. Assumes the hardware has previously been reset
1438 * and the transmitter and receiver are not enabled.
1439 **/
1440static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1441{
ad68076e
BA
1442 /*
1443 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1444 * the default flow control setting, so we explicitly
1445 * set it to full.
1446 */
8c81c9c3
AD
1447 switch (hw->mac.type) {
1448 case e1000_82573:
1449 case e1000_82574:
1450 case e1000_82583:
1451 if (hw->fc.requested_mode == e1000_fc_default)
1452 hw->fc.requested_mode = e1000_fc_full;
1453 break;
1454 default:
1455 break;
1456 }
bc7f75fa
AK
1457
1458 return e1000e_setup_link(hw);
1459}
1460
1461/**
1462 * e1000_setup_copper_link_82571 - Configure copper link settings
1463 * @hw: pointer to the HW structure
1464 *
1465 * Configures the link for auto-neg or forced speed and duplex. Then we check
1466 * for link, once link is established calls to configure collision distance
1467 * and flow control are called.
1468 **/
1469static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1470{
1471 u32 ctrl;
bc7f75fa
AK
1472 s32 ret_val;
1473
1474 ctrl = er32(CTRL);
1475 ctrl |= E1000_CTRL_SLU;
1476 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1477 ew32(CTRL, ctrl);
1478
1479 switch (hw->phy.type) {
1480 case e1000_phy_m88:
4662e82b 1481 case e1000_phy_bm:
bc7f75fa
AK
1482 ret_val = e1000e_copper_link_setup_m88(hw);
1483 break;
1484 case e1000_phy_igp_2:
1485 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1486 break;
1487 default:
1488 return -E1000_ERR_PHY;
1489 break;
1490 }
1491
1492 if (ret_val)
1493 return ret_val;
1494
7eb61d81 1495 return e1000e_setup_copper_link(hw);
bc7f75fa
AK
1496}
1497
1498/**
1499 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1500 * @hw: pointer to the HW structure
1501 *
1502 * Configures collision distance and flow control for fiber and serdes links.
1503 * Upon successful setup, poll for link.
1504 **/
1505static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1506{
1507 switch (hw->mac.type) {
1508 case e1000_82571:
1509 case e1000_82572:
ad68076e
BA
1510 /*
1511 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1512 * of reset to take the adapter out of that mode. So we
1513 * have to explicitly take the adapter out of loopback
489815ce 1514 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1515 * if another tool failed to take it out of loopback mode.
1516 */
ad68076e 1517 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1518 break;
1519 default:
1520 break;
1521 }
1522
1523 return e1000e_setup_fiber_serdes_link(hw);
1524}
1525
c9523379 1526/**
1527 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1528 * @hw: pointer to the HW structure
1529 *
1a40d5c1
BA
1530 * Reports the link state as up or down.
1531 *
1532 * If autonegotiation is supported by the link partner, the link state is
1533 * determined by the result of autonegotiation. This is the most likely case.
1534 * If autonegotiation is not supported by the link partner, and the link
1535 * has a valid signal, force the link up.
1536 *
1537 * The link state is represented internally here by 4 states:
1538 *
1539 * 1) down
1540 * 2) autoneg_progress
3ad2f3fb 1541 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1542 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1543 *
c9523379 1544 **/
f6370117 1545static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1546{
1547 struct e1000_mac_info *mac = &hw->mac;
1548 u32 rxcw;
1549 u32 ctrl;
1550 u32 status;
d9c76f99
BA
1551 u32 txcw;
1552 u32 i;
c9523379 1553 s32 ret_val = 0;
1554
1555 ctrl = er32(CTRL);
1556 status = er32(STATUS);
1557 rxcw = er32(RXCW);
1558
1559 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1560
1561 /* Receiver is synchronized with no invalid bits. */
1562 switch (mac->serdes_link_state) {
1563 case e1000_serdes_link_autoneg_complete:
1564 if (!(status & E1000_STATUS_LU)) {
1565 /*
1566 * We have lost link, retry autoneg before
1567 * reporting link failure
1568 */
1569 mac->serdes_link_state =
1570 e1000_serdes_link_autoneg_progress;
1a40d5c1 1571 mac->serdes_has_link = false;
3bb99fe2 1572 e_dbg("AN_UP -> AN_PROG\n");
a82a14f4
BA
1573 } else {
1574 mac->serdes_has_link = true;
c9523379 1575 }
a82a14f4 1576 break;
c9523379 1577
1578 case e1000_serdes_link_forced_up:
1579 /*
1580 * If we are receiving /C/ ordered sets, re-enable
1581 * auto-negotiation in the TXCW register and disable
1582 * forced link in the Device Control register in an
1583 * attempt to auto-negotiate with our link partner.
d478eb44
BA
1584 * If the partner code word is null, stop forcing
1585 * and restart auto negotiation.
c9523379 1586 */
d478eb44 1587 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
c9523379 1588 /* Enable autoneg, and unforce link up */
1589 ew32(TXCW, mac->txcw);
1a40d5c1 1590 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1591 mac->serdes_link_state =
1592 e1000_serdes_link_autoneg_progress;
1a40d5c1 1593 mac->serdes_has_link = false;
3bb99fe2 1594 e_dbg("FORCED_UP -> AN_PROG\n");
a82a14f4
BA
1595 } else {
1596 mac->serdes_has_link = true;
c9523379 1597 }
1598 break;
1599
1600 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1601 if (rxcw & E1000_RXCW_C) {
1602 /*
1603 * We received /C/ ordered sets, meaning the
1604 * link partner has autonegotiated, and we can
1605 * trust the Link Up (LU) status bit.
1606 */
1607 if (status & E1000_STATUS_LU) {
1608 mac->serdes_link_state =
1609 e1000_serdes_link_autoneg_complete;
1610 e_dbg("AN_PROG -> AN_UP\n");
1611 mac->serdes_has_link = true;
1612 } else {
1613 /* Autoneg completed, but failed. */
1614 mac->serdes_link_state =
1615 e1000_serdes_link_down;
1616 e_dbg("AN_PROG -> DOWN\n");
1617 }
c9523379 1618 } else {
1619 /*
1a40d5c1
BA
1620 * The link partner did not autoneg.
1621 * Force link up and full duplex, and change
1622 * state to forced.
c9523379 1623 */
1a40d5c1 1624 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1625 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1626 ew32(CTRL, ctrl);
1627
1628 /* Configure Flow Control after link up. */
1a40d5c1 1629 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1630 if (ret_val) {
3bb99fe2 1631 e_dbg("Error config flow control\n");
c9523379 1632 break;
1633 }
1634 mac->serdes_link_state =
1635 e1000_serdes_link_forced_up;
1a40d5c1 1636 mac->serdes_has_link = true;
3bb99fe2 1637 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1638 }
c9523379 1639 break;
1640
1641 case e1000_serdes_link_down:
1642 default:
1a40d5c1
BA
1643 /*
1644 * The link was down but the receiver has now gained
c9523379 1645 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1646 * up.
1647 */
c9523379 1648 ew32(TXCW, mac->txcw);
1a40d5c1 1649 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1650 mac->serdes_link_state =
1651 e1000_serdes_link_autoneg_progress;
a82a14f4 1652 mac->serdes_has_link = false;
3bb99fe2 1653 e_dbg("DOWN -> AN_PROG\n");
c9523379 1654 break;
1655 }
1656 } else {
1657 if (!(rxcw & E1000_RXCW_SYNCH)) {
1658 mac->serdes_has_link = false;
1659 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1660 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1661 } else {
1662 /*
d9c76f99
BA
1663 * Check several times, if Sync and Config
1664 * both are consistently 1 then simply ignore
1665 * the Invalid bit and restart Autoneg
c9523379 1666 */
d9c76f99
BA
1667 for (i = 0; i < AN_RETRY_COUNT; i++) {
1668 udelay(10);
1669 rxcw = er32(RXCW);
1670 if ((rxcw & E1000_RXCW_IV) &&
1671 !((rxcw & E1000_RXCW_SYNCH) &&
1672 (rxcw & E1000_RXCW_C))) {
1673 mac->serdes_has_link = false;
1674 mac->serdes_link_state =
1675 e1000_serdes_link_down;
1676 e_dbg("ANYSTATE -> DOWN\n");
1677 break;
1678 }
1679 }
1680
1681 if (i == AN_RETRY_COUNT) {
1682 txcw = er32(TXCW);
1683 txcw |= E1000_TXCW_ANE;
1684 ew32(TXCW, txcw);
1685 mac->serdes_link_state =
1686 e1000_serdes_link_autoneg_progress;
c9523379 1687 mac->serdes_has_link = false;
d9c76f99 1688 e_dbg("ANYSTATE -> AN_PROG\n");
c9523379 1689 }
1690 }
1691 }
1692
1693 return ret_val;
1694}
1695
bc7f75fa
AK
1696/**
1697 * e1000_valid_led_default_82571 - Verify a valid default LED config
1698 * @hw: pointer to the HW structure
1699 * @data: pointer to the NVM (EEPROM)
1700 *
1701 * Read the EEPROM for the current default LED configuration. If the
1702 * LED configuration is not valid, set to a valid LED configuration.
1703 **/
1704static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1705{
1706 s32 ret_val;
1707
1708 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1709 if (ret_val) {
3bb99fe2 1710 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1711 return ret_val;
1712 }
1713
8c81c9c3
AD
1714 switch (hw->mac.type) {
1715 case e1000_82573:
1716 case e1000_82574:
1717 case e1000_82583:
1718 if (*data == ID_LED_RESERVED_F746)
1719 *data = ID_LED_DEFAULT_82573;
1720 break;
1721 default:
1722 if (*data == ID_LED_RESERVED_0000 ||
1723 *data == ID_LED_RESERVED_FFFF)
1724 *data = ID_LED_DEFAULT;
1725 break;
1726 }
bc7f75fa
AK
1727
1728 return 0;
1729}
1730
1731/**
1732 * e1000e_get_laa_state_82571 - Get locally administered address state
1733 * @hw: pointer to the HW structure
1734 *
489815ce 1735 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1736 **/
1737bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1738{
1739 if (hw->mac.type != e1000_82571)
564ea9bb 1740 return false;
bc7f75fa
AK
1741
1742 return hw->dev_spec.e82571.laa_is_present;
1743}
1744
1745/**
1746 * e1000e_set_laa_state_82571 - Set locally administered address state
1747 * @hw: pointer to the HW structure
1748 * @state: enable/disable locally administered address
1749 *
5ff5b664 1750 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1751 **/
1752void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1753{
1754 if (hw->mac.type != e1000_82571)
1755 return;
1756
1757 hw->dev_spec.e82571.laa_is_present = state;
1758
1759 /* If workaround is activated... */
1760 if (state)
ad68076e
BA
1761 /*
1762 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1763 * between the time RAR[0] gets clobbered and the time it
1764 * gets fixed, the actual LAA is in one of the RARs and no
1765 * incoming packets directed to this port are dropped.
1766 * Eventually the LAA will be in RAR[0] and RAR[14].
1767 */
1768 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1769}
1770
1771/**
1772 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1773 * @hw: pointer to the HW structure
1774 *
1775 * Verifies that the EEPROM has completed the update. After updating the
1776 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1777 * the checksum fix is not implemented, we need to set the bit and update
1778 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1779 * we need to return bad checksum.
1780 **/
1781static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1782{
1783 struct e1000_nvm_info *nvm = &hw->nvm;
1784 s32 ret_val;
1785 u16 data;
1786
1787 if (nvm->type != e1000_nvm_flash_hw)
1788 return 0;
1789
ad68076e
BA
1790 /*
1791 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1792 * 10h-12h. Checksum may need to be fixed.
1793 */
1794 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1795 if (ret_val)
1796 return ret_val;
1797
1798 if (!(data & 0x10)) {
ad68076e
BA
1799 /*
1800 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1801 * when the checksum has already been fixed. If
1802 * the checksum is still wrong and this bit is a
1803 * 1, we need to return bad checksum. Otherwise,
1804 * we need to set this bit to a 1 and update the
1805 * checksum.
1806 */
1807 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1808 if (ret_val)
1809 return ret_val;
1810
1811 if (!(data & 0x8000)) {
1812 data |= 0x8000;
1813 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1814 if (ret_val)
1815 return ret_val;
1816 ret_val = e1000e_update_nvm_checksum(hw);
1817 }
1818 }
1819
1820 return 0;
1821}
1822
608f8a0d
BA
1823/**
1824 * e1000_read_mac_addr_82571 - Read device MAC address
1825 * @hw: pointer to the HW structure
1826 **/
1827static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1828{
1aef70ef 1829 if (hw->mac.type == e1000_82571) {
5015e53a
BA
1830 s32 ret_val = 0;
1831
1aef70ef
BA
1832 /*
1833 * If there's an alternate MAC address place it in RAR0
1834 * so that it will override the Si installed default perm
1835 * address.
1836 */
1837 ret_val = e1000_check_alt_mac_addr_generic(hw);
1838 if (ret_val)
5015e53a 1839 return ret_val;
1aef70ef 1840 }
608f8a0d 1841
5015e53a 1842 return e1000_read_mac_addr_generic(hw);
608f8a0d
BA
1843}
1844
17f208de
BA
1845/**
1846 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1847 * @hw: pointer to the HW structure
1848 *
1849 * In the case of a PHY power down to save power, or to turn off link during a
1850 * driver unload, or wake on lan is not enabled, remove the link.
1851 **/
1852static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1853{
1854 struct e1000_phy_info *phy = &hw->phy;
1855 struct e1000_mac_info *mac = &hw->mac;
1856
668018d7 1857 if (!phy->ops.check_reset_block)
17f208de
BA
1858 return;
1859
1860 /* If the management interface is not enabled, then power down */
1861 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1862 e1000_power_down_phy_copper(hw);
17f208de
BA
1863}
1864
bc7f75fa
AK
1865/**
1866 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1867 * @hw: pointer to the HW structure
1868 *
1869 * Clears the hardware counters by reading the counter registers.
1870 **/
1871static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1872{
bc7f75fa
AK
1873 e1000e_clear_hw_cntrs_base(hw);
1874
99673d9b
BA
1875 er32(PRC64);
1876 er32(PRC127);
1877 er32(PRC255);
1878 er32(PRC511);
1879 er32(PRC1023);
1880 er32(PRC1522);
1881 er32(PTC64);
1882 er32(PTC127);
1883 er32(PTC255);
1884 er32(PTC511);
1885 er32(PTC1023);
1886 er32(PTC1522);
1887
1888 er32(ALGNERRC);
1889 er32(RXERRC);
1890 er32(TNCRS);
1891 er32(CEXTERR);
1892 er32(TSCTC);
1893 er32(TSCTFC);
1894
1895 er32(MGTPRC);
1896 er32(MGTPDC);
1897 er32(MGTPTC);
1898
1899 er32(IAC);
1900 er32(ICRXOC);
1901
1902 er32(ICRXPTC);
1903 er32(ICRXATC);
1904 er32(ICTXPTC);
1905 er32(ICTXATC);
1906 er32(ICTXQEC);
1907 er32(ICTXQMTC);
1908 er32(ICRXDMTC);
bc7f75fa
AK
1909}
1910
8ce9d6c7 1911static const struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1912 /* .check_mng_mode: mac type dependent */
bc7f75fa 1913 /* .check_for_link: media type dependent */
d1964eb1 1914 .id_led_init = e1000e_id_led_init_generic,
bc7f75fa
AK
1915 .cleanup_led = e1000e_cleanup_led_generic,
1916 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1917 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1918 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1919 /* .get_link_up_info: media type dependent */
4662e82b 1920 /* .led_on: mac type dependent */
bc7f75fa 1921 .led_off = e1000e_led_off_generic,
ab8932f3 1922 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1923 .write_vfta = e1000_write_vfta_generic,
1924 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1925 .reset_hw = e1000_reset_hw_82571,
1926 .init_hw = e1000_init_hw_82571,
1927 .setup_link = e1000_setup_link_82571,
1928 /* .setup_physical_interface: media type dependent */
a4f58f54 1929 .setup_led = e1000e_setup_led_generic,
608f8a0d 1930 .read_mac_addr = e1000_read_mac_addr_82571,
bc7f75fa
AK
1931};
1932
8ce9d6c7 1933static const struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1934 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1935 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1936 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1937 .commit = NULL,
bc7f75fa
AK
1938 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1939 .get_cfg_done = e1000_get_cfg_done_82571,
1940 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1941 .get_info = e1000e_get_phy_info_igp,
1942 .read_reg = e1000e_read_phy_reg_igp,
1943 .release = e1000_put_hw_semaphore_82571,
1944 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1945 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1946 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1947 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1948 .cfg_on_link_up = NULL,
bc7f75fa
AK
1949};
1950
8ce9d6c7 1951static const struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1952 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1953 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1954 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1955 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1956 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1957 .get_cfg_done = e1000e_get_cfg_done,
1958 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1959 .get_info = e1000e_get_phy_info_m88,
1960 .read_reg = e1000e_read_phy_reg_m88,
1961 .release = e1000_put_hw_semaphore_82571,
1962 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1963 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1964 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1965 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1966 .cfg_on_link_up = NULL,
bc7f75fa
AK
1967};
1968
8ce9d6c7 1969static const struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1970 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1971 .check_polarity = e1000_check_polarity_m88,
4662e82b 1972 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1973 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1974 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1975 .get_cfg_done = e1000e_get_cfg_done,
1976 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1977 .get_info = e1000e_get_phy_info_m88,
1978 .read_reg = e1000e_read_phy_reg_bm2,
1979 .release = e1000_put_hw_semaphore_82571,
1980 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1981 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1982 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1983 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1984 .cfg_on_link_up = NULL,
4662e82b
BA
1985};
1986
8ce9d6c7 1987static const struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1988 .acquire = e1000_acquire_nvm_82571,
1989 .read = e1000e_read_nvm_eerd,
1990 .release = e1000_release_nvm_82571,
1991 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1992 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1993 .validate = e1000_validate_nvm_checksum_82571,
1994 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1995};
1996
8ce9d6c7 1997const struct e1000_info e1000_82571_info = {
bc7f75fa
AK
1998 .mac = e1000_82571,
1999 .flags = FLAG_HAS_HW_VLAN_FILTER
2000 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
2001 | FLAG_HAS_WOL
2002 | FLAG_APME_IN_CTRL3
bc7f75fa 2003 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
2004 | FLAG_HAS_SMART_POWER_DOWN
2005 | FLAG_RESET_OVERWRITES_LAA /* errata */
2006 | FLAG_TARC_SPEED_MODE_BIT /* errata */
2007 | FLAG_APME_CHECK_PORT_B,
3a3b7586
JB
2008 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2009 | FLAG2_DMA_BURST,
bc7f75fa 2010 .pba = 38,
2adc55c9 2011 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 2012 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2013 .mac_ops = &e82571_mac_ops,
2014 .phy_ops = &e82_phy_ops_igp,
2015 .nvm_ops = &e82571_nvm_ops,
2016};
2017
8ce9d6c7 2018const struct e1000_info e1000_82572_info = {
bc7f75fa
AK
2019 .mac = e1000_82572,
2020 .flags = FLAG_HAS_HW_VLAN_FILTER
2021 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
2022 | FLAG_HAS_WOL
2023 | FLAG_APME_IN_CTRL3
bc7f75fa 2024 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 2025 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
3a3b7586
JB
2026 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2027 | FLAG2_DMA_BURST,
bc7f75fa 2028 .pba = 38,
2adc55c9 2029 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 2030 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2031 .mac_ops = &e82571_mac_ops,
2032 .phy_ops = &e82_phy_ops_igp,
2033 .nvm_ops = &e82571_nvm_ops,
2034};
2035
8ce9d6c7 2036const struct e1000_info e1000_82573_info = {
bc7f75fa
AK
2037 .mac = e1000_82573,
2038 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
2039 | FLAG_HAS_WOL
2040 | FLAG_APME_IN_CTRL3
bc7f75fa
AK
2041 | FLAG_HAS_SMART_POWER_DOWN
2042 | FLAG_HAS_AMT
bc7f75fa 2043 | FLAG_HAS_SWSM_ON_LOAD,
78cd29d5
BA
2044 .flags2 = FLAG2_DISABLE_ASPM_L1
2045 | FLAG2_DISABLE_ASPM_L0S,
bc7f75fa 2046 .pba = 20,
2adc55c9 2047 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 2048 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2049 .mac_ops = &e82571_mac_ops,
2050 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 2051 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
2052};
2053
8ce9d6c7 2054const struct e1000_info e1000_82574_info = {
4662e82b
BA
2055 .mac = e1000_82574,
2056 .flags = FLAG_HAS_HW_VLAN_FILTER
2057 | FLAG_HAS_MSIX
2058 | FLAG_HAS_JUMBO_FRAMES
2059 | FLAG_HAS_WOL
2060 | FLAG_APME_IN_CTRL3
4662e82b
BA
2061 | FLAG_HAS_SMART_POWER_DOWN
2062 | FLAG_HAS_AMT
2063 | FLAG_HAS_CTRLEXT_ON_LOAD,
78cd29d5 2064 .flags2 = FLAG2_CHECK_PHY_HANG
7f99ae63
BA
2065 | FLAG2_DISABLE_ASPM_L0S
2066 | FLAG2_NO_DISABLE_RX,
ed5c2b0b 2067 .pba = 32,
a825e00c 2068 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
2069 .get_variants = e1000_get_variants_82571,
2070 .mac_ops = &e82571_mac_ops,
2071 .phy_ops = &e82_phy_ops_bm,
2072 .nvm_ops = &e82571_nvm_ops,
2073};
2074
8ce9d6c7 2075const struct e1000_info e1000_82583_info = {
8c81c9c3
AD
2076 .mac = e1000_82583,
2077 .flags = FLAG_HAS_HW_VLAN_FILTER
2078 | FLAG_HAS_WOL
2079 | FLAG_APME_IN_CTRL3
8c81c9c3
AD
2080 | FLAG_HAS_SMART_POWER_DOWN
2081 | FLAG_HAS_AMT
a3d72d5d 2082 | FLAG_HAS_JUMBO_FRAMES
8c81c9c3 2083 | FLAG_HAS_CTRLEXT_ON_LOAD,
7f99ae63
BA
2084 .flags2 = FLAG2_DISABLE_ASPM_L0S
2085 | FLAG2_NO_DISABLE_RX,
ed5c2b0b 2086 .pba = 32,
a3d72d5d 2087 .max_hw_frame_size = DEFAULT_JUMBO,
8c81c9c3
AD
2088 .get_variants = e1000_get_variants_82571,
2089 .mac_ops = &e82571_mac_ops,
2090 .phy_ops = &e82_phy_ops_bm,
2091 .nvm_ops = &e82571_nvm_ops,
2092};
2093