]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/intel/e1000e/ich8lan.c
e1000e: cleanup: group OR'ed bit settings with parens
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
bf67044b 4 Copyright(c) 1999 - 2013 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
e921eb1a 29/* 82562G 10/100 Network Connection
bc7f75fa
AK
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
97ac8cae
BA
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
1605927f 43 * 82567V Gigabit Network Connection
97ac8cae
BA
44 * 82567LM-2 Gigabit Network Connection
45 * 82567LF-2 Gigabit Network Connection
46 * 82567V-2 Gigabit Network Connection
f4187b56
BA
47 * 82567LF-3 Gigabit Network Connection
48 * 82567LM-3 Gigabit Network Connection
2f15f9d6 49 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
50 * 82577LM Gigabit Network Connection
51 * 82577LC Gigabit Network Connection
52 * 82578DM Gigabit Network Connection
53 * 82578DC Gigabit Network Connection
d3738bb8
BA
54 * 82579LM Gigabit Network Connection
55 * 82579V Gigabit Network Connection
bc7f75fa
AK
56 */
57
bc7f75fa
AK
58#include "e1000.h"
59
60#define ICH_FLASH_GFPREG 0x0000
61#define ICH_FLASH_HSFSTS 0x0004
62#define ICH_FLASH_HSFCTL 0x0006
63#define ICH_FLASH_FADDR 0x0008
64#define ICH_FLASH_FDATA0 0x0010
4a770358 65#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
66
67#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
68#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
71#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
72
73#define ICH_CYCLE_READ 0
74#define ICH_CYCLE_WRITE 2
75#define ICH_CYCLE_ERASE 3
76
77#define FLASH_GFPREG_BASE_MASK 0x1FFF
78#define FLASH_SECTOR_ADDR_SHIFT 12
79
80#define ICH_FLASH_SEG_SIZE_256 256
81#define ICH_FLASH_SEG_SIZE_4K 4096
82#define ICH_FLASH_SEG_SIZE_8K 8192
83#define ICH_FLASH_SEG_SIZE_64K 65536
84
85
86#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
6dfaa769
BA
87/* FW established a valid mode */
88#define E1000_ICH_FWSM_FW_VALID 0x00008000
bc7f75fa
AK
89
90#define E1000_ICH_MNG_IAMT_MODE 0x2
91
92#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
93 (ID_LED_DEF1_OFF2 << 8) | \
94 (ID_LED_DEF1_ON2 << 4) | \
95 (ID_LED_DEF1_DEF2))
96
97#define E1000_ICH_NVM_SIG_WORD 0x13
98#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
99#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
100#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
101
102#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
103
104#define E1000_FEXTNVM_SW_CONFIG 1
105#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
106
62bc813e
BA
107#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000
109
831bd2e6
BA
110#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
111#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
112#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
113
bc7f75fa
AK
114#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
115
116#define E1000_ICH_RAR_ENTRIES 7
69e1e019 117#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
2fbe4526 118#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */
bc7f75fa
AK
119
120#define PHY_PAGE_SHIFT 5
121#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
122 ((reg) & MAX_PHY_REG_ADDRESS))
123#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
124#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
125
126#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
127#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
128#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
129
a4f58f54
BA
130#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
131
53ac5a88
BA
132#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
133
2fbe4526
BA
134/* SMBus Control Phy Register */
135#define CV_SMB_CTRL PHY_REG(769, 23)
136#define CV_SMB_CTRL_FORCE_SMBUS 0x0001
137
f523d211
BA
138/* SMBus Address Phy Register */
139#define HV_SMB_ADDR PHY_REG(768, 26)
8395ae83 140#define HV_SMB_ADDR_MASK 0x007F
f523d211
BA
141#define HV_SMB_ADDR_PEC_EN 0x0200
142#define HV_SMB_ADDR_VALID 0x0080
2fbe4526
BA
143#define HV_SMB_ADDR_FREQ_MASK 0x1100
144#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8
145#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12
f523d211 146
d3738bb8
BA
147/* PHY Power Management Control */
148#define HV_PM_CTRL PHY_REG(770, 17)
36ceeb43 149#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100
d3738bb8 150
2fbe4526 151/* Intel Rapid Start Technology Support */
6d7407bf 152#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70)
2fbe4526
BA
153#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080
154#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28)
6d7407bf 155#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000
2fbe4526 156#define I217_CGFREG PHY_REG(772, 29)
6d7407bf 157#define I217_CGFREG_ENABLE_MTA_RESET 0x0002
2fbe4526 158#define I217_MEMPWR PHY_REG(772, 26)
6d7407bf 159#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
1effb45c 160
f523d211
BA
161/* Strapping Option Register - RO */
162#define E1000_STRAP 0x0000C
163#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
164#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
2fbe4526
BA
165#define E1000_STRAP_SMT_FREQ_MASK 0x00003000
166#define E1000_STRAP_SMT_FREQ_SHIFT 12
f523d211 167
fa2ce13c
BA
168/* OEM Bits Phy Register */
169#define HV_OEM_BITS PHY_REG(768, 25)
170#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 171#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
172#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
173
1d5846b9
BA
174#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
175#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
176
fddaa1af
BA
177/* KMRN Mode Control */
178#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
179#define HV_KMRN_MDIO_SLOW 0x0400
180
1d2101a7
BA
181/* KMRN FIFO Control and Status */
182#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
183#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
184#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
185
bc7f75fa
AK
186/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
187/* Offset 04h HSFSTS */
188union ich8_hws_flash_status {
189 struct ich8_hsfsts {
190 u16 flcdone :1; /* bit 0 Flash Cycle Done */
191 u16 flcerr :1; /* bit 1 Flash Cycle Error */
192 u16 dael :1; /* bit 2 Direct Access error Log */
193 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
194 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
195 u16 reserved1 :2; /* bit 13:6 Reserved */
196 u16 reserved2 :6; /* bit 13:6 Reserved */
197 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
198 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
199 } hsf_status;
200 u16 regval;
201};
202
203/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
204/* Offset 06h FLCTL */
205union ich8_hws_flash_ctrl {
206 struct ich8_hsflctl {
207 u16 flcgo :1; /* 0 Flash Cycle Go */
208 u16 flcycle :2; /* 2:1 Flash Cycle */
209 u16 reserved :5; /* 7:3 Reserved */
210 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
211 u16 flockdn :6; /* 15:10 Reserved */
212 } hsf_ctrl;
213 u16 regval;
214};
215
216/* ICH Flash Region Access Permissions */
217union ich8_hws_flash_regacc {
218 struct ich8_flracc {
219 u32 grra :8; /* 0:7 GbE region Read Access */
220 u32 grwa :8; /* 8:15 GbE region Write Access */
221 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
222 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
223 } hsf_flregacc;
224 u16 regval;
225};
226
4a770358
BA
227/* ICH Flash Protected Region */
228union ich8_flash_protected_range {
229 struct ich8_pr {
230 u32 base:13; /* 0:12 Protected Range Base */
231 u32 reserved1:2; /* 13:14 Reserved */
232 u32 rpe:1; /* 15 Read Protection Enable */
233 u32 limit:13; /* 16:28 Protected Range Limit */
234 u32 reserved2:2; /* 29:30 Reserved */
235 u32 wpe:1; /* 31 Write Protection Enable */
236 } range;
237 u32 regval;
238};
239
bc7f75fa
AK
240static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
241static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
242static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
243static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
244 u32 offset, u8 byte);
f4187b56
BA
245static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
246 u8 *data);
bc7f75fa
AK
247static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
248 u16 *data);
249static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
250 u8 size, u16 *data);
bc7f75fa 251static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
252static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
253static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
254static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
255static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
256static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
257static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
258static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
259static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 260static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 261static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 262static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1f96012d 263static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 264static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
eb7700dc
BA
265static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
266static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
69e1e019 267static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
2fbe4526 268static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
831bd2e6 269static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
605c82ba 270static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
bc7f75fa
AK
271
272static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
273{
274 return readw(hw->flash_address + reg);
275}
276
277static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
278{
279 return readl(hw->flash_address + reg);
280}
281
282static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
283{
284 writew(val, hw->flash_address + reg);
285}
286
287static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
288{
289 writel(val, hw->flash_address + reg);
290}
291
292#define er16flash(reg) __er16flash(hw, (reg))
293#define er32flash(reg) __er32flash(hw, (reg))
0e15df49
BA
294#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
295#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
bc7f75fa 296
cb17aab9
BA
297/**
298 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
299 * @hw: pointer to the HW structure
300 *
301 * Test access to the PHY registers by reading the PHY ID registers. If
302 * the PHY ID is already known (e.g. resume path) compare it with known ID,
303 * otherwise assume the read PHY ID is correct if it is valid.
304 *
305 * Assumes the sw/fw/hw semaphore is already acquired.
306 **/
307static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
99730e4c 308{
a52359b5
BA
309 u16 phy_reg = 0;
310 u32 phy_id = 0;
311 s32 ret_val;
312 u16 retry_count;
313
314 for (retry_count = 0; retry_count < 2; retry_count++) {
315 ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
316 if (ret_val || (phy_reg == 0xFFFF))
317 continue;
318 phy_id = (u32)(phy_reg << 16);
319
320 ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
321 if (ret_val || (phy_reg == 0xFFFF)) {
322 phy_id = 0;
323 continue;
324 }
325 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
326 break;
327 }
cb17aab9
BA
328
329 if (hw->phy.id) {
330 if (hw->phy.id == phy_id)
331 return true;
a52359b5
BA
332 } else if (phy_id) {
333 hw->phy.id = phy_id;
334 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
cb17aab9
BA
335 return true;
336 }
337
e921eb1a 338 /* In case the PHY needs to be in mdio slow mode,
a52359b5
BA
339 * set slow mode and try to get the PHY id again.
340 */
341 hw->phy.ops.release(hw);
342 ret_val = e1000_set_mdio_slow_mode_hv(hw);
343 if (!ret_val)
344 ret_val = e1000e_get_phy_id(hw);
345 hw->phy.ops.acquire(hw);
346
347 return !ret_val;
cb17aab9
BA
348}
349
350/**
351 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
352 * @hw: pointer to the HW structure
353 *
354 * Workarounds/flow necessary for PHY initialization during driver load
355 * and resume paths.
356 **/
357static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
358{
359 u32 mac_reg, fwsm = er32(FWSM);
360 s32 ret_val;
2fbe4526 361 u16 phy_reg;
cb17aab9 362
6e928b72
BA
363 /* Gate automatic PHY configuration by hardware on managed and
364 * non-managed 82579 and newer adapters.
365 */
366 e1000_gate_hw_phy_config_ich8lan(hw, true);
367
cb17aab9
BA
368 ret_val = hw->phy.ops.acquire(hw);
369 if (ret_val) {
370 e_dbg("Failed to initialize PHY flow\n");
6e928b72 371 goto out;
cb17aab9
BA
372 }
373
e921eb1a 374 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
cb17aab9
BA
375 * inaccessible and resetting the PHY is not blocked, toggle the
376 * LANPHYPC Value bit to force the interconnect to PCIe mode.
377 */
378 switch (hw->mac.type) {
2fbe4526
BA
379 case e1000_pch_lpt:
380 if (e1000_phy_is_accessible_pchlan(hw))
381 break;
382
e921eb1a 383 /* Before toggling LANPHYPC, see if PHY is accessible by
2fbe4526
BA
384 * forcing MAC to SMBus mode first.
385 */
386 mac_reg = er32(CTRL_EXT);
387 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
388 ew32(CTRL_EXT, mac_reg);
389
390 /* fall-through */
cb17aab9 391 case e1000_pch2lan:
2fbe4526
BA
392 if (e1000_phy_is_accessible_pchlan(hw)) {
393 if (hw->mac.type == e1000_pch_lpt) {
394 /* Unforce SMBus mode in PHY */
395 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
396 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
397 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
398
399 /* Unforce SMBus mode in MAC */
400 mac_reg = er32(CTRL_EXT);
401 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
402 ew32(CTRL_EXT, mac_reg);
403 }
cb17aab9 404 break;
2fbe4526 405 }
cb17aab9
BA
406
407 /* fall-through */
408 case e1000_pchlan:
409 if ((hw->mac.type == e1000_pchlan) &&
410 (fwsm & E1000_ICH_FWSM_FW_VALID))
411 break;
412
413 if (hw->phy.ops.check_reset_block(hw)) {
414 e_dbg("Required LANPHYPC toggle blocked by ME\n");
415 break;
416 }
417
418 e_dbg("Toggling LANPHYPC\n");
419
420 /* Set Phy Config Counter to 50msec */
421 mac_reg = er32(FEXTNVM3);
422 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
423 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
424 ew32(FEXTNVM3, mac_reg);
425
4e03510b
BA
426 if (hw->mac.type == e1000_pch_lpt) {
427 /* Toggling LANPHYPC brings the PHY out of SMBus mode
428 * So ensure that the MAC is also out of SMBus mode
429 */
430 mac_reg = er32(CTRL_EXT);
431 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
432 ew32(CTRL_EXT, mac_reg);
433 }
434
cb17aab9
BA
435 /* Toggle LANPHYPC Value bit */
436 mac_reg = er32(CTRL);
437 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
438 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
439 ew32(CTRL, mac_reg);
440 e1e_flush();
441 udelay(10);
442 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
443 ew32(CTRL, mac_reg);
444 e1e_flush();
2fbe4526
BA
445 if (hw->mac.type < e1000_pch_lpt) {
446 msleep(50);
447 } else {
448 u16 count = 20;
449 do {
450 usleep_range(5000, 10000);
451 } while (!(er32(CTRL_EXT) &
452 E1000_CTRL_EXT_LPCD) && count--);
453 }
cb17aab9
BA
454 break;
455 default:
456 break;
457 }
458
459 hw->phy.ops.release(hw);
460
e921eb1a 461 /* Reset the PHY before any access to it. Doing so, ensures
cb17aab9
BA
462 * that the PHY is in a known good state before we read/write
463 * PHY registers. The generic reset is sufficient here,
464 * because we haven't determined the PHY type yet.
465 */
466 ret_val = e1000e_phy_hw_reset_generic(hw);
467
6e928b72 468out:
cb17aab9
BA
469 /* Ungate automatic PHY configuration on non-managed 82579 */
470 if ((hw->mac.type == e1000_pch2lan) &&
471 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
472 usleep_range(10000, 20000);
473 e1000_gate_hw_phy_config_ich8lan(hw, false);
474 }
475
476 return ret_val;
99730e4c
BA
477}
478
a4f58f54
BA
479/**
480 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
481 * @hw: pointer to the HW structure
482 *
483 * Initialize family-specific PHY parameters and function pointers.
484 **/
485static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
486{
487 struct e1000_phy_info *phy = &hw->phy;
70806a7f 488 s32 ret_val;
a4f58f54
BA
489
490 phy->addr = 1;
491 phy->reset_delay_us = 100;
492
2b6b168d 493 phy->ops.set_page = e1000_set_page_igp;
94d8186a
BA
494 phy->ops.read_reg = e1000_read_phy_reg_hv;
495 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
2b6b168d 496 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
fa2ce13c
BA
497 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
498 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
499 phy->ops.write_reg = e1000_write_phy_reg_hv;
500 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
2b6b168d 501 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
17f208de
BA
502 phy->ops.power_up = e1000_power_up_phy_copper;
503 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
504 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
505
cb17aab9 506 phy->id = e1000_phy_unknown;
627c8a04 507
cb17aab9
BA
508 ret_val = e1000_init_phy_workarounds_pchlan(hw);
509 if (ret_val)
510 return ret_val;
605c82ba 511
cb17aab9
BA
512 if (phy->id == e1000_phy_unknown)
513 switch (hw->mac.type) {
514 default:
515 ret_val = e1000e_get_phy_id(hw);
516 if (ret_val)
517 return ret_val;
518 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
519 break;
520 /* fall-through */
521 case e1000_pch2lan:
2fbe4526 522 case e1000_pch_lpt:
e921eb1a 523 /* In case the PHY needs to be in mdio slow mode,
cb17aab9
BA
524 * set slow mode and try to get the PHY id again.
525 */
526 ret_val = e1000_set_mdio_slow_mode_hv(hw);
527 if (ret_val)
528 return ret_val;
529 ret_val = e1000e_get_phy_id(hw);
530 if (ret_val)
531 return ret_val;
664dc878 532 break;
cb17aab9 533 }
a4f58f54
BA
534 phy->type = e1000e_get_phy_type_from_id(phy->id);
535
0be84010
BA
536 switch (phy->type) {
537 case e1000_phy_82577:
d3738bb8 538 case e1000_phy_82579:
2fbe4526 539 case e1000_phy_i217:
a4f58f54
BA
540 phy->ops.check_polarity = e1000_check_polarity_82577;
541 phy->ops.force_speed_duplex =
6cc7aaed 542 e1000_phy_force_speed_duplex_82577;
0be84010 543 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
544 phy->ops.get_info = e1000_get_phy_info_82577;
545 phy->ops.commit = e1000e_phy_sw_reset;
eab50ffb 546 break;
0be84010
BA
547 case e1000_phy_82578:
548 phy->ops.check_polarity = e1000_check_polarity_m88;
549 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
550 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
551 phy->ops.get_info = e1000e_get_phy_info_m88;
552 break;
553 default:
554 ret_val = -E1000_ERR_PHY;
555 break;
a4f58f54
BA
556 }
557
558 return ret_val;
559}
560
bc7f75fa
AK
561/**
562 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
563 * @hw: pointer to the HW structure
564 *
565 * Initialize family-specific PHY parameters and function pointers.
566 **/
567static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
568{
569 struct e1000_phy_info *phy = &hw->phy;
570 s32 ret_val;
571 u16 i = 0;
572
573 phy->addr = 1;
574 phy->reset_delay_us = 100;
575
17f208de
BA
576 phy->ops.power_up = e1000_power_up_phy_copper;
577 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
578
e921eb1a 579 /* We may need to do this twice - once for IGP and if that fails,
97ac8cae
BA
580 * we'll set BM func pointers and try again
581 */
582 ret_val = e1000e_determine_phy_address(hw);
583 if (ret_val) {
94d8186a
BA
584 phy->ops.write_reg = e1000e_write_phy_reg_bm;
585 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 586 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
587 if (ret_val) {
588 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 589 return ret_val;
9b71b419 590 }
97ac8cae
BA
591 }
592
bc7f75fa
AK
593 phy->id = 0;
594 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
595 (i++ < 100)) {
1bba4386 596 usleep_range(1000, 2000);
bc7f75fa
AK
597 ret_val = e1000e_get_phy_id(hw);
598 if (ret_val)
599 return ret_val;
600 }
601
602 /* Verify phy id */
603 switch (phy->id) {
604 case IGP03E1000_E_PHY_ID:
605 phy->type = e1000_phy_igp_3;
606 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
607 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
608 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
609 phy->ops.get_info = e1000e_get_phy_info_igp;
610 phy->ops.check_polarity = e1000_check_polarity_igp;
611 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
612 break;
613 case IFE_E_PHY_ID:
614 case IFE_PLUS_E_PHY_ID:
615 case IFE_C_E_PHY_ID:
616 phy->type = e1000_phy_ife;
617 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
618 phy->ops.get_info = e1000_get_phy_info_ife;
619 phy->ops.check_polarity = e1000_check_polarity_ife;
620 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 621 break;
97ac8cae
BA
622 case BME1000_E_PHY_ID:
623 phy->type = e1000_phy_bm;
624 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
625 phy->ops.read_reg = e1000e_read_phy_reg_bm;
626 phy->ops.write_reg = e1000e_write_phy_reg_bm;
627 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
628 phy->ops.get_info = e1000e_get_phy_info_m88;
629 phy->ops.check_polarity = e1000_check_polarity_m88;
630 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 631 break;
bc7f75fa
AK
632 default:
633 return -E1000_ERR_PHY;
634 break;
635 }
636
637 return 0;
638}
639
640/**
641 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
642 * @hw: pointer to the HW structure
643 *
644 * Initialize family-specific NVM parameters and function
645 * pointers.
646 **/
647static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
648{
649 struct e1000_nvm_info *nvm = &hw->nvm;
650 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 651 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
652 u16 i;
653
ad68076e 654 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 655 if (!hw->flash_address) {
3bb99fe2 656 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
657 return -E1000_ERR_CONFIG;
658 }
659
660 nvm->type = e1000_nvm_flash_sw;
661
662 gfpreg = er32flash(ICH_FLASH_GFPREG);
663
e921eb1a 664 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 665 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
666 * the overall size.
667 */
bc7f75fa
AK
668 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
669 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
670
671 /* flash_base_addr is byte-aligned */
672 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
673
e921eb1a 674 /* find total size of the NVM, then cut in half since the total
ad68076e
BA
675 * size represents two separate NVM banks.
676 */
bc7f75fa
AK
677 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
678 << FLASH_SECTOR_ADDR_SHIFT;
679 nvm->flash_bank_size /= 2;
680 /* Adjust to word count */
681 nvm->flash_bank_size /= sizeof(u16);
682
683 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
684
685 /* Clear shadow ram */
686 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 687 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
688 dev_spec->shadow_ram[i].value = 0xFFFF;
689 }
690
691 return 0;
692}
693
694/**
695 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
696 * @hw: pointer to the HW structure
697 *
698 * Initialize family-specific MAC parameters and function
699 * pointers.
700 **/
ec34c170 701static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
bc7f75fa 702{
bc7f75fa
AK
703 struct e1000_mac_info *mac = &hw->mac;
704
705 /* Set media type function pointer */
318a94d6 706 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
707
708 /* Set mta register count */
709 mac->mta_reg_count = 32;
710 /* Set rar entry count */
711 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
712 if (mac->type == e1000_ich8lan)
713 mac->rar_entry_count--;
a65a4a0d
BA
714 /* FWSM register */
715 mac->has_fwsm = true;
716 /* ARC subsystem not supported */
717 mac->arc_subsystem_valid = false;
f464ba87
BA
718 /* Adaptive IFS supported */
719 mac->adaptive_ifs = true;
bc7f75fa 720
2fbe4526 721 /* LED and other operations */
a4f58f54
BA
722 switch (mac->type) {
723 case e1000_ich8lan:
724 case e1000_ich9lan:
725 case e1000_ich10lan:
eb7700dc
BA
726 /* check management mode */
727 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
a4f58f54 728 /* ID LED init */
d1964eb1 729 mac->ops.id_led_init = e1000e_id_led_init_generic;
dbf80dcb
BA
730 /* blink LED */
731 mac->ops.blink_led = e1000e_blink_led_generic;
a4f58f54
BA
732 /* setup LED */
733 mac->ops.setup_led = e1000e_setup_led_generic;
734 /* cleanup LED */
735 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
736 /* turn on/off LED */
737 mac->ops.led_on = e1000_led_on_ich8lan;
738 mac->ops.led_off = e1000_led_off_ich8lan;
739 break;
d3738bb8 740 case e1000_pch2lan:
69e1e019
BA
741 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
742 mac->ops.rar_set = e1000_rar_set_pch2lan;
743 /* fall-through */
2fbe4526 744 case e1000_pch_lpt:
69e1e019 745 case e1000_pchlan:
eb7700dc
BA
746 /* check management mode */
747 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
a4f58f54
BA
748 /* ID LED init */
749 mac->ops.id_led_init = e1000_id_led_init_pchlan;
750 /* setup LED */
751 mac->ops.setup_led = e1000_setup_led_pchlan;
752 /* cleanup LED */
753 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
754 /* turn on/off LED */
755 mac->ops.led_on = e1000_led_on_pchlan;
756 mac->ops.led_off = e1000_led_off_pchlan;
757 break;
758 default:
759 break;
760 }
761
2fbe4526
BA
762 if (mac->type == e1000_pch_lpt) {
763 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
764 mac->ops.rar_set = e1000_rar_set_pch_lpt;
765 }
766
bc7f75fa
AK
767 /* Enable PCS Lock-loss workaround for ICH8 */
768 if (mac->type == e1000_ich8lan)
564ea9bb 769 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa
AK
770
771 return 0;
772}
773
4ddc48a9
BA
774/**
775 * __e1000_access_emi_reg_locked - Read/write EMI register
776 * @hw: pointer to the HW structure
777 * @addr: EMI address to program
778 * @data: pointer to value to read/write from/to the EMI address
779 * @read: boolean flag to indicate read or write
780 *
781 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
782 **/
783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784 u16 *data, bool read)
785{
70806a7f 786 s32 ret_val;
4ddc48a9
BA
787
788 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
789 if (ret_val)
790 return ret_val;
791
792 if (read)
793 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794 else
795 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
796
797 return ret_val;
798}
799
800/**
801 * e1000_read_emi_reg_locked - Read Extended Management Interface register
802 * @hw: pointer to the HW structure
803 * @addr: EMI address to program
804 * @data: value to be read from the EMI address
805 *
806 * Assumes the SW/FW/HW Semaphore is already acquired.
807 **/
203e4151 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
4ddc48a9
BA
809{
810 return __e1000_access_emi_reg_locked(hw, addr, data, true);
811}
812
813/**
814 * e1000_write_emi_reg_locked - Write Extended Management Interface register
815 * @hw: pointer to the HW structure
816 * @addr: EMI address to program
817 * @data: value to be written to the EMI address
818 *
819 * Assumes the SW/FW/HW Semaphore is already acquired.
820 **/
821static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822{
823 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
824}
825
e52997f9
BA
826/**
827 * e1000_set_eee_pchlan - Enable/disable EEE support
828 * @hw: pointer to the HW structure
829 *
3d4d5755
BA
830 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
831 * the link and the EEE capabilities of the link partner. The LPI Control
832 * register bits will remain set only if/when link is up.
e52997f9
BA
833 **/
834static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
835{
2fbe4526 836 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3d4d5755
BA
837 s32 ret_val;
838 u16 lpi_ctrl;
e52997f9 839
2fbe4526
BA
840 if ((hw->phy.type != e1000_phy_82579) &&
841 (hw->phy.type != e1000_phy_i217))
5015e53a 842 return 0;
e52997f9 843
3d4d5755 844 ret_val = hw->phy.ops.acquire(hw);
e52997f9 845 if (ret_val)
5015e53a 846 return ret_val;
e52997f9 847
3d4d5755 848 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
2fbe4526 849 if (ret_val)
3d4d5755
BA
850 goto release;
851
852 /* Clear bits that enable EEE in various speeds */
853 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
854
855 /* Enable EEE if not disabled by user */
856 if (!dev_spec->eee_disable) {
857 u16 lpa, pcs_status, data;
2fbe4526 858
2fbe4526 859 /* Save off link partner's EEE ability */
3d4d5755
BA
860 switch (hw->phy.type) {
861 case e1000_phy_82579:
862 lpa = I82579_EEE_LP_ABILITY;
863 pcs_status = I82579_EEE_PCS_STATUS;
864 break;
865 case e1000_phy_i217:
866 lpa = I217_EEE_LP_ABILITY;
867 pcs_status = I217_EEE_PCS_STATUS;
868 break;
869 default:
870 ret_val = -E1000_ERR_PHY;
871 goto release;
872 }
873 ret_val = e1000_read_emi_reg_locked(hw, lpa,
4ddc48a9 874 &dev_spec->eee_lp_ability);
2fbe4526
BA
875 if (ret_val)
876 goto release;
2fbe4526 877
3d4d5755
BA
878 /* Enable EEE only for speeds in which the link partner is
879 * EEE capable.
2fbe4526 880 */
3d4d5755
BA
881 if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
882 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
883
884 if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
885 e1e_rphy_locked(hw, PHY_LP_ABILITY, &data);
886 if (data & NWAY_LPAR_100TX_FD_CAPS)
887 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
888 else
889 /* EEE is not supported in 100Half, so ignore
890 * partner's EEE in 100 ability if full-duplex
891 * is not advertised.
892 */
893 dev_spec->eee_lp_ability &=
894 ~I82579_EEE_100_SUPPORTED;
895 }
896
897 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
898 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
899 if (ret_val)
900 goto release;
2fbe4526
BA
901 }
902
3d4d5755
BA
903 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
904release:
905 hw->phy.ops.release(hw);
906
907 return ret_val;
e52997f9
BA
908}
909
7d3cabbc
BA
910/**
911 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
912 * @hw: pointer to the HW structure
913 *
914 * Checks to see of the link status of the hardware has changed. If a
915 * change in link status has been detected, then we read the PHY registers
916 * to get the current speed/duplex if link exists.
917 **/
918static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
919{
920 struct e1000_mac_info *mac = &hw->mac;
921 s32 ret_val;
922 bool link;
1d2101a7 923 u16 phy_reg;
7d3cabbc 924
e921eb1a 925 /* We only want to go out to the PHY registers to see if Auto-Neg
7d3cabbc
BA
926 * has completed and/or if our link status has changed. The
927 * get_link_status flag is set upon receiving a Link Status
928 * Change or Rx Sequence Error interrupt.
929 */
5015e53a
BA
930 if (!mac->get_link_status)
931 return 0;
7d3cabbc 932
e921eb1a 933 /* First we want to see if the MII Status Register reports
7d3cabbc
BA
934 * link. If so, then we want to get the current speed/duplex
935 * of the PHY.
936 */
937 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
938 if (ret_val)
5015e53a 939 return ret_val;
7d3cabbc 940
1d5846b9
BA
941 if (hw->mac.type == e1000_pchlan) {
942 ret_val = e1000_k1_gig_workaround_hv(hw, link);
943 if (ret_val)
5015e53a 944 return ret_val;
1d5846b9
BA
945 }
946
2fbe4526
BA
947 /* Clear link partner's EEE ability */
948 hw->dev_spec.ich8lan.eee_lp_ability = 0;
949
7d3cabbc 950 if (!link)
5015e53a 951 return 0; /* No link detected */
7d3cabbc
BA
952
953 mac->get_link_status = false;
954
1d2101a7
BA
955 switch (hw->mac.type) {
956 case e1000_pch2lan:
831bd2e6
BA
957 ret_val = e1000_k1_workaround_lv(hw);
958 if (ret_val)
5015e53a 959 return ret_val;
1d2101a7
BA
960 /* fall-thru */
961 case e1000_pchlan:
962 if (hw->phy.type == e1000_phy_82578) {
963 ret_val = e1000_link_stall_workaround_hv(hw);
964 if (ret_val)
5015e53a 965 return ret_val;
1d2101a7
BA
966 }
967
e921eb1a 968 /* Workaround for PCHx parts in half-duplex:
1d2101a7
BA
969 * Set the number of preambles removed from the packet
970 * when it is passed from the PHY to the MAC to prevent
971 * the MAC from misinterpreting the packet type.
972 */
973 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
974 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
975
976 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
977 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
978
979 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
980 break;
981 default:
982 break;
831bd2e6
BA
983 }
984
e921eb1a 985 /* Check if there was DownShift, must be checked
7d3cabbc
BA
986 * immediately after link-up
987 */
988 e1000e_check_downshift(hw);
989
e52997f9
BA
990 /* Enable/Disable EEE after link up */
991 ret_val = e1000_set_eee_pchlan(hw);
992 if (ret_val)
5015e53a 993 return ret_val;
e52997f9 994
e921eb1a 995 /* If we are forcing speed/duplex, then we simply return since
7d3cabbc
BA
996 * we have already determined whether we have link or not.
997 */
5015e53a
BA
998 if (!mac->autoneg)
999 return -E1000_ERR_CONFIG;
7d3cabbc 1000
e921eb1a 1001 /* Auto-Neg is enabled. Auto Speed Detection takes care
7d3cabbc
BA
1002 * of MAC speed/duplex configuration. So we only need to
1003 * configure Collision Distance in the MAC.
1004 */
57cde763 1005 mac->ops.config_collision_dist(hw);
7d3cabbc 1006
e921eb1a 1007 /* Configure Flow Control now that Auto-Neg has completed.
7d3cabbc
BA
1008 * First, we need to restore the desired flow control
1009 * settings because we may have had to re-autoneg with a
1010 * different link partner.
1011 */
1012 ret_val = e1000e_config_fc_after_link_up(hw);
1013 if (ret_val)
3bb99fe2 1014 e_dbg("Error configuring flow control\n");
7d3cabbc 1015
7d3cabbc
BA
1016 return ret_val;
1017}
1018
69e3fd8c 1019static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
1020{
1021 struct e1000_hw *hw = &adapter->hw;
1022 s32 rc;
1023
ec34c170 1024 rc = e1000_init_mac_params_ich8lan(hw);
bc7f75fa
AK
1025 if (rc)
1026 return rc;
1027
1028 rc = e1000_init_nvm_params_ich8lan(hw);
1029 if (rc)
1030 return rc;
1031
d3738bb8
BA
1032 switch (hw->mac.type) {
1033 case e1000_ich8lan:
1034 case e1000_ich9lan:
1035 case e1000_ich10lan:
a4f58f54 1036 rc = e1000_init_phy_params_ich8lan(hw);
d3738bb8
BA
1037 break;
1038 case e1000_pchlan:
1039 case e1000_pch2lan:
2fbe4526 1040 case e1000_pch_lpt:
d3738bb8
BA
1041 rc = e1000_init_phy_params_pchlan(hw);
1042 break;
1043 default:
1044 break;
1045 }
bc7f75fa
AK
1046 if (rc)
1047 return rc;
1048
e921eb1a 1049 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
23e4f061
BA
1050 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1051 */
1052 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1053 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1054 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
2adc55c9
BA
1055 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1056 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
dbf80dcb
BA
1057
1058 hw->mac.ops.blink_led = NULL;
2adc55c9
BA
1059 }
1060
bc7f75fa 1061 if ((adapter->hw.mac.type == e1000_ich8lan) &&
462d5994 1062 (adapter->hw.phy.type != e1000_phy_ife))
bc7f75fa
AK
1063 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1064
c6e7f51e
BA
1065 /* Enable workaround for 82579 w/ ME enabled */
1066 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1067 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1068 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1069
5a86f28f
BA
1070 /* Disable EEE by default until IEEE802.3az spec is finalized */
1071 if (adapter->flags2 & FLAG2_HAS_EEE)
1072 adapter->hw.dev_spec.ich8lan.eee_disable = true;
1073
bc7f75fa
AK
1074 return 0;
1075}
1076
717d438d 1077static DEFINE_MUTEX(nvm_mutex);
717d438d 1078
ca15df58
BA
1079/**
1080 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1081 * @hw: pointer to the HW structure
1082 *
1083 * Acquires the mutex for performing NVM operations.
1084 **/
1085static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1086{
1087 mutex_lock(&nvm_mutex);
1088
1089 return 0;
1090}
1091
1092/**
1093 * e1000_release_nvm_ich8lan - Release NVM mutex
1094 * @hw: pointer to the HW structure
1095 *
1096 * Releases the mutex used while performing NVM operations.
1097 **/
1098static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1099{
1100 mutex_unlock(&nvm_mutex);
ca15df58
BA
1101}
1102
bc7f75fa
AK
1103/**
1104 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1105 * @hw: pointer to the HW structure
1106 *
ca15df58
BA
1107 * Acquires the software control flag for performing PHY and select
1108 * MAC CSR accesses.
bc7f75fa
AK
1109 **/
1110static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1111{
373a88d7
BA
1112 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1113 s32 ret_val = 0;
bc7f75fa 1114
a90b412c
BA
1115 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1116 &hw->adapter->state)) {
34c9ef8b 1117 e_dbg("contention for Phy access\n");
a90b412c
BA
1118 return -E1000_ERR_PHY;
1119 }
717d438d 1120
bc7f75fa
AK
1121 while (timeout) {
1122 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
1123 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1124 break;
bc7f75fa 1125
373a88d7
BA
1126 mdelay(1);
1127 timeout--;
1128 }
1129
1130 if (!timeout) {
a90b412c 1131 e_dbg("SW has already locked the resource.\n");
373a88d7
BA
1132 ret_val = -E1000_ERR_CONFIG;
1133 goto out;
1134 }
1135
53ac5a88 1136 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
1137
1138 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1139 ew32(EXTCNF_CTRL, extcnf_ctrl);
1140
1141 while (timeout) {
1142 extcnf_ctrl = er32(EXTCNF_CTRL);
1143 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1144 break;
a4f58f54 1145
bc7f75fa
AK
1146 mdelay(1);
1147 timeout--;
1148 }
1149
1150 if (!timeout) {
434f1392 1151 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
a90b412c 1152 er32(FWSM), extcnf_ctrl);
2e2e8d53
BA
1153 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1154 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
1155 ret_val = -E1000_ERR_CONFIG;
1156 goto out;
bc7f75fa
AK
1157 }
1158
373a88d7
BA
1159out:
1160 if (ret_val)
a90b412c 1161 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
373a88d7
BA
1162
1163 return ret_val;
bc7f75fa
AK
1164}
1165
1166/**
1167 * e1000_release_swflag_ich8lan - Release software control flag
1168 * @hw: pointer to the HW structure
1169 *
ca15df58
BA
1170 * Releases the software control flag for performing PHY and select
1171 * MAC CSR accesses.
bc7f75fa
AK
1172 **/
1173static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1174{
1175 u32 extcnf_ctrl;
1176
1177 extcnf_ctrl = er32(EXTCNF_CTRL);
c5caf482
BA
1178
1179 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1180 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1181 ew32(EXTCNF_CTRL, extcnf_ctrl);
1182 } else {
1183 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1184 }
717d438d 1185
a90b412c 1186 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
bc7f75fa
AK
1187}
1188
4662e82b
BA
1189/**
1190 * e1000_check_mng_mode_ich8lan - Checks management mode
1191 * @hw: pointer to the HW structure
1192 *
eb7700dc 1193 * This checks if the adapter has any manageability enabled.
4662e82b
BA
1194 * This is a function pointer entry point only called by read/write
1195 * routines for the PHY and NVM parts.
1196 **/
1197static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1198{
a708dd88
BA
1199 u32 fwsm;
1200
1201 fwsm = er32(FWSM);
eb7700dc
BA
1202 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1203 ((fwsm & E1000_FWSM_MODE_MASK) ==
1204 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1205}
4662e82b 1206
eb7700dc
BA
1207/**
1208 * e1000_check_mng_mode_pchlan - Checks management mode
1209 * @hw: pointer to the HW structure
1210 *
1211 * This checks if the adapter has iAMT enabled.
1212 * This is a function pointer entry point only called by read/write
1213 * routines for the PHY and NVM parts.
1214 **/
1215static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1216{
1217 u32 fwsm;
1218
1219 fwsm = er32(FWSM);
1220 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1221 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
4662e82b
BA
1222}
1223
69e1e019
BA
1224/**
1225 * e1000_rar_set_pch2lan - Set receive address register
1226 * @hw: pointer to the HW structure
1227 * @addr: pointer to the receive address
1228 * @index: receive address array register
1229 *
1230 * Sets the receive address array register at index to the address passed
1231 * in by addr. For 82579, RAR[0] is the base address register that is to
1232 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1233 * Use SHRA[0-3] in place of those reserved for ME.
1234 **/
1235static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1236{
1237 u32 rar_low, rar_high;
1238
e921eb1a 1239 /* HW expects these in little endian so we reverse the byte order
69e1e019
BA
1240 * from network order (big endian) to little endian
1241 */
1242 rar_low = ((u32)addr[0] |
1243 ((u32)addr[1] << 8) |
1244 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1245
1246 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1247
1248 /* If MAC address zero, no need to set the AV bit */
1249 if (rar_low || rar_high)
1250 rar_high |= E1000_RAH_AV;
1251
1252 if (index == 0) {
1253 ew32(RAL(index), rar_low);
1254 e1e_flush();
1255 ew32(RAH(index), rar_high);
1256 e1e_flush();
1257 return;
1258 }
1259
1260 if (index < hw->mac.rar_entry_count) {
1261 s32 ret_val;
1262
1263 ret_val = e1000_acquire_swflag_ich8lan(hw);
1264 if (ret_val)
1265 goto out;
1266
1267 ew32(SHRAL(index - 1), rar_low);
1268 e1e_flush();
1269 ew32(SHRAH(index - 1), rar_high);
1270 e1e_flush();
1271
1272 e1000_release_swflag_ich8lan(hw);
1273
1274 /* verify the register updates */
1275 if ((er32(SHRAL(index - 1)) == rar_low) &&
1276 (er32(SHRAH(index - 1)) == rar_high))
1277 return;
1278
1279 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1280 (index - 1), er32(FWSM));
1281 }
1282
1283out:
1284 e_dbg("Failed to write receive address at index %d\n", index);
1285}
1286
2fbe4526
BA
1287/**
1288 * e1000_rar_set_pch_lpt - Set receive address registers
1289 * @hw: pointer to the HW structure
1290 * @addr: pointer to the receive address
1291 * @index: receive address array register
1292 *
1293 * Sets the receive address register array at index to the address passed
1294 * in by addr. For LPT, RAR[0] is the base address register that is to
1295 * contain the MAC address. SHRA[0-10] are the shared receive address
1296 * registers that are shared between the Host and manageability engine (ME).
1297 **/
1298static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1299{
1300 u32 rar_low, rar_high;
1301 u32 wlock_mac;
1302
e921eb1a 1303 /* HW expects these in little endian so we reverse the byte order
2fbe4526
BA
1304 * from network order (big endian) to little endian
1305 */
1306 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1307 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1308
1309 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1310
1311 /* If MAC address zero, no need to set the AV bit */
1312 if (rar_low || rar_high)
1313 rar_high |= E1000_RAH_AV;
1314
1315 if (index == 0) {
1316 ew32(RAL(index), rar_low);
1317 e1e_flush();
1318 ew32(RAH(index), rar_high);
1319 e1e_flush();
1320 return;
1321 }
1322
e921eb1a 1323 /* The manageability engine (ME) can lock certain SHRAR registers that
2fbe4526
BA
1324 * it is using - those registers are unavailable for use.
1325 */
1326 if (index < hw->mac.rar_entry_count) {
1327 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1328 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1329
1330 /* Check if all SHRAR registers are locked */
1331 if (wlock_mac == 1)
1332 goto out;
1333
1334 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1335 s32 ret_val;
1336
1337 ret_val = e1000_acquire_swflag_ich8lan(hw);
1338
1339 if (ret_val)
1340 goto out;
1341
1342 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1343 e1e_flush();
1344 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1345 e1e_flush();
1346
1347 e1000_release_swflag_ich8lan(hw);
1348
1349 /* verify the register updates */
1350 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1351 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1352 return;
1353 }
1354 }
1355
1356out:
1357 e_dbg("Failed to write receive address at index %d\n", index);
1358}
1359
bc7f75fa
AK
1360/**
1361 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1362 * @hw: pointer to the HW structure
1363 *
1364 * Checks if firmware is blocking the reset of the PHY.
1365 * This is a function pointer entry point only called by
1366 * reset routines.
1367 **/
1368static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1369{
1370 u32 fwsm;
1371
1372 fwsm = er32(FWSM);
1373
1374 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1375}
1376
8395ae83
BA
1377/**
1378 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1379 * @hw: pointer to the HW structure
1380 *
1381 * Assumes semaphore already acquired.
1382 *
1383 **/
1384static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1385{
1386 u16 phy_data;
1387 u32 strap = er32(STRAP);
2fbe4526
BA
1388 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1389 E1000_STRAP_SMT_FREQ_SHIFT;
70806a7f 1390 s32 ret_val;
8395ae83
BA
1391
1392 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1393
1394 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1395 if (ret_val)
5015e53a 1396 return ret_val;
8395ae83
BA
1397
1398 phy_data &= ~HV_SMB_ADDR_MASK;
1399 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1400 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
8395ae83 1401
2fbe4526
BA
1402 if (hw->phy.type == e1000_phy_i217) {
1403 /* Restore SMBus frequency */
1404 if (freq--) {
1405 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1406 phy_data |= (freq & (1 << 0)) <<
1407 HV_SMB_ADDR_FREQ_LOW_SHIFT;
1408 phy_data |= (freq & (1 << 1)) <<
1409 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1410 } else {
1411 e_dbg("Unsupported SMB frequency in PHY\n");
1412 }
1413 }
1414
5015e53a 1415 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
8395ae83
BA
1416}
1417
f523d211
BA
1418/**
1419 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1420 * @hw: pointer to the HW structure
1421 *
1422 * SW should configure the LCD from the NVM extended configuration region
1423 * as a workaround for certain parts.
1424 **/
1425static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1426{
1427 struct e1000_phy_info *phy = &hw->phy;
1428 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
8b802a7e 1429 s32 ret_val = 0;
f523d211
BA
1430 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1431
e921eb1a 1432 /* Initialize the PHY from the NVM on ICH platforms. This
f523d211
BA
1433 * is needed due to an issue where the NVM configuration is
1434 * not properly autoloaded after power transitions.
1435 * Therefore, after each PHY reset, we will load the
1436 * configuration data out of the NVM manually.
1437 */
3f0c16e8
BA
1438 switch (hw->mac.type) {
1439 case e1000_ich8lan:
1440 if (phy->type != e1000_phy_igp_3)
1441 return ret_val;
1442
5f3eed6f
BA
1443 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1444 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
3f0c16e8
BA
1445 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1446 break;
1447 }
1448 /* Fall-thru */
1449 case e1000_pchlan:
d3738bb8 1450 case e1000_pch2lan:
2fbe4526 1451 case e1000_pch_lpt:
8b802a7e 1452 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
3f0c16e8
BA
1453 break;
1454 default:
1455 return ret_val;
1456 }
1457
1458 ret_val = hw->phy.ops.acquire(hw);
1459 if (ret_val)
1460 return ret_val;
8b802a7e
BA
1461
1462 data = er32(FEXTNVM);
1463 if (!(data & sw_cfg_mask))
75ce1532 1464 goto release;
f523d211 1465
e921eb1a 1466 /* Make sure HW does not configure LCD from PHY
8b802a7e
BA
1467 * extended configuration before SW configuration
1468 */
1469 data = er32(EXTCNF_CTRL);
2fbe4526
BA
1470 if ((hw->mac.type < e1000_pch2lan) &&
1471 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1472 goto release;
8b802a7e
BA
1473
1474 cnf_size = er32(EXTCNF_SIZE);
1475 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1476 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1477 if (!cnf_size)
75ce1532 1478 goto release;
8b802a7e
BA
1479
1480 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1481 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1482
2fbe4526
BA
1483 if (((hw->mac.type == e1000_pchlan) &&
1484 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1485 (hw->mac.type > e1000_pchlan)) {
e921eb1a 1486 /* HW configures the SMBus address and LEDs when the
8b802a7e
BA
1487 * OEM and LCD Write Enable bits are set in the NVM.
1488 * When both NVM bits are cleared, SW will configure
1489 * them instead.
f523d211 1490 */
8395ae83 1491 ret_val = e1000_write_smbus_addr(hw);
8b802a7e 1492 if (ret_val)
75ce1532 1493 goto release;
f523d211 1494
8b802a7e
BA
1495 data = er32(LEDCTL);
1496 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1497 (u16)data);
1498 if (ret_val)
75ce1532 1499 goto release;
8b802a7e 1500 }
f523d211 1501
8b802a7e
BA
1502 /* Configure LCD from extended configuration region. */
1503
1504 /* cnf_base_addr is in DWORD */
1505 word_addr = (u16)(cnf_base_addr << 1);
1506
1507 for (i = 0; i < cnf_size; i++) {
1508 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1509 &reg_data);
1510 if (ret_val)
75ce1532 1511 goto release;
8b802a7e
BA
1512
1513 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1514 1, &reg_addr);
1515 if (ret_val)
75ce1532 1516 goto release;
8b802a7e
BA
1517
1518 /* Save off the PHY page for future writes. */
1519 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1520 phy_page = reg_data;
1521 continue;
f523d211 1522 }
8b802a7e
BA
1523
1524 reg_addr &= PHY_REG_MASK;
1525 reg_addr |= phy_page;
1526
f1430d69 1527 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
8b802a7e 1528 if (ret_val)
75ce1532 1529 goto release;
f523d211
BA
1530 }
1531
75ce1532 1532release:
94d8186a 1533 hw->phy.ops.release(hw);
f523d211
BA
1534 return ret_val;
1535}
1536
1d5846b9
BA
1537/**
1538 * e1000_k1_gig_workaround_hv - K1 Si workaround
1539 * @hw: pointer to the HW structure
1540 * @link: link up bool flag
1541 *
1542 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1543 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1544 * If link is down, the function will restore the default K1 setting located
1545 * in the NVM.
1546 **/
1547static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1548{
1549 s32 ret_val = 0;
1550 u16 status_reg = 0;
1551 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1552
1553 if (hw->mac.type != e1000_pchlan)
5015e53a 1554 return 0;
1d5846b9
BA
1555
1556 /* Wrap the whole flow with the sw flag */
94d8186a 1557 ret_val = hw->phy.ops.acquire(hw);
1d5846b9 1558 if (ret_val)
5015e53a 1559 return ret_val;
1d5846b9
BA
1560
1561 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1562 if (link) {
1563 if (hw->phy.type == e1000_phy_82578) {
f1430d69
BA
1564 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1565 &status_reg);
1d5846b9
BA
1566 if (ret_val)
1567 goto release;
1568
1569 status_reg &= BM_CS_STATUS_LINK_UP |
1570 BM_CS_STATUS_RESOLVED |
1571 BM_CS_STATUS_SPEED_MASK;
1572
1573 if (status_reg == (BM_CS_STATUS_LINK_UP |
1574 BM_CS_STATUS_RESOLVED |
1575 BM_CS_STATUS_SPEED_1000))
1576 k1_enable = false;
1577 }
1578
1579 if (hw->phy.type == e1000_phy_82577) {
f1430d69 1580 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1d5846b9
BA
1581 if (ret_val)
1582 goto release;
1583
1584 status_reg &= HV_M_STATUS_LINK_UP |
1585 HV_M_STATUS_AUTONEG_COMPLETE |
1586 HV_M_STATUS_SPEED_MASK;
1587
1588 if (status_reg == (HV_M_STATUS_LINK_UP |
1589 HV_M_STATUS_AUTONEG_COMPLETE |
1590 HV_M_STATUS_SPEED_1000))
1591 k1_enable = false;
1592 }
1593
1594 /* Link stall fix for link up */
f1430d69 1595 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1d5846b9
BA
1596 if (ret_val)
1597 goto release;
1598
1599 } else {
1600 /* Link stall fix for link down */
f1430d69 1601 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1d5846b9
BA
1602 if (ret_val)
1603 goto release;
1604 }
1605
1606 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1607
1608release:
94d8186a 1609 hw->phy.ops.release(hw);
5015e53a 1610
1d5846b9
BA
1611 return ret_val;
1612}
1613
1614/**
1615 * e1000_configure_k1_ich8lan - Configure K1 power state
1616 * @hw: pointer to the HW structure
1617 * @enable: K1 state to configure
1618 *
1619 * Configure the K1 power state based on the provided parameter.
1620 * Assumes semaphore already acquired.
1621 *
1622 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1623 **/
bb436b20 1624s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9 1625{
70806a7f 1626 s32 ret_val;
1d5846b9
BA
1627 u32 ctrl_reg = 0;
1628 u32 ctrl_ext = 0;
1629 u32 reg = 0;
1630 u16 kmrn_reg = 0;
1631
3d3a1676
BA
1632 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1633 &kmrn_reg);
1d5846b9 1634 if (ret_val)
5015e53a 1635 return ret_val;
1d5846b9
BA
1636
1637 if (k1_enable)
1638 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1639 else
1640 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1641
3d3a1676
BA
1642 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1643 kmrn_reg);
1d5846b9 1644 if (ret_val)
5015e53a 1645 return ret_val;
1d5846b9
BA
1646
1647 udelay(20);
1648 ctrl_ext = er32(CTRL_EXT);
1649 ctrl_reg = er32(CTRL);
1650
1651 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1652 reg |= E1000_CTRL_FRCSPD;
1653 ew32(CTRL, reg);
1654
1655 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
945a5151 1656 e1e_flush();
1d5846b9
BA
1657 udelay(20);
1658 ew32(CTRL, ctrl_reg);
1659 ew32(CTRL_EXT, ctrl_ext);
945a5151 1660 e1e_flush();
1d5846b9
BA
1661 udelay(20);
1662
5015e53a 1663 return 0;
1d5846b9
BA
1664}
1665
f523d211
BA
1666/**
1667 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1668 * @hw: pointer to the HW structure
1669 * @d0_state: boolean if entering d0 or d3 device state
1670 *
1671 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1672 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1673 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1674 **/
1675static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1676{
1677 s32 ret_val = 0;
1678 u32 mac_reg;
1679 u16 oem_reg;
1680
2fbe4526 1681 if (hw->mac.type < e1000_pchlan)
f523d211
BA
1682 return ret_val;
1683
94d8186a 1684 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1685 if (ret_val)
1686 return ret_val;
1687
2fbe4526 1688 if (hw->mac.type == e1000_pchlan) {
d3738bb8
BA
1689 mac_reg = er32(EXTCNF_CTRL);
1690 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
75ce1532 1691 goto release;
d3738bb8 1692 }
f523d211
BA
1693
1694 mac_reg = er32(FEXTNVM);
1695 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
75ce1532 1696 goto release;
f523d211
BA
1697
1698 mac_reg = er32(PHY_CTRL);
1699
f1430d69 1700 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211 1701 if (ret_val)
75ce1532 1702 goto release;
f523d211
BA
1703
1704 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1705
1706 if (d0_state) {
1707 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1708 oem_reg |= HV_OEM_BITS_GBE_DIS;
1709
1710 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1711 oem_reg |= HV_OEM_BITS_LPLU;
1712 } else {
03299e46
BA
1713 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1714 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
f523d211
BA
1715 oem_reg |= HV_OEM_BITS_GBE_DIS;
1716
03299e46
BA
1717 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1718 E1000_PHY_CTRL_NOND0A_LPLU))
f523d211
BA
1719 oem_reg |= HV_OEM_BITS_LPLU;
1720 }
03299e46 1721
92fe1733
BA
1722 /* Set Restart auto-neg to activate the bits */
1723 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1724 !hw->phy.ops.check_reset_block(hw))
1725 oem_reg |= HV_OEM_BITS_RESTART_AN;
1726
f1430d69 1727 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
f523d211 1728
75ce1532 1729release:
94d8186a 1730 hw->phy.ops.release(hw);
f523d211
BA
1731
1732 return ret_val;
1733}
1734
1735
fddaa1af
BA
1736/**
1737 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1738 * @hw: pointer to the HW structure
1739 **/
1740static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1741{
1742 s32 ret_val;
1743 u16 data;
1744
1745 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1746 if (ret_val)
1747 return ret_val;
1748
1749 data |= HV_KMRN_MDIO_SLOW;
1750
1751 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1752
1753 return ret_val;
1754}
1755
a4f58f54
BA
1756/**
1757 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1758 * done after every PHY reset.
1759 **/
1760static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1761{
1762 s32 ret_val = 0;
baf86c9d 1763 u16 phy_data;
a4f58f54
BA
1764
1765 if (hw->mac.type != e1000_pchlan)
5015e53a 1766 return 0;
a4f58f54 1767
fddaa1af
BA
1768 /* Set MDIO slow mode before any other MDIO access */
1769 if (hw->phy.type == e1000_phy_82577) {
1770 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1771 if (ret_val)
5015e53a 1772 return ret_val;
fddaa1af
BA
1773 }
1774
a4f58f54
BA
1775 if (((hw->phy.type == e1000_phy_82577) &&
1776 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1777 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1778 /* Disable generation of early preamble */
1779 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1780 if (ret_val)
1781 return ret_val;
1782
1783 /* Preamble tuning for SSC */
1d2101a7 1784 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
a4f58f54
BA
1785 if (ret_val)
1786 return ret_val;
1787 }
1788
1789 if (hw->phy.type == e1000_phy_82578) {
e921eb1a 1790 /* Return registers to default by doing a soft reset then
a4f58f54
BA
1791 * writing 0x3140 to the control register.
1792 */
1793 if (hw->phy.revision < 2) {
1794 e1000e_phy_sw_reset(hw);
1795 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1796 }
1797 }
1798
1799 /* Select page 0 */
94d8186a 1800 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1801 if (ret_val)
1802 return ret_val;
1d5846b9 1803
a4f58f54 1804 hw->phy.addr = 1;
1d5846b9 1805 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1806 hw->phy.ops.release(hw);
1d5846b9 1807 if (ret_val)
5015e53a 1808 return ret_val;
a4f58f54 1809
e921eb1a 1810 /* Configure the K1 Si workaround during phy reset assuming there is
1d5846b9
BA
1811 * link so that it disables K1 if link is in 1Gbps.
1812 */
1813 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d 1814 if (ret_val)
5015e53a 1815 return ret_val;
1d5846b9 1816
baf86c9d
BA
1817 /* Workaround for link disconnects on a busy hub in half duplex */
1818 ret_val = hw->phy.ops.acquire(hw);
1819 if (ret_val)
5015e53a 1820 return ret_val;
f1430d69 1821 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
baf86c9d
BA
1822 if (ret_val)
1823 goto release;
f1430d69 1824 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
651fb102
BA
1825 if (ret_val)
1826 goto release;
1827
1828 /* set MSE higher to enable link to stay up when noise is high */
1829 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
baf86c9d
BA
1830release:
1831 hw->phy.ops.release(hw);
5015e53a 1832
a4f58f54
BA
1833 return ret_val;
1834}
1835
d3738bb8
BA
1836/**
1837 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1838 * @hw: pointer to the HW structure
1839 **/
1840void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1841{
1842 u32 mac_reg;
2b6b168d
BA
1843 u16 i, phy_reg = 0;
1844 s32 ret_val;
1845
1846 ret_val = hw->phy.ops.acquire(hw);
1847 if (ret_val)
1848 return;
1849 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1850 if (ret_val)
1851 goto release;
d3738bb8
BA
1852
1853 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1854 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1855 mac_reg = er32(RAL(i));
2b6b168d
BA
1856 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1857 (u16)(mac_reg & 0xFFFF));
1858 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1859 (u16)((mac_reg >> 16) & 0xFFFF));
1860
d3738bb8 1861 mac_reg = er32(RAH(i));
2b6b168d
BA
1862 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1863 (u16)(mac_reg & 0xFFFF));
1864 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1865 (u16)((mac_reg & E1000_RAH_AV)
1866 >> 16));
d3738bb8 1867 }
2b6b168d
BA
1868
1869 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1870
1871release:
1872 hw->phy.ops.release(hw);
d3738bb8
BA
1873}
1874
d3738bb8
BA
1875/**
1876 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1877 * with 82579 PHY
1878 * @hw: pointer to the HW structure
1879 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1880 **/
1881s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1882{
1883 s32 ret_val = 0;
1884 u16 phy_reg, data;
1885 u32 mac_reg;
1886 u16 i;
1887
2fbe4526 1888 if (hw->mac.type < e1000_pch2lan)
5015e53a 1889 return 0;
d3738bb8
BA
1890
1891 /* disable Rx path while enabling/disabling workaround */
1892 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1893 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1894 if (ret_val)
5015e53a 1895 return ret_val;
d3738bb8
BA
1896
1897 if (enable) {
e921eb1a 1898 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
d3738bb8
BA
1899 * SHRAL/H) and initial CRC values to the MAC
1900 */
1901 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1902 u8 mac_addr[ETH_ALEN] = {0};
1903 u32 addr_high, addr_low;
1904
1905 addr_high = er32(RAH(i));
1906 if (!(addr_high & E1000_RAH_AV))
1907 continue;
1908 addr_low = er32(RAL(i));
1909 mac_addr[0] = (addr_low & 0xFF);
1910 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1911 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1912 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1913 mac_addr[4] = (addr_high & 0xFF);
1914 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1915
fe46f58f 1916 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
d3738bb8
BA
1917 }
1918
1919 /* Write Rx addresses to the PHY */
1920 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1921
1922 /* Enable jumbo frame workaround in the MAC */
1923 mac_reg = er32(FFLT_DBG);
1924 mac_reg &= ~(1 << 14);
1925 mac_reg |= (7 << 15);
1926 ew32(FFLT_DBG, mac_reg);
1927
1928 mac_reg = er32(RCTL);
1929 mac_reg |= E1000_RCTL_SECRC;
1930 ew32(RCTL, mac_reg);
1931
1932 ret_val = e1000e_read_kmrn_reg(hw,
1933 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1934 &data);
1935 if (ret_val)
5015e53a 1936 return ret_val;
d3738bb8
BA
1937 ret_val = e1000e_write_kmrn_reg(hw,
1938 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1939 data | (1 << 0));
1940 if (ret_val)
5015e53a 1941 return ret_val;
d3738bb8
BA
1942 ret_val = e1000e_read_kmrn_reg(hw,
1943 E1000_KMRNCTRLSTA_HD_CTRL,
1944 &data);
1945 if (ret_val)
5015e53a 1946 return ret_val;
d3738bb8
BA
1947 data &= ~(0xF << 8);
1948 data |= (0xB << 8);
1949 ret_val = e1000e_write_kmrn_reg(hw,
1950 E1000_KMRNCTRLSTA_HD_CTRL,
1951 data);
1952 if (ret_val)
5015e53a 1953 return ret_val;
d3738bb8
BA
1954
1955 /* Enable jumbo frame workaround in the PHY */
d3738bb8
BA
1956 e1e_rphy(hw, PHY_REG(769, 23), &data);
1957 data &= ~(0x7F << 5);
1958 data |= (0x37 << 5);
1959 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1960 if (ret_val)
5015e53a 1961 return ret_val;
d3738bb8
BA
1962 e1e_rphy(hw, PHY_REG(769, 16), &data);
1963 data &= ~(1 << 13);
d3738bb8
BA
1964 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1965 if (ret_val)
5015e53a 1966 return ret_val;
d3738bb8
BA
1967 e1e_rphy(hw, PHY_REG(776, 20), &data);
1968 data &= ~(0x3FF << 2);
1969 data |= (0x1A << 2);
1970 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1971 if (ret_val)
5015e53a 1972 return ret_val;
b64e9dd5 1973 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
d3738bb8 1974 if (ret_val)
5015e53a 1975 return ret_val;
d3738bb8
BA
1976 e1e_rphy(hw, HV_PM_CTRL, &data);
1977 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1978 if (ret_val)
5015e53a 1979 return ret_val;
d3738bb8
BA
1980 } else {
1981 /* Write MAC register values back to h/w defaults */
1982 mac_reg = er32(FFLT_DBG);
1983 mac_reg &= ~(0xF << 14);
1984 ew32(FFLT_DBG, mac_reg);
1985
1986 mac_reg = er32(RCTL);
1987 mac_reg &= ~E1000_RCTL_SECRC;
a1ce6473 1988 ew32(RCTL, mac_reg);
d3738bb8
BA
1989
1990 ret_val = e1000e_read_kmrn_reg(hw,
1991 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1992 &data);
1993 if (ret_val)
5015e53a 1994 return ret_val;
d3738bb8
BA
1995 ret_val = e1000e_write_kmrn_reg(hw,
1996 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1997 data & ~(1 << 0));
1998 if (ret_val)
5015e53a 1999 return ret_val;
d3738bb8
BA
2000 ret_val = e1000e_read_kmrn_reg(hw,
2001 E1000_KMRNCTRLSTA_HD_CTRL,
2002 &data);
2003 if (ret_val)
5015e53a 2004 return ret_val;
d3738bb8
BA
2005 data &= ~(0xF << 8);
2006 data |= (0xB << 8);
2007 ret_val = e1000e_write_kmrn_reg(hw,
2008 E1000_KMRNCTRLSTA_HD_CTRL,
2009 data);
2010 if (ret_val)
5015e53a 2011 return ret_val;
d3738bb8
BA
2012
2013 /* Write PHY register values back to h/w defaults */
d3738bb8
BA
2014 e1e_rphy(hw, PHY_REG(769, 23), &data);
2015 data &= ~(0x7F << 5);
2016 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2017 if (ret_val)
5015e53a 2018 return ret_val;
d3738bb8 2019 e1e_rphy(hw, PHY_REG(769, 16), &data);
d3738bb8
BA
2020 data |= (1 << 13);
2021 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2022 if (ret_val)
5015e53a 2023 return ret_val;
d3738bb8
BA
2024 e1e_rphy(hw, PHY_REG(776, 20), &data);
2025 data &= ~(0x3FF << 2);
2026 data |= (0x8 << 2);
2027 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2028 if (ret_val)
5015e53a 2029 return ret_val;
d3738bb8
BA
2030 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2031 if (ret_val)
5015e53a 2032 return ret_val;
d3738bb8
BA
2033 e1e_rphy(hw, HV_PM_CTRL, &data);
2034 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2035 if (ret_val)
5015e53a 2036 return ret_val;
d3738bb8
BA
2037 }
2038
2039 /* re-enable Rx path after enabling/disabling workaround */
5015e53a 2040 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
d3738bb8
BA
2041}
2042
2043/**
2044 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2045 * done after every PHY reset.
2046 **/
2047static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2048{
2049 s32 ret_val = 0;
2050
2051 if (hw->mac.type != e1000_pch2lan)
5015e53a 2052 return 0;
d3738bb8
BA
2053
2054 /* Set MDIO slow mode before any other MDIO access */
2055 ret_val = e1000_set_mdio_slow_mode_hv(hw);
8e5ab42d
BA
2056 if (ret_val)
2057 return ret_val;
d3738bb8 2058
4d24136c
BA
2059 ret_val = hw->phy.ops.acquire(hw);
2060 if (ret_val)
5015e53a 2061 return ret_val;
4d24136c 2062 /* set MSE higher to enable link to stay up when noise is high */
4ddc48a9 2063 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
4d24136c
BA
2064 if (ret_val)
2065 goto release;
2066 /* drop link after 5 times MSE threshold was reached */
4ddc48a9 2067 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
4d24136c
BA
2068release:
2069 hw->phy.ops.release(hw);
2070
d3738bb8
BA
2071 return ret_val;
2072}
2073
831bd2e6
BA
2074/**
2075 * e1000_k1_gig_workaround_lv - K1 Si workaround
2076 * @hw: pointer to the HW structure
2077 *
2078 * Workaround to set the K1 beacon duration for 82579 parts
2079 **/
2080static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2081{
2082 s32 ret_val = 0;
2083 u16 status_reg = 0;
2084 u32 mac_reg;
0ed013e2 2085 u16 phy_reg;
831bd2e6
BA
2086
2087 if (hw->mac.type != e1000_pch2lan)
5015e53a 2088 return 0;
831bd2e6
BA
2089
2090 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2091 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2092 if (ret_val)
5015e53a 2093 return ret_val;
831bd2e6
BA
2094
2095 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2096 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2097 mac_reg = er32(FEXTNVM4);
2098 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2099
0ed013e2
BA
2100 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2101 if (ret_val)
5015e53a 2102 return ret_val;
0ed013e2
BA
2103
2104 if (status_reg & HV_M_STATUS_SPEED_1000) {
36ceeb43
BA
2105 u16 pm_phy_reg;
2106
831bd2e6 2107 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
0ed013e2 2108 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
36ceeb43
BA
2109 /* LV 1G Packet drop issue wa */
2110 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2111 if (ret_val)
2112 return ret_val;
2113 pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2114 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2115 if (ret_val)
2116 return ret_val;
0ed013e2 2117 } else {
831bd2e6 2118 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
0ed013e2
BA
2119 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2120 }
831bd2e6 2121 ew32(FEXTNVM4, mac_reg);
0ed013e2 2122 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
831bd2e6
BA
2123 }
2124
831bd2e6
BA
2125 return ret_val;
2126}
2127
605c82ba
BA
2128/**
2129 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2130 * @hw: pointer to the HW structure
2131 * @gate: boolean set to true to gate, false to ungate
2132 *
2133 * Gate/ungate the automatic PHY configuration via hardware; perform
2134 * the configuration via software instead.
2135 **/
2136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2137{
2138 u32 extcnf_ctrl;
2139
2fbe4526 2140 if (hw->mac.type < e1000_pch2lan)
605c82ba
BA
2141 return;
2142
2143 extcnf_ctrl = er32(EXTCNF_CTRL);
2144
2145 if (gate)
2146 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2147 else
2148 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2149
2150 ew32(EXTCNF_CTRL, extcnf_ctrl);
605c82ba
BA
2151}
2152
fc0c7760
BA
2153/**
2154 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2155 * @hw: pointer to the HW structure
2156 *
2157 * Check the appropriate indication the MAC has finished configuring the
2158 * PHY after a software reset.
2159 **/
2160static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2161{
2162 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2163
2164 /* Wait for basic configuration completes before proceeding */
2165 do {
2166 data = er32(STATUS);
2167 data &= E1000_STATUS_LAN_INIT_DONE;
2168 udelay(100);
2169 } while ((!data) && --loop);
2170
e921eb1a 2171 /* If basic configuration is incomplete before the above loop
fc0c7760
BA
2172 * count reaches 0, loading the configuration from NVM will
2173 * leave the PHY in a bad state possibly resulting in no link.
2174 */
2175 if (loop == 0)
3bb99fe2 2176 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
2177
2178 /* Clear the Init Done bit for the next init event */
2179 data = er32(STATUS);
2180 data &= ~E1000_STATUS_LAN_INIT_DONE;
2181 ew32(STATUS, data);
2182}
2183
bc7f75fa 2184/**
e98cac44 2185 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
bc7f75fa 2186 * @hw: pointer to the HW structure
bc7f75fa 2187 **/
e98cac44 2188static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
bc7f75fa 2189{
f523d211
BA
2190 s32 ret_val = 0;
2191 u16 reg;
bc7f75fa 2192
44abd5c1 2193 if (hw->phy.ops.check_reset_block(hw))
5015e53a 2194 return 0;
fc0c7760 2195
5f3eed6f 2196 /* Allow time for h/w to get to quiescent state after reset */
1bba4386 2197 usleep_range(10000, 20000);
5f3eed6f 2198
fddaa1af 2199 /* Perform any necessary post-reset workarounds */
e98cac44
BA
2200 switch (hw->mac.type) {
2201 case e1000_pchlan:
a4f58f54
BA
2202 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2203 if (ret_val)
5015e53a 2204 return ret_val;
e98cac44 2205 break;
d3738bb8
BA
2206 case e1000_pch2lan:
2207 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2208 if (ret_val)
5015e53a 2209 return ret_val;
d3738bb8 2210 break;
e98cac44
BA
2211 default:
2212 break;
a4f58f54
BA
2213 }
2214
3ebfc7c9
BA
2215 /* Clear the host wakeup bit after lcd reset */
2216 if (hw->mac.type >= e1000_pchlan) {
2217 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2218 reg &= ~BM_WUC_HOST_WU_BIT;
2219 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2220 }
db2932ec 2221
f523d211
BA
2222 /* Configure the LCD with the extended configuration region in NVM */
2223 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2224 if (ret_val)
5015e53a 2225 return ret_val;
bc7f75fa 2226
f523d211 2227 /* Configure the LCD with the OEM bits in NVM */
e98cac44 2228 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 2229
1effb45c
BA
2230 if (hw->mac.type == e1000_pch2lan) {
2231 /* Ungate automatic PHY configuration on non-managed 82579 */
2232 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1bba4386 2233 usleep_range(10000, 20000);
1effb45c
BA
2234 e1000_gate_hw_phy_config_ich8lan(hw, false);
2235 }
2236
2237 /* Set EEE LPI Update Timer to 200usec */
2238 ret_val = hw->phy.ops.acquire(hw);
2239 if (ret_val)
5015e53a 2240 return ret_val;
4ddc48a9
BA
2241 ret_val = e1000_write_emi_reg_locked(hw,
2242 I82579_LPI_UPDATE_TIMER,
2243 0x1387);
1effb45c 2244 hw->phy.ops.release(hw);
605c82ba
BA
2245 }
2246
e98cac44
BA
2247 return ret_val;
2248}
2249
2250/**
2251 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2252 * @hw: pointer to the HW structure
2253 *
2254 * Resets the PHY
2255 * This is a function pointer entry point called by drivers
2256 * or other shared routines.
2257 **/
2258static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2259{
2260 s32 ret_val = 0;
2261
605c82ba
BA
2262 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2263 if ((hw->mac.type == e1000_pch2lan) &&
2264 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2265 e1000_gate_hw_phy_config_ich8lan(hw, true);
2266
e98cac44
BA
2267 ret_val = e1000e_phy_hw_reset_generic(hw);
2268 if (ret_val)
5015e53a 2269 return ret_val;
e98cac44 2270
5015e53a 2271 return e1000_post_phy_reset_ich8lan(hw);
bc7f75fa
AK
2272}
2273
fa2ce13c
BA
2274/**
2275 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2276 * @hw: pointer to the HW structure
2277 * @active: true to enable LPLU, false to disable
2278 *
2279 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2280 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2281 * the phy speed. This function will manually set the LPLU bit and restart
2282 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2283 * since it configures the same bit.
2284 **/
2285static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2286{
70806a7f 2287 s32 ret_val;
fa2ce13c
BA
2288 u16 oem_reg;
2289
2290 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2291 if (ret_val)
5015e53a 2292 return ret_val;
fa2ce13c
BA
2293
2294 if (active)
2295 oem_reg |= HV_OEM_BITS_LPLU;
2296 else
2297 oem_reg &= ~HV_OEM_BITS_LPLU;
2298
44abd5c1 2299 if (!hw->phy.ops.check_reset_block(hw))
464c85e3
BA
2300 oem_reg |= HV_OEM_BITS_RESTART_AN;
2301
5015e53a 2302 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
fa2ce13c
BA
2303}
2304
bc7f75fa
AK
2305/**
2306 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2307 * @hw: pointer to the HW structure
564ea9bb 2308 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
2309 *
2310 * Sets the LPLU D0 state according to the active flag. When
2311 * activating LPLU this function also disables smart speed
2312 * and vice versa. LPLU will not be activated unless the
2313 * device autonegotiation advertisement meets standards of
2314 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2315 * This is a function pointer entry point only called by
2316 * PHY setup routines.
2317 **/
2318static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2319{
2320 struct e1000_phy_info *phy = &hw->phy;
2321 u32 phy_ctrl;
2322 s32 ret_val = 0;
2323 u16 data;
2324
97ac8cae 2325 if (phy->type == e1000_phy_ife)
82607255 2326 return 0;
bc7f75fa
AK
2327
2328 phy_ctrl = er32(PHY_CTRL);
2329
2330 if (active) {
2331 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2332 ew32(PHY_CTRL, phy_ctrl);
2333
60f1292f
BA
2334 if (phy->type != e1000_phy_igp_3)
2335 return 0;
2336
e921eb1a 2337 /* Call gig speed drop workaround on LPLU before accessing
ad68076e
BA
2338 * any PHY registers
2339 */
60f1292f 2340 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2341 e1000e_gig_downshift_workaround_ich8lan(hw);
2342
2343 /* When LPLU is enabled, we should disable SmartSpeed */
2344 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
7dbbe5d5
BA
2345 if (ret_val)
2346 return ret_val;
bc7f75fa
AK
2347 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2348 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2349 if (ret_val)
2350 return ret_val;
2351 } else {
2352 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2353 ew32(PHY_CTRL, phy_ctrl);
2354
60f1292f
BA
2355 if (phy->type != e1000_phy_igp_3)
2356 return 0;
2357
e921eb1a 2358 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2359 * during Dx states where the power conservation is most
2360 * important. During driver activity we should enable
ad68076e
BA
2361 * SmartSpeed, so performance is maintained.
2362 */
bc7f75fa
AK
2363 if (phy->smart_speed == e1000_smart_speed_on) {
2364 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2365 &data);
bc7f75fa
AK
2366 if (ret_val)
2367 return ret_val;
2368
2369 data |= IGP01E1000_PSCFR_SMART_SPEED;
2370 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2371 data);
bc7f75fa
AK
2372 if (ret_val)
2373 return ret_val;
2374 } else if (phy->smart_speed == e1000_smart_speed_off) {
2375 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2376 &data);
bc7f75fa
AK
2377 if (ret_val)
2378 return ret_val;
2379
2380 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2381 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2382 data);
bc7f75fa
AK
2383 if (ret_val)
2384 return ret_val;
2385 }
2386 }
2387
2388 return 0;
2389}
2390
2391/**
2392 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2393 * @hw: pointer to the HW structure
564ea9bb 2394 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
2395 *
2396 * Sets the LPLU D3 state according to the active flag. When
2397 * activating LPLU this function also disables smart speed
2398 * and vice versa. LPLU will not be activated unless the
2399 * device autonegotiation advertisement meets standards of
2400 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2401 * This is a function pointer entry point only called by
2402 * PHY setup routines.
2403 **/
2404static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2405{
2406 struct e1000_phy_info *phy = &hw->phy;
2407 u32 phy_ctrl;
d7eb3384 2408 s32 ret_val = 0;
bc7f75fa
AK
2409 u16 data;
2410
2411 phy_ctrl = er32(PHY_CTRL);
2412
2413 if (!active) {
2414 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2415 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
2416
2417 if (phy->type != e1000_phy_igp_3)
2418 return 0;
2419
e921eb1a 2420 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2421 * during Dx states where the power conservation is most
2422 * important. During driver activity we should enable
ad68076e
BA
2423 * SmartSpeed, so performance is maintained.
2424 */
bc7f75fa 2425 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
2426 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2427 &data);
bc7f75fa
AK
2428 if (ret_val)
2429 return ret_val;
2430
2431 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2432 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2433 data);
bc7f75fa
AK
2434 if (ret_val)
2435 return ret_val;
2436 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
2437 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2438 &data);
bc7f75fa
AK
2439 if (ret_val)
2440 return ret_val;
2441
2442 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2443 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2444 data);
bc7f75fa
AK
2445 if (ret_val)
2446 return ret_val;
2447 }
2448 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2449 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2450 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2451 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2452 ew32(PHY_CTRL, phy_ctrl);
2453
60f1292f
BA
2454 if (phy->type != e1000_phy_igp_3)
2455 return 0;
2456
e921eb1a 2457 /* Call gig speed drop workaround on LPLU before accessing
ad68076e
BA
2458 * any PHY registers
2459 */
60f1292f 2460 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2461 e1000e_gig_downshift_workaround_ich8lan(hw);
2462
2463 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 2464 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
2465 if (ret_val)
2466 return ret_val;
2467
2468 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 2469 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
2470 }
2471
d7eb3384 2472 return ret_val;
bc7f75fa
AK
2473}
2474
f4187b56
BA
2475/**
2476 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2477 * @hw: pointer to the HW structure
2478 * @bank: pointer to the variable that returns the active bank
2479 *
2480 * Reads signature byte from the NVM using the flash access registers.
e243455d 2481 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
2482 **/
2483static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2484{
e243455d 2485 u32 eecd;
f4187b56 2486 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
2487 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2488 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d 2489 u8 sig_byte = 0;
f71dde6a 2490 s32 ret_val;
f4187b56 2491
e243455d
BA
2492 switch (hw->mac.type) {
2493 case e1000_ich8lan:
2494 case e1000_ich9lan:
2495 eecd = er32(EECD);
2496 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2497 E1000_EECD_SEC1VAL_VALID_MASK) {
2498 if (eecd & E1000_EECD_SEC1VAL)
2499 *bank = 1;
2500 else
2501 *bank = 0;
2502
2503 return 0;
2504 }
434f1392 2505 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
e243455d
BA
2506 /* fall-thru */
2507 default:
2508 /* set bank to 0 in case flash read fails */
2509 *bank = 0;
2510
2511 /* Check bank 0 */
2512 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2513 &sig_byte);
2514 if (ret_val)
2515 return ret_val;
2516 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2517 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 2518 *bank = 0;
e243455d
BA
2519 return 0;
2520 }
f4187b56 2521
e243455d
BA
2522 /* Check bank 1 */
2523 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2524 bank1_offset,
2525 &sig_byte);
2526 if (ret_val)
2527 return ret_val;
2528 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2529 E1000_ICH_NVM_SIG_VALUE) {
2530 *bank = 1;
2531 return 0;
f4187b56 2532 }
e243455d 2533
3bb99fe2 2534 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 2535 return -E1000_ERR_NVM;
f4187b56 2536 }
f4187b56
BA
2537}
2538
bc7f75fa
AK
2539/**
2540 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2541 * @hw: pointer to the HW structure
2542 * @offset: The offset (in bytes) of the word(s) to read.
2543 * @words: Size of data to read in words
2544 * @data: Pointer to the word(s) to read at offset.
2545 *
2546 * Reads a word(s) from the NVM using the flash access registers.
2547 **/
2548static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2549 u16 *data)
2550{
2551 struct e1000_nvm_info *nvm = &hw->nvm;
2552 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2553 u32 act_offset;
148675a7 2554 s32 ret_val = 0;
f4187b56 2555 u32 bank = 0;
bc7f75fa
AK
2556 u16 i, word;
2557
2558 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2559 (words == 0)) {
3bb99fe2 2560 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
2561 ret_val = -E1000_ERR_NVM;
2562 goto out;
bc7f75fa
AK
2563 }
2564
94d8186a 2565 nvm->ops.acquire(hw);
bc7f75fa 2566
f4187b56 2567 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 2568 if (ret_val) {
3bb99fe2 2569 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
2570 bank = 0;
2571 }
f4187b56
BA
2572
2573 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
2574 act_offset += offset;
2575
148675a7 2576 ret_val = 0;
bc7f75fa 2577 for (i = 0; i < words; i++) {
b9e06f70 2578 if (dev_spec->shadow_ram[offset+i].modified) {
bc7f75fa
AK
2579 data[i] = dev_spec->shadow_ram[offset+i].value;
2580 } else {
2581 ret_val = e1000_read_flash_word_ich8lan(hw,
2582 act_offset + i,
2583 &word);
2584 if (ret_val)
2585 break;
2586 data[i] = word;
2587 }
2588 }
2589
94d8186a 2590 nvm->ops.release(hw);
bc7f75fa 2591
e243455d
BA
2592out:
2593 if (ret_val)
3bb99fe2 2594 e_dbg("NVM read error: %d\n", ret_val);
e243455d 2595
bc7f75fa
AK
2596 return ret_val;
2597}
2598
2599/**
2600 * e1000_flash_cycle_init_ich8lan - Initialize flash
2601 * @hw: pointer to the HW structure
2602 *
2603 * This function does initial flash setup so that a new read/write/erase cycle
2604 * can be started.
2605 **/
2606static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2607{
2608 union ich8_hws_flash_status hsfsts;
2609 s32 ret_val = -E1000_ERR_NVM;
bc7f75fa
AK
2610
2611 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2612
2613 /* Check if the flash descriptor is valid */
04499ec4 2614 if (!hsfsts.hsf_status.fldesvalid) {
434f1392 2615 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
bc7f75fa
AK
2616 return -E1000_ERR_NVM;
2617 }
2618
2619 /* Clear FCERR and DAEL in hw status by writing 1 */
2620 hsfsts.hsf_status.flcerr = 1;
2621 hsfsts.hsf_status.dael = 1;
2622
2623 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2624
e921eb1a 2625 /* Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
2626 * bit to check against, in order to start a new cycle or
2627 * FDONE bit should be changed in the hardware so that it
489815ce 2628 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
2629 * indication whether a cycle is in progress or has been
2630 * completed.
2631 */
2632
04499ec4 2633 if (!hsfsts.hsf_status.flcinprog) {
e921eb1a 2634 /* There is no cycle running at present,
5ff5b664 2635 * so we can start a cycle.
ad68076e
BA
2636 * Begin by setting Flash Cycle Done.
2637 */
bc7f75fa
AK
2638 hsfsts.hsf_status.flcdone = 1;
2639 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2640 ret_val = 0;
2641 } else {
f71dde6a 2642 s32 i;
90da0669 2643
e921eb1a 2644 /* Otherwise poll for sometime so the current
ad68076e
BA
2645 * cycle has a chance to end before giving up.
2646 */
bc7f75fa 2647 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
c8243ee0 2648 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2649 if (!hsfsts.hsf_status.flcinprog) {
bc7f75fa
AK
2650 ret_val = 0;
2651 break;
2652 }
2653 udelay(1);
2654 }
9e2d7657 2655 if (!ret_val) {
e921eb1a 2656 /* Successful in waiting for previous cycle to timeout,
ad68076e
BA
2657 * now set the Flash Cycle Done.
2658 */
bc7f75fa
AK
2659 hsfsts.hsf_status.flcdone = 1;
2660 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2661 } else {
2c73e1fe 2662 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
2663 }
2664 }
2665
2666 return ret_val;
2667}
2668
2669/**
2670 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2671 * @hw: pointer to the HW structure
2672 * @timeout: maximum time to wait for completion
2673 *
2674 * This function starts a flash cycle and waits for its completion.
2675 **/
2676static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2677{
2678 union ich8_hws_flash_ctrl hsflctl;
2679 union ich8_hws_flash_status hsfsts;
bc7f75fa
AK
2680 u32 i = 0;
2681
2682 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2683 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2684 hsflctl.hsf_ctrl.flcgo = 1;
2685 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2686
2687 /* wait till FDONE bit is set to 1 */
2688 do {
2689 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2690 if (hsfsts.hsf_status.flcdone)
bc7f75fa
AK
2691 break;
2692 udelay(1);
2693 } while (i++ < timeout);
2694
04499ec4 2695 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
bc7f75fa
AK
2696 return 0;
2697
55920b5e 2698 return -E1000_ERR_NVM;
bc7f75fa
AK
2699}
2700
2701/**
2702 * e1000_read_flash_word_ich8lan - Read word from flash
2703 * @hw: pointer to the HW structure
2704 * @offset: offset to data location
2705 * @data: pointer to the location for storing the data
2706 *
2707 * Reads the flash word at offset into data. Offset is converted
2708 * to bytes before read.
2709 **/
2710static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2711 u16 *data)
2712{
2713 /* Must convert offset into bytes. */
2714 offset <<= 1;
2715
2716 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2717}
2718
f4187b56
BA
2719/**
2720 * e1000_read_flash_byte_ich8lan - Read byte from flash
2721 * @hw: pointer to the HW structure
2722 * @offset: The offset of the byte to read.
2723 * @data: Pointer to a byte to store the value read.
2724 *
2725 * Reads a single byte from the NVM using the flash access registers.
2726 **/
2727static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2728 u8 *data)
2729{
2730 s32 ret_val;
2731 u16 word = 0;
2732
2733 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2734 if (ret_val)
2735 return ret_val;
2736
2737 *data = (u8)word;
2738
2739 return 0;
2740}
2741
bc7f75fa
AK
2742/**
2743 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2744 * @hw: pointer to the HW structure
2745 * @offset: The offset (in bytes) of the byte or word to read.
2746 * @size: Size of data to read, 1=byte 2=word
2747 * @data: Pointer to the word to store the value read.
2748 *
2749 * Reads a byte or word from the NVM using the flash access registers.
2750 **/
2751static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2752 u8 size, u16 *data)
2753{
2754 union ich8_hws_flash_status hsfsts;
2755 union ich8_hws_flash_ctrl hsflctl;
2756 u32 flash_linear_addr;
2757 u32 flash_data = 0;
2758 s32 ret_val = -E1000_ERR_NVM;
2759 u8 count = 0;
2760
2761 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2762 return -E1000_ERR_NVM;
2763
2764 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2765 hw->nvm.flash_base_addr;
2766
2767 do {
2768 udelay(1);
2769 /* Steps */
2770 ret_val = e1000_flash_cycle_init_ich8lan(hw);
9e2d7657 2771 if (ret_val)
bc7f75fa
AK
2772 break;
2773
2774 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2775 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2776 hsflctl.hsf_ctrl.fldbcount = size - 1;
2777 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2778 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2779
2780 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2781
2782 ret_val = e1000_flash_cycle_ich8lan(hw,
2783 ICH_FLASH_READ_COMMAND_TIMEOUT);
2784
e921eb1a 2785 /* Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
2786 * and try the whole sequence a few more times, else
2787 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
2788 * least significant byte first msb to lsb
2789 */
9e2d7657 2790 if (!ret_val) {
bc7f75fa 2791 flash_data = er32flash(ICH_FLASH_FDATA0);
b1cdfead 2792 if (size == 1)
bc7f75fa 2793 *data = (u8)(flash_data & 0x000000FF);
b1cdfead 2794 else if (size == 2)
bc7f75fa 2795 *data = (u16)(flash_data & 0x0000FFFF);
bc7f75fa
AK
2796 break;
2797 } else {
e921eb1a 2798 /* If we've gotten here, then things are probably
bc7f75fa
AK
2799 * completely hosed, but if the error condition is
2800 * detected, it won't hurt to give it another try...
2801 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2802 */
2803 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2804 if (hsfsts.hsf_status.flcerr) {
bc7f75fa
AK
2805 /* Repeat for some time before giving up. */
2806 continue;
04499ec4 2807 } else if (!hsfsts.hsf_status.flcdone) {
434f1392 2808 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
2809 break;
2810 }
2811 }
2812 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2813
2814 return ret_val;
2815}
2816
2817/**
2818 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2819 * @hw: pointer to the HW structure
2820 * @offset: The offset (in bytes) of the word(s) to write.
2821 * @words: Size of data to write in words
2822 * @data: Pointer to the word(s) to write at offset.
2823 *
2824 * Writes a byte or word to the NVM using the flash access registers.
2825 **/
2826static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2827 u16 *data)
2828{
2829 struct e1000_nvm_info *nvm = &hw->nvm;
2830 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
2831 u16 i;
2832
2833 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2834 (words == 0)) {
3bb99fe2 2835 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2836 return -E1000_ERR_NVM;
2837 }
2838
94d8186a 2839 nvm->ops.acquire(hw);
ca15df58 2840
bc7f75fa 2841 for (i = 0; i < words; i++) {
564ea9bb 2842 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
2843 dev_spec->shadow_ram[offset+i].value = data[i];
2844 }
2845
94d8186a 2846 nvm->ops.release(hw);
ca15df58 2847
bc7f75fa
AK
2848 return 0;
2849}
2850
2851/**
2852 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2853 * @hw: pointer to the HW structure
2854 *
2855 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2856 * which writes the checksum to the shadow ram. The changes in the shadow
2857 * ram are then committed to the EEPROM by processing each bank at a time
2858 * checking for the modified bit and writing only the pending changes.
489815ce 2859 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
2860 * future writes.
2861 **/
2862static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2863{
2864 struct e1000_nvm_info *nvm = &hw->nvm;
2865 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 2866 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
2867 s32 ret_val;
2868 u16 data;
2869
2870 ret_val = e1000e_update_nvm_checksum_generic(hw);
2871 if (ret_val)
e243455d 2872 goto out;
bc7f75fa
AK
2873
2874 if (nvm->type != e1000_nvm_flash_sw)
e243455d 2875 goto out;
bc7f75fa 2876
94d8186a 2877 nvm->ops.acquire(hw);
bc7f75fa 2878
e921eb1a 2879 /* We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 2880 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
2881 * is going to be written
2882 */
f4187b56 2883 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2884 if (ret_val) {
3bb99fe2 2885 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2886 bank = 0;
e243455d 2887 }
f4187b56
BA
2888
2889 if (bank == 0) {
bc7f75fa
AK
2890 new_bank_offset = nvm->flash_bank_size;
2891 old_bank_offset = 0;
e243455d 2892 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
2893 if (ret_val)
2894 goto release;
bc7f75fa
AK
2895 } else {
2896 old_bank_offset = nvm->flash_bank_size;
2897 new_bank_offset = 0;
e243455d 2898 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
2899 if (ret_val)
2900 goto release;
bc7f75fa
AK
2901 }
2902
2903 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
e921eb1a 2904 /* Determine whether to write the value stored
bc7f75fa 2905 * in the other NVM bank or a modified value stored
ad68076e
BA
2906 * in the shadow RAM
2907 */
bc7f75fa
AK
2908 if (dev_spec->shadow_ram[i].modified) {
2909 data = dev_spec->shadow_ram[i].value;
2910 } else {
e243455d
BA
2911 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2912 old_bank_offset,
2913 &data);
2914 if (ret_val)
2915 break;
bc7f75fa
AK
2916 }
2917
e921eb1a 2918 /* If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2919 * (15:14) are 11b until the commit has completed.
2920 * This will allow us to write 10b which indicates the
2921 * signature is valid. We want to do this after the write
2922 * has completed so that we don't mark the segment valid
ad68076e
BA
2923 * while the write is still in progress
2924 */
bc7f75fa
AK
2925 if (i == E1000_ICH_NVM_SIG_WORD)
2926 data |= E1000_ICH_NVM_SIG_MASK;
2927
2928 /* Convert offset to bytes. */
2929 act_offset = (i + new_bank_offset) << 1;
2930
2931 udelay(100);
2932 /* Write the bytes to the new bank. */
2933 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2934 act_offset,
2935 (u8)data);
2936 if (ret_val)
2937 break;
2938
2939 udelay(100);
2940 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2941 act_offset + 1,
2942 (u8)(data >> 8));
2943 if (ret_val)
2944 break;
2945 }
2946
e921eb1a 2947 /* Don't bother writing the segment valid bits if sector
ad68076e
BA
2948 * programming failed.
2949 */
bc7f75fa 2950 if (ret_val) {
4a770358 2951 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2952 e_dbg("Flash commit failed.\n");
9c5e209d 2953 goto release;
bc7f75fa
AK
2954 }
2955
e921eb1a 2956 /* Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2957 * to 10b in word 0x13 , this can be done without an
2958 * erase as well since these bits are 11 to start with
ad68076e
BA
2959 * and we need to change bit 14 to 0b
2960 */
bc7f75fa 2961 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2962 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2963 if (ret_val)
2964 goto release;
2965
bc7f75fa
AK
2966 data &= 0xBFFF;
2967 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2968 act_offset * 2 + 1,
2969 (u8)(data >> 8));
9c5e209d
BA
2970 if (ret_val)
2971 goto release;
bc7f75fa 2972
e921eb1a 2973 /* And invalidate the previously valid segment by setting
bc7f75fa
AK
2974 * its signature word (0x13) high_byte to 0b. This can be
2975 * done without an erase because flash erase sets all bits
ad68076e
BA
2976 * to 1's. We can write 1's to 0's without an erase
2977 */
bc7f75fa
AK
2978 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2979 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2980 if (ret_val)
2981 goto release;
bc7f75fa
AK
2982
2983 /* Great! Everything worked, we can now clear the cached entries. */
2984 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2985 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2986 dev_spec->shadow_ram[i].value = 0xFFFF;
2987 }
2988
9c5e209d 2989release:
94d8186a 2990 nvm->ops.release(hw);
bc7f75fa 2991
e921eb1a 2992 /* Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2993 * until after the next adapter reset.
2994 */
9c5e209d 2995 if (!ret_val) {
e85e3639 2996 nvm->ops.reload(hw);
1bba4386 2997 usleep_range(10000, 20000);
9c5e209d 2998 }
bc7f75fa 2999
e243455d
BA
3000out:
3001 if (ret_val)
3bb99fe2 3002 e_dbg("NVM update error: %d\n", ret_val);
e243455d 3003
bc7f75fa
AK
3004 return ret_val;
3005}
3006
3007/**
3008 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3009 * @hw: pointer to the HW structure
3010 *
3011 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3012 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
3013 * calculated, in which case we need to calculate the checksum and set bit 6.
3014 **/
3015static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3016{
3017 s32 ret_val;
3018 u16 data;
1cc7a3a1
BA
3019 u16 word;
3020 u16 valid_csum_mask;
bc7f75fa 3021
1cc7a3a1
BA
3022 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
3023 * the checksum needs to be fixed. This bit is an indication that
3024 * the NVM was prepared by OEM software and did not calculate
3025 * the checksum...a likely scenario.
bc7f75fa 3026 */
1cc7a3a1
BA
3027 switch (hw->mac.type) {
3028 case e1000_pch_lpt:
3029 word = NVM_COMPAT;
3030 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3031 break;
3032 default:
3033 word = NVM_FUTURE_INIT_WORD1;
3034 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3035 break;
3036 }
3037
3038 ret_val = e1000_read_nvm(hw, word, 1, &data);
bc7f75fa
AK
3039 if (ret_val)
3040 return ret_val;
3041
1cc7a3a1
BA
3042 if (!(data & valid_csum_mask)) {
3043 data |= valid_csum_mask;
3044 ret_val = e1000_write_nvm(hw, word, 1, &data);
bc7f75fa
AK
3045 if (ret_val)
3046 return ret_val;
3047 ret_val = e1000e_update_nvm_checksum(hw);
3048 if (ret_val)
3049 return ret_val;
3050 }
3051
3052 return e1000e_validate_nvm_checksum_generic(hw);
3053}
3054
4a770358
BA
3055/**
3056 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3057 * @hw: pointer to the HW structure
3058 *
3059 * To prevent malicious write/erase of the NVM, set it to be read-only
3060 * so that the hardware ignores all write/erase cycles of the NVM via
3061 * the flash control registers. The shadow-ram copy of the NVM will
3062 * still be updated, however any updates to this copy will not stick
3063 * across driver reloads.
3064 **/
3065void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3066{
ca15df58 3067 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
3068 union ich8_flash_protected_range pr0;
3069 union ich8_hws_flash_status hsfsts;
3070 u32 gfpreg;
4a770358 3071
94d8186a 3072 nvm->ops.acquire(hw);
4a770358
BA
3073
3074 gfpreg = er32flash(ICH_FLASH_GFPREG);
3075
3076 /* Write-protect GbE Sector of NVM */
3077 pr0.regval = er32flash(ICH_FLASH_PR0);
3078 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3079 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3080 pr0.range.wpe = true;
3081 ew32flash(ICH_FLASH_PR0, pr0.regval);
3082
e921eb1a 3083 /* Lock down a subset of GbE Flash Control Registers, e.g.
4a770358
BA
3084 * PR0 to prevent the write-protection from being lifted.
3085 * Once FLOCKDN is set, the registers protected by it cannot
3086 * be written until FLOCKDN is cleared by a hardware reset.
3087 */
3088 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3089 hsfsts.hsf_status.flockdn = true;
3090 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3091
94d8186a 3092 nvm->ops.release(hw);
4a770358
BA
3093}
3094
bc7f75fa
AK
3095/**
3096 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3097 * @hw: pointer to the HW structure
3098 * @offset: The offset (in bytes) of the byte/word to read.
3099 * @size: Size of data to read, 1=byte 2=word
3100 * @data: The byte(s) to write to the NVM.
3101 *
3102 * Writes one/two bytes to the NVM using the flash access registers.
3103 **/
3104static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3105 u8 size, u16 data)
3106{
3107 union ich8_hws_flash_status hsfsts;
3108 union ich8_hws_flash_ctrl hsflctl;
3109 u32 flash_linear_addr;
3110 u32 flash_data = 0;
3111 s32 ret_val;
3112 u8 count = 0;
3113
3114 if (size < 1 || size > 2 || data > size * 0xff ||
3115 offset > ICH_FLASH_LINEAR_ADDR_MASK)
3116 return -E1000_ERR_NVM;
3117
3118 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3119 hw->nvm.flash_base_addr;
3120
3121 do {
3122 udelay(1);
3123 /* Steps */
3124 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3125 if (ret_val)
3126 break;
3127
3128 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3129 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3130 hsflctl.hsf_ctrl.fldbcount = size -1;
3131 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3132 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3133
3134 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3135
3136 if (size == 1)
3137 flash_data = (u32)data & 0x00FF;
3138 else
3139 flash_data = (u32)data;
3140
3141 ew32flash(ICH_FLASH_FDATA0, flash_data);
3142
e921eb1a 3143 /* check if FCERR is set to 1 , if set to 1, clear it
ad68076e
BA
3144 * and try the whole sequence a few more times else done
3145 */
bc7f75fa
AK
3146 ret_val = e1000_flash_cycle_ich8lan(hw,
3147 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3148 if (!ret_val)
3149 break;
3150
e921eb1a 3151 /* If we're here, then things are most likely
bc7f75fa
AK
3152 * completely hosed, but if the error condition
3153 * is detected, it won't hurt to give it another
3154 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3155 */
3156 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 3157 if (hsfsts.hsf_status.flcerr)
bc7f75fa
AK
3158 /* Repeat for some time before giving up. */
3159 continue;
04499ec4 3160 if (!hsfsts.hsf_status.flcdone) {
434f1392 3161 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
3162 break;
3163 }
3164 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3165
3166 return ret_val;
3167}
3168
3169/**
3170 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3171 * @hw: pointer to the HW structure
3172 * @offset: The index of the byte to read.
3173 * @data: The byte to write to the NVM.
3174 *
3175 * Writes a single byte to the NVM using the flash access registers.
3176 **/
3177static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3178 u8 data)
3179{
3180 u16 word = (u16)data;
3181
3182 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3183}
3184
3185/**
3186 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3187 * @hw: pointer to the HW structure
3188 * @offset: The offset of the byte to write.
3189 * @byte: The byte to write to the NVM.
3190 *
3191 * Writes a single byte to the NVM using the flash access registers.
3192 * Goes through a retry algorithm before giving up.
3193 **/
3194static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3195 u32 offset, u8 byte)
3196{
3197 s32 ret_val;
3198 u16 program_retries;
3199
3200 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3201 if (!ret_val)
3202 return ret_val;
3203
3204 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 3205 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
3206 udelay(100);
3207 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3208 if (!ret_val)
3209 break;
3210 }
3211 if (program_retries == 100)
3212 return -E1000_ERR_NVM;
3213
3214 return 0;
3215}
3216
3217/**
3218 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3219 * @hw: pointer to the HW structure
3220 * @bank: 0 for first bank, 1 for second bank, etc.
3221 *
3222 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3223 * bank N is 4096 * N + flash_reg_addr.
3224 **/
3225static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3226{
3227 struct e1000_nvm_info *nvm = &hw->nvm;
3228 union ich8_hws_flash_status hsfsts;
3229 union ich8_hws_flash_ctrl hsflctl;
3230 u32 flash_linear_addr;
3231 /* bank size is in 16bit words - adjust to bytes */
3232 u32 flash_bank_size = nvm->flash_bank_size * 2;
3233 s32 ret_val;
3234 s32 count = 0;
a708dd88 3235 s32 j, iteration, sector_size;
bc7f75fa
AK
3236
3237 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3238
e921eb1a 3239 /* Determine HW Sector size: Read BERASE bits of hw flash status
ad68076e
BA
3240 * register
3241 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
3242 * consecutive sectors. The start index for the nth Hw sector
3243 * can be calculated as = bank * 4096 + n * 256
3244 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3245 * The start index for the nth Hw sector can be calculated
3246 * as = bank * 4096
3247 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3248 * (ich9 only, otherwise error condition)
3249 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3250 */
3251 switch (hsfsts.hsf_status.berasesz) {
3252 case 0:
3253 /* Hw sector size 256 */
3254 sector_size = ICH_FLASH_SEG_SIZE_256;
3255 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3256 break;
3257 case 1:
3258 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 3259 iteration = 1;
bc7f75fa
AK
3260 break;
3261 case 2:
148675a7
BA
3262 sector_size = ICH_FLASH_SEG_SIZE_8K;
3263 iteration = 1;
bc7f75fa
AK
3264 break;
3265 case 3:
3266 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 3267 iteration = 1;
bc7f75fa
AK
3268 break;
3269 default:
3270 return -E1000_ERR_NVM;
3271 }
3272
3273 /* Start with the base address, then add the sector offset. */
3274 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 3275 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
3276
3277 for (j = 0; j < iteration ; j++) {
3278 do {
3279 /* Steps */
3280 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3281 if (ret_val)
3282 return ret_val;
3283
e921eb1a 3284 /* Write a value 11 (block Erase) in Flash
ad68076e
BA
3285 * Cycle field in hw flash control
3286 */
bc7f75fa
AK
3287 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3288 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3289 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3290
e921eb1a 3291 /* Write the last 24 bits of an index within the
bc7f75fa
AK
3292 * block into Flash Linear address field in Flash
3293 * Address.
3294 */
3295 flash_linear_addr += (j * sector_size);
3296 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3297
3298 ret_val = e1000_flash_cycle_ich8lan(hw,
3299 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
9e2d7657 3300 if (!ret_val)
bc7f75fa
AK
3301 break;
3302
e921eb1a 3303 /* Check if FCERR is set to 1. If 1,
bc7f75fa 3304 * clear it and try the whole sequence
ad68076e
BA
3305 * a few more times else Done
3306 */
bc7f75fa 3307 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 3308 if (hsfsts.hsf_status.flcerr)
ad68076e 3309 /* repeat for some time before giving up */
bc7f75fa 3310 continue;
04499ec4 3311 else if (!hsfsts.hsf_status.flcdone)
bc7f75fa
AK
3312 return ret_val;
3313 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3314 }
3315
3316 return 0;
3317}
3318
3319/**
3320 * e1000_valid_led_default_ich8lan - Set the default LED settings
3321 * @hw: pointer to the HW structure
3322 * @data: Pointer to the LED settings
3323 *
3324 * Reads the LED default settings from the NVM to data. If the NVM LED
3325 * settings is all 0's or F's, set the LED default to a valid LED default
3326 * setting.
3327 **/
3328static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3329{
3330 s32 ret_val;
3331
3332 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3333 if (ret_val) {
3bb99fe2 3334 e_dbg("NVM Read Error\n");
bc7f75fa
AK
3335 return ret_val;
3336 }
3337
3338 if (*data == ID_LED_RESERVED_0000 ||
3339 *data == ID_LED_RESERVED_FFFF)
3340 *data = ID_LED_DEFAULT_ICH8LAN;
3341
3342 return 0;
3343}
3344
a4f58f54
BA
3345/**
3346 * e1000_id_led_init_pchlan - store LED configurations
3347 * @hw: pointer to the HW structure
3348 *
3349 * PCH does not control LEDs via the LEDCTL register, rather it uses
3350 * the PHY LED configuration register.
3351 *
3352 * PCH also does not have an "always on" or "always off" mode which
3353 * complicates the ID feature. Instead of using the "on" mode to indicate
d1964eb1 3354 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
a4f58f54
BA
3355 * use "link_up" mode. The LEDs will still ID on request if there is no
3356 * link based on logic in e1000_led_[on|off]_pchlan().
3357 **/
3358static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3359{
3360 struct e1000_mac_info *mac = &hw->mac;
3361 s32 ret_val;
3362 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3363 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3364 u16 data, i, temp, shift;
3365
3366 /* Get default ID LED modes */
3367 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3368 if (ret_val)
5015e53a 3369 return ret_val;
a4f58f54
BA
3370
3371 mac->ledctl_default = er32(LEDCTL);
3372 mac->ledctl_mode1 = mac->ledctl_default;
3373 mac->ledctl_mode2 = mac->ledctl_default;
3374
3375 for (i = 0; i < 4; i++) {
3376 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3377 shift = (i * 5);
3378 switch (temp) {
3379 case ID_LED_ON1_DEF2:
3380 case ID_LED_ON1_ON2:
3381 case ID_LED_ON1_OFF2:
3382 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3383 mac->ledctl_mode1 |= (ledctl_on << shift);
3384 break;
3385 case ID_LED_OFF1_DEF2:
3386 case ID_LED_OFF1_ON2:
3387 case ID_LED_OFF1_OFF2:
3388 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3389 mac->ledctl_mode1 |= (ledctl_off << shift);
3390 break;
3391 default:
3392 /* Do nothing */
3393 break;
3394 }
3395 switch (temp) {
3396 case ID_LED_DEF1_ON2:
3397 case ID_LED_ON1_ON2:
3398 case ID_LED_OFF1_ON2:
3399 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3400 mac->ledctl_mode2 |= (ledctl_on << shift);
3401 break;
3402 case ID_LED_DEF1_OFF2:
3403 case ID_LED_ON1_OFF2:
3404 case ID_LED_OFF1_OFF2:
3405 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3406 mac->ledctl_mode2 |= (ledctl_off << shift);
3407 break;
3408 default:
3409 /* Do nothing */
3410 break;
3411 }
3412 }
3413
5015e53a 3414 return 0;
a4f58f54
BA
3415}
3416
bc7f75fa
AK
3417/**
3418 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3419 * @hw: pointer to the HW structure
3420 *
3421 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3422 * register, so the the bus width is hard coded.
3423 **/
3424static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3425{
3426 struct e1000_bus_info *bus = &hw->bus;
3427 s32 ret_val;
3428
3429 ret_val = e1000e_get_bus_info_pcie(hw);
3430
e921eb1a 3431 /* ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
3432 * a configuration space, but do not contain
3433 * PCI Express Capability registers, so bus width
3434 * must be hardcoded.
3435 */
3436 if (bus->width == e1000_bus_width_unknown)
3437 bus->width = e1000_bus_width_pcie_x1;
3438
3439 return ret_val;
3440}
3441
3442/**
3443 * e1000_reset_hw_ich8lan - Reset the hardware
3444 * @hw: pointer to the HW structure
3445 *
3446 * Does a full reset of the hardware which includes a reset of the PHY and
3447 * MAC.
3448 **/
3449static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3450{
1d5846b9 3451 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
62bc813e
BA
3452 u16 kum_cfg;
3453 u32 ctrl, reg;
bc7f75fa
AK
3454 s32 ret_val;
3455
e921eb1a 3456 /* Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
3457 * on the last TLP read/write transaction when MAC is reset.
3458 */
3459 ret_val = e1000e_disable_pcie_master(hw);
e98cac44 3460 if (ret_val)
3bb99fe2 3461 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 3462
3bb99fe2 3463 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
3464 ew32(IMC, 0xffffffff);
3465
e921eb1a 3466 /* Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
3467 * any pending transactions to complete before we hit the MAC
3468 * with the global reset.
3469 */
3470 ew32(RCTL, 0);
3471 ew32(TCTL, E1000_TCTL_PSP);
3472 e1e_flush();
3473
1bba4386 3474 usleep_range(10000, 20000);
bc7f75fa
AK
3475
3476 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3477 if (hw->mac.type == e1000_ich8lan) {
3478 /* Set Tx and Rx buffer allocation to 8k apiece. */
3479 ew32(PBA, E1000_PBA_8K);
3480 /* Set Packet Buffer Size to 16k. */
3481 ew32(PBS, E1000_PBS_16K);
3482 }
3483
1d5846b9 3484 if (hw->mac.type == e1000_pchlan) {
62bc813e
BA
3485 /* Save the NVM K1 bit setting */
3486 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
1d5846b9
BA
3487 if (ret_val)
3488 return ret_val;
3489
62bc813e 3490 if (kum_cfg & E1000_NVM_K1_ENABLE)
1d5846b9
BA
3491 dev_spec->nvm_k1_enabled = true;
3492 else
3493 dev_spec->nvm_k1_enabled = false;
3494 }
3495
bc7f75fa
AK
3496 ctrl = er32(CTRL);
3497
44abd5c1 3498 if (!hw->phy.ops.check_reset_block(hw)) {
e921eb1a 3499 /* Full-chip reset requires MAC and PHY reset at the same
bc7f75fa
AK
3500 * time to make sure the interface between MAC and the
3501 * external PHY is reset.
3502 */
3503 ctrl |= E1000_CTRL_PHY_RST;
605c82ba 3504
e921eb1a 3505 /* Gate automatic PHY configuration by hardware on
605c82ba
BA
3506 * non-managed 82579
3507 */
3508 if ((hw->mac.type == e1000_pch2lan) &&
3509 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3510 e1000_gate_hw_phy_config_ich8lan(hw, true);
bc7f75fa
AK
3511 }
3512 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 3513 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa 3514 ew32(CTRL, (ctrl | E1000_CTRL_RST));
945a5151 3515 /* cannot issue a flush here because it hangs the hardware */
bc7f75fa
AK
3516 msleep(20);
3517
62bc813e
BA
3518 /* Set Phy Config Counter to 50msec */
3519 if (hw->mac.type == e1000_pch2lan) {
3520 reg = er32(FEXTNVM3);
3521 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3522 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3523 ew32(FEXTNVM3, reg);
3524 }
3525
fc0c7760 3526 if (!ret_val)
a90b412c 3527 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
37f40239 3528
e98cac44 3529 if (ctrl & E1000_CTRL_PHY_RST) {
fc0c7760 3530 ret_val = hw->phy.ops.get_cfg_done(hw);
e98cac44 3531 if (ret_val)
5015e53a 3532 return ret_val;
fc0c7760 3533
e98cac44 3534 ret_val = e1000_post_phy_reset_ich8lan(hw);
f523d211 3535 if (ret_val)
5015e53a 3536 return ret_val;
f523d211 3537 }
e98cac44 3538
e921eb1a 3539 /* For PCH, this write will make sure that any noise
7d3cabbc
BA
3540 * will be detected as a CRC error and be dropped rather than show up
3541 * as a bad packet to the DMA engine.
3542 */
3543 if (hw->mac.type == e1000_pchlan)
3544 ew32(CRC_OFFSET, 0x65656565);
3545
bc7f75fa 3546 ew32(IMC, 0xffffffff);
dd93f95e 3547 er32(ICR);
bc7f75fa 3548
62bc813e
BA
3549 reg = er32(KABGTXD);
3550 reg |= E1000_KABGTXD_BGSQLBIAS;
3551 ew32(KABGTXD, reg);
bc7f75fa 3552
5015e53a 3553 return 0;
bc7f75fa
AK
3554}
3555
3556/**
3557 * e1000_init_hw_ich8lan - Initialize the hardware
3558 * @hw: pointer to the HW structure
3559 *
3560 * Prepares the hardware for transmit and receive by doing the following:
3561 * - initialize hardware bits
3562 * - initialize LED identification
3563 * - setup receive address registers
3564 * - setup flow control
489815ce 3565 * - setup transmit descriptors
bc7f75fa
AK
3566 * - clear statistics
3567 **/
3568static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3569{
3570 struct e1000_mac_info *mac = &hw->mac;
3571 u32 ctrl_ext, txdctl, snoop;
3572 s32 ret_val;
3573 u16 i;
3574
3575 e1000_initialize_hw_bits_ich8lan(hw);
3576
3577 /* Initialize identification LED */
a4f58f54 3578 ret_val = mac->ops.id_led_init(hw);
de39b752 3579 if (ret_val)
3bb99fe2 3580 e_dbg("Error initializing identification LED\n");
de39b752 3581 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
3582
3583 /* Setup the receive address. */
3584 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3585
3586 /* Zero out the Multicast HASH table */
3bb99fe2 3587 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
3588 for (i = 0; i < mac->mta_reg_count; i++)
3589 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3590
e921eb1a 3591 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
3ebfc7c9 3592 * the ME. Disable wakeup by clearing the host wakeup bit.
fc0c7760
BA
3593 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3594 */
3595 if (hw->phy.type == e1000_phy_82578) {
3ebfc7c9
BA
3596 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3597 i &= ~BM_WUC_HOST_WU_BIT;
3598 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
fc0c7760
BA
3599 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3600 if (ret_val)
3601 return ret_val;
3602 }
3603
bc7f75fa 3604 /* Setup link and flow control */
1a46b40f 3605 ret_val = mac->ops.setup_link(hw);
bc7f75fa
AK
3606
3607 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 3608 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
3609 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3610 E1000_TXDCTL_FULL_TX_DESC_WB;
3611 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3612 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
3613 ew32(TXDCTL(0), txdctl);
3614 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
3615 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3616 E1000_TXDCTL_FULL_TX_DESC_WB;
3617 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3618 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 3619 ew32(TXDCTL(1), txdctl);
bc7f75fa 3620
e921eb1a 3621 /* ICH8 has opposite polarity of no_snoop bits.
ad68076e
BA
3622 * By default, we should use snoop behavior.
3623 */
bc7f75fa
AK
3624 if (mac->type == e1000_ich8lan)
3625 snoop = PCIE_ICH8_SNOOP_ALL;
3626 else
3627 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3628 e1000e_set_pcie_no_snoop(hw, snoop);
3629
3630 ctrl_ext = er32(CTRL_EXT);
3631 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3632 ew32(CTRL_EXT, ctrl_ext);
3633
e921eb1a 3634 /* Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
3635 * important that we do this after we have tried to establish link
3636 * because the symbol error count will increment wildly if there
3637 * is no link.
3638 */
3639 e1000_clear_hw_cntrs_ich8lan(hw);
3640
e561a705 3641 return ret_val;
bc7f75fa
AK
3642}
3643/**
3644 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3645 * @hw: pointer to the HW structure
3646 *
3647 * Sets/Clears required hardware bits necessary for correctly setting up the
3648 * hardware for transmit and receive.
3649 **/
3650static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3651{
3652 u32 reg;
3653
3654 /* Extended Device Control */
3655 reg = er32(CTRL_EXT);
3656 reg |= (1 << 22);
a4f58f54
BA
3657 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3658 if (hw->mac.type >= e1000_pchlan)
3659 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
3660 ew32(CTRL_EXT, reg);
3661
3662 /* Transmit Descriptor Control 0 */
e9ec2c0f 3663 reg = er32(TXDCTL(0));
bc7f75fa 3664 reg |= (1 << 22);
e9ec2c0f 3665 ew32(TXDCTL(0), reg);
bc7f75fa
AK
3666
3667 /* Transmit Descriptor Control 1 */
e9ec2c0f 3668 reg = er32(TXDCTL(1));
bc7f75fa 3669 reg |= (1 << 22);
e9ec2c0f 3670 ew32(TXDCTL(1), reg);
bc7f75fa
AK
3671
3672 /* Transmit Arbitration Control 0 */
e9ec2c0f 3673 reg = er32(TARC(0));
bc7f75fa
AK
3674 if (hw->mac.type == e1000_ich8lan)
3675 reg |= (1 << 28) | (1 << 29);
3676 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 3677 ew32(TARC(0), reg);
bc7f75fa
AK
3678
3679 /* Transmit Arbitration Control 1 */
e9ec2c0f 3680 reg = er32(TARC(1));
bc7f75fa
AK
3681 if (er32(TCTL) & E1000_TCTL_MULR)
3682 reg &= ~(1 << 28);
3683 else
3684 reg |= (1 << 28);
3685 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 3686 ew32(TARC(1), reg);
bc7f75fa
AK
3687
3688 /* Device Status */
3689 if (hw->mac.type == e1000_ich8lan) {
3690 reg = er32(STATUS);
3691 reg &= ~(1 << 31);
3692 ew32(STATUS, reg);
3693 }
a80483d3 3694
e921eb1a 3695 /* work-around descriptor data corruption issue during nfs v2 udp
a80483d3
JB
3696 * traffic, just disable the nfs filtering capability
3697 */
3698 reg = er32(RFCTL);
3699 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
f6bd5577 3700
e921eb1a 3701 /* Disable IPv6 extension header parsing because some malformed
f6bd5577
MV
3702 * IPv6 headers can hang the Rx.
3703 */
3704 if (hw->mac.type == e1000_ich8lan)
3705 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
a80483d3 3706 ew32(RFCTL, reg);
94fb848b
BA
3707
3708 /* Enable ECC on Lynxpoint */
3709 if (hw->mac.type == e1000_pch_lpt) {
3710 reg = er32(PBECCSTS);
3711 reg |= E1000_PBECCSTS_ECC_ENABLE;
3712 ew32(PBECCSTS, reg);
3713
3714 reg = er32(CTRL);
3715 reg |= E1000_CTRL_MEHE;
3716 ew32(CTRL, reg);
3717 }
bc7f75fa
AK
3718}
3719
3720/**
3721 * e1000_setup_link_ich8lan - Setup flow control and link settings
3722 * @hw: pointer to the HW structure
3723 *
3724 * Determines which flow control settings to use, then configures flow
3725 * control. Calls the appropriate media-specific link configuration
3726 * function. Assuming the adapter has a valid link partner, a valid link
3727 * should be established. Assumes the hardware has previously been reset
3728 * and the transmitter and receiver are not enabled.
3729 **/
3730static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3731{
bc7f75fa
AK
3732 s32 ret_val;
3733
44abd5c1 3734 if (hw->phy.ops.check_reset_block(hw))
bc7f75fa
AK
3735 return 0;
3736
e921eb1a 3737 /* ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
3738 * the default flow control setting, so we explicitly
3739 * set it to full.
3740 */
37289d9c
BA
3741 if (hw->fc.requested_mode == e1000_fc_default) {
3742 /* Workaround h/w hang when Tx flow control enabled */
3743 if (hw->mac.type == e1000_pchlan)
3744 hw->fc.requested_mode = e1000_fc_rx_pause;
3745 else
3746 hw->fc.requested_mode = e1000_fc_full;
3747 }
bc7f75fa 3748
e921eb1a 3749 /* Save off the requested flow control mode for use later. Depending
5c48ef3e
BA
3750 * on the link partner's capabilities, we may or may not use this mode.
3751 */
3752 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 3753
3bb99fe2 3754 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 3755 hw->fc.current_mode);
bc7f75fa
AK
3756
3757 /* Continue to configure the copper link. */
944ce011 3758 ret_val = hw->mac.ops.setup_physical_interface(hw);
bc7f75fa
AK
3759 if (ret_val)
3760 return ret_val;
3761
318a94d6 3762 ew32(FCTTV, hw->fc.pause_time);
a4f58f54 3763 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3764 (hw->phy.type == e1000_phy_82579) ||
2fbe4526 3765 (hw->phy.type == e1000_phy_i217) ||
a4f58f54 3766 (hw->phy.type == e1000_phy_82577)) {
a305595b
BA
3767 ew32(FCRTV_PCH, hw->fc.refresh_time);
3768
482fed85
BA
3769 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3770 hw->fc.pause_time);
a4f58f54
BA
3771 if (ret_val)
3772 return ret_val;
3773 }
bc7f75fa
AK
3774
3775 return e1000e_set_fc_watermarks(hw);
3776}
3777
3778/**
3779 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3780 * @hw: pointer to the HW structure
3781 *
3782 * Configures the kumeran interface to the PHY to wait the appropriate time
3783 * when polling the PHY, then call the generic setup_copper_link to finish
3784 * configuring the copper link.
3785 **/
3786static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3787{
3788 u32 ctrl;
3789 s32 ret_val;
3790 u16 reg_data;
3791
3792 ctrl = er32(CTRL);
3793 ctrl |= E1000_CTRL_SLU;
3794 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3795 ew32(CTRL, ctrl);
3796
e921eb1a 3797 /* Set the mac to wait the maximum time between each iteration
bc7f75fa 3798 * and increase the max iterations when polling the phy;
ad68076e
BA
3799 * this fixes erroneous timeouts at 10Mbps.
3800 */
07818950 3801 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
3802 if (ret_val)
3803 return ret_val;
07818950
BA
3804 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3805 &reg_data);
bc7f75fa
AK
3806 if (ret_val)
3807 return ret_val;
3808 reg_data |= 0x3F;
07818950
BA
3809 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3810 reg_data);
bc7f75fa
AK
3811 if (ret_val)
3812 return ret_val;
3813
a4f58f54
BA
3814 switch (hw->phy.type) {
3815 case e1000_phy_igp_3:
bc7f75fa
AK
3816 ret_val = e1000e_copper_link_setup_igp(hw);
3817 if (ret_val)
3818 return ret_val;
a4f58f54
BA
3819 break;
3820 case e1000_phy_bm:
3821 case e1000_phy_82578:
97ac8cae
BA
3822 ret_val = e1000e_copper_link_setup_m88(hw);
3823 if (ret_val)
3824 return ret_val;
a4f58f54
BA
3825 break;
3826 case e1000_phy_82577:
d3738bb8 3827 case e1000_phy_82579:
2fbe4526 3828 case e1000_phy_i217:
a4f58f54
BA
3829 ret_val = e1000_copper_link_setup_82577(hw);
3830 if (ret_val)
3831 return ret_val;
3832 break;
3833 case e1000_phy_ife:
482fed85 3834 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
97ac8cae
BA
3835 if (ret_val)
3836 return ret_val;
3837
3838 reg_data &= ~IFE_PMC_AUTO_MDIX;
3839
3840 switch (hw->phy.mdix) {
3841 case 1:
3842 reg_data &= ~IFE_PMC_FORCE_MDIX;
3843 break;
3844 case 2:
3845 reg_data |= IFE_PMC_FORCE_MDIX;
3846 break;
3847 case 0:
3848 default:
3849 reg_data |= IFE_PMC_AUTO_MDIX;
3850 break;
3851 }
482fed85 3852 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
97ac8cae
BA
3853 if (ret_val)
3854 return ret_val;
a4f58f54
BA
3855 break;
3856 default:
3857 break;
97ac8cae 3858 }
3fa82936 3859
bc7f75fa
AK
3860 return e1000e_setup_copper_link(hw);
3861}
3862
3863/**
3864 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3865 * @hw: pointer to the HW structure
3866 * @speed: pointer to store current link speed
3867 * @duplex: pointer to store the current link duplex
3868 *
ad68076e 3869 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
3870 * information and then calls the Kumeran lock loss workaround for links at
3871 * gigabit speeds.
3872 **/
3873static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3874 u16 *duplex)
3875{
3876 s32 ret_val;
3877
3878 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3879 if (ret_val)
3880 return ret_val;
3881
3882 if ((hw->mac.type == e1000_ich8lan) &&
3883 (hw->phy.type == e1000_phy_igp_3) &&
3884 (*speed == SPEED_1000)) {
3885 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3886 }
3887
3888 return ret_val;
3889}
3890
3891/**
3892 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3893 * @hw: pointer to the HW structure
3894 *
3895 * Work-around for 82566 Kumeran PCS lock loss:
3896 * On link status change (i.e. PCI reset, speed change) and link is up and
3897 * speed is gigabit-
3898 * 0) if workaround is optionally disabled do nothing
3899 * 1) wait 1ms for Kumeran link to come up
3900 * 2) check Kumeran Diagnostic register PCS lock loss bit
3901 * 3) if not set the link is locked (all is good), otherwise...
3902 * 4) reset the PHY
3903 * 5) repeat up to 10 times
3904 * Note: this is only called for IGP3 copper when speed is 1gb.
3905 **/
3906static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3907{
3908 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3909 u32 phy_ctrl;
3910 s32 ret_val;
3911 u16 i, data;
3912 bool link;
3913
3914 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3915 return 0;
3916
e921eb1a 3917 /* Make sure link is up before proceeding. If not just return.
bc7f75fa 3918 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3919 * stability
3920 */
bc7f75fa
AK
3921 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3922 if (!link)
3923 return 0;
3924
3925 for (i = 0; i < 10; i++) {
3926 /* read once to clear */
3927 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3928 if (ret_val)
3929 return ret_val;
3930 /* and again to get new status */
3931 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3932 if (ret_val)
3933 return ret_val;
3934
3935 /* check for PCS lock */
3936 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3937 return 0;
3938
3939 /* Issue PHY reset */
3940 e1000_phy_hw_reset(hw);
3941 mdelay(5);
3942 }
3943 /* Disable GigE link negotiation */
3944 phy_ctrl = er32(PHY_CTRL);
3945 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3946 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3947 ew32(PHY_CTRL, phy_ctrl);
3948
e921eb1a 3949 /* Call gig speed drop workaround on Gig disable before accessing
ad68076e
BA
3950 * any PHY registers
3951 */
bc7f75fa
AK
3952 e1000e_gig_downshift_workaround_ich8lan(hw);
3953
3954 /* unable to acquire PCS lock */
3955 return -E1000_ERR_PHY;
3956}
3957
3958/**
6e3c8075 3959 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3960 * @hw: pointer to the HW structure
489815ce 3961 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3962 *
564ea9bb
BA
3963 * If ICH8, set the current Kumeran workaround state (enabled - true
3964 * /disabled - false).
bc7f75fa
AK
3965 **/
3966void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3967 bool state)
3968{
3969 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3970
3971 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3972 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3973 return;
3974 }
3975
3976 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3977}
3978
3979/**
3980 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3981 * @hw: pointer to the HW structure
3982 *
3983 * Workaround for 82566 power-down on D3 entry:
3984 * 1) disable gigabit link
3985 * 2) write VR power-down enable
3986 * 3) read it back
3987 * Continue if successful, else issue LCD reset and repeat
3988 **/
3989void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3990{
3991 u32 reg;
3992 u16 data;
3993 u8 retry = 0;
3994
3995 if (hw->phy.type != e1000_phy_igp_3)
3996 return;
3997
3998 /* Try the workaround twice (if needed) */
3999 do {
4000 /* Disable link */
4001 reg = er32(PHY_CTRL);
4002 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4003 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4004 ew32(PHY_CTRL, reg);
4005
e921eb1a 4006 /* Call gig speed drop workaround on Gig disable before
ad68076e
BA
4007 * accessing any PHY registers
4008 */
bc7f75fa
AK
4009 if (hw->mac.type == e1000_ich8lan)
4010 e1000e_gig_downshift_workaround_ich8lan(hw);
4011
4012 /* Write VR power-down enable */
4013 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4014 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4015 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4016
4017 /* Read it back and test */
4018 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4019 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4020 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4021 break;
4022
4023 /* Issue PHY reset and repeat at most one more time */
4024 reg = er32(CTRL);
4025 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4026 retry++;
4027 } while (retry);
4028}
4029
4030/**
4031 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4032 * @hw: pointer to the HW structure
4033 *
4034 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 4035 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
4036 * 1) Set Kumeran Near-end loopback
4037 * 2) Clear Kumeran Near-end loopback
462d5994 4038 * Should only be called for ICH8[m] devices with any 1G Phy.
bc7f75fa
AK
4039 **/
4040void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4041{
4042 s32 ret_val;
4043 u16 reg_data;
4044
462d5994 4045 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
bc7f75fa
AK
4046 return;
4047
4048 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4049 &reg_data);
4050 if (ret_val)
4051 return;
4052 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4053 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4054 reg_data);
4055 if (ret_val)
4056 return;
4057 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
7dbbe5d5 4058 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
bc7f75fa
AK
4059}
4060
97ac8cae 4061/**
99730e4c 4062 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
97ac8cae
BA
4063 * @hw: pointer to the HW structure
4064 *
4065 * During S0 to Sx transition, it is possible the link remains at gig
4066 * instead of negotiating to a lower speed. Before going to Sx, set
c077a906
BA
4067 * 'Gig Disable' to force link speed negotiation to a lower speed based on
4068 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
4069 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4070 * needs to be written.
2fbe4526
BA
4071 * Parts that support (and are linked to a partner which support) EEE in
4072 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4073 * than 10Mbps w/o EEE.
97ac8cae 4074 **/
99730e4c 4075void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
97ac8cae 4076{
2fbe4526 4077 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
97ac8cae 4078 u32 phy_ctrl;
8395ae83 4079 s32 ret_val;
97ac8cae 4080
17f085df 4081 phy_ctrl = er32(PHY_CTRL);
c077a906 4082 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
2fbe4526
BA
4083 if (hw->phy.type == e1000_phy_i217) {
4084 u16 phy_reg;
4085
4086 ret_val = hw->phy.ops.acquire(hw);
4087 if (ret_val)
4088 goto out;
4089
4090 if (!dev_spec->eee_disable) {
4091 u16 eee_advert;
4092
4ddc48a9
BA
4093 ret_val =
4094 e1000_read_emi_reg_locked(hw,
4095 I217_EEE_ADVERTISEMENT,
4096 &eee_advert);
2fbe4526
BA
4097 if (ret_val)
4098 goto release;
2fbe4526 4099
e921eb1a 4100 /* Disable LPLU if both link partners support 100BaseT
2fbe4526
BA
4101 * EEE and 100Full is advertised on both ends of the
4102 * link.
4103 */
3d4d5755 4104 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
2fbe4526 4105 (dev_spec->eee_lp_ability &
3d4d5755 4106 I82579_EEE_100_SUPPORTED) &&
2fbe4526
BA
4107 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4108 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4109 E1000_PHY_CTRL_NOND0A_LPLU);
4110 }
4111
e921eb1a 4112 /* For i217 Intel Rapid Start Technology support,
2fbe4526
BA
4113 * when the system is going into Sx and no manageability engine
4114 * is present, the driver must configure proxy to reset only on
4115 * power good. LPI (Low Power Idle) state must also reset only
4116 * on power good, as well as the MTA (Multicast table array).
4117 * The SMBus release must also be disabled on LCD reset.
4118 */
4119 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4120
4121 /* Enable proxy to reset only on power good. */
4122 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4123 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4124 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4125
e921eb1a 4126 /* Set bit enable LPI (EEE) to reset only on
2fbe4526
BA
4127 * power good.
4128 */
4129 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
6d7407bf 4130 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
2fbe4526
BA
4131 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4132
4133 /* Disable the SMB release on LCD reset. */
4134 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
6d7407bf 4135 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
2fbe4526
BA
4136 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4137 }
4138
e921eb1a 4139 /* Enable MTA to reset for Intel Rapid Start Technology
2fbe4526
BA
4140 * Support
4141 */
4142 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
6d7407bf 4143 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
2fbe4526
BA
4144 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4145
4146release:
4147 hw->phy.ops.release(hw);
4148 }
4149out:
17f085df 4150 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 4151
462d5994
BA
4152 if (hw->mac.type == e1000_ich8lan)
4153 e1000e_gig_downshift_workaround_ich8lan(hw);
4154
8395ae83 4155 if (hw->mac.type >= e1000_pchlan) {
ce54afd1 4156 e1000_oem_bits_config_ich8lan(hw, false);
92fe1733
BA
4157
4158 /* Reset PHY to activate OEM bits on 82577/8 */
4159 if (hw->mac.type == e1000_pchlan)
4160 e1000e_phy_hw_reset_generic(hw);
4161
8395ae83
BA
4162 ret_val = hw->phy.ops.acquire(hw);
4163 if (ret_val)
4164 return;
4165 e1000_write_smbus_addr(hw);
4166 hw->phy.ops.release(hw);
4167 }
97ac8cae
BA
4168}
4169
99730e4c
BA
4170/**
4171 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4172 * @hw: pointer to the HW structure
4173 *
4174 * During Sx to S0 transitions on non-managed devices or managed devices
4175 * on which PHY resets are not blocked, if the PHY registers cannot be
4176 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4177 * the PHY.
2fbe4526 4178 * On i217, setup Intel Rapid Start Technology.
99730e4c
BA
4179 **/
4180void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4181{
90b82984 4182 s32 ret_val;
99730e4c 4183
cb17aab9 4184 if (hw->mac.type < e1000_pch2lan)
99730e4c
BA
4185 return;
4186
cb17aab9 4187 ret_val = e1000_init_phy_workarounds_pchlan(hw);
90b82984 4188 if (ret_val) {
cb17aab9 4189 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
90b82984
BA
4190 return;
4191 }
2fbe4526 4192
e921eb1a 4193 /* For i217 Intel Rapid Start Technology support when the system
2fbe4526
BA
4194 * is transitioning from Sx and no manageability engine is present
4195 * configure SMBus to restore on reset, disable proxy, and enable
4196 * the reset on MTA (Multicast table array).
4197 */
4198 if (hw->phy.type == e1000_phy_i217) {
4199 u16 phy_reg;
4200
4201 ret_val = hw->phy.ops.acquire(hw);
4202 if (ret_val) {
4203 e_dbg("Failed to setup iRST\n");
4204 return;
4205 }
4206
4207 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
e921eb1a 4208 /* Restore clear on SMB if no manageability engine
2fbe4526
BA
4209 * is present
4210 */
4211 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4212 if (ret_val)
4213 goto release;
6d7407bf 4214 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
2fbe4526
BA
4215 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4216
4217 /* Disable Proxy */
4218 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4219 }
4220 /* Enable reset on MTA */
4221 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4222 if (ret_val)
4223 goto release;
6d7407bf 4224 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
2fbe4526
BA
4225 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4226release:
4227 if (ret_val)
4228 e_dbg("Error %d in resume workarounds\n", ret_val);
4229 hw->phy.ops.release(hw);
4230 }
99730e4c
BA
4231}
4232
bc7f75fa
AK
4233/**
4234 * e1000_cleanup_led_ich8lan - Restore the default LED operation
4235 * @hw: pointer to the HW structure
4236 *
4237 * Return the LED back to the default configuration.
4238 **/
4239static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4240{
4241 if (hw->phy.type == e1000_phy_ife)
4242 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4243
4244 ew32(LEDCTL, hw->mac.ledctl_default);
4245 return 0;
4246}
4247
4248/**
489815ce 4249 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
4250 * @hw: pointer to the HW structure
4251 *
489815ce 4252 * Turn on the LEDs.
bc7f75fa
AK
4253 **/
4254static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4255{
4256 if (hw->phy.type == e1000_phy_ife)
4257 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4258 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4259
4260 ew32(LEDCTL, hw->mac.ledctl_mode2);
4261 return 0;
4262}
4263
4264/**
489815ce 4265 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
4266 * @hw: pointer to the HW structure
4267 *
489815ce 4268 * Turn off the LEDs.
bc7f75fa
AK
4269 **/
4270static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4271{
4272 if (hw->phy.type == e1000_phy_ife)
4273 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
482fed85
BA
4274 (IFE_PSCL_PROBE_MODE |
4275 IFE_PSCL_PROBE_LEDS_OFF));
bc7f75fa
AK
4276
4277 ew32(LEDCTL, hw->mac.ledctl_mode1);
4278 return 0;
4279}
4280
a4f58f54
BA
4281/**
4282 * e1000_setup_led_pchlan - Configures SW controllable LED
4283 * @hw: pointer to the HW structure
4284 *
4285 * This prepares the SW controllable LED for use.
4286 **/
4287static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4288{
482fed85 4289 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
a4f58f54
BA
4290}
4291
4292/**
4293 * e1000_cleanup_led_pchlan - Restore the default LED operation
4294 * @hw: pointer to the HW structure
4295 *
4296 * Return the LED back to the default configuration.
4297 **/
4298static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4299{
482fed85 4300 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
a4f58f54
BA
4301}
4302
4303/**
4304 * e1000_led_on_pchlan - Turn LEDs on
4305 * @hw: pointer to the HW structure
4306 *
4307 * Turn on the LEDs.
4308 **/
4309static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4310{
4311 u16 data = (u16)hw->mac.ledctl_mode2;
4312 u32 i, led;
4313
e921eb1a 4314 /* If no link, then turn LED on by setting the invert bit
a4f58f54
BA
4315 * for each LED that's mode is "link_up" in ledctl_mode2.
4316 */
4317 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4318 for (i = 0; i < 3; i++) {
4319 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4320 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4321 E1000_LEDCTL_MODE_LINK_UP)
4322 continue;
4323 if (led & E1000_PHY_LED0_IVRT)
4324 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4325 else
4326 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4327 }
4328 }
4329
482fed85 4330 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
4331}
4332
4333/**
4334 * e1000_led_off_pchlan - Turn LEDs off
4335 * @hw: pointer to the HW structure
4336 *
4337 * Turn off the LEDs.
4338 **/
4339static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4340{
4341 u16 data = (u16)hw->mac.ledctl_mode1;
4342 u32 i, led;
4343
e921eb1a 4344 /* If no link, then turn LED off by clearing the invert bit
a4f58f54
BA
4345 * for each LED that's mode is "link_up" in ledctl_mode1.
4346 */
4347 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4348 for (i = 0; i < 3; i++) {
4349 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4350 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4351 E1000_LEDCTL_MODE_LINK_UP)
4352 continue;
4353 if (led & E1000_PHY_LED0_IVRT)
4354 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4355 else
4356 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4357 }
4358 }
4359
482fed85 4360 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
4361}
4362
f4187b56 4363/**
e98cac44 4364 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
f4187b56
BA
4365 * @hw: pointer to the HW structure
4366 *
e98cac44
BA
4367 * Read appropriate register for the config done bit for completion status
4368 * and configure the PHY through s/w for EEPROM-less parts.
4369 *
4370 * NOTE: some silicon which is EEPROM-less will fail trying to read the
4371 * config done bit, so only an error is logged and continues. If we were
4372 * to return with error, EEPROM-less silicon would not be able to be reset
4373 * or change link.
f4187b56
BA
4374 **/
4375static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4376{
e98cac44 4377 s32 ret_val = 0;
f4187b56 4378 u32 bank = 0;
e98cac44 4379 u32 status;
f4187b56 4380
fe90849f 4381 e1000e_get_cfg_done_generic(hw);
fc0c7760 4382
e98cac44
BA
4383 /* Wait for indication from h/w that it has completed basic config */
4384 if (hw->mac.type >= e1000_ich10lan) {
4385 e1000_lan_init_done_ich8lan(hw);
4386 } else {
4387 ret_val = e1000e_get_auto_rd_done(hw);
4388 if (ret_val) {
e921eb1a 4389 /* When auto config read does not complete, do not
e98cac44
BA
4390 * return with an error. This can happen in situations
4391 * where there is no eeprom and prevents getting link.
4392 */
4393 e_dbg("Auto Read Done did not complete\n");
4394 ret_val = 0;
4395 }
fc0c7760
BA
4396 }
4397
e98cac44
BA
4398 /* Clear PHY Reset Asserted bit */
4399 status = er32(STATUS);
4400 if (status & E1000_STATUS_PHYRA)
4401 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4402 else
4403 e_dbg("PHY Reset Asserted not set - needs delay\n");
f4187b56
BA
4404
4405 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
e98cac44 4406 if (hw->mac.type <= e1000_ich9lan) {
04499ec4 4407 if (!(er32(EECD) & E1000_EECD_PRES) &&
f4187b56
BA
4408 (hw->phy.type == e1000_phy_igp_3)) {
4409 e1000e_phy_init_script_igp3(hw);
4410 }
4411 } else {
4412 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4413 /* Maybe we should do a basic PHY config */
3bb99fe2 4414 e_dbg("EEPROM not present\n");
e98cac44 4415 ret_val = -E1000_ERR_CONFIG;
f4187b56
BA
4416 }
4417 }
4418
e98cac44 4419 return ret_val;
f4187b56
BA
4420}
4421
17f208de
BA
4422/**
4423 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4424 * @hw: pointer to the HW structure
4425 *
4426 * In the case of a PHY power down to save power, or to turn off link during a
4427 * driver unload, or wake on lan is not enabled, remove the link.
4428 **/
4429static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4430{
4431 /* If the management interface is not enabled, then power down */
4432 if (!(hw->mac.ops.check_mng_mode(hw) ||
4433 hw->phy.ops.check_reset_block(hw)))
4434 e1000_power_down_phy_copper(hw);
17f208de
BA
4435}
4436
bc7f75fa
AK
4437/**
4438 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4439 * @hw: pointer to the HW structure
4440 *
4441 * Clears hardware counters specific to the silicon family and calls
4442 * clear_hw_cntrs_generic to clear all general purpose counters.
4443 **/
4444static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4445{
a4f58f54 4446 u16 phy_data;
2b6b168d 4447 s32 ret_val;
bc7f75fa
AK
4448
4449 e1000e_clear_hw_cntrs_base(hw);
4450
99673d9b
BA
4451 er32(ALGNERRC);
4452 er32(RXERRC);
4453 er32(TNCRS);
4454 er32(CEXTERR);
4455 er32(TSCTC);
4456 er32(TSCTFC);
bc7f75fa 4457
99673d9b
BA
4458 er32(MGTPRC);
4459 er32(MGTPDC);
4460 er32(MGTPTC);
bc7f75fa 4461
99673d9b
BA
4462 er32(IAC);
4463 er32(ICRXOC);
bc7f75fa 4464
a4f58f54
BA
4465 /* Clear PHY statistics registers */
4466 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 4467 (hw->phy.type == e1000_phy_82579) ||
2fbe4526 4468 (hw->phy.type == e1000_phy_i217) ||
a4f58f54 4469 (hw->phy.type == e1000_phy_82577)) {
2b6b168d
BA
4470 ret_val = hw->phy.ops.acquire(hw);
4471 if (ret_val)
4472 return;
4473 ret_val = hw->phy.ops.set_page(hw,
4474 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4475 if (ret_val)
4476 goto release;
4477 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4478 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4479 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4480 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4481 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4482 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4483 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4484 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4485 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4486 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4487 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4488 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4489 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4490 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4491release:
4492 hw->phy.ops.release(hw);
a4f58f54 4493 }
bc7f75fa
AK
4494}
4495
8ce9d6c7 4496static const struct e1000_mac_operations ich8_mac_ops = {
eb7700dc 4497 /* check_mng_mode dependent on mac type */
7d3cabbc 4498 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 4499 /* cleanup_led dependent on mac type */
bc7f75fa
AK
4500 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4501 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 4502 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 4503 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
4504 /* led_on dependent on mac type */
4505 /* led_off dependent on mac type */
e2de3eb6 4506 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
4507 .reset_hw = e1000_reset_hw_ich8lan,
4508 .init_hw = e1000_init_hw_ich8lan,
4509 .setup_link = e1000_setup_link_ich8lan,
4510 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 4511 /* id_led_init dependent on mac type */
57cde763 4512 .config_collision_dist = e1000e_config_collision_dist_generic,
69e1e019 4513 .rar_set = e1000e_rar_set_generic,
bc7f75fa
AK
4514};
4515
8ce9d6c7 4516static const struct e1000_phy_operations ich8_phy_ops = {
94d8186a 4517 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 4518 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 4519 .commit = NULL,
f4187b56 4520 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 4521 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
4522 .read_reg = e1000e_read_phy_reg_igp,
4523 .release = e1000_release_swflag_ich8lan,
4524 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
4525 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4526 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 4527 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
4528};
4529
8ce9d6c7 4530static const struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
4531 .acquire = e1000_acquire_nvm_ich8lan,
4532 .read = e1000_read_nvm_ich8lan,
4533 .release = e1000_release_nvm_ich8lan,
e85e3639 4534 .reload = e1000e_reload_nvm_generic,
94d8186a 4535 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 4536 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
4537 .validate = e1000_validate_nvm_checksum_ich8lan,
4538 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
4539};
4540
8ce9d6c7 4541const struct e1000_info e1000_ich8_info = {
bc7f75fa
AK
4542 .mac = e1000_ich8lan,
4543 .flags = FLAG_HAS_WOL
97ac8cae 4544 | FLAG_IS_ICH
bc7f75fa
AK
4545 | FLAG_HAS_CTRLEXT_ON_LOAD
4546 | FLAG_HAS_AMT
4547 | FLAG_HAS_FLASH
4548 | FLAG_APME_IN_WUC,
4549 .pba = 8,
2adc55c9 4550 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 4551 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4552 .mac_ops = &ich8_mac_ops,
4553 .phy_ops = &ich8_phy_ops,
4554 .nvm_ops = &ich8_nvm_ops,
4555};
4556
8ce9d6c7 4557const struct e1000_info e1000_ich9_info = {
bc7f75fa
AK
4558 .mac = e1000_ich9lan,
4559 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 4560 | FLAG_IS_ICH
bc7f75fa 4561 | FLAG_HAS_WOL
bc7f75fa
AK
4562 | FLAG_HAS_CTRLEXT_ON_LOAD
4563 | FLAG_HAS_AMT
bc7f75fa
AK
4564 | FLAG_HAS_FLASH
4565 | FLAG_APME_IN_WUC,
7f1557e1 4566 .pba = 18,
2adc55c9 4567 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 4568 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4569 .mac_ops = &ich8_mac_ops,
4570 .phy_ops = &ich8_phy_ops,
4571 .nvm_ops = &ich8_nvm_ops,
4572};
4573
8ce9d6c7 4574const struct e1000_info e1000_ich10_info = {
f4187b56
BA
4575 .mac = e1000_ich10lan,
4576 .flags = FLAG_HAS_JUMBO_FRAMES
4577 | FLAG_IS_ICH
4578 | FLAG_HAS_WOL
f4187b56
BA
4579 | FLAG_HAS_CTRLEXT_ON_LOAD
4580 | FLAG_HAS_AMT
f4187b56
BA
4581 | FLAG_HAS_FLASH
4582 | FLAG_APME_IN_WUC,
7f1557e1 4583 .pba = 18,
2adc55c9 4584 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
4585 .get_variants = e1000_get_variants_ich8lan,
4586 .mac_ops = &ich8_mac_ops,
4587 .phy_ops = &ich8_phy_ops,
4588 .nvm_ops = &ich8_nvm_ops,
4589};
a4f58f54 4590
8ce9d6c7 4591const struct e1000_info e1000_pch_info = {
a4f58f54
BA
4592 .mac = e1000_pchlan,
4593 .flags = FLAG_IS_ICH
4594 | FLAG_HAS_WOL
a4f58f54
BA
4595 | FLAG_HAS_CTRLEXT_ON_LOAD
4596 | FLAG_HAS_AMT
4597 | FLAG_HAS_FLASH
4598 | FLAG_HAS_JUMBO_FRAMES
38eb394e 4599 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54 4600 | FLAG_APME_IN_WUC,
8c7bbb92 4601 .flags2 = FLAG2_HAS_PHY_STATS,
a4f58f54
BA
4602 .pba = 26,
4603 .max_hw_frame_size = 4096,
4604 .get_variants = e1000_get_variants_ich8lan,
4605 .mac_ops = &ich8_mac_ops,
4606 .phy_ops = &ich8_phy_ops,
4607 .nvm_ops = &ich8_nvm_ops,
4608};
d3738bb8 4609
8ce9d6c7 4610const struct e1000_info e1000_pch2_info = {
d3738bb8
BA
4611 .mac = e1000_pch2lan,
4612 .flags = FLAG_IS_ICH
4613 | FLAG_HAS_WOL
b67e1913 4614 | FLAG_HAS_HW_TIMESTAMP
d3738bb8
BA
4615 | FLAG_HAS_CTRLEXT_ON_LOAD
4616 | FLAG_HAS_AMT
4617 | FLAG_HAS_FLASH
4618 | FLAG_HAS_JUMBO_FRAMES
4619 | FLAG_APME_IN_WUC,
e52997f9
BA
4620 .flags2 = FLAG2_HAS_PHY_STATS
4621 | FLAG2_HAS_EEE,
828bac87 4622 .pba = 26,
c3d2dbf4 4623 .max_hw_frame_size = 9018,
d3738bb8
BA
4624 .get_variants = e1000_get_variants_ich8lan,
4625 .mac_ops = &ich8_mac_ops,
4626 .phy_ops = &ich8_phy_ops,
4627 .nvm_ops = &ich8_nvm_ops,
4628};
2fbe4526
BA
4629
4630const struct e1000_info e1000_pch_lpt_info = {
4631 .mac = e1000_pch_lpt,
4632 .flags = FLAG_IS_ICH
4633 | FLAG_HAS_WOL
b67e1913 4634 | FLAG_HAS_HW_TIMESTAMP
2fbe4526
BA
4635 | FLAG_HAS_CTRLEXT_ON_LOAD
4636 | FLAG_HAS_AMT
4637 | FLAG_HAS_FLASH
4638 | FLAG_HAS_JUMBO_FRAMES
4639 | FLAG_APME_IN_WUC,
4640 .flags2 = FLAG2_HAS_PHY_STATS
4641 | FLAG2_HAS_EEE,
4642 .pba = 26,
ed1a4265 4643 .max_hw_frame_size = 9018,
2fbe4526
BA
4644 .get_variants = e1000_get_variants_ich8lan,
4645 .mac_ops = &ich8_mac_ops,
4646 .phy_ops = &ich8_phy_ops,
4647 .nvm_ops = &ich8_nvm_ops,
4648};