]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/intel/e1000e/netdev.c
e1000e: Fix possible HW unit hang after an s0ix exit
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
CommitLineData
ae06c70b 1// SPDX-License-Identifier: GPL-2.0
51dce24b 2/* Copyright(c) 1999 - 2018 Intel Corporation. */
bc7f75fa 3
8544b9f7
BA
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
bc7f75fa
AK
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
9fb7a5f7 14#include <linux/interrupt.h>
bc7f75fa
AK
15#include <linux/tcp.h>
16#include <linux/ipv6.h>
5a0e3ad6 17#include <linux/slab.h>
bc7f75fa
AK
18#include <net/checksum.h>
19#include <net/ip6_checksum.h>
bc7f75fa
AK
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/cpu.h>
23#include <linux/smp.h>
e8db0be1 24#include <linux/pm_qos.h>
23606cf5 25#include <linux/pm_runtime.h>
111b9dc5 26#include <linux/aer.h>
70c71606 27#include <linux/prefetch.h>
ccf8b940 28#include <linux/suspend.h>
bc7f75fa
AK
29
30#include "e1000.h"
31
bc7f75fa 32char e1000e_driver_name[] = "e1000e";
bc7f75fa 33
b3f4d599 34#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
35static int debug = -1;
36module_param(debug, int, 0);
37MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
bc7f75fa
AK
39static const struct e1000_info *e1000_info_tbl[] = {
40 [board_82571] = &e1000_82571_info,
41 [board_82572] = &e1000_82572_info,
42 [board_82573] = &e1000_82573_info,
4662e82b 43 [board_82574] = &e1000_82574_info,
8c81c9c3 44 [board_82583] = &e1000_82583_info,
bc7f75fa
AK
45 [board_80003es2lan] = &e1000_es2_info,
46 [board_ich8lan] = &e1000_ich8_info,
47 [board_ich9lan] = &e1000_ich9_info,
f4187b56 48 [board_ich10lan] = &e1000_ich10_info,
a4f58f54 49 [board_pchlan] = &e1000_pch_info,
d3738bb8 50 [board_pch2lan] = &e1000_pch2_info,
2fbe4526 51 [board_pch_lpt] = &e1000_pch_lpt_info,
79849ebc 52 [board_pch_spt] = &e1000_pch_spt_info,
3a3173b9 53 [board_pch_cnp] = &e1000_pch_cnp_info,
280db5d4 54 [board_pch_tgp] = &e1000_pch_tgp_info,
a03c6377 55 [board_pch_adp] = &e1000_pch_adp_info,
bc7f75fa
AK
56};
57
84f4ee90
TI
58struct e1000_reg_info {
59 u32 ofs;
60 char *name;
61};
62
84f4ee90 63static const struct e1000_reg_info e1000_reg_info_tbl[] = {
84f4ee90
TI
64 /* General Registers */
65 {E1000_CTRL, "CTRL"},
66 {E1000_STATUS, "STATUS"},
67 {E1000_CTRL_EXT, "CTRL_EXT"},
68
69 /* Interrupt Registers */
70 {E1000_ICR, "ICR"},
71
af667a29 72 /* Rx Registers */
84f4ee90 73 {E1000_RCTL, "RCTL"},
1e36052e
BA
74 {E1000_RDLEN(0), "RDLEN"},
75 {E1000_RDH(0), "RDH"},
76 {E1000_RDT(0), "RDT"},
84f4ee90
TI
77 {E1000_RDTR, "RDTR"},
78 {E1000_RXDCTL(0), "RXDCTL"},
79 {E1000_ERT, "ERT"},
1e36052e
BA
80 {E1000_RDBAL(0), "RDBAL"},
81 {E1000_RDBAH(0), "RDBAH"},
84f4ee90
TI
82 {E1000_RDFH, "RDFH"},
83 {E1000_RDFT, "RDFT"},
84 {E1000_RDFHS, "RDFHS"},
85 {E1000_RDFTS, "RDFTS"},
86 {E1000_RDFPC, "RDFPC"},
87
af667a29 88 /* Tx Registers */
84f4ee90 89 {E1000_TCTL, "TCTL"},
1e36052e
BA
90 {E1000_TDBAL(0), "TDBAL"},
91 {E1000_TDBAH(0), "TDBAH"},
92 {E1000_TDLEN(0), "TDLEN"},
93 {E1000_TDH(0), "TDH"},
94 {E1000_TDT(0), "TDT"},
84f4ee90
TI
95 {E1000_TIDV, "TIDV"},
96 {E1000_TXDCTL(0), "TXDCTL"},
97 {E1000_TADV, "TADV"},
98 {E1000_TARC(0), "TARC"},
99 {E1000_TDFH, "TDFH"},
100 {E1000_TDFT, "TDFT"},
101 {E1000_TDFHS, "TDFHS"},
102 {E1000_TDFTS, "TDFTS"},
103 {E1000_TDFPC, "TDFPC"},
104
105 /* List Terminator */
f36bb6ca 106 {0, NULL}
84f4ee90
TI
107};
108
c6f3148c
AK
109/**
110 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
111 * @hw: pointer to the HW structure
112 *
113 * When updating the MAC CSR registers, the Manageability Engine (ME) could
114 * be accessing the registers at the same time. Normally, this is handled in
115 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
116 * accesses later than it should which could result in the register to have
117 * an incorrect value. Workaround this by checking the FWSM register which
118 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
119 * and try again a number of times.
120 **/
d601afca 121static void __ew32_prepare(struct e1000_hw *hw)
c6f3148c
AK
122{
123 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
124
125 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
126 udelay(50);
c6f3148c
AK
127}
128
129void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
130{
131 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
132 __ew32_prepare(hw);
133
134 writel(val, hw->hw_addr + reg);
135}
136
e921eb1a 137/**
84f4ee90 138 * e1000_regdump - register printout routine
e921eb1a
BA
139 * @hw: pointer to the HW structure
140 * @reginfo: pointer to the register info table
141 **/
84f4ee90
TI
142static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143{
144 int n = 0;
145 char rname[16];
146 u32 regs[8];
147
148 switch (reginfo->ofs) {
149 case E1000_RXDCTL(0):
150 for (n = 0; n < 2; n++)
151 regs[n] = __er32(hw, E1000_RXDCTL(n));
152 break;
153 case E1000_TXDCTL(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_TXDCTL(n));
156 break;
157 case E1000_TARC(0):
158 for (n = 0; n < 2; n++)
159 regs[n] = __er32(hw, E1000_TARC(n));
160 break;
161 default:
ef456f85
JK
162 pr_info("%-15s %08x\n",
163 reginfo->name, __er32(hw, reginfo->ofs));
84f4ee90
TI
164 return;
165 }
166
167 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
ef456f85 168 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
84f4ee90
TI
169}
170
f0c5dadf
ET
171static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
172 struct e1000_buffer *bi)
173{
174 int i;
175 struct e1000_ps_page *ps_page;
176
177 for (i = 0; i < adapter->rx_ps_pages; i++) {
178 ps_page = &bi->ps_pages[i];
179
180 if (ps_page->page) {
181 pr_info("packet dump for ps_page %d:\n", i);
182 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
183 16, 1, page_address(ps_page->page),
184 PAGE_SIZE, true);
185 }
186 }
187}
188
e921eb1a 189/**
af667a29 190 * e1000e_dump - Print registers, Tx-ring and Rx-ring
e921eb1a
BA
191 * @adapter: board private structure
192 **/
84f4ee90
TI
193static void e1000e_dump(struct e1000_adapter *adapter)
194{
195 struct net_device *netdev = adapter->netdev;
196 struct e1000_hw *hw = &adapter->hw;
197 struct e1000_reg_info *reginfo;
198 struct e1000_ring *tx_ring = adapter->tx_ring;
199 struct e1000_tx_desc *tx_desc;
af667a29 200 struct my_u0 {
e885d762
BA
201 __le64 a;
202 __le64 b;
af667a29 203 } *u0;
84f4ee90
TI
204 struct e1000_buffer *buffer_info;
205 struct e1000_ring *rx_ring = adapter->rx_ring;
206 union e1000_rx_desc_packet_split *rx_desc_ps;
5f450212 207 union e1000_rx_desc_extended *rx_desc;
af667a29 208 struct my_u1 {
e885d762
BA
209 __le64 a;
210 __le64 b;
211 __le64 c;
212 __le64 d;
af667a29 213 } *u1;
84f4ee90
TI
214 u32 staterr;
215 int i = 0;
216
217 if (!netif_msg_hw(adapter))
218 return;
219
220 /* Print netdevice Info */
221 if (netdev) {
222 dev_info(&adapter->pdev->dev, "Net device Info\n");
4a7c9726
TK
223 pr_info("Device Name state trans_start\n");
224 pr_info("%-15s %016lX %016lX\n", netdev->name,
225 netdev->state, dev_trans_start(netdev));
84f4ee90
TI
226 }
227
228 /* Print Registers */
229 dev_info(&adapter->pdev->dev, "Register Dump\n");
ef456f85 230 pr_info(" Register Name Value\n");
84f4ee90
TI
231 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
232 reginfo->name; reginfo++) {
233 e1000_regdump(hw, reginfo);
234 }
235
af667a29 236 /* Print Tx Ring Summary */
84f4ee90 237 if (!netdev || !netif_running(netdev))
fe1e980f 238 return;
84f4ee90 239
af667a29 240 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
ef456f85 241 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
84f4ee90 242 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
ef456f85
JK
243 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
244 0, tx_ring->next_to_use, tx_ring->next_to_clean,
245 (unsigned long long)buffer_info->dma,
246 buffer_info->length,
247 buffer_info->next_to_watch,
248 (unsigned long long)buffer_info->time_stamp);
84f4ee90 249
af667a29 250 /* Print Tx Ring */
84f4ee90
TI
251 if (!netif_msg_tx_done(adapter))
252 goto rx_ring_summary;
253
af667a29 254 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
84f4ee90
TI
255
256 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
257 *
258 * Legacy Transmit Descriptor
259 * +--------------------------------------------------------------+
260 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
261 * +--------------------------------------------------------------+
262 * 8 | Special | CSS | Status | CMD | CSO | Length |
263 * +--------------------------------------------------------------+
264 * 63 48 47 36 35 32 31 24 23 16 15 0
265 *
266 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
267 * 63 48 47 40 39 32 31 16 15 8 7 0
268 * +----------------------------------------------------------------+
269 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
270 * +----------------------------------------------------------------+
271 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
272 * +----------------------------------------------------------------+
273 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 *
275 * Extended Data Descriptor (DTYP=0x1)
276 * +----------------------------------------------------------------+
277 * 0 | Buffer Address [63:0] |
278 * +----------------------------------------------------------------+
279 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
280 * +----------------------------------------------------------------+
281 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
282 */
ef456f85
JK
283 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
284 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
285 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
84f4ee90 286 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
ef456f85 287 const char *next_desc;
84f4ee90
TI
288 tx_desc = E1000_TX_DESC(*tx_ring, i);
289 buffer_info = &tx_ring->buffer_info[i];
290 u0 = (struct my_u0 *)tx_desc;
84f4ee90 291 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
ef456f85 292 next_desc = " NTC/U";
84f4ee90 293 else if (i == tx_ring->next_to_use)
ef456f85 294 next_desc = " NTU";
84f4ee90 295 else if (i == tx_ring->next_to_clean)
ef456f85 296 next_desc = " NTC";
84f4ee90 297 else
ef456f85
JK
298 next_desc = "";
299 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
18dd2392
JK
300 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
301 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
ef456f85
JK
302 i,
303 (unsigned long long)le64_to_cpu(u0->a),
304 (unsigned long long)le64_to_cpu(u0->b),
305 (unsigned long long)buffer_info->dma,
306 buffer_info->length, buffer_info->next_to_watch,
307 (unsigned long long)buffer_info->time_stamp,
308 buffer_info->skb, next_desc);
84f4ee90 309
f0c5dadf 310 if (netif_msg_pktdata(adapter) && buffer_info->skb)
84f4ee90 311 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
f0c5dadf
ET
312 16, 1, buffer_info->skb->data,
313 buffer_info->skb->len, true);
84f4ee90
TI
314 }
315
af667a29 316 /* Print Rx Ring Summary */
84f4ee90 317rx_ring_summary:
af667a29 318 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
ef456f85
JK
319 pr_info("Queue [NTU] [NTC]\n");
320 pr_info(" %5d %5X %5X\n",
321 0, rx_ring->next_to_use, rx_ring->next_to_clean);
84f4ee90 322
af667a29 323 /* Print Rx Ring */
84f4ee90 324 if (!netif_msg_rx_status(adapter))
fe1e980f 325 return;
84f4ee90 326
af667a29 327 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
84f4ee90
TI
328 switch (adapter->rx_ps_pages) {
329 case 1:
330 case 2:
331 case 3:
332 /* [Extended] Packet Split Receive Descriptor Format
333 *
334 * +-----------------------------------------------------+
335 * 0 | Buffer Address 0 [63:0] |
336 * +-----------------------------------------------------+
337 * 8 | Buffer Address 1 [63:0] |
338 * +-----------------------------------------------------+
339 * 16 | Buffer Address 2 [63:0] |
340 * +-----------------------------------------------------+
341 * 24 | Buffer Address 3 [63:0] |
342 * +-----------------------------------------------------+
343 */
ef456f85 344 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
84f4ee90
TI
345 /* [Extended] Receive Descriptor (Write-Back) Format
346 *
347 * 63 48 47 32 31 13 12 8 7 4 3 0
348 * +------------------------------------------------------+
349 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
350 * | Checksum | Ident | | Queue | | Type |
351 * +------------------------------------------------------+
352 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
353 * +------------------------------------------------------+
354 * 63 48 47 32 31 20 19 0
355 */
ef456f85 356 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
84f4ee90 357 for (i = 0; i < rx_ring->count; i++) {
ef456f85 358 const char *next_desc;
84f4ee90
TI
359 buffer_info = &rx_ring->buffer_info[i];
360 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
361 u1 = (struct my_u1 *)rx_desc_ps;
362 staterr =
af667a29 363 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
ef456f85
JK
364
365 if (i == rx_ring->next_to_use)
366 next_desc = " NTU";
367 else if (i == rx_ring->next_to_clean)
368 next_desc = " NTC";
369 else
370 next_desc = "";
371
84f4ee90
TI
372 if (staterr & E1000_RXD_STAT_DD) {
373 /* Descriptor Done */
ef456f85
JK
374 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
375 "RWB", i,
376 (unsigned long long)le64_to_cpu(u1->a),
377 (unsigned long long)le64_to_cpu(u1->b),
378 (unsigned long long)le64_to_cpu(u1->c),
379 (unsigned long long)le64_to_cpu(u1->d),
380 buffer_info->skb, next_desc);
84f4ee90 381 } else {
ef456f85
JK
382 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
383 "R ", i,
384 (unsigned long long)le64_to_cpu(u1->a),
385 (unsigned long long)le64_to_cpu(u1->b),
386 (unsigned long long)le64_to_cpu(u1->c),
387 (unsigned long long)le64_to_cpu(u1->d),
388 (unsigned long long)buffer_info->dma,
389 buffer_info->skb, next_desc);
84f4ee90
TI
390
391 if (netif_msg_pktdata(adapter))
f0c5dadf
ET
392 e1000e_dump_ps_pages(adapter,
393 buffer_info);
84f4ee90 394 }
84f4ee90
TI
395 }
396 break;
397 default:
398 case 0:
5f450212 399 /* Extended Receive Descriptor (Read) Format
84f4ee90 400 *
5f450212
BA
401 * +-----------------------------------------------------+
402 * 0 | Buffer Address [63:0] |
403 * +-----------------------------------------------------+
404 * 8 | Reserved |
405 * +-----------------------------------------------------+
84f4ee90 406 */
ef456f85 407 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
5f450212
BA
408 /* Extended Receive Descriptor (Write-Back) Format
409 *
410 * 63 48 47 32 31 24 23 4 3 0
411 * +------------------------------------------------------+
412 * | RSS Hash | | | |
413 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
414 * | Packet | IP | | | Type |
415 * | Checksum | Ident | | | |
416 * +------------------------------------------------------+
417 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
418 * +------------------------------------------------------+
419 * 63 48 47 32 31 20 19 0
420 */
ef456f85 421 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
5f450212
BA
422
423 for (i = 0; i < rx_ring->count; i++) {
ef456f85
JK
424 const char *next_desc;
425
84f4ee90 426 buffer_info = &rx_ring->buffer_info[i];
5f450212
BA
427 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
428 u1 = (struct my_u1 *)rx_desc;
429 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
ef456f85
JK
430
431 if (i == rx_ring->next_to_use)
432 next_desc = " NTU";
433 else if (i == rx_ring->next_to_clean)
434 next_desc = " NTC";
435 else
436 next_desc = "";
437
5f450212
BA
438 if (staterr & E1000_RXD_STAT_DD) {
439 /* Descriptor Done */
ef456f85
JK
440 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
441 "RWB", i,
442 (unsigned long long)le64_to_cpu(u1->a),
443 (unsigned long long)le64_to_cpu(u1->b),
444 buffer_info->skb, next_desc);
5f450212 445 } else {
ef456f85
JK
446 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
447 "R ", i,
448 (unsigned long long)le64_to_cpu(u1->a),
449 (unsigned long long)le64_to_cpu(u1->b),
450 (unsigned long long)buffer_info->dma,
451 buffer_info->skb, next_desc);
5f450212 452
f0c5dadf
ET
453 if (netif_msg_pktdata(adapter) &&
454 buffer_info->skb)
5f450212
BA
455 print_hex_dump(KERN_INFO, "",
456 DUMP_PREFIX_ADDRESS, 16,
457 1,
f0c5dadf 458 buffer_info->skb->data,
5f450212
BA
459 adapter->rx_buffer_len,
460 true);
461 }
84f4ee90
TI
462 }
463 }
84f4ee90
TI
464}
465
bc7f75fa
AK
466/**
467 * e1000_desc_unused - calculate if we have unused descriptors
b50f7bca 468 * @ring: pointer to ring struct to perform calculation on
bc7f75fa
AK
469 **/
470static int e1000_desc_unused(struct e1000_ring *ring)
471{
472 if (ring->next_to_clean > ring->next_to_use)
473 return ring->next_to_clean - ring->next_to_use - 1;
474
475 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476}
477
b67e1913
BA
478/**
479 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
480 * @adapter: board private structure
481 * @hwtstamps: time stamp structure to update
482 * @systim: unsigned 64bit system time value.
483 *
484 * Convert the system time value stored in the RX/TXSTMP registers into a
485 * hwtstamp which can be used by the upper level time stamping functions.
486 *
487 * The 'systim_lock' spinlock is used to protect the consistency of the
488 * system time value. This is needed because reading the 64 bit time
489 * value involves reading two 32 bit registers. The first read latches the
490 * value.
491 **/
492static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
493 struct skb_shared_hwtstamps *hwtstamps,
494 u64 systim)
495{
496 u64 ns;
497 unsigned long flags;
498
499 spin_lock_irqsave(&adapter->systim_lock, flags);
500 ns = timecounter_cyc2time(&adapter->tc, systim);
501 spin_unlock_irqrestore(&adapter->systim_lock, flags);
502
503 memset(hwtstamps, 0, sizeof(*hwtstamps));
504 hwtstamps->hwtstamp = ns_to_ktime(ns);
505}
506
507/**
508 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
509 * @adapter: board private structure
510 * @status: descriptor extended error and status field
511 * @skb: particular skb to include time stamp
512 *
513 * If the time stamp is valid, convert it into the timecounter ns value
514 * and store that result into the shhwtstamps structure which is passed
515 * up the network stack.
516 **/
517static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518 struct sk_buff *skb)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 u64 rxstmp;
522
523 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
524 !(status & E1000_RXDEXT_STATERR_TST) ||
525 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526 return;
527
528 /* The Rx time stamp registers contain the time stamp. No other
529 * received packet will be time stamped until the Rx time stamp
530 * registers are read. Because only one packet can be time stamped
531 * at a time, the register values must belong to this packet and
532 * therefore none of the other additional attributes need to be
533 * compared.
534 */
535 rxstmp = (u64)er32(RXSTMPL);
536 rxstmp |= (u64)er32(RXSTMPH) << 32;
537 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
538
539 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540}
541
bc7f75fa 542/**
ad68076e 543 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa 544 * @adapter: board private structure
b50f7bca 545 * @netdev: pointer to netdev struct
b67e1913 546 * @staterr: descriptor extended error and status field as written by hardware
bc7f75fa
AK
547 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
548 * @skb: pointer to sk_buff to be indicated to stack
549 **/
550static void e1000_receive_skb(struct e1000_adapter *adapter,
af667a29 551 struct net_device *netdev, struct sk_buff *skb,
b67e1913 552 u32 staterr, __le16 vlan)
bc7f75fa 553{
86d70e53 554 u16 tag = le16_to_cpu(vlan);
b67e1913
BA
555
556 e1000e_rx_hwtstamp(adapter, staterr, skb);
557
bc7f75fa
AK
558 skb->protocol = eth_type_trans(skb, netdev);
559
b67e1913 560 if (staterr & E1000_RXD_STAT_VP)
86a9bad3 561 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
86d70e53
JK
562
563 napi_gro_receive(&adapter->napi, skb);
bc7f75fa
AK
564}
565
566/**
af667a29 567 * e1000_rx_checksum - Receive Checksum Offload
afd12939
BA
568 * @adapter: board private structure
569 * @status_err: receive descriptor status and error fields
b50f7bca 570 * @skb: socket buffer with received data
bc7f75fa
AK
571 **/
572static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
2e1706f2 573 struct sk_buff *skb)
bc7f75fa
AK
574{
575 u16 status = (u16)status_err;
576 u8 errors = (u8)(status_err >> 24);
bc8acf2c
ED
577
578 skb_checksum_none_assert(skb);
bc7f75fa 579
afd12939
BA
580 /* Rx checksum disabled */
581 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582 return;
583
bc7f75fa
AK
584 /* Ignore Checksum bit is set */
585 if (status & E1000_RXD_STAT_IXSM)
586 return;
afd12939 587
2e1706f2
BA
588 /* TCP/UDP checksum error bit or IP checksum error bit is set */
589 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
bc7f75fa
AK
590 /* let the stack verify checksum errors */
591 adapter->hw_csum_err++;
592 return;
593 }
594
595 /* TCP/UDP Checksum has not been calculated */
596 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597 return;
598
599 /* It must be a TCP or UDP packet with a valid checksum */
2e1706f2 600 skb->ip_summed = CHECKSUM_UNNECESSARY;
bc7f75fa
AK
601 adapter->hw_csum_good++;
602}
603
55aa6985 604static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
c6e7f51e 605{
55aa6985 606 struct e1000_adapter *adapter = rx_ring->adapter;
c6e7f51e 607 struct e1000_hw *hw = &adapter->hw;
bdc125f7 608
d601afca 609 __ew32_prepare(hw);
bdc125f7 610 writel(i, rx_ring->tail);
c6e7f51e 611
d601afca 612 if (unlikely(i != readl(rx_ring->tail))) {
c6e7f51e 613 u32 rctl = er32(RCTL);
6cf08d1c 614
c6e7f51e
BA
615 ew32(RCTL, rctl & ~E1000_RCTL_EN);
616 e_err("ME firmware caused invalid RDT - resetting\n");
617 schedule_work(&adapter->reset_task);
618 }
619}
620
55aa6985 621static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
c6e7f51e 622{
55aa6985 623 struct e1000_adapter *adapter = tx_ring->adapter;
c6e7f51e
BA
624 struct e1000_hw *hw = &adapter->hw;
625
d601afca 626 __ew32_prepare(hw);
bdc125f7
BA
627 writel(i, tx_ring->tail);
628
d601afca 629 if (unlikely(i != readl(tx_ring->tail))) {
c6e7f51e 630 u32 tctl = er32(TCTL);
6cf08d1c 631
c6e7f51e
BA
632 ew32(TCTL, tctl & ~E1000_TCTL_EN);
633 e_err("ME firmware caused invalid TDT - resetting\n");
634 schedule_work(&adapter->reset_task);
635 }
636}
637
bc7f75fa 638/**
5f450212 639 * e1000_alloc_rx_buffers - Replace used receive buffers
55aa6985 640 * @rx_ring: Rx descriptor ring
b50f7bca
JB
641 * @cleaned_count: number to reallocate
642 * @gfp: flags for allocation
bc7f75fa 643 **/
55aa6985 644static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
c2fed996 645 int cleaned_count, gfp_t gfp)
bc7f75fa 646{
55aa6985 647 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
648 struct net_device *netdev = adapter->netdev;
649 struct pci_dev *pdev = adapter->pdev;
5f450212 650 union e1000_rx_desc_extended *rx_desc;
bc7f75fa
AK
651 struct e1000_buffer *buffer_info;
652 struct sk_buff *skb;
653 unsigned int i;
89d71a66 654 unsigned int bufsz = adapter->rx_buffer_len;
bc7f75fa
AK
655
656 i = rx_ring->next_to_use;
657 buffer_info = &rx_ring->buffer_info[i];
658
659 while (cleaned_count--) {
660 skb = buffer_info->skb;
661 if (skb) {
662 skb_trim(skb, 0);
663 goto map_skb;
664 }
665
c2fed996 666 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
bc7f75fa
AK
667 if (!skb) {
668 /* Better luck next round */
669 adapter->alloc_rx_buff_failed++;
670 break;
671 }
672
bc7f75fa
AK
673 buffer_info->skb = skb;
674map_skb:
0be3f55f 675 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
bc7f75fa 676 adapter->rx_buffer_len,
0be3f55f
NN
677 DMA_FROM_DEVICE);
678 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
af667a29 679 dev_err(&pdev->dev, "Rx DMA map failed\n");
bc7f75fa
AK
680 adapter->rx_dma_failed++;
681 break;
682 }
683
5f450212
BA
684 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
bc7f75fa 686
50849d79 687 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
e921eb1a 688 /* Force memory writes to complete before letting h/w
50849d79
TH
689 * know there are new descriptors to fetch. (Only
690 * applicable for weak-ordered memory model archs,
691 * such as IA-64).
692 */
693 wmb();
c6e7f51e 694 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 695 e1000e_update_rdt_wa(rx_ring, i);
c6e7f51e 696 else
c5083cf6 697 writel(i, rx_ring->tail);
50849d79 698 }
bc7f75fa
AK
699 i++;
700 if (i == rx_ring->count)
701 i = 0;
702 buffer_info = &rx_ring->buffer_info[i];
703 }
704
50849d79 705 rx_ring->next_to_use = i;
bc7f75fa
AK
706}
707
708/**
709 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
55aa6985 710 * @rx_ring: Rx descriptor ring
b50f7bca
JB
711 * @cleaned_count: number to reallocate
712 * @gfp: flags for allocation
bc7f75fa 713 **/
55aa6985 714static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
c2fed996 715 int cleaned_count, gfp_t gfp)
bc7f75fa 716{
55aa6985 717 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
718 struct net_device *netdev = adapter->netdev;
719 struct pci_dev *pdev = adapter->pdev;
720 union e1000_rx_desc_packet_split *rx_desc;
bc7f75fa
AK
721 struct e1000_buffer *buffer_info;
722 struct e1000_ps_page *ps_page;
723 struct sk_buff *skb;
724 unsigned int i, j;
725
726 i = rx_ring->next_to_use;
727 buffer_info = &rx_ring->buffer_info[i];
728
729 while (cleaned_count--) {
730 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731
732 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
733 ps_page = &buffer_info->ps_pages[j];
734 if (j >= adapter->rx_ps_pages) {
735 /* all unused desc entries get hw null ptr */
af667a29
BA
736 rx_desc->read.buffer_addr[j + 1] =
737 ~cpu_to_le64(0);
47f44e40
AK
738 continue;
739 }
740 if (!ps_page->page) {
c2fed996 741 ps_page->page = alloc_page(gfp);
bc7f75fa 742 if (!ps_page->page) {
47f44e40
AK
743 adapter->alloc_rx_buff_failed++;
744 goto no_buffers;
745 }
0be3f55f
NN
746 ps_page->dma = dma_map_page(&pdev->dev,
747 ps_page->page,
748 0, PAGE_SIZE,
749 DMA_FROM_DEVICE);
750 if (dma_mapping_error(&pdev->dev,
751 ps_page->dma)) {
47f44e40 752 dev_err(&adapter->pdev->dev,
af667a29 753 "Rx DMA page map failed\n");
47f44e40
AK
754 adapter->rx_dma_failed++;
755 goto no_buffers;
bc7f75fa 756 }
bc7f75fa 757 }
e921eb1a 758 /* Refresh the desc even if buffer_addrs
47f44e40
AK
759 * didn't change because each write-back
760 * erases this info.
761 */
af667a29
BA
762 rx_desc->read.buffer_addr[j + 1] =
763 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
764 }
765
e5fe2541 766 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
c2fed996 767 gfp);
bc7f75fa
AK
768
769 if (!skb) {
770 adapter->alloc_rx_buff_failed++;
771 break;
772 }
773
bc7f75fa 774 buffer_info->skb = skb;
0be3f55f 775 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
bc7f75fa 776 adapter->rx_ps_bsize0,
0be3f55f
NN
777 DMA_FROM_DEVICE);
778 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
af667a29 779 dev_err(&pdev->dev, "Rx DMA map failed\n");
bc7f75fa
AK
780 adapter->rx_dma_failed++;
781 /* cleanup skb */
782 dev_kfree_skb_any(skb);
783 buffer_info->skb = NULL;
784 break;
785 }
786
787 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
788
50849d79 789 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
e921eb1a 790 /* Force memory writes to complete before letting h/w
50849d79
TH
791 * know there are new descriptors to fetch. (Only
792 * applicable for weak-ordered memory model archs,
793 * such as IA-64).
794 */
795 wmb();
c6e7f51e 796 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 797 e1000e_update_rdt_wa(rx_ring, i << 1);
c6e7f51e 798 else
c5083cf6 799 writel(i << 1, rx_ring->tail);
50849d79
TH
800 }
801
bc7f75fa
AK
802 i++;
803 if (i == rx_ring->count)
804 i = 0;
805 buffer_info = &rx_ring->buffer_info[i];
806 }
807
808no_buffers:
50849d79 809 rx_ring->next_to_use = i;
bc7f75fa
AK
810}
811
97ac8cae
BA
812/**
813 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
55aa6985 814 * @rx_ring: Rx descriptor ring
97ac8cae 815 * @cleaned_count: number of buffers to allocate this pass
b50f7bca 816 * @gfp: flags for allocation
97ac8cae
BA
817 **/
818
55aa6985 819static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
c2fed996 820 int cleaned_count, gfp_t gfp)
97ac8cae 821{
55aa6985 822 struct e1000_adapter *adapter = rx_ring->adapter;
97ac8cae
BA
823 struct net_device *netdev = adapter->netdev;
824 struct pci_dev *pdev = adapter->pdev;
5f450212 825 union e1000_rx_desc_extended *rx_desc;
97ac8cae
BA
826 struct e1000_buffer *buffer_info;
827 struct sk_buff *skb;
828 unsigned int i;
2a2293b9 829 unsigned int bufsz = 256 - 16; /* for skb_reserve */
97ac8cae
BA
830
831 i = rx_ring->next_to_use;
832 buffer_info = &rx_ring->buffer_info[i];
833
834 while (cleaned_count--) {
835 skb = buffer_info->skb;
836 if (skb) {
837 skb_trim(skb, 0);
838 goto check_page;
839 }
840
c2fed996 841 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
97ac8cae
BA
842 if (unlikely(!skb)) {
843 /* Better luck next round */
844 adapter->alloc_rx_buff_failed++;
845 break;
846 }
847
97ac8cae
BA
848 buffer_info->skb = skb;
849check_page:
850 /* allocate a new page if necessary */
851 if (!buffer_info->page) {
c2fed996 852 buffer_info->page = alloc_page(gfp);
97ac8cae
BA
853 if (unlikely(!buffer_info->page)) {
854 adapter->alloc_rx_buff_failed++;
855 break;
856 }
857 }
858
37287fae 859 if (!buffer_info->dma) {
0be3f55f 860 buffer_info->dma = dma_map_page(&pdev->dev,
f0ff4398
BA
861 buffer_info->page, 0,
862 PAGE_SIZE,
0be3f55f 863 DMA_FROM_DEVICE);
37287fae
CP
864 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
865 adapter->alloc_rx_buff_failed++;
866 break;
867 }
868 }
97ac8cae 869
5f450212
BA
870 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
871 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
97ac8cae
BA
872
873 if (unlikely(++i == rx_ring->count))
874 i = 0;
875 buffer_info = &rx_ring->buffer_info[i];
876 }
877
878 if (likely(rx_ring->next_to_use != i)) {
879 rx_ring->next_to_use = i;
880 if (unlikely(i-- == 0))
881 i = (rx_ring->count - 1);
882
883 /* Force memory writes to complete before letting h/w
884 * know there are new descriptors to fetch. (Only
885 * applicable for weak-ordered memory model archs,
e921eb1a
BA
886 * such as IA-64).
887 */
97ac8cae 888 wmb();
c6e7f51e 889 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 890 e1000e_update_rdt_wa(rx_ring, i);
c6e7f51e 891 else
c5083cf6 892 writel(i, rx_ring->tail);
97ac8cae
BA
893 }
894}
895
70495a50
BA
896static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
897 struct sk_buff *skb)
898{
899 if (netdev->features & NETIF_F_RXHASH)
e25909bc 900 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
70495a50
BA
901}
902
bc7f75fa 903/**
55aa6985
BA
904 * e1000_clean_rx_irq - Send received data up the network stack
905 * @rx_ring: Rx descriptor ring
b50f7bca
JB
906 * @work_done: output parameter for indicating completed work
907 * @work_to_do: how many packets we can clean
bc7f75fa
AK
908 *
909 * the return value indicates whether actual cleaning was done, there
910 * is no guarantee that everything was cleaned
911 **/
55aa6985
BA
912static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
913 int work_to_do)
bc7f75fa 914{
55aa6985 915 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
916 struct net_device *netdev = adapter->netdev;
917 struct pci_dev *pdev = adapter->pdev;
3bb99fe2 918 struct e1000_hw *hw = &adapter->hw;
5f450212 919 union e1000_rx_desc_extended *rx_desc, *next_rxd;
bc7f75fa 920 struct e1000_buffer *buffer_info, *next_buffer;
5f450212 921 u32 length, staterr;
bc7f75fa
AK
922 unsigned int i;
923 int cleaned_count = 0;
3db1cd5c 924 bool cleaned = false;
bc7f75fa
AK
925 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
926
927 i = rx_ring->next_to_clean;
5f450212
BA
928 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
929 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
bc7f75fa
AK
930 buffer_info = &rx_ring->buffer_info[i];
931
5f450212 932 while (staterr & E1000_RXD_STAT_DD) {
bc7f75fa 933 struct sk_buff *skb;
bc7f75fa
AK
934
935 if (*work_done >= work_to_do)
936 break;
937 (*work_done)++;
837a1dba 938 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
bc7f75fa 939
bc7f75fa
AK
940 skb = buffer_info->skb;
941 buffer_info->skb = NULL;
942
943 prefetch(skb->data - NET_IP_ALIGN);
944
945 i++;
946 if (i == rx_ring->count)
947 i = 0;
5f450212 948 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
bc7f75fa
AK
949 prefetch(next_rxd);
950
951 next_buffer = &rx_ring->buffer_info[i];
952
3db1cd5c 953 cleaned = true;
bc7f75fa 954 cleaned_count++;
e5fe2541
BA
955 dma_unmap_single(&pdev->dev, buffer_info->dma,
956 adapter->rx_buffer_len, DMA_FROM_DEVICE);
bc7f75fa
AK
957 buffer_info->dma = 0;
958
5f450212 959 length = le16_to_cpu(rx_desc->wb.upper.length);
bc7f75fa 960
e921eb1a 961 /* !EOP means multiple descriptors were used to store a single
b94b5028
JB
962 * packet, if that's the case we need to toss it. In fact, we
963 * need to toss every packet with the EOP bit clear and the
964 * next frame that _does_ have the EOP bit set, as it is by
965 * definition only a frame fragment
966 */
5f450212 967 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
b94b5028
JB
968 adapter->flags2 |= FLAG2_IS_DISCARDING;
969
970 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
bc7f75fa 971 /* All receives must fit into a single buffer */
3bb99fe2 972 e_dbg("Receive packet consumed multiple buffers\n");
bc7f75fa
AK
973 /* recycle */
974 buffer_info->skb = skb;
5f450212 975 if (staterr & E1000_RXD_STAT_EOP)
b94b5028 976 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
977 goto next_desc;
978 }
979
cf955e6c
BG
980 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
981 !(netdev->features & NETIF_F_RXALL))) {
bc7f75fa
AK
982 /* recycle */
983 buffer_info->skb = skb;
984 goto next_desc;
985 }
986
eb7c3adb 987 /* adjust length to remove Ethernet CRC */
0184039a
BG
988 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
989 /* If configured to store CRC, don't subtract FCS,
990 * but keep the FCS bytes out of the total_rx_bytes
991 * counter
992 */
993 if (netdev->features & NETIF_F_RXFCS)
994 total_rx_bytes -= 4;
995 else
996 length -= 4;
997 }
eb7c3adb 998
bc7f75fa
AK
999 total_rx_bytes += length;
1000 total_rx_packets++;
1001
e921eb1a 1002 /* code added for copybreak, this should improve
bc7f75fa 1003 * performance for small packets with large amounts
ad68076e
BA
1004 * of reassembly being done in the stack
1005 */
bc7f75fa
AK
1006 if (length < copybreak) {
1007 struct sk_buff *new_skb =
67fd893e 1008 napi_alloc_skb(&adapter->napi, length);
bc7f75fa 1009 if (new_skb) {
808ff676
BA
1010 skb_copy_to_linear_data_offset(new_skb,
1011 -NET_IP_ALIGN,
1012 (skb->data -
1013 NET_IP_ALIGN),
1014 (length +
1015 NET_IP_ALIGN));
bc7f75fa
AK
1016 /* save the skb in buffer_info as good */
1017 buffer_info->skb = skb;
1018 skb = new_skb;
1019 }
1020 /* else just continue with the old one */
1021 }
1022 /* end copybreak code */
1023 skb_put(skb, length);
1024
1025 /* Receive Checksum Offload */
2e1706f2 1026 e1000_rx_checksum(adapter, staterr, skb);
bc7f75fa 1027
70495a50
BA
1028 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1029
5f450212
BA
1030 e1000_receive_skb(adapter, netdev, skb, staterr,
1031 rx_desc->wb.upper.vlan);
bc7f75fa
AK
1032
1033next_desc:
5f450212 1034 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
bc7f75fa
AK
1035
1036 /* return some buffers to hardware, one at a time is too slow */
1037 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
55aa6985 1038 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1039 GFP_ATOMIC);
bc7f75fa
AK
1040 cleaned_count = 0;
1041 }
1042
1043 /* use prefetched values */
1044 rx_desc = next_rxd;
1045 buffer_info = next_buffer;
5f450212
BA
1046
1047 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
bc7f75fa
AK
1048 }
1049 rx_ring->next_to_clean = i;
1050
1051 cleaned_count = e1000_desc_unused(rx_ring);
1052 if (cleaned_count)
55aa6985 1053 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
bc7f75fa 1054
bc7f75fa 1055 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 1056 adapter->total_rx_packets += total_rx_packets;
bc7f75fa
AK
1057 return cleaned;
1058}
1059
55aa6985 1060static void e1000_put_txbuf(struct e1000_ring *tx_ring,
377b6273
FF
1061 struct e1000_buffer *buffer_info,
1062 bool drop)
bc7f75fa 1063{
55aa6985
BA
1064 struct e1000_adapter *adapter = tx_ring->adapter;
1065
03b1320d
AD
1066 if (buffer_info->dma) {
1067 if (buffer_info->mapped_as_page)
0be3f55f
NN
1068 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1069 buffer_info->length, DMA_TO_DEVICE);
03b1320d 1070 else
0be3f55f
NN
1071 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1072 buffer_info->length, DMA_TO_DEVICE);
03b1320d
AD
1073 buffer_info->dma = 0;
1074 }
bc7f75fa 1075 if (buffer_info->skb) {
377b6273
FF
1076 if (drop)
1077 dev_kfree_skb_any(buffer_info->skb);
1078 else
1079 dev_consume_skb_any(buffer_info->skb);
bc7f75fa
AK
1080 buffer_info->skb = NULL;
1081 }
1b7719c4 1082 buffer_info->time_stamp = 0;
bc7f75fa
AK
1083}
1084
41cec6f1 1085static void e1000_print_hw_hang(struct work_struct *work)
bc7f75fa 1086{
41cec6f1 1087 struct e1000_adapter *adapter = container_of(work,
f0ff4398
BA
1088 struct e1000_adapter,
1089 print_hang_task);
09357b00 1090 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1091 struct e1000_ring *tx_ring = adapter->tx_ring;
1092 unsigned int i = tx_ring->next_to_clean;
1093 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1094 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
41cec6f1
BA
1095 struct e1000_hw *hw = &adapter->hw;
1096 u16 phy_status, phy_1000t_status, phy_ext_status;
1097 u16 pci_status;
1098
615b32af
JB
1099 if (test_bit(__E1000_DOWN, &adapter->state))
1100 return;
1101
e5fe2541 1102 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
e921eb1a 1103 /* May be block on write-back, flush and detect again
09357b00
JK
1104 * flush pending descriptor writebacks to memory
1105 */
1106 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1107 /* execute the writes immediately */
1108 e1e_flush();
e921eb1a 1109 /* Due to rare timing issues, write to TIDV again to ensure
bf03085f
MV
1110 * the write is successful
1111 */
1112 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1113 /* execute the writes immediately */
1114 e1e_flush();
09357b00
JK
1115 adapter->tx_hang_recheck = true;
1116 return;
1117 }
09357b00 1118 adapter->tx_hang_recheck = false;
d9554e96
DE
1119
1120 if (er32(TDH(0)) == er32(TDT(0))) {
1121 e_dbg("false hang detected, ignoring\n");
1122 return;
1123 }
1124
1125 /* Real hang detected */
09357b00
JK
1126 netif_stop_queue(netdev);
1127
c2ade1a4
BA
1128 e1e_rphy(hw, MII_BMSR, &phy_status);
1129 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1130 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
bc7f75fa 1131
41cec6f1
BA
1132 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1133
1134 /* detected Hardware unit hang */
1135 e_err("Detected Hardware Unit Hang:\n"
44defeb3
JK
1136 " TDH <%x>\n"
1137 " TDT <%x>\n"
1138 " next_to_use <%x>\n"
1139 " next_to_clean <%x>\n"
1140 "buffer_info[next_to_clean]:\n"
1141 " time_stamp <%lx>\n"
1142 " next_to_watch <%x>\n"
1143 " jiffies <%lx>\n"
41cec6f1
BA
1144 " next_to_watch.status <%x>\n"
1145 "MAC Status <%x>\n"
1146 "PHY Status <%x>\n"
1147 "PHY 1000BASE-T Status <%x>\n"
1148 "PHY Extended Status <%x>\n"
1149 "PCI Status <%x>\n",
e5fe2541
BA
1150 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1151 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1152 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1153 phy_status, phy_1000t_status, phy_ext_status, pci_status);
7c0427ee 1154
d9554e96
DE
1155 e1000e_dump(adapter);
1156
7c0427ee
BA
1157 /* Suggest workaround for known h/w issue */
1158 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1159 e_err("Try turning off Tx pause (flow control) via ethtool\n");
bc7f75fa
AK
1160}
1161
b67e1913
BA
1162/**
1163 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1164 * @work: pointer to work struct
1165 *
1166 * This work function polls the TSYNCTXCTL valid bit to determine when a
1167 * timestamp has been taken for the current stored skb. The timestamp must
1168 * be for this skb because only one such packet is allowed in the queue.
1169 */
1170static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1171{
1172 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1173 tx_hwtstamp_work);
1174 struct e1000_hw *hw = &adapter->hw;
1175
b67e1913 1176 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
5012863b 1177 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
b67e1913
BA
1178 struct skb_shared_hwtstamps shhwtstamps;
1179 u64 txstmp;
1180
1181 txstmp = er32(TXSTMPL);
1182 txstmp |= (u64)er32(TXSTMPH) << 32;
1183
1184 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1185
5012863b
JK
1186 /* Clear the global tx_hwtstamp_skb pointer and force writes
1187 * prior to notifying the stack of a Tx timestamp.
1188 */
b67e1913 1189 adapter->tx_hwtstamp_skb = NULL;
5012863b
JK
1190 wmb(); /* force write prior to skb_tstamp_tx */
1191
1192 skb_tstamp_tx(skb, &shhwtstamps);
377b6273 1193 dev_consume_skb_any(skb);
59c871c5
JK
1194 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1195 + adapter->tx_timeout_factor * HZ)) {
1196 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1197 adapter->tx_hwtstamp_skb = NULL;
1198 adapter->tx_hwtstamp_timeouts++;
c5ffe7e1 1199 e_warn("clearing Tx timestamp hang\n");
b67e1913
BA
1200 } else {
1201 /* reschedule to check later */
1202 schedule_work(&adapter->tx_hwtstamp_work);
1203 }
1204}
1205
bc7f75fa
AK
1206/**
1207 * e1000_clean_tx_irq - Reclaim resources after transmit completes
55aa6985 1208 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
1209 *
1210 * the return value indicates whether actual cleaning was done, there
1211 * is no guarantee that everything was cleaned
1212 **/
55aa6985 1213static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
bc7f75fa 1214{
55aa6985 1215 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
1216 struct net_device *netdev = adapter->netdev;
1217 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
1218 struct e1000_tx_desc *tx_desc, *eop_desc;
1219 struct e1000_buffer *buffer_info;
1220 unsigned int i, eop;
1221 unsigned int count = 0;
bc7f75fa 1222 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3f0cfa3b 1223 unsigned int bytes_compl = 0, pkts_compl = 0;
bc7f75fa
AK
1224
1225 i = tx_ring->next_to_clean;
1226 eop = tx_ring->buffer_info[i].next_to_watch;
1227 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228
12d04a3c
AD
1229 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1230 (count < tx_ring->count)) {
a86043c2 1231 bool cleaned = false;
6cf08d1c 1232
837a1dba 1233 dma_rmb(); /* read buffer_info after eop_desc */
a86043c2 1234 for (; !cleaned; count++) {
bc7f75fa
AK
1235 tx_desc = E1000_TX_DESC(*tx_ring, i);
1236 buffer_info = &tx_ring->buffer_info[i];
1237 cleaned = (i == eop);
1238
1239 if (cleaned) {
9ed318d5
TH
1240 total_tx_packets += buffer_info->segs;
1241 total_tx_bytes += buffer_info->bytecount;
3f0cfa3b
TH
1242 if (buffer_info->skb) {
1243 bytes_compl += buffer_info->skb->len;
1244 pkts_compl++;
1245 }
bc7f75fa
AK
1246 }
1247
377b6273 1248 e1000_put_txbuf(tx_ring, buffer_info, false);
bc7f75fa
AK
1249 tx_desc->upper.data = 0;
1250
1251 i++;
1252 if (i == tx_ring->count)
1253 i = 0;
1254 }
1255
dac87619
TL
1256 if (i == tx_ring->next_to_use)
1257 break;
bc7f75fa
AK
1258 eop = tx_ring->buffer_info[i].next_to_watch;
1259 eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
1260 }
1261
1262 tx_ring->next_to_clean = i;
1263
3f0cfa3b
TH
1264 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1265
bc7f75fa 1266#define TX_WAKE_THRESHOLD 32
a86043c2
JB
1267 if (count && netif_carrier_ok(netdev) &&
1268 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
bc7f75fa
AK
1269 /* Make sure that anybody stopping the queue after this
1270 * sees the new next_to_clean.
1271 */
1272 smp_mb();
1273
1274 if (netif_queue_stopped(netdev) &&
1275 !(test_bit(__E1000_DOWN, &adapter->state))) {
1276 netif_wake_queue(netdev);
1277 ++adapter->restart_queue;
1278 }
1279 }
1280
1281 if (adapter->detect_tx_hung) {
e921eb1a 1282 /* Detect a transmit hang in hardware, this serializes the
41cec6f1
BA
1283 * check with the clearing of time_stamp and movement of i
1284 */
3db1cd5c 1285 adapter->detect_tx_hung = false;
12d04a3c
AD
1286 if (tx_ring->buffer_info[i].time_stamp &&
1287 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
8e95a202 1288 + (adapter->tx_timeout_factor * HZ)) &&
09357b00 1289 !(er32(STATUS) & E1000_STATUS_TXOFF))
41cec6f1 1290 schedule_work(&adapter->print_hang_task);
09357b00
JK
1291 else
1292 adapter->tx_hang_recheck = false;
bc7f75fa
AK
1293 }
1294 adapter->total_tx_bytes += total_tx_bytes;
1295 adapter->total_tx_packets += total_tx_packets;
807540ba 1296 return count < tx_ring->count;
bc7f75fa
AK
1297}
1298
bc7f75fa
AK
1299/**
1300 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
55aa6985 1301 * @rx_ring: Rx descriptor ring
b50f7bca
JB
1302 * @work_done: output parameter for indicating completed work
1303 * @work_to_do: how many packets we can clean
bc7f75fa
AK
1304 *
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1307 **/
55aa6985
BA
1308static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 int work_to_do)
bc7f75fa 1310{
55aa6985 1311 struct e1000_adapter *adapter = rx_ring->adapter;
3bb99fe2 1312 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
1313 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 struct net_device *netdev = adapter->netdev;
1315 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1316 struct e1000_buffer *buffer_info, *next_buffer;
1317 struct e1000_ps_page *ps_page;
1318 struct sk_buff *skb;
1319 unsigned int i, j;
1320 u32 length, staterr;
1321 int cleaned_count = 0;
3db1cd5c 1322 bool cleaned = false;
bc7f75fa
AK
1323 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325 i = rx_ring->next_to_clean;
1326 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 buffer_info = &rx_ring->buffer_info[i];
1329
1330 while (staterr & E1000_RXD_STAT_DD) {
1331 if (*work_done >= work_to_do)
1332 break;
1333 (*work_done)++;
1334 skb = buffer_info->skb;
837a1dba 1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
bc7f75fa
AK
1336
1337 /* in the packet split case this is header only */
1338 prefetch(skb->data - NET_IP_ALIGN);
1339
1340 i++;
1341 if (i == rx_ring->count)
1342 i = 0;
1343 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 prefetch(next_rxd);
1345
1346 next_buffer = &rx_ring->buffer_info[i];
1347
3db1cd5c 1348 cleaned = true;
bc7f75fa 1349 cleaned_count++;
0be3f55f 1350 dma_unmap_single(&pdev->dev, buffer_info->dma,
af667a29 1351 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
bc7f75fa
AK
1352 buffer_info->dma = 0;
1353
af667a29 1354 /* see !EOP comment in other Rx routine */
b94b5028
JB
1355 if (!(staterr & E1000_RXD_STAT_EOP))
1356 adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
ef456f85 1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
bc7f75fa 1360 dev_kfree_skb_irq(skb);
b94b5028
JB
1361 if (staterr & E1000_RXD_STAT_EOP)
1362 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
1363 goto next_desc;
1364 }
1365
cf955e6c
BG
1366 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 !(netdev->features & NETIF_F_RXALL))) {
bc7f75fa
AK
1368 dev_kfree_skb_irq(skb);
1369 goto next_desc;
1370 }
1371
1372 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374 if (!length) {
ef456f85 1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
bc7f75fa
AK
1376 dev_kfree_skb_irq(skb);
1377 goto next_desc;
1378 }
1379
1380 /* Good Receive */
1381 skb_put(skb, length);
1382
1383 {
e921eb1a 1384 /* this looks ugly, but it seems compiler issues make
0e15df49
BA
1385 * it more efficient than reusing j
1386 */
1387 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
bc7f75fa 1388
e921eb1a 1389 /* page alloc/put takes too long and effects small
0e15df49
BA
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
ad68076e 1393 */
0e15df49
BA
1394 if (l1 && (l1 <= copybreak) &&
1395 ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 u8 *vaddr;
1397
1398 ps_page = &buffer_info->ps_pages[0];
1399
e921eb1a 1400 /* there is no documentation about how to call
0e15df49
BA
1401 * kmap_atomic, so we can't hold the mapping
1402 * very long
1403 */
1404 dma_sync_single_for_cpu(&pdev->dev,
1405 ps_page->dma,
1406 PAGE_SIZE,
1407 DMA_FROM_DEVICE);
9f393834 1408 vaddr = kmap_atomic(ps_page->page);
0e15df49 1409 memcpy(skb_tail_pointer(skb), vaddr, l1);
9f393834 1410 kunmap_atomic(vaddr);
0e15df49
BA
1411 dma_sync_single_for_device(&pdev->dev,
1412 ps_page->dma,
1413 PAGE_SIZE,
1414 DMA_FROM_DEVICE);
1415
1416 /* remove the CRC */
0184039a
BG
1417 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 if (!(netdev->features & NETIF_F_RXFCS))
1419 l1 -= 4;
1420 }
0e15df49
BA
1421
1422 skb_put(skb, l1);
1423 goto copydone;
e80bd1d1 1424 } /* if */
bc7f75fa
AK
1425 }
1426
1427 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 if (!length)
1430 break;
1431
47f44e40 1432 ps_page = &buffer_info->ps_pages[j];
0be3f55f
NN
1433 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 DMA_FROM_DEVICE);
bc7f75fa
AK
1435 ps_page->dma = 0;
1436 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 ps_page->page = NULL;
1438 skb->len += length;
1439 skb->data_len += length;
98a045d7 1440 skb->truesize += PAGE_SIZE;
bc7f75fa
AK
1441 }
1442
eb7c3adb
JK
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1445 */
0184039a
BG
1446 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 if (!(netdev->features & NETIF_F_RXFCS))
1448 pskb_trim(skb, skb->len - 4);
1449 }
eb7c3adb 1450
bc7f75fa
AK
1451copydone:
1452 total_rx_bytes += skb->len;
1453 total_rx_packets++;
1454
2e1706f2 1455 e1000_rx_checksum(adapter, staterr, skb);
bc7f75fa 1456
70495a50
BA
1457 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
bc7f75fa 1459 if (rx_desc->wb.upper.header_status &
17e813ec 1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
bc7f75fa
AK
1461 adapter->rx_hdr_split++;
1462
b67e1913
BA
1463 e1000_receive_skb(adapter, netdev, skb, staterr,
1464 rx_desc->wb.middle.vlan);
bc7f75fa
AK
1465
1466next_desc:
1467 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 buffer_info->skb = NULL;
1469
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
55aa6985 1472 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1473 GFP_ATOMIC);
bc7f75fa
AK
1474 cleaned_count = 0;
1475 }
1476
1477 /* use prefetched values */
1478 rx_desc = next_rxd;
1479 buffer_info = next_buffer;
1480
1481 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 }
1483 rx_ring->next_to_clean = i;
1484
1485 cleaned_count = e1000_desc_unused(rx_ring);
1486 if (cleaned_count)
55aa6985 1487 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
bc7f75fa 1488
bc7f75fa 1489 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 1490 adapter->total_rx_packets += total_rx_packets;
bc7f75fa
AK
1491 return cleaned;
1492}
1493
97ac8cae 1494static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
66501f56 1495 u16 length)
97ac8cae
BA
1496{
1497 bi->page = NULL;
1498 skb->len += length;
1499 skb->data_len += length;
98a045d7 1500 skb->truesize += PAGE_SIZE;
97ac8cae
BA
1501}
1502
1503/**
1504 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
b50f7bca
JB
1505 * @rx_ring: Rx descriptor ring
1506 * @work_done: output parameter for indicating completed work
1507 * @work_to_do: how many packets we can clean
97ac8cae
BA
1508 *
1509 * the return value indicates whether actual cleaning was done, there
1510 * is no guarantee that everything was cleaned
1511 **/
55aa6985
BA
1512static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513 int work_to_do)
97ac8cae 1514{
55aa6985 1515 struct e1000_adapter *adapter = rx_ring->adapter;
97ac8cae
BA
1516 struct net_device *netdev = adapter->netdev;
1517 struct pci_dev *pdev = adapter->pdev;
5f450212 1518 union e1000_rx_desc_extended *rx_desc, *next_rxd;
97ac8cae 1519 struct e1000_buffer *buffer_info, *next_buffer;
5f450212 1520 u32 length, staterr;
97ac8cae
BA
1521 unsigned int i;
1522 int cleaned_count = 0;
1523 bool cleaned = false;
362e20ca 1524 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
17e813ec 1525 struct skb_shared_info *shinfo;
97ac8cae
BA
1526
1527 i = rx_ring->next_to_clean;
5f450212
BA
1528 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1529 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
97ac8cae
BA
1530 buffer_info = &rx_ring->buffer_info[i];
1531
5f450212 1532 while (staterr & E1000_RXD_STAT_DD) {
97ac8cae 1533 struct sk_buff *skb;
97ac8cae
BA
1534
1535 if (*work_done >= work_to_do)
1536 break;
1537 (*work_done)++;
837a1dba 1538 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
97ac8cae 1539
97ac8cae
BA
1540 skb = buffer_info->skb;
1541 buffer_info->skb = NULL;
1542
1543 ++i;
1544 if (i == rx_ring->count)
1545 i = 0;
5f450212 1546 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
97ac8cae
BA
1547 prefetch(next_rxd);
1548
1549 next_buffer = &rx_ring->buffer_info[i];
1550
1551 cleaned = true;
1552 cleaned_count++;
0be3f55f
NN
1553 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1554 DMA_FROM_DEVICE);
97ac8cae
BA
1555 buffer_info->dma = 0;
1556
5f450212 1557 length = le16_to_cpu(rx_desc->wb.upper.length);
97ac8cae
BA
1558
1559 /* errors is only valid for DD + EOP descriptors */
5f450212 1560 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
cf955e6c
BG
1561 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1562 !(netdev->features & NETIF_F_RXALL)))) {
5f450212
BA
1563 /* recycle both page and skb */
1564 buffer_info->skb = skb;
1565 /* an error means any chain goes out the window too */
1566 if (rx_ring->rx_skb_top)
1567 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1568 rx_ring->rx_skb_top = NULL;
1569 goto next_desc;
97ac8cae 1570 }
f0f1a172 1571#define rxtop (rx_ring->rx_skb_top)
5f450212 1572 if (!(staterr & E1000_RXD_STAT_EOP)) {
97ac8cae
BA
1573 /* this descriptor is only the beginning (or middle) */
1574 if (!rxtop) {
1575 /* this is the beginning of a chain */
1576 rxtop = skb;
1577 skb_fill_page_desc(rxtop, 0, buffer_info->page,
f0ff4398 1578 0, length);
97ac8cae
BA
1579 } else {
1580 /* this is the middle of a chain */
17e813ec
BA
1581 shinfo = skb_shinfo(rxtop);
1582 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1583 buffer_info->page, 0,
1584 length);
97ac8cae
BA
1585 /* re-use the skb, only consumed the page */
1586 buffer_info->skb = skb;
1587 }
1588 e1000_consume_page(buffer_info, rxtop, length);
1589 goto next_desc;
1590 } else {
1591 if (rxtop) {
1592 /* end of the chain */
17e813ec
BA
1593 shinfo = skb_shinfo(rxtop);
1594 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 buffer_info->page, 0,
1596 length);
97ac8cae 1597 /* re-use the current skb, we only consumed the
e921eb1a
BA
1598 * page
1599 */
97ac8cae
BA
1600 buffer_info->skb = skb;
1601 skb = rxtop;
1602 rxtop = NULL;
1603 e1000_consume_page(buffer_info, skb, length);
1604 } else {
1605 /* no chain, got EOP, this buf is the packet
e921eb1a
BA
1606 * copybreak to save the put_page/alloc_page
1607 */
97ac8cae
BA
1608 if (length <= copybreak &&
1609 skb_tailroom(skb) >= length) {
1610 u8 *vaddr;
4679026d 1611 vaddr = kmap_atomic(buffer_info->page);
97ac8cae
BA
1612 memcpy(skb_tail_pointer(skb), vaddr,
1613 length);
4679026d 1614 kunmap_atomic(vaddr);
97ac8cae 1615 /* re-use the page, so don't erase
e921eb1a
BA
1616 * buffer_info->page
1617 */
97ac8cae
BA
1618 skb_put(skb, length);
1619 } else {
1620 skb_fill_page_desc(skb, 0,
f0ff4398
BA
1621 buffer_info->page, 0,
1622 length);
97ac8cae 1623 e1000_consume_page(buffer_info, skb,
f0ff4398 1624 length);
97ac8cae
BA
1625 }
1626 }
1627 }
1628
2e1706f2
BA
1629 /* Receive Checksum Offload */
1630 e1000_rx_checksum(adapter, staterr, skb);
97ac8cae 1631
70495a50
BA
1632 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1633
97ac8cae
BA
1634 /* probably a little skewed due to removing CRC */
1635 total_rx_bytes += skb->len;
1636 total_rx_packets++;
1637
1638 /* eth type trans needs skb->data to point to something */
1639 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1640 e_err("pskb_may_pull failed.\n");
ef5ab89c 1641 dev_kfree_skb_irq(skb);
97ac8cae
BA
1642 goto next_desc;
1643 }
1644
5f450212
BA
1645 e1000_receive_skb(adapter, netdev, skb, staterr,
1646 rx_desc->wb.upper.vlan);
97ac8cae
BA
1647
1648next_desc:
5f450212 1649 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
97ac8cae
BA
1650
1651 /* return some buffers to hardware, one at a time is too slow */
1652 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
55aa6985 1653 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1654 GFP_ATOMIC);
97ac8cae
BA
1655 cleaned_count = 0;
1656 }
1657
1658 /* use prefetched values */
1659 rx_desc = next_rxd;
1660 buffer_info = next_buffer;
5f450212
BA
1661
1662 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
97ac8cae
BA
1663 }
1664 rx_ring->next_to_clean = i;
1665
1666 cleaned_count = e1000_desc_unused(rx_ring);
1667 if (cleaned_count)
55aa6985 1668 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
97ac8cae
BA
1669
1670 adapter->total_rx_bytes += total_rx_bytes;
1671 adapter->total_rx_packets += total_rx_packets;
97ac8cae
BA
1672 return cleaned;
1673}
1674
bc7f75fa
AK
1675/**
1676 * e1000_clean_rx_ring - Free Rx Buffers per Queue
55aa6985 1677 * @rx_ring: Rx descriptor ring
bc7f75fa 1678 **/
55aa6985 1679static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
bc7f75fa 1680{
55aa6985 1681 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
1682 struct e1000_buffer *buffer_info;
1683 struct e1000_ps_page *ps_page;
1684 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1685 unsigned int i, j;
1686
1687 /* Free all the Rx ring sk_buffs */
1688 for (i = 0; i < rx_ring->count; i++) {
1689 buffer_info = &rx_ring->buffer_info[i];
1690 if (buffer_info->dma) {
1691 if (adapter->clean_rx == e1000_clean_rx_irq)
0be3f55f 1692 dma_unmap_single(&pdev->dev, buffer_info->dma,
bc7f75fa 1693 adapter->rx_buffer_len,
0be3f55f 1694 DMA_FROM_DEVICE);
97ac8cae 1695 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
0be3f55f 1696 dma_unmap_page(&pdev->dev, buffer_info->dma,
f0ff4398 1697 PAGE_SIZE, DMA_FROM_DEVICE);
bc7f75fa 1698 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
0be3f55f 1699 dma_unmap_single(&pdev->dev, buffer_info->dma,
bc7f75fa 1700 adapter->rx_ps_bsize0,
0be3f55f 1701 DMA_FROM_DEVICE);
bc7f75fa
AK
1702 buffer_info->dma = 0;
1703 }
1704
97ac8cae
BA
1705 if (buffer_info->page) {
1706 put_page(buffer_info->page);
1707 buffer_info->page = NULL;
1708 }
1709
bc7f75fa
AK
1710 if (buffer_info->skb) {
1711 dev_kfree_skb(buffer_info->skb);
1712 buffer_info->skb = NULL;
1713 }
1714
1715 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1716 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1717 if (!ps_page->page)
1718 break;
0be3f55f
NN
1719 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720 DMA_FROM_DEVICE);
bc7f75fa
AK
1721 ps_page->dma = 0;
1722 put_page(ps_page->page);
1723 ps_page->page = NULL;
1724 }
1725 }
1726
1727 /* there also may be some cached data from a chained receive */
1728 if (rx_ring->rx_skb_top) {
1729 dev_kfree_skb(rx_ring->rx_skb_top);
1730 rx_ring->rx_skb_top = NULL;
1731 }
1732
bc7f75fa
AK
1733 /* Zero out the descriptor ring */
1734 memset(rx_ring->desc, 0, rx_ring->size);
1735
1736 rx_ring->next_to_clean = 0;
1737 rx_ring->next_to_use = 0;
b94b5028 1738 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
1739}
1740
a8f88ff5
JB
1741static void e1000e_downshift_workaround(struct work_struct *work)
1742{
1743 struct e1000_adapter *adapter = container_of(work,
17e813ec
BA
1744 struct e1000_adapter,
1745 downshift_task);
a8f88ff5 1746
615b32af
JB
1747 if (test_bit(__E1000_DOWN, &adapter->state))
1748 return;
1749
a8f88ff5
JB
1750 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1751}
1752
bc7f75fa
AK
1753/**
1754 * e1000_intr_msi - Interrupt Handler
1755 * @irq: interrupt number
1756 * @data: pointer to a network interface device structure
1757 **/
8bb62869 1758static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
bc7f75fa
AK
1759{
1760 struct net_device *netdev = data;
1761 struct e1000_adapter *adapter = netdev_priv(netdev);
1762 struct e1000_hw *hw = &adapter->hw;
1763 u32 icr = er32(ICR);
1764
e921eb1a 1765 /* read ICR disables interrupts using IAM */
573cca8c 1766 if (icr & E1000_ICR_LSC) {
f92518dd 1767 hw->mac.get_link_status = true;
e921eb1a 1768 /* ICH8 workaround-- Call gig speed drop workaround on cable
ad68076e
BA
1769 * disconnect (LSC) before accessing any PHY registers
1770 */
bc7f75fa
AK
1771 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1772 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1773 schedule_work(&adapter->downshift_task);
bc7f75fa 1774
e921eb1a 1775 /* 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1776 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1777 * adapter in watchdog
1778 */
bc7f75fa
AK
1779 if (netif_carrier_ok(netdev) &&
1780 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1781 /* disable receives */
1782 u32 rctl = er32(RCTL);
6cf08d1c 1783
bc7f75fa 1784 ew32(RCTL, rctl & ~E1000_RCTL_EN);
12d43f7d 1785 adapter->flags |= FLAG_RESTART_NOW;
bc7f75fa
AK
1786 }
1787 /* guard against interrupt when we're going down */
1788 if (!test_bit(__E1000_DOWN, &adapter->state))
d5ad7a6a 1789 mod_timer(&adapter->watchdog_timer, jiffies + 1);
bc7f75fa
AK
1790 }
1791
94fb848b 1792 /* Reset on uncorrectable ECC error */
c8744f44 1793 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
94fb848b
BA
1794 u32 pbeccsts = er32(PBECCSTS);
1795
1796 adapter->corr_errors +=
1797 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1798 adapter->uncorr_errors +=
1799 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1800 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1801
1802 /* Do the reset outside of interrupt context */
1803 schedule_work(&adapter->reset_task);
1804
1805 /* return immediately since reset is imminent */
1806 return IRQ_HANDLED;
1807 }
1808
288379f0 1809 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1810 adapter->total_tx_bytes = 0;
1811 adapter->total_tx_packets = 0;
1812 adapter->total_rx_bytes = 0;
1813 adapter->total_rx_packets = 0;
288379f0 1814 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1815 }
1816
1817 return IRQ_HANDLED;
1818}
1819
1820/**
1821 * e1000_intr - Interrupt Handler
1822 * @irq: interrupt number
1823 * @data: pointer to a network interface device structure
1824 **/
8bb62869 1825static irqreturn_t e1000_intr(int __always_unused irq, void *data)
bc7f75fa
AK
1826{
1827 struct net_device *netdev = data;
1828 struct e1000_adapter *adapter = netdev_priv(netdev);
1829 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1830 u32 rctl, icr = er32(ICR);
4662e82b 1831
a68ea775 1832 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
e80bd1d1 1833 return IRQ_NONE; /* Not our interrupt */
bc7f75fa 1834
e921eb1a 1835 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
ad68076e
BA
1836 * not set, then the adapter didn't send an interrupt
1837 */
bc7f75fa
AK
1838 if (!(icr & E1000_ICR_INT_ASSERTED))
1839 return IRQ_NONE;
1840
e921eb1a 1841 /* Interrupt Auto-Mask...upon reading ICR,
ad68076e
BA
1842 * interrupts are masked. No need for the
1843 * IMC write
1844 */
bc7f75fa 1845
573cca8c 1846 if (icr & E1000_ICR_LSC) {
f92518dd 1847 hw->mac.get_link_status = true;
e921eb1a 1848 /* ICH8 workaround-- Call gig speed drop workaround on cable
ad68076e
BA
1849 * disconnect (LSC) before accessing any PHY registers
1850 */
bc7f75fa
AK
1851 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1852 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1853 schedule_work(&adapter->downshift_task);
bc7f75fa 1854
e921eb1a 1855 /* 80003ES2LAN workaround--
bc7f75fa
AK
1856 * For packet buffer work-around on link down event;
1857 * disable receives here in the ISR and
1858 * reset adapter in watchdog
1859 */
1860 if (netif_carrier_ok(netdev) &&
1861 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1862 /* disable receives */
1863 rctl = er32(RCTL);
1864 ew32(RCTL, rctl & ~E1000_RCTL_EN);
12d43f7d 1865 adapter->flags |= FLAG_RESTART_NOW;
bc7f75fa
AK
1866 }
1867 /* guard against interrupt when we're going down */
1868 if (!test_bit(__E1000_DOWN, &adapter->state))
d5ad7a6a 1869 mod_timer(&adapter->watchdog_timer, jiffies + 1);
bc7f75fa
AK
1870 }
1871
94fb848b 1872 /* Reset on uncorrectable ECC error */
c8744f44 1873 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
94fb848b
BA
1874 u32 pbeccsts = er32(PBECCSTS);
1875
1876 adapter->corr_errors +=
1877 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1878 adapter->uncorr_errors +=
1879 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1880 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1881
1882 /* Do the reset outside of interrupt context */
1883 schedule_work(&adapter->reset_task);
1884
1885 /* return immediately since reset is imminent */
1886 return IRQ_HANDLED;
1887 }
1888
288379f0 1889 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1890 adapter->total_tx_bytes = 0;
1891 adapter->total_tx_packets = 0;
1892 adapter->total_rx_bytes = 0;
1893 adapter->total_rx_packets = 0;
288379f0 1894 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1895 }
1896
1897 return IRQ_HANDLED;
1898}
1899
8bb62869 1900static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
4662e82b
BA
1901{
1902 struct net_device *netdev = data;
1903 struct e1000_adapter *adapter = netdev_priv(netdev);
1904 struct e1000_hw *hw = &adapter->hw;
116f4a64 1905 u32 icr = er32(ICR);
745d0bd3 1906
361a954e
BP
1907 if (icr & adapter->eiac_mask)
1908 ew32(ICS, (icr & adapter->eiac_mask));
1909
4aea7a5c 1910 if (icr & E1000_ICR_LSC) {
4aea7a5c
BP
1911 hw->mac.get_link_status = true;
1912 /* guard against interrupt when we're going down */
1913 if (!test_bit(__E1000_DOWN, &adapter->state))
d5ad7a6a 1914 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4aea7a5c 1915 }
4662e82b 1916
1f0ea197 1917 if (!test_bit(__E1000_DOWN, &adapter->state))
116f4a64 1918 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
4662e82b 1919
4662e82b
BA
1920 return IRQ_HANDLED;
1921}
1922
8bb62869 1923static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
4662e82b
BA
1924{
1925 struct net_device *netdev = data;
1926 struct e1000_adapter *adapter = netdev_priv(netdev);
1927 struct e1000_hw *hw = &adapter->hw;
1928 struct e1000_ring *tx_ring = adapter->tx_ring;
1929
4662e82b
BA
1930 adapter->total_tx_bytes = 0;
1931 adapter->total_tx_packets = 0;
1932
55aa6985 1933 if (!e1000_clean_tx_irq(tx_ring))
4662e82b
BA
1934 /* Ring was not completely cleaned, so fire another interrupt */
1935 ew32(ICS, tx_ring->ims_val);
1936
0a8047ac
BP
1937 if (!test_bit(__E1000_DOWN, &adapter->state))
1938 ew32(IMS, adapter->tx_ring->ims_val);
1939
4662e82b
BA
1940 return IRQ_HANDLED;
1941}
1942
8bb62869 1943static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
4662e82b
BA
1944{
1945 struct net_device *netdev = data;
1946 struct e1000_adapter *adapter = netdev_priv(netdev);
55aa6985 1947 struct e1000_ring *rx_ring = adapter->rx_ring;
4662e82b
BA
1948
1949 /* Write the ITR value calculated at the end of the
1950 * previous interrupt.
1951 */
55aa6985 1952 if (rx_ring->set_itr) {
b77ac46b
DF
1953 u32 itr = rx_ring->itr_val ?
1954 1000000000 / (rx_ring->itr_val * 256) : 0;
1955
1956 writel(itr, rx_ring->itr_register);
55aa6985 1957 rx_ring->set_itr = 0;
4662e82b
BA
1958 }
1959
288379f0 1960 if (napi_schedule_prep(&adapter->napi)) {
4662e82b
BA
1961 adapter->total_rx_bytes = 0;
1962 adapter->total_rx_packets = 0;
288379f0 1963 __napi_schedule(&adapter->napi);
4662e82b
BA
1964 }
1965 return IRQ_HANDLED;
1966}
1967
1968/**
1969 * e1000_configure_msix - Configure MSI-X hardware
b50f7bca 1970 * @adapter: board private structure
4662e82b
BA
1971 *
1972 * e1000_configure_msix sets up the hardware to properly
1973 * generate MSI-X interrupts.
1974 **/
1975static void e1000_configure_msix(struct e1000_adapter *adapter)
1976{
1977 struct e1000_hw *hw = &adapter->hw;
1978 struct e1000_ring *rx_ring = adapter->rx_ring;
1979 struct e1000_ring *tx_ring = adapter->tx_ring;
1980 int vector = 0;
1981 u32 ctrl_ext, ivar = 0;
1982
1983 adapter->eiac_mask = 0;
1984
1985 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1986 if (hw->mac.type == e1000_82574) {
1987 u32 rfctl = er32(RFCTL);
6cf08d1c 1988
4662e82b
BA
1989 rfctl |= E1000_RFCTL_ACK_DIS;
1990 ew32(RFCTL, rfctl);
1991 }
1992
4662e82b
BA
1993 /* Configure Rx vector */
1994 rx_ring->ims_val = E1000_IMS_RXQ0;
1995 adapter->eiac_mask |= rx_ring->ims_val;
1996 if (rx_ring->itr_val)
1997 writel(1000000000 / (rx_ring->itr_val * 256),
c5083cf6 1998 rx_ring->itr_register);
4662e82b 1999 else
c5083cf6 2000 writel(1, rx_ring->itr_register);
4662e82b
BA
2001 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2002
2003 /* Configure Tx vector */
2004 tx_ring->ims_val = E1000_IMS_TXQ0;
2005 vector++;
2006 if (tx_ring->itr_val)
2007 writel(1000000000 / (tx_ring->itr_val * 256),
c5083cf6 2008 tx_ring->itr_register);
4662e82b 2009 else
c5083cf6 2010 writel(1, tx_ring->itr_register);
4662e82b
BA
2011 adapter->eiac_mask |= tx_ring->ims_val;
2012 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2013
2014 /* set vector for Other Causes, e.g. link changes */
2015 vector++;
2016 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2017 if (rx_ring->itr_val)
2018 writel(1000000000 / (rx_ring->itr_val * 256),
2019 hw->hw_addr + E1000_EITR_82574(vector));
2020 else
2021 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2022
2023 /* Cause Tx interrupts on every write back */
18dd2392 2024 ivar |= BIT(31);
4662e82b
BA
2025
2026 ew32(IVAR, ivar);
2027
2028 /* enable MSI-X PBA support */
0a8047ac
BP
2029 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2030 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
4662e82b
BA
2031 ew32(CTRL_EXT, ctrl_ext);
2032 e1e_flush();
2033}
2034
2035void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2036{
2037 if (adapter->msix_entries) {
2038 pci_disable_msix(adapter->pdev);
2039 kfree(adapter->msix_entries);
2040 adapter->msix_entries = NULL;
2041 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2042 pci_disable_msi(adapter->pdev);
2043 adapter->flags &= ~FLAG_MSI_ENABLED;
2044 }
4662e82b
BA
2045}
2046
2047/**
2048 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
b50f7bca 2049 * @adapter: board private structure
4662e82b
BA
2050 *
2051 * Attempt to configure interrupts using the best available
2052 * capabilities of the hardware and kernel.
2053 **/
2054void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2055{
2056 int err;
8e86acd7 2057 int i;
4662e82b
BA
2058
2059 switch (adapter->int_mode) {
2060 case E1000E_INT_MODE_MSIX:
2061 if (adapter->flags & FLAG_HAS_MSIX) {
8e86acd7
JK
2062 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2063 adapter->msix_entries = kcalloc(adapter->num_vectors,
17e813ec
BA
2064 sizeof(struct
2065 msix_entry),
2066 GFP_KERNEL);
4662e82b 2067 if (adapter->msix_entries) {
0cc7c959
AG
2068 struct e1000_adapter *a = adapter;
2069
8e86acd7 2070 for (i = 0; i < adapter->num_vectors; i++)
4662e82b
BA
2071 adapter->msix_entries[i].entry = i;
2072
0cc7c959
AG
2073 err = pci_enable_msix_range(a->pdev,
2074 a->msix_entries,
2075 a->num_vectors,
2076 a->num_vectors);
2077 if (err > 0)
4662e82b
BA
2078 return;
2079 }
2080 /* MSI-X failed, so fall through and try MSI */
ef456f85 2081 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
4662e82b
BA
2082 e1000e_reset_interrupt_capability(adapter);
2083 }
2084 adapter->int_mode = E1000E_INT_MODE_MSI;
5463fce6 2085 fallthrough;
4662e82b
BA
2086 case E1000E_INT_MODE_MSI:
2087 if (!pci_enable_msi(adapter->pdev)) {
2088 adapter->flags |= FLAG_MSI_ENABLED;
2089 } else {
2090 adapter->int_mode = E1000E_INT_MODE_LEGACY;
ef456f85 2091 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
4662e82b 2092 }
5463fce6 2093 fallthrough;
4662e82b
BA
2094 case E1000E_INT_MODE_LEGACY:
2095 /* Don't do anything; this is the system default */
2096 break;
2097 }
8e86acd7
JK
2098
2099 /* store the number of vectors being used */
2100 adapter->num_vectors = 1;
4662e82b
BA
2101}
2102
2103/**
2104 * e1000_request_msix - Initialize MSI-X interrupts
b50f7bca 2105 * @adapter: board private structure
4662e82b
BA
2106 *
2107 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2108 * kernel.
2109 **/
2110static int e1000_request_msix(struct e1000_adapter *adapter)
2111{
2112 struct net_device *netdev = adapter->netdev;
2113 int err = 0, vector = 0;
2114
2115 if (strlen(netdev->name) < (IFNAMSIZ - 5))
79f5e840
BA
2116 snprintf(adapter->rx_ring->name,
2117 sizeof(adapter->rx_ring->name) - 1,
135e7245 2118 "%.14s-rx-0", netdev->name);
4662e82b
BA
2119 else
2120 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2121 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2122 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
4662e82b
BA
2123 netdev);
2124 if (err)
5015e53a 2125 return err;
c5083cf6
BA
2126 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2127 E1000_EITR_82574(vector);
4662e82b
BA
2128 adapter->rx_ring->itr_val = adapter->itr;
2129 vector++;
2130
2131 if (strlen(netdev->name) < (IFNAMSIZ - 5))
79f5e840
BA
2132 snprintf(adapter->tx_ring->name,
2133 sizeof(adapter->tx_ring->name) - 1,
135e7245 2134 "%.14s-tx-0", netdev->name);
4662e82b
BA
2135 else
2136 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2137 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2138 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
4662e82b
BA
2139 netdev);
2140 if (err)
5015e53a 2141 return err;
c5083cf6
BA
2142 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2143 E1000_EITR_82574(vector);
4662e82b
BA
2144 adapter->tx_ring->itr_val = adapter->itr;
2145 vector++;
2146
2147 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2148 e1000_msix_other, 0, netdev->name, netdev);
4662e82b 2149 if (err)
5015e53a 2150 return err;
4662e82b
BA
2151
2152 e1000_configure_msix(adapter);
5015e53a 2153
4662e82b 2154 return 0;
4662e82b
BA
2155}
2156
f8d59f78
BA
2157/**
2158 * e1000_request_irq - initialize interrupts
b50f7bca 2159 * @adapter: board private structure
f8d59f78
BA
2160 *
2161 * Attempts to configure interrupts using the best available
2162 * capabilities of the hardware and kernel.
2163 **/
bc7f75fa
AK
2164static int e1000_request_irq(struct e1000_adapter *adapter)
2165{
2166 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
2167 int err;
2168
4662e82b
BA
2169 if (adapter->msix_entries) {
2170 err = e1000_request_msix(adapter);
2171 if (!err)
2172 return err;
2173 /* fall back to MSI */
2174 e1000e_reset_interrupt_capability(adapter);
2175 adapter->int_mode = E1000E_INT_MODE_MSI;
2176 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2177 }
4662e82b 2178 if (adapter->flags & FLAG_MSI_ENABLED) {
a0607fd3 2179 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
4662e82b
BA
2180 netdev->name, netdev);
2181 if (!err)
2182 return err;
bc7f75fa 2183
4662e82b
BA
2184 /* fall back to legacy interrupt */
2185 e1000e_reset_interrupt_capability(adapter);
2186 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
2187 }
2188
a0607fd3 2189 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
4662e82b
BA
2190 netdev->name, netdev);
2191 if (err)
2192 e_err("Unable to allocate interrupt, Error: %d\n", err);
2193
bc7f75fa
AK
2194 return err;
2195}
2196
2197static void e1000_free_irq(struct e1000_adapter *adapter)
2198{
2199 struct net_device *netdev = adapter->netdev;
2200
4662e82b
BA
2201 if (adapter->msix_entries) {
2202 int vector = 0;
2203
2204 free_irq(adapter->msix_entries[vector].vector, netdev);
2205 vector++;
2206
2207 free_irq(adapter->msix_entries[vector].vector, netdev);
2208 vector++;
2209
2210 /* Other Causes interrupt vector */
2211 free_irq(adapter->msix_entries[vector].vector, netdev);
2212 return;
bc7f75fa 2213 }
4662e82b
BA
2214
2215 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
2216}
2217
2218/**
2219 * e1000_irq_disable - Mask off interrupt generation on the NIC
b50f7bca 2220 * @adapter: board private structure
bc7f75fa
AK
2221 **/
2222static void e1000_irq_disable(struct e1000_adapter *adapter)
2223{
2224 struct e1000_hw *hw = &adapter->hw;
2225
bc7f75fa 2226 ew32(IMC, ~0);
4662e82b
BA
2227 if (adapter->msix_entries)
2228 ew32(EIAC_82574, 0);
bc7f75fa 2229 e1e_flush();
8e86acd7
JK
2230
2231 if (adapter->msix_entries) {
2232 int i;
6cf08d1c 2233
8e86acd7
JK
2234 for (i = 0; i < adapter->num_vectors; i++)
2235 synchronize_irq(adapter->msix_entries[i].vector);
2236 } else {
2237 synchronize_irq(adapter->pdev->irq);
2238 }
bc7f75fa
AK
2239}
2240
2241/**
2242 * e1000_irq_enable - Enable default interrupt generation settings
b50f7bca 2243 * @adapter: board private structure
bc7f75fa
AK
2244 **/
2245static void e1000_irq_enable(struct e1000_adapter *adapter)
2246{
2247 struct e1000_hw *hw = &adapter->hw;
2248
4662e82b
BA
2249 if (adapter->msix_entries) {
2250 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
116f4a64
BP
2251 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2252 IMS_OTHER_MASK);
c8744f44 2253 } else if (hw->mac.type >= e1000_pch_lpt) {
94fb848b 2254 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
4662e82b
BA
2255 } else {
2256 ew32(IMS, IMS_ENABLE_MASK);
2257 }
74ef9c39 2258 e1e_flush();
bc7f75fa
AK
2259}
2260
2261/**
31dbe5b4 2262 * e1000e_get_hw_control - get control of the h/w from f/w
bc7f75fa
AK
2263 * @adapter: address of board private structure
2264 *
31dbe5b4 2265 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
2266 * For ASF and Pass Through versions of f/w this means that
2267 * the driver is loaded. For AMT version (only with 82573)
2268 * of the f/w this means that the network i/f is open.
2269 **/
31dbe5b4 2270void e1000e_get_hw_control(struct e1000_adapter *adapter)
bc7f75fa
AK
2271{
2272 struct e1000_hw *hw = &adapter->hw;
2273 u32 ctrl_ext;
2274 u32 swsm;
2275
2276 /* Let firmware know the driver has taken over */
2277 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2278 swsm = er32(SWSM);
2279 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2280 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2281 ctrl_ext = er32(CTRL_EXT);
ad68076e 2282 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
2283 }
2284}
2285
2286/**
31dbe5b4 2287 * e1000e_release_hw_control - release control of the h/w to f/w
bc7f75fa
AK
2288 * @adapter: address of board private structure
2289 *
31dbe5b4 2290 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
2291 * For ASF and Pass Through versions of f/w this means that the
2292 * driver is no longer loaded. For AMT version (only with 82573) i
2293 * of the f/w this means that the network i/f is closed.
2294 *
2295 **/
31dbe5b4 2296void e1000e_release_hw_control(struct e1000_adapter *adapter)
bc7f75fa
AK
2297{
2298 struct e1000_hw *hw = &adapter->hw;
2299 u32 ctrl_ext;
2300 u32 swsm;
2301
2302 /* Let firmware taken over control of h/w */
2303 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2304 swsm = er32(SWSM);
2305 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2306 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2307 ctrl_ext = er32(CTRL_EXT);
ad68076e 2308 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
2309 }
2310}
2311
bc7f75fa 2312/**
49ce9c2c 2313 * e1000_alloc_ring_dma - allocate memory for a ring structure
b50f7bca
JB
2314 * @adapter: board private structure
2315 * @ring: ring struct for which to allocate dma
bc7f75fa
AK
2316 **/
2317static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2318 struct e1000_ring *ring)
2319{
2320 struct pci_dev *pdev = adapter->pdev;
2321
750afb08
LC
2322 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2323 GFP_KERNEL);
bc7f75fa
AK
2324 if (!ring->desc)
2325 return -ENOMEM;
2326
2327 return 0;
2328}
2329
2330/**
2331 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
55aa6985 2332 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
2333 *
2334 * Return 0 on success, negative on failure
2335 **/
55aa6985 2336int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
bc7f75fa 2337{
55aa6985 2338 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
2339 int err = -ENOMEM, size;
2340
2341 size = sizeof(struct e1000_buffer) * tx_ring->count;
89bf67f1 2342 tx_ring->buffer_info = vzalloc(size);
bc7f75fa
AK
2343 if (!tx_ring->buffer_info)
2344 goto err;
bc7f75fa
AK
2345
2346 /* round up to nearest 4K */
2347 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2348 tx_ring->size = ALIGN(tx_ring->size, 4096);
2349
2350 err = e1000_alloc_ring_dma(adapter, tx_ring);
2351 if (err)
2352 goto err;
2353
2354 tx_ring->next_to_use = 0;
2355 tx_ring->next_to_clean = 0;
bc7f75fa
AK
2356
2357 return 0;
2358err:
2359 vfree(tx_ring->buffer_info);
44defeb3 2360 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
2361 return err;
2362}
2363
2364/**
2365 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
55aa6985 2366 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
2367 *
2368 * Returns 0 on success, negative on failure
2369 **/
55aa6985 2370int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
bc7f75fa 2371{
55aa6985 2372 struct e1000_adapter *adapter = rx_ring->adapter;
47f44e40
AK
2373 struct e1000_buffer *buffer_info;
2374 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
2375
2376 size = sizeof(struct e1000_buffer) * rx_ring->count;
89bf67f1 2377 rx_ring->buffer_info = vzalloc(size);
bc7f75fa
AK
2378 if (!rx_ring->buffer_info)
2379 goto err;
bc7f75fa 2380
47f44e40
AK
2381 for (i = 0; i < rx_ring->count; i++) {
2382 buffer_info = &rx_ring->buffer_info[i];
2383 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2384 sizeof(struct e1000_ps_page),
2385 GFP_KERNEL);
2386 if (!buffer_info->ps_pages)
2387 goto err_pages;
2388 }
bc7f75fa
AK
2389
2390 desc_len = sizeof(union e1000_rx_desc_packet_split);
2391
2392 /* Round up to nearest 4K */
2393 rx_ring->size = rx_ring->count * desc_len;
2394 rx_ring->size = ALIGN(rx_ring->size, 4096);
2395
2396 err = e1000_alloc_ring_dma(adapter, rx_ring);
2397 if (err)
47f44e40 2398 goto err_pages;
bc7f75fa
AK
2399
2400 rx_ring->next_to_clean = 0;
2401 rx_ring->next_to_use = 0;
2402 rx_ring->rx_skb_top = NULL;
2403
2404 return 0;
47f44e40
AK
2405
2406err_pages:
2407 for (i = 0; i < rx_ring->count; i++) {
2408 buffer_info = &rx_ring->buffer_info[i];
2409 kfree(buffer_info->ps_pages);
2410 }
bc7f75fa
AK
2411err:
2412 vfree(rx_ring->buffer_info);
e9262447 2413 e_err("Unable to allocate memory for the receive descriptor ring\n");
bc7f75fa
AK
2414 return err;
2415}
2416
2417/**
2418 * e1000_clean_tx_ring - Free Tx Buffers
55aa6985 2419 * @tx_ring: Tx descriptor ring
bc7f75fa 2420 **/
55aa6985 2421static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
bc7f75fa 2422{
55aa6985 2423 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
2424 struct e1000_buffer *buffer_info;
2425 unsigned long size;
2426 unsigned int i;
2427
2428 for (i = 0; i < tx_ring->count; i++) {
2429 buffer_info = &tx_ring->buffer_info[i];
377b6273 2430 e1000_put_txbuf(tx_ring, buffer_info, false);
bc7f75fa
AK
2431 }
2432
3f0cfa3b 2433 netdev_reset_queue(adapter->netdev);
bc7f75fa
AK
2434 size = sizeof(struct e1000_buffer) * tx_ring->count;
2435 memset(tx_ring->buffer_info, 0, size);
2436
2437 memset(tx_ring->desc, 0, tx_ring->size);
2438
2439 tx_ring->next_to_use = 0;
2440 tx_ring->next_to_clean = 0;
bc7f75fa
AK
2441}
2442
2443/**
2444 * e1000e_free_tx_resources - Free Tx Resources per Queue
55aa6985 2445 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
2446 *
2447 * Free all transmit software resources
2448 **/
55aa6985 2449void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
bc7f75fa 2450{
55aa6985 2451 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa 2452 struct pci_dev *pdev = adapter->pdev;
bc7f75fa 2453
55aa6985 2454 e1000_clean_tx_ring(tx_ring);
bc7f75fa
AK
2455
2456 vfree(tx_ring->buffer_info);
2457 tx_ring->buffer_info = NULL;
2458
2459 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2460 tx_ring->dma);
2461 tx_ring->desc = NULL;
2462}
2463
2464/**
2465 * e1000e_free_rx_resources - Free Rx Resources
55aa6985 2466 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
2467 *
2468 * Free all receive software resources
2469 **/
55aa6985 2470void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
bc7f75fa 2471{
55aa6985 2472 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa 2473 struct pci_dev *pdev = adapter->pdev;
47f44e40 2474 int i;
bc7f75fa 2475
55aa6985 2476 e1000_clean_rx_ring(rx_ring);
bc7f75fa 2477
b1cdfead 2478 for (i = 0; i < rx_ring->count; i++)
47f44e40 2479 kfree(rx_ring->buffer_info[i].ps_pages);
47f44e40 2480
bc7f75fa
AK
2481 vfree(rx_ring->buffer_info);
2482 rx_ring->buffer_info = NULL;
2483
bc7f75fa
AK
2484 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2485 rx_ring->dma);
2486 rx_ring->desc = NULL;
2487}
2488
2489/**
2490 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
2491 * @itr_setting: current adapter->itr
2492 * @packets: the number of packets during this measurement interval
2493 * @bytes: the number of bytes during this measurement interval
2494 *
bc7f75fa
AK
2495 * Stores a new ITR value based on packets and byte
2496 * counts during the last interrupt. The advantage of per interrupt
2497 * computation is faster updates and more accurate ITR for the current
2498 * traffic pattern. Constants in this function were computed
2499 * based on theoretical maximum wire speed and thresholds were set based
2500 * on testing data as well as attempting to minimize response time
4662e82b
BA
2501 * while increasing bulk throughput. This functionality is controlled
2502 * by the InterruptThrottleRate module parameter.
bc7f75fa 2503 **/
8bb62869 2504static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
bc7f75fa
AK
2505{
2506 unsigned int retval = itr_setting;
2507
2508 if (packets == 0)
5015e53a 2509 return itr_setting;
bc7f75fa
AK
2510
2511 switch (itr_setting) {
2512 case lowest_latency:
2513 /* handle TSO and jumbo frames */
362e20ca 2514 if (bytes / packets > 8000)
bc7f75fa 2515 retval = bulk_latency;
b1cdfead 2516 else if ((packets < 5) && (bytes > 512))
bc7f75fa 2517 retval = low_latency;
bc7f75fa 2518 break;
e80bd1d1 2519 case low_latency: /* 50 usec aka 20000 ints/s */
bc7f75fa
AK
2520 if (bytes > 10000) {
2521 /* this if handles the TSO accounting */
362e20ca 2522 if (bytes / packets > 8000)
bc7f75fa 2523 retval = bulk_latency;
362e20ca 2524 else if ((packets < 10) || ((bytes / packets) > 1200))
bc7f75fa 2525 retval = bulk_latency;
b1cdfead 2526 else if ((packets > 35))
bc7f75fa 2527 retval = lowest_latency;
362e20ca 2528 } else if (bytes / packets > 2000) {
bc7f75fa
AK
2529 retval = bulk_latency;
2530 } else if (packets <= 2 && bytes < 512) {
2531 retval = lowest_latency;
2532 }
2533 break;
e80bd1d1 2534 case bulk_latency: /* 250 usec aka 4000 ints/s */
bc7f75fa 2535 if (bytes > 25000) {
b1cdfead 2536 if (packets > 35)
bc7f75fa 2537 retval = low_latency;
bc7f75fa
AK
2538 } else if (bytes < 6000) {
2539 retval = low_latency;
2540 }
2541 break;
2542 }
2543
bc7f75fa
AK
2544 return retval;
2545}
2546
2547static void e1000_set_itr(struct e1000_adapter *adapter)
2548{
bc7f75fa
AK
2549 u16 current_itr;
2550 u32 new_itr = adapter->itr;
2551
2552 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2553 if (adapter->link_speed != SPEED_1000) {
2554 current_itr = 0;
2555 new_itr = 4000;
2556 goto set_itr_now;
2557 }
2558
828bac87
BA
2559 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2560 new_itr = 0;
2561 goto set_itr_now;
2562 }
2563
8bb62869
BA
2564 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2565 adapter->total_tx_packets,
2566 adapter->total_tx_bytes);
bc7f75fa
AK
2567 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2568 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2569 adapter->tx_itr = low_latency;
2570
8bb62869
BA
2571 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2572 adapter->total_rx_packets,
2573 adapter->total_rx_bytes);
bc7f75fa
AK
2574 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2575 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2576 adapter->rx_itr = low_latency;
2577
2578 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2579
bc7f75fa 2580 /* counts and packets in update_itr are dependent on these numbers */
33550cec 2581 switch (current_itr) {
bc7f75fa
AK
2582 case lowest_latency:
2583 new_itr = 70000;
2584 break;
2585 case low_latency:
e80bd1d1 2586 new_itr = 20000; /* aka hwitr = ~200 */
bc7f75fa
AK
2587 break;
2588 case bulk_latency:
2589 new_itr = 4000;
2590 break;
2591 default:
2592 break;
2593 }
2594
2595set_itr_now:
2596 if (new_itr != adapter->itr) {
e921eb1a 2597 /* this attempts to bias the interrupt rate towards Bulk
bc7f75fa 2598 * by adding intermediate steps when interrupt rate is
ad68076e
BA
2599 * increasing
2600 */
bc7f75fa 2601 new_itr = new_itr > adapter->itr ?
f0ff4398 2602 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
bc7f75fa 2603 adapter->itr = new_itr;
4662e82b
BA
2604 adapter->rx_ring->itr_val = new_itr;
2605 if (adapter->msix_entries)
2606 adapter->rx_ring->set_itr = 1;
2607 else
e3d14b08 2608 e1000e_write_itr(adapter, new_itr);
bc7f75fa
AK
2609 }
2610}
2611
22a4cca2
MV
2612/**
2613 * e1000e_write_itr - write the ITR value to the appropriate registers
2614 * @adapter: address of board private structure
2615 * @itr: new ITR value to program
2616 *
2617 * e1000e_write_itr determines if the adapter is in MSI-X mode
2618 * and, if so, writes the EITR registers with the ITR value.
2619 * Otherwise, it writes the ITR value into the ITR register.
2620 **/
2621void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2622{
2623 struct e1000_hw *hw = &adapter->hw;
2624 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2625
2626 if (adapter->msix_entries) {
2627 int vector;
2628
2629 for (vector = 0; vector < adapter->num_vectors; vector++)
2630 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2631 } else {
2632 ew32(ITR, new_itr);
2633 }
2634}
2635
4662e82b
BA
2636/**
2637 * e1000_alloc_queues - Allocate memory for all rings
2638 * @adapter: board private structure to initialize
2639 **/
9f9a12f8 2640static int e1000_alloc_queues(struct e1000_adapter *adapter)
4662e82b 2641{
55aa6985
BA
2642 int size = sizeof(struct e1000_ring);
2643
2644 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
4662e82b
BA
2645 if (!adapter->tx_ring)
2646 goto err;
55aa6985
BA
2647 adapter->tx_ring->count = adapter->tx_ring_count;
2648 adapter->tx_ring->adapter = adapter;
4662e82b 2649
55aa6985 2650 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
4662e82b
BA
2651 if (!adapter->rx_ring)
2652 goto err;
55aa6985
BA
2653 adapter->rx_ring->count = adapter->rx_ring_count;
2654 adapter->rx_ring->adapter = adapter;
4662e82b
BA
2655
2656 return 0;
2657err:
2658 e_err("Unable to allocate memory for queues\n");
2659 kfree(adapter->rx_ring);
2660 kfree(adapter->tx_ring);
2661 return -ENOMEM;
2662}
2663
bc7f75fa 2664/**
c58c8a78 2665 * e1000e_poll - NAPI Rx polling callback
ad68076e 2666 * @napi: struct associated with this polling callback
0bcd952f 2667 * @budget: number of packets driver is allowed to process this poll
bc7f75fa 2668 **/
0bcd952f 2669static int e1000e_poll(struct napi_struct *napi, int budget)
bc7f75fa 2670{
c58c8a78
BA
2671 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2672 napi);
4662e82b 2673 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2674 struct net_device *poll_dev = adapter->netdev;
679e8a0f 2675 int tx_cleaned = 1, work_done = 0;
bc7f75fa 2676
4cf1653a 2677 adapter = netdev_priv(poll_dev);
bc7f75fa 2678
c58c8a78
BA
2679 if (!adapter->msix_entries ||
2680 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2681 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
4662e82b 2682
0bcd952f 2683 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
d2c7ddd6 2684
0bcd952f
JB
2685 if (!tx_cleaned || work_done == budget)
2686 return budget;
bc7f75fa 2687
0bcd952f
JB
2688 /* Exit the polling mode, but don't re-enable interrupts if stack might
2689 * poll us due to busy-polling
2690 */
2691 if (likely(napi_complete_done(napi, work_done))) {
bc7f75fa
AK
2692 if (adapter->itr_setting & 3)
2693 e1000_set_itr(adapter);
a3c69fef
JB
2694 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2695 if (adapter->msix_entries)
1f0ea197 2696 ew32(IMS, adapter->rx_ring->ims_val);
a3c69fef
JB
2697 else
2698 e1000_irq_enable(adapter);
2699 }
bc7f75fa
AK
2700 }
2701
2702 return work_done;
2703}
2704
80d5c368 2705static int e1000_vlan_rx_add_vid(struct net_device *netdev,
603cdca9 2706 __always_unused __be16 proto, u16 vid)
bc7f75fa
AK
2707{
2708 struct e1000_adapter *adapter = netdev_priv(netdev);
2709 struct e1000_hw *hw = &adapter->hw;
2710 u32 vfta, index;
2711
2712 /* don't update vlan cookie if already programmed */
2713 if ((adapter->hw.mng_cookie.status &
2714 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2715 (vid == adapter->mng_vlan_id))
8e586137 2716 return 0;
caaddaf8 2717
bc7f75fa 2718 /* add VID to filter table */
caaddaf8
BA
2719 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2720 index = (vid >> 5) & 0x7F;
2721 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
18dd2392 2722 vfta |= BIT((vid & 0x1F));
caaddaf8
BA
2723 hw->mac.ops.write_vfta(hw, index, vfta);
2724 }
86d70e53
JK
2725
2726 set_bit(vid, adapter->active_vlans);
8e586137
JP
2727
2728 return 0;
bc7f75fa
AK
2729}
2730
80d5c368 2731static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
603cdca9 2732 __always_unused __be16 proto, u16 vid)
bc7f75fa
AK
2733{
2734 struct e1000_adapter *adapter = netdev_priv(netdev);
2735 struct e1000_hw *hw = &adapter->hw;
2736 u32 vfta, index;
2737
bc7f75fa
AK
2738 if ((adapter->hw.mng_cookie.status &
2739 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2740 (vid == adapter->mng_vlan_id)) {
2741 /* release control to f/w */
31dbe5b4 2742 e1000e_release_hw_control(adapter);
8e586137 2743 return 0;
bc7f75fa
AK
2744 }
2745
2746 /* remove VID from filter table */
caaddaf8
BA
2747 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2748 index = (vid >> 5) & 0x7F;
2749 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
18dd2392 2750 vfta &= ~BIT((vid & 0x1F));
caaddaf8
BA
2751 hw->mac.ops.write_vfta(hw, index, vfta);
2752 }
86d70e53
JK
2753
2754 clear_bit(vid, adapter->active_vlans);
8e586137
JP
2755
2756 return 0;
bc7f75fa
AK
2757}
2758
86d70e53
JK
2759/**
2760 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2761 * @adapter: board private structure to initialize
2762 **/
2763static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
bc7f75fa
AK
2764{
2765 struct net_device *netdev = adapter->netdev;
86d70e53
JK
2766 struct e1000_hw *hw = &adapter->hw;
2767 u32 rctl;
bc7f75fa 2768
86d70e53
JK
2769 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2770 /* disable VLAN receive filtering */
2771 rctl = er32(RCTL);
2772 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2773 ew32(RCTL, rctl);
2774
2775 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
80d5c368
PM
2776 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2777 adapter->mng_vlan_id);
86d70e53 2778 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
bc7f75fa 2779 }
bc7f75fa
AK
2780 }
2781}
2782
86d70e53
JK
2783/**
2784 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2785 * @adapter: board private structure to initialize
2786 **/
2787static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2788{
2789 struct e1000_hw *hw = &adapter->hw;
2790 u32 rctl;
2791
2792 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2793 /* enable VLAN receive filtering */
2794 rctl = er32(RCTL);
2795 rctl |= E1000_RCTL_VFE;
2796 rctl &= ~E1000_RCTL_CFIEN;
2797 ew32(RCTL, rctl);
2798 }
2799}
bc7f75fa 2800
86d70e53 2801/**
889ad456 2802 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
86d70e53
JK
2803 * @adapter: board private structure to initialize
2804 **/
2805static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
bc7f75fa 2806{
bc7f75fa 2807 struct e1000_hw *hw = &adapter->hw;
86d70e53 2808 u32 ctrl;
bc7f75fa 2809
86d70e53
JK
2810 /* disable VLAN tag insert/strip */
2811 ctrl = er32(CTRL);
2812 ctrl &= ~E1000_CTRL_VME;
2813 ew32(CTRL, ctrl);
2814}
bc7f75fa 2815
86d70e53
JK
2816/**
2817 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2818 * @adapter: board private structure to initialize
2819 **/
2820static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2821{
2822 struct e1000_hw *hw = &adapter->hw;
2823 u32 ctrl;
bc7f75fa 2824
86d70e53
JK
2825 /* enable VLAN tag insert/strip */
2826 ctrl = er32(CTRL);
2827 ctrl |= E1000_CTRL_VME;
2828 ew32(CTRL, ctrl);
2829}
bc7f75fa 2830
86d70e53
JK
2831static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2832{
2833 struct net_device *netdev = adapter->netdev;
2834 u16 vid = adapter->hw.mng_cookie.vlan_id;
2835 u16 old_vid = adapter->mng_vlan_id;
2836
e5fe2541 2837 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
80d5c368 2838 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
86d70e53 2839 adapter->mng_vlan_id = vid;
bc7f75fa
AK
2840 }
2841
86d70e53 2842 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
80d5c368 2843 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
bc7f75fa
AK
2844}
2845
2846static void e1000_restore_vlan(struct e1000_adapter *adapter)
2847{
2848 u16 vid;
2849
80d5c368 2850 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
bc7f75fa 2851
86d70e53 2852 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 2853 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
bc7f75fa
AK
2854}
2855
cd791618 2856static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
bc7f75fa
AK
2857{
2858 struct e1000_hw *hw = &adapter->hw;
cd791618 2859 u32 manc, manc2h, mdef, i, j;
bc7f75fa
AK
2860
2861 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2862 return;
2863
2864 manc = er32(MANC);
2865
e921eb1a 2866 /* enable receiving management packets to the host. this will probably
bc7f75fa 2867 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2868 * the packets will be handled on SMBUS
2869 */
bc7f75fa
AK
2870 manc |= E1000_MANC_EN_MNG2HOST;
2871 manc2h = er32(MANC2H);
cd791618
BA
2872
2873 switch (hw->mac.type) {
2874 default:
2875 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2876 break;
2877 case e1000_82574:
2878 case e1000_82583:
e921eb1a 2879 /* Check if IPMI pass-through decision filter already exists;
cd791618
BA
2880 * if so, enable it.
2881 */
2882 for (i = 0, j = 0; i < 8; i++) {
2883 mdef = er32(MDEF(i));
2884
2885 /* Ignore filters with anything other than IPMI ports */
3b21b508 2886 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
cd791618
BA
2887 continue;
2888
2889 /* Enable this decision filter in MANC2H */
2890 if (mdef)
18dd2392 2891 manc2h |= BIT(i);
cd791618
BA
2892
2893 j |= mdef;
2894 }
2895
2896 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2897 break;
2898
2899 /* Create new decision filter in an empty filter */
2900 for (i = 0, j = 0; i < 8; i++)
2901 if (er32(MDEF(i)) == 0) {
2902 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2903 E1000_MDEF_PORT_664));
18dd2392 2904 manc2h |= BIT(1);
cd791618
BA
2905 j++;
2906 break;
2907 }
2908
2909 if (!j)
2910 e_warn("Unable to create IPMI pass-through filter\n");
2911 break;
2912 }
2913
bc7f75fa
AK
2914 ew32(MANC2H, manc2h);
2915 ew32(MANC, manc);
2916}
2917
2918/**
af667a29 2919 * e1000_configure_tx - Configure Transmit Unit after Reset
bc7f75fa
AK
2920 * @adapter: board private structure
2921 *
2922 * Configure the Tx unit of the MAC after a reset.
2923 **/
2924static void e1000_configure_tx(struct e1000_adapter *adapter)
2925{
2926 struct e1000_hw *hw = &adapter->hw;
2927 struct e1000_ring *tx_ring = adapter->tx_ring;
2928 u64 tdba;
e7e834aa 2929 u32 tdlen, tctl, tarc;
bc7f75fa
AK
2930
2931 /* Setup the HW Tx Head and Tail descriptor pointers */
2932 tdba = tx_ring->dma;
2933 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1e36052e
BA
2934 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2935 ew32(TDBAH(0), (tdba >> 32));
2936 ew32(TDLEN(0), tdlen);
2937 ew32(TDH(0), 0);
2938 ew32(TDT(0), 0);
2939 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2940 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
bc7f75fa 2941
0845d45e
JJB
2942 writel(0, tx_ring->head);
2943 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2944 e1000e_update_tdt_wa(tx_ring, 0);
2945 else
2946 writel(0, tx_ring->tail);
2947
bc7f75fa
AK
2948 /* Set the Tx Interrupt Delay register */
2949 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2950 /* Tx irq moderation */
bc7f75fa
AK
2951 ew32(TADV, adapter->tx_abs_int_delay);
2952
3a3b7586
JB
2953 if (adapter->flags2 & FLAG2_DMA_BURST) {
2954 u32 txdctl = er32(TXDCTL(0));
6cf08d1c 2955
3a3b7586
JB
2956 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2957 E1000_TXDCTL_WTHRESH);
e921eb1a 2958 /* set up some performance related parameters to encourage the
3a3b7586
JB
2959 * hardware to use the bus more efficiently in bursts, depends
2960 * on the tx_int_delay to be enabled,
8edc0e62 2961 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
3a3b7586
JB
2962 * hthresh = 1 ==> prefetch when one or more available
2963 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2964 * BEWARE: this seems to work but should be considered first if
af667a29 2965 * there are Tx hangs or other Tx related bugs
3a3b7586
JB
2966 */
2967 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2968 ew32(TXDCTL(0), txdctl);
3a3b7586 2969 }
56032be7
BA
2970 /* erratum work around: set txdctl the same for both queues */
2971 ew32(TXDCTL(1), er32(TXDCTL(0)));
3a3b7586 2972
e7e834aa
DE
2973 /* Program the Transmit Control Register */
2974 tctl = er32(TCTL);
2975 tctl &= ~E1000_TCTL_CT;
2976 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2977 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2978
bc7f75fa 2979 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2980 tarc = er32(TARC(0));
e921eb1a 2981 /* set the speed mode bit, we'll clear it if we're not at
ad68076e
BA
2982 * gigabit link later
2983 */
18dd2392 2984#define SPEED_MODE_BIT BIT(21)
bc7f75fa 2985 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2986 ew32(TARC(0), tarc);
bc7f75fa
AK
2987 }
2988
2989 /* errata: program both queues to unweighted RR */
2990 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2991 tarc = er32(TARC(0));
bc7f75fa 2992 tarc |= 1;
e9ec2c0f
JK
2993 ew32(TARC(0), tarc);
2994 tarc = er32(TARC(1));
bc7f75fa 2995 tarc |= 1;
e9ec2c0f 2996 ew32(TARC(1), tarc);
bc7f75fa
AK
2997 }
2998
bc7f75fa
AK
2999 /* Setup Transmit Descriptor Settings for eop descriptor */
3000 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3001
3002 /* only set IDE if we are delaying interrupts using the timers */
3003 if (adapter->tx_int_delay)
3004 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3005
3006 /* enable Report Status bit */
3007 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3008
e7e834aa
DE
3009 ew32(TCTL, tctl);
3010
57cde763 3011 hw->mac.ops.config_collision_dist(hw);
79849ebc 3012
b10effb9
SN
3013 /* SPT and KBL Si errata workaround to avoid data corruption */
3014 if (hw->mac.type == e1000_pch_spt) {
79849ebc
DE
3015 u32 reg_val;
3016
3017 reg_val = er32(IOSFPC);
3018 reg_val |= E1000_RCTL_RDMTS_HEX;
3019 ew32(IOSFPC, reg_val);
3020
3021 reg_val = er32(TARC(0));
c0f4b163
SN
3022 /* SPT and KBL Si errata workaround to avoid Tx hang.
3023 * Dropping the number of outstanding requests from
3024 * 3 to 2 in order to avoid a buffer overrun.
3025 */
3026 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3027 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
79849ebc
DE
3028 ew32(TARC(0), reg_val);
3029 }
bc7f75fa
AK
3030}
3031
b50f7bca
JB
3032#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3033 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3034
bc7f75fa
AK
3035/**
3036 * e1000_setup_rctl - configure the receive control registers
3037 * @adapter: Board private structure
3038 **/
bc7f75fa
AK
3039static void e1000_setup_rctl(struct e1000_adapter *adapter)
3040{
3041 struct e1000_hw *hw = &adapter->hw;
3042 u32 rctl, rfctl;
bc7f75fa
AK
3043 u32 pages = 0;
3044
b20a7744
DE
3045 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3046 * If jumbo frames not set, program related MAC/PHY registers
3047 * to h/w defaults
3048 */
3049 if (hw->mac.type >= e1000_pch2lan) {
3050 s32 ret_val;
3051
3052 if (adapter->netdev->mtu > ETH_DATA_LEN)
3053 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3054 else
3055 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3056
3057 if (ret_val)
3058 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3059 }
a1ce6473 3060
bc7f75fa
AK
3061 /* Program MC offset vector base */
3062 rctl = er32(RCTL);
3063 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3064 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
f0ff4398
BA
3065 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3066 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
bc7f75fa
AK
3067
3068 /* Do not Store bad packets */
3069 rctl &= ~E1000_RCTL_SBP;
3070
3071 /* Enable Long Packet receive */
3072 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3073 rctl &= ~E1000_RCTL_LPE;
3074 else
3075 rctl |= E1000_RCTL_LPE;
3076
eb7c3adb
JK
3077 /* Some systems expect that the CRC is included in SMBUS traffic. The
3078 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3079 * host memory when this is enabled
3080 */
3081 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3082 rctl |= E1000_RCTL_SECRC;
5918bd88 3083
a4f58f54
BA
3084 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3085 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3086 u16 phy_data;
3087
3088 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3089 phy_data &= 0xfff8;
18dd2392 3090 phy_data |= BIT(2);
a4f58f54
BA
3091 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3092
3093 e1e_rphy(hw, 22, &phy_data);
3094 phy_data &= 0x0fff;
18dd2392 3095 phy_data |= BIT(14);
a4f58f54
BA
3096 e1e_wphy(hw, 0x10, 0x2823);
3097 e1e_wphy(hw, 0x11, 0x0003);
3098 e1e_wphy(hw, 22, phy_data);
3099 }
3100
bc7f75fa
AK
3101 /* Setup buffer sizes */
3102 rctl &= ~E1000_RCTL_SZ_4096;
3103 rctl |= E1000_RCTL_BSEX;
3104 switch (adapter->rx_buffer_len) {
bc7f75fa
AK
3105 case 2048:
3106 default:
3107 rctl |= E1000_RCTL_SZ_2048;
3108 rctl &= ~E1000_RCTL_BSEX;
3109 break;
3110 case 4096:
3111 rctl |= E1000_RCTL_SZ_4096;
3112 break;
3113 case 8192:
3114 rctl |= E1000_RCTL_SZ_8192;
3115 break;
3116 case 16384:
3117 rctl |= E1000_RCTL_SZ_16384;
3118 break;
3119 }
3120
5f450212
BA
3121 /* Enable Extended Status in all Receive Descriptors */
3122 rfctl = er32(RFCTL);
3123 rfctl |= E1000_RFCTL_EXTEN;
f6bd5577 3124 ew32(RFCTL, rfctl);
5f450212 3125
e921eb1a 3126 /* 82571 and greater support packet-split where the protocol
bc7f75fa
AK
3127 * header is placed in skb->data and the packet data is
3128 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3129 * In the case of a non-split, skb->data is linearly filled,
3130 * followed by the page buffers. Therefore, skb->data is
3131 * sized to hold the largest protocol header.
3132 *
3133 * allocations using alloc_page take too long for regular MTU
3134 * so only enable packet split for jumbo frames
3135 *
3136 * Using pages when the page size is greater than 16k wastes
3137 * a lot of memory, since we allocate 3 pages at all times
3138 * per packet.
3139 */
bc7f75fa 3140 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
79d4e908 3141 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 3142 adapter->rx_ps_pages = pages;
97ac8cae
BA
3143 else
3144 adapter->rx_ps_pages = 0;
bc7f75fa
AK
3145
3146 if (adapter->rx_ps_pages) {
90da0669
BA
3147 u32 psrctl = 0;
3148
140a7480
AK
3149 /* Enable Packet split descriptors */
3150 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa 3151
e5fe2541 3152 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
bc7f75fa
AK
3153
3154 switch (adapter->rx_ps_pages) {
3155 case 3:
e5fe2541 3156 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
5463fce6 3157 fallthrough;
bc7f75fa 3158 case 2:
e5fe2541 3159 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
5463fce6 3160 fallthrough;
bc7f75fa 3161 case 1:
e5fe2541 3162 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
bc7f75fa
AK
3163 break;
3164 }
3165
3166 ew32(PSRCTL, psrctl);
3167 }
3168
cf955e6c
BG
3169 /* This is useful for sniffing bad packets. */
3170 if (adapter->netdev->features & NETIF_F_RXALL) {
3171 /* UPE and MPE will be handled by normal PROMISC logic
e921eb1a
BA
3172 * in e1000e_set_rx_mode
3173 */
e80bd1d1
BA
3174 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3175 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3176 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
cf955e6c 3177
e80bd1d1
BA
3178 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3179 E1000_RCTL_DPF | /* Allow filtered pause */
3180 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
cf955e6c
BG
3181 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3182 * and that breaks VLANs.
3183 */
3184 }
3185
bc7f75fa 3186 ew32(RCTL, rctl);
318a94d6 3187 /* just started the receive unit, no need to restart */
12d43f7d 3188 adapter->flags &= ~FLAG_RESTART_NOW;
bc7f75fa
AK
3189}
3190
3191/**
3192 * e1000_configure_rx - Configure Receive Unit after Reset
3193 * @adapter: board private structure
3194 *
3195 * Configure the Rx unit of the MAC after a reset.
3196 **/
3197static void e1000_configure_rx(struct e1000_adapter *adapter)
3198{
3199 struct e1000_hw *hw = &adapter->hw;
3200 struct e1000_ring *rx_ring = adapter->rx_ring;
3201 u64 rdba;
3202 u32 rdlen, rctl, rxcsum, ctrl_ext;
3203
3204 if (adapter->rx_ps_pages) {
3205 /* this is a 32 byte descriptor */
3206 rdlen = rx_ring->count *
af667a29 3207 sizeof(union e1000_rx_desc_packet_split);
bc7f75fa
AK
3208 adapter->clean_rx = e1000_clean_rx_irq_ps;
3209 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae 3210 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
5f450212 3211 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
97ac8cae
BA
3212 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3213 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 3214 } else {
5f450212 3215 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
bc7f75fa
AK
3216 adapter->clean_rx = e1000_clean_rx_irq;
3217 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3218 }
3219
3220 /* disable receives while setting up the descriptors */
3221 rctl = er32(RCTL);
7f99ae63
BA
3222 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3223 ew32(RCTL, rctl & ~E1000_RCTL_EN);
bc7f75fa 3224 e1e_flush();
ab6973ae 3225 usleep_range(10000, 11000);
bc7f75fa 3226
3a3b7586 3227 if (adapter->flags2 & FLAG2_DMA_BURST) {
e921eb1a 3228 /* set the writeback threshold (only takes effect if the RDTR
3a3b7586 3229 * is set). set GRAN=1 and write back up to 0x4 worth, and
af667a29 3230 * enable prefetching of 0x20 Rx descriptors
3a3b7586
JB
3231 * granularity = 01
3232 * wthresh = 04,
3233 * hthresh = 04,
3234 * pthresh = 0x20
3235 */
3236 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3237 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3a3b7586
JB
3238 }
3239
bc7f75fa
AK
3240 /* set the Receive Delay Timer Register */
3241 ew32(RDTR, adapter->rx_int_delay);
3242
3243 /* irq moderation */
3244 ew32(RADV, adapter->rx_abs_int_delay);
828bac87 3245 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
22a4cca2 3246 e1000e_write_itr(adapter, adapter->itr);
bc7f75fa
AK
3247
3248 ctrl_ext = er32(CTRL_EXT);
bc7f75fa
AK
3249 /* Auto-Mask interrupts upon ICR access */
3250 ctrl_ext |= E1000_CTRL_EXT_IAME;
3251 ew32(IAM, 0xffffffff);
3252 ew32(CTRL_EXT, ctrl_ext);
3253 e1e_flush();
3254
e921eb1a 3255 /* Setup the HW Rx Head and Tail Descriptor Pointers and
ad68076e
BA
3256 * the Base and Length of the Rx Descriptor Ring
3257 */
bc7f75fa 3258 rdba = rx_ring->dma;
1e36052e
BA
3259 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3260 ew32(RDBAH(0), (rdba >> 32));
3261 ew32(RDLEN(0), rdlen);
3262 ew32(RDH(0), 0);
3263 ew32(RDT(0), 0);
3264 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3265 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
bc7f75fa 3266
0845d45e
JJB
3267 writel(0, rx_ring->head);
3268 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3269 e1000e_update_rdt_wa(rx_ring, 0);
3270 else
3271 writel(0, rx_ring->tail);
3272
bc7f75fa
AK
3273 /* Enable Receive Checksum Offload for TCP and UDP */
3274 rxcsum = er32(RXCSUM);
2e1706f2 3275 if (adapter->netdev->features & NETIF_F_RXCSUM)
bc7f75fa 3276 rxcsum |= E1000_RXCSUM_TUOFL;
2e1706f2 3277 else
bc7f75fa 3278 rxcsum &= ~E1000_RXCSUM_TUOFL;
bc7f75fa
AK
3279 ew32(RXCSUM, rxcsum);
3280
3e35d991
BA
3281 /* With jumbo frames, excessive C-state transition latencies result
3282 * in dropped transactions.
3283 */
3284 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3285 u32 lat =
3286 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3287 adapter->max_frame_size) * 8 / 1000;
3288
3289 if (adapter->flags & FLAG_IS_ICH) {
53ec5498 3290 u32 rxdctl = er32(RXDCTL(0));
6cf08d1c 3291
b701cacd 3292 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
53ec5498 3293 }
3e35d991 3294
8299b006
MT
3295 dev_info(&adapter->pdev->dev,
3296 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
81e95ad7 3297 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3e35d991 3298 } else {
81e95ad7
RW
3299 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3300 PM_QOS_DEFAULT_VALUE);
97ac8cae 3301 }
bc7f75fa
AK
3302
3303 /* Enable Receives */
3304 ew32(RCTL, rctl);
3305}
3306
3307/**
ef9b965a
JB
3308 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3309 * @netdev: network interface device structure
bc7f75fa 3310 *
ef9b965a
JB
3311 * Writes multicast address list to the MTA hash table.
3312 * Returns: -ENOMEM on failure
3313 * 0 on no addresses written
3314 * X on writing X addresses to MTA
3315 */
3316static int e1000e_write_mc_addr_list(struct net_device *netdev)
3317{
3318 struct e1000_adapter *adapter = netdev_priv(netdev);
3319 struct e1000_hw *hw = &adapter->hw;
3320 struct netdev_hw_addr *ha;
3321 u8 *mta_list;
3322 int i;
3323
3324 if (netdev_mc_empty(netdev)) {
3325 /* nothing to program, so clear mc list */
3326 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3327 return 0;
3328 }
3329
6396bb22 3330 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
ef9b965a
JB
3331 if (!mta_list)
3332 return -ENOMEM;
3333
3334 /* update_mc_addr_list expects a packed array of only addresses. */
3335 i = 0;
3336 netdev_for_each_mc_addr(ha, netdev)
f0ff4398 3337 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
ef9b965a
JB
3338
3339 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3340 kfree(mta_list);
3341
3342 return netdev_mc_count(netdev);
3343}
3344
3345/**
3346 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3347 * @netdev: network interface device structure
bc7f75fa 3348 *
ef9b965a
JB
3349 * Writes unicast address list to the RAR table.
3350 * Returns: -ENOMEM on failure/insufficient address space
3351 * 0 on no addresses written
3352 * X on writing X addresses to the RAR table
bc7f75fa 3353 **/
ef9b965a 3354static int e1000e_write_uc_addr_list(struct net_device *netdev)
bc7f75fa 3355{
ef9b965a
JB
3356 struct e1000_adapter *adapter = netdev_priv(netdev);
3357 struct e1000_hw *hw = &adapter->hw;
b3e5bf1f 3358 unsigned int rar_entries;
ef9b965a
JB
3359 int count = 0;
3360
b3e5bf1f
DE
3361 rar_entries = hw->mac.ops.rar_get_count(hw);
3362
ef9b965a
JB
3363 /* save a rar entry for our hardware address */
3364 rar_entries--;
3365
3366 /* save a rar entry for the LAA workaround */
3367 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3368 rar_entries--;
3369
3370 /* return ENOMEM indicating insufficient memory for addresses */
3371 if (netdev_uc_count(netdev) > rar_entries)
3372 return -ENOMEM;
3373
3374 if (!netdev_uc_empty(netdev) && rar_entries) {
3375 struct netdev_hw_addr *ha;
3376
e921eb1a 3377 /* write the addresses in reverse order to avoid write
ef9b965a
JB
3378 * combining
3379 */
3380 netdev_for_each_uc_addr(ha, netdev) {
847042a6 3381 int ret_val;
b3e5bf1f 3382
ef9b965a
JB
3383 if (!rar_entries)
3384 break;
847042a6
BW
3385 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3386 if (ret_val < 0)
b3e5bf1f 3387 return -ENOMEM;
ef9b965a
JB
3388 count++;
3389 }
3390 }
3391
3392 /* zero out the remaining RAR entries not used above */
3393 for (; rar_entries > 0; rar_entries--) {
3394 ew32(RAH(rar_entries), 0);
3395 ew32(RAL(rar_entries), 0);
3396 }
3397 e1e_flush();
3398
3399 return count;
bc7f75fa
AK
3400}
3401
3402/**
ef9b965a 3403 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
bc7f75fa
AK
3404 * @netdev: network interface device structure
3405 *
ef9b965a
JB
3406 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3407 * address list or the network interface flags are updated. This routine is
3408 * responsible for configuring the hardware for proper unicast, multicast,
bc7f75fa
AK
3409 * promiscuous mode, and all-multi behavior.
3410 **/
ef9b965a 3411static void e1000e_set_rx_mode(struct net_device *netdev)
bc7f75fa
AK
3412{
3413 struct e1000_adapter *adapter = netdev_priv(netdev);
3414 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 3415 u32 rctl;
bc7f75fa 3416
63eb48f1
DE
3417 if (pm_runtime_suspended(netdev->dev.parent))
3418 return;
3419
bc7f75fa 3420 /* Check for Promiscuous and All Multicast modes */
bc7f75fa
AK
3421 rctl = er32(RCTL);
3422
ef9b965a
JB
3423 /* clear the affected bits */
3424 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3425
bc7f75fa
AK
3426 if (netdev->flags & IFF_PROMISC) {
3427 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
86d70e53
JK
3428 /* Do not hardware filter VLANs in promisc mode */
3429 e1000e_vlan_filter_disable(adapter);
bc7f75fa 3430 } else {
ef9b965a 3431 int count;
3d3a1676 3432
746b9f02
PM
3433 if (netdev->flags & IFF_ALLMULTI) {
3434 rctl |= E1000_RCTL_MPE;
746b9f02 3435 } else {
e921eb1a 3436 /* Write addresses to the MTA, if the attempt fails
ef9b965a
JB
3437 * then we should just turn on promiscuous mode so
3438 * that we can at least receive multicast traffic
3439 */
3440 count = e1000e_write_mc_addr_list(netdev);
3441 if (count < 0)
3442 rctl |= E1000_RCTL_MPE;
746b9f02 3443 }
86d70e53 3444 e1000e_vlan_filter_enable(adapter);
e921eb1a 3445 /* Write addresses to available RAR registers, if there is not
ef9b965a
JB
3446 * sufficient space to store all the addresses then enable
3447 * unicast promiscuous mode
bc7f75fa 3448 */
ef9b965a
JB
3449 count = e1000e_write_uc_addr_list(netdev);
3450 if (count < 0)
3451 rctl |= E1000_RCTL_UPE;
bc7f75fa 3452 }
86d70e53 3453
ef9b965a
JB
3454 ew32(RCTL, rctl);
3455
83808641 3456 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
86d70e53
JK
3457 e1000e_vlan_strip_enable(adapter);
3458 else
3459 e1000e_vlan_strip_disable(adapter);
bc7f75fa
AK
3460}
3461
70495a50
BA
3462static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3463{
3464 struct e1000_hw *hw = &adapter->hw;
3465 u32 mrqc, rxcsum;
5c8d19da 3466 u32 rss_key[10];
70495a50 3467 int i;
70495a50 3468
5c8d19da 3469 netdev_rss_key_fill(rss_key, sizeof(rss_key));
70495a50 3470 for (i = 0; i < 10; i++)
5c8d19da 3471 ew32(RSSRK(i), rss_key[i]);
70495a50
BA
3472
3473 /* Direct all traffic to queue 0 */
3474 for (i = 0; i < 32; i++)
3475 ew32(RETA(i), 0);
3476
e921eb1a 3477 /* Disable raw packet checksumming so that RSS hash is placed in
70495a50
BA
3478 * descriptor on writeback.
3479 */
3480 rxcsum = er32(RXCSUM);
3481 rxcsum |= E1000_RXCSUM_PCSD;
3482
3483 ew32(RXCSUM, rxcsum);
3484
3485 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3486 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3487 E1000_MRQC_RSS_FIELD_IPV6 |
3488 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3489 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3490
3491 ew32(MRQC, mrqc);
3492}
3493
b67e1913
BA
3494/**
3495 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3496 * @adapter: board private structure
3497 * @timinca: pointer to returned time increment attributes
3498 *
3499 * Get attributes for incrementing the System Time Register SYSTIML/H at
3500 * the default base frequency, and set the cyclecounter shift value.
3501 **/
d89777bf 3502s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
b67e1913
BA
3503{
3504 struct e1000_hw *hw = &adapter->hw;
3505 u32 incvalue, incperiod, shift;
3506
79849ebc
DE
3507 /* Make sure clock is enabled on I217/I218/I219 before checking
3508 * the frequency
3509 */
c8744f44 3510 if ((hw->mac.type >= e1000_pch_lpt) &&
b67e1913
BA
3511 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3512 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3513 u32 fextnvm7 = er32(FEXTNVM7);
3514
18dd2392
JK
3515 if (!(fextnvm7 & BIT(0))) {
3516 ew32(FEXTNVM7, fextnvm7 | BIT(0));
b67e1913
BA
3517 e1e_flush();
3518 }
3519 }
3520
3521 switch (hw->mac.type) {
3522 case e1000_pch2lan:
5313eecc 3523 /* Stable 96MHz frequency */
68fe1d5d
SN
3524 incperiod = INCPERIOD_96MHZ;
3525 incvalue = INCVALUE_96MHZ;
3526 shift = INCVALUE_SHIFT_96MHZ;
3527 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
5313eecc 3528 break;
b67e1913 3529 case e1000_pch_lpt:
83129b37 3530 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
b67e1913 3531 /* Stable 96MHz frequency */
68fe1d5d
SN
3532 incperiod = INCPERIOD_96MHZ;
3533 incvalue = INCVALUE_96MHZ;
3534 shift = INCVALUE_SHIFT_96MHZ;
3535 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
83129b37
YL
3536 } else {
3537 /* Stable 25MHz frequency */
68fe1d5d
SN
3538 incperiod = INCPERIOD_25MHZ;
3539 incvalue = INCVALUE_25MHZ;
3540 shift = INCVALUE_SHIFT_25MHZ;
83129b37
YL
3541 adapter->cc.shift = shift;
3542 }
3543 break;
3544 case e1000_pch_spt:
fff200ca
BP
3545 /* Stable 24MHz frequency */
3546 incperiod = INCPERIOD_24MHZ;
3547 incvalue = INCVALUE_24MHZ;
3548 shift = INCVALUE_SHIFT_24MHZ;
3549 adapter->cc.shift = shift;
3550 break;
68fe1d5d 3551 case e1000_pch_cnp:
fb776f5d 3552 case e1000_pch_tgp:
59e46688 3553 case e1000_pch_adp:
cc23f4f0 3554 case e1000_pch_mtp:
820b8ff6 3555 case e1000_pch_lnp:
68fe1d5d
SN
3556 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3557 /* Stable 24MHz frequency */
3558 incperiod = INCPERIOD_24MHZ;
3559 incvalue = INCVALUE_24MHZ;
3560 shift = INCVALUE_SHIFT_24MHZ;
3561 adapter->cc.shift = shift;
3562 } else {
3563 /* Stable 38400KHz frequency */
3564 incperiod = INCPERIOD_38400KHZ;
3565 incvalue = INCVALUE_38400KHZ;
3566 shift = INCVALUE_SHIFT_38400KHZ;
3567 adapter->cc.shift = shift;
3568 }
3569 break;
b67e1913
BA
3570 case e1000_82574:
3571 case e1000_82583:
3572 /* Stable 25MHz frequency */
68fe1d5d
SN
3573 incperiod = INCPERIOD_25MHZ;
3574 incvalue = INCVALUE_25MHZ;
3575 shift = INCVALUE_SHIFT_25MHZ;
b67e1913
BA
3576 adapter->cc.shift = shift;
3577 break;
3578 default:
3579 return -EINVAL;
3580 }
3581
3582 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3583 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3584
3585 return 0;
3586}
3587
3588/**
3589 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3590 * @adapter: board private structure
b50f7bca 3591 * @config: timestamp configuration
b67e1913
BA
3592 *
3593 * Outgoing time stamping can be enabled and disabled. Play nice and
3594 * disable it when requested, although it shouldn't cause any overhead
3595 * when no packet needs it. At most one packet in the queue may be
3596 * marked for time stamping, otherwise it would be impossible to tell
3597 * for sure to which packet the hardware time stamp belongs.
3598 *
3599 * Incoming time stamping has to be configured via the hardware filters.
3600 * Not all combinations are supported, in particular event type has to be
3601 * specified. Matching the kind of event packet is not supported, with the
3602 * exception of "all V2 events regardless of level 2 or 4".
3603 **/
62d7e3a2
BH
3604static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3605 struct hwtstamp_config *config)
b67e1913
BA
3606{
3607 struct e1000_hw *hw = &adapter->hw;
b67e1913
BA
3608 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3609 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
d89777bf
BA
3610 u32 rxmtrl = 0;
3611 u16 rxudp = 0;
3612 bool is_l4 = false;
3613 bool is_l2 = false;
b67e1913 3614 u32 regval;
b67e1913
BA
3615
3616 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3617 return -EINVAL;
3618
3619 /* flags reserved for future extensions - must be zero */
3620 if (config->flags)
3621 return -EINVAL;
3622
3623 switch (config->tx_type) {
3624 case HWTSTAMP_TX_OFF:
3625 tsync_tx_ctl = 0;
3626 break;
3627 case HWTSTAMP_TX_ON:
3628 break;
3629 default:
3630 return -ERANGE;
3631 }
3632
3633 switch (config->rx_filter) {
3634 case HWTSTAMP_FILTER_NONE:
3635 tsync_rx_ctl = 0;
3636 break;
d89777bf
BA
3637 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3638 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3639 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3640 is_l4 = true;
3641 break;
3642 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3643 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3644 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3645 is_l4 = true;
3646 break;
3647 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3648 /* Also time stamps V2 L2 Path Delay Request/Response */
3649 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3650 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3651 is_l2 = true;
3652 break;
3653 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3654 /* Also time stamps V2 L2 Path Delay Request/Response. */
3655 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3656 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657 is_l2 = true;
3658 break;
3659 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5463fce6
JK
3660 /* Hardware cannot filter just V2 L4 Sync messages */
3661 fallthrough;
d89777bf
BA
3662 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3663 /* Also time stamps V2 Path Delay Request/Response. */
3664 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3665 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3666 is_l2 = true;
3667 is_l4 = true;
3668 break;
3669 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5463fce6
JK
3670 /* Hardware cannot filter just V2 L4 Delay Request messages */
3671 fallthrough;
d89777bf
BA
3672 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3673 /* Also time stamps V2 Path Delay Request/Response. */
3674 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3675 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3676 is_l2 = true;
3677 is_l4 = true;
3678 break;
3679 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3680 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5463fce6
JK
3681 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3682 fallthrough;
d89777bf
BA
3683 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3684 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3685 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3686 is_l2 = true;
3687 is_l4 = true;
3688 break;
3689 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3690 /* For V1, the hardware can only filter Sync messages or
3691 * Delay Request messages but not both so fall-through to
3692 * time stamp all packets.
3693 */
5463fce6 3694 fallthrough;
e3412575 3695 case HWTSTAMP_FILTER_NTP_ALL:
b67e1913 3696 case HWTSTAMP_FILTER_ALL:
d89777bf
BA
3697 is_l2 = true;
3698 is_l4 = true;
b67e1913
BA
3699 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3700 config->rx_filter = HWTSTAMP_FILTER_ALL;
3701 break;
3702 default:
3703 return -ERANGE;
3704 }
3705
62d7e3a2
BH
3706 adapter->hwtstamp_config = *config;
3707
b67e1913
BA
3708 /* enable/disable Tx h/w time stamping */
3709 regval = er32(TSYNCTXCTL);
3710 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3711 regval |= tsync_tx_ctl;
3712 ew32(TSYNCTXCTL, regval);
3713 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3714 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3715 e_err("Timesync Tx Control register not set as expected\n");
3716 return -EAGAIN;
3717 }
3718
3719 /* enable/disable Rx h/w time stamping */
3720 regval = er32(TSYNCRXCTL);
3721 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3722 regval |= tsync_rx_ctl;
3723 ew32(TSYNCRXCTL, regval);
3724 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3725 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3726 (regval & (E1000_TSYNCRXCTL_ENABLED |
3727 E1000_TSYNCRXCTL_TYPE_MASK))) {
3728 e_err("Timesync Rx Control register not set as expected\n");
3729 return -EAGAIN;
3730 }
3731
d89777bf
BA
3732 /* L2: define ethertype filter for time stamped packets */
3733 if (is_l2)
3734 rxmtrl |= ETH_P_1588;
3735
3736 /* define which PTP packets get time stamped */
3737 ew32(RXMTRL, rxmtrl);
3738
3739 /* Filter by destination port */
3740 if (is_l4) {
3741 rxudp = PTP_EV_PORT;
3742 cpu_to_be16s(&rxudp);
3743 }
3744 ew32(RXUDP, rxudp);
3745
3746 e1e_flush();
3747
b67e1913 3748 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
70806a7f
BA
3749 er32(RXSTMPH);
3750 er32(TXSTMPH);
b67e1913 3751
b67e1913
BA
3752 return 0;
3753}
3754
bc7f75fa 3755/**
ad68076e 3756 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
3757 * @adapter: private board structure
3758 **/
3759static void e1000_configure(struct e1000_adapter *adapter)
3760{
55aa6985
BA
3761 struct e1000_ring *rx_ring = adapter->rx_ring;
3762
ef9b965a 3763 e1000e_set_rx_mode(adapter->netdev);
bc7f75fa
AK
3764
3765 e1000_restore_vlan(adapter);
cd791618 3766 e1000_init_manageability_pt(adapter);
bc7f75fa
AK
3767
3768 e1000_configure_tx(adapter);
70495a50
BA
3769
3770 if (adapter->netdev->features & NETIF_F_RXHASH)
3771 e1000e_setup_rss_hash(adapter);
bc7f75fa
AK
3772 e1000_setup_rctl(adapter);
3773 e1000_configure_rx(adapter);
55aa6985 3774 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
bc7f75fa
AK
3775}
3776
3777/**
3778 * e1000e_power_up_phy - restore link in case the phy was powered down
3779 * @adapter: address of board private structure
3780 *
3781 * The phy may be powered down to save power and turn off link when the
3782 * driver is unloaded and wake on lan is not enabled (among others)
3783 * *** this routine MUST be followed by a call to e1000e_reset ***
3784 **/
3785void e1000e_power_up_phy(struct e1000_adapter *adapter)
3786{
17f208de
BA
3787 if (adapter->hw.phy.ops.power_up)
3788 adapter->hw.phy.ops.power_up(&adapter->hw);
bc7f75fa
AK
3789
3790 adapter->hw.mac.ops.setup_link(&adapter->hw);
3791}
3792
3793/**
3794 * e1000_power_down_phy - Power down the PHY
b50f7bca 3795 * @adapter: board private structure
bc7f75fa 3796 *
17f208de
BA
3797 * Power down the PHY so no link is implied when interface is down.
3798 * The PHY cannot be powered down if management or WoL is active.
bc7f75fa
AK
3799 */
3800static void e1000_power_down_phy(struct e1000_adapter *adapter)
3801{
17f208de
BA
3802 if (adapter->hw.phy.ops.power_down)
3803 adapter->hw.phy.ops.power_down(&adapter->hw);
bc7f75fa
AK
3804}
3805
ad851fbb
YL
3806/**
3807 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
b50f7bca 3808 * @adapter: board private structure
ad851fbb
YL
3809 *
3810 * We want to clear all pending descriptors from the TX ring.
3811 * zeroing happens when the HW reads the regs. We assign the ring itself as
3812 * the data of the next descriptor. We don't care about the data we are about
3813 * to reset the HW.
3814 */
3815static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3816{
3817 struct e1000_hw *hw = &adapter->hw;
3818 struct e1000_ring *tx_ring = adapter->tx_ring;
3819 struct e1000_tx_desc *tx_desc = NULL;
3820 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3821 u16 size = 512;
3822
3823 tctl = er32(TCTL);
3824 ew32(TCTL, tctl | E1000_TCTL_EN);
3825 tdt = er32(TDT(0));
3826 BUG_ON(tdt != tx_ring->next_to_use);
3827 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
99fe61b2 3828 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
ad851fbb
YL
3829
3830 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3831 tx_desc->upper.data = 0;
3832 /* flush descriptors to memory before notifying the HW */
3833 wmb();
3834 tx_ring->next_to_use++;
3835 if (tx_ring->next_to_use == tx_ring->count)
3836 tx_ring->next_to_use = 0;
3837 ew32(TDT(0), tx_ring->next_to_use);
ad851fbb
YL
3838 usleep_range(200, 250);
3839}
3840
3841/**
3842 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
b50f7bca 3843 * @adapter: board private structure
ad851fbb
YL
3844 *
3845 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3846 */
3847static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3848{
3849 u32 rctl, rxdctl;
3850 struct e1000_hw *hw = &adapter->hw;
3851
3852 rctl = er32(RCTL);
3853 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3854 e1e_flush();
3855 usleep_range(100, 150);
3856
3857 rxdctl = er32(RXDCTL(0));
3858 /* zero the lower 14 bits (prefetch and host thresholds) */
3859 rxdctl &= 0xffffc000;
3860
3861 /* update thresholds: prefetch threshold to 31, host threshold to 1
3862 * and make sure the granularity is "descriptors" and not "cache lines"
3863 */
18dd2392 3864 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
ad851fbb
YL
3865
3866 ew32(RXDCTL(0), rxdctl);
3867 /* momentarily enable the RX ring for the changes to take effect */
3868 ew32(RCTL, rctl | E1000_RCTL_EN);
3869 e1e_flush();
3870 usleep_range(100, 150);
3871 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3872}
3873
3874/**
3875 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
b50f7bca 3876 * @adapter: board private structure
ad851fbb
YL
3877 *
3878 * In i219, the descriptor rings must be emptied before resetting the HW
3879 * or before changing the device state to D3 during runtime (runtime PM).
3880 *
3881 * Failure to do this will cause the HW to enter a unit hang state which can
3882 * only be released by PCI reset on the device
3883 *
3884 */
3885
3886static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3887{
ff917429 3888 u16 hang_state;
ad851fbb
YL
3889 u32 fext_nvm11, tdlen;
3890 struct e1000_hw *hw = &adapter->hw;
3891
3892 /* First, disable MULR fix in FEXTNVM11 */
3893 fext_nvm11 = er32(FEXTNVM11);
3894 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3895 ew32(FEXTNVM11, fext_nvm11);
3896 /* do nothing if we're not in faulty state, or if the queue is empty */
3897 tdlen = er32(TDLEN(0));
ff917429
YL
3898 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3899 &hang_state);
3900 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
ad851fbb
YL
3901 return;
3902 e1000_flush_tx_ring(adapter);
3903 /* recheck, maybe the fault is caused by the rx ring */
ff917429
YL
3904 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3905 &hang_state);
3906 if (hang_state & FLUSH_DESC_REQUIRED)
ad851fbb
YL
3907 e1000_flush_rx_ring(adapter);
3908}
3909
aa524b66
JK
3910/**
3911 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3912 * @adapter: board private structure
3913 *
3914 * When the MAC is reset, all hardware bits for timesync will be reset to the
3915 * default values. This function will restore the settings last in place.
3916 * Since the clock SYSTIME registers are reset, we will simply restore the
3917 * cyclecounter to the kernel real clock time.
3918 **/
3919static void e1000e_systim_reset(struct e1000_adapter *adapter)
3920{
3921 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3922 struct e1000_hw *hw = &adapter->hw;
3923 unsigned long flags;
3924 u32 timinca;
3925 s32 ret_val;
3926
3927 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3928 return;
3929
3930 if (info->adjfreq) {
3931 /* restore the previous ptp frequency delta */
3932 ret_val = info->adjfreq(info, adapter->ptp_delta);
3933 } else {
3934 /* set the default base frequency if no adjustment possible */
3935 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3936 if (!ret_val)
3937 ew32(TIMINCA, timinca);
3938 }
3939
3940 if (ret_val) {
3941 dev_warn(&adapter->pdev->dev,
3942 "Failed to restore TIMINCA clock rate delta: %d\n",
3943 ret_val);
3944 return;
3945 }
3946
3947 /* reset the systim ns time counter */
3948 spin_lock_irqsave(&adapter->systim_lock, flags);
3949 timecounter_init(&adapter->tc, &adapter->cc,
3950 ktime_to_ns(ktime_get_real()));
3951 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3952
3953 /* restore the previous hwtstamp configuration settings */
3954 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3955}
3956
bc7f75fa
AK
3957/**
3958 * e1000e_reset - bring the hardware into a known good state
b50f7bca 3959 * @adapter: board private structure
bc7f75fa
AK
3960 *
3961 * This function boots the hardware and enables some settings that
3962 * require a configuration cycle of the hardware - those cannot be
3963 * set/changed during runtime. After reset the device needs to be
ad68076e 3964 * properly configured for Rx, Tx etc.
bc7f75fa
AK
3965 */
3966void e1000e_reset(struct e1000_adapter *adapter)
3967{
3968 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 3969 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
3970 struct e1000_hw *hw = &adapter->hw;
3971 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 3972 u32 pba = adapter->pba;
bc7f75fa
AK
3973 u16 hwm;
3974
ad68076e 3975 /* reset Packet Buffer Allocation to default */
318a94d6 3976 ew32(PBA, pba);
df762464 3977
8084b86d 3978 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
e921eb1a 3979 /* To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
3980 * large enough to accommodate two full transmit packets,
3981 * rounded up to the next 1KB and expressed in KB. Likewise,
3982 * the Rx FIFO should be large enough to accommodate at least
3983 * one full receive packet and is similarly rounded up and
ad68076e
BA
3984 * expressed in KB.
3985 */
df762464 3986 pba = er32(PBA);
bc7f75fa 3987 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 3988 tx_space = pba >> 16;
bc7f75fa 3989 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 3990 pba &= 0xffff;
e921eb1a 3991 /* the Tx fifo also stores 16 bytes of information about the Tx
ad68076e 3992 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
3993 */
3994 min_tx_space = (adapter->max_frame_size +
e5fe2541 3995 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
bc7f75fa
AK
3996 min_tx_space = ALIGN(min_tx_space, 1024);
3997 min_tx_space >>= 10;
3998 /* software strips receive CRC, so leave room for it */
318a94d6 3999 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
4000 min_rx_space = ALIGN(min_rx_space, 1024);
4001 min_rx_space >>= 10;
4002
e921eb1a 4003 /* If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 4004 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
4005 * allocation, take space away from current Rx allocation
4006 */
df762464
AK
4007 if ((tx_space < min_tx_space) &&
4008 ((min_tx_space - tx_space) < pba)) {
4009 pba -= min_tx_space - tx_space;
bc7f75fa 4010
e921eb1a 4011 /* if short on Rx space, Rx wins and must trump Tx
419e551c 4012 * adjustment
ad68076e 4013 */
79d4e908 4014 if (pba < min_rx_space)
df762464 4015 pba = min_rx_space;
bc7f75fa 4016 }
df762464
AK
4017
4018 ew32(PBA, pba);
bc7f75fa
AK
4019 }
4020
e921eb1a 4021 /* flow control settings
ad68076e 4022 *
38eb394e 4023 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
4024 * (or the size used for early receive) above it in the Rx FIFO.
4025 * Set it to the lower of:
4026 * - 90% of the Rx FIFO size, and
38eb394e 4027 * - the full Rx FIFO size minus one full frame
ad68076e 4028 */
d3738bb8
BA
4029 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4030 fc->pause_time = 0xFFFF;
4031 else
4032 fc->pause_time = E1000_FC_PAUSE_TIME;
b20caa80 4033 fc->send_xon = true;
d3738bb8
BA
4034 fc->current_mode = fc->requested_mode;
4035
4036 switch (hw->mac.type) {
79d4e908
BA
4037 case e1000_ich9lan:
4038 case e1000_ich10lan:
4039 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040 pba = 14;
4041 ew32(PBA, pba);
4042 fc->high_water = 0x2800;
4043 fc->low_water = fc->high_water - 8;
4044 break;
4045 }
5463fce6 4046 fallthrough;
d3738bb8 4047 default:
79d4e908
BA
4048 hwm = min(((pba << 10) * 9 / 10),
4049 ((pba << 10) - adapter->max_frame_size));
d3738bb8 4050
e80bd1d1 4051 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
d3738bb8
BA
4052 fc->low_water = fc->high_water - 8;
4053 break;
4054 case e1000_pchlan:
e921eb1a 4055 /* Workaround PCH LOM adapter hangs with certain network
38eb394e
BA
4056 * loads. If hangs persist, try disabling Tx flow control.
4057 */
4058 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4059 fc->high_water = 0x3500;
e80bd1d1 4060 fc->low_water = 0x1500;
38eb394e
BA
4061 } else {
4062 fc->high_water = 0x5000;
e80bd1d1 4063 fc->low_water = 0x3000;
38eb394e 4064 }
a305595b 4065 fc->refresh_time = 0x1000;
d3738bb8
BA
4066 break;
4067 case e1000_pch2lan:
2fbe4526 4068 case e1000_pch_lpt:
79849ebc 4069 case e1000_pch_spt:
c8744f44 4070 case e1000_pch_cnp:
fb776f5d 4071 case e1000_pch_tgp:
59e46688 4072 case e1000_pch_adp:
cc23f4f0 4073 case e1000_pch_mtp:
820b8ff6 4074 case e1000_pch_lnp:
f74dc880
MBM
4075 fc->refresh_time = 0xFFFF;
4076 fc->pause_time = 0xFFFF;
347b5201
BA
4077
4078 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4079 fc->high_water = 0x05C20;
4080 fc->low_water = 0x05048;
347b5201 4081 break;
828bac87 4082 }
347b5201 4083
ce345e08
BA
4084 pba = 14;
4085 ew32(PBA, pba);
347b5201
BA
4086 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4087 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
d3738bb8 4088 break;
38eb394e 4089 }
bc7f75fa 4090
e921eb1a 4091 /* Alignment of Tx data is on an arbitrary byte boundary with the
d821a4c4
BA
4092 * maximum size per Tx descriptor limited only to the transmit
4093 * allocation of the packet buffer minus 96 bytes with an upper
4094 * limit of 24KB due to receive synchronization limitations.
4095 */
4096 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4097 24 << 10);
4098
e921eb1a 4099 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
79d4e908 4100 * fit in receive buffer.
828bac87
BA
4101 */
4102 if (adapter->itr_setting & 0x3) {
79d4e908 4103 if ((adapter->max_frame_size * 2) > (pba << 10)) {
828bac87
BA
4104 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4105 dev_info(&adapter->pdev->dev,
17e813ec 4106 "Interrupt Throttle Rate off\n");
828bac87 4107 adapter->flags2 |= FLAG2_DISABLE_AIM;
22a4cca2 4108 e1000e_write_itr(adapter, 0);
828bac87
BA
4109 }
4110 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4111 dev_info(&adapter->pdev->dev,
17e813ec 4112 "Interrupt Throttle Rate on\n");
828bac87
BA
4113 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4114 adapter->itr = 20000;
22a4cca2 4115 e1000e_write_itr(adapter, adapter->itr);
828bac87
BA
4116 }
4117 }
4118
c8744f44 4119 if (hw->mac.type >= e1000_pch_spt)
0ffc5646 4120 e1000_flush_desc_rings(adapter);
bc7f75fa
AK
4121 /* Allow time for pending master requests to run */
4122 mac->ops.reset_hw(hw);
97ac8cae 4123
e921eb1a 4124 /* For parts with AMT enabled, let the firmware know
97ac8cae
BA
4125 * that the network interface is in control
4126 */
c43bc57e 4127 if (adapter->flags & FLAG_HAS_AMT)
31dbe5b4 4128 e1000e_get_hw_control(adapter);
97ac8cae 4129
bc7f75fa
AK
4130 ew32(WUC, 0);
4131
4132 if (mac->ops.init_hw(hw))
44defeb3 4133 e_err("Hardware Error\n");
bc7f75fa
AK
4134
4135 e1000_update_mng_vlan(adapter);
4136
4137 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4138 ew32(VET, ETH_P_8021Q);
4139
4140 e1000e_reset_adaptive(hw);
31dbe5b4 4141
aa524b66
JK
4142 /* restore systim and hwtstamp settings */
4143 e1000e_systim_reset(adapter);
b67e1913 4144
d495bcb8
BA
4145 /* Set EEE advertisement as appropriate */
4146 if (adapter->flags2 & FLAG2_HAS_EEE) {
4147 s32 ret_val;
4148 u16 adv_addr;
4149
4150 switch (hw->phy.type) {
4151 case e1000_phy_82579:
4152 adv_addr = I82579_EEE_ADVERTISEMENT;
4153 break;
4154 case e1000_phy_i217:
4155 adv_addr = I217_EEE_ADVERTISEMENT;
4156 break;
4157 default:
4158 dev_err(&adapter->pdev->dev,
4159 "Invalid PHY type setting EEE advertisement\n");
4160 return;
4161 }
4162
4163 ret_val = hw->phy.ops.acquire(hw);
4164 if (ret_val) {
4165 dev_err(&adapter->pdev->dev,
4166 "EEE advertisement - unable to acquire PHY\n");
4167 return;
4168 }
4169
4170 e1000_write_emi_reg_locked(hw, adv_addr,
4171 hw->dev_spec.ich8lan.eee_disable ?
4172 0 : adapter->eee_advert);
4173
4174 hw->phy.ops.release(hw);
4175 }
4176
31dbe5b4 4177 if (!netif_running(adapter->netdev) &&
28002099 4178 !test_bit(__E1000_TESTING, &adapter->state))
31dbe5b4 4179 e1000_power_down_phy(adapter);
31dbe5b4 4180
bc7f75fa
AK
4181 e1000_get_phy_info(hw);
4182
918d7197
BA
4183 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4184 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
bc7f75fa 4185 u16 phy_data = 0;
e921eb1a 4186 /* speed up time to link by disabling smart power down, ignore
bc7f75fa 4187 * the return value of this function because there is nothing
ad68076e
BA
4188 * different we would do if it failed
4189 */
bc7f75fa
AK
4190 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4191 phy_data &= ~IGP02E1000_PM_SPD;
4192 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4193 }
c8744f44 4194 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
ec945cfb
YL
4195 u32 reg;
4196
4197 /* Fextnvm7 @ 0xe4[2] = 1 */
4198 reg = er32(FEXTNVM7);
4199 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4200 ew32(FEXTNVM7, reg);
4201 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4202 reg = er32(FEXTNVM9);
4203 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4204 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4205 ew32(FEXTNVM9, reg);
4206 }
4207
bc7f75fa
AK
4208}
4209
a61cfe4f
BP
4210/**
4211 * e1000e_trigger_lsc - trigger an LSC interrupt
4212 * @adapter:
4213 *
4214 * Fire a link status change interrupt to start the watchdog.
4215 **/
4216static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
bc7f75fa
AK
4217{
4218 struct e1000_hw *hw = &adapter->hw;
4219
a61cfe4f 4220 if (adapter->msix_entries)
4aea7a5c 4221 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
a61cfe4f
BP
4222 else
4223 ew32(ICS, E1000_ICS_LSC);
4224}
4225
4226void e1000e_up(struct e1000_adapter *adapter)
4227{
bc7f75fa
AK
4228 /* hardware has been reset, we need to reload some things */
4229 e1000_configure(adapter);
4230
4231 clear_bit(__E1000_DOWN, &adapter->state);
4232
4662e82b
BA
4233 if (adapter->msix_entries)
4234 e1000_configure_msix(adapter);
bc7f75fa
AK
4235 e1000_irq_enable(adapter);
4236
d17ba0f6 4237 /* Tx queue started by watchdog timer when link is up */
4cb9be7a 4238
a61cfe4f 4239 e1000e_trigger_lsc(adapter);
bc7f75fa
AK
4240}
4241
713b3c9e
JB
4242static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4243{
4244 struct e1000_hw *hw = &adapter->hw;
4245
4246 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4247 return;
4248
4249 /* flush pending descriptor writebacks to memory */
4250 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4251 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4252
4253 /* execute the writes immediately */
4254 e1e_flush();
bf03085f 4255
e921eb1a 4256 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
bf03085f
MV
4257 * write is successful
4258 */
4259 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4260 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
713b3c9e
JB
4261
4262 /* execute the writes immediately */
4263 e1e_flush();
4264}
4265
67fd4fcb
JK
4266static void e1000e_update_stats(struct e1000_adapter *adapter);
4267
28002099
DE
4268/**
4269 * e1000e_down - quiesce the device and optionally reset the hardware
4270 * @adapter: board private structure
4271 * @reset: boolean flag to reset the hardware or not
4272 */
4273void e1000e_down(struct e1000_adapter *adapter, bool reset)
bc7f75fa
AK
4274{
4275 struct net_device *netdev = adapter->netdev;
4276 struct e1000_hw *hw = &adapter->hw;
4277 u32 tctl, rctl;
4278
e921eb1a 4279 /* signal that we're down so the interrupt handler does not
ad68076e
BA
4280 * reschedule our watchdog timer
4281 */
bc7f75fa
AK
4282 set_bit(__E1000_DOWN, &adapter->state);
4283
a60a132e
ET
4284 netif_carrier_off(netdev);
4285
bc7f75fa
AK
4286 /* disable receives in the hardware */
4287 rctl = er32(RCTL);
7f99ae63
BA
4288 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4289 ew32(RCTL, rctl & ~E1000_RCTL_EN);
bc7f75fa
AK
4290 /* flush and sleep below */
4291
4cb9be7a 4292 netif_stop_queue(netdev);
bc7f75fa
AK
4293
4294 /* disable transmits in the hardware */
4295 tctl = er32(TCTL);
4296 tctl &= ~E1000_TCTL_EN;
4297 ew32(TCTL, tctl);
7f99ae63 4298
bc7f75fa
AK
4299 /* flush both disables and wait for them to finish */
4300 e1e_flush();
ab6973ae 4301 usleep_range(10000, 11000);
bc7f75fa 4302
bc7f75fa
AK
4303 e1000_irq_disable(adapter);
4304
a3b87a4c
BA
4305 napi_synchronize(&adapter->napi);
4306
d5ad7a6a 4307 del_timer_sync(&adapter->watchdog_timer);
bc7f75fa
AK
4308 del_timer_sync(&adapter->phy_info_timer);
4309
67fd4fcb
JK
4310 spin_lock(&adapter->stats64_lock);
4311 e1000e_update_stats(adapter);
4312 spin_unlock(&adapter->stats64_lock);
4313
400484fa 4314 e1000e_flush_descriptors(adapter);
400484fa 4315
bc7f75fa
AK
4316 adapter->link_speed = 0;
4317 adapter->link_duplex = 0;
4318
da1e2046
BA
4319 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4320 if ((hw->mac.type >= e1000_pch2lan) &&
4321 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4322 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4323 e_dbg("failed to disable jumbo frame workaround mode\n");
4324
0ffc5646
YL
4325 if (!pci_channel_offline(adapter->pdev)) {
4326 if (reset)
4327 e1000e_reset(adapter);
c8744f44 4328 else if (hw->mac.type >= e1000_pch_spt)
0ffc5646
YL
4329 e1000_flush_desc_rings(adapter);
4330 }
4331 e1000_clean_tx_ring(adapter->tx_ring);
4332 e1000_clean_rx_ring(adapter->rx_ring);
bc7f75fa
AK
4333}
4334
4335void e1000e_reinit_locked(struct e1000_adapter *adapter)
4336{
4337 might_sleep();
4338 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
ab6973ae 4339 usleep_range(1000, 1100);
28002099 4340 e1000e_down(adapter, true);
bc7f75fa
AK
4341 e1000e_up(adapter);
4342 clear_bit(__E1000_RESETTING, &adapter->state);
4343}
4344
0be5b96c
JW
4345/**
4346 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4347 * @hw: pointer to the HW structure
98942d70
ML
4348 * @systim: PHC time value read, sanitized and returned
4349 * @sts: structure to hold system time before and after reading SYSTIML,
4350 * may be NULL
0be5b96c
JW
4351 *
4352 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4353 * check to see that the time is incrementing at a reasonable
4354 * rate and is a multiple of incvalue.
4355 **/
98942d70
ML
4356static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4357 struct ptp_system_timestamp *sts)
0be5b96c
JW
4358{
4359 u64 time_delta, rem, temp;
a5a1d1c2 4360 u64 systim_next;
0be5b96c
JW
4361 u32 incvalue;
4362 int i;
4363
4364 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4365 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4366 /* latch SYSTIMH on read of SYSTIML */
98942d70 4367 ptp_read_system_prets(sts);
a5a1d1c2 4368 systim_next = (u64)er32(SYSTIML);
98942d70 4369 ptp_read_system_postts(sts);
a5a1d1c2 4370 systim_next |= (u64)er32(SYSTIMH) << 32;
0be5b96c
JW
4371
4372 time_delta = systim_next - systim;
4373 temp = time_delta;
4374 /* VMWare users have seen incvalue of zero, don't div / 0 */
4375 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4376
4377 systim = systim_next;
4378
4379 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4380 break;
4381 }
4382
4383 return systim;
4384}
4385
b67e1913 4386/**
98942d70
ML
4387 * e1000e_read_systim - read SYSTIM register
4388 * @adapter: board private structure
4389 * @sts: structure which will contain system time before and after reading
4390 * SYSTIML, may be NULL
b67e1913 4391 **/
98942d70
ML
4392u64 e1000e_read_systim(struct e1000_adapter *adapter,
4393 struct ptp_system_timestamp *sts)
b67e1913 4394{
b67e1913 4395 struct e1000_hw *hw = &adapter->hw;
98942d70 4396 u32 systimel, systimel_2, systimeh;
a5a1d1c2 4397 u64 systim;
37b12910
RA
4398 /* SYSTIMH latching upon SYSTIML read does not work well.
4399 * This means that if SYSTIML overflows after we read it but before
4400 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4401 * will experience a huge non linear increment in the systime value
4402 * to fix that we test for overflow and if true, we re-read systime.
83129b37 4403 */
98942d70 4404 ptp_read_system_prets(sts);
ab507c9a 4405 systimel = er32(SYSTIML);
98942d70 4406 ptp_read_system_postts(sts);
37b12910 4407 systimeh = er32(SYSTIMH);
ab507c9a
DV
4408 /* Is systimel is so large that overflow is possible? */
4409 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
98942d70
ML
4410 ptp_read_system_prets(sts);
4411 systimel_2 = er32(SYSTIML);
4412 ptp_read_system_postts(sts);
ab507c9a
DV
4413 if (systimel > systimel_2) {
4414 /* There was an overflow, read again SYSTIMH, and use
4415 * systimel_2
4416 */
4417 systimeh = er32(SYSTIMH);
4418 systimel = systimel_2;
4419 }
37b12910 4420 }
a5a1d1c2
TG
4421 systim = (u64)systimel;
4422 systim |= (u64)systimeh << 32;
b67e1913 4423
0be5b96c 4424 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
98942d70 4425 systim = e1000e_sanitize_systim(hw, systim, sts);
5e7ff970 4426
b67e1913
BA
4427 return systim;
4428}
4429
98942d70
ML
4430/**
4431 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4432 * @cc: cyclecounter structure
4433 **/
4434static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4435{
4436 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4437 cc);
4438
4439 return e1000e_read_systim(adapter, NULL);
4440}
4441
bc7f75fa
AK
4442/**
4443 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4444 * @adapter: board private structure to initialize
4445 *
4446 * e1000_sw_init initializes the Adapter private data structure.
4447 * Fields are initialized based on PCI device information and
4448 * OS network device settings (MTU size).
4449 **/
9f9a12f8 4450static int e1000_sw_init(struct e1000_adapter *adapter)
bc7f75fa 4451{
bc7f75fa
AK
4452 struct net_device *netdev = adapter->netdev;
4453
8084b86d 4454 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
bc7f75fa 4455 adapter->rx_ps_bsize0 = 128;
8084b86d 4456 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
318a94d6 4457 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
55aa6985
BA
4458 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4459 adapter->rx_ring_count = E1000_DEFAULT_RXD;
bc7f75fa 4460
67fd4fcb
JK
4461 spin_lock_init(&adapter->stats64_lock);
4462
4662e82b 4463 e1000e_set_interrupt_capability(adapter);
bc7f75fa 4464
4662e82b
BA
4465 if (e1000_alloc_queues(adapter))
4466 return -ENOMEM;
bc7f75fa 4467
b67e1913
BA
4468 /* Setup hardware time stamping cyclecounter */
4469 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4470 adapter->cc.read = e1000e_cyclecounter_read;
4d045b4c 4471 adapter->cc.mask = CYCLECOUNTER_MASK(64);
b67e1913
BA
4472 adapter->cc.mult = 1;
4473 /* cc.shift set in e1000e_get_base_tininca() */
4474
4475 spin_lock_init(&adapter->systim_lock);
4476 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4477 }
4478
bc7f75fa 4479 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
4480 e1000_irq_disable(adapter);
4481
bc7f75fa
AK
4482 set_bit(__E1000_DOWN, &adapter->state);
4483 return 0;
bc7f75fa
AK
4484}
4485
f8d59f78
BA
4486/**
4487 * e1000_intr_msi_test - Interrupt Handler
4488 * @irq: interrupt number
4489 * @data: pointer to a network interface device structure
4490 **/
8bb62869 4491static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
f8d59f78
BA
4492{
4493 struct net_device *netdev = data;
4494 struct e1000_adapter *adapter = netdev_priv(netdev);
4495 struct e1000_hw *hw = &adapter->hw;
4496 u32 icr = er32(ICR);
4497
3bb99fe2 4498 e_dbg("icr is %08X\n", icr);
f8d59f78
BA
4499 if (icr & E1000_ICR_RXSEQ) {
4500 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
e921eb1a 4501 /* Force memory writes to complete before acknowledging the
bc76329d
BA
4502 * interrupt is handled.
4503 */
f8d59f78
BA
4504 wmb();
4505 }
4506
4507 return IRQ_HANDLED;
4508}
4509
4510/**
4511 * e1000_test_msi_interrupt - Returns 0 for successful test
4512 * @adapter: board private struct
4513 *
4514 * code flow taken from tg3.c
4515 **/
4516static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4517{
4518 struct net_device *netdev = adapter->netdev;
4519 struct e1000_hw *hw = &adapter->hw;
4520 int err;
4521
4522 /* poll_enable hasn't been called yet, so don't need disable */
4523 /* clear any pending events */
4524 er32(ICR);
4525
4526 /* free the real vector and request a test handler */
4527 e1000_free_irq(adapter);
4662e82b 4528 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
4529
4530 /* Assume that the test fails, if it succeeds then the test
e921eb1a
BA
4531 * MSI irq handler will unset this flag
4532 */
f8d59f78
BA
4533 adapter->flags |= FLAG_MSI_TEST_FAILED;
4534
4535 err = pci_enable_msi(adapter->pdev);
4536 if (err)
4537 goto msi_test_failed;
4538
a0607fd3 4539 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
f8d59f78
BA
4540 netdev->name, netdev);
4541 if (err) {
4542 pci_disable_msi(adapter->pdev);
4543 goto msi_test_failed;
4544 }
4545
e921eb1a 4546 /* Force memory writes to complete before enabling and firing an
bc76329d
BA
4547 * interrupt.
4548 */
f8d59f78
BA
4549 wmb();
4550
4551 e1000_irq_enable(adapter);
4552
4553 /* fire an unusual interrupt on the test handler */
4554 ew32(ICS, E1000_ICS_RXSEQ);
4555 e1e_flush();
569a3aff 4556 msleep(100);
f8d59f78
BA
4557
4558 e1000_irq_disable(adapter);
4559
bc76329d 4560 rmb(); /* read flags after interrupt has been fired */
f8d59f78
BA
4561
4562 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 4563 adapter->int_mode = E1000E_INT_MODE_LEGACY;
068e8a30 4564 e_info("MSI interrupt test failed, using legacy interrupt.\n");
24b706b2 4565 } else {
068e8a30 4566 e_dbg("MSI interrupt test succeeded!\n");
24b706b2 4567 }
f8d59f78
BA
4568
4569 free_irq(adapter->pdev->irq, netdev);
4570 pci_disable_msi(adapter->pdev);
4571
f8d59f78 4572msi_test_failed:
4662e82b 4573 e1000e_set_interrupt_capability(adapter);
068e8a30 4574 return e1000_request_irq(adapter);
f8d59f78
BA
4575}
4576
4577/**
4578 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4579 * @adapter: board private struct
4580 *
4581 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4582 **/
4583static int e1000_test_msi(struct e1000_adapter *adapter)
4584{
4585 int err;
4586 u16 pci_cmd;
4587
4588 if (!(adapter->flags & FLAG_MSI_ENABLED))
4589 return 0;
4590
4591 /* disable SERR in case the MSI write causes a master abort */
4592 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
36f2407f
DN
4593 if (pci_cmd & PCI_COMMAND_SERR)
4594 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4595 pci_cmd & ~PCI_COMMAND_SERR);
f8d59f78
BA
4596
4597 err = e1000_test_msi_interrupt(adapter);
4598
36f2407f
DN
4599 /* re-enable SERR */
4600 if (pci_cmd & PCI_COMMAND_SERR) {
4601 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4602 pci_cmd |= PCI_COMMAND_SERR;
4603 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4604 }
f8d59f78 4605
f8d59f78
BA
4606 return err;
4607}
4608
bc7f75fa 4609/**
d5ea45da 4610 * e1000e_open - Called when a network interface is made active
bc7f75fa
AK
4611 * @netdev: network interface device structure
4612 *
4613 * Returns 0 on success, negative value on failure
4614 *
4615 * The open entry point is called when a network interface is made
4616 * active by the system (IFF_UP). At this point all resources needed
4617 * for transmit and receive operations are allocated, the interrupt
4618 * handler is registered with the OS, the watchdog timer is started,
4619 * and the stack is notified that the interface is ready.
4620 **/
d5ea45da 4621int e1000e_open(struct net_device *netdev)
bc7f75fa
AK
4622{
4623 struct e1000_adapter *adapter = netdev_priv(netdev);
4624 struct e1000_hw *hw = &adapter->hw;
23606cf5 4625 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
4626 int err;
4627
4628 /* disallow open during test */
4629 if (test_bit(__E1000_TESTING, &adapter->state))
4630 return -EBUSY;
4631
23606cf5
RW
4632 pm_runtime_get_sync(&pdev->dev);
4633
9c563d20 4634 netif_carrier_off(netdev);
d17ba0f6 4635 netif_stop_queue(netdev);
9c563d20 4636
bc7f75fa 4637 /* allocate transmit descriptors */
55aa6985 4638 err = e1000e_setup_tx_resources(adapter->tx_ring);
bc7f75fa
AK
4639 if (err)
4640 goto err_setup_tx;
4641
4642 /* allocate receive descriptors */
55aa6985 4643 err = e1000e_setup_rx_resources(adapter->rx_ring);
bc7f75fa
AK
4644 if (err)
4645 goto err_setup_rx;
4646
e921eb1a 4647 /* If AMT is enabled, let the firmware know that the network
11b08be8
BA
4648 * interface is now open and reset the part to a known state.
4649 */
4650 if (adapter->flags & FLAG_HAS_AMT) {
31dbe5b4 4651 e1000e_get_hw_control(adapter);
11b08be8
BA
4652 e1000e_reset(adapter);
4653 }
4654
bc7f75fa
AK
4655 e1000e_power_up_phy(adapter);
4656
4657 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
e5fe2541 4658 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
bc7f75fa
AK
4659 e1000_update_mng_vlan(adapter);
4660
79d4e908 4661 /* DMA latency requirement to workaround jumbo issue */
81e95ad7 4662 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
c128ec29 4663
e921eb1a 4664 /* before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
4665 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4666 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
4667 * clean_rx handler before we do so.
4668 */
bc7f75fa
AK
4669 e1000_configure(adapter);
4670
4671 err = e1000_request_irq(adapter);
4672 if (err)
4673 goto err_req_irq;
4674
e921eb1a 4675 /* Work around PCIe errata with MSI interrupts causing some chipsets to
f8d59f78
BA
4676 * ignore e1000e MSI messages, which means we need to test our MSI
4677 * interrupt now
4678 */
4662e82b 4679 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
4680 err = e1000_test_msi(adapter);
4681 if (err) {
4682 e_err("Interrupt allocation failed\n");
4683 goto err_req_irq;
4684 }
4685 }
4686
bc7f75fa
AK
4687 /* From here on the code is the same as e1000e_up() */
4688 clear_bit(__E1000_DOWN, &adapter->state);
4689
4690 napi_enable(&adapter->napi);
4691
4692 e1000_irq_enable(adapter);
4693
09357b00 4694 adapter->tx_hang_recheck = false;
d55b53ff 4695
66148bab 4696 hw->mac.get_link_status = true;
23606cf5
RW
4697 pm_runtime_put(&pdev->dev);
4698
a61cfe4f 4699 e1000e_trigger_lsc(adapter);
bc7f75fa
AK
4700
4701 return 0;
4702
4703err_req_irq:
81e95ad7 4704 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
31dbe5b4 4705 e1000e_release_hw_control(adapter);
bc7f75fa 4706 e1000_power_down_phy(adapter);
55aa6985 4707 e1000e_free_rx_resources(adapter->rx_ring);
bc7f75fa 4708err_setup_rx:
55aa6985 4709 e1000e_free_tx_resources(adapter->tx_ring);
bc7f75fa
AK
4710err_setup_tx:
4711 e1000e_reset(adapter);
23606cf5 4712 pm_runtime_put_sync(&pdev->dev);
bc7f75fa
AK
4713
4714 return err;
4715}
4716
4717/**
d5ea45da 4718 * e1000e_close - Disables a network interface
bc7f75fa
AK
4719 * @netdev: network interface device structure
4720 *
4721 * Returns 0, this is not allowed to fail
4722 *
4723 * The close entry point is called when an interface is de-activated
4724 * by the OS. The hardware is still under the drivers control, but
4725 * needs to be disabled. A global MAC reset is issued to stop the
4726 * hardware, and all transmit and receive resources are freed.
4727 **/
d5ea45da 4728int e1000e_close(struct net_device *netdev)
bc7f75fa
AK
4729{
4730 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5 4731 struct pci_dev *pdev = adapter->pdev;
bb9e44d0
BA
4732 int count = E1000_CHECK_RESET_COUNT;
4733
4734 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
ab6973ae 4735 usleep_range(10000, 11000);
bc7f75fa
AK
4736
4737 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
23606cf5
RW
4738
4739 pm_runtime_get_sync(&pdev->dev);
4740
a7023819 4741 if (netif_device_present(netdev)) {
28002099 4742 e1000e_down(adapter, true);
23606cf5 4743 e1000_free_irq(adapter);
63eb48f1
DE
4744
4745 /* Link status message must follow this format */
c557a4b3 4746 netdev_info(netdev, "NIC Link is Down\n");
23606cf5 4747 }
a3b87a4c
BA
4748
4749 napi_disable(&adapter->napi);
4750
55aa6985
BA
4751 e1000e_free_tx_resources(adapter->tx_ring);
4752 e1000e_free_rx_resources(adapter->rx_ring);
bc7f75fa 4753
e921eb1a 4754 /* kill manageability vlan ID if supported, but not if a vlan with
ad68076e
BA
4755 * the same ID is registered on the host OS (let 8021q kill it)
4756 */
e5fe2541 4757 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
80d5c368
PM
4758 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4759 adapter->mng_vlan_id);
bc7f75fa 4760
e921eb1a 4761 /* If AMT is enabled, let the firmware know that the network
ad68076e
BA
4762 * interface is now closed
4763 */
31dbe5b4
BA
4764 if ((adapter->flags & FLAG_HAS_AMT) &&
4765 !test_bit(__E1000_TESTING, &adapter->state))
4766 e1000e_release_hw_control(adapter);
bc7f75fa 4767
81e95ad7 4768 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
c128ec29 4769
23606cf5
RW
4770 pm_runtime_put_sync(&pdev->dev);
4771
bc7f75fa
AK
4772 return 0;
4773}
fc830b78 4774
bc7f75fa
AK
4775/**
4776 * e1000_set_mac - Change the Ethernet Address of the NIC
4777 * @netdev: network interface device structure
4778 * @p: pointer to an address structure
4779 *
4780 * Returns 0 on success, negative on failure
4781 **/
4782static int e1000_set_mac(struct net_device *netdev, void *p)
4783{
4784 struct e1000_adapter *adapter = netdev_priv(netdev);
69e1e019 4785 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
4786 struct sockaddr *addr = p;
4787
4788 if (!is_valid_ether_addr(addr->sa_data))
4789 return -EADDRNOTAVAIL;
4790
4791 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4792 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4793
69e1e019 4794 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
bc7f75fa
AK
4795
4796 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4797 /* activate the work around */
4798 e1000e_set_laa_state_82571(&adapter->hw, 1);
4799
e921eb1a 4800 /* Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
4801 * between the time RAR[0] gets clobbered and the time it
4802 * gets fixed (in e1000_watchdog), the actual LAA is in one
4803 * of the RARs and no incoming packets directed to this port
4804 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
4805 * RAR[14]
4806 */
69e1e019
BA
4807 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4808 adapter->hw.mac.rar_entry_count - 1);
bc7f75fa
AK
4809 }
4810
4811 return 0;
4812}
4813
a8f88ff5
JB
4814/**
4815 * e1000e_update_phy_task - work thread to update phy
4816 * @work: pointer to our work struct
4817 *
4818 * this worker thread exists because we must acquire a
4819 * semaphore to read the phy, which we could msleep while
4820 * waiting for it, and we can't msleep in a timer.
4821 **/
4822static void e1000e_update_phy_task(struct work_struct *work)
4823{
4824 struct e1000_adapter *adapter = container_of(work,
17e813ec
BA
4825 struct e1000_adapter,
4826 update_phy_task);
a03206ed 4827 struct e1000_hw *hw = &adapter->hw;
615b32af
JB
4828
4829 if (test_bit(__E1000_DOWN, &adapter->state))
4830 return;
4831
a03206ed
DE
4832 e1000_get_phy_info(hw);
4833
4834 /* Enable EEE on 82579 after link up */
50844bb7 4835 if (hw->phy.type >= e1000_phy_82579)
a03206ed 4836 e1000_set_eee_pchlan(hw);
a8f88ff5
JB
4837}
4838
e921eb1a
BA
4839/**
4840 * e1000_update_phy_info - timre call-back to update PHY info
b50f7bca 4841 * @t: pointer to timer_list containing private info adapter
e921eb1a 4842 *
ad68076e
BA
4843 * Need to wait a few seconds after link up to get diagnostic information from
4844 * the phy
e921eb1a 4845 **/
26566eae 4846static void e1000_update_phy_info(struct timer_list *t)
bc7f75fa 4847{
26566eae 4848 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
615b32af
JB
4849
4850 if (test_bit(__E1000_DOWN, &adapter->state))
4851 return;
4852
a8f88ff5 4853 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
4854}
4855
8c7bbb92
BA
4856/**
4857 * e1000e_update_phy_stats - Update the PHY statistics counters
4858 * @adapter: board private structure
2b6b168d
BA
4859 *
4860 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
8c7bbb92
BA
4861 **/
4862static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4863{
4864 struct e1000_hw *hw = &adapter->hw;
4865 s32 ret_val;
4866 u16 phy_data;
4867
4868 ret_val = hw->phy.ops.acquire(hw);
4869 if (ret_val)
4870 return;
4871
e921eb1a 4872 /* A page set is expensive so check if already on desired page.
8c7bbb92
BA
4873 * If not, set to the page with the PHY status registers.
4874 */
2b6b168d 4875 hw->phy.addr = 1;
8c7bbb92
BA
4876 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4877 &phy_data);
4878 if (ret_val)
4879 goto release;
2b6b168d
BA
4880 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4881 ret_val = hw->phy.ops.set_page(hw,
4882 HV_STATS_PAGE << IGP_PAGE_SHIFT);
8c7bbb92
BA
4883 if (ret_val)
4884 goto release;
4885 }
4886
8c7bbb92 4887 /* Single Collision Count */
2b6b168d
BA
4888 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4889 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
8c7bbb92
BA
4890 if (!ret_val)
4891 adapter->stats.scc += phy_data;
4892
4893 /* Excessive Collision Count */
2b6b168d
BA
4894 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4895 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
8c7bbb92
BA
4896 if (!ret_val)
4897 adapter->stats.ecol += phy_data;
4898
4899 /* Multiple Collision Count */
2b6b168d
BA
4900 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4901 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
8c7bbb92
BA
4902 if (!ret_val)
4903 adapter->stats.mcc += phy_data;
4904
4905 /* Late Collision Count */
2b6b168d
BA
4906 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4907 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
8c7bbb92
BA
4908 if (!ret_val)
4909 adapter->stats.latecol += phy_data;
4910
4911 /* Collision Count - also used for adaptive IFS */
2b6b168d
BA
4912 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4913 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
8c7bbb92
BA
4914 if (!ret_val)
4915 hw->mac.collision_delta = phy_data;
4916
4917 /* Defer Count */
2b6b168d
BA
4918 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4919 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
8c7bbb92
BA
4920 if (!ret_val)
4921 adapter->stats.dc += phy_data;
4922
4923 /* Transmit with no CRS */
2b6b168d
BA
4924 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4925 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
8c7bbb92
BA
4926 if (!ret_val)
4927 adapter->stats.tncrs += phy_data;
4928
4929release:
4930 hw->phy.ops.release(hw);
4931}
4932
bc7f75fa
AK
4933/**
4934 * e1000e_update_stats - Update the board statistics counters
4935 * @adapter: board private structure
4936 **/
67fd4fcb 4937static void e1000e_update_stats(struct e1000_adapter *adapter)
bc7f75fa 4938{
7274c20f 4939 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
4940 struct e1000_hw *hw = &adapter->hw;
4941 struct pci_dev *pdev = adapter->pdev;
bc7f75fa 4942
e921eb1a 4943 /* Prevent stats update while adapter is being reset, or if the pci
bc7f75fa
AK
4944 * connection is down.
4945 */
4946 if (adapter->link_speed == 0)
4947 return;
4948 if (pci_channel_offline(pdev))
4949 return;
4950
bc7f75fa
AK
4951 adapter->stats.crcerrs += er32(CRCERRS);
4952 adapter->stats.gprc += er32(GPRC);
7c25769f 4953 adapter->stats.gorc += er32(GORCL);
e80bd1d1 4954 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
4955 adapter->stats.bprc += er32(BPRC);
4956 adapter->stats.mprc += er32(MPRC);
4957 adapter->stats.roc += er32(ROC);
4958
bc7f75fa 4959 adapter->stats.mpc += er32(MPC);
8c7bbb92
BA
4960
4961 /* Half-duplex statistics */
4962 if (adapter->link_duplex == HALF_DUPLEX) {
4963 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4964 e1000e_update_phy_stats(adapter);
4965 } else {
4966 adapter->stats.scc += er32(SCC);
4967 adapter->stats.ecol += er32(ECOL);
4968 adapter->stats.mcc += er32(MCC);
4969 adapter->stats.latecol += er32(LATECOL);
4970 adapter->stats.dc += er32(DC);
4971
4972 hw->mac.collision_delta = er32(COLC);
4973
4974 if ((hw->mac.type != e1000_82574) &&
4975 (hw->mac.type != e1000_82583))
4976 adapter->stats.tncrs += er32(TNCRS);
4977 }
4978 adapter->stats.colc += hw->mac.collision_delta;
a4f58f54 4979 }
8c7bbb92 4980
bc7f75fa
AK
4981 adapter->stats.xonrxc += er32(XONRXC);
4982 adapter->stats.xontxc += er32(XONTXC);
4983 adapter->stats.xoffrxc += er32(XOFFRXC);
4984 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 4985 adapter->stats.gptc += er32(GPTC);
7c25769f 4986 adapter->stats.gotc += er32(GOTCL);
e80bd1d1 4987 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
4988 adapter->stats.rnbc += er32(RNBC);
4989 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
4990
4991 adapter->stats.mptc += er32(MPTC);
4992 adapter->stats.bptc += er32(BPTC);
4993
4994 /* used for adaptive IFS */
4995
4996 hw->mac.tx_packet_delta = er32(TPT);
4997 adapter->stats.tpt += hw->mac.tx_packet_delta;
bc7f75fa
AK
4998
4999 adapter->stats.algnerrc += er32(ALGNERRC);
5000 adapter->stats.rxerrc += er32(RXERRC);
bc7f75fa
AK
5001 adapter->stats.cexterr += er32(CEXTERR);
5002 adapter->stats.tsctc += er32(TSCTC);
5003 adapter->stats.tsctfc += er32(TSCTFC);
5004
bc7f75fa 5005 /* Fill out the OS statistics structure */
7274c20f
AK
5006 netdev->stats.multicast = adapter->stats.mprc;
5007 netdev->stats.collisions = adapter->stats.colc;
bc7f75fa
AK
5008
5009 /* Rx Errors */
5010
e921eb1a 5011 /* RLEC on some newer hardware can be incorrect so build
ad68076e
BA
5012 * our own version based on RUC and ROC
5013 */
7274c20f 5014 netdev->stats.rx_errors = adapter->stats.rxerrc +
f0ff4398
BA
5015 adapter->stats.crcerrs + adapter->stats.algnerrc +
5016 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
7274c20f 5017 netdev->stats.rx_length_errors = adapter->stats.ruc +
f0ff4398 5018 adapter->stats.roc;
7274c20f
AK
5019 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5020 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5021 netdev->stats.rx_missed_errors = adapter->stats.mpc;
bc7f75fa
AK
5022
5023 /* Tx Errors */
f0ff4398 5024 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
7274c20f
AK
5025 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5026 netdev->stats.tx_window_errors = adapter->stats.latecol;
5027 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
bc7f75fa
AK
5028
5029 /* Tx Dropped needs to be maintained elsewhere */
5030
bc7f75fa
AK
5031 /* Management Stats */
5032 adapter->stats.mgptc += er32(MGTPTC);
5033 adapter->stats.mgprc += er32(MGTPRC);
5034 adapter->stats.mgpdc += er32(MGTPDC);
94fb848b
BA
5035
5036 /* Correctable ECC Errors */
c8744f44 5037 if (hw->mac.type >= e1000_pch_lpt) {
94fb848b 5038 u32 pbeccsts = er32(PBECCSTS);
6cf08d1c 5039
94fb848b
BA
5040 adapter->corr_errors +=
5041 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5042 adapter->uncorr_errors +=
5043 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5044 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5045 }
bc7f75fa
AK
5046}
5047
7c25769f
BA
5048/**
5049 * e1000_phy_read_status - Update the PHY register status snapshot
5050 * @adapter: board private structure
5051 **/
5052static void e1000_phy_read_status(struct e1000_adapter *adapter)
5053{
5054 struct e1000_hw *hw = &adapter->hw;
5055 struct e1000_phy_regs *phy = &adapter->phy_regs;
7c25769f 5056
97390ab8
BA
5057 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5058 (er32(STATUS) & E1000_STATUS_LU) &&
7c25769f 5059 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
90da0669
BA
5060 int ret_val;
5061
c2ade1a4
BA
5062 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5063 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5064 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5065 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5066 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5067 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5068 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5069 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
7c25769f 5070 if (ret_val)
44defeb3 5071 e_warn("Error reading PHY register\n");
7c25769f 5072 } else {
e921eb1a 5073 /* Do not read PHY registers if link is not up
7c25769f
BA
5074 * Set values to typical power-on defaults
5075 */
5076 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5077 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5078 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5079 BMSR_ERCAP);
5080 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5081 ADVERTISE_ALL | ADVERTISE_CSMA);
5082 phy->lpa = 0;
5083 phy->expansion = EXPANSION_ENABLENPAGE;
5084 phy->ctrl1000 = ADVERTISE_1000FULL;
5085 phy->stat1000 = 0;
5086 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5087 }
7c25769f
BA
5088}
5089
bc7f75fa
AK
5090static void e1000_print_link_info(struct e1000_adapter *adapter)
5091{
bc7f75fa
AK
5092 struct e1000_hw *hw = &adapter->hw;
5093 u32 ctrl = er32(CTRL);
5094
8f12fe86 5095 /* Link status message must follow this format for user tools */
c557a4b3
AD
5096 netdev_info(adapter->netdev,
5097 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5098 adapter->link_speed,
5099 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5100 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5101 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5102 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
bc7f75fa
AK
5103}
5104
0c6bdb30 5105static bool e1000e_has_link(struct e1000_adapter *adapter)
318a94d6
JK
5106{
5107 struct e1000_hw *hw = &adapter->hw;
3db1cd5c 5108 bool link_active = false;
318a94d6
JK
5109 s32 ret_val = 0;
5110
e921eb1a 5111 /* get_link_status is set on LSC (link status) interrupt or
318a94d6 5112 * Rx sequence error interrupt. get_link_status will stay
65a29da1 5113 * true until the check_for_link establishes link
318a94d6
JK
5114 * for copper adapters ONLY
5115 */
5116 switch (hw->phy.media_type) {
5117 case e1000_media_type_copper:
5118 if (hw->mac.get_link_status) {
5119 ret_val = hw->mac.ops.check_for_link(hw);
3016e0a0 5120 link_active = !hw->mac.get_link_status;
318a94d6 5121 } else {
3db1cd5c 5122 link_active = true;
318a94d6
JK
5123 }
5124 break;
5125 case e1000_media_type_fiber:
5126 ret_val = hw->mac.ops.check_for_link(hw);
5127 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5128 break;
5129 case e1000_media_type_internal_serdes:
5130 ret_val = hw->mac.ops.check_for_link(hw);
65a29da1 5131 link_active = hw->mac.serdes_has_link;
318a94d6
JK
5132 break;
5133 default:
5134 case e1000_media_type_unknown:
5135 break;
5136 }
5137
d3509f8b 5138 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
318a94d6
JK
5139 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5140 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 5141 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
5142 }
5143
5144 return link_active;
5145}
5146
5147static void e1000e_enable_receives(struct e1000_adapter *adapter)
5148{
5149 /* make sure the receive unit is started */
5150 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
12d43f7d 5151 (adapter->flags & FLAG_RESTART_NOW)) {
318a94d6
JK
5152 struct e1000_hw *hw = &adapter->hw;
5153 u32 rctl = er32(RCTL);
6cf08d1c 5154
318a94d6 5155 ew32(RCTL, rctl | E1000_RCTL_EN);
12d43f7d 5156 adapter->flags &= ~FLAG_RESTART_NOW;
318a94d6
JK
5157 }
5158}
5159
ff10e13c
CW
5160static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5161{
5162 struct e1000_hw *hw = &adapter->hw;
5163
e921eb1a 5164 /* With 82574 controllers, PHY needs to be checked periodically
ff10e13c
CW
5165 * for hung state and reset, if two calls return true
5166 */
5167 if (e1000_check_phy_82574(hw))
5168 adapter->phy_hang_count++;
5169 else
5170 adapter->phy_hang_count = 0;
5171
5172 if (adapter->phy_hang_count > 1) {
5173 adapter->phy_hang_count = 0;
d9554e96 5174 e_dbg("PHY appears hung - resetting\n");
ff10e13c
CW
5175 schedule_work(&adapter->reset_task);
5176 }
5177}
5178
d5ad7a6a
JK
5179/**
5180 * e1000_watchdog - Timer Call-back
b50f7bca 5181 * @t: pointer to timer_list containing private info adapter
d5ad7a6a
JK
5182 **/
5183static void e1000_watchdog(struct timer_list *t)
5184{
5185 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5186
5187 /* Do the rest outside of interrupt context */
5188 schedule_work(&adapter->watchdog_task);
5189
5190 /* TODO: make this use queue_delayed_work() */
5191}
5192
bc7f75fa
AK
5193static void e1000_watchdog_task(struct work_struct *work)
5194{
5195 struct e1000_adapter *adapter = container_of(work,
17e813ec 5196 struct e1000_adapter,
d5ad7a6a 5197 watchdog_task);
bc7f75fa
AK
5198 struct net_device *netdev = adapter->netdev;
5199 struct e1000_mac_info *mac = &adapter->hw.mac;
75eb0fad 5200 struct e1000_phy_info *phy = &adapter->hw.phy;
bc7f75fa 5201 struct e1000_ring *tx_ring = adapter->tx_ring;
def4ec6d 5202 u32 dmoff_exit_timeout = 100, tries = 0;
bc7f75fa 5203 struct e1000_hw *hw = &adapter->hw;
def4ec6d 5204 u32 link, tctl, pcim_state;
bc7f75fa 5205
615b32af
JB
5206 if (test_bit(__E1000_DOWN, &adapter->state))
5207 return;
5208
b405e8df 5209 link = e1000e_has_link(adapter);
318a94d6 5210 if ((netif_carrier_ok(netdev)) && link) {
23606cf5
RW
5211 /* Cancel scheduled suspend requests. */
5212 pm_runtime_resume(netdev->dev.parent);
5213
318a94d6 5214 e1000e_enable_receives(adapter);
bc7f75fa 5215 goto link_up;
bc7f75fa
AK
5216 }
5217
5218 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5219 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5220 e1000_update_mng_vlan(adapter);
5221
bc7f75fa
AK
5222 if (link) {
5223 if (!netif_carrier_ok(netdev)) {
3db1cd5c 5224 bool txb2b = true;
23606cf5
RW
5225
5226 /* Cancel scheduled suspend requests. */
5227 pm_runtime_resume(netdev->dev.parent);
5228
def4ec6d 5229 /* Checking if MAC is in DMoff state*/
2e7256f1 5230 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
def4ec6d 5231 pcim_state = er32(STATUS);
2e7256f1
SN
5232 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5233 if (tries++ == dmoff_exit_timeout) {
5234 e_dbg("Error in exiting dmoff\n");
5235 break;
5236 }
5237 usleep_range(10000, 20000);
5238 pcim_state = er32(STATUS);
5239
5240 /* Checking if MAC exited DMoff state */
5241 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5242 e1000_phy_hw_reset(&adapter->hw);
5243 }
def4ec6d
VL
5244 }
5245
318a94d6 5246 /* update snapshot of PHY registers on LSC */
7c25769f 5247 e1000_phy_read_status(adapter);
bc7f75fa 5248 mac->ops.get_link_up_info(&adapter->hw,
17e813ec
BA
5249 &adapter->link_speed,
5250 &adapter->link_duplex);
bc7f75fa 5251 e1000_print_link_info(adapter);
e792cd91
KS
5252
5253 /* check if SmartSpeed worked */
5254 e1000e_check_downshift(hw);
5255 if (phy->speed_downgraded)
5256 netdev_warn(netdev,
5257 "Link Speed was downgraded by SmartSpeed\n");
5258
e921eb1a 5259 /* On supported PHYs, check for duplex mismatch only
f4187b56
BA
5260 * if link has autonegotiated at 10/100 half
5261 */
5262 if ((hw->phy.type == e1000_phy_igp_3 ||
5263 hw->phy.type == e1000_phy_bm) &&
138953bb 5264 hw->mac.autoneg &&
f4187b56
BA
5265 (adapter->link_speed == SPEED_10 ||
5266 adapter->link_speed == SPEED_100) &&
5267 (adapter->link_duplex == HALF_DUPLEX)) {
5268 u16 autoneg_exp;
5269
c2ade1a4 5270 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
f4187b56 5271
c2ade1a4 5272 if (!(autoneg_exp & EXPANSION_NWAY))
ef456f85 5273 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
f4187b56
BA
5274 }
5275
f49c57e1 5276 /* adjust timeout factor according to speed/duplex */
bc7f75fa
AK
5277 adapter->tx_timeout_factor = 1;
5278 switch (adapter->link_speed) {
5279 case SPEED_10:
3db1cd5c 5280 txb2b = false;
10f1b492 5281 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
5282 break;
5283 case SPEED_100:
3db1cd5c 5284 txb2b = false;
4c86e0b9 5285 adapter->tx_timeout_factor = 10;
bc7f75fa
AK
5286 break;
5287 }
5288
e921eb1a 5289 /* workaround: re-program speed mode bit after
ad68076e
BA
5290 * link-up event
5291 */
bc7f75fa
AK
5292 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5293 !txb2b) {
5294 u32 tarc0;
6cf08d1c 5295
e9ec2c0f 5296 tarc0 = er32(TARC(0));
bc7f75fa 5297 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 5298 ew32(TARC(0), tarc0);
bc7f75fa
AK
5299 }
5300
e921eb1a 5301 /* disable TSO for pcie and 10/100 speeds, to avoid
ad68076e
BA
5302 * some hardware issues
5303 */
bc7f75fa
AK
5304 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5305 switch (adapter->link_speed) {
5306 case SPEED_10:
5307 case SPEED_100:
44defeb3 5308 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
5309 netdev->features &= ~NETIF_F_TSO;
5310 netdev->features &= ~NETIF_F_TSO6;
5311 break;
5312 case SPEED_1000:
5313 netdev->features |= NETIF_F_TSO;
5314 netdev->features |= NETIF_F_TSO6;
5315 break;
5316 default:
5317 /* oops */
5318 break;
5319 }
f2980103
KHF
5320 if (hw->mac.type == e1000_pch_spt) {
5321 netdev->features &= ~NETIF_F_TSO;
5322 netdev->features &= ~NETIF_F_TSO6;
5323 }
bc7f75fa
AK
5324 }
5325
e921eb1a 5326 /* enable transmits in the hardware, need to do this
ad68076e
BA
5327 * after setting TARC(0)
5328 */
bc7f75fa
AK
5329 tctl = er32(TCTL);
5330 tctl |= E1000_TCTL_EN;
5331 ew32(TCTL, tctl);
5332
e921eb1a 5333 /* Perform any post-link-up configuration before
75eb0fad
BA
5334 * reporting link up.
5335 */
5336 if (phy->ops.cfg_on_link_up)
5337 phy->ops.cfg_on_link_up(hw);
5338
d17ba0f6 5339 netif_wake_queue(netdev);
bc7f75fa 5340 netif_carrier_on(netdev);
bc7f75fa
AK
5341
5342 if (!test_bit(__E1000_DOWN, &adapter->state))
5343 mod_timer(&adapter->phy_info_timer,
5344 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
5345 }
5346 } else {
5347 if (netif_carrier_ok(netdev)) {
5348 adapter->link_speed = 0;
5349 adapter->link_duplex = 0;
8f12fe86 5350 /* Link status message must follow this format */
c557a4b3 5351 netdev_info(netdev, "NIC Link is Down\n");
bc7f75fa 5352 netif_carrier_off(netdev);
d17ba0f6 5353 netif_stop_queue(netdev);
bc7f75fa
AK
5354 if (!test_bit(__E1000_DOWN, &adapter->state))
5355 mod_timer(&adapter->phy_info_timer,
5356 round_jiffies(jiffies + 2 * HZ));
5357
d9554e96
DE
5358 /* 8000ES2LAN requires a Rx packet buffer work-around
5359 * on link down event; reset the controller to flush
5360 * the Rx packet buffer.
12d43f7d 5361 */
caff422e 5362 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
12d43f7d 5363 adapter->flags |= FLAG_RESTART_NOW;
23606cf5
RW
5364 else
5365 pm_schedule_suspend(netdev->dev.parent,
17e813ec 5366 LINK_TIMEOUT);
bc7f75fa
AK
5367 }
5368 }
5369
5370link_up:
67fd4fcb 5371 spin_lock(&adapter->stats64_lock);
bc7f75fa
AK
5372 e1000e_update_stats(adapter);
5373
5374 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5375 adapter->tpt_old = adapter->stats.tpt;
5376 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5377 adapter->colc_old = adapter->stats.colc;
5378
7c25769f
BA
5379 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5380 adapter->gorc_old = adapter->stats.gorc;
5381 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5382 adapter->gotc_old = adapter->stats.gotc;
2084b114 5383 spin_unlock(&adapter->stats64_lock);
bc7f75fa 5384
caff422e
KK
5385 /* If the link is lost the controller stops DMA, but
5386 * if there is queued Tx work it cannot be done. So
5387 * reset the controller to flush the Tx packet buffers.
5388 */
5389 if (!netif_carrier_ok(netdev) &&
5390 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5391 adapter->flags |= FLAG_RESTART_NOW;
5392
d9554e96 5393 /* If reset is necessary, do it outside of interrupt context. */
12d43f7d 5394 if (adapter->flags & FLAG_RESTART_NOW) {
90da0669
BA
5395 schedule_work(&adapter->reset_task);
5396 /* return immediately since reset is imminent */
5397 return;
bc7f75fa
AK
5398 }
5399
12d43f7d
BA
5400 e1000e_update_adaptive(&adapter->hw);
5401
eab2abf5
JB
5402 /* Simple mode for Interrupt Throttle Rate (ITR) */
5403 if (adapter->itr_setting == 4) {
e921eb1a 5404 /* Symmetric Tx/Rx gets a reduced ITR=2000;
eab2abf5
JB
5405 * Total asymmetrical Tx or Rx gets ITR=8000;
5406 * everyone else is between 2000-8000.
5407 */
5408 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5409 u32 dif = (adapter->gotc > adapter->gorc ?
17e813ec
BA
5410 adapter->gotc - adapter->gorc :
5411 adapter->gorc - adapter->gotc) / 10000;
eab2abf5
JB
5412 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5413
22a4cca2 5414 e1000e_write_itr(adapter, itr);
eab2abf5
JB
5415 }
5416
ad68076e 5417 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
5418 if (adapter->msix_entries)
5419 ew32(ICS, adapter->rx_ring->ims_val);
5420 else
5421 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa 5422
713b3c9e
JB
5423 /* flush pending descriptors to memory before detecting Tx hang */
5424 e1000e_flush_descriptors(adapter);
5425
bc7f75fa 5426 /* Force detection of hung controller every watchdog period */
3db1cd5c 5427 adapter->detect_tx_hung = true;
bc7f75fa 5428
e921eb1a 5429 /* With 82571 controllers, LAA may be overwritten due to controller
ad68076e
BA
5430 * reset from the other port. Set the appropriate LAA in RAR[0]
5431 */
bc7f75fa 5432 if (e1000e_get_laa_state_82571(hw))
69e1e019 5433 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
bc7f75fa 5434
ff10e13c
CW
5435 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5436 e1000e_check_82574_phy_workaround(adapter);
5437
b67e1913
BA
5438 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5439 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5440 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5441 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5442 er32(RXSTMPH);
5443 adapter->rx_hwtstamp_cleared++;
5444 } else {
5445 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5446 }
5447 }
5448
bc7f75fa
AK
5449 /* Reset the timer */
5450 if (!test_bit(__E1000_DOWN, &adapter->state))
d5ad7a6a
JK
5451 mod_timer(&adapter->watchdog_timer,
5452 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
5453}
5454
5455#define E1000_TX_FLAGS_CSUM 0x00000001
5456#define E1000_TX_FLAGS_VLAN 0x00000002
5457#define E1000_TX_FLAGS_TSO 0x00000004
5458#define E1000_TX_FLAGS_IPV4 0x00000008
943146de 5459#define E1000_TX_FLAGS_NO_FCS 0x00000010
b67e1913 5460#define E1000_TX_FLAGS_HWTSTAMP 0x00000020
bc7f75fa
AK
5461#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5462#define E1000_TX_FLAGS_VLAN_SHIFT 16
5463
47ccd1ed
VY
5464static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5465 __be16 protocol)
bc7f75fa 5466{
bc7f75fa
AK
5467 struct e1000_context_desc *context_desc;
5468 struct e1000_buffer *buffer_info;
5469 unsigned int i;
5470 u32 cmd_length = 0;
70443ae9 5471 u16 ipcse = 0, mss;
bc7f75fa 5472 u8 ipcss, ipcso, tucss, tucso, hdr_len;
bcf1f57f 5473 int err;
bc7f75fa 5474
3d5e33c9
BA
5475 if (!skb_is_gso(skb))
5476 return 0;
bc7f75fa 5477
bcf1f57f
FR
5478 err = skb_cow_head(skb, 0);
5479 if (err < 0)
5480 return err;
bc7f75fa 5481
3d5e33c9
BA
5482 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5483 mss = skb_shinfo(skb)->gso_size;
47ccd1ed 5484 if (protocol == htons(ETH_P_IP)) {
3d5e33c9
BA
5485 struct iphdr *iph = ip_hdr(skb);
5486 iph->tot_len = 0;
5487 iph->check = 0;
5488 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
f0ff4398 5489 0, IPPROTO_TCP, 0);
3d5e33c9
BA
5490 cmd_length = E1000_TXD_CMD_IP;
5491 ipcse = skb_transport_offset(skb) - 1;
8e1e8a47 5492 } else if (skb_is_gso_v6(skb)) {
2b316fbc 5493 tcp_v6_gso_csum_prep(skb);
3d5e33c9
BA
5494 ipcse = 0;
5495 }
5496 ipcss = skb_network_offset(skb);
5497 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5498 tucss = skb_transport_offset(skb);
5499 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3d5e33c9
BA
5500
5501 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
f0ff4398 5502 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3d5e33c9
BA
5503
5504 i = tx_ring->next_to_use;
5505 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5506 buffer_info = &tx_ring->buffer_info[i];
5507
e80bd1d1
BA
5508 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5509 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5510 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3d5e33c9
BA
5511 context_desc->upper_setup.tcp_fields.tucss = tucss;
5512 context_desc->upper_setup.tcp_fields.tucso = tucso;
70443ae9 5513 context_desc->upper_setup.tcp_fields.tucse = 0;
e80bd1d1 5514 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3d5e33c9
BA
5515 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5516 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5517
5518 buffer_info->time_stamp = jiffies;
5519 buffer_info->next_to_watch = i;
5520
5521 i++;
5522 if (i == tx_ring->count)
5523 i = 0;
5524 tx_ring->next_to_use = i;
5525
5526 return 1;
bc7f75fa
AK
5527}
5528
47ccd1ed
VY
5529static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5530 __be16 protocol)
bc7f75fa 5531{
55aa6985 5532 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
5533 struct e1000_context_desc *context_desc;
5534 struct e1000_buffer *buffer_info;
5535 unsigned int i;
5536 u8 css;
af807c82 5537 u32 cmd_len = E1000_TXD_CMD_DEXT;
bc7f75fa 5538
af807c82 5539 if (skb->ip_summed != CHECKSUM_PARTIAL)
3992c8ed 5540 return false;
bc7f75fa 5541
3f518390 5542 switch (protocol) {
09640e63 5543 case cpu_to_be16(ETH_P_IP):
af807c82
DG
5544 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5545 cmd_len |= E1000_TXD_CMD_TCP;
5546 break;
09640e63 5547 case cpu_to_be16(ETH_P_IPV6):
af807c82
DG
5548 /* XXX not handling all IPV6 headers */
5549 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5550 cmd_len |= E1000_TXD_CMD_TCP;
5551 break;
5552 default:
5553 if (unlikely(net_ratelimit()))
5f66f208
AJ
5554 e_warn("checksum_partial proto=%x!\n",
5555 be16_to_cpu(protocol));
af807c82 5556 break;
bc7f75fa
AK
5557 }
5558
0d0b1672 5559 css = skb_checksum_start_offset(skb);
af807c82
DG
5560
5561 i = tx_ring->next_to_use;
5562 buffer_info = &tx_ring->buffer_info[i];
5563 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5564
5565 context_desc->lower_setup.ip_config = 0;
5566 context_desc->upper_setup.tcp_fields.tucss = css;
f0ff4398 5567 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
af807c82
DG
5568 context_desc->upper_setup.tcp_fields.tucse = 0;
5569 context_desc->tcp_seg_setup.data = 0;
5570 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5571
5572 buffer_info->time_stamp = jiffies;
5573 buffer_info->next_to_watch = i;
5574
5575 i++;
5576 if (i == tx_ring->count)
5577 i = 0;
5578 tx_ring->next_to_use = i;
5579
3992c8ed 5580 return true;
bc7f75fa
AK
5581}
5582
55aa6985
BA
5583static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5584 unsigned int first, unsigned int max_per_txd,
d821a4c4 5585 unsigned int nr_frags)
bc7f75fa 5586{
55aa6985 5587 struct e1000_adapter *adapter = tx_ring->adapter;
03b1320d 5588 struct pci_dev *pdev = adapter->pdev;
1b7719c4 5589 struct e1000_buffer *buffer_info;
8ddc951c 5590 unsigned int len = skb_headlen(skb);
03b1320d 5591 unsigned int offset = 0, size, count = 0, i;
9ed318d5 5592 unsigned int f, bytecount, segs;
bc7f75fa
AK
5593
5594 i = tx_ring->next_to_use;
5595
5596 while (len) {
1b7719c4 5597 buffer_info = &tx_ring->buffer_info[i];
bc7f75fa
AK
5598 size = min(len, max_per_txd);
5599
bc7f75fa 5600 buffer_info->length = size;
bc7f75fa 5601 buffer_info->time_stamp = jiffies;
bc7f75fa 5602 buffer_info->next_to_watch = i;
0be3f55f
NN
5603 buffer_info->dma = dma_map_single(&pdev->dev,
5604 skb->data + offset,
af667a29 5605 size, DMA_TO_DEVICE);
03b1320d 5606 buffer_info->mapped_as_page = false;
0be3f55f 5607 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
03b1320d 5608 goto dma_error;
bc7f75fa
AK
5609
5610 len -= size;
5611 offset += size;
03b1320d 5612 count++;
1b7719c4
AD
5613
5614 if (len) {
5615 i++;
5616 if (i == tx_ring->count)
5617 i = 0;
5618 }
bc7f75fa
AK
5619 }
5620
5621 for (f = 0; f < nr_frags; f++) {
d7840976 5622 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
bc7f75fa 5623
9e903e08 5624 len = skb_frag_size(frag);
877749bf 5625 offset = 0;
bc7f75fa
AK
5626
5627 while (len) {
1b7719c4
AD
5628 i++;
5629 if (i == tx_ring->count)
5630 i = 0;
5631
bc7f75fa
AK
5632 buffer_info = &tx_ring->buffer_info[i];
5633 size = min(len, max_per_txd);
bc7f75fa
AK
5634
5635 buffer_info->length = size;
5636 buffer_info->time_stamp = jiffies;
bc7f75fa 5637 buffer_info->next_to_watch = i;
877749bf 5638 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
17e813ec
BA
5639 offset, size,
5640 DMA_TO_DEVICE);
03b1320d 5641 buffer_info->mapped_as_page = true;
0be3f55f 5642 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
03b1320d 5643 goto dma_error;
bc7f75fa
AK
5644
5645 len -= size;
5646 offset += size;
5647 count++;
bc7f75fa
AK
5648 }
5649 }
5650
af667a29 5651 segs = skb_shinfo(skb)->gso_segs ? : 1;
9ed318d5
TH
5652 /* multiply data chunks by size of headers */
5653 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5654
bc7f75fa 5655 tx_ring->buffer_info[i].skb = skb;
9ed318d5
TH
5656 tx_ring->buffer_info[i].segs = segs;
5657 tx_ring->buffer_info[i].bytecount = bytecount;
bc7f75fa
AK
5658 tx_ring->buffer_info[first].next_to_watch = i;
5659
5660 return count;
03b1320d
AD
5661
5662dma_error:
af667a29 5663 dev_err(&pdev->dev, "Tx DMA map failed\n");
03b1320d 5664 buffer_info->dma = 0;
c1fa347f 5665 if (count)
03b1320d 5666 count--;
c1fa347f
RK
5667
5668 while (count--) {
af667a29 5669 if (i == 0)
03b1320d 5670 i += tx_ring->count;
c1fa347f 5671 i--;
03b1320d 5672 buffer_info = &tx_ring->buffer_info[i];
377b6273 5673 e1000_put_txbuf(tx_ring, buffer_info, true);
03b1320d
AD
5674 }
5675
5676 return 0;
bc7f75fa
AK
5677}
5678
55aa6985 5679static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
bc7f75fa 5680{
55aa6985 5681 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
5682 struct e1000_tx_desc *tx_desc = NULL;
5683 struct e1000_buffer *buffer_info;
5684 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5685 unsigned int i;
5686
5687 if (tx_flags & E1000_TX_FLAGS_TSO) {
5688 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
f0ff4398 5689 E1000_TXD_CMD_TSE;
bc7f75fa
AK
5690 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5691
5692 if (tx_flags & E1000_TX_FLAGS_IPV4)
5693 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5694 }
5695
5696 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5697 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5698 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5699 }
5700
5701 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5702 txd_lower |= E1000_TXD_CMD_VLE;
5703 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5704 }
5705
943146de
BG
5706 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5707 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5708
b67e1913
BA
5709 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5710 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5711 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5712 }
5713
bc7f75fa
AK
5714 i = tx_ring->next_to_use;
5715
36b973df 5716 do {
bc7f75fa
AK
5717 buffer_info = &tx_ring->buffer_info[i];
5718 tx_desc = E1000_TX_DESC(*tx_ring, i);
5719 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
f0ff4398
BA
5720 tx_desc->lower.data = cpu_to_le32(txd_lower |
5721 buffer_info->length);
bc7f75fa
AK
5722 tx_desc->upper.data = cpu_to_le32(txd_upper);
5723
5724 i++;
5725 if (i == tx_ring->count)
5726 i = 0;
36b973df 5727 } while (--count > 0);
bc7f75fa
AK
5728
5729 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5730
943146de
BG
5731 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5732 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5733 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5734
e921eb1a 5735 /* Force memory writes to complete before letting h/w
bc7f75fa
AK
5736 * know there are new descriptors to fetch. (Only
5737 * applicable for weak-ordered memory model archs,
ad68076e
BA
5738 * such as IA-64).
5739 */
bc7f75fa
AK
5740 wmb();
5741
5742 tx_ring->next_to_use = i;
bc7f75fa
AK
5743}
5744
5745#define MINIMUM_DHCP_PACKET_SIZE 282
5746static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5747 struct sk_buff *skb)
5748{
e80bd1d1 5749 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
5750 u16 length, offset;
5751
df8a39de
JP
5752 if (skb_vlan_tag_present(skb) &&
5753 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
d60923c4
BA
5754 (adapter->hw.mng_cookie.status &
5755 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5756 return 0;
bc7f75fa
AK
5757
5758 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5759 return 0;
5760
53aa82da 5761 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
bc7f75fa
AK
5762 return 0;
5763
5764 {
362e20ca 5765 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
bc7f75fa
AK
5766 struct udphdr *udp;
5767
5768 if (ip->protocol != IPPROTO_UDP)
5769 return 0;
5770
5771 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5772 if (ntohs(udp->dest) != 67)
5773 return 0;
5774
5775 offset = (u8 *)udp + 8 - skb->data;
5776 length = skb->len - offset;
5777 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5778 }
5779
5780 return 0;
5781}
5782
55aa6985 5783static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
bc7f75fa 5784{
55aa6985 5785 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa 5786
55aa6985 5787 netif_stop_queue(adapter->netdev);
e921eb1a 5788 /* Herbert's original patch had:
bc7f75fa 5789 * smp_mb__after_netif_stop_queue();
ad68076e
BA
5790 * but since that doesn't exist yet, just open code it.
5791 */
bc7f75fa
AK
5792 smp_mb();
5793
e921eb1a 5794 /* We need to check again in a case another CPU has just
ad68076e
BA
5795 * made room available.
5796 */
55aa6985 5797 if (e1000_desc_unused(tx_ring) < size)
bc7f75fa
AK
5798 return -EBUSY;
5799
5800 /* A reprieve! */
55aa6985 5801 netif_start_queue(adapter->netdev);
bc7f75fa
AK
5802 ++adapter->restart_queue;
5803 return 0;
5804}
5805
55aa6985 5806static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
bc7f75fa 5807{
d821a4c4
BA
5808 BUG_ON(size > tx_ring->count);
5809
55aa6985 5810 if (e1000_desc_unused(tx_ring) >= size)
bc7f75fa 5811 return 0;
55aa6985 5812 return __e1000_maybe_stop_tx(tx_ring, size);
bc7f75fa
AK
5813}
5814
3b29a56d
SH
5815static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5816 struct net_device *netdev)
bc7f75fa
AK
5817{
5818 struct e1000_adapter *adapter = netdev_priv(netdev);
5819 struct e1000_ring *tx_ring = adapter->tx_ring;
5820 unsigned int first;
bc7f75fa 5821 unsigned int tx_flags = 0;
e743d313 5822 unsigned int len = skb_headlen(skb);
4e6c709c
AK
5823 unsigned int nr_frags;
5824 unsigned int mss;
bc7f75fa
AK
5825 int count = 0;
5826 int tso;
5827 unsigned int f;
47ccd1ed 5828 __be16 protocol = vlan_get_protocol(skb);
bc7f75fa
AK
5829
5830 if (test_bit(__E1000_DOWN, &adapter->state)) {
5831 dev_kfree_skb_any(skb);
5832 return NETDEV_TX_OK;
5833 }
5834
5835 if (skb->len <= 0) {
5836 dev_kfree_skb_any(skb);
5837 return NETDEV_TX_OK;
5838 }
5839
e921eb1a 5840 /* The minimum packet size with TCTL.PSP set is 17 bytes so
6e97c170
TD
5841 * pad skb in order to meet this minimum size requirement
5842 */
a94d9e22
AD
5843 if (skb_put_padto(skb, 17))
5844 return NETDEV_TX_OK;
6e97c170 5845
bc7f75fa 5846 mss = skb_shinfo(skb)->gso_size;
bc7f75fa
AK
5847 if (mss) {
5848 u8 hdr_len;
bc7f75fa 5849
e921eb1a 5850 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
ad68076e
BA
5851 * points to just header, pull a few bytes of payload from
5852 * frags into skb->data
5853 */
bc7f75fa 5854 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
e921eb1a 5855 /* we do this workaround for ES2LAN, but it is un-necessary,
ad68076e
BA
5856 * avoiding it could save a lot of cycles
5857 */
4e6c709c 5858 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
5859 unsigned int pull_size;
5860
a2a5b323 5861 pull_size = min_t(unsigned int, 4, skb->data_len);
bc7f75fa 5862 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 5863 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
5864 dev_kfree_skb_any(skb);
5865 return NETDEV_TX_OK;
5866 }
e743d313 5867 len = skb_headlen(skb);
bc7f75fa
AK
5868 }
5869 }
5870
5871 /* reserve a descriptor for the offload context */
5872 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5873 count++;
5874 count++;
5875
d821a4c4 5876 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
bc7f75fa
AK
5877
5878 nr_frags = skb_shinfo(skb)->nr_frags;
5879 for (f = 0; f < nr_frags; f++)
d821a4c4
BA
5880 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5881 adapter->tx_fifo_limit);
bc7f75fa
AK
5882
5883 if (adapter->hw.mac.tx_pkt_filtering)
5884 e1000_transfer_dhcp_info(adapter, skb);
5885
e921eb1a 5886 /* need: count + 2 desc gap to keep tail from touching
ad68076e
BA
5887 * head, otherwise try next time
5888 */
55aa6985 5889 if (e1000_maybe_stop_tx(tx_ring, count + 2))
bc7f75fa 5890 return NETDEV_TX_BUSY;
bc7f75fa 5891
df8a39de 5892 if (skb_vlan_tag_present(skb)) {
bc7f75fa 5893 tx_flags |= E1000_TX_FLAGS_VLAN;
df8a39de
JP
5894 tx_flags |= (skb_vlan_tag_get(skb) <<
5895 E1000_TX_FLAGS_VLAN_SHIFT);
bc7f75fa
AK
5896 }
5897
5898 first = tx_ring->next_to_use;
5899
47ccd1ed 5900 tso = e1000_tso(tx_ring, skb, protocol);
bc7f75fa
AK
5901 if (tso < 0) {
5902 dev_kfree_skb_any(skb);
bc7f75fa
AK
5903 return NETDEV_TX_OK;
5904 }
5905
5906 if (tso)
5907 tx_flags |= E1000_TX_FLAGS_TSO;
47ccd1ed 5908 else if (e1000_tx_csum(tx_ring, skb, protocol))
bc7f75fa
AK
5909 tx_flags |= E1000_TX_FLAGS_CSUM;
5910
e921eb1a 5911 /* Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 5912 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
5913 * no longer assume, we must.
5914 */
47ccd1ed 5915 if (protocol == htons(ETH_P_IP))
bc7f75fa
AK
5916 tx_flags |= E1000_TX_FLAGS_IPV4;
5917
943146de
BG
5918 if (unlikely(skb->no_fcs))
5919 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5920
25985edc 5921 /* if count is 0 then mapping error has occurred */
d821a4c4
BA
5922 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5923 nr_frags);
1b7719c4 5924 if (count) {
6930895d 5925 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
cff57141
JK
5926 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5927 if (!adapter->tx_hwtstamp_skb) {
5928 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5929 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5930 adapter->tx_hwtstamp_skb = skb_get(skb);
5931 adapter->tx_hwtstamp_start = jiffies;
5932 schedule_work(&adapter->tx_hwtstamp_work);
5933 } else {
5934 adapter->tx_hwtstamp_skipped++;
5935 }
b67e1913 5936 }
80be3129 5937
74abc9b1
ML
5938 skb_tx_timestamp(skb);
5939
3f0cfa3b 5940 netdev_sent_queue(netdev, skb->len);
55aa6985 5941 e1000_tx_queue(tx_ring, tx_flags, count);
1b7719c4 5942 /* Make sure there is space in the ring for the next send. */
d821a4c4
BA
5943 e1000_maybe_stop_tx(tx_ring,
5944 (MAX_SKB_FRAGS *
5945 DIV_ROUND_UP(PAGE_SIZE,
5946 adapter->tx_fifo_limit) + 2));
472f31f5 5947
6b16f9ee 5948 if (!netdev_xmit_more() ||
472f31f5
FW
5949 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5950 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5951 e1000e_update_tdt_wa(tx_ring,
5952 tx_ring->next_to_use);
5953 else
5954 writel(tx_ring->next_to_use, tx_ring->tail);
472f31f5 5955 }
1b7719c4 5956 } else {
bc7f75fa 5957 dev_kfree_skb_any(skb);
1b7719c4
AD
5958 tx_ring->buffer_info[first].time_stamp = 0;
5959 tx_ring->next_to_use = first;
bc7f75fa
AK
5960 }
5961
bc7f75fa
AK
5962 return NETDEV_TX_OK;
5963}
5964
5965/**
5966 * e1000_tx_timeout - Respond to a Tx Hang
5967 * @netdev: network interface device structure
b50f7bca 5968 * @txqueue: index of the hung queue (unused)
bc7f75fa 5969 **/
b50f7bca 5970static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
bc7f75fa
AK
5971{
5972 struct e1000_adapter *adapter = netdev_priv(netdev);
5973
5974 /* Do the reset outside of interrupt context */
5975 adapter->tx_timeout_count++;
5976 schedule_work(&adapter->reset_task);
5977}
5978
5979static void e1000_reset_task(struct work_struct *work)
5980{
5981 struct e1000_adapter *adapter;
5982 adapter = container_of(work, struct e1000_adapter, reset_task);
5983
21f857f0 5984 rtnl_lock();
615b32af 5985 /* don't run the task if already down */
21f857f0
VL
5986 if (test_bit(__E1000_DOWN, &adapter->state)) {
5987 rtnl_unlock();
615b32af 5988 return;
21f857f0 5989 }
615b32af 5990
12d43f7d 5991 if (!(adapter->flags & FLAG_RESTART_NOW)) {
affa9dfb 5992 e1000e_dump(adapter);
12d43f7d 5993 e_err("Reset adapter unexpectedly\n");
affa9dfb 5994 }
bc7f75fa 5995 e1000e_reinit_locked(adapter);
21f857f0 5996 rtnl_unlock();
bc7f75fa
AK
5997}
5998
5999/**
39da2cac 6000 * e1000e_get_stats64 - Get System Network Statistics
bc7f75fa 6001 * @netdev: network interface device structure
67fd4fcb 6002 * @stats: rtnl_link_stats64 pointer
bc7f75fa
AK
6003 *
6004 * Returns the address of the device statistics structure.
bc7f75fa 6005 **/
bc1f4470 6006void e1000e_get_stats64(struct net_device *netdev,
6007 struct rtnl_link_stats64 *stats)
bc7f75fa 6008{
67fd4fcb
JK
6009 struct e1000_adapter *adapter = netdev_priv(netdev);
6010
67fd4fcb
JK
6011 spin_lock(&adapter->stats64_lock);
6012 e1000e_update_stats(adapter);
6013 /* Fill out the OS statistics structure */
6014 stats->rx_bytes = adapter->stats.gorc;
6015 stats->rx_packets = adapter->stats.gprc;
6016 stats->tx_bytes = adapter->stats.gotc;
6017 stats->tx_packets = adapter->stats.gptc;
6018 stats->multicast = adapter->stats.mprc;
6019 stats->collisions = adapter->stats.colc;
6020
6021 /* Rx Errors */
6022
e921eb1a 6023 /* RLEC on some newer hardware can be incorrect so build
67fd4fcb
JK
6024 * our own version based on RUC and ROC
6025 */
6026 stats->rx_errors = adapter->stats.rxerrc +
f0ff4398
BA
6027 adapter->stats.crcerrs + adapter->stats.algnerrc +
6028 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6029 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
67fd4fcb
JK
6030 stats->rx_crc_errors = adapter->stats.crcerrs;
6031 stats->rx_frame_errors = adapter->stats.algnerrc;
6032 stats->rx_missed_errors = adapter->stats.mpc;
6033
6034 /* Tx Errors */
f0ff4398 6035 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
67fd4fcb
JK
6036 stats->tx_aborted_errors = adapter->stats.ecol;
6037 stats->tx_window_errors = adapter->stats.latecol;
6038 stats->tx_carrier_errors = adapter->stats.tncrs;
6039
6040 /* Tx Dropped needs to be maintained elsewhere */
6041
6042 spin_unlock(&adapter->stats64_lock);
bc7f75fa
AK
6043}
6044
6045/**
6046 * e1000_change_mtu - Change the Maximum Transfer Unit
6047 * @netdev: network interface device structure
6048 * @new_mtu: new value for maximum frame size
6049 *
6050 * Returns 0 on success, negative on failure
6051 **/
6052static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6053{
6054 struct e1000_adapter *adapter = netdev_priv(netdev);
8084b86d 6055 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
bc7f75fa 6056
2adc55c9 6057 /* Jumbo frame support */
91c527a5 6058 if ((new_mtu > ETH_DATA_LEN) &&
2e1706f2
BA
6059 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6060 e_err("Jumbo Frames not supported.\n");
6061 return -EINVAL;
bc7f75fa
AK
6062 }
6063
2fbe4526
BA
6064 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6065 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
a1ce6473
BA
6066 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6067 (new_mtu > ETH_DATA_LEN)) {
2fbe4526 6068 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
a1ce6473
BA
6069 return -EINVAL;
6070 }
6071
bc7f75fa 6072 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
ab6973ae 6073 usleep_range(1000, 1100);
610c9928 6074 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
318a94d6 6075 adapter->max_frame_size = max_frame;
12299132
FF
6076 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6077 netdev->mtu, new_mtu);
610c9928 6078 netdev->mtu = new_mtu;
63eb48f1
DE
6079
6080 pm_runtime_get_sync(netdev->dev.parent);
6081
bc7f75fa 6082 if (netif_running(netdev))
28002099 6083 e1000e_down(adapter, true);
bc7f75fa 6084
e921eb1a 6085 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
6086 * means we reserve 2 more, this pushes us to allocate from the next
6087 * larger slab size.
ad68076e 6088 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
6089 * However with the new *_jumbo_rx* routines, jumbo receives will use
6090 * fragmented skbs
ad68076e 6091 */
bc7f75fa 6092
9926146b 6093 if (max_frame <= 2048)
bc7f75fa
AK
6094 adapter->rx_buffer_len = 2048;
6095 else
6096 adapter->rx_buffer_len = 4096;
6097
6098 /* adjust allocation if LPE protects us, and we aren't using SBP */
8084b86d
AD
6099 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6100 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
bc7f75fa 6101
bc7f75fa
AK
6102 if (netif_running(netdev))
6103 e1000e_up(adapter);
6104 else
6105 e1000e_reset(adapter);
6106
63eb48f1
DE
6107 pm_runtime_put_sync(netdev->dev.parent);
6108
bc7f75fa
AK
6109 clear_bit(__E1000_RESETTING, &adapter->state);
6110
6111 return 0;
6112}
6113
6114static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6115 int cmd)
6116{
6117 struct e1000_adapter *adapter = netdev_priv(netdev);
6118 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 6119
318a94d6 6120 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
6121 return -EOPNOTSUPP;
6122
6123 switch (cmd) {
6124 case SIOCGMIIPHY:
6125 data->phy_id = adapter->hw.phy.addr;
6126 break;
6127 case SIOCGMIIREG:
b16a002e
BA
6128 e1000_phy_read_status(adapter);
6129
7c25769f
BA
6130 switch (data->reg_num & 0x1F) {
6131 case MII_BMCR:
6132 data->val_out = adapter->phy_regs.bmcr;
6133 break;
6134 case MII_BMSR:
6135 data->val_out = adapter->phy_regs.bmsr;
6136 break;
6137 case MII_PHYSID1:
6138 data->val_out = (adapter->hw.phy.id >> 16);
6139 break;
6140 case MII_PHYSID2:
6141 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6142 break;
6143 case MII_ADVERTISE:
6144 data->val_out = adapter->phy_regs.advertise;
6145 break;
6146 case MII_LPA:
6147 data->val_out = adapter->phy_regs.lpa;
6148 break;
6149 case MII_EXPANSION:
6150 data->val_out = adapter->phy_regs.expansion;
6151 break;
6152 case MII_CTRL1000:
6153 data->val_out = adapter->phy_regs.ctrl1000;
6154 break;
6155 case MII_STAT1000:
6156 data->val_out = adapter->phy_regs.stat1000;
6157 break;
6158 case MII_ESTATUS:
6159 data->val_out = adapter->phy_regs.estatus;
6160 break;
6161 default:
bc7f75fa
AK
6162 return -EIO;
6163 }
bc7f75fa
AK
6164 break;
6165 case SIOCSMIIREG:
6166 default:
6167 return -EOPNOTSUPP;
6168 }
6169 return 0;
6170}
6171
b67e1913 6172/**
39da2cac 6173 * e1000e_hwtstamp_set - control hardware time stamping
b67e1913 6174 * @netdev: network interface device structure
b50f7bca 6175 * @ifr: interface request
b67e1913
BA
6176 *
6177 * Outgoing time stamping can be enabled and disabled. Play nice and
6178 * disable it when requested, although it shouldn't cause any overhead
6179 * when no packet needs it. At most one packet in the queue may be
6180 * marked for time stamping, otherwise it would be impossible to tell
6181 * for sure to which packet the hardware time stamp belongs.
6182 *
6183 * Incoming time stamping has to be configured via the hardware filters.
6184 * Not all combinations are supported, in particular event type has to be
6185 * specified. Matching the kind of event packet is not supported, with the
6186 * exception of "all V2 events regardless of level 2 or 4".
6187 **/
4e8cff64 6188static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
b67e1913
BA
6189{
6190 struct e1000_adapter *adapter = netdev_priv(netdev);
6191 struct hwtstamp_config config;
6192 int ret_val;
6193
6194 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6195 return -EFAULT;
6196
62d7e3a2 6197 ret_val = e1000e_config_hwtstamp(adapter, &config);
b67e1913
BA
6198 if (ret_val)
6199 return ret_val;
6200
d89777bf
BA
6201 switch (config.rx_filter) {
6202 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6203 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6204 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6205 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6206 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6207 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6208 /* With V2 type filters which specify a Sync or Delay Request,
6209 * Path Delay Request/Response messages are also time stamped
6210 * by hardware so notify the caller the requested packets plus
6211 * some others are time stamped.
6212 */
6213 config.rx_filter = HWTSTAMP_FILTER_SOME;
6214 break;
6215 default:
6216 break;
6217 }
6218
b67e1913
BA
6219 return copy_to_user(ifr->ifr_data, &config,
6220 sizeof(config)) ? -EFAULT : 0;
6221}
6222
4e8cff64
BH
6223static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6224{
6225 struct e1000_adapter *adapter = netdev_priv(netdev);
6226
6227 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6228 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6229}
6230
bc7f75fa
AK
6231static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6232{
6233 switch (cmd) {
6234 case SIOCGMIIPHY:
6235 case SIOCGMIIREG:
6236 case SIOCSMIIREG:
6237 return e1000_mii_ioctl(netdev, ifr, cmd);
b67e1913 6238 case SIOCSHWTSTAMP:
4e8cff64
BH
6239 return e1000e_hwtstamp_set(netdev, ifr);
6240 case SIOCGHWTSTAMP:
6241 return e1000e_hwtstamp_get(netdev, ifr);
bc7f75fa
AK
6242 default:
6243 return -EOPNOTSUPP;
6244 }
6245}
6246
a4f58f54
BA
6247static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6248{
6249 struct e1000_hw *hw = &adapter->hw;
74f350ee 6250 u32 i, mac_reg, wuc;
2b6b168d 6251 u16 phy_reg, wuc_enable;
70806a7f 6252 int retval;
a4f58f54
BA
6253
6254 /* copy MAC RARs to PHY RARs */
d3738bb8 6255 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
a4f58f54 6256
2b6b168d
BA
6257 retval = hw->phy.ops.acquire(hw);
6258 if (retval) {
6259 e_err("Could not acquire PHY\n");
6260 return retval;
6261 }
6262
6263 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6264 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6265 if (retval)
75ce1532 6266 goto release;
2b6b168d
BA
6267
6268 /* copy MAC MTA to PHY MTA - only needed for pchlan */
a4f58f54
BA
6269 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6270 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
2b6b168d
BA
6271 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6272 (u16)(mac_reg & 0xFFFF));
6273 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6274 (u16)((mac_reg >> 16) & 0xFFFF));
a4f58f54
BA
6275 }
6276
6277 /* configure PHY Rx Control register */
2b6b168d 6278 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
a4f58f54
BA
6279 mac_reg = er32(RCTL);
6280 if (mac_reg & E1000_RCTL_UPE)
6281 phy_reg |= BM_RCTL_UPE;
6282 if (mac_reg & E1000_RCTL_MPE)
6283 phy_reg |= BM_RCTL_MPE;
6284 phy_reg &= ~(BM_RCTL_MO_MASK);
6285 if (mac_reg & E1000_RCTL_MO_3)
6286 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
17e813ec 6287 << BM_RCTL_MO_SHIFT);
a4f58f54
BA
6288 if (mac_reg & E1000_RCTL_BAM)
6289 phy_reg |= BM_RCTL_BAM;
6290 if (mac_reg & E1000_RCTL_PMCF)
6291 phy_reg |= BM_RCTL_PMCF;
6292 mac_reg = er32(CTRL);
6293 if (mac_reg & E1000_CTRL_RFCE)
6294 phy_reg |= BM_RCTL_RFCE;
2b6b168d 6295 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
a4f58f54 6296
74f350ee
DE
6297 wuc = E1000_WUC_PME_EN;
6298 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6299 wuc |= E1000_WUC_APME;
6300
a4f58f54
BA
6301 /* enable PHY wakeup in MAC register */
6302 ew32(WUFC, wufc);
74f350ee
DE
6303 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6304 E1000_WUC_PME_STATUS | wuc));
a4f58f54
BA
6305
6306 /* configure and enable PHY wakeup in PHY registers */
2b6b168d 6307 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
74f350ee 6308 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
a4f58f54
BA
6309
6310 /* activate PHY wakeup */
2b6b168d
BA
6311 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6312 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
a4f58f54
BA
6313 if (retval)
6314 e_err("Could not set PHY Host Wakeup bit\n");
75ce1532 6315release:
94d8186a 6316 hw->phy.ops.release(hw);
a4f58f54
BA
6317
6318 return retval;
6319}
6320
2a7e19af
DE
6321static void e1000e_flush_lpic(struct pci_dev *pdev)
6322{
6323 struct net_device *netdev = pci_get_drvdata(pdev);
6324 struct e1000_adapter *adapter = netdev_priv(netdev);
6325 struct e1000_hw *hw = &adapter->hw;
6326 u32 ret_val;
6327
6328 pm_runtime_get_sync(netdev->dev.parent);
6329
6330 ret_val = hw->phy.ops.acquire(hw);
6331 if (ret_val)
6332 goto fl_out;
6333
6334 pr_info("EEE TX LPI TIMER: %08X\n",
6335 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6336
6337 hw->phy.ops.release(hw);
6338
6339fl_out:
6340 pm_runtime_put_sync(netdev->dev.parent);
6341}
6342
f15bb6dd
SN
6343/* S0ix implementation */
6344static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6345{
6346 struct e1000_hw *hw = &adapter->hw;
6347 u32 mac_data;
6348 u16 phy_data;
6349
de198d1d
SN
6350 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6351 hw->mac.type >= e1000_pch_adp) {
788a4a12
PP
6352 /* Request ME configure the device for S0ix */
6353 mac_data = er32(H2ME);
6354 mac_data |= E1000_H2ME_START_DPG;
6355 mac_data &= ~E1000_H2ME_EXIT_DPG;
6356 ew32(H2ME, mac_data);
6357 } else {
6358 /* Request driver configure the device to S0ix */
6359 /* Disable the periodic inband message,
6360 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6361 */
6362 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6363 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6364 phy_data |= BIT(10);
6365 e1e_wphy(hw, HV_PM_CTRL, phy_data);
f15bb6dd 6366
788a4a12
PP
6367 /* Make sure we don't exit K1 every time a new packet arrives
6368 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6369 */
6370 e1e_rphy(hw, I217_CGFREG, &phy_data);
6371 phy_data |= BIT(5);
6372 e1e_wphy(hw, I217_CGFREG, phy_data);
f15bb6dd 6373
788a4a12
PP
6374 /* Change the MAC/PHY interface to SMBus
6375 * Force the SMBus in PHY page769_23[0] = 1
6376 * Force the SMBus in MAC CTRL_EXT[11] = 1
6377 */
6378 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6379 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6380 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6381 mac_data = er32(CTRL_EXT);
6382 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6383 ew32(CTRL_EXT, mac_data);
6384
6385 /* DFT control: PHY bit: page769_20[0] = 1
7d9addf3
PP
6386 * page769_20[7] - PHY PLL stop
6387 * page769_20[8] - PHY go to the electrical idle
6388 * page769_20[9] - PHY serdes disable
788a4a12
PP
6389 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6390 */
6391 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6392 phy_data |= BIT(0);
7d9addf3
PP
6393 phy_data |= BIT(7);
6394 phy_data |= BIT(8);
6395 phy_data |= BIT(9);
788a4a12
PP
6396 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6397
6398 mac_data = er32(EXTCNF_CTRL);
6399 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6400 ew32(EXTCNF_CTRL, mac_data);
6401
6402 /* Enable the Dynamic Power Gating in the MAC */
6403 mac_data = er32(FEXTNVM7);
6404 mac_data |= BIT(22);
6405 ew32(FEXTNVM7, mac_data);
6406
6407 /* Disable disconnected cable conditioning for Power Gating */
6408 mac_data = er32(DPGFR);
6409 mac_data |= BIT(2);
6410 ew32(DPGFR, mac_data);
6411
6412 /* Don't wake from dynamic Power Gating with clock request */
6413 mac_data = er32(FEXTNVM12);
6414 mac_data |= BIT(12);
6415 ew32(FEXTNVM12, mac_data);
6416
6417 /* Ungate PGCB clock */
6418 mac_data = er32(FEXTNVM9);
6419 mac_data &= ~BIT(28);
6420 ew32(FEXTNVM9, mac_data);
6421
6422 /* Enable K1 off to enable mPHY Power Gating */
6423 mac_data = er32(FEXTNVM6);
6424 mac_data |= BIT(31);
6425 ew32(FEXTNVM6, mac_data);
6426
6427 /* Enable mPHY power gating for any link and speed */
6428 mac_data = er32(FEXTNVM8);
6429 mac_data |= BIT(9);
6430 ew32(FEXTNVM8, mac_data);
6431
6432 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6433 mac_data = er32(CTRL_EXT);
6434 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6435 ew32(CTRL_EXT, mac_data);
6436
6437 /* No MAC DPG gating SLP_S0 in modern standby
6438 * Switch the logic of the lanphypc to use PMC counter
6439 */
6440 mac_data = er32(FEXTNVM5);
6441 mac_data |= BIT(7);
6442 ew32(FEXTNVM5, mac_data);
6443 }
f15bb6dd 6444
788a4a12
PP
6445 /* Disable the time synchronization clock */
6446 mac_data = er32(FEXTNVM7);
6447 mac_data |= BIT(31);
6448 mac_data &= ~BIT(0);
6449 ew32(FEXTNVM7, mac_data);
db621321 6450
788a4a12
PP
6451 /* Dynamic Power Gating Enable */
6452 mac_data = er32(CTRL_EXT);
6453 mac_data |= BIT(3);
6454 ew32(CTRL_EXT, mac_data);
db621321 6455
f15bb6dd
SN
6456 /* Check MAC Tx/Rx packet buffer pointers.
6457 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6458 * pending traffic indication that would prevent power gating.
6459 */
6460 mac_data = er32(TDFH);
6461 if (mac_data)
6462 ew32(TDFH, 0);
6463 mac_data = er32(TDFT);
6464 if (mac_data)
6465 ew32(TDFT, 0);
6466 mac_data = er32(TDFHS);
6467 if (mac_data)
6468 ew32(TDFHS, 0);
6469 mac_data = er32(TDFTS);
6470 if (mac_data)
6471 ew32(TDFTS, 0);
6472 mac_data = er32(TDFPC);
6473 if (mac_data)
6474 ew32(TDFPC, 0);
6475 mac_data = er32(RDFH);
6476 if (mac_data)
6477 ew32(RDFH, 0);
6478 mac_data = er32(RDFT);
6479 if (mac_data)
6480 ew32(RDFT, 0);
6481 mac_data = er32(RDFHS);
6482 if (mac_data)
6483 ew32(RDFHS, 0);
6484 mac_data = er32(RDFTS);
6485 if (mac_data)
6486 ew32(RDFTS, 0);
6487 mac_data = er32(RDFPC);
6488 if (mac_data)
6489 ew32(RDFPC, 0);
f15bb6dd
SN
6490}
6491
6492static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6493{
6494 struct e1000_hw *hw = &adapter->hw;
05c3d0a7 6495 bool firmware_bug = false;
f15bb6dd
SN
6496 u32 mac_data;
6497 u16 phy_data;
05c3d0a7 6498 u32 i = 0;
f15bb6dd 6499
de198d1d
SN
6500 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6501 hw->mac.type >= e1000_pch_adp) {
788a4a12
PP
6502 /* Request ME unconfigure the device from S0ix */
6503 mac_data = er32(H2ME);
6504 mac_data &= ~E1000_H2ME_START_DPG;
6505 mac_data |= E1000_H2ME_EXIT_DPG;
6506 ew32(H2ME, mac_data);
05c3d0a7
PP
6507
6508 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6509 * If this takes more than 1 second, show a warning indicating a
6510 * firmware bug
6511 */
6512 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6513 if (i > 100 && !firmware_bug)
6514 firmware_bug = true;
6515
6516 if (i++ == 250) {
6517 e_dbg("Timeout (firmware bug): %d msec\n",
6518 i * 10);
6519 break;
6520 }
6521
6522 usleep_range(10000, 11000);
6523 }
6524 if (firmware_bug)
6525 e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6526 i * 10);
6527 else
6528 e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
788a4a12
PP
6529 } else {
6530 /* Request driver unconfigure the device from S0ix */
6531
6532 /* Disable the Dynamic Power Gating in the MAC */
6533 mac_data = er32(FEXTNVM7);
6534 mac_data &= 0xFFBFFFFF;
6535 ew32(FEXTNVM7, mac_data);
6536
6537 /* Disable mPHY power gating for any link and speed */
6538 mac_data = er32(FEXTNVM8);
6539 mac_data &= ~BIT(9);
6540 ew32(FEXTNVM8, mac_data);
6541
6542 /* Disable K1 off */
6543 mac_data = er32(FEXTNVM6);
6544 mac_data &= ~BIT(31);
6545 ew32(FEXTNVM6, mac_data);
6546
6547 /* Disable Ungate PGCB clock */
6548 mac_data = er32(FEXTNVM9);
6549 mac_data |= BIT(28);
6550 ew32(FEXTNVM9, mac_data);
6551
6552 /* Cancel not waking from dynamic
6553 * Power Gating with clock request
6554 */
6555 mac_data = er32(FEXTNVM12);
6556 mac_data &= ~BIT(12);
6557 ew32(FEXTNVM12, mac_data);
f15bb6dd 6558
788a4a12
PP
6559 /* Cancel disable disconnected cable conditioning
6560 * for Power Gating
6561 */
6562 mac_data = er32(DPGFR);
6563 mac_data &= ~BIT(2);
6564 ew32(DPGFR, mac_data);
f15bb6dd 6565
788a4a12
PP
6566 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6567 mac_data = er32(CTRL_EXT);
6568 mac_data &= 0xFFF7FFFF;
6569 ew32(CTRL_EXT, mac_data);
632fbd5e 6570
788a4a12
PP
6571 /* Revert the lanphypc logic to use the internal Gbe counter
6572 * and not the PMC counter
6573 */
6574 mac_data = er32(FEXTNVM5);
6575 mac_data &= 0xFFFFFF7F;
6576 ew32(FEXTNVM5, mac_data);
632fbd5e 6577
788a4a12
PP
6578 /* Enable the periodic inband message,
6579 * Request PCIe clock in K1 page770_17[10:9] =01b
6580 */
6581 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6582 phy_data &= 0xFBFF;
6583 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6584 e1e_wphy(hw, HV_PM_CTRL, phy_data);
632fbd5e 6585
788a4a12
PP
6586 /* Return back configuration
6587 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6588 */
6589 e1e_rphy(hw, I217_CGFREG, &phy_data);
6590 phy_data &= 0xFFDF;
6591 e1e_wphy(hw, I217_CGFREG, phy_data);
632fbd5e 6592
788a4a12
PP
6593 /* Change the MAC/PHY interface to Kumeran
6594 * Unforce the SMBus in PHY page769_23[0] = 0
6595 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6596 */
6597 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6598 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6599 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6600 mac_data = er32(CTRL_EXT);
6601 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6602 ew32(CTRL_EXT, mac_data);
6603 }
632fbd5e 6604
f15bb6dd
SN
6605 /* Disable Dynamic Power Gating */
6606 mac_data = er32(CTRL_EXT);
6607 mac_data &= 0xFFFFFFF7;
6608 ew32(CTRL_EXT, mac_data);
6609
788a4a12
PP
6610 /* Enable the time synchronization clock */
6611 mac_data = er32(FEXTNVM7);
6612 mac_data &= ~BIT(31);
6613 mac_data |= BIT(0);
6614 ew32(FEXTNVM7, mac_data);
f15bb6dd
SN
6615}
6616
28002099 6617static int e1000e_pm_freeze(struct device *dev)
bc7f75fa 6618{
ee2e80c1 6619 struct net_device *netdev = dev_get_drvdata(dev);
bc7f75fa 6620 struct e1000_adapter *adapter = netdev_priv(netdev);
a7023819 6621 bool present;
bc7f75fa 6622
a7023819
AD
6623 rtnl_lock();
6624
6625 present = netif_device_present(netdev);
bc7f75fa
AK
6626 netif_device_detach(netdev);
6627
a7023819 6628 if (present && netif_running(netdev)) {
bb9e44d0
BA
6629 int count = E1000_CHECK_RESET_COUNT;
6630
6631 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
ab6973ae 6632 usleep_range(10000, 11000);
bb9e44d0 6633
bc7f75fa 6634 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
28002099
DE
6635
6636 /* Quiesce the device without resetting the hardware */
6637 e1000e_down(adapter, false);
bc7f75fa
AK
6638 e1000_free_irq(adapter);
6639 }
a7023819
AD
6640 rtnl_unlock();
6641
9f47a48e 6642 e1000e_reset_interrupt_capability(adapter);
bc7f75fa 6643
28002099
DE
6644 /* Allow time for pending master requests to run */
6645 e1000e_disable_pcie_master(&adapter->hw);
6646
6647 return 0;
6648}
6649
6650static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6651{
6652 struct net_device *netdev = pci_get_drvdata(pdev);
6653 struct e1000_adapter *adapter = netdev_priv(netdev);
6654 struct e1000_hw *hw = &adapter->hw;
6bf6be11 6655 u32 ctrl, ctrl_ext, rctl, status, wufc;
28002099
DE
6656 int retval = 0;
6657
6bf6be11
CY
6658 /* Runtime suspend should only enable wakeup for link changes */
6659 if (runtime)
6660 wufc = E1000_WUFC_LNKC;
6661 else if (device_may_wakeup(&pdev->dev))
6662 wufc = adapter->wol;
6663 else
6664 wufc = 0;
6665
bc7f75fa
AK
6666 status = er32(STATUS);
6667 if (status & E1000_STATUS_LU)
6668 wufc &= ~E1000_WUFC_LNKC;
6669
6670 if (wufc) {
6671 e1000_setup_rctl(adapter);
ef9b965a 6672 e1000e_set_rx_mode(netdev);
bc7f75fa
AK
6673
6674 /* turn on all-multi mode if wake on multicast is enabled */
6675 if (wufc & E1000_WUFC_MC) {
6676 rctl = er32(RCTL);
6677 rctl |= E1000_RCTL_MPE;
6678 ew32(RCTL, rctl);
6679 }
6680
6681 ctrl = er32(CTRL);
a4f58f54
BA
6682 ctrl |= E1000_CTRL_ADVD3WUC;
6683 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6684 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
bc7f75fa
AK
6685 ew32(CTRL, ctrl);
6686
318a94d6
JK
6687 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6688 adapter->hw.phy.media_type ==
6689 e1000_media_type_internal_serdes) {
bc7f75fa
AK
6690 /* keep the laser running in D3 */
6691 ctrl_ext = er32(CTRL_EXT);
93a23f48 6692 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
bc7f75fa
AK
6693 ew32(CTRL_EXT, ctrl_ext);
6694 }
6695
63eb48f1
DE
6696 if (!runtime)
6697 e1000e_power_up_phy(adapter);
6698
97ac8cae 6699 if (adapter->flags & FLAG_IS_ICH)
99730e4c 6700 e1000_suspend_workarounds_ich8lan(&adapter->hw);
97ac8cae 6701
82776a4b 6702 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
a4f58f54
BA
6703 /* enable wakeup by the PHY */
6704 retval = e1000_init_phy_wakeup(adapter, wufc);
6705 if (retval)
6706 return retval;
6707 } else {
6708 /* enable wakeup by the MAC */
6709 ew32(WUFC, wufc);
6710 ew32(WUC, E1000_WUC_PME_EN);
6711 }
bc7f75fa
AK
6712 } else {
6713 ew32(WUC, 0);
6714 ew32(WUFC, 0);
28002099
DE
6715
6716 e1000_power_down_phy(adapter);
bc7f75fa
AK
6717 }
6718
74f350ee 6719 if (adapter->hw.phy.type == e1000_phy_igp_3) {
bc7f75fa 6720 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
c8744f44 6721 } else if (hw->mac.type >= e1000_pch_lpt) {
6bf6be11 6722 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
74f350ee
DE
6723 /* ULP does not support wake from unicast, multicast
6724 * or broadcast.
6725 */
6726 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6727
6728 if (retval)
6729 return retval;
6730 }
6731
f5ac7445
RA
6732 /* Ensure that the appropriate bits are set in LPI_CTRL
6733 * for EEE in Sx
6734 */
6735 if ((hw->phy.type >= e1000_phy_i217) &&
6736 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6737 u16 lpi_ctrl = 0;
6738
6739 retval = hw->phy.ops.acquire(hw);
6740 if (!retval) {
6741 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6742 &lpi_ctrl);
6743 if (!retval) {
6744 if (adapter->eee_advert &
6745 hw->dev_spec.ich8lan.eee_lp_ability &
6746 I82579_EEE_100_SUPPORTED)
6747 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6748 if (adapter->eee_advert &
6749 hw->dev_spec.ich8lan.eee_lp_ability &
6750 I82579_EEE_1000_SUPPORTED)
6751 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6752
6753 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6754 lpi_ctrl);
6755 }
6756 }
6757 hw->phy.ops.release(hw);
6758 }
bc7f75fa 6759
e921eb1a 6760 /* Release control of h/w to f/w. If f/w is AMT enabled, this
ad68076e
BA
6761 * would have already happened in close and is redundant.
6762 */
31dbe5b4 6763 e1000e_release_hw_control(adapter);
bc7f75fa 6764
24b41c97
DN
6765 pci_clear_master(pdev);
6766
e921eb1a 6767 /* The pci-e switch on some quad port adapters will report a
005cbdfc
AD
6768 * correctable error when the MAC transitions from D0 to D3. To
6769 * prevent this we need to mask off the correctable errors on the
6770 * downstream port of the pci-e switch.
e8c254c5
LZ
6771 *
6772 * We don't have the associated upstream bridge while assigning
6773 * the PCI device into guest. For example, the KVM on power is
6774 * one of the cases.
005cbdfc
AD
6775 */
6776 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6777 struct pci_dev *us_dev = pdev->bus->self;
005cbdfc
AD
6778 u16 devctl;
6779
e8c254c5
LZ
6780 if (!us_dev)
6781 return 0;
6782
f8c0fcac
JL
6783 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6784 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6785 (devctl & ~PCI_EXP_DEVCTL_CERE));
005cbdfc 6786
66148bab
KK
6787 pci_save_state(pdev);
6788 pci_prepare_to_sleep(pdev);
005cbdfc 6789
f8c0fcac 6790 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
005cbdfc 6791 }
66148bab
KK
6792
6793 return 0;
bc7f75fa
AK
6794}
6795
13129d9b 6796/**
beb0a152 6797 * __e1000e_disable_aspm - Disable ASPM states
13129d9b
CW
6798 * @pdev: pointer to PCI device struct
6799 * @state: bit-mask of ASPM states to disable
beb0a152 6800 * @locked: indication if this context holds pci_bus_sem locked.
13129d9b
CW
6801 *
6802 * Some devices *must* have certain ASPM states disabled per hardware errata.
6803 **/
beb0a152 6804static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6f461f6c 6805{
13129d9b
CW
6806 struct pci_dev *parent = pdev->bus->self;
6807 u16 aspm_dis_mask = 0;
6808 u16 pdev_aspmc, parent_aspmc;
6809
6810 switch (state) {
6811 case PCIE_LINK_STATE_L0S:
6812 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6813 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
5463fce6 6814 fallthrough; /* can't have L1 without L0s */
13129d9b
CW
6815 case PCIE_LINK_STATE_L1:
6816 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6817 break;
6818 default:
6819 return;
6820 }
6821
6822 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6823 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6824
6825 if (parent) {
6826 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6827 &parent_aspmc);
6828 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6829 }
6830
6831 /* Nothing to do if the ASPM states to be disabled already are */
6832 if (!(pdev_aspmc & aspm_dis_mask) &&
6833 (!parent || !(parent_aspmc & aspm_dis_mask)))
6834 return;
6835
6836 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6837 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6838 "L0s" : "",
6839 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6840 "L1" : "");
6841
6842#ifdef CONFIG_PCIEASPM
beb0a152
YL
6843 if (locked)
6844 pci_disable_link_state_locked(pdev, state);
6845 else
6846 pci_disable_link_state(pdev, state);
ffe0b2ff 6847
13129d9b
CW
6848 /* Double-check ASPM control. If not disabled by the above, the
6849 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6850 * not enabled); override by writing PCI config space directly.
6851 */
6852 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6853 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6854
6855 if (!(aspm_dis_mask & pdev_aspmc))
6856 return;
6857#endif
ffe0b2ff 6858
e921eb1a 6859 /* Both device and parent should have the same ASPM setting.
6f461f6c 6860 * Disable ASPM in downstream component first and then upstream.
1eae4eb2 6861 */
13129d9b 6862 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6f461f6c 6863
13129d9b
CW
6864 if (parent)
6865 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6866 aspm_dis_mask);
1eae4eb2
AK
6867}
6868
beb0a152
YL
6869/**
6870 * e1000e_disable_aspm - Disable ASPM states.
6871 * @pdev: pointer to PCI device struct
6872 * @state: bit-mask of ASPM states to disable
6873 *
6874 * This function acquires the pci_bus_sem!
6875 * Some devices *must* have certain ASPM states disabled per hardware errata.
6876 **/
6877static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6878{
6879 __e1000e_disable_aspm(pdev, state, 0);
6880}
6881
6882/**
39da2cac 6883 * e1000e_disable_aspm_locked - Disable ASPM states.
beb0a152
YL
6884 * @pdev: pointer to PCI device struct
6885 * @state: bit-mask of ASPM states to disable
6886 *
6887 * This function must be called with pci_bus_sem acquired!
6888 * Some devices *must* have certain ASPM states disabled per hardware errata.
6889 **/
6890static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6891{
6892 __e1000e_disable_aspm(pdev, state, 1);
6893}
6894
a7023819
AD
6895static int e1000e_pm_thaw(struct device *dev)
6896{
6897 struct net_device *netdev = dev_get_drvdata(dev);
6898 struct e1000_adapter *adapter = netdev_priv(netdev);
6899 int rc = 0;
6900
6901 e1000e_set_interrupt_capability(adapter);
6902
6903 rtnl_lock();
6904 if (netif_running(netdev)) {
6905 rc = e1000_request_irq(adapter);
6906 if (rc)
6907 goto err_irq;
6908
6909 e1000e_up(adapter);
6910 }
6911
6912 netif_device_attach(netdev);
6913err_irq:
6914 rtnl_unlock();
6915
6916 return rc;
6917}
6918
23606cf5 6919static int __e1000_resume(struct pci_dev *pdev)
bc7f75fa
AK
6920{
6921 struct net_device *netdev = pci_get_drvdata(pdev);
6922 struct e1000_adapter *adapter = netdev_priv(netdev);
6923 struct e1000_hw *hw = &adapter->hw;
78cd29d5 6924 u16 aspm_disable_flag = 0;
bc7f75fa 6925
78cd29d5
BA
6926 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6927 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6928 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6929 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6930 if (aspm_disable_flag)
2758f9ed 6931 e1000e_disable_aspm(pdev, aspm_disable_flag);
78cd29d5 6932
66148bab 6933 pci_set_master(pdev);
6e4f6f6b 6934
2fbe4526 6935 if (hw->mac.type >= e1000_pch2lan)
99730e4c
BA
6936 e1000_resume_workarounds_pchlan(&adapter->hw);
6937
bc7f75fa 6938 e1000e_power_up_phy(adapter);
a4f58f54
BA
6939
6940 /* report the system wakeup cause from S3/S4 */
6941 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6942 u16 phy_data;
6943
6944 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6945 if (phy_data) {
6946 e_info("PHY Wakeup cause - %s\n",
17e813ec
BA
6947 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6948 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6949 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6950 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6951 phy_data & E1000_WUS_LNKC ?
6952 "Link Status Change" : "other");
a4f58f54
BA
6953 }
6954 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6955 } else {
6956 u32 wus = er32(WUS);
6cf08d1c 6957
a4f58f54
BA
6958 if (wus) {
6959 e_info("MAC Wakeup cause - %s\n",
17e813ec
BA
6960 wus & E1000_WUS_EX ? "Unicast Packet" :
6961 wus & E1000_WUS_MC ? "Multicast Packet" :
6962 wus & E1000_WUS_BC ? "Broadcast Packet" :
6963 wus & E1000_WUS_MAG ? "Magic Packet" :
6964 wus & E1000_WUS_LNKC ? "Link Status Change" :
6965 "other");
a4f58f54
BA
6966 }
6967 ew32(WUS, ~0);
6968 }
6969
bc7f75fa 6970 e1000e_reset(adapter);
bc7f75fa 6971
cd791618 6972 e1000_init_manageability_pt(adapter);
bc7f75fa 6973
e921eb1a 6974 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 6975 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
6976 * under the control of the driver.
6977 */
c43bc57e 6978 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 6979 e1000e_get_hw_control(adapter);
bc7f75fa
AK
6980
6981 return 0;
6982}
23606cf5 6983
f2d75b17 6984static __maybe_unused int e1000e_pm_prepare(struct device *dev)
ccf8b940
CY
6985{
6986 return pm_runtime_suspended(dev) &&
6987 pm_suspend_via_firmware();
6988}
6989
880e6269 6990static __maybe_unused int e1000e_pm_suspend(struct device *dev)
a0340162 6991{
f15bb6dd
SN
6992 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6993 struct e1000_adapter *adapter = netdev_priv(netdev);
a0340162 6994 struct pci_dev *pdev = to_pci_dev(dev);
eb44d2ba
SN
6995 struct e1000_hw *hw = &adapter->hw;
6996 u16 phy_data;
833521eb 6997 int rc;
a0340162 6998
eb44d2ba
SN
6999 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
7000 hw->mac.type >= e1000_pch_adp) {
7001 /* Mask OEM Bits / Gig Disable / Restart AN (772_26[12] = 1) */
7002 e1e_rphy(hw, I217_MEMPWR, &phy_data);
7003 phy_data |= I217_MEMPWR_MOEM;
7004 e1e_wphy(hw, I217_MEMPWR, phy_data);
7005
7006 /* Disable LCD reset */
7007 hw->phy.reset_disable = true;
7008 }
7009
2a7e19af
DE
7010 e1000e_flush_lpic(pdev);
7011
28002099
DE
7012 e1000e_pm_freeze(dev);
7013
833521eb 7014 rc = __e1000_shutdown(pdev, false);
808e0d88 7015 if (rc) {
833521eb 7016 e1000e_pm_thaw(dev);
808e0d88
ML
7017 } else {
7018 /* Introduce S0ix implementation */
3c98cbf2 7019 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
808e0d88
ML
7020 e1000e_s0ix_entry_flow(adapter);
7021 }
f15bb6dd 7022
833521eb 7023 return rc;
a0340162
RW
7024}
7025
880e6269 7026static __maybe_unused int e1000e_pm_resume(struct device *dev)
23606cf5 7027{
f15bb6dd
SN
7028 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7029 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5 7030 struct pci_dev *pdev = to_pci_dev(dev);
eb44d2ba
SN
7031 struct e1000_hw *hw = &adapter->hw;
7032 u16 phy_data;
28002099 7033 int rc;
23606cf5 7034
f15bb6dd 7035 /* Introduce S0ix implementation */
3c98cbf2 7036 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
f15bb6dd
SN
7037 e1000e_s0ix_exit_flow(adapter);
7038
28002099
DE
7039 rc = __e1000_resume(pdev);
7040 if (rc)
7041 return rc;
23606cf5 7042
eb44d2ba
SN
7043 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
7044 hw->mac.type >= e1000_pch_adp) {
7045 /* Unmask OEM Bits / Gig Disable / Restart AN 772_26[12] = 0 */
7046 e1e_rphy(hw, I217_MEMPWR, &phy_data);
7047 phy_data &= ~I217_MEMPWR_MOEM;
7048 e1e_wphy(hw, I217_MEMPWR, phy_data);
7049
7050 /* Enable LCD reset */
7051 hw->phy.reset_disable = false;
7052 }
7053
28002099 7054 return e1000e_pm_thaw(dev);
23606cf5 7055}
a0340162 7056
880e6269 7057static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
a0340162 7058{
ee2e80c1 7059 struct net_device *netdev = dev_get_drvdata(dev);
a0340162 7060 struct e1000_adapter *adapter = netdev_priv(netdev);
2116bc25 7061 u16 eee_lp;
a0340162 7062
2116bc25
DE
7063 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7064
7065 if (!e1000e_has_link(adapter)) {
7066 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
63eb48f1 7067 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
2116bc25 7068 }
a0340162 7069
63eb48f1 7070 return -EBUSY;
a0340162
RW
7071}
7072
880e6269 7073static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
a0340162
RW
7074{
7075 struct pci_dev *pdev = to_pci_dev(dev);
7076 struct net_device *netdev = pci_get_drvdata(pdev);
7077 struct e1000_adapter *adapter = netdev_priv(netdev);
63eb48f1 7078 int rc;
a0340162 7079
63eb48f1
DE
7080 rc = __e1000_resume(pdev);
7081 if (rc)
7082 return rc;
a0340162 7083
63eb48f1 7084 if (netdev->flags & IFF_UP)
386164d9 7085 e1000e_up(adapter);
a0340162 7086
63eb48f1 7087 return rc;
a0340162 7088}
23606cf5 7089
880e6269 7090static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
23606cf5
RW
7091{
7092 struct pci_dev *pdev = to_pci_dev(dev);
7093 struct net_device *netdev = pci_get_drvdata(pdev);
7094 struct e1000_adapter *adapter = netdev_priv(netdev);
7095
63eb48f1
DE
7096 if (netdev->flags & IFF_UP) {
7097 int count = E1000_CHECK_RESET_COUNT;
7098
7099 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
ab6973ae 7100 usleep_range(10000, 11000);
23606cf5 7101
63eb48f1
DE
7102 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7103
7104 /* Down the device without resetting the hardware */
7105 e1000e_down(adapter, false);
7106 }
7107
7108 if (__e1000_shutdown(pdev, true)) {
7109 e1000e_pm_runtime_resume(dev);
7110 return -EBUSY;
7111 }
7112
7113 return 0;
23606cf5 7114}
bc7f75fa
AK
7115
7116static void e1000_shutdown(struct pci_dev *pdev)
7117{
2a7e19af
DE
7118 e1000e_flush_lpic(pdev);
7119
28002099
DE
7120 e1000e_pm_freeze(&pdev->dev);
7121
66148bab 7122 __e1000_shutdown(pdev, false);
bc7f75fa
AK
7123}
7124
7125#ifdef CONFIG_NET_POLL_CONTROLLER
147b2c8c 7126
8bb62869 7127static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
147b2c8c
DD
7128{
7129 struct net_device *netdev = data;
7130 struct e1000_adapter *adapter = netdev_priv(netdev);
147b2c8c
DD
7131
7132 if (adapter->msix_entries) {
90da0669
BA
7133 int vector, msix_irq;
7134
147b2c8c
DD
7135 vector = 0;
7136 msix_irq = adapter->msix_entries[vector].vector;
fd8e597b
KK
7137 if (disable_hardirq(msix_irq))
7138 e1000_intr_msix_rx(msix_irq, netdev);
147b2c8c
DD
7139 enable_irq(msix_irq);
7140
7141 vector++;
7142 msix_irq = adapter->msix_entries[vector].vector;
fd8e597b
KK
7143 if (disable_hardirq(msix_irq))
7144 e1000_intr_msix_tx(msix_irq, netdev);
147b2c8c
DD
7145 enable_irq(msix_irq);
7146
7147 vector++;
7148 msix_irq = adapter->msix_entries[vector].vector;
fd8e597b
KK
7149 if (disable_hardirq(msix_irq))
7150 e1000_msix_other(msix_irq, netdev);
147b2c8c
DD
7151 enable_irq(msix_irq);
7152 }
7153
7154 return IRQ_HANDLED;
7155}
7156
e921eb1a
BA
7157/**
7158 * e1000_netpoll
7159 * @netdev: network interface device structure
7160 *
bc7f75fa
AK
7161 * Polling 'interrupt' - used by things like netconsole to send skbs
7162 * without having to re-enable interrupts. It's not called while
7163 * the interrupt routine is executing.
7164 */
7165static void e1000_netpoll(struct net_device *netdev)
7166{
7167 struct e1000_adapter *adapter = netdev_priv(netdev);
7168
147b2c8c
DD
7169 switch (adapter->int_mode) {
7170 case E1000E_INT_MODE_MSIX:
7171 e1000_intr_msix(adapter->pdev->irq, netdev);
7172 break;
7173 case E1000E_INT_MODE_MSI:
31119129
WC
7174 if (disable_hardirq(adapter->pdev->irq))
7175 e1000_intr_msi(adapter->pdev->irq, netdev);
147b2c8c
DD
7176 enable_irq(adapter->pdev->irq);
7177 break;
e80bd1d1 7178 default: /* E1000E_INT_MODE_LEGACY */
31119129
WC
7179 if (disable_hardirq(adapter->pdev->irq))
7180 e1000_intr(adapter->pdev->irq, netdev);
147b2c8c
DD
7181 enable_irq(adapter->pdev->irq);
7182 break;
7183 }
bc7f75fa
AK
7184}
7185#endif
7186
7187/**
7188 * e1000_io_error_detected - called when PCI error is detected
7189 * @pdev: Pointer to PCI device
7190 * @state: The current pci connection state
7191 *
7192 * This function is called after a PCI bus error affecting
7193 * this device has been detected.
7194 */
7195static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7196 pci_channel_state_t state)
7197{
a7023819 7198 e1000e_pm_freeze(&pdev->dev);
bc7f75fa 7199
c93b5a76
MM
7200 if (state == pci_channel_io_perm_failure)
7201 return PCI_ERS_RESULT_DISCONNECT;
7202
bc7f75fa
AK
7203 pci_disable_device(pdev);
7204
800b74a5 7205 /* Request a slot reset. */
bc7f75fa
AK
7206 return PCI_ERS_RESULT_NEED_RESET;
7207}
7208
7209/**
7210 * e1000_io_slot_reset - called after the pci bus has been reset.
7211 * @pdev: Pointer to PCI device
7212 *
7213 * Restart the card from scratch, as if from a cold-boot. Implementation
28002099 7214 * resembles the first-half of the e1000e_pm_resume routine.
bc7f75fa
AK
7215 */
7216static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7217{
7218 struct net_device *netdev = pci_get_drvdata(pdev);
7219 struct e1000_adapter *adapter = netdev_priv(netdev);
7220 struct e1000_hw *hw = &adapter->hw;
78cd29d5 7221 u16 aspm_disable_flag = 0;
6e4f6f6b 7222 int err;
111b9dc5 7223 pci_ers_result_t result;
bc7f75fa 7224
78cd29d5
BA
7225 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7226 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6f461f6c 7227 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
78cd29d5
BA
7228 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7229 if (aspm_disable_flag)
2758f9ed 7230 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
78cd29d5 7231
f0f422e5 7232 err = pci_enable_device_mem(pdev);
6e4f6f6b 7233 if (err) {
bc7f75fa
AK
7234 dev_err(&pdev->dev,
7235 "Cannot re-enable PCI device after reset.\n");
111b9dc5
JB
7236 result = PCI_ERS_RESULT_DISCONNECT;
7237 } else {
23606cf5 7238 pdev->state_saved = true;
111b9dc5 7239 pci_restore_state(pdev);
66148bab 7240 pci_set_master(pdev);
bc7f75fa 7241
111b9dc5
JB
7242 pci_enable_wake(pdev, PCI_D3hot, 0);
7243 pci_enable_wake(pdev, PCI_D3cold, 0);
bc7f75fa 7244
111b9dc5
JB
7245 e1000e_reset(adapter);
7246 ew32(WUS, ~0);
7247 result = PCI_ERS_RESULT_RECOVERED;
7248 }
bc7f75fa 7249
111b9dc5 7250 return result;
bc7f75fa
AK
7251}
7252
7253/**
7254 * e1000_io_resume - called when traffic can start flowing again.
7255 * @pdev: Pointer to PCI device
7256 *
7257 * This callback is called when the error recovery driver tells us that
7258 * its OK to resume normal operation. Implementation resembles the
28002099 7259 * second-half of the e1000e_pm_resume routine.
bc7f75fa
AK
7260 */
7261static void e1000_io_resume(struct pci_dev *pdev)
7262{
7263 struct net_device *netdev = pci_get_drvdata(pdev);
7264 struct e1000_adapter *adapter = netdev_priv(netdev);
7265
cd791618 7266 e1000_init_manageability_pt(adapter);
bc7f75fa 7267
a7023819 7268 e1000e_pm_thaw(&pdev->dev);
bc7f75fa 7269
e921eb1a 7270 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 7271 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
7272 * under the control of the driver.
7273 */
c43bc57e 7274 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7275 e1000e_get_hw_control(adapter);
bc7f75fa
AK
7276}
7277
7278static void e1000_print_device_info(struct e1000_adapter *adapter)
7279{
7280 struct e1000_hw *hw = &adapter->hw;
7281 struct net_device *netdev = adapter->netdev;
073287c0
BA
7282 u32 ret_val;
7283 u8 pba_str[E1000_PBANUM_LENGTH];
bc7f75fa
AK
7284
7285 /* print bus type/speed/width info */
a5cc7642 7286 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
44defeb3
JK
7287 /* bus width */
7288 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
f0ff4398 7289 "Width x1"),
44defeb3 7290 /* MAC address */
7c510e4b 7291 netdev->dev_addr);
44defeb3
JK
7292 e_info("Intel(R) PRO/%s Network Connection\n",
7293 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
073287c0
BA
7294 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7295 E1000_PBANUM_LENGTH);
7296 if (ret_val)
f2315bf1 7297 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
073287c0
BA
7298 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7299 hw->mac.type, hw->phy.type, pba_str);
bc7f75fa
AK
7300}
7301
10aa4c04
AK
7302static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7303{
7304 struct e1000_hw *hw = &adapter->hw;
7305 int ret_val;
7306 u16 buf = 0;
7307
7308 if (hw->mac.type != e1000_82573)
7309 return;
7310
7311 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
e885d762 7312 le16_to_cpus(&buf);
18dd2392 7313 if (!ret_val && (!(buf & BIT(0)))) {
10aa4c04 7314 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
7315 dev_warn(&adapter->pdev->dev,
7316 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04 7317 }
10aa4c04
AK
7318}
7319
55e7fe5b
AD
7320static netdev_features_t e1000_fix_features(struct net_device *netdev,
7321 netdev_features_t features)
7322{
7323 struct e1000_adapter *adapter = netdev_priv(netdev);
7324 struct e1000_hw *hw = &adapter->hw;
7325
7326 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7327 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7328 features &= ~NETIF_F_RXFCS;
7329
83808641
JW
7330 /* Since there is no support for separate Rx/Tx vlan accel
7331 * enable/disable make sure Tx flag is always in same state as Rx.
7332 */
7333 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7334 features |= NETIF_F_HW_VLAN_CTAG_TX;
7335 else
7336 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7337
55e7fe5b
AD
7338 return features;
7339}
7340
c8f44aff 7341static int e1000_set_features(struct net_device *netdev,
70495a50 7342 netdev_features_t features)
dc221294
BA
7343{
7344 struct e1000_adapter *adapter = netdev_priv(netdev);
c8f44aff 7345 netdev_features_t changed = features ^ netdev->features;
dc221294
BA
7346
7347 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7348 adapter->flags |= FLAG_TSO_FORCE;
7349
f646968f 7350 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
cf955e6c
BG
7351 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7352 NETIF_F_RXALL)))
dc221294
BA
7353 return 0;
7354
0184039a
BG
7355 if (changed & NETIF_F_RXFCS) {
7356 if (features & NETIF_F_RXFCS) {
7357 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7358 } else {
7359 /* We need to take it back to defaults, which might mean
7360 * stripping is still disabled at the adapter level.
7361 */
7362 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7363 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7364 else
7365 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7366 }
7367 }
7368
70495a50
BA
7369 netdev->features = features;
7370
dc221294
BA
7371 if (netif_running(netdev))
7372 e1000e_reinit_locked(adapter);
7373 else
7374 e1000e_reset(adapter);
7375
b0ddfe2b 7376 return 1;
dc221294
BA
7377}
7378
651c2466 7379static const struct net_device_ops e1000e_netdev_ops = {
d5ea45da
SA
7380 .ndo_open = e1000e_open,
7381 .ndo_stop = e1000e_close,
00829823 7382 .ndo_start_xmit = e1000_xmit_frame,
67fd4fcb 7383 .ndo_get_stats64 = e1000e_get_stats64,
ef9b965a 7384 .ndo_set_rx_mode = e1000e_set_rx_mode,
651c2466
SH
7385 .ndo_set_mac_address = e1000_set_mac,
7386 .ndo_change_mtu = e1000_change_mtu,
a7605370 7387 .ndo_eth_ioctl = e1000_ioctl,
651c2466
SH
7388 .ndo_tx_timeout = e1000_tx_timeout,
7389 .ndo_validate_addr = eth_validate_addr,
7390
651c2466
SH
7391 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7392 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7393#ifdef CONFIG_NET_POLL_CONTROLLER
7394 .ndo_poll_controller = e1000_netpoll,
7395#endif
dc221294 7396 .ndo_set_features = e1000_set_features,
55e7fe5b 7397 .ndo_fix_features = e1000_fix_features,
f2701b18 7398 .ndo_features_check = passthru_features_check,
651c2466
SH
7399};
7400
bc7f75fa
AK
7401/**
7402 * e1000_probe - Device Initialization Routine
7403 * @pdev: PCI device information struct
7404 * @ent: entry in e1000_pci_tbl
7405 *
7406 * Returns 0 on success, negative on failure
7407 *
7408 * e1000_probe initializes an adapter identified by a pci_dev structure.
7409 * The OS initialization, configuring of the adapter private structure,
7410 * and a hardware reset occur.
7411 **/
1dd06ae8 7412static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
bc7f75fa
AK
7413{
7414 struct net_device *netdev;
7415 struct e1000_adapter *adapter;
7416 struct e1000_hw *hw;
7417 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
7418 resource_size_t mmio_start, mmio_len;
7419 resource_size_t flash_start, flash_len;
bc7f75fa 7420 static int cards_found;
78cd29d5 7421 u16 aspm_disable_flag = 0;
17e813ec 7422 int bars, i, err, pci_using_dac;
bc7f75fa
AK
7423 u16 eeprom_data = 0;
7424 u16 eeprom_apme_mask = E1000_EEPROM_APME;
847042a6 7425 s32 ret_val = 0;
bc7f75fa 7426
78cd29d5
BA
7427 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7428 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6f461f6c 7429 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
78cd29d5
BA
7430 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7431 if (aspm_disable_flag)
7432 e1000e_disable_aspm(pdev, aspm_disable_flag);
6e4f6f6b 7433
f0f422e5 7434 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
7435 if (err)
7436 return err;
7437
7438 pci_using_dac = 0;
718a39eb 7439 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
bc7f75fa 7440 if (!err) {
718a39eb 7441 pci_using_dac = 1;
bc7f75fa 7442 } else {
718a39eb 7443 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
bc7f75fa 7444 if (err) {
718a39eb
RK
7445 dev_err(&pdev->dev,
7446 "No usable DMA configuration, aborting\n");
7447 goto err_dma;
bc7f75fa
AK
7448 }
7449 }
7450
17e813ec
BA
7451 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7452 err = pci_request_selected_regions_exclusive(pdev, bars,
7453 e1000e_driver_name);
bc7f75fa
AK
7454 if (err)
7455 goto err_pci_reg;
7456
68eac460 7457 /* AER (Advanced Error Reporting) hooks */
19d5afd4 7458 pci_enable_pcie_error_reporting(pdev);
68eac460 7459
bc7f75fa 7460 pci_set_master(pdev);
438b365a
BA
7461 /* PCI config space info */
7462 err = pci_save_state(pdev);
7463 if (err)
7464 goto err_alloc_etherdev;
bc7f75fa
AK
7465
7466 err = -ENOMEM;
7467 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7468 if (!netdev)
7469 goto err_alloc_etherdev;
7470
bc7f75fa
AK
7471 SET_NETDEV_DEV(netdev, &pdev->dev);
7472
f85e4dfa
TH
7473 netdev->irq = pdev->irq;
7474
bc7f75fa
AK
7475 pci_set_drvdata(pdev, netdev);
7476 adapter = netdev_priv(netdev);
7477 hw = &adapter->hw;
7478 adapter->netdev = netdev;
7479 adapter->pdev = pdev;
7480 adapter->ei = ei;
7481 adapter->pba = ei->pba;
7482 adapter->flags = ei->flags;
eb7c3adb 7483 adapter->flags2 = ei->flags2;
bc7f75fa
AK
7484 adapter->hw.adapter = adapter;
7485 adapter->hw.mac.type = ei->mac;
2adc55c9 7486 adapter->max_hw_frame_size = ei->max_hw_frame_size;
b3f4d599 7487 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
bc7f75fa
AK
7488
7489 mmio_start = pci_resource_start(pdev, 0);
7490 mmio_len = pci_resource_len(pdev, 0);
7491
7492 err = -EIO;
7493 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7494 if (!adapter->hw.hw_addr)
7495 goto err_ioremap;
7496
7497 if ((adapter->flags & FLAG_HAS_FLASH) &&
1103a631
YL
7498 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7499 (hw->mac.type < e1000_pch_spt)) {
bc7f75fa
AK
7500 flash_start = pci_resource_start(pdev, 1);
7501 flash_len = pci_resource_len(pdev, 1);
7502 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7503 if (!adapter->hw.flash_address)
7504 goto err_flashmap;
7505 }
7506
d495bcb8
BA
7507 /* Set default EEE advertisement */
7508 if (adapter->flags2 & FLAG2_HAS_EEE)
7509 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7510
bc7f75fa 7511 /* construct the net_device struct */
e80bd1d1 7512 netdev->netdev_ops = &e1000e_netdev_ops;
bc7f75fa 7513 e1000e_set_ethtool_ops(netdev);
e80bd1d1 7514 netdev->watchdog_timeo = 5 * HZ;
c58c8a78 7515 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
f2315bf1 7516 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
bc7f75fa
AK
7517
7518 netdev->mem_start = mmio_start;
7519 netdev->mem_end = mmio_start + mmio_len;
7520
7521 adapter->bd_number = cards_found++;
7522
4662e82b
BA
7523 e1000e_check_options(adapter);
7524
bc7f75fa
AK
7525 /* setup adapter struct */
7526 err = e1000_sw_init(adapter);
7527 if (err)
7528 goto err_sw_init;
7529
bc7f75fa
AK
7530 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7531 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7532 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7533
69e3fd8c 7534 err = ei->get_variants(adapter);
bc7f75fa
AK
7535 if (err)
7536 goto err_hw_init;
7537
4a770358 7538 if ((adapter->flags & FLAG_IS_ICH) &&
152c0a97
YL
7539 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7540 (hw->mac.type < e1000_pch_spt))
4a770358
BA
7541 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7542
bc7f75fa
AK
7543 hw->mac.ops.get_bus_info(&adapter->hw);
7544
318a94d6 7545 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
7546
7547 /* Copper options */
318a94d6 7548 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
7549 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7550 adapter->hw.phy.disable_polarity_correction = 0;
7551 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7552 }
7553
470a5420 7554 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
185095fb
BA
7555 dev_info(&pdev->dev,
7556 "PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa 7557
dc221294
BA
7558 /* Set initial default active device features */
7559 netdev->features = (NETIF_F_SG |
f646968f
PM
7560 NETIF_F_HW_VLAN_CTAG_RX |
7561 NETIF_F_HW_VLAN_CTAG_TX |
dc221294
BA
7562 NETIF_F_TSO |
7563 NETIF_F_TSO6 |
70495a50 7564 NETIF_F_RXHASH |
dc221294
BA
7565 NETIF_F_RXCSUM |
7566 NETIF_F_HW_CSUM);
7567
7568 /* Set user-changeable features (subset of all device features) */
7569 netdev->hw_features = netdev->features;
0184039a 7570 netdev->hw_features |= NETIF_F_RXFCS;
943146de 7571 netdev->priv_flags |= IFF_SUPP_NOFCS;
cf955e6c 7572 netdev->hw_features |= NETIF_F_RXALL;
bc7f75fa
AK
7573
7574 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
f646968f 7575 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
bc7f75fa 7576
dc221294
BA
7577 netdev->vlan_features |= (NETIF_F_SG |
7578 NETIF_F_TSO |
7579 NETIF_F_TSO6 |
7580 NETIF_F_HW_CSUM);
a5136e23 7581
ef9b965a
JB
7582 netdev->priv_flags |= IFF_UNICAST_FLT;
7583
7b872a55 7584 if (pci_using_dac) {
bc7f75fa 7585 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
7586 netdev->vlan_features |= NETIF_F_HIGHDMA;
7587 }
bc7f75fa 7588
91c527a5
JW
7589 /* MTU range: 68 - max_hw_frame_size */
7590 netdev->min_mtu = ETH_MIN_MTU;
7591 netdev->max_mtu = adapter->max_hw_frame_size -
7592 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7593
bc7f75fa
AK
7594 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7595 adapter->flags |= FLAG_MNG_PT_ENABLED;
7596
e921eb1a 7597 /* before reading the NVM, reset the controller to
ad68076e
BA
7598 * put the device in a known good starting state
7599 */
bc7f75fa
AK
7600 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7601
e921eb1a 7602 /* systems with ASPM and others may see the checksum fail on the first
bc7f75fa
AK
7603 * attempt. Let's give it a few tries
7604 */
7605 for (i = 0;; i++) {
7606 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7607 break;
7608 if (i == 2) {
185095fb 7609 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
7610 err = -EIO;
7611 goto err_eeprom;
7612 }
7613 }
7614
10aa4c04
AK
7615 e1000_eeprom_checks(adapter);
7616
608f8a0d 7617 /* copy the MAC address */
bc7f75fa 7618 if (e1000e_read_mac_addr(&adapter->hw))
185095fb
BA
7619 dev_err(&pdev->dev,
7620 "NVM Read Error while reading MAC address\n");
bc7f75fa
AK
7621
7622 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
bc7f75fa 7623
aaeb6cdf 7624 if (!is_valid_ether_addr(netdev->dev_addr)) {
185095fb 7625 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
aaeb6cdf 7626 netdev->dev_addr);
bc7f75fa
AK
7627 err = -EIO;
7628 goto err_eeprom;
7629 }
7630
d5ad7a6a 7631 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
26566eae 7632 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
bc7f75fa
AK
7633
7634 INIT_WORK(&adapter->reset_task, e1000_reset_task);
d5ad7a6a 7635 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
7636 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7637 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
41cec6f1 7638 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
bc7f75fa 7639
bc7f75fa
AK
7640 /* Initialize link parameters. User can change them with ethtool */
7641 adapter->hw.mac.autoneg = 1;
3db1cd5c 7642 adapter->fc_autoneg = true;
5c48ef3e
BA
7643 adapter->hw.fc.requested_mode = e1000_fc_default;
7644 adapter->hw.fc.current_mode = e1000_fc_default;
bc7f75fa
AK
7645 adapter->hw.phy.autoneg_advertised = 0x2f;
7646
e921eb1a 7647 /* Initial Wake on LAN setting - If APM wake is enabled in
bc7f75fa
AK
7648 * the EEPROM, enable the ACPI Magic Packet filter
7649 */
7650 if (adapter->flags & FLAG_APME_IN_WUC) {
7651 /* APME bit in EEPROM is mapped to WUC.APME */
7652 eeprom_data = er32(WUC);
7653 eeprom_apme_mask = E1000_WUC_APME;
4def99bb
BA
7654 if ((hw->mac.type > e1000_ich10lan) &&
7655 (eeprom_data & E1000_WUC_PHY_WAKE))
a4f58f54 7656 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
bc7f75fa
AK
7657 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7658 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7659 (adapter->hw.bus.func == 1))
847042a6 7660 ret_val = e1000_read_nvm(&adapter->hw,
491a04d2
DE
7661 NVM_INIT_CONTROL3_PORT_B,
7662 1, &eeprom_data);
bc7f75fa 7663 else
847042a6 7664 ret_val = e1000_read_nvm(&adapter->hw,
491a04d2
DE
7665 NVM_INIT_CONTROL3_PORT_A,
7666 1, &eeprom_data);
bc7f75fa
AK
7667 }
7668
7669 /* fetch WoL from EEPROM */
847042a6
BW
7670 if (ret_val)
7671 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
491a04d2 7672 else if (eeprom_data & eeprom_apme_mask)
bc7f75fa
AK
7673 adapter->eeprom_wol |= E1000_WUFC_MAG;
7674
e921eb1a 7675 /* now that we have the eeprom settings, apply the special cases
bc7f75fa
AK
7676 * where the eeprom may be wrong or the board simply won't support
7677 * wake on lan on a particular port
7678 */
7679 if (!(adapter->flags & FLAG_HAS_WOL))
7680 adapter->eeprom_wol = 0;
7681
7682 /* initialize the wol settings based on the eeprom settings */
7683 adapter->wol = adapter->eeprom_wol;
66148bab
KK
7684
7685 /* make sure adapter isn't asleep if manageability is enabled */
7686 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7687 (hw->mac.ops.check_mng_mode(hw)))
7688 device_wakeup_enable(&pdev->dev);
bc7f75fa 7689
84527590 7690 /* save off EEPROM version number */
847042a6 7691 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
491a04d2 7692
847042a6
BW
7693 if (ret_val) {
7694 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
491a04d2
DE
7695 adapter->eeprom_vers = 0;
7696 }
84527590 7697
aa524b66
JK
7698 /* init PTP hardware clock */
7699 e1000e_ptp_init(adapter);
7700
bc7f75fa
AK
7701 /* reset the hardware with the new settings */
7702 e1000e_reset(adapter);
7703
e921eb1a 7704 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 7705 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
7706 * under the control of the driver.
7707 */
c43bc57e 7708 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7709 e1000e_get_hw_control(adapter);
bc7f75fa 7710
3c98cbf2
ML
7711 if (hw->mac.type >= e1000_pch_cnp)
7712 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7713
f2315bf1 7714 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
bc7f75fa
AK
7715 err = register_netdev(netdev);
7716 if (err)
7717 goto err_register;
7718
9c563d20
JB
7719 /* carrier off reporting is important to ethtool even BEFORE open */
7720 netif_carrier_off(netdev);
7721
bc7f75fa
AK
7722 e1000_print_device_info(adapter);
7723
ccf8b940 7724 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
59f58708 7725
3335369b 7726 if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
f3ec4f87 7727 pm_runtime_put_noidle(&pdev->dev);
23606cf5 7728
bc7f75fa
AK
7729 return 0;
7730
7731err_register:
c43bc57e 7732 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7733 e1000e_release_hw_control(adapter);
bc7f75fa 7734err_eeprom:
470a5420 7735 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
bc7f75fa 7736 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 7737err_hw_init:
bc7f75fa
AK
7738 kfree(adapter->tx_ring);
7739 kfree(adapter->rx_ring);
7740err_sw_init:
1103a631 7741 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
c43bc57e 7742 iounmap(adapter->hw.flash_address);
e82f54ba 7743 e1000e_reset_interrupt_capability(adapter);
c43bc57e 7744err_flashmap:
bc7f75fa
AK
7745 iounmap(adapter->hw.hw_addr);
7746err_ioremap:
7747 free_netdev(netdev);
7748err_alloc_etherdev:
45890756 7749 pci_disable_pcie_error_reporting(pdev);
56d766d6 7750 pci_release_mem_regions(pdev);
bc7f75fa
AK
7751err_pci_reg:
7752err_dma:
7753 pci_disable_device(pdev);
7754 return err;
7755}
7756
7757/**
7758 * e1000_remove - Device Removal Routine
7759 * @pdev: PCI device information struct
7760 *
7761 * e1000_remove is called by the PCI subsystem to alert the driver
e0bc64d3 7762 * that it should release a PCI device. This could be caused by a
bc7f75fa
AK
7763 * Hot-Plug event, or because the driver is going to be removed from
7764 * memory.
7765 **/
9f9a12f8 7766static void e1000_remove(struct pci_dev *pdev)
bc7f75fa
AK
7767{
7768 struct net_device *netdev = pci_get_drvdata(pdev);
7769 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5 7770
d89777bf
BA
7771 e1000e_ptp_remove(adapter);
7772
e921eb1a 7773 /* The timers may be rescheduled, so explicitly disable them
23f333a2 7774 * from being rescheduled.
ad68076e 7775 */
daee5598 7776 set_bit(__E1000_DOWN, &adapter->state);
d5ad7a6a 7777 del_timer_sync(&adapter->watchdog_timer);
bc7f75fa
AK
7778 del_timer_sync(&adapter->phy_info_timer);
7779
41cec6f1 7780 cancel_work_sync(&adapter->reset_task);
d5ad7a6a 7781 cancel_work_sync(&adapter->watchdog_task);
41cec6f1
BA
7782 cancel_work_sync(&adapter->downshift_task);
7783 cancel_work_sync(&adapter->update_phy_task);
7784 cancel_work_sync(&adapter->print_hang_task);
bc7f75fa 7785
b67e1913
BA
7786 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7787 cancel_work_sync(&adapter->tx_hwtstamp_work);
7788 if (adapter->tx_hwtstamp_skb) {
377b6273 7789 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
b67e1913
BA
7790 adapter->tx_hwtstamp_skb = NULL;
7791 }
7792 }
7793
17f208de
BA
7794 unregister_netdev(netdev);
7795
f3ec4f87
AS
7796 if (pci_dev_run_wake(pdev))
7797 pm_runtime_get_noresume(&pdev->dev);
23606cf5 7798
e921eb1a 7799 /* Release control of h/w to f/w. If f/w is AMT enabled, this
ad68076e
BA
7800 * would have already happened in close and is redundant.
7801 */
31dbe5b4 7802 e1000e_release_hw_control(adapter);
bc7f75fa 7803
4662e82b 7804 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
7805 kfree(adapter->tx_ring);
7806 kfree(adapter->rx_ring);
7807
7808 iounmap(adapter->hw.hw_addr);
1103a631
YL
7809 if ((adapter->hw.flash_address) &&
7810 (adapter->hw.mac.type < e1000_pch_spt))
bc7f75fa 7811 iounmap(adapter->hw.flash_address);
56d766d6 7812 pci_release_mem_regions(pdev);
bc7f75fa
AK
7813
7814 free_netdev(netdev);
7815
111b9dc5 7816 /* AER disable */
19d5afd4 7817 pci_disable_pcie_error_reporting(pdev);
111b9dc5 7818
bc7f75fa
AK
7819 pci_disable_device(pdev);
7820}
7821
7822/* PCI Error Recovery (ERS) */
3646f0e5 7823static const struct pci_error_handlers e1000_err_handler = {
bc7f75fa
AK
7824 .error_detected = e1000_io_error_detected,
7825 .slot_reset = e1000_io_slot_reset,
7826 .resume = e1000_io_resume,
7827};
7828
0e8e842b 7829static const struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
c29c3ba5
BA
7833 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7834 board_82571 },
bc7f75fa
AK
7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7836 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
7837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 7840
bc7f75fa
AK
7841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 7845
bc7f75fa
AK
7846 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7847 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 7849
4662e82b 7850 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
bef28b11 7851 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
8c81c9c3 7852 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
4662e82b 7853
bc7f75fa
AK
7854 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7855 board_80003es2lan },
7856 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7857 board_80003es2lan },
7858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7859 board_80003es2lan },
7860 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7861 board_80003es2lan },
ad68076e 7862
bc7f75fa
AK
7863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7868 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7869 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
9e135a2e 7870 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
ad68076e 7871
bc7f75fa
AK
7872 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7874 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7875 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7876 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 7877 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
7878 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7879 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7880 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7881
7882 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7883 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7884 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 7885
f4187b56
BA
7886 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7887 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
10df0b91 7888 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
f4187b56 7889
a4f58f54
BA
7890 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7891 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7892 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7893 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7894
d3738bb8
BA
7895 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7896 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7897
2fbe4526
BA
7898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
16e310ae
BA
7900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7901 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
91a3d82f
BA
7902 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7903 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7904 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7905 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
79849ebc
DE
7906 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7907 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
f3ed935d 7910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
9cd34b3a
RA
7911 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7912 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
3a3173b9
SN
7915 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7916 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7917 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7918 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
48f76b68
SN
7919 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7920 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7921 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7922 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
914ee9c4
SN
7923 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7924 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7925 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7926 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7927 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7928 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
280db5d4
SN
7929 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7930 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7931 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7932 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7933 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7934 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
a03c6377
SN
7935 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7936 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7937 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7938 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7939 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7940 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7941 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7942 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7943 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_adp },
7944 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_adp },
7945 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_adp },
7946 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_adp },
7947 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_adp },
7948 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_adp },
7949 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_adp },
7950 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_adp },
2fbe4526 7951
f36bb6ca 7952 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
bc7f75fa
AK
7953};
7954MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7955
23606cf5 7956static const struct dev_pm_ops e1000_pm_ops = {
72f72dcc 7957#ifdef CONFIG_PM_SLEEP
ccf8b940 7958 .prepare = e1000e_pm_prepare,
28002099
DE
7959 .suspend = e1000e_pm_suspend,
7960 .resume = e1000e_pm_resume,
7961 .freeze = e1000e_pm_freeze,
7962 .thaw = e1000e_pm_thaw,
7963 .poweroff = e1000e_pm_suspend,
7964 .restore = e1000e_pm_resume,
72f72dcc 7965#endif
63eb48f1
DE
7966 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7967 e1000e_pm_runtime_idle)
23606cf5
RW
7968};
7969
bc7f75fa
AK
7970/* PCI Device API Driver */
7971static struct pci_driver e1000_driver = {
7972 .name = e1000e_driver_name,
7973 .id_table = e1000_pci_tbl,
7974 .probe = e1000_probe,
9f9a12f8 7975 .remove = e1000_remove,
f36bb6ca
BA
7976 .driver = {
7977 .pm = &e1000_pm_ops,
7978 },
bc7f75fa
AK
7979 .shutdown = e1000_shutdown,
7980 .err_handler = &e1000_err_handler
7981};
7982
7983/**
7984 * e1000_init_module - Driver Registration Routine
7985 *
7986 * e1000_init_module is the first routine called when the driver is
7987 * loaded. All it does is register with the PCI subsystem.
7988 **/
7989static int __init e1000_init_module(void)
7990{
34a2a3b8 7991 pr_info("Intel(R) PRO/1000 Network Driver\n");
529498cd 7992 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
53ec5498 7993
5a5e889c 7994 return pci_register_driver(&e1000_driver);
bc7f75fa
AK
7995}
7996module_init(e1000_init_module);
7997
7998/**
7999 * e1000_exit_module - Driver Exit Cleanup Routine
8000 *
8001 * e1000_exit_module is called just before the driver is removed
8002 * from memory.
8003 **/
8004static void __exit e1000_exit_module(void)
8005{
8006 pci_unregister_driver(&e1000_driver);
8007}
8008module_exit(e1000_exit_module);
8009
bc7f75fa
AK
8010MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
8011MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
98674ebe 8012MODULE_LICENSE("GPL v2");
bc7f75fa 8013
06c24b91 8014/* netdev.c */