]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/intel/e1000e/ich8lan.c
e1000e: cleanup LEADING_SPACE checkpatch warnings
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
bf67044b 4 Copyright(c) 1999 - 2013 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
e921eb1a 29/* 82562G 10/100 Network Connection
bc7f75fa
AK
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
97ac8cae
BA
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
1605927f 43 * 82567V Gigabit Network Connection
97ac8cae
BA
44 * 82567LM-2 Gigabit Network Connection
45 * 82567LF-2 Gigabit Network Connection
46 * 82567V-2 Gigabit Network Connection
f4187b56
BA
47 * 82567LF-3 Gigabit Network Connection
48 * 82567LM-3 Gigabit Network Connection
2f15f9d6 49 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
50 * 82577LM Gigabit Network Connection
51 * 82577LC Gigabit Network Connection
52 * 82578DM Gigabit Network Connection
53 * 82578DC Gigabit Network Connection
d3738bb8
BA
54 * 82579LM Gigabit Network Connection
55 * 82579V Gigabit Network Connection
bc7f75fa
AK
56 */
57
bc7f75fa
AK
58#include "e1000.h"
59
bc7f75fa
AK
60/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61/* Offset 04h HSFSTS */
62union ich8_hws_flash_status {
63 struct ich8_hsfsts {
362e20ca
BA
64 u16 flcdone:1; /* bit 0 Flash Cycle Done */
65 u16 flcerr:1; /* bit 1 Flash Cycle Error */
66 u16 dael:1; /* bit 2 Direct Access error Log */
67 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
68 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
69 u16 reserved1:2; /* bit 13:6 Reserved */
70 u16 reserved2:6; /* bit 13:6 Reserved */
71 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
72 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
bc7f75fa
AK
73 } hsf_status;
74 u16 regval;
75};
76
77/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78/* Offset 06h FLCTL */
79union ich8_hws_flash_ctrl {
80 struct ich8_hsflctl {
362e20ca
BA
81 u16 flcgo:1; /* 0 Flash Cycle Go */
82 u16 flcycle:2; /* 2:1 Flash Cycle */
83 u16 reserved:5; /* 7:3 Reserved */
84 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
85 u16 flockdn:6; /* 15:10 Reserved */
bc7f75fa
AK
86 } hsf_ctrl;
87 u16 regval;
88};
89
90/* ICH Flash Region Access Permissions */
91union ich8_hws_flash_regacc {
92 struct ich8_flracc {
362e20ca
BA
93 u32 grra:8; /* 0:7 GbE region Read Access */
94 u32 grwa:8; /* 8:15 GbE region Write Access */
95 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
96 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
bc7f75fa
AK
97 } hsf_flregacc;
98 u16 regval;
99};
100
4a770358
BA
101/* ICH Flash Protected Region */
102union ich8_flash_protected_range {
103 struct ich8_pr {
104 u32 base:13; /* 0:12 Protected Range Base */
105 u32 reserved1:2; /* 13:14 Reserved */
106 u32 rpe:1; /* 15 Read Protection Enable */
107 u32 limit:13; /* 16:28 Protected Range Limit */
108 u32 reserved2:2; /* 29:30 Reserved */
109 u32 wpe:1; /* 31 Write Protection Enable */
110 } range;
111 u32 regval;
112};
113
bc7f75fa
AK
114static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
116static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118 u32 offset, u8 byte);
f4187b56
BA
119static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120 u8 *data);
bc7f75fa
AK
121static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122 u16 *data);
123static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124 u8 size, u16 *data);
bc7f75fa 125static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
126static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 134static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 135static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 136static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1f96012d 137static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 138static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
eb7700dc
BA
139static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
69e1e019 141static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
2fbe4526 142static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
831bd2e6 143static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
605c82ba 144static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
bc7f75fa
AK
145
146static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
147{
148 return readw(hw->flash_address + reg);
149}
150
151static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
152{
153 return readl(hw->flash_address + reg);
154}
155
156static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
157{
158 writew(val, hw->flash_address + reg);
159}
160
161static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
162{
163 writel(val, hw->flash_address + reg);
164}
165
166#define er16flash(reg) __er16flash(hw, (reg))
167#define er32flash(reg) __er32flash(hw, (reg))
0e15df49
BA
168#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
169#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
bc7f75fa 170
cb17aab9
BA
171/**
172 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
173 * @hw: pointer to the HW structure
174 *
175 * Test access to the PHY registers by reading the PHY ID registers. If
176 * the PHY ID is already known (e.g. resume path) compare it with known ID,
177 * otherwise assume the read PHY ID is correct if it is valid.
178 *
179 * Assumes the sw/fw/hw semaphore is already acquired.
180 **/
181static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
99730e4c 182{
a52359b5
BA
183 u16 phy_reg = 0;
184 u32 phy_id = 0;
185 s32 ret_val;
186 u16 retry_count;
187
188 for (retry_count = 0; retry_count < 2; retry_count++) {
c2ade1a4 189 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
a52359b5
BA
190 if (ret_val || (phy_reg == 0xFFFF))
191 continue;
192 phy_id = (u32)(phy_reg << 16);
193
c2ade1a4 194 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
a52359b5
BA
195 if (ret_val || (phy_reg == 0xFFFF)) {
196 phy_id = 0;
197 continue;
198 }
199 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
200 break;
201 }
cb17aab9
BA
202
203 if (hw->phy.id) {
204 if (hw->phy.id == phy_id)
205 return true;
a52359b5
BA
206 } else if (phy_id) {
207 hw->phy.id = phy_id;
208 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
cb17aab9
BA
209 return true;
210 }
211
e921eb1a 212 /* In case the PHY needs to be in mdio slow mode,
a52359b5
BA
213 * set slow mode and try to get the PHY id again.
214 */
215 hw->phy.ops.release(hw);
216 ret_val = e1000_set_mdio_slow_mode_hv(hw);
217 if (!ret_val)
218 ret_val = e1000e_get_phy_id(hw);
219 hw->phy.ops.acquire(hw);
220
221 return !ret_val;
cb17aab9
BA
222}
223
224/**
225 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
226 * @hw: pointer to the HW structure
227 *
228 * Workarounds/flow necessary for PHY initialization during driver load
229 * and resume paths.
230 **/
231static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
232{
233 u32 mac_reg, fwsm = er32(FWSM);
234 s32 ret_val;
2fbe4526 235 u16 phy_reg;
cb17aab9 236
6e928b72
BA
237 /* Gate automatic PHY configuration by hardware on managed and
238 * non-managed 82579 and newer adapters.
239 */
240 e1000_gate_hw_phy_config_ich8lan(hw, true);
241
cb17aab9
BA
242 ret_val = hw->phy.ops.acquire(hw);
243 if (ret_val) {
244 e_dbg("Failed to initialize PHY flow\n");
6e928b72 245 goto out;
cb17aab9
BA
246 }
247
e921eb1a 248 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
cb17aab9
BA
249 * inaccessible and resetting the PHY is not blocked, toggle the
250 * LANPHYPC Value bit to force the interconnect to PCIe mode.
251 */
252 switch (hw->mac.type) {
2fbe4526
BA
253 case e1000_pch_lpt:
254 if (e1000_phy_is_accessible_pchlan(hw))
255 break;
256
e921eb1a 257 /* Before toggling LANPHYPC, see if PHY is accessible by
2fbe4526
BA
258 * forcing MAC to SMBus mode first.
259 */
260 mac_reg = er32(CTRL_EXT);
261 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
262 ew32(CTRL_EXT, mac_reg);
263
264 /* fall-through */
cb17aab9 265 case e1000_pch2lan:
2fbe4526
BA
266 if (e1000_phy_is_accessible_pchlan(hw)) {
267 if (hw->mac.type == e1000_pch_lpt) {
268 /* Unforce SMBus mode in PHY */
269 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
270 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
271 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
272
273 /* Unforce SMBus mode in MAC */
274 mac_reg = er32(CTRL_EXT);
275 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
276 ew32(CTRL_EXT, mac_reg);
277 }
cb17aab9 278 break;
2fbe4526 279 }
cb17aab9
BA
280
281 /* fall-through */
282 case e1000_pchlan:
283 if ((hw->mac.type == e1000_pchlan) &&
284 (fwsm & E1000_ICH_FWSM_FW_VALID))
285 break;
286
287 if (hw->phy.ops.check_reset_block(hw)) {
288 e_dbg("Required LANPHYPC toggle blocked by ME\n");
289 break;
290 }
291
292 e_dbg("Toggling LANPHYPC\n");
293
294 /* Set Phy Config Counter to 50msec */
295 mac_reg = er32(FEXTNVM3);
296 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
297 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
298 ew32(FEXTNVM3, mac_reg);
299
4e03510b
BA
300 if (hw->mac.type == e1000_pch_lpt) {
301 /* Toggling LANPHYPC brings the PHY out of SMBus mode
302 * So ensure that the MAC is also out of SMBus mode
303 */
304 mac_reg = er32(CTRL_EXT);
305 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
306 ew32(CTRL_EXT, mac_reg);
307 }
308
cb17aab9
BA
309 /* Toggle LANPHYPC Value bit */
310 mac_reg = er32(CTRL);
311 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
312 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
313 ew32(CTRL, mac_reg);
314 e1e_flush();
315 udelay(10);
316 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
317 ew32(CTRL, mac_reg);
318 e1e_flush();
2fbe4526
BA
319 if (hw->mac.type < e1000_pch_lpt) {
320 msleep(50);
321 } else {
322 u16 count = 20;
323 do {
324 usleep_range(5000, 10000);
325 } while (!(er32(CTRL_EXT) &
326 E1000_CTRL_EXT_LPCD) && count--);
327 }
cb17aab9
BA
328 break;
329 default:
330 break;
331 }
332
333 hw->phy.ops.release(hw);
334
e921eb1a 335 /* Reset the PHY before any access to it. Doing so, ensures
cb17aab9
BA
336 * that the PHY is in a known good state before we read/write
337 * PHY registers. The generic reset is sufficient here,
338 * because we haven't determined the PHY type yet.
339 */
340 ret_val = e1000e_phy_hw_reset_generic(hw);
341
6e928b72 342out:
cb17aab9
BA
343 /* Ungate automatic PHY configuration on non-managed 82579 */
344 if ((hw->mac.type == e1000_pch2lan) &&
345 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
346 usleep_range(10000, 20000);
347 e1000_gate_hw_phy_config_ich8lan(hw, false);
348 }
349
350 return ret_val;
99730e4c
BA
351}
352
a4f58f54
BA
353/**
354 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
355 * @hw: pointer to the HW structure
356 *
357 * Initialize family-specific PHY parameters and function pointers.
358 **/
359static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
360{
361 struct e1000_phy_info *phy = &hw->phy;
70806a7f 362 s32 ret_val;
a4f58f54
BA
363
364 phy->addr = 1;
365 phy->reset_delay_us = 100;
366
2b6b168d 367 phy->ops.set_page = e1000_set_page_igp;
94d8186a
BA
368 phy->ops.read_reg = e1000_read_phy_reg_hv;
369 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
2b6b168d 370 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
fa2ce13c
BA
371 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
372 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
373 phy->ops.write_reg = e1000_write_phy_reg_hv;
374 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
2b6b168d 375 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
17f208de
BA
376 phy->ops.power_up = e1000_power_up_phy_copper;
377 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
378 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
379
cb17aab9 380 phy->id = e1000_phy_unknown;
627c8a04 381
cb17aab9
BA
382 ret_val = e1000_init_phy_workarounds_pchlan(hw);
383 if (ret_val)
384 return ret_val;
605c82ba 385
cb17aab9
BA
386 if (phy->id == e1000_phy_unknown)
387 switch (hw->mac.type) {
388 default:
389 ret_val = e1000e_get_phy_id(hw);
390 if (ret_val)
391 return ret_val;
392 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
393 break;
394 /* fall-through */
395 case e1000_pch2lan:
2fbe4526 396 case e1000_pch_lpt:
e921eb1a 397 /* In case the PHY needs to be in mdio slow mode,
cb17aab9
BA
398 * set slow mode and try to get the PHY id again.
399 */
400 ret_val = e1000_set_mdio_slow_mode_hv(hw);
401 if (ret_val)
402 return ret_val;
403 ret_val = e1000e_get_phy_id(hw);
404 if (ret_val)
405 return ret_val;
664dc878 406 break;
cb17aab9 407 }
a4f58f54
BA
408 phy->type = e1000e_get_phy_type_from_id(phy->id);
409
0be84010
BA
410 switch (phy->type) {
411 case e1000_phy_82577:
d3738bb8 412 case e1000_phy_82579:
2fbe4526 413 case e1000_phy_i217:
a4f58f54
BA
414 phy->ops.check_polarity = e1000_check_polarity_82577;
415 phy->ops.force_speed_duplex =
6cc7aaed 416 e1000_phy_force_speed_duplex_82577;
0be84010 417 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
418 phy->ops.get_info = e1000_get_phy_info_82577;
419 phy->ops.commit = e1000e_phy_sw_reset;
eab50ffb 420 break;
0be84010
BA
421 case e1000_phy_82578:
422 phy->ops.check_polarity = e1000_check_polarity_m88;
423 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
424 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
425 phy->ops.get_info = e1000e_get_phy_info_m88;
426 break;
427 default:
428 ret_val = -E1000_ERR_PHY;
429 break;
a4f58f54
BA
430 }
431
432 return ret_val;
433}
434
bc7f75fa
AK
435/**
436 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
437 * @hw: pointer to the HW structure
438 *
439 * Initialize family-specific PHY parameters and function pointers.
440 **/
441static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
442{
443 struct e1000_phy_info *phy = &hw->phy;
444 s32 ret_val;
445 u16 i = 0;
446
447 phy->addr = 1;
448 phy->reset_delay_us = 100;
449
17f208de
BA
450 phy->ops.power_up = e1000_power_up_phy_copper;
451 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
452
e921eb1a 453 /* We may need to do this twice - once for IGP and if that fails,
97ac8cae
BA
454 * we'll set BM func pointers and try again
455 */
456 ret_val = e1000e_determine_phy_address(hw);
457 if (ret_val) {
94d8186a
BA
458 phy->ops.write_reg = e1000e_write_phy_reg_bm;
459 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 460 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
461 if (ret_val) {
462 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 463 return ret_val;
9b71b419 464 }
97ac8cae
BA
465 }
466
bc7f75fa
AK
467 phy->id = 0;
468 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
469 (i++ < 100)) {
1bba4386 470 usleep_range(1000, 2000);
bc7f75fa
AK
471 ret_val = e1000e_get_phy_id(hw);
472 if (ret_val)
473 return ret_val;
474 }
475
476 /* Verify phy id */
477 switch (phy->id) {
478 case IGP03E1000_E_PHY_ID:
479 phy->type = e1000_phy_igp_3;
480 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
481 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
482 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
483 phy->ops.get_info = e1000e_get_phy_info_igp;
484 phy->ops.check_polarity = e1000_check_polarity_igp;
485 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
486 break;
487 case IFE_E_PHY_ID:
488 case IFE_PLUS_E_PHY_ID:
489 case IFE_C_E_PHY_ID:
490 phy->type = e1000_phy_ife;
491 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
492 phy->ops.get_info = e1000_get_phy_info_ife;
493 phy->ops.check_polarity = e1000_check_polarity_ife;
494 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 495 break;
97ac8cae
BA
496 case BME1000_E_PHY_ID:
497 phy->type = e1000_phy_bm;
498 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
499 phy->ops.read_reg = e1000e_read_phy_reg_bm;
500 phy->ops.write_reg = e1000e_write_phy_reg_bm;
501 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
502 phy->ops.get_info = e1000e_get_phy_info_m88;
503 phy->ops.check_polarity = e1000_check_polarity_m88;
504 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 505 break;
bc7f75fa
AK
506 default:
507 return -E1000_ERR_PHY;
508 break;
509 }
510
511 return 0;
512}
513
514/**
515 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
516 * @hw: pointer to the HW structure
517 *
518 * Initialize family-specific NVM parameters and function
519 * pointers.
520 **/
521static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
522{
523 struct e1000_nvm_info *nvm = &hw->nvm;
524 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 525 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
526 u16 i;
527
ad68076e 528 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 529 if (!hw->flash_address) {
3bb99fe2 530 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
531 return -E1000_ERR_CONFIG;
532 }
533
534 nvm->type = e1000_nvm_flash_sw;
535
536 gfpreg = er32flash(ICH_FLASH_GFPREG);
537
e921eb1a 538 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 539 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
540 * the overall size.
541 */
bc7f75fa
AK
542 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
543 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
544
545 /* flash_base_addr is byte-aligned */
546 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
547
e921eb1a 548 /* find total size of the NVM, then cut in half since the total
ad68076e
BA
549 * size represents two separate NVM banks.
550 */
f0ff4398
BA
551 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
552 << FLASH_SECTOR_ADDR_SHIFT);
bc7f75fa
AK
553 nvm->flash_bank_size /= 2;
554 /* Adjust to word count */
555 nvm->flash_bank_size /= sizeof(u16);
556
557 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
558
559 /* Clear shadow ram */
560 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 561 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
562 dev_spec->shadow_ram[i].value = 0xFFFF;
563 }
564
565 return 0;
566}
567
568/**
569 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
570 * @hw: pointer to the HW structure
571 *
572 * Initialize family-specific MAC parameters and function
573 * pointers.
574 **/
ec34c170 575static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
bc7f75fa 576{
bc7f75fa
AK
577 struct e1000_mac_info *mac = &hw->mac;
578
579 /* Set media type function pointer */
318a94d6 580 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
581
582 /* Set mta register count */
583 mac->mta_reg_count = 32;
584 /* Set rar entry count */
585 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
586 if (mac->type == e1000_ich8lan)
587 mac->rar_entry_count--;
a65a4a0d
BA
588 /* FWSM register */
589 mac->has_fwsm = true;
590 /* ARC subsystem not supported */
591 mac->arc_subsystem_valid = false;
f464ba87
BA
592 /* Adaptive IFS supported */
593 mac->adaptive_ifs = true;
bc7f75fa 594
2fbe4526 595 /* LED and other operations */
a4f58f54
BA
596 switch (mac->type) {
597 case e1000_ich8lan:
598 case e1000_ich9lan:
599 case e1000_ich10lan:
eb7700dc
BA
600 /* check management mode */
601 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
a4f58f54 602 /* ID LED init */
d1964eb1 603 mac->ops.id_led_init = e1000e_id_led_init_generic;
dbf80dcb
BA
604 /* blink LED */
605 mac->ops.blink_led = e1000e_blink_led_generic;
a4f58f54
BA
606 /* setup LED */
607 mac->ops.setup_led = e1000e_setup_led_generic;
608 /* cleanup LED */
609 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
610 /* turn on/off LED */
611 mac->ops.led_on = e1000_led_on_ich8lan;
612 mac->ops.led_off = e1000_led_off_ich8lan;
613 break;
d3738bb8 614 case e1000_pch2lan:
69e1e019
BA
615 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
616 mac->ops.rar_set = e1000_rar_set_pch2lan;
617 /* fall-through */
2fbe4526 618 case e1000_pch_lpt:
69e1e019 619 case e1000_pchlan:
eb7700dc
BA
620 /* check management mode */
621 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
a4f58f54
BA
622 /* ID LED init */
623 mac->ops.id_led_init = e1000_id_led_init_pchlan;
624 /* setup LED */
625 mac->ops.setup_led = e1000_setup_led_pchlan;
626 /* cleanup LED */
627 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
628 /* turn on/off LED */
629 mac->ops.led_on = e1000_led_on_pchlan;
630 mac->ops.led_off = e1000_led_off_pchlan;
631 break;
632 default:
633 break;
634 }
635
2fbe4526
BA
636 if (mac->type == e1000_pch_lpt) {
637 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
638 mac->ops.rar_set = e1000_rar_set_pch_lpt;
639 }
640
bc7f75fa
AK
641 /* Enable PCS Lock-loss workaround for ICH8 */
642 if (mac->type == e1000_ich8lan)
564ea9bb 643 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa
AK
644
645 return 0;
646}
647
4ddc48a9
BA
648/**
649 * __e1000_access_emi_reg_locked - Read/write EMI register
650 * @hw: pointer to the HW structure
651 * @addr: EMI address to program
652 * @data: pointer to value to read/write from/to the EMI address
653 * @read: boolean flag to indicate read or write
654 *
655 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
656 **/
657static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
658 u16 *data, bool read)
659{
70806a7f 660 s32 ret_val;
4ddc48a9
BA
661
662 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
663 if (ret_val)
664 return ret_val;
665
666 if (read)
667 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
668 else
669 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
670
671 return ret_val;
672}
673
674/**
675 * e1000_read_emi_reg_locked - Read Extended Management Interface register
676 * @hw: pointer to the HW structure
677 * @addr: EMI address to program
678 * @data: value to be read from the EMI address
679 *
680 * Assumes the SW/FW/HW Semaphore is already acquired.
681 **/
203e4151 682s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
4ddc48a9
BA
683{
684 return __e1000_access_emi_reg_locked(hw, addr, data, true);
685}
686
687/**
688 * e1000_write_emi_reg_locked - Write Extended Management Interface register
689 * @hw: pointer to the HW structure
690 * @addr: EMI address to program
691 * @data: value to be written to the EMI address
692 *
693 * Assumes the SW/FW/HW Semaphore is already acquired.
694 **/
695static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
696{
697 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
698}
699
e52997f9
BA
700/**
701 * e1000_set_eee_pchlan - Enable/disable EEE support
702 * @hw: pointer to the HW structure
703 *
3d4d5755
BA
704 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
705 * the link and the EEE capabilities of the link partner. The LPI Control
706 * register bits will remain set only if/when link is up.
e52997f9
BA
707 **/
708static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
709{
2fbe4526 710 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3d4d5755
BA
711 s32 ret_val;
712 u16 lpi_ctrl;
e52997f9 713
2fbe4526
BA
714 if ((hw->phy.type != e1000_phy_82579) &&
715 (hw->phy.type != e1000_phy_i217))
5015e53a 716 return 0;
e52997f9 717
3d4d5755 718 ret_val = hw->phy.ops.acquire(hw);
e52997f9 719 if (ret_val)
5015e53a 720 return ret_val;
e52997f9 721
3d4d5755 722 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
2fbe4526 723 if (ret_val)
3d4d5755
BA
724 goto release;
725
726 /* Clear bits that enable EEE in various speeds */
727 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
728
729 /* Enable EEE if not disabled by user */
730 if (!dev_spec->eee_disable) {
731 u16 lpa, pcs_status, data;
2fbe4526 732
2fbe4526 733 /* Save off link partner's EEE ability */
3d4d5755
BA
734 switch (hw->phy.type) {
735 case e1000_phy_82579:
736 lpa = I82579_EEE_LP_ABILITY;
737 pcs_status = I82579_EEE_PCS_STATUS;
738 break;
739 case e1000_phy_i217:
740 lpa = I217_EEE_LP_ABILITY;
741 pcs_status = I217_EEE_PCS_STATUS;
742 break;
743 default:
744 ret_val = -E1000_ERR_PHY;
745 goto release;
746 }
747 ret_val = e1000_read_emi_reg_locked(hw, lpa,
4ddc48a9 748 &dev_spec->eee_lp_ability);
2fbe4526
BA
749 if (ret_val)
750 goto release;
2fbe4526 751
3d4d5755
BA
752 /* Enable EEE only for speeds in which the link partner is
753 * EEE capable.
2fbe4526 754 */
3d4d5755
BA
755 if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
756 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
757
758 if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
c2ade1a4
BA
759 e1e_rphy_locked(hw, MII_LPA, &data);
760 if (data & LPA_100FULL)
3d4d5755
BA
761 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
762 else
763 /* EEE is not supported in 100Half, so ignore
764 * partner's EEE in 100 ability if full-duplex
765 * is not advertised.
766 */
767 dev_spec->eee_lp_ability &=
768 ~I82579_EEE_100_SUPPORTED;
769 }
770
771 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
772 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
773 if (ret_val)
774 goto release;
2fbe4526
BA
775 }
776
3d4d5755
BA
777 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
778release:
779 hw->phy.ops.release(hw);
780
781 return ret_val;
e52997f9
BA
782}
783
7d3cabbc
BA
784/**
785 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
786 * @hw: pointer to the HW structure
787 *
788 * Checks to see of the link status of the hardware has changed. If a
789 * change in link status has been detected, then we read the PHY registers
790 * to get the current speed/duplex if link exists.
791 **/
792static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
793{
794 struct e1000_mac_info *mac = &hw->mac;
795 s32 ret_val;
796 bool link;
1d2101a7 797 u16 phy_reg;
7d3cabbc 798
e921eb1a 799 /* We only want to go out to the PHY registers to see if Auto-Neg
7d3cabbc
BA
800 * has completed and/or if our link status has changed. The
801 * get_link_status flag is set upon receiving a Link Status
802 * Change or Rx Sequence Error interrupt.
803 */
5015e53a
BA
804 if (!mac->get_link_status)
805 return 0;
7d3cabbc 806
e921eb1a 807 /* First we want to see if the MII Status Register reports
7d3cabbc
BA
808 * link. If so, then we want to get the current speed/duplex
809 * of the PHY.
810 */
811 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
812 if (ret_val)
5015e53a 813 return ret_val;
7d3cabbc 814
1d5846b9
BA
815 if (hw->mac.type == e1000_pchlan) {
816 ret_val = e1000_k1_gig_workaround_hv(hw, link);
817 if (ret_val)
5015e53a 818 return ret_val;
1d5846b9
BA
819 }
820
2fbe4526
BA
821 /* Clear link partner's EEE ability */
822 hw->dev_spec.ich8lan.eee_lp_ability = 0;
823
7d3cabbc 824 if (!link)
5015e53a 825 return 0; /* No link detected */
7d3cabbc
BA
826
827 mac->get_link_status = false;
828
1d2101a7
BA
829 switch (hw->mac.type) {
830 case e1000_pch2lan:
831bd2e6
BA
831 ret_val = e1000_k1_workaround_lv(hw);
832 if (ret_val)
5015e53a 833 return ret_val;
1d2101a7
BA
834 /* fall-thru */
835 case e1000_pchlan:
836 if (hw->phy.type == e1000_phy_82578) {
837 ret_val = e1000_link_stall_workaround_hv(hw);
838 if (ret_val)
5015e53a 839 return ret_val;
1d2101a7
BA
840 }
841
e921eb1a 842 /* Workaround for PCHx parts in half-duplex:
1d2101a7
BA
843 * Set the number of preambles removed from the packet
844 * when it is passed from the PHY to the MAC to prevent
845 * the MAC from misinterpreting the packet type.
846 */
847 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
848 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
849
850 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
851 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
852
853 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
854 break;
855 default:
856 break;
831bd2e6
BA
857 }
858
e921eb1a 859 /* Check if there was DownShift, must be checked
7d3cabbc
BA
860 * immediately after link-up
861 */
862 e1000e_check_downshift(hw);
863
e52997f9
BA
864 /* Enable/Disable EEE after link up */
865 ret_val = e1000_set_eee_pchlan(hw);
866 if (ret_val)
5015e53a 867 return ret_val;
e52997f9 868
e921eb1a 869 /* If we are forcing speed/duplex, then we simply return since
7d3cabbc
BA
870 * we have already determined whether we have link or not.
871 */
5015e53a
BA
872 if (!mac->autoneg)
873 return -E1000_ERR_CONFIG;
7d3cabbc 874
e921eb1a 875 /* Auto-Neg is enabled. Auto Speed Detection takes care
7d3cabbc
BA
876 * of MAC speed/duplex configuration. So we only need to
877 * configure Collision Distance in the MAC.
878 */
57cde763 879 mac->ops.config_collision_dist(hw);
7d3cabbc 880
e921eb1a 881 /* Configure Flow Control now that Auto-Neg has completed.
7d3cabbc
BA
882 * First, we need to restore the desired flow control
883 * settings because we may have had to re-autoneg with a
884 * different link partner.
885 */
886 ret_val = e1000e_config_fc_after_link_up(hw);
887 if (ret_val)
3bb99fe2 888 e_dbg("Error configuring flow control\n");
7d3cabbc 889
7d3cabbc
BA
890 return ret_val;
891}
892
69e3fd8c 893static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
894{
895 struct e1000_hw *hw = &adapter->hw;
896 s32 rc;
897
ec34c170 898 rc = e1000_init_mac_params_ich8lan(hw);
bc7f75fa
AK
899 if (rc)
900 return rc;
901
902 rc = e1000_init_nvm_params_ich8lan(hw);
903 if (rc)
904 return rc;
905
d3738bb8
BA
906 switch (hw->mac.type) {
907 case e1000_ich8lan:
908 case e1000_ich9lan:
909 case e1000_ich10lan:
a4f58f54 910 rc = e1000_init_phy_params_ich8lan(hw);
d3738bb8
BA
911 break;
912 case e1000_pchlan:
913 case e1000_pch2lan:
2fbe4526 914 case e1000_pch_lpt:
d3738bb8
BA
915 rc = e1000_init_phy_params_pchlan(hw);
916 break;
917 default:
918 break;
919 }
bc7f75fa
AK
920 if (rc)
921 return rc;
922
e921eb1a 923 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
23e4f061
BA
924 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
925 */
926 if ((adapter->hw.phy.type == e1000_phy_ife) ||
927 ((adapter->hw.mac.type >= e1000_pch2lan) &&
928 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
2adc55c9
BA
929 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
930 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
dbf80dcb
BA
931
932 hw->mac.ops.blink_led = NULL;
2adc55c9
BA
933 }
934
bc7f75fa 935 if ((adapter->hw.mac.type == e1000_ich8lan) &&
462d5994 936 (adapter->hw.phy.type != e1000_phy_ife))
bc7f75fa
AK
937 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
938
c6e7f51e
BA
939 /* Enable workaround for 82579 w/ ME enabled */
940 if ((adapter->hw.mac.type == e1000_pch2lan) &&
941 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
942 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
943
5a86f28f
BA
944 /* Disable EEE by default until IEEE802.3az spec is finalized */
945 if (adapter->flags2 & FLAG2_HAS_EEE)
946 adapter->hw.dev_spec.ich8lan.eee_disable = true;
947
bc7f75fa
AK
948 return 0;
949}
950
717d438d 951static DEFINE_MUTEX(nvm_mutex);
717d438d 952
ca15df58
BA
953/**
954 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
955 * @hw: pointer to the HW structure
956 *
957 * Acquires the mutex for performing NVM operations.
958 **/
8bb62869 959static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
ca15df58
BA
960{
961 mutex_lock(&nvm_mutex);
962
963 return 0;
964}
965
966/**
967 * e1000_release_nvm_ich8lan - Release NVM mutex
968 * @hw: pointer to the HW structure
969 *
970 * Releases the mutex used while performing NVM operations.
971 **/
8bb62869 972static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
ca15df58
BA
973{
974 mutex_unlock(&nvm_mutex);
ca15df58
BA
975}
976
bc7f75fa
AK
977/**
978 * e1000_acquire_swflag_ich8lan - Acquire software control flag
979 * @hw: pointer to the HW structure
980 *
ca15df58
BA
981 * Acquires the software control flag for performing PHY and select
982 * MAC CSR accesses.
bc7f75fa
AK
983 **/
984static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
985{
373a88d7
BA
986 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
987 s32 ret_val = 0;
bc7f75fa 988
a90b412c
BA
989 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
990 &hw->adapter->state)) {
34c9ef8b 991 e_dbg("contention for Phy access\n");
a90b412c
BA
992 return -E1000_ERR_PHY;
993 }
717d438d 994
bc7f75fa
AK
995 while (timeout) {
996 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
997 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
998 break;
bc7f75fa 999
373a88d7
BA
1000 mdelay(1);
1001 timeout--;
1002 }
1003
1004 if (!timeout) {
a90b412c 1005 e_dbg("SW has already locked the resource.\n");
373a88d7
BA
1006 ret_val = -E1000_ERR_CONFIG;
1007 goto out;
1008 }
1009
53ac5a88 1010 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
1011
1012 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1013 ew32(EXTCNF_CTRL, extcnf_ctrl);
1014
1015 while (timeout) {
1016 extcnf_ctrl = er32(EXTCNF_CTRL);
1017 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1018 break;
a4f58f54 1019
bc7f75fa
AK
1020 mdelay(1);
1021 timeout--;
1022 }
1023
1024 if (!timeout) {
434f1392 1025 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
a90b412c 1026 er32(FWSM), extcnf_ctrl);
2e2e8d53
BA
1027 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1028 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
1029 ret_val = -E1000_ERR_CONFIG;
1030 goto out;
bc7f75fa
AK
1031 }
1032
373a88d7
BA
1033out:
1034 if (ret_val)
a90b412c 1035 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
373a88d7
BA
1036
1037 return ret_val;
bc7f75fa
AK
1038}
1039
1040/**
1041 * e1000_release_swflag_ich8lan - Release software control flag
1042 * @hw: pointer to the HW structure
1043 *
ca15df58
BA
1044 * Releases the software control flag for performing PHY and select
1045 * MAC CSR accesses.
bc7f75fa
AK
1046 **/
1047static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1048{
1049 u32 extcnf_ctrl;
1050
1051 extcnf_ctrl = er32(EXTCNF_CTRL);
c5caf482
BA
1052
1053 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1054 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1055 ew32(EXTCNF_CTRL, extcnf_ctrl);
1056 } else {
1057 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1058 }
717d438d 1059
a90b412c 1060 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
bc7f75fa
AK
1061}
1062
4662e82b
BA
1063/**
1064 * e1000_check_mng_mode_ich8lan - Checks management mode
1065 * @hw: pointer to the HW structure
1066 *
eb7700dc 1067 * This checks if the adapter has any manageability enabled.
4662e82b
BA
1068 * This is a function pointer entry point only called by read/write
1069 * routines for the PHY and NVM parts.
1070 **/
1071static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1072{
a708dd88
BA
1073 u32 fwsm;
1074
1075 fwsm = er32(FWSM);
f0ff4398
BA
1076 return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1077 ((fwsm & E1000_FWSM_MODE_MASK) ==
1078 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
eb7700dc 1079}
4662e82b 1080
eb7700dc
BA
1081/**
1082 * e1000_check_mng_mode_pchlan - Checks management mode
1083 * @hw: pointer to the HW structure
1084 *
1085 * This checks if the adapter has iAMT enabled.
1086 * This is a function pointer entry point only called by read/write
1087 * routines for the PHY and NVM parts.
1088 **/
1089static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1090{
1091 u32 fwsm;
1092
1093 fwsm = er32(FWSM);
1094 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
f0ff4398 1095 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
4662e82b
BA
1096}
1097
69e1e019
BA
1098/**
1099 * e1000_rar_set_pch2lan - Set receive address register
1100 * @hw: pointer to the HW structure
1101 * @addr: pointer to the receive address
1102 * @index: receive address array register
1103 *
1104 * Sets the receive address array register at index to the address passed
1105 * in by addr. For 82579, RAR[0] is the base address register that is to
1106 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1107 * Use SHRA[0-3] in place of those reserved for ME.
1108 **/
1109static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1110{
1111 u32 rar_low, rar_high;
1112
e921eb1a 1113 /* HW expects these in little endian so we reverse the byte order
69e1e019
BA
1114 * from network order (big endian) to little endian
1115 */
1116 rar_low = ((u32)addr[0] |
1117 ((u32)addr[1] << 8) |
1118 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1119
1120 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1121
1122 /* If MAC address zero, no need to set the AV bit */
1123 if (rar_low || rar_high)
1124 rar_high |= E1000_RAH_AV;
1125
1126 if (index == 0) {
1127 ew32(RAL(index), rar_low);
1128 e1e_flush();
1129 ew32(RAH(index), rar_high);
1130 e1e_flush();
1131 return;
1132 }
1133
1134 if (index < hw->mac.rar_entry_count) {
1135 s32 ret_val;
1136
1137 ret_val = e1000_acquire_swflag_ich8lan(hw);
1138 if (ret_val)
1139 goto out;
1140
1141 ew32(SHRAL(index - 1), rar_low);
1142 e1e_flush();
1143 ew32(SHRAH(index - 1), rar_high);
1144 e1e_flush();
1145
1146 e1000_release_swflag_ich8lan(hw);
1147
1148 /* verify the register updates */
1149 if ((er32(SHRAL(index - 1)) == rar_low) &&
1150 (er32(SHRAH(index - 1)) == rar_high))
1151 return;
1152
1153 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1154 (index - 1), er32(FWSM));
1155 }
1156
1157out:
1158 e_dbg("Failed to write receive address at index %d\n", index);
1159}
1160
2fbe4526
BA
1161/**
1162 * e1000_rar_set_pch_lpt - Set receive address registers
1163 * @hw: pointer to the HW structure
1164 * @addr: pointer to the receive address
1165 * @index: receive address array register
1166 *
1167 * Sets the receive address register array at index to the address passed
1168 * in by addr. For LPT, RAR[0] is the base address register that is to
1169 * contain the MAC address. SHRA[0-10] are the shared receive address
1170 * registers that are shared between the Host and manageability engine (ME).
1171 **/
1172static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1173{
1174 u32 rar_low, rar_high;
1175 u32 wlock_mac;
1176
e921eb1a 1177 /* HW expects these in little endian so we reverse the byte order
2fbe4526
BA
1178 * from network order (big endian) to little endian
1179 */
1180 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1181 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1182
1183 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1184
1185 /* If MAC address zero, no need to set the AV bit */
1186 if (rar_low || rar_high)
1187 rar_high |= E1000_RAH_AV;
1188
1189 if (index == 0) {
1190 ew32(RAL(index), rar_low);
1191 e1e_flush();
1192 ew32(RAH(index), rar_high);
1193 e1e_flush();
1194 return;
1195 }
1196
e921eb1a 1197 /* The manageability engine (ME) can lock certain SHRAR registers that
2fbe4526
BA
1198 * it is using - those registers are unavailable for use.
1199 */
1200 if (index < hw->mac.rar_entry_count) {
1201 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1202 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1203
1204 /* Check if all SHRAR registers are locked */
1205 if (wlock_mac == 1)
1206 goto out;
1207
1208 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1209 s32 ret_val;
1210
1211 ret_val = e1000_acquire_swflag_ich8lan(hw);
1212
1213 if (ret_val)
1214 goto out;
1215
1216 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1217 e1e_flush();
1218 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1219 e1e_flush();
1220
1221 e1000_release_swflag_ich8lan(hw);
1222
1223 /* verify the register updates */
1224 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1225 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1226 return;
1227 }
1228 }
1229
1230out:
1231 e_dbg("Failed to write receive address at index %d\n", index);
1232}
1233
bc7f75fa
AK
1234/**
1235 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1236 * @hw: pointer to the HW structure
1237 *
1238 * Checks if firmware is blocking the reset of the PHY.
1239 * This is a function pointer entry point only called by
1240 * reset routines.
1241 **/
1242static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1243{
1244 u32 fwsm;
1245
1246 fwsm = er32(FWSM);
1247
1248 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1249}
1250
8395ae83
BA
1251/**
1252 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1253 * @hw: pointer to the HW structure
1254 *
1255 * Assumes semaphore already acquired.
1256 *
1257 **/
1258static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1259{
1260 u16 phy_data;
1261 u32 strap = er32(STRAP);
2fbe4526
BA
1262 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1263 E1000_STRAP_SMT_FREQ_SHIFT;
70806a7f 1264 s32 ret_val;
8395ae83
BA
1265
1266 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1267
1268 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1269 if (ret_val)
5015e53a 1270 return ret_val;
8395ae83
BA
1271
1272 phy_data &= ~HV_SMB_ADDR_MASK;
1273 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1274 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
8395ae83 1275
2fbe4526
BA
1276 if (hw->phy.type == e1000_phy_i217) {
1277 /* Restore SMBus frequency */
1278 if (freq--) {
1279 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1280 phy_data |= (freq & (1 << 0)) <<
1281 HV_SMB_ADDR_FREQ_LOW_SHIFT;
1282 phy_data |= (freq & (1 << 1)) <<
1283 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1284 } else {
1285 e_dbg("Unsupported SMB frequency in PHY\n");
1286 }
1287 }
1288
5015e53a 1289 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
8395ae83
BA
1290}
1291
f523d211
BA
1292/**
1293 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1294 * @hw: pointer to the HW structure
1295 *
1296 * SW should configure the LCD from the NVM extended configuration region
1297 * as a workaround for certain parts.
1298 **/
1299static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1300{
1301 struct e1000_phy_info *phy = &hw->phy;
1302 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
8b802a7e 1303 s32 ret_val = 0;
f523d211
BA
1304 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1305
e921eb1a 1306 /* Initialize the PHY from the NVM on ICH platforms. This
f523d211
BA
1307 * is needed due to an issue where the NVM configuration is
1308 * not properly autoloaded after power transitions.
1309 * Therefore, after each PHY reset, we will load the
1310 * configuration data out of the NVM manually.
1311 */
3f0c16e8
BA
1312 switch (hw->mac.type) {
1313 case e1000_ich8lan:
1314 if (phy->type != e1000_phy_igp_3)
1315 return ret_val;
1316
5f3eed6f
BA
1317 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1318 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
3f0c16e8
BA
1319 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1320 break;
1321 }
1322 /* Fall-thru */
1323 case e1000_pchlan:
d3738bb8 1324 case e1000_pch2lan:
2fbe4526 1325 case e1000_pch_lpt:
8b802a7e 1326 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
3f0c16e8
BA
1327 break;
1328 default:
1329 return ret_val;
1330 }
1331
1332 ret_val = hw->phy.ops.acquire(hw);
1333 if (ret_val)
1334 return ret_val;
8b802a7e
BA
1335
1336 data = er32(FEXTNVM);
1337 if (!(data & sw_cfg_mask))
75ce1532 1338 goto release;
f523d211 1339
e921eb1a 1340 /* Make sure HW does not configure LCD from PHY
8b802a7e
BA
1341 * extended configuration before SW configuration
1342 */
1343 data = er32(EXTCNF_CTRL);
2fbe4526
BA
1344 if ((hw->mac.type < e1000_pch2lan) &&
1345 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1346 goto release;
8b802a7e
BA
1347
1348 cnf_size = er32(EXTCNF_SIZE);
1349 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1350 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1351 if (!cnf_size)
75ce1532 1352 goto release;
8b802a7e
BA
1353
1354 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1355 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1356
2fbe4526
BA
1357 if (((hw->mac.type == e1000_pchlan) &&
1358 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1359 (hw->mac.type > e1000_pchlan)) {
e921eb1a 1360 /* HW configures the SMBus address and LEDs when the
8b802a7e
BA
1361 * OEM and LCD Write Enable bits are set in the NVM.
1362 * When both NVM bits are cleared, SW will configure
1363 * them instead.
f523d211 1364 */
8395ae83 1365 ret_val = e1000_write_smbus_addr(hw);
8b802a7e 1366 if (ret_val)
75ce1532 1367 goto release;
f523d211 1368
8b802a7e
BA
1369 data = er32(LEDCTL);
1370 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1371 (u16)data);
1372 if (ret_val)
75ce1532 1373 goto release;
8b802a7e 1374 }
f523d211 1375
8b802a7e
BA
1376 /* Configure LCD from extended configuration region. */
1377
1378 /* cnf_base_addr is in DWORD */
1379 word_addr = (u16)(cnf_base_addr << 1);
1380
1381 for (i = 0; i < cnf_size; i++) {
1382 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1383 &reg_data);
1384 if (ret_val)
75ce1532 1385 goto release;
8b802a7e
BA
1386
1387 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1388 1, &reg_addr);
1389 if (ret_val)
75ce1532 1390 goto release;
8b802a7e
BA
1391
1392 /* Save off the PHY page for future writes. */
1393 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1394 phy_page = reg_data;
1395 continue;
f523d211 1396 }
8b802a7e
BA
1397
1398 reg_addr &= PHY_REG_MASK;
1399 reg_addr |= phy_page;
1400
f1430d69 1401 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
8b802a7e 1402 if (ret_val)
75ce1532 1403 goto release;
f523d211
BA
1404 }
1405
75ce1532 1406release:
94d8186a 1407 hw->phy.ops.release(hw);
f523d211
BA
1408 return ret_val;
1409}
1410
1d5846b9
BA
1411/**
1412 * e1000_k1_gig_workaround_hv - K1 Si workaround
1413 * @hw: pointer to the HW structure
1414 * @link: link up bool flag
1415 *
1416 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1417 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1418 * If link is down, the function will restore the default K1 setting located
1419 * in the NVM.
1420 **/
1421static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1422{
1423 s32 ret_val = 0;
1424 u16 status_reg = 0;
1425 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1426
1427 if (hw->mac.type != e1000_pchlan)
5015e53a 1428 return 0;
1d5846b9
BA
1429
1430 /* Wrap the whole flow with the sw flag */
94d8186a 1431 ret_val = hw->phy.ops.acquire(hw);
1d5846b9 1432 if (ret_val)
5015e53a 1433 return ret_val;
1d5846b9
BA
1434
1435 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1436 if (link) {
1437 if (hw->phy.type == e1000_phy_82578) {
f1430d69
BA
1438 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1439 &status_reg);
1d5846b9
BA
1440 if (ret_val)
1441 goto release;
1442
f0ff4398
BA
1443 status_reg &= (BM_CS_STATUS_LINK_UP |
1444 BM_CS_STATUS_RESOLVED |
1445 BM_CS_STATUS_SPEED_MASK);
1d5846b9
BA
1446
1447 if (status_reg == (BM_CS_STATUS_LINK_UP |
f0ff4398
BA
1448 BM_CS_STATUS_RESOLVED |
1449 BM_CS_STATUS_SPEED_1000))
1d5846b9
BA
1450 k1_enable = false;
1451 }
1452
1453 if (hw->phy.type == e1000_phy_82577) {
f1430d69 1454 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1d5846b9
BA
1455 if (ret_val)
1456 goto release;
1457
f0ff4398
BA
1458 status_reg &= (HV_M_STATUS_LINK_UP |
1459 HV_M_STATUS_AUTONEG_COMPLETE |
1460 HV_M_STATUS_SPEED_MASK);
1d5846b9
BA
1461
1462 if (status_reg == (HV_M_STATUS_LINK_UP |
f0ff4398
BA
1463 HV_M_STATUS_AUTONEG_COMPLETE |
1464 HV_M_STATUS_SPEED_1000))
1d5846b9
BA
1465 k1_enable = false;
1466 }
1467
1468 /* Link stall fix for link up */
f1430d69 1469 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1d5846b9
BA
1470 if (ret_val)
1471 goto release;
1472
1473 } else {
1474 /* Link stall fix for link down */
f1430d69 1475 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1d5846b9
BA
1476 if (ret_val)
1477 goto release;
1478 }
1479
1480 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1481
1482release:
94d8186a 1483 hw->phy.ops.release(hw);
5015e53a 1484
1d5846b9
BA
1485 return ret_val;
1486}
1487
1488/**
1489 * e1000_configure_k1_ich8lan - Configure K1 power state
1490 * @hw: pointer to the HW structure
1491 * @enable: K1 state to configure
1492 *
1493 * Configure the K1 power state based on the provided parameter.
1494 * Assumes semaphore already acquired.
1495 *
1496 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1497 **/
bb436b20 1498s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9 1499{
70806a7f 1500 s32 ret_val;
1d5846b9
BA
1501 u32 ctrl_reg = 0;
1502 u32 ctrl_ext = 0;
1503 u32 reg = 0;
1504 u16 kmrn_reg = 0;
1505
3d3a1676
BA
1506 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1507 &kmrn_reg);
1d5846b9 1508 if (ret_val)
5015e53a 1509 return ret_val;
1d5846b9
BA
1510
1511 if (k1_enable)
1512 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1513 else
1514 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1515
3d3a1676
BA
1516 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1517 kmrn_reg);
1d5846b9 1518 if (ret_val)
5015e53a 1519 return ret_val;
1d5846b9
BA
1520
1521 udelay(20);
1522 ctrl_ext = er32(CTRL_EXT);
1523 ctrl_reg = er32(CTRL);
1524
1525 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1526 reg |= E1000_CTRL_FRCSPD;
1527 ew32(CTRL, reg);
1528
1529 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
945a5151 1530 e1e_flush();
1d5846b9
BA
1531 udelay(20);
1532 ew32(CTRL, ctrl_reg);
1533 ew32(CTRL_EXT, ctrl_ext);
945a5151 1534 e1e_flush();
1d5846b9
BA
1535 udelay(20);
1536
5015e53a 1537 return 0;
1d5846b9
BA
1538}
1539
f523d211
BA
1540/**
1541 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1542 * @hw: pointer to the HW structure
1543 * @d0_state: boolean if entering d0 or d3 device state
1544 *
1545 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1546 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1547 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1548 **/
1549static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1550{
1551 s32 ret_val = 0;
1552 u32 mac_reg;
1553 u16 oem_reg;
1554
2fbe4526 1555 if (hw->mac.type < e1000_pchlan)
f523d211
BA
1556 return ret_val;
1557
94d8186a 1558 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1559 if (ret_val)
1560 return ret_val;
1561
2fbe4526 1562 if (hw->mac.type == e1000_pchlan) {
d3738bb8
BA
1563 mac_reg = er32(EXTCNF_CTRL);
1564 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
75ce1532 1565 goto release;
d3738bb8 1566 }
f523d211
BA
1567
1568 mac_reg = er32(FEXTNVM);
1569 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
75ce1532 1570 goto release;
f523d211
BA
1571
1572 mac_reg = er32(PHY_CTRL);
1573
f1430d69 1574 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211 1575 if (ret_val)
75ce1532 1576 goto release;
f523d211
BA
1577
1578 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1579
1580 if (d0_state) {
1581 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1582 oem_reg |= HV_OEM_BITS_GBE_DIS;
1583
1584 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1585 oem_reg |= HV_OEM_BITS_LPLU;
1586 } else {
03299e46
BA
1587 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1588 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
f523d211
BA
1589 oem_reg |= HV_OEM_BITS_GBE_DIS;
1590
03299e46
BA
1591 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1592 E1000_PHY_CTRL_NOND0A_LPLU))
f523d211
BA
1593 oem_reg |= HV_OEM_BITS_LPLU;
1594 }
03299e46 1595
92fe1733
BA
1596 /* Set Restart auto-neg to activate the bits */
1597 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1598 !hw->phy.ops.check_reset_block(hw))
1599 oem_reg |= HV_OEM_BITS_RESTART_AN;
1600
f1430d69 1601 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
f523d211 1602
75ce1532 1603release:
94d8186a 1604 hw->phy.ops.release(hw);
f523d211
BA
1605
1606 return ret_val;
1607}
1608
1609
fddaa1af
BA
1610/**
1611 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1612 * @hw: pointer to the HW structure
1613 **/
1614static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1615{
1616 s32 ret_val;
1617 u16 data;
1618
1619 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1620 if (ret_val)
1621 return ret_val;
1622
1623 data |= HV_KMRN_MDIO_SLOW;
1624
1625 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1626
1627 return ret_val;
1628}
1629
a4f58f54
BA
1630/**
1631 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1632 * done after every PHY reset.
1633 **/
1634static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1635{
1636 s32 ret_val = 0;
baf86c9d 1637 u16 phy_data;
a4f58f54
BA
1638
1639 if (hw->mac.type != e1000_pchlan)
5015e53a 1640 return 0;
a4f58f54 1641
fddaa1af
BA
1642 /* Set MDIO slow mode before any other MDIO access */
1643 if (hw->phy.type == e1000_phy_82577) {
1644 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1645 if (ret_val)
5015e53a 1646 return ret_val;
fddaa1af
BA
1647 }
1648
a4f58f54
BA
1649 if (((hw->phy.type == e1000_phy_82577) &&
1650 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1651 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1652 /* Disable generation of early preamble */
1653 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1654 if (ret_val)
1655 return ret_val;
1656
1657 /* Preamble tuning for SSC */
1d2101a7 1658 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
a4f58f54
BA
1659 if (ret_val)
1660 return ret_val;
1661 }
1662
1663 if (hw->phy.type == e1000_phy_82578) {
e921eb1a 1664 /* Return registers to default by doing a soft reset then
a4f58f54
BA
1665 * writing 0x3140 to the control register.
1666 */
1667 if (hw->phy.revision < 2) {
1668 e1000e_phy_sw_reset(hw);
c2ade1a4 1669 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
a4f58f54
BA
1670 }
1671 }
1672
1673 /* Select page 0 */
94d8186a 1674 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1675 if (ret_val)
1676 return ret_val;
1d5846b9 1677
a4f58f54 1678 hw->phy.addr = 1;
1d5846b9 1679 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1680 hw->phy.ops.release(hw);
1d5846b9 1681 if (ret_val)
5015e53a 1682 return ret_val;
a4f58f54 1683
e921eb1a 1684 /* Configure the K1 Si workaround during phy reset assuming there is
1d5846b9
BA
1685 * link so that it disables K1 if link is in 1Gbps.
1686 */
1687 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d 1688 if (ret_val)
5015e53a 1689 return ret_val;
1d5846b9 1690
baf86c9d
BA
1691 /* Workaround for link disconnects on a busy hub in half duplex */
1692 ret_val = hw->phy.ops.acquire(hw);
1693 if (ret_val)
5015e53a 1694 return ret_val;
f1430d69 1695 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
baf86c9d
BA
1696 if (ret_val)
1697 goto release;
f1430d69 1698 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
651fb102
BA
1699 if (ret_val)
1700 goto release;
1701
1702 /* set MSE higher to enable link to stay up when noise is high */
1703 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
baf86c9d
BA
1704release:
1705 hw->phy.ops.release(hw);
5015e53a 1706
a4f58f54
BA
1707 return ret_val;
1708}
1709
d3738bb8
BA
1710/**
1711 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1712 * @hw: pointer to the HW structure
1713 **/
1714void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1715{
1716 u32 mac_reg;
2b6b168d
BA
1717 u16 i, phy_reg = 0;
1718 s32 ret_val;
1719
1720 ret_val = hw->phy.ops.acquire(hw);
1721 if (ret_val)
1722 return;
1723 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1724 if (ret_val)
1725 goto release;
d3738bb8
BA
1726
1727 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1728 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1729 mac_reg = er32(RAL(i));
2b6b168d
BA
1730 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1731 (u16)(mac_reg & 0xFFFF));
1732 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1733 (u16)((mac_reg >> 16) & 0xFFFF));
1734
d3738bb8 1735 mac_reg = er32(RAH(i));
2b6b168d
BA
1736 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1737 (u16)(mac_reg & 0xFFFF));
1738 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1739 (u16)((mac_reg & E1000_RAH_AV)
1740 >> 16));
d3738bb8 1741 }
2b6b168d
BA
1742
1743 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1744
1745release:
1746 hw->phy.ops.release(hw);
d3738bb8
BA
1747}
1748
d3738bb8
BA
1749/**
1750 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1751 * with 82579 PHY
1752 * @hw: pointer to the HW structure
1753 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1754 **/
1755s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1756{
1757 s32 ret_val = 0;
1758 u16 phy_reg, data;
1759 u32 mac_reg;
1760 u16 i;
1761
2fbe4526 1762 if (hw->mac.type < e1000_pch2lan)
5015e53a 1763 return 0;
d3738bb8
BA
1764
1765 /* disable Rx path while enabling/disabling workaround */
1766 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1767 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1768 if (ret_val)
5015e53a 1769 return ret_val;
d3738bb8
BA
1770
1771 if (enable) {
e921eb1a 1772 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
d3738bb8
BA
1773 * SHRAL/H) and initial CRC values to the MAC
1774 */
1775 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
362e20ca 1776 u8 mac_addr[ETH_ALEN] = { 0 };
d3738bb8
BA
1777 u32 addr_high, addr_low;
1778
1779 addr_high = er32(RAH(i));
1780 if (!(addr_high & E1000_RAH_AV))
1781 continue;
1782 addr_low = er32(RAL(i));
1783 mac_addr[0] = (addr_low & 0xFF);
1784 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1785 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1786 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1787 mac_addr[4] = (addr_high & 0xFF);
1788 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1789
fe46f58f 1790 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
d3738bb8
BA
1791 }
1792
1793 /* Write Rx addresses to the PHY */
1794 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1795
1796 /* Enable jumbo frame workaround in the MAC */
1797 mac_reg = er32(FFLT_DBG);
1798 mac_reg &= ~(1 << 14);
1799 mac_reg |= (7 << 15);
1800 ew32(FFLT_DBG, mac_reg);
1801
1802 mac_reg = er32(RCTL);
1803 mac_reg |= E1000_RCTL_SECRC;
1804 ew32(RCTL, mac_reg);
1805
1806 ret_val = e1000e_read_kmrn_reg(hw,
1807 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1808 &data);
1809 if (ret_val)
5015e53a 1810 return ret_val;
d3738bb8
BA
1811 ret_val = e1000e_write_kmrn_reg(hw,
1812 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1813 data | (1 << 0));
1814 if (ret_val)
5015e53a 1815 return ret_val;
d3738bb8
BA
1816 ret_val = e1000e_read_kmrn_reg(hw,
1817 E1000_KMRNCTRLSTA_HD_CTRL,
1818 &data);
1819 if (ret_val)
5015e53a 1820 return ret_val;
d3738bb8
BA
1821 data &= ~(0xF << 8);
1822 data |= (0xB << 8);
1823 ret_val = e1000e_write_kmrn_reg(hw,
1824 E1000_KMRNCTRLSTA_HD_CTRL,
1825 data);
1826 if (ret_val)
5015e53a 1827 return ret_val;
d3738bb8
BA
1828
1829 /* Enable jumbo frame workaround in the PHY */
d3738bb8
BA
1830 e1e_rphy(hw, PHY_REG(769, 23), &data);
1831 data &= ~(0x7F << 5);
1832 data |= (0x37 << 5);
1833 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1834 if (ret_val)
5015e53a 1835 return ret_val;
d3738bb8
BA
1836 e1e_rphy(hw, PHY_REG(769, 16), &data);
1837 data &= ~(1 << 13);
d3738bb8
BA
1838 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1839 if (ret_val)
5015e53a 1840 return ret_val;
d3738bb8
BA
1841 e1e_rphy(hw, PHY_REG(776, 20), &data);
1842 data &= ~(0x3FF << 2);
1843 data |= (0x1A << 2);
1844 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1845 if (ret_val)
5015e53a 1846 return ret_val;
b64e9dd5 1847 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
d3738bb8 1848 if (ret_val)
5015e53a 1849 return ret_val;
d3738bb8
BA
1850 e1e_rphy(hw, HV_PM_CTRL, &data);
1851 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1852 if (ret_val)
5015e53a 1853 return ret_val;
d3738bb8
BA
1854 } else {
1855 /* Write MAC register values back to h/w defaults */
1856 mac_reg = er32(FFLT_DBG);
1857 mac_reg &= ~(0xF << 14);
1858 ew32(FFLT_DBG, mac_reg);
1859
1860 mac_reg = er32(RCTL);
1861 mac_reg &= ~E1000_RCTL_SECRC;
a1ce6473 1862 ew32(RCTL, mac_reg);
d3738bb8
BA
1863
1864 ret_val = e1000e_read_kmrn_reg(hw,
1865 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1866 &data);
1867 if (ret_val)
5015e53a 1868 return ret_val;
d3738bb8
BA
1869 ret_val = e1000e_write_kmrn_reg(hw,
1870 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1871 data & ~(1 << 0));
1872 if (ret_val)
5015e53a 1873 return ret_val;
d3738bb8
BA
1874 ret_val = e1000e_read_kmrn_reg(hw,
1875 E1000_KMRNCTRLSTA_HD_CTRL,
1876 &data);
1877 if (ret_val)
5015e53a 1878 return ret_val;
d3738bb8
BA
1879 data &= ~(0xF << 8);
1880 data |= (0xB << 8);
1881 ret_val = e1000e_write_kmrn_reg(hw,
1882 E1000_KMRNCTRLSTA_HD_CTRL,
1883 data);
1884 if (ret_val)
5015e53a 1885 return ret_val;
d3738bb8
BA
1886
1887 /* Write PHY register values back to h/w defaults */
d3738bb8
BA
1888 e1e_rphy(hw, PHY_REG(769, 23), &data);
1889 data &= ~(0x7F << 5);
1890 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1891 if (ret_val)
5015e53a 1892 return ret_val;
d3738bb8 1893 e1e_rphy(hw, PHY_REG(769, 16), &data);
d3738bb8
BA
1894 data |= (1 << 13);
1895 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1896 if (ret_val)
5015e53a 1897 return ret_val;
d3738bb8
BA
1898 e1e_rphy(hw, PHY_REG(776, 20), &data);
1899 data &= ~(0x3FF << 2);
1900 data |= (0x8 << 2);
1901 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1902 if (ret_val)
5015e53a 1903 return ret_val;
d3738bb8
BA
1904 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1905 if (ret_val)
5015e53a 1906 return ret_val;
d3738bb8
BA
1907 e1e_rphy(hw, HV_PM_CTRL, &data);
1908 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1909 if (ret_val)
5015e53a 1910 return ret_val;
d3738bb8
BA
1911 }
1912
1913 /* re-enable Rx path after enabling/disabling workaround */
5015e53a 1914 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
d3738bb8
BA
1915}
1916
1917/**
1918 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1919 * done after every PHY reset.
1920 **/
1921static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1922{
1923 s32 ret_val = 0;
1924
1925 if (hw->mac.type != e1000_pch2lan)
5015e53a 1926 return 0;
d3738bb8
BA
1927
1928 /* Set MDIO slow mode before any other MDIO access */
1929 ret_val = e1000_set_mdio_slow_mode_hv(hw);
8e5ab42d
BA
1930 if (ret_val)
1931 return ret_val;
d3738bb8 1932
4d24136c
BA
1933 ret_val = hw->phy.ops.acquire(hw);
1934 if (ret_val)
5015e53a 1935 return ret_val;
4d24136c 1936 /* set MSE higher to enable link to stay up when noise is high */
4ddc48a9 1937 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
4d24136c
BA
1938 if (ret_val)
1939 goto release;
1940 /* drop link after 5 times MSE threshold was reached */
4ddc48a9 1941 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
4d24136c
BA
1942release:
1943 hw->phy.ops.release(hw);
1944
d3738bb8
BA
1945 return ret_val;
1946}
1947
831bd2e6
BA
1948/**
1949 * e1000_k1_gig_workaround_lv - K1 Si workaround
1950 * @hw: pointer to the HW structure
1951 *
1952 * Workaround to set the K1 beacon duration for 82579 parts
1953 **/
1954static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1955{
1956 s32 ret_val = 0;
1957 u16 status_reg = 0;
1958 u32 mac_reg;
0ed013e2 1959 u16 phy_reg;
831bd2e6
BA
1960
1961 if (hw->mac.type != e1000_pch2lan)
5015e53a 1962 return 0;
831bd2e6
BA
1963
1964 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1965 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1966 if (ret_val)
5015e53a 1967 return ret_val;
831bd2e6
BA
1968
1969 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1970 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1971 mac_reg = er32(FEXTNVM4);
1972 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1973
0ed013e2
BA
1974 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1975 if (ret_val)
5015e53a 1976 return ret_val;
0ed013e2
BA
1977
1978 if (status_reg & HV_M_STATUS_SPEED_1000) {
36ceeb43
BA
1979 u16 pm_phy_reg;
1980
831bd2e6 1981 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
0ed013e2 1982 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
36ceeb43
BA
1983 /* LV 1G Packet drop issue wa */
1984 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
1985 if (ret_val)
1986 return ret_val;
1987 pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
1988 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
1989 if (ret_val)
1990 return ret_val;
0ed013e2 1991 } else {
831bd2e6 1992 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
0ed013e2
BA
1993 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1994 }
831bd2e6 1995 ew32(FEXTNVM4, mac_reg);
0ed013e2 1996 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
831bd2e6
BA
1997 }
1998
831bd2e6
BA
1999 return ret_val;
2000}
2001
605c82ba
BA
2002/**
2003 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2004 * @hw: pointer to the HW structure
2005 * @gate: boolean set to true to gate, false to ungate
2006 *
2007 * Gate/ungate the automatic PHY configuration via hardware; perform
2008 * the configuration via software instead.
2009 **/
2010static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2011{
2012 u32 extcnf_ctrl;
2013
2fbe4526 2014 if (hw->mac.type < e1000_pch2lan)
605c82ba
BA
2015 return;
2016
2017 extcnf_ctrl = er32(EXTCNF_CTRL);
2018
2019 if (gate)
2020 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2021 else
2022 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2023
2024 ew32(EXTCNF_CTRL, extcnf_ctrl);
605c82ba
BA
2025}
2026
fc0c7760
BA
2027/**
2028 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2029 * @hw: pointer to the HW structure
2030 *
2031 * Check the appropriate indication the MAC has finished configuring the
2032 * PHY after a software reset.
2033 **/
2034static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2035{
2036 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2037
2038 /* Wait for basic configuration completes before proceeding */
2039 do {
2040 data = er32(STATUS);
2041 data &= E1000_STATUS_LAN_INIT_DONE;
2042 udelay(100);
2043 } while ((!data) && --loop);
2044
e921eb1a 2045 /* If basic configuration is incomplete before the above loop
fc0c7760
BA
2046 * count reaches 0, loading the configuration from NVM will
2047 * leave the PHY in a bad state possibly resulting in no link.
2048 */
2049 if (loop == 0)
3bb99fe2 2050 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
2051
2052 /* Clear the Init Done bit for the next init event */
2053 data = er32(STATUS);
2054 data &= ~E1000_STATUS_LAN_INIT_DONE;
2055 ew32(STATUS, data);
2056}
2057
bc7f75fa 2058/**
e98cac44 2059 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
bc7f75fa 2060 * @hw: pointer to the HW structure
bc7f75fa 2061 **/
e98cac44 2062static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
bc7f75fa 2063{
f523d211
BA
2064 s32 ret_val = 0;
2065 u16 reg;
bc7f75fa 2066
44abd5c1 2067 if (hw->phy.ops.check_reset_block(hw))
5015e53a 2068 return 0;
fc0c7760 2069
5f3eed6f 2070 /* Allow time for h/w to get to quiescent state after reset */
1bba4386 2071 usleep_range(10000, 20000);
5f3eed6f 2072
fddaa1af 2073 /* Perform any necessary post-reset workarounds */
e98cac44
BA
2074 switch (hw->mac.type) {
2075 case e1000_pchlan:
a4f58f54
BA
2076 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2077 if (ret_val)
5015e53a 2078 return ret_val;
e98cac44 2079 break;
d3738bb8
BA
2080 case e1000_pch2lan:
2081 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2082 if (ret_val)
5015e53a 2083 return ret_val;
d3738bb8 2084 break;
e98cac44
BA
2085 default:
2086 break;
a4f58f54
BA
2087 }
2088
3ebfc7c9
BA
2089 /* Clear the host wakeup bit after lcd reset */
2090 if (hw->mac.type >= e1000_pchlan) {
2091 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2092 reg &= ~BM_WUC_HOST_WU_BIT;
2093 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2094 }
db2932ec 2095
f523d211
BA
2096 /* Configure the LCD with the extended configuration region in NVM */
2097 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2098 if (ret_val)
5015e53a 2099 return ret_val;
bc7f75fa 2100
f523d211 2101 /* Configure the LCD with the OEM bits in NVM */
e98cac44 2102 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 2103
1effb45c
BA
2104 if (hw->mac.type == e1000_pch2lan) {
2105 /* Ungate automatic PHY configuration on non-managed 82579 */
2106 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1bba4386 2107 usleep_range(10000, 20000);
1effb45c
BA
2108 e1000_gate_hw_phy_config_ich8lan(hw, false);
2109 }
2110
2111 /* Set EEE LPI Update Timer to 200usec */
2112 ret_val = hw->phy.ops.acquire(hw);
2113 if (ret_val)
5015e53a 2114 return ret_val;
4ddc48a9
BA
2115 ret_val = e1000_write_emi_reg_locked(hw,
2116 I82579_LPI_UPDATE_TIMER,
2117 0x1387);
1effb45c 2118 hw->phy.ops.release(hw);
605c82ba
BA
2119 }
2120
e98cac44
BA
2121 return ret_val;
2122}
2123
2124/**
2125 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2126 * @hw: pointer to the HW structure
2127 *
2128 * Resets the PHY
2129 * This is a function pointer entry point called by drivers
2130 * or other shared routines.
2131 **/
2132static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2133{
2134 s32 ret_val = 0;
2135
605c82ba
BA
2136 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2137 if ((hw->mac.type == e1000_pch2lan) &&
2138 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2139 e1000_gate_hw_phy_config_ich8lan(hw, true);
2140
e98cac44
BA
2141 ret_val = e1000e_phy_hw_reset_generic(hw);
2142 if (ret_val)
5015e53a 2143 return ret_val;
e98cac44 2144
5015e53a 2145 return e1000_post_phy_reset_ich8lan(hw);
bc7f75fa
AK
2146}
2147
fa2ce13c
BA
2148/**
2149 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2150 * @hw: pointer to the HW structure
2151 * @active: true to enable LPLU, false to disable
2152 *
2153 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2154 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2155 * the phy speed. This function will manually set the LPLU bit and restart
2156 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2157 * since it configures the same bit.
2158 **/
2159static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2160{
70806a7f 2161 s32 ret_val;
fa2ce13c
BA
2162 u16 oem_reg;
2163
2164 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2165 if (ret_val)
5015e53a 2166 return ret_val;
fa2ce13c
BA
2167
2168 if (active)
2169 oem_reg |= HV_OEM_BITS_LPLU;
2170 else
2171 oem_reg &= ~HV_OEM_BITS_LPLU;
2172
44abd5c1 2173 if (!hw->phy.ops.check_reset_block(hw))
464c85e3
BA
2174 oem_reg |= HV_OEM_BITS_RESTART_AN;
2175
5015e53a 2176 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
fa2ce13c
BA
2177}
2178
bc7f75fa
AK
2179/**
2180 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2181 * @hw: pointer to the HW structure
564ea9bb 2182 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
2183 *
2184 * Sets the LPLU D0 state according to the active flag. When
2185 * activating LPLU this function also disables smart speed
2186 * and vice versa. LPLU will not be activated unless the
2187 * device autonegotiation advertisement meets standards of
2188 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2189 * This is a function pointer entry point only called by
2190 * PHY setup routines.
2191 **/
2192static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2193{
2194 struct e1000_phy_info *phy = &hw->phy;
2195 u32 phy_ctrl;
2196 s32 ret_val = 0;
2197 u16 data;
2198
97ac8cae 2199 if (phy->type == e1000_phy_ife)
82607255 2200 return 0;
bc7f75fa
AK
2201
2202 phy_ctrl = er32(PHY_CTRL);
2203
2204 if (active) {
2205 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2206 ew32(PHY_CTRL, phy_ctrl);
2207
60f1292f
BA
2208 if (phy->type != e1000_phy_igp_3)
2209 return 0;
2210
e921eb1a 2211 /* Call gig speed drop workaround on LPLU before accessing
ad68076e
BA
2212 * any PHY registers
2213 */
60f1292f 2214 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2215 e1000e_gig_downshift_workaround_ich8lan(hw);
2216
2217 /* When LPLU is enabled, we should disable SmartSpeed */
2218 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
7dbbe5d5
BA
2219 if (ret_val)
2220 return ret_val;
bc7f75fa
AK
2221 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2222 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2223 if (ret_val)
2224 return ret_val;
2225 } else {
2226 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2227 ew32(PHY_CTRL, phy_ctrl);
2228
60f1292f
BA
2229 if (phy->type != e1000_phy_igp_3)
2230 return 0;
2231
e921eb1a 2232 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2233 * during Dx states where the power conservation is most
2234 * important. During driver activity we should enable
ad68076e
BA
2235 * SmartSpeed, so performance is maintained.
2236 */
bc7f75fa
AK
2237 if (phy->smart_speed == e1000_smart_speed_on) {
2238 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2239 &data);
bc7f75fa
AK
2240 if (ret_val)
2241 return ret_val;
2242
2243 data |= IGP01E1000_PSCFR_SMART_SPEED;
2244 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2245 data);
bc7f75fa
AK
2246 if (ret_val)
2247 return ret_val;
2248 } else if (phy->smart_speed == e1000_smart_speed_off) {
2249 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2250 &data);
bc7f75fa
AK
2251 if (ret_val)
2252 return ret_val;
2253
2254 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2255 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2256 data);
bc7f75fa
AK
2257 if (ret_val)
2258 return ret_val;
2259 }
2260 }
2261
2262 return 0;
2263}
2264
2265/**
2266 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2267 * @hw: pointer to the HW structure
564ea9bb 2268 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
2269 *
2270 * Sets the LPLU D3 state according to the active flag. When
2271 * activating LPLU this function also disables smart speed
2272 * and vice versa. LPLU will not be activated unless the
2273 * device autonegotiation advertisement meets standards of
2274 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2275 * This is a function pointer entry point only called by
2276 * PHY setup routines.
2277 **/
2278static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2279{
2280 struct e1000_phy_info *phy = &hw->phy;
2281 u32 phy_ctrl;
d7eb3384 2282 s32 ret_val = 0;
bc7f75fa
AK
2283 u16 data;
2284
2285 phy_ctrl = er32(PHY_CTRL);
2286
2287 if (!active) {
2288 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2289 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
2290
2291 if (phy->type != e1000_phy_igp_3)
2292 return 0;
2293
e921eb1a 2294 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2295 * during Dx states where the power conservation is most
2296 * important. During driver activity we should enable
ad68076e
BA
2297 * SmartSpeed, so performance is maintained.
2298 */
bc7f75fa 2299 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
2300 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2301 &data);
bc7f75fa
AK
2302 if (ret_val)
2303 return ret_val;
2304
2305 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2306 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2307 data);
bc7f75fa
AK
2308 if (ret_val)
2309 return ret_val;
2310 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
2311 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2312 &data);
bc7f75fa
AK
2313 if (ret_val)
2314 return ret_val;
2315
2316 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2317 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2318 data);
bc7f75fa
AK
2319 if (ret_val)
2320 return ret_val;
2321 }
2322 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2323 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2324 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2325 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2326 ew32(PHY_CTRL, phy_ctrl);
2327
60f1292f
BA
2328 if (phy->type != e1000_phy_igp_3)
2329 return 0;
2330
e921eb1a 2331 /* Call gig speed drop workaround on LPLU before accessing
ad68076e
BA
2332 * any PHY registers
2333 */
60f1292f 2334 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2335 e1000e_gig_downshift_workaround_ich8lan(hw);
2336
2337 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 2338 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
2339 if (ret_val)
2340 return ret_val;
2341
2342 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 2343 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
2344 }
2345
d7eb3384 2346 return ret_val;
bc7f75fa
AK
2347}
2348
f4187b56
BA
2349/**
2350 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2351 * @hw: pointer to the HW structure
2352 * @bank: pointer to the variable that returns the active bank
2353 *
2354 * Reads signature byte from the NVM using the flash access registers.
e243455d 2355 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
2356 **/
2357static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2358{
e243455d 2359 u32 eecd;
f4187b56 2360 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
2361 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2362 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d 2363 u8 sig_byte = 0;
f71dde6a 2364 s32 ret_val;
f4187b56 2365
e243455d
BA
2366 switch (hw->mac.type) {
2367 case e1000_ich8lan:
2368 case e1000_ich9lan:
2369 eecd = er32(EECD);
2370 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2371 E1000_EECD_SEC1VAL_VALID_MASK) {
2372 if (eecd & E1000_EECD_SEC1VAL)
2373 *bank = 1;
2374 else
2375 *bank = 0;
2376
2377 return 0;
2378 }
434f1392 2379 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
e243455d
BA
2380 /* fall-thru */
2381 default:
2382 /* set bank to 0 in case flash read fails */
2383 *bank = 0;
2384
2385 /* Check bank 0 */
2386 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
f0ff4398 2387 &sig_byte);
e243455d
BA
2388 if (ret_val)
2389 return ret_val;
2390 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2391 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 2392 *bank = 0;
e243455d
BA
2393 return 0;
2394 }
f4187b56 2395
e243455d
BA
2396 /* Check bank 1 */
2397 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
f0ff4398
BA
2398 bank1_offset,
2399 &sig_byte);
e243455d
BA
2400 if (ret_val)
2401 return ret_val;
2402 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2403 E1000_ICH_NVM_SIG_VALUE) {
2404 *bank = 1;
2405 return 0;
f4187b56 2406 }
e243455d 2407
3bb99fe2 2408 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 2409 return -E1000_ERR_NVM;
f4187b56 2410 }
f4187b56
BA
2411}
2412
bc7f75fa
AK
2413/**
2414 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2415 * @hw: pointer to the HW structure
2416 * @offset: The offset (in bytes) of the word(s) to read.
2417 * @words: Size of data to read in words
2418 * @data: Pointer to the word(s) to read at offset.
2419 *
2420 * Reads a word(s) from the NVM using the flash access registers.
2421 **/
2422static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2423 u16 *data)
2424{
2425 struct e1000_nvm_info *nvm = &hw->nvm;
2426 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2427 u32 act_offset;
148675a7 2428 s32 ret_val = 0;
f4187b56 2429 u32 bank = 0;
bc7f75fa
AK
2430 u16 i, word;
2431
2432 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2433 (words == 0)) {
3bb99fe2 2434 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
2435 ret_val = -E1000_ERR_NVM;
2436 goto out;
bc7f75fa
AK
2437 }
2438
94d8186a 2439 nvm->ops.acquire(hw);
bc7f75fa 2440
f4187b56 2441 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 2442 if (ret_val) {
3bb99fe2 2443 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
2444 bank = 0;
2445 }
f4187b56
BA
2446
2447 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
2448 act_offset += offset;
2449
148675a7 2450 ret_val = 0;
bc7f75fa 2451 for (i = 0; i < words; i++) {
362e20ca
BA
2452 if (dev_spec->shadow_ram[offset + i].modified) {
2453 data[i] = dev_spec->shadow_ram[offset + i].value;
bc7f75fa
AK
2454 } else {
2455 ret_val = e1000_read_flash_word_ich8lan(hw,
2456 act_offset + i,
2457 &word);
2458 if (ret_val)
2459 break;
2460 data[i] = word;
2461 }
2462 }
2463
94d8186a 2464 nvm->ops.release(hw);
bc7f75fa 2465
e243455d
BA
2466out:
2467 if (ret_val)
3bb99fe2 2468 e_dbg("NVM read error: %d\n", ret_val);
e243455d 2469
bc7f75fa
AK
2470 return ret_val;
2471}
2472
2473/**
2474 * e1000_flash_cycle_init_ich8lan - Initialize flash
2475 * @hw: pointer to the HW structure
2476 *
2477 * This function does initial flash setup so that a new read/write/erase cycle
2478 * can be started.
2479 **/
2480static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2481{
2482 union ich8_hws_flash_status hsfsts;
2483 s32 ret_val = -E1000_ERR_NVM;
bc7f75fa
AK
2484
2485 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2486
2487 /* Check if the flash descriptor is valid */
04499ec4 2488 if (!hsfsts.hsf_status.fldesvalid) {
434f1392 2489 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
bc7f75fa
AK
2490 return -E1000_ERR_NVM;
2491 }
2492
2493 /* Clear FCERR and DAEL in hw status by writing 1 */
2494 hsfsts.hsf_status.flcerr = 1;
2495 hsfsts.hsf_status.dael = 1;
2496
2497 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2498
e921eb1a 2499 /* Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
2500 * bit to check against, in order to start a new cycle or
2501 * FDONE bit should be changed in the hardware so that it
489815ce 2502 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
2503 * indication whether a cycle is in progress or has been
2504 * completed.
2505 */
2506
04499ec4 2507 if (!hsfsts.hsf_status.flcinprog) {
e921eb1a 2508 /* There is no cycle running at present,
5ff5b664 2509 * so we can start a cycle.
ad68076e
BA
2510 * Begin by setting Flash Cycle Done.
2511 */
bc7f75fa
AK
2512 hsfsts.hsf_status.flcdone = 1;
2513 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2514 ret_val = 0;
2515 } else {
f71dde6a 2516 s32 i;
90da0669 2517
e921eb1a 2518 /* Otherwise poll for sometime so the current
ad68076e
BA
2519 * cycle has a chance to end before giving up.
2520 */
bc7f75fa 2521 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
c8243ee0 2522 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2523 if (!hsfsts.hsf_status.flcinprog) {
bc7f75fa
AK
2524 ret_val = 0;
2525 break;
2526 }
2527 udelay(1);
2528 }
9e2d7657 2529 if (!ret_val) {
e921eb1a 2530 /* Successful in waiting for previous cycle to timeout,
ad68076e
BA
2531 * now set the Flash Cycle Done.
2532 */
bc7f75fa
AK
2533 hsfsts.hsf_status.flcdone = 1;
2534 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2535 } else {
2c73e1fe 2536 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
2537 }
2538 }
2539
2540 return ret_val;
2541}
2542
2543/**
2544 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2545 * @hw: pointer to the HW structure
2546 * @timeout: maximum time to wait for completion
2547 *
2548 * This function starts a flash cycle and waits for its completion.
2549 **/
2550static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2551{
2552 union ich8_hws_flash_ctrl hsflctl;
2553 union ich8_hws_flash_status hsfsts;
bc7f75fa
AK
2554 u32 i = 0;
2555
2556 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2557 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2558 hsflctl.hsf_ctrl.flcgo = 1;
2559 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2560
2561 /* wait till FDONE bit is set to 1 */
2562 do {
2563 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2564 if (hsfsts.hsf_status.flcdone)
bc7f75fa
AK
2565 break;
2566 udelay(1);
2567 } while (i++ < timeout);
2568
04499ec4 2569 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
bc7f75fa
AK
2570 return 0;
2571
55920b5e 2572 return -E1000_ERR_NVM;
bc7f75fa
AK
2573}
2574
2575/**
2576 * e1000_read_flash_word_ich8lan - Read word from flash
2577 * @hw: pointer to the HW structure
2578 * @offset: offset to data location
2579 * @data: pointer to the location for storing the data
2580 *
2581 * Reads the flash word at offset into data. Offset is converted
2582 * to bytes before read.
2583 **/
2584static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2585 u16 *data)
2586{
2587 /* Must convert offset into bytes. */
2588 offset <<= 1;
2589
2590 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2591}
2592
f4187b56
BA
2593/**
2594 * e1000_read_flash_byte_ich8lan - Read byte from flash
2595 * @hw: pointer to the HW structure
2596 * @offset: The offset of the byte to read.
2597 * @data: Pointer to a byte to store the value read.
2598 *
2599 * Reads a single byte from the NVM using the flash access registers.
2600 **/
2601static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2602 u8 *data)
2603{
2604 s32 ret_val;
2605 u16 word = 0;
2606
2607 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2608 if (ret_val)
2609 return ret_val;
2610
2611 *data = (u8)word;
2612
2613 return 0;
2614}
2615
bc7f75fa
AK
2616/**
2617 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2618 * @hw: pointer to the HW structure
2619 * @offset: The offset (in bytes) of the byte or word to read.
2620 * @size: Size of data to read, 1=byte 2=word
2621 * @data: Pointer to the word to store the value read.
2622 *
2623 * Reads a byte or word from the NVM using the flash access registers.
2624 **/
2625static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2626 u8 size, u16 *data)
2627{
2628 union ich8_hws_flash_status hsfsts;
2629 union ich8_hws_flash_ctrl hsflctl;
2630 u32 flash_linear_addr;
2631 u32 flash_data = 0;
2632 s32 ret_val = -E1000_ERR_NVM;
2633 u8 count = 0;
2634
2635 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2636 return -E1000_ERR_NVM;
2637
f0ff4398
BA
2638 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2639 hw->nvm.flash_base_addr);
bc7f75fa
AK
2640
2641 do {
2642 udelay(1);
2643 /* Steps */
2644 ret_val = e1000_flash_cycle_init_ich8lan(hw);
9e2d7657 2645 if (ret_val)
bc7f75fa
AK
2646 break;
2647
2648 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2649 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2650 hsflctl.hsf_ctrl.fldbcount = size - 1;
2651 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2652 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2653
2654 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2655
2656 ret_val = e1000_flash_cycle_ich8lan(hw,
2657 ICH_FLASH_READ_COMMAND_TIMEOUT);
2658
e921eb1a 2659 /* Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
2660 * and try the whole sequence a few more times, else
2661 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
2662 * least significant byte first msb to lsb
2663 */
9e2d7657 2664 if (!ret_val) {
bc7f75fa 2665 flash_data = er32flash(ICH_FLASH_FDATA0);
b1cdfead 2666 if (size == 1)
bc7f75fa 2667 *data = (u8)(flash_data & 0x000000FF);
b1cdfead 2668 else if (size == 2)
bc7f75fa 2669 *data = (u16)(flash_data & 0x0000FFFF);
bc7f75fa
AK
2670 break;
2671 } else {
e921eb1a 2672 /* If we've gotten here, then things are probably
bc7f75fa
AK
2673 * completely hosed, but if the error condition is
2674 * detected, it won't hurt to give it another try...
2675 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2676 */
2677 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2678 if (hsfsts.hsf_status.flcerr) {
bc7f75fa
AK
2679 /* Repeat for some time before giving up. */
2680 continue;
04499ec4 2681 } else if (!hsfsts.hsf_status.flcdone) {
434f1392 2682 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
2683 break;
2684 }
2685 }
2686 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2687
2688 return ret_val;
2689}
2690
2691/**
2692 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2693 * @hw: pointer to the HW structure
2694 * @offset: The offset (in bytes) of the word(s) to write.
2695 * @words: Size of data to write in words
2696 * @data: Pointer to the word(s) to write at offset.
2697 *
2698 * Writes a byte or word to the NVM using the flash access registers.
2699 **/
2700static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2701 u16 *data)
2702{
2703 struct e1000_nvm_info *nvm = &hw->nvm;
2704 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
2705 u16 i;
2706
2707 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2708 (words == 0)) {
3bb99fe2 2709 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2710 return -E1000_ERR_NVM;
2711 }
2712
94d8186a 2713 nvm->ops.acquire(hw);
ca15df58 2714
bc7f75fa 2715 for (i = 0; i < words; i++) {
362e20ca
BA
2716 dev_spec->shadow_ram[offset + i].modified = true;
2717 dev_spec->shadow_ram[offset + i].value = data[i];
bc7f75fa
AK
2718 }
2719
94d8186a 2720 nvm->ops.release(hw);
ca15df58 2721
bc7f75fa
AK
2722 return 0;
2723}
2724
2725/**
2726 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2727 * @hw: pointer to the HW structure
2728 *
2729 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2730 * which writes the checksum to the shadow ram. The changes in the shadow
2731 * ram are then committed to the EEPROM by processing each bank at a time
2732 * checking for the modified bit and writing only the pending changes.
489815ce 2733 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
2734 * future writes.
2735 **/
2736static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2737{
2738 struct e1000_nvm_info *nvm = &hw->nvm;
2739 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 2740 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
2741 s32 ret_val;
2742 u16 data;
2743
2744 ret_val = e1000e_update_nvm_checksum_generic(hw);
2745 if (ret_val)
e243455d 2746 goto out;
bc7f75fa
AK
2747
2748 if (nvm->type != e1000_nvm_flash_sw)
e243455d 2749 goto out;
bc7f75fa 2750
94d8186a 2751 nvm->ops.acquire(hw);
bc7f75fa 2752
e921eb1a 2753 /* We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 2754 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
2755 * is going to be written
2756 */
f4187b56 2757 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2758 if (ret_val) {
3bb99fe2 2759 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2760 bank = 0;
e243455d 2761 }
f4187b56
BA
2762
2763 if (bank == 0) {
bc7f75fa
AK
2764 new_bank_offset = nvm->flash_bank_size;
2765 old_bank_offset = 0;
e243455d 2766 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
2767 if (ret_val)
2768 goto release;
bc7f75fa
AK
2769 } else {
2770 old_bank_offset = nvm->flash_bank_size;
2771 new_bank_offset = 0;
e243455d 2772 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
2773 if (ret_val)
2774 goto release;
bc7f75fa
AK
2775 }
2776
2777 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
e921eb1a 2778 /* Determine whether to write the value stored
bc7f75fa 2779 * in the other NVM bank or a modified value stored
ad68076e
BA
2780 * in the shadow RAM
2781 */
bc7f75fa
AK
2782 if (dev_spec->shadow_ram[i].modified) {
2783 data = dev_spec->shadow_ram[i].value;
2784 } else {
e243455d 2785 ret_val = e1000_read_flash_word_ich8lan(hw, i +
f0ff4398
BA
2786 old_bank_offset,
2787 &data);
e243455d
BA
2788 if (ret_val)
2789 break;
bc7f75fa
AK
2790 }
2791
e921eb1a 2792 /* If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2793 * (15:14) are 11b until the commit has completed.
2794 * This will allow us to write 10b which indicates the
2795 * signature is valid. We want to do this after the write
2796 * has completed so that we don't mark the segment valid
ad68076e
BA
2797 * while the write is still in progress
2798 */
bc7f75fa
AK
2799 if (i == E1000_ICH_NVM_SIG_WORD)
2800 data |= E1000_ICH_NVM_SIG_MASK;
2801
2802 /* Convert offset to bytes. */
2803 act_offset = (i + new_bank_offset) << 1;
2804
2805 udelay(100);
2806 /* Write the bytes to the new bank. */
2807 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2808 act_offset,
2809 (u8)data);
2810 if (ret_val)
2811 break;
2812
2813 udelay(100);
2814 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
f0ff4398
BA
2815 act_offset + 1,
2816 (u8)(data >> 8));
bc7f75fa
AK
2817 if (ret_val)
2818 break;
2819 }
2820
e921eb1a 2821 /* Don't bother writing the segment valid bits if sector
ad68076e
BA
2822 * programming failed.
2823 */
bc7f75fa 2824 if (ret_val) {
4a770358 2825 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2826 e_dbg("Flash commit failed.\n");
9c5e209d 2827 goto release;
bc7f75fa
AK
2828 }
2829
e921eb1a 2830 /* Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2831 * to 10b in word 0x13 , this can be done without an
2832 * erase as well since these bits are 11 to start with
ad68076e
BA
2833 * and we need to change bit 14 to 0b
2834 */
bc7f75fa 2835 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2836 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2837 if (ret_val)
2838 goto release;
2839
bc7f75fa
AK
2840 data &= 0xBFFF;
2841 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2842 act_offset * 2 + 1,
2843 (u8)(data >> 8));
9c5e209d
BA
2844 if (ret_val)
2845 goto release;
bc7f75fa 2846
e921eb1a 2847 /* And invalidate the previously valid segment by setting
bc7f75fa
AK
2848 * its signature word (0x13) high_byte to 0b. This can be
2849 * done without an erase because flash erase sets all bits
ad68076e
BA
2850 * to 1's. We can write 1's to 0's without an erase
2851 */
bc7f75fa
AK
2852 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2853 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2854 if (ret_val)
2855 goto release;
bc7f75fa
AK
2856
2857 /* Great! Everything worked, we can now clear the cached entries. */
2858 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2859 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2860 dev_spec->shadow_ram[i].value = 0xFFFF;
2861 }
2862
9c5e209d 2863release:
94d8186a 2864 nvm->ops.release(hw);
bc7f75fa 2865
e921eb1a 2866 /* Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2867 * until after the next adapter reset.
2868 */
9c5e209d 2869 if (!ret_val) {
e85e3639 2870 nvm->ops.reload(hw);
1bba4386 2871 usleep_range(10000, 20000);
9c5e209d 2872 }
bc7f75fa 2873
e243455d
BA
2874out:
2875 if (ret_val)
3bb99fe2 2876 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2877
bc7f75fa
AK
2878 return ret_val;
2879}
2880
2881/**
2882 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2883 * @hw: pointer to the HW structure
2884 *
2885 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2886 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2887 * calculated, in which case we need to calculate the checksum and set bit 6.
2888 **/
2889static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2890{
2891 s32 ret_val;
2892 u16 data;
1cc7a3a1
BA
2893 u16 word;
2894 u16 valid_csum_mask;
bc7f75fa 2895
1cc7a3a1
BA
2896 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
2897 * the checksum needs to be fixed. This bit is an indication that
2898 * the NVM was prepared by OEM software and did not calculate
2899 * the checksum...a likely scenario.
bc7f75fa 2900 */
1cc7a3a1
BA
2901 switch (hw->mac.type) {
2902 case e1000_pch_lpt:
2903 word = NVM_COMPAT;
2904 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
2905 break;
2906 default:
2907 word = NVM_FUTURE_INIT_WORD1;
2908 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
2909 break;
2910 }
2911
2912 ret_val = e1000_read_nvm(hw, word, 1, &data);
bc7f75fa
AK
2913 if (ret_val)
2914 return ret_val;
2915
1cc7a3a1
BA
2916 if (!(data & valid_csum_mask)) {
2917 data |= valid_csum_mask;
2918 ret_val = e1000_write_nvm(hw, word, 1, &data);
bc7f75fa
AK
2919 if (ret_val)
2920 return ret_val;
2921 ret_val = e1000e_update_nvm_checksum(hw);
2922 if (ret_val)
2923 return ret_val;
2924 }
2925
2926 return e1000e_validate_nvm_checksum_generic(hw);
2927}
2928
4a770358
BA
2929/**
2930 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2931 * @hw: pointer to the HW structure
2932 *
2933 * To prevent malicious write/erase of the NVM, set it to be read-only
2934 * so that the hardware ignores all write/erase cycles of the NVM via
2935 * the flash control registers. The shadow-ram copy of the NVM will
2936 * still be updated, however any updates to this copy will not stick
2937 * across driver reloads.
2938 **/
2939void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2940{
ca15df58 2941 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2942 union ich8_flash_protected_range pr0;
2943 union ich8_hws_flash_status hsfsts;
2944 u32 gfpreg;
4a770358 2945
94d8186a 2946 nvm->ops.acquire(hw);
4a770358
BA
2947
2948 gfpreg = er32flash(ICH_FLASH_GFPREG);
2949
2950 /* Write-protect GbE Sector of NVM */
2951 pr0.regval = er32flash(ICH_FLASH_PR0);
2952 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2953 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2954 pr0.range.wpe = true;
2955 ew32flash(ICH_FLASH_PR0, pr0.regval);
2956
e921eb1a 2957 /* Lock down a subset of GbE Flash Control Registers, e.g.
4a770358
BA
2958 * PR0 to prevent the write-protection from being lifted.
2959 * Once FLOCKDN is set, the registers protected by it cannot
2960 * be written until FLOCKDN is cleared by a hardware reset.
2961 */
2962 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2963 hsfsts.hsf_status.flockdn = true;
2964 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2965
94d8186a 2966 nvm->ops.release(hw);
4a770358
BA
2967}
2968
bc7f75fa
AK
2969/**
2970 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2971 * @hw: pointer to the HW structure
2972 * @offset: The offset (in bytes) of the byte/word to read.
2973 * @size: Size of data to read, 1=byte 2=word
2974 * @data: The byte(s) to write to the NVM.
2975 *
2976 * Writes one/two bytes to the NVM using the flash access registers.
2977 **/
2978static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2979 u8 size, u16 data)
2980{
2981 union ich8_hws_flash_status hsfsts;
2982 union ich8_hws_flash_ctrl hsflctl;
2983 u32 flash_linear_addr;
2984 u32 flash_data = 0;
2985 s32 ret_val;
2986 u8 count = 0;
2987
2988 if (size < 1 || size > 2 || data > size * 0xff ||
2989 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2990 return -E1000_ERR_NVM;
2991
f0ff4398
BA
2992 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2993 hw->nvm.flash_base_addr);
bc7f75fa
AK
2994
2995 do {
2996 udelay(1);
2997 /* Steps */
2998 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2999 if (ret_val)
3000 break;
3001
3002 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3003 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
362e20ca 3004 hsflctl.hsf_ctrl.fldbcount = size - 1;
bc7f75fa
AK
3005 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3006 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3007
3008 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3009
3010 if (size == 1)
3011 flash_data = (u32)data & 0x00FF;
3012 else
3013 flash_data = (u32)data;
3014
3015 ew32flash(ICH_FLASH_FDATA0, flash_data);
3016
e921eb1a 3017 /* check if FCERR is set to 1 , if set to 1, clear it
ad68076e
BA
3018 * and try the whole sequence a few more times else done
3019 */
bc7f75fa
AK
3020 ret_val = e1000_flash_cycle_ich8lan(hw,
3021 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3022 if (!ret_val)
3023 break;
3024
e921eb1a 3025 /* If we're here, then things are most likely
bc7f75fa
AK
3026 * completely hosed, but if the error condition
3027 * is detected, it won't hurt to give it another
3028 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3029 */
3030 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 3031 if (hsfsts.hsf_status.flcerr)
bc7f75fa
AK
3032 /* Repeat for some time before giving up. */
3033 continue;
04499ec4 3034 if (!hsfsts.hsf_status.flcdone) {
434f1392 3035 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
3036 break;
3037 }
3038 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3039
3040 return ret_val;
3041}
3042
3043/**
3044 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3045 * @hw: pointer to the HW structure
3046 * @offset: The index of the byte to read.
3047 * @data: The byte to write to the NVM.
3048 *
3049 * Writes a single byte to the NVM using the flash access registers.
3050 **/
3051static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3052 u8 data)
3053{
3054 u16 word = (u16)data;
3055
3056 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3057}
3058
3059/**
3060 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3061 * @hw: pointer to the HW structure
3062 * @offset: The offset of the byte to write.
3063 * @byte: The byte to write to the NVM.
3064 *
3065 * Writes a single byte to the NVM using the flash access registers.
3066 * Goes through a retry algorithm before giving up.
3067 **/
3068static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3069 u32 offset, u8 byte)
3070{
3071 s32 ret_val;
3072 u16 program_retries;
3073
3074 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3075 if (!ret_val)
3076 return ret_val;
3077
3078 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 3079 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
3080 udelay(100);
3081 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3082 if (!ret_val)
3083 break;
3084 }
3085 if (program_retries == 100)
3086 return -E1000_ERR_NVM;
3087
3088 return 0;
3089}
3090
3091/**
3092 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3093 * @hw: pointer to the HW structure
3094 * @bank: 0 for first bank, 1 for second bank, etc.
3095 *
3096 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3097 * bank N is 4096 * N + flash_reg_addr.
3098 **/
3099static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3100{
3101 struct e1000_nvm_info *nvm = &hw->nvm;
3102 union ich8_hws_flash_status hsfsts;
3103 union ich8_hws_flash_ctrl hsflctl;
3104 u32 flash_linear_addr;
3105 /* bank size is in 16bit words - adjust to bytes */
3106 u32 flash_bank_size = nvm->flash_bank_size * 2;
3107 s32 ret_val;
3108 s32 count = 0;
a708dd88 3109 s32 j, iteration, sector_size;
bc7f75fa
AK
3110
3111 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3112
e921eb1a 3113 /* Determine HW Sector size: Read BERASE bits of hw flash status
ad68076e
BA
3114 * register
3115 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
3116 * consecutive sectors. The start index for the nth Hw sector
3117 * can be calculated as = bank * 4096 + n * 256
3118 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3119 * The start index for the nth Hw sector can be calculated
3120 * as = bank * 4096
3121 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3122 * (ich9 only, otherwise error condition)
3123 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3124 */
3125 switch (hsfsts.hsf_status.berasesz) {
3126 case 0:
3127 /* Hw sector size 256 */
3128 sector_size = ICH_FLASH_SEG_SIZE_256;
3129 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3130 break;
3131 case 1:
3132 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 3133 iteration = 1;
bc7f75fa
AK
3134 break;
3135 case 2:
148675a7
BA
3136 sector_size = ICH_FLASH_SEG_SIZE_8K;
3137 iteration = 1;
bc7f75fa
AK
3138 break;
3139 case 3:
3140 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 3141 iteration = 1;
bc7f75fa
AK
3142 break;
3143 default:
3144 return -E1000_ERR_NVM;
3145 }
3146
3147 /* Start with the base address, then add the sector offset. */
3148 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 3149 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
3150
3151 for (j = 0; j < iteration ; j++) {
3152 do {
3153 /* Steps */
3154 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3155 if (ret_val)
3156 return ret_val;
3157
e921eb1a 3158 /* Write a value 11 (block Erase) in Flash
ad68076e
BA
3159 * Cycle field in hw flash control
3160 */
bc7f75fa
AK
3161 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3162 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3163 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3164
e921eb1a 3165 /* Write the last 24 bits of an index within the
bc7f75fa
AK
3166 * block into Flash Linear address field in Flash
3167 * Address.
3168 */
3169 flash_linear_addr += (j * sector_size);
3170 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3171
3172 ret_val = e1000_flash_cycle_ich8lan(hw,
3173 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
9e2d7657 3174 if (!ret_val)
bc7f75fa
AK
3175 break;
3176
e921eb1a 3177 /* Check if FCERR is set to 1. If 1,
bc7f75fa 3178 * clear it and try the whole sequence
ad68076e
BA
3179 * a few more times else Done
3180 */
bc7f75fa 3181 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 3182 if (hsfsts.hsf_status.flcerr)
ad68076e 3183 /* repeat for some time before giving up */
bc7f75fa 3184 continue;
04499ec4 3185 else if (!hsfsts.hsf_status.flcdone)
bc7f75fa
AK
3186 return ret_val;
3187 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3188 }
3189
3190 return 0;
3191}
3192
3193/**
3194 * e1000_valid_led_default_ich8lan - Set the default LED settings
3195 * @hw: pointer to the HW structure
3196 * @data: Pointer to the LED settings
3197 *
3198 * Reads the LED default settings from the NVM to data. If the NVM LED
3199 * settings is all 0's or F's, set the LED default to a valid LED default
3200 * setting.
3201 **/
3202static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3203{
3204 s32 ret_val;
3205
3206 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3207 if (ret_val) {
3bb99fe2 3208 e_dbg("NVM Read Error\n");
bc7f75fa
AK
3209 return ret_val;
3210 }
3211
3212 if (*data == ID_LED_RESERVED_0000 ||
3213 *data == ID_LED_RESERVED_FFFF)
3214 *data = ID_LED_DEFAULT_ICH8LAN;
3215
3216 return 0;
3217}
3218
a4f58f54
BA
3219/**
3220 * e1000_id_led_init_pchlan - store LED configurations
3221 * @hw: pointer to the HW structure
3222 *
3223 * PCH does not control LEDs via the LEDCTL register, rather it uses
3224 * the PHY LED configuration register.
3225 *
3226 * PCH also does not have an "always on" or "always off" mode which
3227 * complicates the ID feature. Instead of using the "on" mode to indicate
d1964eb1 3228 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
a4f58f54
BA
3229 * use "link_up" mode. The LEDs will still ID on request if there is no
3230 * link based on logic in e1000_led_[on|off]_pchlan().
3231 **/
3232static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3233{
3234 struct e1000_mac_info *mac = &hw->mac;
3235 s32 ret_val;
3236 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3237 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3238 u16 data, i, temp, shift;
3239
3240 /* Get default ID LED modes */
3241 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3242 if (ret_val)
5015e53a 3243 return ret_val;
a4f58f54
BA
3244
3245 mac->ledctl_default = er32(LEDCTL);
3246 mac->ledctl_mode1 = mac->ledctl_default;
3247 mac->ledctl_mode2 = mac->ledctl_default;
3248
3249 for (i = 0; i < 4; i++) {
3250 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3251 shift = (i * 5);
3252 switch (temp) {
3253 case ID_LED_ON1_DEF2:
3254 case ID_LED_ON1_ON2:
3255 case ID_LED_ON1_OFF2:
3256 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3257 mac->ledctl_mode1 |= (ledctl_on << shift);
3258 break;
3259 case ID_LED_OFF1_DEF2:
3260 case ID_LED_OFF1_ON2:
3261 case ID_LED_OFF1_OFF2:
3262 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3263 mac->ledctl_mode1 |= (ledctl_off << shift);
3264 break;
3265 default:
3266 /* Do nothing */
3267 break;
3268 }
3269 switch (temp) {
3270 case ID_LED_DEF1_ON2:
3271 case ID_LED_ON1_ON2:
3272 case ID_LED_OFF1_ON2:
3273 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3274 mac->ledctl_mode2 |= (ledctl_on << shift);
3275 break;
3276 case ID_LED_DEF1_OFF2:
3277 case ID_LED_ON1_OFF2:
3278 case ID_LED_OFF1_OFF2:
3279 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3280 mac->ledctl_mode2 |= (ledctl_off << shift);
3281 break;
3282 default:
3283 /* Do nothing */
3284 break;
3285 }
3286 }
3287
5015e53a 3288 return 0;
a4f58f54
BA
3289}
3290
bc7f75fa
AK
3291/**
3292 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3293 * @hw: pointer to the HW structure
3294 *
3295 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3296 * register, so the the bus width is hard coded.
3297 **/
3298static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3299{
3300 struct e1000_bus_info *bus = &hw->bus;
3301 s32 ret_val;
3302
3303 ret_val = e1000e_get_bus_info_pcie(hw);
3304
e921eb1a 3305 /* ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
3306 * a configuration space, but do not contain
3307 * PCI Express Capability registers, so bus width
3308 * must be hardcoded.
3309 */
3310 if (bus->width == e1000_bus_width_unknown)
3311 bus->width = e1000_bus_width_pcie_x1;
3312
3313 return ret_val;
3314}
3315
3316/**
3317 * e1000_reset_hw_ich8lan - Reset the hardware
3318 * @hw: pointer to the HW structure
3319 *
3320 * Does a full reset of the hardware which includes a reset of the PHY and
3321 * MAC.
3322 **/
3323static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3324{
1d5846b9 3325 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
62bc813e
BA
3326 u16 kum_cfg;
3327 u32 ctrl, reg;
bc7f75fa
AK
3328 s32 ret_val;
3329
e921eb1a 3330 /* Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
3331 * on the last TLP read/write transaction when MAC is reset.
3332 */
3333 ret_val = e1000e_disable_pcie_master(hw);
e98cac44 3334 if (ret_val)
3bb99fe2 3335 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 3336
3bb99fe2 3337 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
3338 ew32(IMC, 0xffffffff);
3339
e921eb1a 3340 /* Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
3341 * any pending transactions to complete before we hit the MAC
3342 * with the global reset.
3343 */
3344 ew32(RCTL, 0);
3345 ew32(TCTL, E1000_TCTL_PSP);
3346 e1e_flush();
3347
1bba4386 3348 usleep_range(10000, 20000);
bc7f75fa
AK
3349
3350 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3351 if (hw->mac.type == e1000_ich8lan) {
3352 /* Set Tx and Rx buffer allocation to 8k apiece. */
3353 ew32(PBA, E1000_PBA_8K);
3354 /* Set Packet Buffer Size to 16k. */
3355 ew32(PBS, E1000_PBS_16K);
3356 }
3357
1d5846b9 3358 if (hw->mac.type == e1000_pchlan) {
62bc813e
BA
3359 /* Save the NVM K1 bit setting */
3360 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
1d5846b9
BA
3361 if (ret_val)
3362 return ret_val;
3363
62bc813e 3364 if (kum_cfg & E1000_NVM_K1_ENABLE)
1d5846b9
BA
3365 dev_spec->nvm_k1_enabled = true;
3366 else
3367 dev_spec->nvm_k1_enabled = false;
3368 }
3369
bc7f75fa
AK
3370 ctrl = er32(CTRL);
3371
44abd5c1 3372 if (!hw->phy.ops.check_reset_block(hw)) {
e921eb1a 3373 /* Full-chip reset requires MAC and PHY reset at the same
bc7f75fa
AK
3374 * time to make sure the interface between MAC and the
3375 * external PHY is reset.
3376 */
3377 ctrl |= E1000_CTRL_PHY_RST;
605c82ba 3378
e921eb1a 3379 /* Gate automatic PHY configuration by hardware on
605c82ba
BA
3380 * non-managed 82579
3381 */
3382 if ((hw->mac.type == e1000_pch2lan) &&
3383 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3384 e1000_gate_hw_phy_config_ich8lan(hw, true);
bc7f75fa
AK
3385 }
3386 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 3387 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa 3388 ew32(CTRL, (ctrl | E1000_CTRL_RST));
945a5151 3389 /* cannot issue a flush here because it hangs the hardware */
bc7f75fa
AK
3390 msleep(20);
3391
62bc813e
BA
3392 /* Set Phy Config Counter to 50msec */
3393 if (hw->mac.type == e1000_pch2lan) {
3394 reg = er32(FEXTNVM3);
3395 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3396 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3397 ew32(FEXTNVM3, reg);
3398 }
3399
fc0c7760 3400 if (!ret_val)
a90b412c 3401 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
37f40239 3402
e98cac44 3403 if (ctrl & E1000_CTRL_PHY_RST) {
fc0c7760 3404 ret_val = hw->phy.ops.get_cfg_done(hw);
e98cac44 3405 if (ret_val)
5015e53a 3406 return ret_val;
fc0c7760 3407
e98cac44 3408 ret_val = e1000_post_phy_reset_ich8lan(hw);
f523d211 3409 if (ret_val)
5015e53a 3410 return ret_val;
f523d211 3411 }
e98cac44 3412
e921eb1a 3413 /* For PCH, this write will make sure that any noise
7d3cabbc
BA
3414 * will be detected as a CRC error and be dropped rather than show up
3415 * as a bad packet to the DMA engine.
3416 */
3417 if (hw->mac.type == e1000_pchlan)
3418 ew32(CRC_OFFSET, 0x65656565);
3419
bc7f75fa 3420 ew32(IMC, 0xffffffff);
dd93f95e 3421 er32(ICR);
bc7f75fa 3422
62bc813e
BA
3423 reg = er32(KABGTXD);
3424 reg |= E1000_KABGTXD_BGSQLBIAS;
3425 ew32(KABGTXD, reg);
bc7f75fa 3426
5015e53a 3427 return 0;
bc7f75fa
AK
3428}
3429
3430/**
3431 * e1000_init_hw_ich8lan - Initialize the hardware
3432 * @hw: pointer to the HW structure
3433 *
3434 * Prepares the hardware for transmit and receive by doing the following:
3435 * - initialize hardware bits
3436 * - initialize LED identification
3437 * - setup receive address registers
3438 * - setup flow control
489815ce 3439 * - setup transmit descriptors
bc7f75fa
AK
3440 * - clear statistics
3441 **/
3442static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3443{
3444 struct e1000_mac_info *mac = &hw->mac;
3445 u32 ctrl_ext, txdctl, snoop;
3446 s32 ret_val;
3447 u16 i;
3448
3449 e1000_initialize_hw_bits_ich8lan(hw);
3450
3451 /* Initialize identification LED */
a4f58f54 3452 ret_val = mac->ops.id_led_init(hw);
de39b752 3453 if (ret_val)
3bb99fe2 3454 e_dbg("Error initializing identification LED\n");
de39b752 3455 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
3456
3457 /* Setup the receive address. */
3458 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3459
3460 /* Zero out the Multicast HASH table */
3bb99fe2 3461 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
3462 for (i = 0; i < mac->mta_reg_count; i++)
3463 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3464
e921eb1a 3465 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
3ebfc7c9 3466 * the ME. Disable wakeup by clearing the host wakeup bit.
fc0c7760
BA
3467 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3468 */
3469 if (hw->phy.type == e1000_phy_82578) {
3ebfc7c9
BA
3470 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3471 i &= ~BM_WUC_HOST_WU_BIT;
3472 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
fc0c7760
BA
3473 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3474 if (ret_val)
3475 return ret_val;
3476 }
3477
bc7f75fa 3478 /* Setup link and flow control */
1a46b40f 3479 ret_val = mac->ops.setup_link(hw);
bc7f75fa
AK
3480
3481 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 3482 txdctl = er32(TXDCTL(0));
f0ff4398
BA
3483 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3484 E1000_TXDCTL_FULL_TX_DESC_WB);
3485 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3486 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
e9ec2c0f
JK
3487 ew32(TXDCTL(0), txdctl);
3488 txdctl = er32(TXDCTL(1));
f0ff4398
BA
3489 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3490 E1000_TXDCTL_FULL_TX_DESC_WB);
3491 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3492 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
e9ec2c0f 3493 ew32(TXDCTL(1), txdctl);
bc7f75fa 3494
e921eb1a 3495 /* ICH8 has opposite polarity of no_snoop bits.
ad68076e
BA
3496 * By default, we should use snoop behavior.
3497 */
bc7f75fa
AK
3498 if (mac->type == e1000_ich8lan)
3499 snoop = PCIE_ICH8_SNOOP_ALL;
3500 else
3501 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3502 e1000e_set_pcie_no_snoop(hw, snoop);
3503
3504 ctrl_ext = er32(CTRL_EXT);
3505 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3506 ew32(CTRL_EXT, ctrl_ext);
3507
e921eb1a 3508 /* Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
3509 * important that we do this after we have tried to establish link
3510 * because the symbol error count will increment wildly if there
3511 * is no link.
3512 */
3513 e1000_clear_hw_cntrs_ich8lan(hw);
3514
e561a705 3515 return ret_val;
bc7f75fa
AK
3516}
3517/**
3518 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3519 * @hw: pointer to the HW structure
3520 *
3521 * Sets/Clears required hardware bits necessary for correctly setting up the
3522 * hardware for transmit and receive.
3523 **/
3524static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3525{
3526 u32 reg;
3527
3528 /* Extended Device Control */
3529 reg = er32(CTRL_EXT);
3530 reg |= (1 << 22);
a4f58f54
BA
3531 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3532 if (hw->mac.type >= e1000_pchlan)
3533 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
3534 ew32(CTRL_EXT, reg);
3535
3536 /* Transmit Descriptor Control 0 */
e9ec2c0f 3537 reg = er32(TXDCTL(0));
bc7f75fa 3538 reg |= (1 << 22);
e9ec2c0f 3539 ew32(TXDCTL(0), reg);
bc7f75fa
AK
3540
3541 /* Transmit Descriptor Control 1 */
e9ec2c0f 3542 reg = er32(TXDCTL(1));
bc7f75fa 3543 reg |= (1 << 22);
e9ec2c0f 3544 ew32(TXDCTL(1), reg);
bc7f75fa
AK
3545
3546 /* Transmit Arbitration Control 0 */
e9ec2c0f 3547 reg = er32(TARC(0));
bc7f75fa
AK
3548 if (hw->mac.type == e1000_ich8lan)
3549 reg |= (1 << 28) | (1 << 29);
3550 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 3551 ew32(TARC(0), reg);
bc7f75fa
AK
3552
3553 /* Transmit Arbitration Control 1 */
e9ec2c0f 3554 reg = er32(TARC(1));
bc7f75fa
AK
3555 if (er32(TCTL) & E1000_TCTL_MULR)
3556 reg &= ~(1 << 28);
3557 else
3558 reg |= (1 << 28);
3559 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 3560 ew32(TARC(1), reg);
bc7f75fa
AK
3561
3562 /* Device Status */
3563 if (hw->mac.type == e1000_ich8lan) {
3564 reg = er32(STATUS);
3565 reg &= ~(1 << 31);
3566 ew32(STATUS, reg);
3567 }
a80483d3 3568
e921eb1a 3569 /* work-around descriptor data corruption issue during nfs v2 udp
a80483d3
JB
3570 * traffic, just disable the nfs filtering capability
3571 */
3572 reg = er32(RFCTL);
3573 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
f6bd5577 3574
e921eb1a 3575 /* Disable IPv6 extension header parsing because some malformed
f6bd5577
MV
3576 * IPv6 headers can hang the Rx.
3577 */
3578 if (hw->mac.type == e1000_ich8lan)
3579 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
a80483d3 3580 ew32(RFCTL, reg);
94fb848b
BA
3581
3582 /* Enable ECC on Lynxpoint */
3583 if (hw->mac.type == e1000_pch_lpt) {
3584 reg = er32(PBECCSTS);
3585 reg |= E1000_PBECCSTS_ECC_ENABLE;
3586 ew32(PBECCSTS, reg);
3587
3588 reg = er32(CTRL);
3589 reg |= E1000_CTRL_MEHE;
3590 ew32(CTRL, reg);
3591 }
bc7f75fa
AK
3592}
3593
3594/**
3595 * e1000_setup_link_ich8lan - Setup flow control and link settings
3596 * @hw: pointer to the HW structure
3597 *
3598 * Determines which flow control settings to use, then configures flow
3599 * control. Calls the appropriate media-specific link configuration
3600 * function. Assuming the adapter has a valid link partner, a valid link
3601 * should be established. Assumes the hardware has previously been reset
3602 * and the transmitter and receiver are not enabled.
3603 **/
3604static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3605{
bc7f75fa
AK
3606 s32 ret_val;
3607
44abd5c1 3608 if (hw->phy.ops.check_reset_block(hw))
bc7f75fa
AK
3609 return 0;
3610
e921eb1a 3611 /* ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
3612 * the default flow control setting, so we explicitly
3613 * set it to full.
3614 */
37289d9c
BA
3615 if (hw->fc.requested_mode == e1000_fc_default) {
3616 /* Workaround h/w hang when Tx flow control enabled */
3617 if (hw->mac.type == e1000_pchlan)
3618 hw->fc.requested_mode = e1000_fc_rx_pause;
3619 else
3620 hw->fc.requested_mode = e1000_fc_full;
3621 }
bc7f75fa 3622
e921eb1a 3623 /* Save off the requested flow control mode for use later. Depending
5c48ef3e
BA
3624 * on the link partner's capabilities, we may or may not use this mode.
3625 */
3626 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 3627
3bb99fe2 3628 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 3629 hw->fc.current_mode);
bc7f75fa
AK
3630
3631 /* Continue to configure the copper link. */
944ce011 3632 ret_val = hw->mac.ops.setup_physical_interface(hw);
bc7f75fa
AK
3633 if (ret_val)
3634 return ret_val;
3635
318a94d6 3636 ew32(FCTTV, hw->fc.pause_time);
a4f58f54 3637 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3638 (hw->phy.type == e1000_phy_82579) ||
2fbe4526 3639 (hw->phy.type == e1000_phy_i217) ||
a4f58f54 3640 (hw->phy.type == e1000_phy_82577)) {
a305595b
BA
3641 ew32(FCRTV_PCH, hw->fc.refresh_time);
3642
482fed85
BA
3643 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3644 hw->fc.pause_time);
a4f58f54
BA
3645 if (ret_val)
3646 return ret_val;
3647 }
bc7f75fa
AK
3648
3649 return e1000e_set_fc_watermarks(hw);
3650}
3651
3652/**
3653 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3654 * @hw: pointer to the HW structure
3655 *
3656 * Configures the kumeran interface to the PHY to wait the appropriate time
3657 * when polling the PHY, then call the generic setup_copper_link to finish
3658 * configuring the copper link.
3659 **/
3660static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3661{
3662 u32 ctrl;
3663 s32 ret_val;
3664 u16 reg_data;
3665
3666 ctrl = er32(CTRL);
3667 ctrl |= E1000_CTRL_SLU;
3668 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3669 ew32(CTRL, ctrl);
3670
e921eb1a 3671 /* Set the mac to wait the maximum time between each iteration
bc7f75fa 3672 * and increase the max iterations when polling the phy;
ad68076e
BA
3673 * this fixes erroneous timeouts at 10Mbps.
3674 */
07818950 3675 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
3676 if (ret_val)
3677 return ret_val;
07818950 3678 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
f0ff4398 3679 &reg_data);
bc7f75fa
AK
3680 if (ret_val)
3681 return ret_val;
3682 reg_data |= 0x3F;
07818950 3683 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
f0ff4398 3684 reg_data);
bc7f75fa
AK
3685 if (ret_val)
3686 return ret_val;
3687
a4f58f54
BA
3688 switch (hw->phy.type) {
3689 case e1000_phy_igp_3:
bc7f75fa
AK
3690 ret_val = e1000e_copper_link_setup_igp(hw);
3691 if (ret_val)
3692 return ret_val;
a4f58f54
BA
3693 break;
3694 case e1000_phy_bm:
3695 case e1000_phy_82578:
97ac8cae
BA
3696 ret_val = e1000e_copper_link_setup_m88(hw);
3697 if (ret_val)
3698 return ret_val;
a4f58f54
BA
3699 break;
3700 case e1000_phy_82577:
d3738bb8 3701 case e1000_phy_82579:
2fbe4526 3702 case e1000_phy_i217:
a4f58f54
BA
3703 ret_val = e1000_copper_link_setup_82577(hw);
3704 if (ret_val)
3705 return ret_val;
3706 break;
3707 case e1000_phy_ife:
482fed85 3708 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
97ac8cae
BA
3709 if (ret_val)
3710 return ret_val;
3711
3712 reg_data &= ~IFE_PMC_AUTO_MDIX;
3713
3714 switch (hw->phy.mdix) {
3715 case 1:
3716 reg_data &= ~IFE_PMC_FORCE_MDIX;
3717 break;
3718 case 2:
3719 reg_data |= IFE_PMC_FORCE_MDIX;
3720 break;
3721 case 0:
3722 default:
3723 reg_data |= IFE_PMC_AUTO_MDIX;
3724 break;
3725 }
482fed85 3726 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
97ac8cae
BA
3727 if (ret_val)
3728 return ret_val;
a4f58f54
BA
3729 break;
3730 default:
3731 break;
97ac8cae 3732 }
3fa82936 3733
bc7f75fa
AK
3734 return e1000e_setup_copper_link(hw);
3735}
3736
3737/**
3738 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3739 * @hw: pointer to the HW structure
3740 * @speed: pointer to store current link speed
3741 * @duplex: pointer to store the current link duplex
3742 *
ad68076e 3743 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
3744 * information and then calls the Kumeran lock loss workaround for links at
3745 * gigabit speeds.
3746 **/
3747static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3748 u16 *duplex)
3749{
3750 s32 ret_val;
3751
3752 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3753 if (ret_val)
3754 return ret_val;
3755
3756 if ((hw->mac.type == e1000_ich8lan) &&
3757 (hw->phy.type == e1000_phy_igp_3) &&
3758 (*speed == SPEED_1000)) {
3759 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3760 }
3761
3762 return ret_val;
3763}
3764
3765/**
3766 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3767 * @hw: pointer to the HW structure
3768 *
3769 * Work-around for 82566 Kumeran PCS lock loss:
3770 * On link status change (i.e. PCI reset, speed change) and link is up and
3771 * speed is gigabit-
3772 * 0) if workaround is optionally disabled do nothing
3773 * 1) wait 1ms for Kumeran link to come up
3774 * 2) check Kumeran Diagnostic register PCS lock loss bit
3775 * 3) if not set the link is locked (all is good), otherwise...
3776 * 4) reset the PHY
3777 * 5) repeat up to 10 times
3778 * Note: this is only called for IGP3 copper when speed is 1gb.
3779 **/
3780static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3781{
3782 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3783 u32 phy_ctrl;
3784 s32 ret_val;
3785 u16 i, data;
3786 bool link;
3787
3788 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3789 return 0;
3790
e921eb1a 3791 /* Make sure link is up before proceeding. If not just return.
bc7f75fa 3792 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3793 * stability
3794 */
bc7f75fa
AK
3795 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3796 if (!link)
3797 return 0;
3798
3799 for (i = 0; i < 10; i++) {
3800 /* read once to clear */
3801 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3802 if (ret_val)
3803 return ret_val;
3804 /* and again to get new status */
3805 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3806 if (ret_val)
3807 return ret_val;
3808
3809 /* check for PCS lock */
3810 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3811 return 0;
3812
3813 /* Issue PHY reset */
3814 e1000_phy_hw_reset(hw);
3815 mdelay(5);
3816 }
3817 /* Disable GigE link negotiation */
3818 phy_ctrl = er32(PHY_CTRL);
3819 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3820 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3821 ew32(PHY_CTRL, phy_ctrl);
3822
e921eb1a 3823 /* Call gig speed drop workaround on Gig disable before accessing
ad68076e
BA
3824 * any PHY registers
3825 */
bc7f75fa
AK
3826 e1000e_gig_downshift_workaround_ich8lan(hw);
3827
3828 /* unable to acquire PCS lock */
3829 return -E1000_ERR_PHY;
3830}
3831
3832/**
6e3c8075 3833 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3834 * @hw: pointer to the HW structure
489815ce 3835 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3836 *
564ea9bb
BA
3837 * If ICH8, set the current Kumeran workaround state (enabled - true
3838 * /disabled - false).
bc7f75fa
AK
3839 **/
3840void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3841 bool state)
3842{
3843 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3844
3845 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3846 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3847 return;
3848 }
3849
3850 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3851}
3852
3853/**
3854 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3855 * @hw: pointer to the HW structure
3856 *
3857 * Workaround for 82566 power-down on D3 entry:
3858 * 1) disable gigabit link
3859 * 2) write VR power-down enable
3860 * 3) read it back
3861 * Continue if successful, else issue LCD reset and repeat
3862 **/
3863void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3864{
3865 u32 reg;
3866 u16 data;
3867 u8 retry = 0;
3868
3869 if (hw->phy.type != e1000_phy_igp_3)
3870 return;
3871
3872 /* Try the workaround twice (if needed) */
3873 do {
3874 /* Disable link */
3875 reg = er32(PHY_CTRL);
3876 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3877 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3878 ew32(PHY_CTRL, reg);
3879
e921eb1a 3880 /* Call gig speed drop workaround on Gig disable before
ad68076e
BA
3881 * accessing any PHY registers
3882 */
bc7f75fa
AK
3883 if (hw->mac.type == e1000_ich8lan)
3884 e1000e_gig_downshift_workaround_ich8lan(hw);
3885
3886 /* Write VR power-down enable */
3887 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3888 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3889 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3890
3891 /* Read it back and test */
3892 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3893 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3894 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3895 break;
3896
3897 /* Issue PHY reset and repeat at most one more time */
3898 reg = er32(CTRL);
3899 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3900 retry++;
3901 } while (retry);
3902}
3903
3904/**
3905 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3906 * @hw: pointer to the HW structure
3907 *
3908 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3909 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3910 * 1) Set Kumeran Near-end loopback
3911 * 2) Clear Kumeran Near-end loopback
462d5994 3912 * Should only be called for ICH8[m] devices with any 1G Phy.
bc7f75fa
AK
3913 **/
3914void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3915{
3916 s32 ret_val;
3917 u16 reg_data;
3918
462d5994 3919 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
bc7f75fa
AK
3920 return;
3921
3922 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3923 &reg_data);
3924 if (ret_val)
3925 return;
3926 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3927 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3928 reg_data);
3929 if (ret_val)
3930 return;
3931 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
7dbbe5d5 3932 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
bc7f75fa
AK
3933}
3934
97ac8cae 3935/**
99730e4c 3936 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
97ac8cae
BA
3937 * @hw: pointer to the HW structure
3938 *
3939 * During S0 to Sx transition, it is possible the link remains at gig
3940 * instead of negotiating to a lower speed. Before going to Sx, set
c077a906
BA
3941 * 'Gig Disable' to force link speed negotiation to a lower speed based on
3942 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
3943 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3944 * needs to be written.
2fbe4526
BA
3945 * Parts that support (and are linked to a partner which support) EEE in
3946 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
3947 * than 10Mbps w/o EEE.
97ac8cae 3948 **/
99730e4c 3949void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
97ac8cae 3950{
2fbe4526 3951 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
97ac8cae 3952 u32 phy_ctrl;
8395ae83 3953 s32 ret_val;
97ac8cae 3954
17f085df 3955 phy_ctrl = er32(PHY_CTRL);
c077a906 3956 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
2fbe4526
BA
3957 if (hw->phy.type == e1000_phy_i217) {
3958 u16 phy_reg;
3959
3960 ret_val = hw->phy.ops.acquire(hw);
3961 if (ret_val)
3962 goto out;
3963
3964 if (!dev_spec->eee_disable) {
3965 u16 eee_advert;
3966
4ddc48a9
BA
3967 ret_val =
3968 e1000_read_emi_reg_locked(hw,
3969 I217_EEE_ADVERTISEMENT,
3970 &eee_advert);
2fbe4526
BA
3971 if (ret_val)
3972 goto release;
2fbe4526 3973
e921eb1a 3974 /* Disable LPLU if both link partners support 100BaseT
2fbe4526
BA
3975 * EEE and 100Full is advertised on both ends of the
3976 * link.
3977 */
3d4d5755 3978 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
2fbe4526 3979 (dev_spec->eee_lp_ability &
3d4d5755 3980 I82579_EEE_100_SUPPORTED) &&
2fbe4526
BA
3981 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
3982 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
3983 E1000_PHY_CTRL_NOND0A_LPLU);
3984 }
3985
e921eb1a 3986 /* For i217 Intel Rapid Start Technology support,
2fbe4526
BA
3987 * when the system is going into Sx and no manageability engine
3988 * is present, the driver must configure proxy to reset only on
3989 * power good. LPI (Low Power Idle) state must also reset only
3990 * on power good, as well as the MTA (Multicast table array).
3991 * The SMBus release must also be disabled on LCD reset.
3992 */
3993 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2fbe4526
BA
3994 /* Enable proxy to reset only on power good. */
3995 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
3996 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
3997 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
3998
e921eb1a 3999 /* Set bit enable LPI (EEE) to reset only on
2fbe4526
BA
4000 * power good.
4001 */
4002 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
6d7407bf 4003 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
2fbe4526
BA
4004 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4005
4006 /* Disable the SMB release on LCD reset. */
4007 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
6d7407bf 4008 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
2fbe4526
BA
4009 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4010 }
4011
e921eb1a 4012 /* Enable MTA to reset for Intel Rapid Start Technology
2fbe4526
BA
4013 * Support
4014 */
4015 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
6d7407bf 4016 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
2fbe4526
BA
4017 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4018
4019release:
4020 hw->phy.ops.release(hw);
4021 }
4022out:
17f085df 4023 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 4024
462d5994
BA
4025 if (hw->mac.type == e1000_ich8lan)
4026 e1000e_gig_downshift_workaround_ich8lan(hw);
4027
8395ae83 4028 if (hw->mac.type >= e1000_pchlan) {
ce54afd1 4029 e1000_oem_bits_config_ich8lan(hw, false);
92fe1733
BA
4030
4031 /* Reset PHY to activate OEM bits on 82577/8 */
4032 if (hw->mac.type == e1000_pchlan)
4033 e1000e_phy_hw_reset_generic(hw);
4034
8395ae83
BA
4035 ret_val = hw->phy.ops.acquire(hw);
4036 if (ret_val)
4037 return;
4038 e1000_write_smbus_addr(hw);
4039 hw->phy.ops.release(hw);
4040 }
97ac8cae
BA
4041}
4042
99730e4c
BA
4043/**
4044 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4045 * @hw: pointer to the HW structure
4046 *
4047 * During Sx to S0 transitions on non-managed devices or managed devices
4048 * on which PHY resets are not blocked, if the PHY registers cannot be
4049 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4050 * the PHY.
2fbe4526 4051 * On i217, setup Intel Rapid Start Technology.
99730e4c
BA
4052 **/
4053void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4054{
90b82984 4055 s32 ret_val;
99730e4c 4056
cb17aab9 4057 if (hw->mac.type < e1000_pch2lan)
99730e4c
BA
4058 return;
4059
cb17aab9 4060 ret_val = e1000_init_phy_workarounds_pchlan(hw);
90b82984 4061 if (ret_val) {
cb17aab9 4062 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
90b82984
BA
4063 return;
4064 }
2fbe4526 4065
e921eb1a 4066 /* For i217 Intel Rapid Start Technology support when the system
2fbe4526
BA
4067 * is transitioning from Sx and no manageability engine is present
4068 * configure SMBus to restore on reset, disable proxy, and enable
4069 * the reset on MTA (Multicast table array).
4070 */
4071 if (hw->phy.type == e1000_phy_i217) {
4072 u16 phy_reg;
4073
4074 ret_val = hw->phy.ops.acquire(hw);
4075 if (ret_val) {
4076 e_dbg("Failed to setup iRST\n");
4077 return;
4078 }
4079
4080 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
e921eb1a 4081 /* Restore clear on SMB if no manageability engine
2fbe4526
BA
4082 * is present
4083 */
4084 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4085 if (ret_val)
4086 goto release;
6d7407bf 4087 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
2fbe4526
BA
4088 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4089
4090 /* Disable Proxy */
4091 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4092 }
4093 /* Enable reset on MTA */
4094 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4095 if (ret_val)
4096 goto release;
6d7407bf 4097 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
2fbe4526
BA
4098 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4099release:
4100 if (ret_val)
4101 e_dbg("Error %d in resume workarounds\n", ret_val);
4102 hw->phy.ops.release(hw);
4103 }
99730e4c
BA
4104}
4105
bc7f75fa
AK
4106/**
4107 * e1000_cleanup_led_ich8lan - Restore the default LED operation
4108 * @hw: pointer to the HW structure
4109 *
4110 * Return the LED back to the default configuration.
4111 **/
4112static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4113{
4114 if (hw->phy.type == e1000_phy_ife)
4115 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4116
4117 ew32(LEDCTL, hw->mac.ledctl_default);
4118 return 0;
4119}
4120
4121/**
489815ce 4122 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
4123 * @hw: pointer to the HW structure
4124 *
489815ce 4125 * Turn on the LEDs.
bc7f75fa
AK
4126 **/
4127static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4128{
4129 if (hw->phy.type == e1000_phy_ife)
4130 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4131 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4132
4133 ew32(LEDCTL, hw->mac.ledctl_mode2);
4134 return 0;
4135}
4136
4137/**
489815ce 4138 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
4139 * @hw: pointer to the HW structure
4140 *
489815ce 4141 * Turn off the LEDs.
bc7f75fa
AK
4142 **/
4143static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4144{
4145 if (hw->phy.type == e1000_phy_ife)
4146 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
482fed85
BA
4147 (IFE_PSCL_PROBE_MODE |
4148 IFE_PSCL_PROBE_LEDS_OFF));
bc7f75fa
AK
4149
4150 ew32(LEDCTL, hw->mac.ledctl_mode1);
4151 return 0;
4152}
4153
a4f58f54
BA
4154/**
4155 * e1000_setup_led_pchlan - Configures SW controllable LED
4156 * @hw: pointer to the HW structure
4157 *
4158 * This prepares the SW controllable LED for use.
4159 **/
4160static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4161{
482fed85 4162 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
a4f58f54
BA
4163}
4164
4165/**
4166 * e1000_cleanup_led_pchlan - Restore the default LED operation
4167 * @hw: pointer to the HW structure
4168 *
4169 * Return the LED back to the default configuration.
4170 **/
4171static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4172{
482fed85 4173 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
a4f58f54
BA
4174}
4175
4176/**
4177 * e1000_led_on_pchlan - Turn LEDs on
4178 * @hw: pointer to the HW structure
4179 *
4180 * Turn on the LEDs.
4181 **/
4182static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4183{
4184 u16 data = (u16)hw->mac.ledctl_mode2;
4185 u32 i, led;
4186
e921eb1a 4187 /* If no link, then turn LED on by setting the invert bit
a4f58f54
BA
4188 * for each LED that's mode is "link_up" in ledctl_mode2.
4189 */
4190 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4191 for (i = 0; i < 3; i++) {
4192 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4193 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4194 E1000_LEDCTL_MODE_LINK_UP)
4195 continue;
4196 if (led & E1000_PHY_LED0_IVRT)
4197 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4198 else
4199 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4200 }
4201 }
4202
482fed85 4203 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
4204}
4205
4206/**
4207 * e1000_led_off_pchlan - Turn LEDs off
4208 * @hw: pointer to the HW structure
4209 *
4210 * Turn off the LEDs.
4211 **/
4212static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4213{
4214 u16 data = (u16)hw->mac.ledctl_mode1;
4215 u32 i, led;
4216
e921eb1a 4217 /* If no link, then turn LED off by clearing the invert bit
a4f58f54
BA
4218 * for each LED that's mode is "link_up" in ledctl_mode1.
4219 */
4220 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4221 for (i = 0; i < 3; i++) {
4222 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4223 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4224 E1000_LEDCTL_MODE_LINK_UP)
4225 continue;
4226 if (led & E1000_PHY_LED0_IVRT)
4227 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4228 else
4229 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4230 }
4231 }
4232
482fed85 4233 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
4234}
4235
f4187b56 4236/**
e98cac44 4237 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
f4187b56
BA
4238 * @hw: pointer to the HW structure
4239 *
e98cac44
BA
4240 * Read appropriate register for the config done bit for completion status
4241 * and configure the PHY through s/w for EEPROM-less parts.
4242 *
4243 * NOTE: some silicon which is EEPROM-less will fail trying to read the
4244 * config done bit, so only an error is logged and continues. If we were
4245 * to return with error, EEPROM-less silicon would not be able to be reset
4246 * or change link.
f4187b56
BA
4247 **/
4248static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4249{
e98cac44 4250 s32 ret_val = 0;
f4187b56 4251 u32 bank = 0;
e98cac44 4252 u32 status;
f4187b56 4253
fe90849f 4254 e1000e_get_cfg_done_generic(hw);
fc0c7760 4255
e98cac44
BA
4256 /* Wait for indication from h/w that it has completed basic config */
4257 if (hw->mac.type >= e1000_ich10lan) {
4258 e1000_lan_init_done_ich8lan(hw);
4259 } else {
4260 ret_val = e1000e_get_auto_rd_done(hw);
4261 if (ret_val) {
e921eb1a 4262 /* When auto config read does not complete, do not
e98cac44
BA
4263 * return with an error. This can happen in situations
4264 * where there is no eeprom and prevents getting link.
4265 */
4266 e_dbg("Auto Read Done did not complete\n");
4267 ret_val = 0;
4268 }
fc0c7760
BA
4269 }
4270
e98cac44
BA
4271 /* Clear PHY Reset Asserted bit */
4272 status = er32(STATUS);
4273 if (status & E1000_STATUS_PHYRA)
4274 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4275 else
4276 e_dbg("PHY Reset Asserted not set - needs delay\n");
f4187b56
BA
4277
4278 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
e98cac44 4279 if (hw->mac.type <= e1000_ich9lan) {
04499ec4 4280 if (!(er32(EECD) & E1000_EECD_PRES) &&
f4187b56
BA
4281 (hw->phy.type == e1000_phy_igp_3)) {
4282 e1000e_phy_init_script_igp3(hw);
4283 }
4284 } else {
4285 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4286 /* Maybe we should do a basic PHY config */
3bb99fe2 4287 e_dbg("EEPROM not present\n");
e98cac44 4288 ret_val = -E1000_ERR_CONFIG;
f4187b56
BA
4289 }
4290 }
4291
e98cac44 4292 return ret_val;
f4187b56
BA
4293}
4294
17f208de
BA
4295/**
4296 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4297 * @hw: pointer to the HW structure
4298 *
4299 * In the case of a PHY power down to save power, or to turn off link during a
4300 * driver unload, or wake on lan is not enabled, remove the link.
4301 **/
4302static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4303{
4304 /* If the management interface is not enabled, then power down */
4305 if (!(hw->mac.ops.check_mng_mode(hw) ||
4306 hw->phy.ops.check_reset_block(hw)))
4307 e1000_power_down_phy_copper(hw);
17f208de
BA
4308}
4309
bc7f75fa
AK
4310/**
4311 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4312 * @hw: pointer to the HW structure
4313 *
4314 * Clears hardware counters specific to the silicon family and calls
4315 * clear_hw_cntrs_generic to clear all general purpose counters.
4316 **/
4317static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4318{
a4f58f54 4319 u16 phy_data;
2b6b168d 4320 s32 ret_val;
bc7f75fa
AK
4321
4322 e1000e_clear_hw_cntrs_base(hw);
4323
99673d9b
BA
4324 er32(ALGNERRC);
4325 er32(RXERRC);
4326 er32(TNCRS);
4327 er32(CEXTERR);
4328 er32(TSCTC);
4329 er32(TSCTFC);
bc7f75fa 4330
99673d9b
BA
4331 er32(MGTPRC);
4332 er32(MGTPDC);
4333 er32(MGTPTC);
bc7f75fa 4334
99673d9b
BA
4335 er32(IAC);
4336 er32(ICRXOC);
bc7f75fa 4337
a4f58f54
BA
4338 /* Clear PHY statistics registers */
4339 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 4340 (hw->phy.type == e1000_phy_82579) ||
2fbe4526 4341 (hw->phy.type == e1000_phy_i217) ||
a4f58f54 4342 (hw->phy.type == e1000_phy_82577)) {
2b6b168d
BA
4343 ret_val = hw->phy.ops.acquire(hw);
4344 if (ret_val)
4345 return;
4346 ret_val = hw->phy.ops.set_page(hw,
4347 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4348 if (ret_val)
4349 goto release;
4350 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4351 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4352 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4353 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4354 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4355 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4356 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4357 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4358 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4359 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4360 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4361 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4362 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4363 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4364release:
4365 hw->phy.ops.release(hw);
a4f58f54 4366 }
bc7f75fa
AK
4367}
4368
8ce9d6c7 4369static const struct e1000_mac_operations ich8_mac_ops = {
eb7700dc 4370 /* check_mng_mode dependent on mac type */
7d3cabbc 4371 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 4372 /* cleanup_led dependent on mac type */
bc7f75fa
AK
4373 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4374 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 4375 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 4376 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
4377 /* led_on dependent on mac type */
4378 /* led_off dependent on mac type */
e2de3eb6 4379 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
4380 .reset_hw = e1000_reset_hw_ich8lan,
4381 .init_hw = e1000_init_hw_ich8lan,
4382 .setup_link = e1000_setup_link_ich8lan,
55c5f55e 4383 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
a4f58f54 4384 /* id_led_init dependent on mac type */
57cde763 4385 .config_collision_dist = e1000e_config_collision_dist_generic,
69e1e019 4386 .rar_set = e1000e_rar_set_generic,
bc7f75fa
AK
4387};
4388
8ce9d6c7 4389static const struct e1000_phy_operations ich8_phy_ops = {
94d8186a 4390 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 4391 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 4392 .commit = NULL,
f4187b56 4393 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 4394 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
4395 .read_reg = e1000e_read_phy_reg_igp,
4396 .release = e1000_release_swflag_ich8lan,
4397 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
4398 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4399 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 4400 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
4401};
4402
8ce9d6c7 4403static const struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a 4404 .acquire = e1000_acquire_nvm_ich8lan,
55c5f55e 4405 .read = e1000_read_nvm_ich8lan,
94d8186a 4406 .release = e1000_release_nvm_ich8lan,
e85e3639 4407 .reload = e1000e_reload_nvm_generic,
94d8186a 4408 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 4409 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
4410 .validate = e1000_validate_nvm_checksum_ich8lan,
4411 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
4412};
4413
8ce9d6c7 4414const struct e1000_info e1000_ich8_info = {
bc7f75fa
AK
4415 .mac = e1000_ich8lan,
4416 .flags = FLAG_HAS_WOL
97ac8cae 4417 | FLAG_IS_ICH
bc7f75fa
AK
4418 | FLAG_HAS_CTRLEXT_ON_LOAD
4419 | FLAG_HAS_AMT
4420 | FLAG_HAS_FLASH
4421 | FLAG_APME_IN_WUC,
4422 .pba = 8,
2adc55c9 4423 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 4424 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4425 .mac_ops = &ich8_mac_ops,
4426 .phy_ops = &ich8_phy_ops,
4427 .nvm_ops = &ich8_nvm_ops,
4428};
4429
8ce9d6c7 4430const struct e1000_info e1000_ich9_info = {
bc7f75fa
AK
4431 .mac = e1000_ich9lan,
4432 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 4433 | FLAG_IS_ICH
bc7f75fa 4434 | FLAG_HAS_WOL
bc7f75fa
AK
4435 | FLAG_HAS_CTRLEXT_ON_LOAD
4436 | FLAG_HAS_AMT
bc7f75fa
AK
4437 | FLAG_HAS_FLASH
4438 | FLAG_APME_IN_WUC,
7f1557e1 4439 .pba = 18,
2adc55c9 4440 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 4441 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4442 .mac_ops = &ich8_mac_ops,
4443 .phy_ops = &ich8_phy_ops,
4444 .nvm_ops = &ich8_nvm_ops,
4445};
4446
8ce9d6c7 4447const struct e1000_info e1000_ich10_info = {
f4187b56
BA
4448 .mac = e1000_ich10lan,
4449 .flags = FLAG_HAS_JUMBO_FRAMES
4450 | FLAG_IS_ICH
4451 | FLAG_HAS_WOL
f4187b56
BA
4452 | FLAG_HAS_CTRLEXT_ON_LOAD
4453 | FLAG_HAS_AMT
f4187b56
BA
4454 | FLAG_HAS_FLASH
4455 | FLAG_APME_IN_WUC,
7f1557e1 4456 .pba = 18,
2adc55c9 4457 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
4458 .get_variants = e1000_get_variants_ich8lan,
4459 .mac_ops = &ich8_mac_ops,
4460 .phy_ops = &ich8_phy_ops,
4461 .nvm_ops = &ich8_nvm_ops,
4462};
a4f58f54 4463
8ce9d6c7 4464const struct e1000_info e1000_pch_info = {
a4f58f54
BA
4465 .mac = e1000_pchlan,
4466 .flags = FLAG_IS_ICH
4467 | FLAG_HAS_WOL
a4f58f54
BA
4468 | FLAG_HAS_CTRLEXT_ON_LOAD
4469 | FLAG_HAS_AMT
4470 | FLAG_HAS_FLASH
4471 | FLAG_HAS_JUMBO_FRAMES
38eb394e 4472 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54 4473 | FLAG_APME_IN_WUC,
8c7bbb92 4474 .flags2 = FLAG2_HAS_PHY_STATS,
a4f58f54
BA
4475 .pba = 26,
4476 .max_hw_frame_size = 4096,
4477 .get_variants = e1000_get_variants_ich8lan,
4478 .mac_ops = &ich8_mac_ops,
4479 .phy_ops = &ich8_phy_ops,
4480 .nvm_ops = &ich8_nvm_ops,
4481};
d3738bb8 4482
8ce9d6c7 4483const struct e1000_info e1000_pch2_info = {
d3738bb8
BA
4484 .mac = e1000_pch2lan,
4485 .flags = FLAG_IS_ICH
4486 | FLAG_HAS_WOL
b67e1913 4487 | FLAG_HAS_HW_TIMESTAMP
d3738bb8
BA
4488 | FLAG_HAS_CTRLEXT_ON_LOAD
4489 | FLAG_HAS_AMT
4490 | FLAG_HAS_FLASH
4491 | FLAG_HAS_JUMBO_FRAMES
4492 | FLAG_APME_IN_WUC,
e52997f9
BA
4493 .flags2 = FLAG2_HAS_PHY_STATS
4494 | FLAG2_HAS_EEE,
828bac87 4495 .pba = 26,
c3d2dbf4 4496 .max_hw_frame_size = 9018,
d3738bb8
BA
4497 .get_variants = e1000_get_variants_ich8lan,
4498 .mac_ops = &ich8_mac_ops,
4499 .phy_ops = &ich8_phy_ops,
4500 .nvm_ops = &ich8_nvm_ops,
4501};
2fbe4526
BA
4502
4503const struct e1000_info e1000_pch_lpt_info = {
4504 .mac = e1000_pch_lpt,
4505 .flags = FLAG_IS_ICH
4506 | FLAG_HAS_WOL
b67e1913 4507 | FLAG_HAS_HW_TIMESTAMP
2fbe4526
BA
4508 | FLAG_HAS_CTRLEXT_ON_LOAD
4509 | FLAG_HAS_AMT
4510 | FLAG_HAS_FLASH
4511 | FLAG_HAS_JUMBO_FRAMES
4512 | FLAG_APME_IN_WUC,
4513 .flags2 = FLAG2_HAS_PHY_STATS
4514 | FLAG2_HAS_EEE,
4515 .pba = 26,
ed1a4265 4516 .max_hw_frame_size = 9018,
2fbe4526
BA
4517 .get_variants = e1000_get_variants_ich8lan,
4518 .mac_ops = &ich8_mac_ops,
4519 .phy_ops = &ich8_phy_ops,
4520 .nvm_ops = &ich8_nvm_ops,
4521};