]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/net/ethernet/intel/e1000e/netdev.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
CommitLineData
ae06c70b 1// SPDX-License-Identifier: GPL-2.0
51dce24b 2/* Copyright(c) 1999 - 2018 Intel Corporation. */
bc7f75fa 3
8544b9f7
BA
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
bc7f75fa
AK
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
9fb7a5f7 14#include <linux/interrupt.h>
bc7f75fa
AK
15#include <linux/tcp.h>
16#include <linux/ipv6.h>
5a0e3ad6 17#include <linux/slab.h>
bc7f75fa
AK
18#include <net/checksum.h>
19#include <net/ip6_checksum.h>
bc7f75fa
AK
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/cpu.h>
23#include <linux/smp.h>
e8db0be1 24#include <linux/pm_qos.h>
23606cf5 25#include <linux/pm_runtime.h>
111b9dc5 26#include <linux/aer.h>
70c71606 27#include <linux/prefetch.h>
bc7f75fa
AK
28
29#include "e1000.h"
30
b3ccf267 31#define DRV_EXTRAVERSION "-k"
c14c643b 32
d2d7d4e4 33#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
bc7f75fa
AK
34char e1000e_driver_name[] = "e1000e";
35const char e1000e_driver_version[] = DRV_VERSION;
36
b3f4d599 37#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38static int debug = -1;
39module_param(debug, int, 0);
40MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41
bc7f75fa
AK
42static const struct e1000_info *e1000_info_tbl[] = {
43 [board_82571] = &e1000_82571_info,
44 [board_82572] = &e1000_82572_info,
45 [board_82573] = &e1000_82573_info,
4662e82b 46 [board_82574] = &e1000_82574_info,
8c81c9c3 47 [board_82583] = &e1000_82583_info,
bc7f75fa
AK
48 [board_80003es2lan] = &e1000_es2_info,
49 [board_ich8lan] = &e1000_ich8_info,
50 [board_ich9lan] = &e1000_ich9_info,
f4187b56 51 [board_ich10lan] = &e1000_ich10_info,
a4f58f54 52 [board_pchlan] = &e1000_pch_info,
d3738bb8 53 [board_pch2lan] = &e1000_pch2_info,
2fbe4526 54 [board_pch_lpt] = &e1000_pch_lpt_info,
79849ebc 55 [board_pch_spt] = &e1000_pch_spt_info,
3a3173b9 56 [board_pch_cnp] = &e1000_pch_cnp_info,
bc7f75fa
AK
57};
58
84f4ee90
TI
59struct e1000_reg_info {
60 u32 ofs;
61 char *name;
62};
63
84f4ee90 64static const struct e1000_reg_info e1000_reg_info_tbl[] = {
84f4ee90
TI
65 /* General Registers */
66 {E1000_CTRL, "CTRL"},
67 {E1000_STATUS, "STATUS"},
68 {E1000_CTRL_EXT, "CTRL_EXT"},
69
70 /* Interrupt Registers */
71 {E1000_ICR, "ICR"},
72
af667a29 73 /* Rx Registers */
84f4ee90 74 {E1000_RCTL, "RCTL"},
1e36052e
BA
75 {E1000_RDLEN(0), "RDLEN"},
76 {E1000_RDH(0), "RDH"},
77 {E1000_RDT(0), "RDT"},
84f4ee90
TI
78 {E1000_RDTR, "RDTR"},
79 {E1000_RXDCTL(0), "RXDCTL"},
80 {E1000_ERT, "ERT"},
1e36052e
BA
81 {E1000_RDBAL(0), "RDBAL"},
82 {E1000_RDBAH(0), "RDBAH"},
84f4ee90
TI
83 {E1000_RDFH, "RDFH"},
84 {E1000_RDFT, "RDFT"},
85 {E1000_RDFHS, "RDFHS"},
86 {E1000_RDFTS, "RDFTS"},
87 {E1000_RDFPC, "RDFPC"},
88
af667a29 89 /* Tx Registers */
84f4ee90 90 {E1000_TCTL, "TCTL"},
1e36052e
BA
91 {E1000_TDBAL(0), "TDBAL"},
92 {E1000_TDBAH(0), "TDBAH"},
93 {E1000_TDLEN(0), "TDLEN"},
94 {E1000_TDH(0), "TDH"},
95 {E1000_TDT(0), "TDT"},
84f4ee90
TI
96 {E1000_TIDV, "TIDV"},
97 {E1000_TXDCTL(0), "TXDCTL"},
98 {E1000_TADV, "TADV"},
99 {E1000_TARC(0), "TARC"},
100 {E1000_TDFH, "TDFH"},
101 {E1000_TDFT, "TDFT"},
102 {E1000_TDFHS, "TDFHS"},
103 {E1000_TDFTS, "TDFTS"},
104 {E1000_TDFPC, "TDFPC"},
105
106 /* List Terminator */
f36bb6ca 107 {0, NULL}
84f4ee90
TI
108};
109
c6f3148c
AK
110/**
111 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
112 * @hw: pointer to the HW structure
113 *
114 * When updating the MAC CSR registers, the Manageability Engine (ME) could
115 * be accessing the registers at the same time. Normally, this is handled in
116 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
117 * accesses later than it should which could result in the register to have
118 * an incorrect value. Workaround this by checking the FWSM register which
119 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
120 * and try again a number of times.
121 **/
d0150186 122static void __ew32_prepare(struct e1000_hw *hw)
c6f3148c
AK
123{
124 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
125
126 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127 udelay(50);
c6f3148c
AK
128}
129
130void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
131{
132 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
133 __ew32_prepare(hw);
134
135 writel(val, hw->hw_addr + reg);
136}
137
e921eb1a 138/**
84f4ee90 139 * e1000_regdump - register printout routine
e921eb1a
BA
140 * @hw: pointer to the HW structure
141 * @reginfo: pointer to the register info table
142 **/
84f4ee90
TI
143static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
144{
145 int n = 0;
146 char rname[16];
147 u32 regs[8];
148
149 switch (reginfo->ofs) {
150 case E1000_RXDCTL(0):
151 for (n = 0; n < 2; n++)
152 regs[n] = __er32(hw, E1000_RXDCTL(n));
153 break;
154 case E1000_TXDCTL(0):
155 for (n = 0; n < 2; n++)
156 regs[n] = __er32(hw, E1000_TXDCTL(n));
157 break;
158 case E1000_TARC(0):
159 for (n = 0; n < 2; n++)
160 regs[n] = __er32(hw, E1000_TARC(n));
161 break;
162 default:
ef456f85
JK
163 pr_info("%-15s %08x\n",
164 reginfo->name, __er32(hw, reginfo->ofs));
84f4ee90
TI
165 return;
166 }
167
168 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
ef456f85 169 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
84f4ee90
TI
170}
171
f0c5dadf
ET
172static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
173 struct e1000_buffer *bi)
174{
175 int i;
176 struct e1000_ps_page *ps_page;
177
178 for (i = 0; i < adapter->rx_ps_pages; i++) {
179 ps_page = &bi->ps_pages[i];
180
181 if (ps_page->page) {
182 pr_info("packet dump for ps_page %d:\n", i);
183 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
184 16, 1, page_address(ps_page->page),
185 PAGE_SIZE, true);
186 }
187 }
188}
189
e921eb1a 190/**
af667a29 191 * e1000e_dump - Print registers, Tx-ring and Rx-ring
e921eb1a
BA
192 * @adapter: board private structure
193 **/
84f4ee90
TI
194static void e1000e_dump(struct e1000_adapter *adapter)
195{
196 struct net_device *netdev = adapter->netdev;
197 struct e1000_hw *hw = &adapter->hw;
198 struct e1000_reg_info *reginfo;
199 struct e1000_ring *tx_ring = adapter->tx_ring;
200 struct e1000_tx_desc *tx_desc;
af667a29 201 struct my_u0 {
e885d762
BA
202 __le64 a;
203 __le64 b;
af667a29 204 } *u0;
84f4ee90
TI
205 struct e1000_buffer *buffer_info;
206 struct e1000_ring *rx_ring = adapter->rx_ring;
207 union e1000_rx_desc_packet_split *rx_desc_ps;
5f450212 208 union e1000_rx_desc_extended *rx_desc;
af667a29 209 struct my_u1 {
e885d762
BA
210 __le64 a;
211 __le64 b;
212 __le64 c;
213 __le64 d;
af667a29 214 } *u1;
84f4ee90
TI
215 u32 staterr;
216 int i = 0;
217
218 if (!netif_msg_hw(adapter))
219 return;
220
221 /* Print netdevice Info */
222 if (netdev) {
223 dev_info(&adapter->pdev->dev, "Net device Info\n");
4a7c9726
TK
224 pr_info("Device Name state trans_start\n");
225 pr_info("%-15s %016lX %016lX\n", netdev->name,
226 netdev->state, dev_trans_start(netdev));
84f4ee90
TI
227 }
228
229 /* Print Registers */
230 dev_info(&adapter->pdev->dev, "Register Dump\n");
ef456f85 231 pr_info(" Register Name Value\n");
84f4ee90
TI
232 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
233 reginfo->name; reginfo++) {
234 e1000_regdump(hw, reginfo);
235 }
236
af667a29 237 /* Print Tx Ring Summary */
84f4ee90 238 if (!netdev || !netif_running(netdev))
fe1e980f 239 return;
84f4ee90 240
af667a29 241 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
ef456f85 242 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
84f4ee90 243 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
ef456f85
JK
244 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
245 0, tx_ring->next_to_use, tx_ring->next_to_clean,
246 (unsigned long long)buffer_info->dma,
247 buffer_info->length,
248 buffer_info->next_to_watch,
249 (unsigned long long)buffer_info->time_stamp);
84f4ee90 250
af667a29 251 /* Print Tx Ring */
84f4ee90
TI
252 if (!netif_msg_tx_done(adapter))
253 goto rx_ring_summary;
254
af667a29 255 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
84f4ee90
TI
256
257 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
258 *
259 * Legacy Transmit Descriptor
260 * +--------------------------------------------------------------+
261 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
262 * +--------------------------------------------------------------+
263 * 8 | Special | CSS | Status | CMD | CSO | Length |
264 * +--------------------------------------------------------------+
265 * 63 48 47 36 35 32 31 24 23 16 15 0
266 *
267 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
268 * 63 48 47 40 39 32 31 16 15 8 7 0
269 * +----------------------------------------------------------------+
270 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
271 * +----------------------------------------------------------------+
272 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
273 * +----------------------------------------------------------------+
274 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
275 *
276 * Extended Data Descriptor (DTYP=0x1)
277 * +----------------------------------------------------------------+
278 * 0 | Buffer Address [63:0] |
279 * +----------------------------------------------------------------+
280 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
281 * +----------------------------------------------------------------+
282 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
283 */
ef456f85
JK
284 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
285 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
286 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
84f4ee90 287 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
ef456f85 288 const char *next_desc;
84f4ee90
TI
289 tx_desc = E1000_TX_DESC(*tx_ring, i);
290 buffer_info = &tx_ring->buffer_info[i];
291 u0 = (struct my_u0 *)tx_desc;
84f4ee90 292 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
ef456f85 293 next_desc = " NTC/U";
84f4ee90 294 else if (i == tx_ring->next_to_use)
ef456f85 295 next_desc = " NTU";
84f4ee90 296 else if (i == tx_ring->next_to_clean)
ef456f85 297 next_desc = " NTC";
84f4ee90 298 else
ef456f85
JK
299 next_desc = "";
300 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
18dd2392
JK
301 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
302 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
ef456f85
JK
303 i,
304 (unsigned long long)le64_to_cpu(u0->a),
305 (unsigned long long)le64_to_cpu(u0->b),
306 (unsigned long long)buffer_info->dma,
307 buffer_info->length, buffer_info->next_to_watch,
308 (unsigned long long)buffer_info->time_stamp,
309 buffer_info->skb, next_desc);
84f4ee90 310
f0c5dadf 311 if (netif_msg_pktdata(adapter) && buffer_info->skb)
84f4ee90 312 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
f0c5dadf
ET
313 16, 1, buffer_info->skb->data,
314 buffer_info->skb->len, true);
84f4ee90
TI
315 }
316
af667a29 317 /* Print Rx Ring Summary */
84f4ee90 318rx_ring_summary:
af667a29 319 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
ef456f85
JK
320 pr_info("Queue [NTU] [NTC]\n");
321 pr_info(" %5d %5X %5X\n",
322 0, rx_ring->next_to_use, rx_ring->next_to_clean);
84f4ee90 323
af667a29 324 /* Print Rx Ring */
84f4ee90 325 if (!netif_msg_rx_status(adapter))
fe1e980f 326 return;
84f4ee90 327
af667a29 328 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
84f4ee90
TI
329 switch (adapter->rx_ps_pages) {
330 case 1:
331 case 2:
332 case 3:
333 /* [Extended] Packet Split Receive Descriptor Format
334 *
335 * +-----------------------------------------------------+
336 * 0 | Buffer Address 0 [63:0] |
337 * +-----------------------------------------------------+
338 * 8 | Buffer Address 1 [63:0] |
339 * +-----------------------------------------------------+
340 * 16 | Buffer Address 2 [63:0] |
341 * +-----------------------------------------------------+
342 * 24 | Buffer Address 3 [63:0] |
343 * +-----------------------------------------------------+
344 */
ef456f85 345 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
84f4ee90
TI
346 /* [Extended] Receive Descriptor (Write-Back) Format
347 *
348 * 63 48 47 32 31 13 12 8 7 4 3 0
349 * +------------------------------------------------------+
350 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
351 * | Checksum | Ident | | Queue | | Type |
352 * +------------------------------------------------------+
353 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
354 * +------------------------------------------------------+
355 * 63 48 47 32 31 20 19 0
356 */
ef456f85 357 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
84f4ee90 358 for (i = 0; i < rx_ring->count; i++) {
ef456f85 359 const char *next_desc;
84f4ee90
TI
360 buffer_info = &rx_ring->buffer_info[i];
361 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
362 u1 = (struct my_u1 *)rx_desc_ps;
363 staterr =
af667a29 364 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
ef456f85
JK
365
366 if (i == rx_ring->next_to_use)
367 next_desc = " NTU";
368 else if (i == rx_ring->next_to_clean)
369 next_desc = " NTC";
370 else
371 next_desc = "";
372
84f4ee90
TI
373 if (staterr & E1000_RXD_STAT_DD) {
374 /* Descriptor Done */
ef456f85
JK
375 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
376 "RWB", i,
377 (unsigned long long)le64_to_cpu(u1->a),
378 (unsigned long long)le64_to_cpu(u1->b),
379 (unsigned long long)le64_to_cpu(u1->c),
380 (unsigned long long)le64_to_cpu(u1->d),
381 buffer_info->skb, next_desc);
84f4ee90 382 } else {
ef456f85
JK
383 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
384 "R ", i,
385 (unsigned long long)le64_to_cpu(u1->a),
386 (unsigned long long)le64_to_cpu(u1->b),
387 (unsigned long long)le64_to_cpu(u1->c),
388 (unsigned long long)le64_to_cpu(u1->d),
389 (unsigned long long)buffer_info->dma,
390 buffer_info->skb, next_desc);
84f4ee90
TI
391
392 if (netif_msg_pktdata(adapter))
f0c5dadf
ET
393 e1000e_dump_ps_pages(adapter,
394 buffer_info);
84f4ee90 395 }
84f4ee90
TI
396 }
397 break;
398 default:
399 case 0:
5f450212 400 /* Extended Receive Descriptor (Read) Format
84f4ee90 401 *
5f450212
BA
402 * +-----------------------------------------------------+
403 * 0 | Buffer Address [63:0] |
404 * +-----------------------------------------------------+
405 * 8 | Reserved |
406 * +-----------------------------------------------------+
84f4ee90 407 */
ef456f85 408 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
5f450212
BA
409 /* Extended Receive Descriptor (Write-Back) Format
410 *
411 * 63 48 47 32 31 24 23 4 3 0
412 * +------------------------------------------------------+
413 * | RSS Hash | | | |
414 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
415 * | Packet | IP | | | Type |
416 * | Checksum | Ident | | | |
417 * +------------------------------------------------------+
418 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
419 * +------------------------------------------------------+
420 * 63 48 47 32 31 20 19 0
421 */
ef456f85 422 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
5f450212
BA
423
424 for (i = 0; i < rx_ring->count; i++) {
ef456f85
JK
425 const char *next_desc;
426
84f4ee90 427 buffer_info = &rx_ring->buffer_info[i];
5f450212
BA
428 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
429 u1 = (struct my_u1 *)rx_desc;
430 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
ef456f85
JK
431
432 if (i == rx_ring->next_to_use)
433 next_desc = " NTU";
434 else if (i == rx_ring->next_to_clean)
435 next_desc = " NTC";
436 else
437 next_desc = "";
438
5f450212
BA
439 if (staterr & E1000_RXD_STAT_DD) {
440 /* Descriptor Done */
ef456f85
JK
441 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
442 "RWB", i,
443 (unsigned long long)le64_to_cpu(u1->a),
444 (unsigned long long)le64_to_cpu(u1->b),
445 buffer_info->skb, next_desc);
5f450212 446 } else {
ef456f85
JK
447 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
448 "R ", i,
449 (unsigned long long)le64_to_cpu(u1->a),
450 (unsigned long long)le64_to_cpu(u1->b),
451 (unsigned long long)buffer_info->dma,
452 buffer_info->skb, next_desc);
5f450212 453
f0c5dadf
ET
454 if (netif_msg_pktdata(adapter) &&
455 buffer_info->skb)
5f450212
BA
456 print_hex_dump(KERN_INFO, "",
457 DUMP_PREFIX_ADDRESS, 16,
458 1,
f0c5dadf 459 buffer_info->skb->data,
5f450212
BA
460 adapter->rx_buffer_len,
461 true);
462 }
84f4ee90
TI
463 }
464 }
84f4ee90
TI
465}
466
bc7f75fa
AK
467/**
468 * e1000_desc_unused - calculate if we have unused descriptors
469 **/
470static int e1000_desc_unused(struct e1000_ring *ring)
471{
472 if (ring->next_to_clean > ring->next_to_use)
473 return ring->next_to_clean - ring->next_to_use - 1;
474
475 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476}
477
b67e1913
BA
478/**
479 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
480 * @adapter: board private structure
481 * @hwtstamps: time stamp structure to update
482 * @systim: unsigned 64bit system time value.
483 *
484 * Convert the system time value stored in the RX/TXSTMP registers into a
485 * hwtstamp which can be used by the upper level time stamping functions.
486 *
487 * The 'systim_lock' spinlock is used to protect the consistency of the
488 * system time value. This is needed because reading the 64 bit time
489 * value involves reading two 32 bit registers. The first read latches the
490 * value.
491 **/
492static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
493 struct skb_shared_hwtstamps *hwtstamps,
494 u64 systim)
495{
496 u64 ns;
497 unsigned long flags;
498
499 spin_lock_irqsave(&adapter->systim_lock, flags);
500 ns = timecounter_cyc2time(&adapter->tc, systim);
501 spin_unlock_irqrestore(&adapter->systim_lock, flags);
502
503 memset(hwtstamps, 0, sizeof(*hwtstamps));
504 hwtstamps->hwtstamp = ns_to_ktime(ns);
505}
506
507/**
508 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
509 * @adapter: board private structure
510 * @status: descriptor extended error and status field
511 * @skb: particular skb to include time stamp
512 *
513 * If the time stamp is valid, convert it into the timecounter ns value
514 * and store that result into the shhwtstamps structure which is passed
515 * up the network stack.
516 **/
517static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518 struct sk_buff *skb)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 u64 rxstmp;
522
523 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
524 !(status & E1000_RXDEXT_STATERR_TST) ||
525 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526 return;
527
528 /* The Rx time stamp registers contain the time stamp. No other
529 * received packet will be time stamped until the Rx time stamp
530 * registers are read. Because only one packet can be time stamped
531 * at a time, the register values must belong to this packet and
532 * therefore none of the other additional attributes need to be
533 * compared.
534 */
535 rxstmp = (u64)er32(RXSTMPL);
536 rxstmp |= (u64)er32(RXSTMPH) << 32;
537 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
538
539 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540}
541
bc7f75fa 542/**
ad68076e 543 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa 544 * @adapter: board private structure
b67e1913 545 * @staterr: descriptor extended error and status field as written by hardware
bc7f75fa
AK
546 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
547 * @skb: pointer to sk_buff to be indicated to stack
548 **/
549static void e1000_receive_skb(struct e1000_adapter *adapter,
af667a29 550 struct net_device *netdev, struct sk_buff *skb,
b67e1913 551 u32 staterr, __le16 vlan)
bc7f75fa 552{
86d70e53 553 u16 tag = le16_to_cpu(vlan);
b67e1913
BA
554
555 e1000e_rx_hwtstamp(adapter, staterr, skb);
556
bc7f75fa
AK
557 skb->protocol = eth_type_trans(skb, netdev);
558
b67e1913 559 if (staterr & E1000_RXD_STAT_VP)
86a9bad3 560 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
86d70e53
JK
561
562 napi_gro_receive(&adapter->napi, skb);
bc7f75fa
AK
563}
564
565/**
af667a29 566 * e1000_rx_checksum - Receive Checksum Offload
afd12939
BA
567 * @adapter: board private structure
568 * @status_err: receive descriptor status and error fields
569 * @csum: receive descriptor csum field
570 * @sk_buff: socket buffer with received data
bc7f75fa
AK
571 **/
572static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
2e1706f2 573 struct sk_buff *skb)
bc7f75fa
AK
574{
575 u16 status = (u16)status_err;
576 u8 errors = (u8)(status_err >> 24);
bc8acf2c
ED
577
578 skb_checksum_none_assert(skb);
bc7f75fa 579
afd12939
BA
580 /* Rx checksum disabled */
581 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582 return;
583
bc7f75fa
AK
584 /* Ignore Checksum bit is set */
585 if (status & E1000_RXD_STAT_IXSM)
586 return;
afd12939 587
2e1706f2
BA
588 /* TCP/UDP checksum error bit or IP checksum error bit is set */
589 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
bc7f75fa
AK
590 /* let the stack verify checksum errors */
591 adapter->hw_csum_err++;
592 return;
593 }
594
595 /* TCP/UDP Checksum has not been calculated */
596 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597 return;
598
599 /* It must be a TCP or UDP packet with a valid checksum */
2e1706f2 600 skb->ip_summed = CHECKSUM_UNNECESSARY;
bc7f75fa
AK
601 adapter->hw_csum_good++;
602}
603
55aa6985 604static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
c6e7f51e 605{
55aa6985 606 struct e1000_adapter *adapter = rx_ring->adapter;
c6e7f51e 607 struct e1000_hw *hw = &adapter->hw;
bdc125f7 608
d0150186 609 __ew32_prepare(hw);
bdc125f7 610 writel(i, rx_ring->tail);
c6e7f51e 611
d0150186 612 if (unlikely(i != readl(rx_ring->tail))) {
c6e7f51e 613 u32 rctl = er32(RCTL);
6cf08d1c 614
c6e7f51e
BA
615 ew32(RCTL, rctl & ~E1000_RCTL_EN);
616 e_err("ME firmware caused invalid RDT - resetting\n");
617 schedule_work(&adapter->reset_task);
618 }
619}
620
55aa6985 621static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
c6e7f51e 622{
55aa6985 623 struct e1000_adapter *adapter = tx_ring->adapter;
c6e7f51e
BA
624 struct e1000_hw *hw = &adapter->hw;
625
d0150186 626 __ew32_prepare(hw);
bdc125f7
BA
627 writel(i, tx_ring->tail);
628
d0150186 629 if (unlikely(i != readl(tx_ring->tail))) {
c6e7f51e 630 u32 tctl = er32(TCTL);
6cf08d1c 631
c6e7f51e
BA
632 ew32(TCTL, tctl & ~E1000_TCTL_EN);
633 e_err("ME firmware caused invalid TDT - resetting\n");
634 schedule_work(&adapter->reset_task);
635 }
636}
637
bc7f75fa 638/**
5f450212 639 * e1000_alloc_rx_buffers - Replace used receive buffers
55aa6985 640 * @rx_ring: Rx descriptor ring
bc7f75fa 641 **/
55aa6985 642static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
c2fed996 643 int cleaned_count, gfp_t gfp)
bc7f75fa 644{
55aa6985 645 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
646 struct net_device *netdev = adapter->netdev;
647 struct pci_dev *pdev = adapter->pdev;
5f450212 648 union e1000_rx_desc_extended *rx_desc;
bc7f75fa
AK
649 struct e1000_buffer *buffer_info;
650 struct sk_buff *skb;
651 unsigned int i;
89d71a66 652 unsigned int bufsz = adapter->rx_buffer_len;
bc7f75fa
AK
653
654 i = rx_ring->next_to_use;
655 buffer_info = &rx_ring->buffer_info[i];
656
657 while (cleaned_count--) {
658 skb = buffer_info->skb;
659 if (skb) {
660 skb_trim(skb, 0);
661 goto map_skb;
662 }
663
c2fed996 664 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
bc7f75fa
AK
665 if (!skb) {
666 /* Better luck next round */
667 adapter->alloc_rx_buff_failed++;
668 break;
669 }
670
bc7f75fa
AK
671 buffer_info->skb = skb;
672map_skb:
0be3f55f 673 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
bc7f75fa 674 adapter->rx_buffer_len,
0be3f55f
NN
675 DMA_FROM_DEVICE);
676 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
af667a29 677 dev_err(&pdev->dev, "Rx DMA map failed\n");
bc7f75fa
AK
678 adapter->rx_dma_failed++;
679 break;
680 }
681
5f450212
BA
682 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
683 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
bc7f75fa 684
50849d79 685 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
e921eb1a 686 /* Force memory writes to complete before letting h/w
50849d79
TH
687 * know there are new descriptors to fetch. (Only
688 * applicable for weak-ordered memory model archs,
689 * such as IA-64).
690 */
691 wmb();
c6e7f51e 692 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 693 e1000e_update_rdt_wa(rx_ring, i);
c6e7f51e 694 else
c5083cf6 695 writel(i, rx_ring->tail);
50849d79 696 }
bc7f75fa
AK
697 i++;
698 if (i == rx_ring->count)
699 i = 0;
700 buffer_info = &rx_ring->buffer_info[i];
701 }
702
50849d79 703 rx_ring->next_to_use = i;
bc7f75fa
AK
704}
705
706/**
707 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
55aa6985 708 * @rx_ring: Rx descriptor ring
bc7f75fa 709 **/
55aa6985 710static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
c2fed996 711 int cleaned_count, gfp_t gfp)
bc7f75fa 712{
55aa6985 713 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
714 struct net_device *netdev = adapter->netdev;
715 struct pci_dev *pdev = adapter->pdev;
716 union e1000_rx_desc_packet_split *rx_desc;
bc7f75fa
AK
717 struct e1000_buffer *buffer_info;
718 struct e1000_ps_page *ps_page;
719 struct sk_buff *skb;
720 unsigned int i, j;
721
722 i = rx_ring->next_to_use;
723 buffer_info = &rx_ring->buffer_info[i];
724
725 while (cleaned_count--) {
726 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
727
728 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
729 ps_page = &buffer_info->ps_pages[j];
730 if (j >= adapter->rx_ps_pages) {
731 /* all unused desc entries get hw null ptr */
af667a29
BA
732 rx_desc->read.buffer_addr[j + 1] =
733 ~cpu_to_le64(0);
47f44e40
AK
734 continue;
735 }
736 if (!ps_page->page) {
c2fed996 737 ps_page->page = alloc_page(gfp);
bc7f75fa 738 if (!ps_page->page) {
47f44e40
AK
739 adapter->alloc_rx_buff_failed++;
740 goto no_buffers;
741 }
0be3f55f
NN
742 ps_page->dma = dma_map_page(&pdev->dev,
743 ps_page->page,
744 0, PAGE_SIZE,
745 DMA_FROM_DEVICE);
746 if (dma_mapping_error(&pdev->dev,
747 ps_page->dma)) {
47f44e40 748 dev_err(&adapter->pdev->dev,
af667a29 749 "Rx DMA page map failed\n");
47f44e40
AK
750 adapter->rx_dma_failed++;
751 goto no_buffers;
bc7f75fa 752 }
bc7f75fa 753 }
e921eb1a 754 /* Refresh the desc even if buffer_addrs
47f44e40
AK
755 * didn't change because each write-back
756 * erases this info.
757 */
af667a29
BA
758 rx_desc->read.buffer_addr[j + 1] =
759 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
760 }
761
e5fe2541 762 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
c2fed996 763 gfp);
bc7f75fa
AK
764
765 if (!skb) {
766 adapter->alloc_rx_buff_failed++;
767 break;
768 }
769
bc7f75fa 770 buffer_info->skb = skb;
0be3f55f 771 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
bc7f75fa 772 adapter->rx_ps_bsize0,
0be3f55f
NN
773 DMA_FROM_DEVICE);
774 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
af667a29 775 dev_err(&pdev->dev, "Rx DMA map failed\n");
bc7f75fa
AK
776 adapter->rx_dma_failed++;
777 /* cleanup skb */
778 dev_kfree_skb_any(skb);
779 buffer_info->skb = NULL;
780 break;
781 }
782
783 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
784
50849d79 785 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
e921eb1a 786 /* Force memory writes to complete before letting h/w
50849d79
TH
787 * know there are new descriptors to fetch. (Only
788 * applicable for weak-ordered memory model archs,
789 * such as IA-64).
790 */
791 wmb();
c6e7f51e 792 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 793 e1000e_update_rdt_wa(rx_ring, i << 1);
c6e7f51e 794 else
c5083cf6 795 writel(i << 1, rx_ring->tail);
50849d79
TH
796 }
797
bc7f75fa
AK
798 i++;
799 if (i == rx_ring->count)
800 i = 0;
801 buffer_info = &rx_ring->buffer_info[i];
802 }
803
804no_buffers:
50849d79 805 rx_ring->next_to_use = i;
bc7f75fa
AK
806}
807
97ac8cae
BA
808/**
809 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
55aa6985 810 * @rx_ring: Rx descriptor ring
97ac8cae
BA
811 * @cleaned_count: number of buffers to allocate this pass
812 **/
813
55aa6985 814static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
c2fed996 815 int cleaned_count, gfp_t gfp)
97ac8cae 816{
55aa6985 817 struct e1000_adapter *adapter = rx_ring->adapter;
97ac8cae
BA
818 struct net_device *netdev = adapter->netdev;
819 struct pci_dev *pdev = adapter->pdev;
5f450212 820 union e1000_rx_desc_extended *rx_desc;
97ac8cae
BA
821 struct e1000_buffer *buffer_info;
822 struct sk_buff *skb;
823 unsigned int i;
2a2293b9 824 unsigned int bufsz = 256 - 16; /* for skb_reserve */
97ac8cae
BA
825
826 i = rx_ring->next_to_use;
827 buffer_info = &rx_ring->buffer_info[i];
828
829 while (cleaned_count--) {
830 skb = buffer_info->skb;
831 if (skb) {
832 skb_trim(skb, 0);
833 goto check_page;
834 }
835
c2fed996 836 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
97ac8cae
BA
837 if (unlikely(!skb)) {
838 /* Better luck next round */
839 adapter->alloc_rx_buff_failed++;
840 break;
841 }
842
97ac8cae
BA
843 buffer_info->skb = skb;
844check_page:
845 /* allocate a new page if necessary */
846 if (!buffer_info->page) {
c2fed996 847 buffer_info->page = alloc_page(gfp);
97ac8cae
BA
848 if (unlikely(!buffer_info->page)) {
849 adapter->alloc_rx_buff_failed++;
850 break;
851 }
852 }
853
37287fae 854 if (!buffer_info->dma) {
0be3f55f 855 buffer_info->dma = dma_map_page(&pdev->dev,
f0ff4398
BA
856 buffer_info->page, 0,
857 PAGE_SIZE,
0be3f55f 858 DMA_FROM_DEVICE);
37287fae
CP
859 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
860 adapter->alloc_rx_buff_failed++;
861 break;
862 }
863 }
97ac8cae 864
5f450212
BA
865 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
866 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
97ac8cae
BA
867
868 if (unlikely(++i == rx_ring->count))
869 i = 0;
870 buffer_info = &rx_ring->buffer_info[i];
871 }
872
873 if (likely(rx_ring->next_to_use != i)) {
874 rx_ring->next_to_use = i;
875 if (unlikely(i-- == 0))
876 i = (rx_ring->count - 1);
877
878 /* Force memory writes to complete before letting h/w
879 * know there are new descriptors to fetch. (Only
880 * applicable for weak-ordered memory model archs,
e921eb1a
BA
881 * such as IA-64).
882 */
97ac8cae 883 wmb();
c6e7f51e 884 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 885 e1000e_update_rdt_wa(rx_ring, i);
c6e7f51e 886 else
c5083cf6 887 writel(i, rx_ring->tail);
97ac8cae
BA
888 }
889}
890
70495a50
BA
891static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
892 struct sk_buff *skb)
893{
894 if (netdev->features & NETIF_F_RXHASH)
e25909bc 895 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
70495a50
BA
896}
897
bc7f75fa 898/**
55aa6985
BA
899 * e1000_clean_rx_irq - Send received data up the network stack
900 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
901 *
902 * the return value indicates whether actual cleaning was done, there
903 * is no guarantee that everything was cleaned
904 **/
55aa6985
BA
905static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
906 int work_to_do)
bc7f75fa 907{
55aa6985 908 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
909 struct net_device *netdev = adapter->netdev;
910 struct pci_dev *pdev = adapter->pdev;
3bb99fe2 911 struct e1000_hw *hw = &adapter->hw;
5f450212 912 union e1000_rx_desc_extended *rx_desc, *next_rxd;
bc7f75fa 913 struct e1000_buffer *buffer_info, *next_buffer;
5f450212 914 u32 length, staterr;
bc7f75fa
AK
915 unsigned int i;
916 int cleaned_count = 0;
3db1cd5c 917 bool cleaned = false;
bc7f75fa
AK
918 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
919
920 i = rx_ring->next_to_clean;
5f450212
BA
921 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
922 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
bc7f75fa
AK
923 buffer_info = &rx_ring->buffer_info[i];
924
5f450212 925 while (staterr & E1000_RXD_STAT_DD) {
bc7f75fa 926 struct sk_buff *skb;
bc7f75fa
AK
927
928 if (*work_done >= work_to_do)
929 break;
930 (*work_done)++;
837a1dba 931 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
bc7f75fa 932
bc7f75fa
AK
933 skb = buffer_info->skb;
934 buffer_info->skb = NULL;
935
936 prefetch(skb->data - NET_IP_ALIGN);
937
938 i++;
939 if (i == rx_ring->count)
940 i = 0;
5f450212 941 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
bc7f75fa
AK
942 prefetch(next_rxd);
943
944 next_buffer = &rx_ring->buffer_info[i];
945
3db1cd5c 946 cleaned = true;
bc7f75fa 947 cleaned_count++;
e5fe2541
BA
948 dma_unmap_single(&pdev->dev, buffer_info->dma,
949 adapter->rx_buffer_len, DMA_FROM_DEVICE);
bc7f75fa
AK
950 buffer_info->dma = 0;
951
5f450212 952 length = le16_to_cpu(rx_desc->wb.upper.length);
bc7f75fa 953
e921eb1a 954 /* !EOP means multiple descriptors were used to store a single
b94b5028
JB
955 * packet, if that's the case we need to toss it. In fact, we
956 * need to toss every packet with the EOP bit clear and the
957 * next frame that _does_ have the EOP bit set, as it is by
958 * definition only a frame fragment
959 */
5f450212 960 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
b94b5028
JB
961 adapter->flags2 |= FLAG2_IS_DISCARDING;
962
963 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
bc7f75fa 964 /* All receives must fit into a single buffer */
3bb99fe2 965 e_dbg("Receive packet consumed multiple buffers\n");
bc7f75fa
AK
966 /* recycle */
967 buffer_info->skb = skb;
5f450212 968 if (staterr & E1000_RXD_STAT_EOP)
b94b5028 969 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
970 goto next_desc;
971 }
972
cf955e6c
BG
973 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
974 !(netdev->features & NETIF_F_RXALL))) {
bc7f75fa
AK
975 /* recycle */
976 buffer_info->skb = skb;
977 goto next_desc;
978 }
979
eb7c3adb 980 /* adjust length to remove Ethernet CRC */
0184039a
BG
981 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
982 /* If configured to store CRC, don't subtract FCS,
983 * but keep the FCS bytes out of the total_rx_bytes
984 * counter
985 */
986 if (netdev->features & NETIF_F_RXFCS)
987 total_rx_bytes -= 4;
988 else
989 length -= 4;
990 }
eb7c3adb 991
bc7f75fa
AK
992 total_rx_bytes += length;
993 total_rx_packets++;
994
e921eb1a 995 /* code added for copybreak, this should improve
bc7f75fa 996 * performance for small packets with large amounts
ad68076e
BA
997 * of reassembly being done in the stack
998 */
bc7f75fa
AK
999 if (length < copybreak) {
1000 struct sk_buff *new_skb =
67fd893e 1001 napi_alloc_skb(&adapter->napi, length);
bc7f75fa 1002 if (new_skb) {
808ff676
BA
1003 skb_copy_to_linear_data_offset(new_skb,
1004 -NET_IP_ALIGN,
1005 (skb->data -
1006 NET_IP_ALIGN),
1007 (length +
1008 NET_IP_ALIGN));
bc7f75fa
AK
1009 /* save the skb in buffer_info as good */
1010 buffer_info->skb = skb;
1011 skb = new_skb;
1012 }
1013 /* else just continue with the old one */
1014 }
1015 /* end copybreak code */
1016 skb_put(skb, length);
1017
1018 /* Receive Checksum Offload */
2e1706f2 1019 e1000_rx_checksum(adapter, staterr, skb);
bc7f75fa 1020
70495a50
BA
1021 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1022
5f450212
BA
1023 e1000_receive_skb(adapter, netdev, skb, staterr,
1024 rx_desc->wb.upper.vlan);
bc7f75fa
AK
1025
1026next_desc:
5f450212 1027 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
bc7f75fa
AK
1028
1029 /* return some buffers to hardware, one at a time is too slow */
1030 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
55aa6985 1031 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1032 GFP_ATOMIC);
bc7f75fa
AK
1033 cleaned_count = 0;
1034 }
1035
1036 /* use prefetched values */
1037 rx_desc = next_rxd;
1038 buffer_info = next_buffer;
5f450212
BA
1039
1040 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
bc7f75fa
AK
1041 }
1042 rx_ring->next_to_clean = i;
1043
1044 cleaned_count = e1000_desc_unused(rx_ring);
1045 if (cleaned_count)
55aa6985 1046 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
bc7f75fa 1047
bc7f75fa 1048 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 1049 adapter->total_rx_packets += total_rx_packets;
bc7f75fa
AK
1050 return cleaned;
1051}
1052
55aa6985 1053static void e1000_put_txbuf(struct e1000_ring *tx_ring,
377b6273
FF
1054 struct e1000_buffer *buffer_info,
1055 bool drop)
bc7f75fa 1056{
55aa6985
BA
1057 struct e1000_adapter *adapter = tx_ring->adapter;
1058
03b1320d
AD
1059 if (buffer_info->dma) {
1060 if (buffer_info->mapped_as_page)
0be3f55f
NN
1061 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1062 buffer_info->length, DMA_TO_DEVICE);
03b1320d 1063 else
0be3f55f
NN
1064 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1065 buffer_info->length, DMA_TO_DEVICE);
03b1320d
AD
1066 buffer_info->dma = 0;
1067 }
bc7f75fa 1068 if (buffer_info->skb) {
377b6273
FF
1069 if (drop)
1070 dev_kfree_skb_any(buffer_info->skb);
1071 else
1072 dev_consume_skb_any(buffer_info->skb);
bc7f75fa
AK
1073 buffer_info->skb = NULL;
1074 }
1b7719c4 1075 buffer_info->time_stamp = 0;
bc7f75fa
AK
1076}
1077
41cec6f1 1078static void e1000_print_hw_hang(struct work_struct *work)
bc7f75fa 1079{
41cec6f1 1080 struct e1000_adapter *adapter = container_of(work,
f0ff4398
BA
1081 struct e1000_adapter,
1082 print_hang_task);
09357b00 1083 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1084 struct e1000_ring *tx_ring = adapter->tx_ring;
1085 unsigned int i = tx_ring->next_to_clean;
1086 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1087 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
41cec6f1
BA
1088 struct e1000_hw *hw = &adapter->hw;
1089 u16 phy_status, phy_1000t_status, phy_ext_status;
1090 u16 pci_status;
1091
615b32af
JB
1092 if (test_bit(__E1000_DOWN, &adapter->state))
1093 return;
1094
e5fe2541 1095 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
e921eb1a 1096 /* May be block on write-back, flush and detect again
09357b00
JK
1097 * flush pending descriptor writebacks to memory
1098 */
1099 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1100 /* execute the writes immediately */
1101 e1e_flush();
e921eb1a 1102 /* Due to rare timing issues, write to TIDV again to ensure
bf03085f
MV
1103 * the write is successful
1104 */
1105 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1106 /* execute the writes immediately */
1107 e1e_flush();
09357b00
JK
1108 adapter->tx_hang_recheck = true;
1109 return;
1110 }
09357b00 1111 adapter->tx_hang_recheck = false;
d9554e96
DE
1112
1113 if (er32(TDH(0)) == er32(TDT(0))) {
1114 e_dbg("false hang detected, ignoring\n");
1115 return;
1116 }
1117
1118 /* Real hang detected */
09357b00
JK
1119 netif_stop_queue(netdev);
1120
c2ade1a4
BA
1121 e1e_rphy(hw, MII_BMSR, &phy_status);
1122 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1123 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
bc7f75fa 1124
41cec6f1
BA
1125 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1126
1127 /* detected Hardware unit hang */
1128 e_err("Detected Hardware Unit Hang:\n"
44defeb3
JK
1129 " TDH <%x>\n"
1130 " TDT <%x>\n"
1131 " next_to_use <%x>\n"
1132 " next_to_clean <%x>\n"
1133 "buffer_info[next_to_clean]:\n"
1134 " time_stamp <%lx>\n"
1135 " next_to_watch <%x>\n"
1136 " jiffies <%lx>\n"
41cec6f1
BA
1137 " next_to_watch.status <%x>\n"
1138 "MAC Status <%x>\n"
1139 "PHY Status <%x>\n"
1140 "PHY 1000BASE-T Status <%x>\n"
1141 "PHY Extended Status <%x>\n"
1142 "PCI Status <%x>\n",
e5fe2541
BA
1143 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1144 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1145 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1146 phy_status, phy_1000t_status, phy_ext_status, pci_status);
7c0427ee 1147
d9554e96
DE
1148 e1000e_dump(adapter);
1149
7c0427ee
BA
1150 /* Suggest workaround for known h/w issue */
1151 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1152 e_err("Try turning off Tx pause (flow control) via ethtool\n");
bc7f75fa
AK
1153}
1154
b67e1913
BA
1155/**
1156 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1157 * @work: pointer to work struct
1158 *
1159 * This work function polls the TSYNCTXCTL valid bit to determine when a
1160 * timestamp has been taken for the current stored skb. The timestamp must
1161 * be for this skb because only one such packet is allowed in the queue.
1162 */
1163static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1164{
1165 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1166 tx_hwtstamp_work);
1167 struct e1000_hw *hw = &adapter->hw;
1168
b67e1913 1169 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
5012863b 1170 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
b67e1913
BA
1171 struct skb_shared_hwtstamps shhwtstamps;
1172 u64 txstmp;
1173
1174 txstmp = er32(TXSTMPL);
1175 txstmp |= (u64)er32(TXSTMPH) << 32;
1176
1177 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1178
5012863b
JK
1179 /* Clear the global tx_hwtstamp_skb pointer and force writes
1180 * prior to notifying the stack of a Tx timestamp.
1181 */
b67e1913 1182 adapter->tx_hwtstamp_skb = NULL;
5012863b
JK
1183 wmb(); /* force write prior to skb_tstamp_tx */
1184
1185 skb_tstamp_tx(skb, &shhwtstamps);
377b6273 1186 dev_consume_skb_any(skb);
59c871c5
JK
1187 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1188 + adapter->tx_timeout_factor * HZ)) {
1189 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1190 adapter->tx_hwtstamp_skb = NULL;
1191 adapter->tx_hwtstamp_timeouts++;
c5ffe7e1 1192 e_warn("clearing Tx timestamp hang\n");
b67e1913
BA
1193 } else {
1194 /* reschedule to check later */
1195 schedule_work(&adapter->tx_hwtstamp_work);
1196 }
1197}
1198
bc7f75fa
AK
1199/**
1200 * e1000_clean_tx_irq - Reclaim resources after transmit completes
55aa6985 1201 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
1202 *
1203 * the return value indicates whether actual cleaning was done, there
1204 * is no guarantee that everything was cleaned
1205 **/
55aa6985 1206static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
bc7f75fa 1207{
55aa6985 1208 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
1209 struct net_device *netdev = adapter->netdev;
1210 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
1211 struct e1000_tx_desc *tx_desc, *eop_desc;
1212 struct e1000_buffer *buffer_info;
1213 unsigned int i, eop;
1214 unsigned int count = 0;
bc7f75fa 1215 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3f0cfa3b 1216 unsigned int bytes_compl = 0, pkts_compl = 0;
bc7f75fa
AK
1217
1218 i = tx_ring->next_to_clean;
1219 eop = tx_ring->buffer_info[i].next_to_watch;
1220 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1221
12d04a3c
AD
1222 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1223 (count < tx_ring->count)) {
a86043c2 1224 bool cleaned = false;
6cf08d1c 1225
837a1dba 1226 dma_rmb(); /* read buffer_info after eop_desc */
a86043c2 1227 for (; !cleaned; count++) {
bc7f75fa
AK
1228 tx_desc = E1000_TX_DESC(*tx_ring, i);
1229 buffer_info = &tx_ring->buffer_info[i];
1230 cleaned = (i == eop);
1231
1232 if (cleaned) {
9ed318d5
TH
1233 total_tx_packets += buffer_info->segs;
1234 total_tx_bytes += buffer_info->bytecount;
3f0cfa3b
TH
1235 if (buffer_info->skb) {
1236 bytes_compl += buffer_info->skb->len;
1237 pkts_compl++;
1238 }
bc7f75fa
AK
1239 }
1240
377b6273 1241 e1000_put_txbuf(tx_ring, buffer_info, false);
bc7f75fa
AK
1242 tx_desc->upper.data = 0;
1243
1244 i++;
1245 if (i == tx_ring->count)
1246 i = 0;
1247 }
1248
dac87619
TL
1249 if (i == tx_ring->next_to_use)
1250 break;
bc7f75fa
AK
1251 eop = tx_ring->buffer_info[i].next_to_watch;
1252 eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
1253 }
1254
1255 tx_ring->next_to_clean = i;
1256
3f0cfa3b
TH
1257 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1258
bc7f75fa 1259#define TX_WAKE_THRESHOLD 32
a86043c2
JB
1260 if (count && netif_carrier_ok(netdev) &&
1261 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
bc7f75fa
AK
1262 /* Make sure that anybody stopping the queue after this
1263 * sees the new next_to_clean.
1264 */
1265 smp_mb();
1266
1267 if (netif_queue_stopped(netdev) &&
1268 !(test_bit(__E1000_DOWN, &adapter->state))) {
1269 netif_wake_queue(netdev);
1270 ++adapter->restart_queue;
1271 }
1272 }
1273
1274 if (adapter->detect_tx_hung) {
e921eb1a 1275 /* Detect a transmit hang in hardware, this serializes the
41cec6f1
BA
1276 * check with the clearing of time_stamp and movement of i
1277 */
3db1cd5c 1278 adapter->detect_tx_hung = false;
12d04a3c
AD
1279 if (tx_ring->buffer_info[i].time_stamp &&
1280 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
8e95a202 1281 + (adapter->tx_timeout_factor * HZ)) &&
09357b00 1282 !(er32(STATUS) & E1000_STATUS_TXOFF))
41cec6f1 1283 schedule_work(&adapter->print_hang_task);
09357b00
JK
1284 else
1285 adapter->tx_hang_recheck = false;
bc7f75fa
AK
1286 }
1287 adapter->total_tx_bytes += total_tx_bytes;
1288 adapter->total_tx_packets += total_tx_packets;
807540ba 1289 return count < tx_ring->count;
bc7f75fa
AK
1290}
1291
bc7f75fa
AK
1292/**
1293 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
55aa6985 1294 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
1295 *
1296 * the return value indicates whether actual cleaning was done, there
1297 * is no guarantee that everything was cleaned
1298 **/
55aa6985
BA
1299static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1300 int work_to_do)
bc7f75fa 1301{
55aa6985 1302 struct e1000_adapter *adapter = rx_ring->adapter;
3bb99fe2 1303 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
1304 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1305 struct net_device *netdev = adapter->netdev;
1306 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1307 struct e1000_buffer *buffer_info, *next_buffer;
1308 struct e1000_ps_page *ps_page;
1309 struct sk_buff *skb;
1310 unsigned int i, j;
1311 u32 length, staterr;
1312 int cleaned_count = 0;
3db1cd5c 1313 bool cleaned = false;
bc7f75fa
AK
1314 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1315
1316 i = rx_ring->next_to_clean;
1317 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1318 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1319 buffer_info = &rx_ring->buffer_info[i];
1320
1321 while (staterr & E1000_RXD_STAT_DD) {
1322 if (*work_done >= work_to_do)
1323 break;
1324 (*work_done)++;
1325 skb = buffer_info->skb;
837a1dba 1326 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
bc7f75fa
AK
1327
1328 /* in the packet split case this is header only */
1329 prefetch(skb->data - NET_IP_ALIGN);
1330
1331 i++;
1332 if (i == rx_ring->count)
1333 i = 0;
1334 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1335 prefetch(next_rxd);
1336
1337 next_buffer = &rx_ring->buffer_info[i];
1338
3db1cd5c 1339 cleaned = true;
bc7f75fa 1340 cleaned_count++;
0be3f55f 1341 dma_unmap_single(&pdev->dev, buffer_info->dma,
af667a29 1342 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
bc7f75fa
AK
1343 buffer_info->dma = 0;
1344
af667a29 1345 /* see !EOP comment in other Rx routine */
b94b5028
JB
1346 if (!(staterr & E1000_RXD_STAT_EOP))
1347 adapter->flags2 |= FLAG2_IS_DISCARDING;
1348
1349 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
ef456f85 1350 e_dbg("Packet Split buffers didn't pick up the full packet\n");
bc7f75fa 1351 dev_kfree_skb_irq(skb);
b94b5028
JB
1352 if (staterr & E1000_RXD_STAT_EOP)
1353 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
1354 goto next_desc;
1355 }
1356
cf955e6c
BG
1357 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1358 !(netdev->features & NETIF_F_RXALL))) {
bc7f75fa
AK
1359 dev_kfree_skb_irq(skb);
1360 goto next_desc;
1361 }
1362
1363 length = le16_to_cpu(rx_desc->wb.middle.length0);
1364
1365 if (!length) {
ef456f85 1366 e_dbg("Last part of the packet spanning multiple descriptors\n");
bc7f75fa
AK
1367 dev_kfree_skb_irq(skb);
1368 goto next_desc;
1369 }
1370
1371 /* Good Receive */
1372 skb_put(skb, length);
1373
1374 {
e921eb1a 1375 /* this looks ugly, but it seems compiler issues make
0e15df49
BA
1376 * it more efficient than reusing j
1377 */
1378 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
bc7f75fa 1379
e921eb1a 1380 /* page alloc/put takes too long and effects small
0e15df49
BA
1381 * packet throughput, so unsplit small packets and
1382 * save the alloc/put only valid in softirq (napi)
1383 * context to call kmap_*
ad68076e 1384 */
0e15df49
BA
1385 if (l1 && (l1 <= copybreak) &&
1386 ((length + l1) <= adapter->rx_ps_bsize0)) {
1387 u8 *vaddr;
1388
1389 ps_page = &buffer_info->ps_pages[0];
1390
e921eb1a 1391 /* there is no documentation about how to call
0e15df49
BA
1392 * kmap_atomic, so we can't hold the mapping
1393 * very long
1394 */
1395 dma_sync_single_for_cpu(&pdev->dev,
1396 ps_page->dma,
1397 PAGE_SIZE,
1398 DMA_FROM_DEVICE);
9f393834 1399 vaddr = kmap_atomic(ps_page->page);
0e15df49 1400 memcpy(skb_tail_pointer(skb), vaddr, l1);
9f393834 1401 kunmap_atomic(vaddr);
0e15df49
BA
1402 dma_sync_single_for_device(&pdev->dev,
1403 ps_page->dma,
1404 PAGE_SIZE,
1405 DMA_FROM_DEVICE);
1406
1407 /* remove the CRC */
0184039a
BG
1408 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1409 if (!(netdev->features & NETIF_F_RXFCS))
1410 l1 -= 4;
1411 }
0e15df49
BA
1412
1413 skb_put(skb, l1);
1414 goto copydone;
e80bd1d1 1415 } /* if */
bc7f75fa
AK
1416 }
1417
1418 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1419 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1420 if (!length)
1421 break;
1422
47f44e40 1423 ps_page = &buffer_info->ps_pages[j];
0be3f55f
NN
1424 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1425 DMA_FROM_DEVICE);
bc7f75fa
AK
1426 ps_page->dma = 0;
1427 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1428 ps_page->page = NULL;
1429 skb->len += length;
1430 skb->data_len += length;
98a045d7 1431 skb->truesize += PAGE_SIZE;
bc7f75fa
AK
1432 }
1433
eb7c3adb
JK
1434 /* strip the ethernet crc, problem is we're using pages now so
1435 * this whole operation can get a little cpu intensive
1436 */
0184039a
BG
1437 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1438 if (!(netdev->features & NETIF_F_RXFCS))
1439 pskb_trim(skb, skb->len - 4);
1440 }
eb7c3adb 1441
bc7f75fa
AK
1442copydone:
1443 total_rx_bytes += skb->len;
1444 total_rx_packets++;
1445
2e1706f2 1446 e1000_rx_checksum(adapter, staterr, skb);
bc7f75fa 1447
70495a50
BA
1448 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1449
bc7f75fa 1450 if (rx_desc->wb.upper.header_status &
17e813ec 1451 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
bc7f75fa
AK
1452 adapter->rx_hdr_split++;
1453
b67e1913
BA
1454 e1000_receive_skb(adapter, netdev, skb, staterr,
1455 rx_desc->wb.middle.vlan);
bc7f75fa
AK
1456
1457next_desc:
1458 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1459 buffer_info->skb = NULL;
1460
1461 /* return some buffers to hardware, one at a time is too slow */
1462 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
55aa6985 1463 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1464 GFP_ATOMIC);
bc7f75fa
AK
1465 cleaned_count = 0;
1466 }
1467
1468 /* use prefetched values */
1469 rx_desc = next_rxd;
1470 buffer_info = next_buffer;
1471
1472 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1473 }
1474 rx_ring->next_to_clean = i;
1475
1476 cleaned_count = e1000_desc_unused(rx_ring);
1477 if (cleaned_count)
55aa6985 1478 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
bc7f75fa 1479
bc7f75fa 1480 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 1481 adapter->total_rx_packets += total_rx_packets;
bc7f75fa
AK
1482 return cleaned;
1483}
1484
97ac8cae
BA
1485/**
1486 * e1000_consume_page - helper function
1487 **/
1488static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
66501f56 1489 u16 length)
97ac8cae
BA
1490{
1491 bi->page = NULL;
1492 skb->len += length;
1493 skb->data_len += length;
98a045d7 1494 skb->truesize += PAGE_SIZE;
97ac8cae
BA
1495}
1496
1497/**
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @adapter: board private structure
1500 *
1501 * the return value indicates whether actual cleaning was done, there
1502 * is no guarantee that everything was cleaned
1503 **/
55aa6985
BA
1504static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1505 int work_to_do)
97ac8cae 1506{
55aa6985 1507 struct e1000_adapter *adapter = rx_ring->adapter;
97ac8cae
BA
1508 struct net_device *netdev = adapter->netdev;
1509 struct pci_dev *pdev = adapter->pdev;
5f450212 1510 union e1000_rx_desc_extended *rx_desc, *next_rxd;
97ac8cae 1511 struct e1000_buffer *buffer_info, *next_buffer;
5f450212 1512 u32 length, staterr;
97ac8cae
BA
1513 unsigned int i;
1514 int cleaned_count = 0;
1515 bool cleaned = false;
362e20ca 1516 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
17e813ec 1517 struct skb_shared_info *shinfo;
97ac8cae
BA
1518
1519 i = rx_ring->next_to_clean;
5f450212
BA
1520 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1521 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
97ac8cae
BA
1522 buffer_info = &rx_ring->buffer_info[i];
1523
5f450212 1524 while (staterr & E1000_RXD_STAT_DD) {
97ac8cae 1525 struct sk_buff *skb;
97ac8cae
BA
1526
1527 if (*work_done >= work_to_do)
1528 break;
1529 (*work_done)++;
837a1dba 1530 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
97ac8cae 1531
97ac8cae
BA
1532 skb = buffer_info->skb;
1533 buffer_info->skb = NULL;
1534
1535 ++i;
1536 if (i == rx_ring->count)
1537 i = 0;
5f450212 1538 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
97ac8cae
BA
1539 prefetch(next_rxd);
1540
1541 next_buffer = &rx_ring->buffer_info[i];
1542
1543 cleaned = true;
1544 cleaned_count++;
0be3f55f
NN
1545 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1546 DMA_FROM_DEVICE);
97ac8cae
BA
1547 buffer_info->dma = 0;
1548
5f450212 1549 length = le16_to_cpu(rx_desc->wb.upper.length);
97ac8cae
BA
1550
1551 /* errors is only valid for DD + EOP descriptors */
5f450212 1552 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
cf955e6c
BG
1553 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1554 !(netdev->features & NETIF_F_RXALL)))) {
5f450212
BA
1555 /* recycle both page and skb */
1556 buffer_info->skb = skb;
1557 /* an error means any chain goes out the window too */
1558 if (rx_ring->rx_skb_top)
1559 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1560 rx_ring->rx_skb_top = NULL;
1561 goto next_desc;
97ac8cae 1562 }
f0f1a172 1563#define rxtop (rx_ring->rx_skb_top)
5f450212 1564 if (!(staterr & E1000_RXD_STAT_EOP)) {
97ac8cae
BA
1565 /* this descriptor is only the beginning (or middle) */
1566 if (!rxtop) {
1567 /* this is the beginning of a chain */
1568 rxtop = skb;
1569 skb_fill_page_desc(rxtop, 0, buffer_info->page,
f0ff4398 1570 0, length);
97ac8cae
BA
1571 } else {
1572 /* this is the middle of a chain */
17e813ec
BA
1573 shinfo = skb_shinfo(rxtop);
1574 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1575 buffer_info->page, 0,
1576 length);
97ac8cae
BA
1577 /* re-use the skb, only consumed the page */
1578 buffer_info->skb = skb;
1579 }
1580 e1000_consume_page(buffer_info, rxtop, length);
1581 goto next_desc;
1582 } else {
1583 if (rxtop) {
1584 /* end of the chain */
17e813ec
BA
1585 shinfo = skb_shinfo(rxtop);
1586 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1587 buffer_info->page, 0,
1588 length);
97ac8cae 1589 /* re-use the current skb, we only consumed the
e921eb1a
BA
1590 * page
1591 */
97ac8cae
BA
1592 buffer_info->skb = skb;
1593 skb = rxtop;
1594 rxtop = NULL;
1595 e1000_consume_page(buffer_info, skb, length);
1596 } else {
1597 /* no chain, got EOP, this buf is the packet
e921eb1a
BA
1598 * copybreak to save the put_page/alloc_page
1599 */
97ac8cae
BA
1600 if (length <= copybreak &&
1601 skb_tailroom(skb) >= length) {
1602 u8 *vaddr;
4679026d 1603 vaddr = kmap_atomic(buffer_info->page);
97ac8cae
BA
1604 memcpy(skb_tail_pointer(skb), vaddr,
1605 length);
4679026d 1606 kunmap_atomic(vaddr);
97ac8cae 1607 /* re-use the page, so don't erase
e921eb1a
BA
1608 * buffer_info->page
1609 */
97ac8cae
BA
1610 skb_put(skb, length);
1611 } else {
1612 skb_fill_page_desc(skb, 0,
f0ff4398
BA
1613 buffer_info->page, 0,
1614 length);
97ac8cae 1615 e1000_consume_page(buffer_info, skb,
f0ff4398 1616 length);
97ac8cae
BA
1617 }
1618 }
1619 }
1620
2e1706f2
BA
1621 /* Receive Checksum Offload */
1622 e1000_rx_checksum(adapter, staterr, skb);
97ac8cae 1623
70495a50
BA
1624 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
97ac8cae
BA
1626 /* probably a little skewed due to removing CRC */
1627 total_rx_bytes += skb->len;
1628 total_rx_packets++;
1629
1630 /* eth type trans needs skb->data to point to something */
1631 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1632 e_err("pskb_may_pull failed.\n");
ef5ab89c 1633 dev_kfree_skb_irq(skb);
97ac8cae
BA
1634 goto next_desc;
1635 }
1636
5f450212
BA
1637 e1000_receive_skb(adapter, netdev, skb, staterr,
1638 rx_desc->wb.upper.vlan);
97ac8cae
BA
1639
1640next_desc:
5f450212 1641 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
97ac8cae
BA
1642
1643 /* return some buffers to hardware, one at a time is too slow */
1644 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
55aa6985 1645 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1646 GFP_ATOMIC);
97ac8cae
BA
1647 cleaned_count = 0;
1648 }
1649
1650 /* use prefetched values */
1651 rx_desc = next_rxd;
1652 buffer_info = next_buffer;
5f450212
BA
1653
1654 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
97ac8cae
BA
1655 }
1656 rx_ring->next_to_clean = i;
1657
1658 cleaned_count = e1000_desc_unused(rx_ring);
1659 if (cleaned_count)
55aa6985 1660 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
97ac8cae
BA
1661
1662 adapter->total_rx_bytes += total_rx_bytes;
1663 adapter->total_rx_packets += total_rx_packets;
97ac8cae
BA
1664 return cleaned;
1665}
1666
bc7f75fa
AK
1667/**
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
55aa6985 1669 * @rx_ring: Rx descriptor ring
bc7f75fa 1670 **/
55aa6985 1671static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
bc7f75fa 1672{
55aa6985 1673 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
1674 struct e1000_buffer *buffer_info;
1675 struct e1000_ps_page *ps_page;
1676 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1677 unsigned int i, j;
1678
1679 /* Free all the Rx ring sk_buffs */
1680 for (i = 0; i < rx_ring->count; i++) {
1681 buffer_info = &rx_ring->buffer_info[i];
1682 if (buffer_info->dma) {
1683 if (adapter->clean_rx == e1000_clean_rx_irq)
0be3f55f 1684 dma_unmap_single(&pdev->dev, buffer_info->dma,
bc7f75fa 1685 adapter->rx_buffer_len,
0be3f55f 1686 DMA_FROM_DEVICE);
97ac8cae 1687 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
0be3f55f 1688 dma_unmap_page(&pdev->dev, buffer_info->dma,
f0ff4398 1689 PAGE_SIZE, DMA_FROM_DEVICE);
bc7f75fa 1690 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
0be3f55f 1691 dma_unmap_single(&pdev->dev, buffer_info->dma,
bc7f75fa 1692 adapter->rx_ps_bsize0,
0be3f55f 1693 DMA_FROM_DEVICE);
bc7f75fa
AK
1694 buffer_info->dma = 0;
1695 }
1696
97ac8cae
BA
1697 if (buffer_info->page) {
1698 put_page(buffer_info->page);
1699 buffer_info->page = NULL;
1700 }
1701
bc7f75fa
AK
1702 if (buffer_info->skb) {
1703 dev_kfree_skb(buffer_info->skb);
1704 buffer_info->skb = NULL;
1705 }
1706
1707 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1708 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1709 if (!ps_page->page)
1710 break;
0be3f55f
NN
1711 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712 DMA_FROM_DEVICE);
bc7f75fa
AK
1713 ps_page->dma = 0;
1714 put_page(ps_page->page);
1715 ps_page->page = NULL;
1716 }
1717 }
1718
1719 /* there also may be some cached data from a chained receive */
1720 if (rx_ring->rx_skb_top) {
1721 dev_kfree_skb(rx_ring->rx_skb_top);
1722 rx_ring->rx_skb_top = NULL;
1723 }
1724
bc7f75fa
AK
1725 /* Zero out the descriptor ring */
1726 memset(rx_ring->desc, 0, rx_ring->size);
1727
1728 rx_ring->next_to_clean = 0;
1729 rx_ring->next_to_use = 0;
b94b5028 1730 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
1731}
1732
a8f88ff5
JB
1733static void e1000e_downshift_workaround(struct work_struct *work)
1734{
1735 struct e1000_adapter *adapter = container_of(work,
17e813ec
BA
1736 struct e1000_adapter,
1737 downshift_task);
a8f88ff5 1738
615b32af
JB
1739 if (test_bit(__E1000_DOWN, &adapter->state))
1740 return;
1741
a8f88ff5
JB
1742 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743}
1744
bc7f75fa
AK
1745/**
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1749 **/
8bb62869 1750static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
bc7f75fa
AK
1751{
1752 struct net_device *netdev = data;
1753 struct e1000_adapter *adapter = netdev_priv(netdev);
1754 struct e1000_hw *hw = &adapter->hw;
1755 u32 icr = er32(ICR);
1756
e921eb1a 1757 /* read ICR disables interrupts using IAM */
573cca8c 1758 if (icr & E1000_ICR_LSC) {
f92518dd 1759 hw->mac.get_link_status = true;
e921eb1a 1760 /* ICH8 workaround-- Call gig speed drop workaround on cable
ad68076e
BA
1761 * disconnect (LSC) before accessing any PHY registers
1762 */
bc7f75fa
AK
1763 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1765 schedule_work(&adapter->downshift_task);
bc7f75fa 1766
e921eb1a 1767 /* 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1768 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1769 * adapter in watchdog
1770 */
bc7f75fa
AK
1771 if (netif_carrier_ok(netdev) &&
1772 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773 /* disable receives */
1774 u32 rctl = er32(RCTL);
6cf08d1c 1775
bc7f75fa 1776 ew32(RCTL, rctl & ~E1000_RCTL_EN);
12d43f7d 1777 adapter->flags |= FLAG_RESTART_NOW;
bc7f75fa
AK
1778 }
1779 /* guard against interrupt when we're going down */
1780 if (!test_bit(__E1000_DOWN, &adapter->state))
b4275924 1781 mod_timer(&adapter->watchdog_timer, jiffies + 1);
bc7f75fa
AK
1782 }
1783
94fb848b 1784 /* Reset on uncorrectable ECC error */
c8744f44 1785 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
94fb848b
BA
1786 u32 pbeccsts = er32(PBECCSTS);
1787
1788 adapter->corr_errors +=
1789 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790 adapter->uncorr_errors +=
1791 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1792 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1793
1794 /* Do the reset outside of interrupt context */
1795 schedule_work(&adapter->reset_task);
1796
1797 /* return immediately since reset is imminent */
1798 return IRQ_HANDLED;
1799 }
1800
288379f0 1801 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1802 adapter->total_tx_bytes = 0;
1803 adapter->total_tx_packets = 0;
1804 adapter->total_rx_bytes = 0;
1805 adapter->total_rx_packets = 0;
288379f0 1806 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1807 }
1808
1809 return IRQ_HANDLED;
1810}
1811
1812/**
1813 * e1000_intr - Interrupt Handler
1814 * @irq: interrupt number
1815 * @data: pointer to a network interface device structure
1816 **/
8bb62869 1817static irqreturn_t e1000_intr(int __always_unused irq, void *data)
bc7f75fa
AK
1818{
1819 struct net_device *netdev = data;
1820 struct e1000_adapter *adapter = netdev_priv(netdev);
1821 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1822 u32 rctl, icr = er32(ICR);
4662e82b 1823
a68ea775 1824 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
e80bd1d1 1825 return IRQ_NONE; /* Not our interrupt */
bc7f75fa 1826
e921eb1a 1827 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
ad68076e
BA
1828 * not set, then the adapter didn't send an interrupt
1829 */
bc7f75fa
AK
1830 if (!(icr & E1000_ICR_INT_ASSERTED))
1831 return IRQ_NONE;
1832
e921eb1a 1833 /* Interrupt Auto-Mask...upon reading ICR,
ad68076e
BA
1834 * interrupts are masked. No need for the
1835 * IMC write
1836 */
bc7f75fa 1837
573cca8c 1838 if (icr & E1000_ICR_LSC) {
f92518dd 1839 hw->mac.get_link_status = true;
e921eb1a 1840 /* ICH8 workaround-- Call gig speed drop workaround on cable
ad68076e
BA
1841 * disconnect (LSC) before accessing any PHY registers
1842 */
bc7f75fa
AK
1843 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1844 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1845 schedule_work(&adapter->downshift_task);
bc7f75fa 1846
e921eb1a 1847 /* 80003ES2LAN workaround--
bc7f75fa
AK
1848 * For packet buffer work-around on link down event;
1849 * disable receives here in the ISR and
1850 * reset adapter in watchdog
1851 */
1852 if (netif_carrier_ok(netdev) &&
1853 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1854 /* disable receives */
1855 rctl = er32(RCTL);
1856 ew32(RCTL, rctl & ~E1000_RCTL_EN);
12d43f7d 1857 adapter->flags |= FLAG_RESTART_NOW;
bc7f75fa
AK
1858 }
1859 /* guard against interrupt when we're going down */
1860 if (!test_bit(__E1000_DOWN, &adapter->state))
b4275924 1861 mod_timer(&adapter->watchdog_timer, jiffies + 1);
bc7f75fa
AK
1862 }
1863
94fb848b 1864 /* Reset on uncorrectable ECC error */
c8744f44 1865 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
94fb848b
BA
1866 u32 pbeccsts = er32(PBECCSTS);
1867
1868 adapter->corr_errors +=
1869 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1870 adapter->uncorr_errors +=
1871 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1872 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1873
1874 /* Do the reset outside of interrupt context */
1875 schedule_work(&adapter->reset_task);
1876
1877 /* return immediately since reset is imminent */
1878 return IRQ_HANDLED;
1879 }
1880
288379f0 1881 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1882 adapter->total_tx_bytes = 0;
1883 adapter->total_tx_packets = 0;
1884 adapter->total_rx_bytes = 0;
1885 adapter->total_rx_packets = 0;
288379f0 1886 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1887 }
1888
1889 return IRQ_HANDLED;
1890}
1891
8bb62869 1892static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
4662e82b
BA
1893{
1894 struct net_device *netdev = data;
1895 struct e1000_adapter *adapter = netdev_priv(netdev);
1896 struct e1000_hw *hw = &adapter->hw;
116f4a64 1897 u32 icr = er32(ICR);
745d0bd3 1898
361a954e
BP
1899 if (icr & adapter->eiac_mask)
1900 ew32(ICS, (icr & adapter->eiac_mask));
1901
4aea7a5c 1902 if (icr & E1000_ICR_LSC) {
4aea7a5c
BP
1903 hw->mac.get_link_status = true;
1904 /* guard against interrupt when we're going down */
1905 if (!test_bit(__E1000_DOWN, &adapter->state))
b4275924 1906 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4aea7a5c 1907 }
4662e82b 1908
1f0ea197 1909 if (!test_bit(__E1000_DOWN, &adapter->state))
116f4a64 1910 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
4662e82b 1911
4662e82b
BA
1912 return IRQ_HANDLED;
1913}
1914
8bb62869 1915static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
4662e82b
BA
1916{
1917 struct net_device *netdev = data;
1918 struct e1000_adapter *adapter = netdev_priv(netdev);
1919 struct e1000_hw *hw = &adapter->hw;
1920 struct e1000_ring *tx_ring = adapter->tx_ring;
1921
4662e82b
BA
1922 adapter->total_tx_bytes = 0;
1923 adapter->total_tx_packets = 0;
1924
55aa6985 1925 if (!e1000_clean_tx_irq(tx_ring))
4662e82b
BA
1926 /* Ring was not completely cleaned, so fire another interrupt */
1927 ew32(ICS, tx_ring->ims_val);
1928
0a8047ac
BP
1929 if (!test_bit(__E1000_DOWN, &adapter->state))
1930 ew32(IMS, adapter->tx_ring->ims_val);
1931
4662e82b
BA
1932 return IRQ_HANDLED;
1933}
1934
8bb62869 1935static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
4662e82b
BA
1936{
1937 struct net_device *netdev = data;
1938 struct e1000_adapter *adapter = netdev_priv(netdev);
55aa6985 1939 struct e1000_ring *rx_ring = adapter->rx_ring;
4662e82b
BA
1940
1941 /* Write the ITR value calculated at the end of the
1942 * previous interrupt.
1943 */
55aa6985 1944 if (rx_ring->set_itr) {
b77ac46b
DF
1945 u32 itr = rx_ring->itr_val ?
1946 1000000000 / (rx_ring->itr_val * 256) : 0;
1947
1948 writel(itr, rx_ring->itr_register);
55aa6985 1949 rx_ring->set_itr = 0;
4662e82b
BA
1950 }
1951
288379f0 1952 if (napi_schedule_prep(&adapter->napi)) {
4662e82b
BA
1953 adapter->total_rx_bytes = 0;
1954 adapter->total_rx_packets = 0;
288379f0 1955 __napi_schedule(&adapter->napi);
4662e82b
BA
1956 }
1957 return IRQ_HANDLED;
1958}
1959
1960/**
1961 * e1000_configure_msix - Configure MSI-X hardware
1962 *
1963 * e1000_configure_msix sets up the hardware to properly
1964 * generate MSI-X interrupts.
1965 **/
1966static void e1000_configure_msix(struct e1000_adapter *adapter)
1967{
1968 struct e1000_hw *hw = &adapter->hw;
1969 struct e1000_ring *rx_ring = adapter->rx_ring;
1970 struct e1000_ring *tx_ring = adapter->tx_ring;
1971 int vector = 0;
1972 u32 ctrl_ext, ivar = 0;
1973
1974 adapter->eiac_mask = 0;
1975
1976 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1977 if (hw->mac.type == e1000_82574) {
1978 u32 rfctl = er32(RFCTL);
6cf08d1c 1979
4662e82b
BA
1980 rfctl |= E1000_RFCTL_ACK_DIS;
1981 ew32(RFCTL, rfctl);
1982 }
1983
4662e82b
BA
1984 /* Configure Rx vector */
1985 rx_ring->ims_val = E1000_IMS_RXQ0;
1986 adapter->eiac_mask |= rx_ring->ims_val;
1987 if (rx_ring->itr_val)
1988 writel(1000000000 / (rx_ring->itr_val * 256),
c5083cf6 1989 rx_ring->itr_register);
4662e82b 1990 else
c5083cf6 1991 writel(1, rx_ring->itr_register);
4662e82b
BA
1992 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1993
1994 /* Configure Tx vector */
1995 tx_ring->ims_val = E1000_IMS_TXQ0;
1996 vector++;
1997 if (tx_ring->itr_val)
1998 writel(1000000000 / (tx_ring->itr_val * 256),
c5083cf6 1999 tx_ring->itr_register);
4662e82b 2000 else
c5083cf6 2001 writel(1, tx_ring->itr_register);
4662e82b
BA
2002 adapter->eiac_mask |= tx_ring->ims_val;
2003 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2004
2005 /* set vector for Other Causes, e.g. link changes */
2006 vector++;
2007 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2008 if (rx_ring->itr_val)
2009 writel(1000000000 / (rx_ring->itr_val * 256),
2010 hw->hw_addr + E1000_EITR_82574(vector));
2011 else
2012 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2013
2014 /* Cause Tx interrupts on every write back */
18dd2392 2015 ivar |= BIT(31);
4662e82b
BA
2016
2017 ew32(IVAR, ivar);
2018
2019 /* enable MSI-X PBA support */
0a8047ac
BP
2020 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2021 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
4662e82b
BA
2022 ew32(CTRL_EXT, ctrl_ext);
2023 e1e_flush();
2024}
2025
2026void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2027{
2028 if (adapter->msix_entries) {
2029 pci_disable_msix(adapter->pdev);
2030 kfree(adapter->msix_entries);
2031 adapter->msix_entries = NULL;
2032 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2033 pci_disable_msi(adapter->pdev);
2034 adapter->flags &= ~FLAG_MSI_ENABLED;
2035 }
4662e82b
BA
2036}
2037
2038/**
2039 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2040 *
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2043 **/
2044void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045{
2046 int err;
8e86acd7 2047 int i;
4662e82b
BA
2048
2049 switch (adapter->int_mode) {
2050 case E1000E_INT_MODE_MSIX:
2051 if (adapter->flags & FLAG_HAS_MSIX) {
8e86acd7
JK
2052 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053 adapter->msix_entries = kcalloc(adapter->num_vectors,
17e813ec
BA
2054 sizeof(struct
2055 msix_entry),
2056 GFP_KERNEL);
4662e82b 2057 if (adapter->msix_entries) {
0cc7c959
AG
2058 struct e1000_adapter *a = adapter;
2059
8e86acd7 2060 for (i = 0; i < adapter->num_vectors; i++)
4662e82b
BA
2061 adapter->msix_entries[i].entry = i;
2062
0cc7c959
AG
2063 err = pci_enable_msix_range(a->pdev,
2064 a->msix_entries,
2065 a->num_vectors,
2066 a->num_vectors);
2067 if (err > 0)
4662e82b
BA
2068 return;
2069 }
2070 /* MSI-X failed, so fall through and try MSI */
ef456f85 2071 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
4662e82b
BA
2072 e1000e_reset_interrupt_capability(adapter);
2073 }
2074 adapter->int_mode = E1000E_INT_MODE_MSI;
2075 /* Fall through */
2076 case E1000E_INT_MODE_MSI:
2077 if (!pci_enable_msi(adapter->pdev)) {
2078 adapter->flags |= FLAG_MSI_ENABLED;
2079 } else {
2080 adapter->int_mode = E1000E_INT_MODE_LEGACY;
ef456f85 2081 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
4662e82b
BA
2082 }
2083 /* Fall through */
2084 case E1000E_INT_MODE_LEGACY:
2085 /* Don't do anything; this is the system default */
2086 break;
2087 }
8e86acd7
JK
2088
2089 /* store the number of vectors being used */
2090 adapter->num_vectors = 1;
4662e82b
BA
2091}
2092
2093/**
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 *
2096 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2097 * kernel.
2098 **/
2099static int e1000_request_msix(struct e1000_adapter *adapter)
2100{
2101 struct net_device *netdev = adapter->netdev;
2102 int err = 0, vector = 0;
2103
2104 if (strlen(netdev->name) < (IFNAMSIZ - 5))
79f5e840
BA
2105 snprintf(adapter->rx_ring->name,
2106 sizeof(adapter->rx_ring->name) - 1,
135e7245 2107 "%.14s-rx-0", netdev->name);
4662e82b
BA
2108 else
2109 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2110 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2111 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
4662e82b
BA
2112 netdev);
2113 if (err)
5015e53a 2114 return err;
c5083cf6
BA
2115 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2116 E1000_EITR_82574(vector);
4662e82b
BA
2117 adapter->rx_ring->itr_val = adapter->itr;
2118 vector++;
2119
2120 if (strlen(netdev->name) < (IFNAMSIZ - 5))
79f5e840
BA
2121 snprintf(adapter->tx_ring->name,
2122 sizeof(adapter->tx_ring->name) - 1,
135e7245 2123 "%.14s-tx-0", netdev->name);
4662e82b
BA
2124 else
2125 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2126 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2127 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
4662e82b
BA
2128 netdev);
2129 if (err)
5015e53a 2130 return err;
c5083cf6
BA
2131 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2132 E1000_EITR_82574(vector);
4662e82b
BA
2133 adapter->tx_ring->itr_val = adapter->itr;
2134 vector++;
2135
2136 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2137 e1000_msix_other, 0, netdev->name, netdev);
4662e82b 2138 if (err)
5015e53a 2139 return err;
4662e82b
BA
2140
2141 e1000_configure_msix(adapter);
5015e53a 2142
4662e82b 2143 return 0;
4662e82b
BA
2144}
2145
f8d59f78
BA
2146/**
2147 * e1000_request_irq - initialize interrupts
2148 *
2149 * Attempts to configure interrupts using the best available
2150 * capabilities of the hardware and kernel.
2151 **/
bc7f75fa
AK
2152static int e1000_request_irq(struct e1000_adapter *adapter)
2153{
2154 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
2155 int err;
2156
4662e82b
BA
2157 if (adapter->msix_entries) {
2158 err = e1000_request_msix(adapter);
2159 if (!err)
2160 return err;
2161 /* fall back to MSI */
2162 e1000e_reset_interrupt_capability(adapter);
2163 adapter->int_mode = E1000E_INT_MODE_MSI;
2164 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2165 }
4662e82b 2166 if (adapter->flags & FLAG_MSI_ENABLED) {
a0607fd3 2167 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
4662e82b
BA
2168 netdev->name, netdev);
2169 if (!err)
2170 return err;
bc7f75fa 2171
4662e82b
BA
2172 /* fall back to legacy interrupt */
2173 e1000e_reset_interrupt_capability(adapter);
2174 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
2175 }
2176
a0607fd3 2177 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
4662e82b
BA
2178 netdev->name, netdev);
2179 if (err)
2180 e_err("Unable to allocate interrupt, Error: %d\n", err);
2181
bc7f75fa
AK
2182 return err;
2183}
2184
2185static void e1000_free_irq(struct e1000_adapter *adapter)
2186{
2187 struct net_device *netdev = adapter->netdev;
2188
4662e82b
BA
2189 if (adapter->msix_entries) {
2190 int vector = 0;
2191
2192 free_irq(adapter->msix_entries[vector].vector, netdev);
2193 vector++;
2194
2195 free_irq(adapter->msix_entries[vector].vector, netdev);
2196 vector++;
2197
2198 /* Other Causes interrupt vector */
2199 free_irq(adapter->msix_entries[vector].vector, netdev);
2200 return;
bc7f75fa 2201 }
4662e82b
BA
2202
2203 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
2204}
2205
2206/**
2207 * e1000_irq_disable - Mask off interrupt generation on the NIC
2208 **/
2209static void e1000_irq_disable(struct e1000_adapter *adapter)
2210{
2211 struct e1000_hw *hw = &adapter->hw;
2212
bc7f75fa 2213 ew32(IMC, ~0);
4662e82b
BA
2214 if (adapter->msix_entries)
2215 ew32(EIAC_82574, 0);
bc7f75fa 2216 e1e_flush();
8e86acd7
JK
2217
2218 if (adapter->msix_entries) {
2219 int i;
6cf08d1c 2220
8e86acd7
JK
2221 for (i = 0; i < adapter->num_vectors; i++)
2222 synchronize_irq(adapter->msix_entries[i].vector);
2223 } else {
2224 synchronize_irq(adapter->pdev->irq);
2225 }
bc7f75fa
AK
2226}
2227
2228/**
2229 * e1000_irq_enable - Enable default interrupt generation settings
2230 **/
2231static void e1000_irq_enable(struct e1000_adapter *adapter)
2232{
2233 struct e1000_hw *hw = &adapter->hw;
2234
4662e82b
BA
2235 if (adapter->msix_entries) {
2236 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
116f4a64
BP
2237 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2238 IMS_OTHER_MASK);
c8744f44 2239 } else if (hw->mac.type >= e1000_pch_lpt) {
94fb848b 2240 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
4662e82b
BA
2241 } else {
2242 ew32(IMS, IMS_ENABLE_MASK);
2243 }
74ef9c39 2244 e1e_flush();
bc7f75fa
AK
2245}
2246
2247/**
31dbe5b4 2248 * e1000e_get_hw_control - get control of the h/w from f/w
bc7f75fa
AK
2249 * @adapter: address of board private structure
2250 *
31dbe5b4 2251 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
2252 * For ASF and Pass Through versions of f/w this means that
2253 * the driver is loaded. For AMT version (only with 82573)
2254 * of the f/w this means that the network i/f is open.
2255 **/
31dbe5b4 2256void e1000e_get_hw_control(struct e1000_adapter *adapter)
bc7f75fa
AK
2257{
2258 struct e1000_hw *hw = &adapter->hw;
2259 u32 ctrl_ext;
2260 u32 swsm;
2261
2262 /* Let firmware know the driver has taken over */
2263 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2264 swsm = er32(SWSM);
2265 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2266 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2267 ctrl_ext = er32(CTRL_EXT);
ad68076e 2268 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
2269 }
2270}
2271
2272/**
31dbe5b4 2273 * e1000e_release_hw_control - release control of the h/w to f/w
bc7f75fa
AK
2274 * @adapter: address of board private structure
2275 *
31dbe5b4 2276 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
2277 * For ASF and Pass Through versions of f/w this means that the
2278 * driver is no longer loaded. For AMT version (only with 82573) i
2279 * of the f/w this means that the network i/f is closed.
2280 *
2281 **/
31dbe5b4 2282void e1000e_release_hw_control(struct e1000_adapter *adapter)
bc7f75fa
AK
2283{
2284 struct e1000_hw *hw = &adapter->hw;
2285 u32 ctrl_ext;
2286 u32 swsm;
2287
2288 /* Let firmware taken over control of h/w */
2289 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2290 swsm = er32(SWSM);
2291 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2292 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2293 ctrl_ext = er32(CTRL_EXT);
ad68076e 2294 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
2295 }
2296}
2297
bc7f75fa 2298/**
49ce9c2c 2299 * e1000_alloc_ring_dma - allocate memory for a ring structure
bc7f75fa
AK
2300 **/
2301static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2302 struct e1000_ring *ring)
2303{
2304 struct pci_dev *pdev = adapter->pdev;
2305
750afb08
LC
2306 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2307 GFP_KERNEL);
bc7f75fa
AK
2308 if (!ring->desc)
2309 return -ENOMEM;
2310
2311 return 0;
2312}
2313
2314/**
2315 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
55aa6985 2316 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
2317 *
2318 * Return 0 on success, negative on failure
2319 **/
55aa6985 2320int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
bc7f75fa 2321{
55aa6985 2322 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
2323 int err = -ENOMEM, size;
2324
2325 size = sizeof(struct e1000_buffer) * tx_ring->count;
89bf67f1 2326 tx_ring->buffer_info = vzalloc(size);
bc7f75fa
AK
2327 if (!tx_ring->buffer_info)
2328 goto err;
bc7f75fa
AK
2329
2330 /* round up to nearest 4K */
2331 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2332 tx_ring->size = ALIGN(tx_ring->size, 4096);
2333
2334 err = e1000_alloc_ring_dma(adapter, tx_ring);
2335 if (err)
2336 goto err;
2337
2338 tx_ring->next_to_use = 0;
2339 tx_ring->next_to_clean = 0;
bc7f75fa
AK
2340
2341 return 0;
2342err:
2343 vfree(tx_ring->buffer_info);
44defeb3 2344 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
2345 return err;
2346}
2347
2348/**
2349 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
55aa6985 2350 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
2351 *
2352 * Returns 0 on success, negative on failure
2353 **/
55aa6985 2354int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
bc7f75fa 2355{
55aa6985 2356 struct e1000_adapter *adapter = rx_ring->adapter;
47f44e40
AK
2357 struct e1000_buffer *buffer_info;
2358 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
2359
2360 size = sizeof(struct e1000_buffer) * rx_ring->count;
89bf67f1 2361 rx_ring->buffer_info = vzalloc(size);
bc7f75fa
AK
2362 if (!rx_ring->buffer_info)
2363 goto err;
bc7f75fa 2364
47f44e40
AK
2365 for (i = 0; i < rx_ring->count; i++) {
2366 buffer_info = &rx_ring->buffer_info[i];
2367 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2368 sizeof(struct e1000_ps_page),
2369 GFP_KERNEL);
2370 if (!buffer_info->ps_pages)
2371 goto err_pages;
2372 }
bc7f75fa
AK
2373
2374 desc_len = sizeof(union e1000_rx_desc_packet_split);
2375
2376 /* Round up to nearest 4K */
2377 rx_ring->size = rx_ring->count * desc_len;
2378 rx_ring->size = ALIGN(rx_ring->size, 4096);
2379
2380 err = e1000_alloc_ring_dma(adapter, rx_ring);
2381 if (err)
47f44e40 2382 goto err_pages;
bc7f75fa
AK
2383
2384 rx_ring->next_to_clean = 0;
2385 rx_ring->next_to_use = 0;
2386 rx_ring->rx_skb_top = NULL;
2387
2388 return 0;
47f44e40
AK
2389
2390err_pages:
2391 for (i = 0; i < rx_ring->count; i++) {
2392 buffer_info = &rx_ring->buffer_info[i];
2393 kfree(buffer_info->ps_pages);
2394 }
bc7f75fa
AK
2395err:
2396 vfree(rx_ring->buffer_info);
e9262447 2397 e_err("Unable to allocate memory for the receive descriptor ring\n");
bc7f75fa
AK
2398 return err;
2399}
2400
2401/**
2402 * e1000_clean_tx_ring - Free Tx Buffers
55aa6985 2403 * @tx_ring: Tx descriptor ring
bc7f75fa 2404 **/
55aa6985 2405static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
bc7f75fa 2406{
55aa6985 2407 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
2408 struct e1000_buffer *buffer_info;
2409 unsigned long size;
2410 unsigned int i;
2411
2412 for (i = 0; i < tx_ring->count; i++) {
2413 buffer_info = &tx_ring->buffer_info[i];
377b6273 2414 e1000_put_txbuf(tx_ring, buffer_info, false);
bc7f75fa
AK
2415 }
2416
3f0cfa3b 2417 netdev_reset_queue(adapter->netdev);
bc7f75fa
AK
2418 size = sizeof(struct e1000_buffer) * tx_ring->count;
2419 memset(tx_ring->buffer_info, 0, size);
2420
2421 memset(tx_ring->desc, 0, tx_ring->size);
2422
2423 tx_ring->next_to_use = 0;
2424 tx_ring->next_to_clean = 0;
bc7f75fa
AK
2425}
2426
2427/**
2428 * e1000e_free_tx_resources - Free Tx Resources per Queue
55aa6985 2429 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
2430 *
2431 * Free all transmit software resources
2432 **/
55aa6985 2433void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
bc7f75fa 2434{
55aa6985 2435 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa 2436 struct pci_dev *pdev = adapter->pdev;
bc7f75fa 2437
55aa6985 2438 e1000_clean_tx_ring(tx_ring);
bc7f75fa
AK
2439
2440 vfree(tx_ring->buffer_info);
2441 tx_ring->buffer_info = NULL;
2442
2443 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2444 tx_ring->dma);
2445 tx_ring->desc = NULL;
2446}
2447
2448/**
2449 * e1000e_free_rx_resources - Free Rx Resources
55aa6985 2450 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
2451 *
2452 * Free all receive software resources
2453 **/
55aa6985 2454void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
bc7f75fa 2455{
55aa6985 2456 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa 2457 struct pci_dev *pdev = adapter->pdev;
47f44e40 2458 int i;
bc7f75fa 2459
55aa6985 2460 e1000_clean_rx_ring(rx_ring);
bc7f75fa 2461
b1cdfead 2462 for (i = 0; i < rx_ring->count; i++)
47f44e40 2463 kfree(rx_ring->buffer_info[i].ps_pages);
47f44e40 2464
bc7f75fa
AK
2465 vfree(rx_ring->buffer_info);
2466 rx_ring->buffer_info = NULL;
2467
bc7f75fa
AK
2468 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2469 rx_ring->dma);
2470 rx_ring->desc = NULL;
2471}
2472
2473/**
2474 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
2475 * @adapter: pointer to adapter
2476 * @itr_setting: current adapter->itr
2477 * @packets: the number of packets during this measurement interval
2478 * @bytes: the number of bytes during this measurement interval
2479 *
bc7f75fa
AK
2480 * Stores a new ITR value based on packets and byte
2481 * counts during the last interrupt. The advantage of per interrupt
2482 * computation is faster updates and more accurate ITR for the current
2483 * traffic pattern. Constants in this function were computed
2484 * based on theoretical maximum wire speed and thresholds were set based
2485 * on testing data as well as attempting to minimize response time
4662e82b
BA
2486 * while increasing bulk throughput. This functionality is controlled
2487 * by the InterruptThrottleRate module parameter.
bc7f75fa 2488 **/
8bb62869 2489static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
bc7f75fa
AK
2490{
2491 unsigned int retval = itr_setting;
2492
2493 if (packets == 0)
5015e53a 2494 return itr_setting;
bc7f75fa
AK
2495
2496 switch (itr_setting) {
2497 case lowest_latency:
2498 /* handle TSO and jumbo frames */
362e20ca 2499 if (bytes / packets > 8000)
bc7f75fa 2500 retval = bulk_latency;
b1cdfead 2501 else if ((packets < 5) && (bytes > 512))
bc7f75fa 2502 retval = low_latency;
bc7f75fa 2503 break;
e80bd1d1 2504 case low_latency: /* 50 usec aka 20000 ints/s */
bc7f75fa
AK
2505 if (bytes > 10000) {
2506 /* this if handles the TSO accounting */
362e20ca 2507 if (bytes / packets > 8000)
bc7f75fa 2508 retval = bulk_latency;
362e20ca 2509 else if ((packets < 10) || ((bytes / packets) > 1200))
bc7f75fa 2510 retval = bulk_latency;
b1cdfead 2511 else if ((packets > 35))
bc7f75fa 2512 retval = lowest_latency;
362e20ca 2513 } else if (bytes / packets > 2000) {
bc7f75fa
AK
2514 retval = bulk_latency;
2515 } else if (packets <= 2 && bytes < 512) {
2516 retval = lowest_latency;
2517 }
2518 break;
e80bd1d1 2519 case bulk_latency: /* 250 usec aka 4000 ints/s */
bc7f75fa 2520 if (bytes > 25000) {
b1cdfead 2521 if (packets > 35)
bc7f75fa 2522 retval = low_latency;
bc7f75fa
AK
2523 } else if (bytes < 6000) {
2524 retval = low_latency;
2525 }
2526 break;
2527 }
2528
bc7f75fa
AK
2529 return retval;
2530}
2531
2532static void e1000_set_itr(struct e1000_adapter *adapter)
2533{
bc7f75fa
AK
2534 u16 current_itr;
2535 u32 new_itr = adapter->itr;
2536
2537 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2538 if (adapter->link_speed != SPEED_1000) {
2539 current_itr = 0;
2540 new_itr = 4000;
2541 goto set_itr_now;
2542 }
2543
828bac87
BA
2544 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2545 new_itr = 0;
2546 goto set_itr_now;
2547 }
2548
8bb62869
BA
2549 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2550 adapter->total_tx_packets,
2551 adapter->total_tx_bytes);
bc7f75fa
AK
2552 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2553 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2554 adapter->tx_itr = low_latency;
2555
8bb62869
BA
2556 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2557 adapter->total_rx_packets,
2558 adapter->total_rx_bytes);
bc7f75fa
AK
2559 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2560 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2561 adapter->rx_itr = low_latency;
2562
2563 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2564
bc7f75fa 2565 /* counts and packets in update_itr are dependent on these numbers */
33550cec 2566 switch (current_itr) {
bc7f75fa
AK
2567 case lowest_latency:
2568 new_itr = 70000;
2569 break;
2570 case low_latency:
e80bd1d1 2571 new_itr = 20000; /* aka hwitr = ~200 */
bc7f75fa
AK
2572 break;
2573 case bulk_latency:
2574 new_itr = 4000;
2575 break;
2576 default:
2577 break;
2578 }
2579
2580set_itr_now:
2581 if (new_itr != adapter->itr) {
e921eb1a 2582 /* this attempts to bias the interrupt rate towards Bulk
bc7f75fa 2583 * by adding intermediate steps when interrupt rate is
ad68076e
BA
2584 * increasing
2585 */
bc7f75fa 2586 new_itr = new_itr > adapter->itr ?
f0ff4398 2587 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
bc7f75fa 2588 adapter->itr = new_itr;
4662e82b
BA
2589 adapter->rx_ring->itr_val = new_itr;
2590 if (adapter->msix_entries)
2591 adapter->rx_ring->set_itr = 1;
2592 else
e3d14b08 2593 e1000e_write_itr(adapter, new_itr);
bc7f75fa
AK
2594 }
2595}
2596
22a4cca2
MV
2597/**
2598 * e1000e_write_itr - write the ITR value to the appropriate registers
2599 * @adapter: address of board private structure
2600 * @itr: new ITR value to program
2601 *
2602 * e1000e_write_itr determines if the adapter is in MSI-X mode
2603 * and, if so, writes the EITR registers with the ITR value.
2604 * Otherwise, it writes the ITR value into the ITR register.
2605 **/
2606void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2607{
2608 struct e1000_hw *hw = &adapter->hw;
2609 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2610
2611 if (adapter->msix_entries) {
2612 int vector;
2613
2614 for (vector = 0; vector < adapter->num_vectors; vector++)
2615 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2616 } else {
2617 ew32(ITR, new_itr);
2618 }
2619}
2620
4662e82b
BA
2621/**
2622 * e1000_alloc_queues - Allocate memory for all rings
2623 * @adapter: board private structure to initialize
2624 **/
9f9a12f8 2625static int e1000_alloc_queues(struct e1000_adapter *adapter)
4662e82b 2626{
55aa6985
BA
2627 int size = sizeof(struct e1000_ring);
2628
2629 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
4662e82b
BA
2630 if (!adapter->tx_ring)
2631 goto err;
55aa6985
BA
2632 adapter->tx_ring->count = adapter->tx_ring_count;
2633 adapter->tx_ring->adapter = adapter;
4662e82b 2634
55aa6985 2635 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
4662e82b
BA
2636 if (!adapter->rx_ring)
2637 goto err;
55aa6985
BA
2638 adapter->rx_ring->count = adapter->rx_ring_count;
2639 adapter->rx_ring->adapter = adapter;
4662e82b
BA
2640
2641 return 0;
2642err:
2643 e_err("Unable to allocate memory for queues\n");
2644 kfree(adapter->rx_ring);
2645 kfree(adapter->tx_ring);
2646 return -ENOMEM;
2647}
2648
bc7f75fa 2649/**
c58c8a78 2650 * e1000e_poll - NAPI Rx polling callback
ad68076e 2651 * @napi: struct associated with this polling callback
0bcd952f 2652 * @budget: number of packets driver is allowed to process this poll
bc7f75fa 2653 **/
0bcd952f 2654static int e1000e_poll(struct napi_struct *napi, int budget)
bc7f75fa 2655{
c58c8a78
BA
2656 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2657 napi);
4662e82b 2658 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2659 struct net_device *poll_dev = adapter->netdev;
679e8a0f 2660 int tx_cleaned = 1, work_done = 0;
bc7f75fa 2661
4cf1653a 2662 adapter = netdev_priv(poll_dev);
bc7f75fa 2663
c58c8a78
BA
2664 if (!adapter->msix_entries ||
2665 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2666 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
4662e82b 2667
0bcd952f 2668 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
d2c7ddd6 2669
0bcd952f
JB
2670 if (!tx_cleaned || work_done == budget)
2671 return budget;
bc7f75fa 2672
0bcd952f
JB
2673 /* Exit the polling mode, but don't re-enable interrupts if stack might
2674 * poll us due to busy-polling
2675 */
2676 if (likely(napi_complete_done(napi, work_done))) {
bc7f75fa
AK
2677 if (adapter->itr_setting & 3)
2678 e1000_set_itr(adapter);
a3c69fef
JB
2679 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2680 if (adapter->msix_entries)
1f0ea197 2681 ew32(IMS, adapter->rx_ring->ims_val);
a3c69fef
JB
2682 else
2683 e1000_irq_enable(adapter);
2684 }
bc7f75fa
AK
2685 }
2686
2687 return work_done;
2688}
2689
80d5c368 2690static int e1000_vlan_rx_add_vid(struct net_device *netdev,
603cdca9 2691 __always_unused __be16 proto, u16 vid)
bc7f75fa
AK
2692{
2693 struct e1000_adapter *adapter = netdev_priv(netdev);
2694 struct e1000_hw *hw = &adapter->hw;
2695 u32 vfta, index;
2696
2697 /* don't update vlan cookie if already programmed */
2698 if ((adapter->hw.mng_cookie.status &
2699 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2700 (vid == adapter->mng_vlan_id))
8e586137 2701 return 0;
caaddaf8 2702
bc7f75fa 2703 /* add VID to filter table */
caaddaf8
BA
2704 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2705 index = (vid >> 5) & 0x7F;
2706 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
18dd2392 2707 vfta |= BIT((vid & 0x1F));
caaddaf8
BA
2708 hw->mac.ops.write_vfta(hw, index, vfta);
2709 }
86d70e53
JK
2710
2711 set_bit(vid, adapter->active_vlans);
8e586137
JP
2712
2713 return 0;
bc7f75fa
AK
2714}
2715
80d5c368 2716static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
603cdca9 2717 __always_unused __be16 proto, u16 vid)
bc7f75fa
AK
2718{
2719 struct e1000_adapter *adapter = netdev_priv(netdev);
2720 struct e1000_hw *hw = &adapter->hw;
2721 u32 vfta, index;
2722
bc7f75fa
AK
2723 if ((adapter->hw.mng_cookie.status &
2724 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2725 (vid == adapter->mng_vlan_id)) {
2726 /* release control to f/w */
31dbe5b4 2727 e1000e_release_hw_control(adapter);
8e586137 2728 return 0;
bc7f75fa
AK
2729 }
2730
2731 /* remove VID from filter table */
caaddaf8
BA
2732 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2733 index = (vid >> 5) & 0x7F;
2734 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
18dd2392 2735 vfta &= ~BIT((vid & 0x1F));
caaddaf8
BA
2736 hw->mac.ops.write_vfta(hw, index, vfta);
2737 }
86d70e53
JK
2738
2739 clear_bit(vid, adapter->active_vlans);
8e586137
JP
2740
2741 return 0;
bc7f75fa
AK
2742}
2743
86d70e53
JK
2744/**
2745 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2746 * @adapter: board private structure to initialize
2747 **/
2748static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
bc7f75fa
AK
2749{
2750 struct net_device *netdev = adapter->netdev;
86d70e53
JK
2751 struct e1000_hw *hw = &adapter->hw;
2752 u32 rctl;
bc7f75fa 2753
86d70e53
JK
2754 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2755 /* disable VLAN receive filtering */
2756 rctl = er32(RCTL);
2757 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2758 ew32(RCTL, rctl);
2759
2760 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
80d5c368
PM
2761 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2762 adapter->mng_vlan_id);
86d70e53 2763 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
bc7f75fa 2764 }
bc7f75fa
AK
2765 }
2766}
2767
86d70e53
JK
2768/**
2769 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2770 * @adapter: board private structure to initialize
2771 **/
2772static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2773{
2774 struct e1000_hw *hw = &adapter->hw;
2775 u32 rctl;
2776
2777 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2778 /* enable VLAN receive filtering */
2779 rctl = er32(RCTL);
2780 rctl |= E1000_RCTL_VFE;
2781 rctl &= ~E1000_RCTL_CFIEN;
2782 ew32(RCTL, rctl);
2783 }
2784}
bc7f75fa 2785
86d70e53 2786/**
889ad456 2787 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
86d70e53
JK
2788 * @adapter: board private structure to initialize
2789 **/
2790static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
bc7f75fa 2791{
bc7f75fa 2792 struct e1000_hw *hw = &adapter->hw;
86d70e53 2793 u32 ctrl;
bc7f75fa 2794
86d70e53
JK
2795 /* disable VLAN tag insert/strip */
2796 ctrl = er32(CTRL);
2797 ctrl &= ~E1000_CTRL_VME;
2798 ew32(CTRL, ctrl);
2799}
bc7f75fa 2800
86d70e53
JK
2801/**
2802 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2803 * @adapter: board private structure to initialize
2804 **/
2805static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2806{
2807 struct e1000_hw *hw = &adapter->hw;
2808 u32 ctrl;
bc7f75fa 2809
86d70e53
JK
2810 /* enable VLAN tag insert/strip */
2811 ctrl = er32(CTRL);
2812 ctrl |= E1000_CTRL_VME;
2813 ew32(CTRL, ctrl);
2814}
bc7f75fa 2815
86d70e53
JK
2816static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2817{
2818 struct net_device *netdev = adapter->netdev;
2819 u16 vid = adapter->hw.mng_cookie.vlan_id;
2820 u16 old_vid = adapter->mng_vlan_id;
2821
e5fe2541 2822 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
80d5c368 2823 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
86d70e53 2824 adapter->mng_vlan_id = vid;
bc7f75fa
AK
2825 }
2826
86d70e53 2827 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
80d5c368 2828 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
bc7f75fa
AK
2829}
2830
2831static void e1000_restore_vlan(struct e1000_adapter *adapter)
2832{
2833 u16 vid;
2834
80d5c368 2835 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
bc7f75fa 2836
86d70e53 2837 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 2838 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
bc7f75fa
AK
2839}
2840
cd791618 2841static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
bc7f75fa
AK
2842{
2843 struct e1000_hw *hw = &adapter->hw;
cd791618 2844 u32 manc, manc2h, mdef, i, j;
bc7f75fa
AK
2845
2846 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2847 return;
2848
2849 manc = er32(MANC);
2850
e921eb1a 2851 /* enable receiving management packets to the host. this will probably
bc7f75fa 2852 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2853 * the packets will be handled on SMBUS
2854 */
bc7f75fa
AK
2855 manc |= E1000_MANC_EN_MNG2HOST;
2856 manc2h = er32(MANC2H);
cd791618
BA
2857
2858 switch (hw->mac.type) {
2859 default:
2860 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2861 break;
2862 case e1000_82574:
2863 case e1000_82583:
e921eb1a 2864 /* Check if IPMI pass-through decision filter already exists;
cd791618
BA
2865 * if so, enable it.
2866 */
2867 for (i = 0, j = 0; i < 8; i++) {
2868 mdef = er32(MDEF(i));
2869
2870 /* Ignore filters with anything other than IPMI ports */
3b21b508 2871 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
cd791618
BA
2872 continue;
2873
2874 /* Enable this decision filter in MANC2H */
2875 if (mdef)
18dd2392 2876 manc2h |= BIT(i);
cd791618
BA
2877
2878 j |= mdef;
2879 }
2880
2881 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2882 break;
2883
2884 /* Create new decision filter in an empty filter */
2885 for (i = 0, j = 0; i < 8; i++)
2886 if (er32(MDEF(i)) == 0) {
2887 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2888 E1000_MDEF_PORT_664));
18dd2392 2889 manc2h |= BIT(1);
cd791618
BA
2890 j++;
2891 break;
2892 }
2893
2894 if (!j)
2895 e_warn("Unable to create IPMI pass-through filter\n");
2896 break;
2897 }
2898
bc7f75fa
AK
2899 ew32(MANC2H, manc2h);
2900 ew32(MANC, manc);
2901}
2902
2903/**
af667a29 2904 * e1000_configure_tx - Configure Transmit Unit after Reset
bc7f75fa
AK
2905 * @adapter: board private structure
2906 *
2907 * Configure the Tx unit of the MAC after a reset.
2908 **/
2909static void e1000_configure_tx(struct e1000_adapter *adapter)
2910{
2911 struct e1000_hw *hw = &adapter->hw;
2912 struct e1000_ring *tx_ring = adapter->tx_ring;
2913 u64 tdba;
e7e834aa 2914 u32 tdlen, tctl, tarc;
bc7f75fa
AK
2915
2916 /* Setup the HW Tx Head and Tail descriptor pointers */
2917 tdba = tx_ring->dma;
2918 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1e36052e
BA
2919 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2920 ew32(TDBAH(0), (tdba >> 32));
2921 ew32(TDLEN(0), tdlen);
2922 ew32(TDH(0), 0);
2923 ew32(TDT(0), 0);
2924 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2925 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
bc7f75fa 2926
0845d45e
JJB
2927 writel(0, tx_ring->head);
2928 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2929 e1000e_update_tdt_wa(tx_ring, 0);
2930 else
2931 writel(0, tx_ring->tail);
2932
bc7f75fa
AK
2933 /* Set the Tx Interrupt Delay register */
2934 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2935 /* Tx irq moderation */
bc7f75fa
AK
2936 ew32(TADV, adapter->tx_abs_int_delay);
2937
3a3b7586
JB
2938 if (adapter->flags2 & FLAG2_DMA_BURST) {
2939 u32 txdctl = er32(TXDCTL(0));
6cf08d1c 2940
3a3b7586
JB
2941 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2942 E1000_TXDCTL_WTHRESH);
e921eb1a 2943 /* set up some performance related parameters to encourage the
3a3b7586
JB
2944 * hardware to use the bus more efficiently in bursts, depends
2945 * on the tx_int_delay to be enabled,
8edc0e62 2946 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
3a3b7586
JB
2947 * hthresh = 1 ==> prefetch when one or more available
2948 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2949 * BEWARE: this seems to work but should be considered first if
af667a29 2950 * there are Tx hangs or other Tx related bugs
3a3b7586
JB
2951 */
2952 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2953 ew32(TXDCTL(0), txdctl);
3a3b7586 2954 }
56032be7
BA
2955 /* erratum work around: set txdctl the same for both queues */
2956 ew32(TXDCTL(1), er32(TXDCTL(0)));
3a3b7586 2957
e7e834aa
DE
2958 /* Program the Transmit Control Register */
2959 tctl = er32(TCTL);
2960 tctl &= ~E1000_TCTL_CT;
2961 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2962 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2963
bc7f75fa 2964 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2965 tarc = er32(TARC(0));
e921eb1a 2966 /* set the speed mode bit, we'll clear it if we're not at
ad68076e
BA
2967 * gigabit link later
2968 */
18dd2392 2969#define SPEED_MODE_BIT BIT(21)
bc7f75fa 2970 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2971 ew32(TARC(0), tarc);
bc7f75fa
AK
2972 }
2973
2974 /* errata: program both queues to unweighted RR */
2975 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2976 tarc = er32(TARC(0));
bc7f75fa 2977 tarc |= 1;
e9ec2c0f
JK
2978 ew32(TARC(0), tarc);
2979 tarc = er32(TARC(1));
bc7f75fa 2980 tarc |= 1;
e9ec2c0f 2981 ew32(TARC(1), tarc);
bc7f75fa
AK
2982 }
2983
bc7f75fa
AK
2984 /* Setup Transmit Descriptor Settings for eop descriptor */
2985 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2986
2987 /* only set IDE if we are delaying interrupts using the timers */
2988 if (adapter->tx_int_delay)
2989 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2990
2991 /* enable Report Status bit */
2992 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2993
e7e834aa
DE
2994 ew32(TCTL, tctl);
2995
57cde763 2996 hw->mac.ops.config_collision_dist(hw);
79849ebc 2997
b10effb9
SN
2998 /* SPT and KBL Si errata workaround to avoid data corruption */
2999 if (hw->mac.type == e1000_pch_spt) {
79849ebc
DE
3000 u32 reg_val;
3001
3002 reg_val = er32(IOSFPC);
3003 reg_val |= E1000_RCTL_RDMTS_HEX;
3004 ew32(IOSFPC, reg_val);
3005
3006 reg_val = er32(TARC(0));
c0f4b163
SN
3007 /* SPT and KBL Si errata workaround to avoid Tx hang.
3008 * Dropping the number of outstanding requests from
3009 * 3 to 2 in order to avoid a buffer overrun.
3010 */
3011 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3012 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
79849ebc
DE
3013 ew32(TARC(0), reg_val);
3014 }
bc7f75fa
AK
3015}
3016
3017/**
3018 * e1000_setup_rctl - configure the receive control registers
3019 * @adapter: Board private structure
3020 **/
3021#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023static void e1000_setup_rctl(struct e1000_adapter *adapter)
3024{
3025 struct e1000_hw *hw = &adapter->hw;
3026 u32 rctl, rfctl;
bc7f75fa
AK
3027 u32 pages = 0;
3028
b20a7744
DE
3029 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3030 * If jumbo frames not set, program related MAC/PHY registers
3031 * to h/w defaults
3032 */
3033 if (hw->mac.type >= e1000_pch2lan) {
3034 s32 ret_val;
3035
3036 if (adapter->netdev->mtu > ETH_DATA_LEN)
3037 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3038 else
3039 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3040
3041 if (ret_val)
3042 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3043 }
a1ce6473 3044
bc7f75fa
AK
3045 /* Program MC offset vector base */
3046 rctl = er32(RCTL);
3047 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3048 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
f0ff4398
BA
3049 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3050 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
bc7f75fa
AK
3051
3052 /* Do not Store bad packets */
3053 rctl &= ~E1000_RCTL_SBP;
3054
3055 /* Enable Long Packet receive */
3056 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3057 rctl &= ~E1000_RCTL_LPE;
3058 else
3059 rctl |= E1000_RCTL_LPE;
3060
eb7c3adb
JK
3061 /* Some systems expect that the CRC is included in SMBUS traffic. The
3062 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3063 * host memory when this is enabled
3064 */
3065 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3066 rctl |= E1000_RCTL_SECRC;
5918bd88 3067
a4f58f54
BA
3068 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3069 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3070 u16 phy_data;
3071
3072 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3073 phy_data &= 0xfff8;
18dd2392 3074 phy_data |= BIT(2);
a4f58f54
BA
3075 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3076
3077 e1e_rphy(hw, 22, &phy_data);
3078 phy_data &= 0x0fff;
18dd2392 3079 phy_data |= BIT(14);
a4f58f54
BA
3080 e1e_wphy(hw, 0x10, 0x2823);
3081 e1e_wphy(hw, 0x11, 0x0003);
3082 e1e_wphy(hw, 22, phy_data);
3083 }
3084
bc7f75fa
AK
3085 /* Setup buffer sizes */
3086 rctl &= ~E1000_RCTL_SZ_4096;
3087 rctl |= E1000_RCTL_BSEX;
3088 switch (adapter->rx_buffer_len) {
bc7f75fa
AK
3089 case 2048:
3090 default:
3091 rctl |= E1000_RCTL_SZ_2048;
3092 rctl &= ~E1000_RCTL_BSEX;
3093 break;
3094 case 4096:
3095 rctl |= E1000_RCTL_SZ_4096;
3096 break;
3097 case 8192:
3098 rctl |= E1000_RCTL_SZ_8192;
3099 break;
3100 case 16384:
3101 rctl |= E1000_RCTL_SZ_16384;
3102 break;
3103 }
3104
5f450212
BA
3105 /* Enable Extended Status in all Receive Descriptors */
3106 rfctl = er32(RFCTL);
3107 rfctl |= E1000_RFCTL_EXTEN;
f6bd5577 3108 ew32(RFCTL, rfctl);
5f450212 3109
e921eb1a 3110 /* 82571 and greater support packet-split where the protocol
bc7f75fa
AK
3111 * header is placed in skb->data and the packet data is
3112 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3113 * In the case of a non-split, skb->data is linearly filled,
3114 * followed by the page buffers. Therefore, skb->data is
3115 * sized to hold the largest protocol header.
3116 *
3117 * allocations using alloc_page take too long for regular MTU
3118 * so only enable packet split for jumbo frames
3119 *
3120 * Using pages when the page size is greater than 16k wastes
3121 * a lot of memory, since we allocate 3 pages at all times
3122 * per packet.
3123 */
bc7f75fa 3124 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
79d4e908 3125 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 3126 adapter->rx_ps_pages = pages;
97ac8cae
BA
3127 else
3128 adapter->rx_ps_pages = 0;
bc7f75fa
AK
3129
3130 if (adapter->rx_ps_pages) {
90da0669
BA
3131 u32 psrctl = 0;
3132
140a7480
AK
3133 /* Enable Packet split descriptors */
3134 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa 3135
e5fe2541 3136 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
bc7f75fa
AK
3137
3138 switch (adapter->rx_ps_pages) {
3139 case 3:
e5fe2541
BA
3140 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3141 /* fall-through */
bc7f75fa 3142 case 2:
e5fe2541
BA
3143 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3144 /* fall-through */
bc7f75fa 3145 case 1:
e5fe2541 3146 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
bc7f75fa
AK
3147 break;
3148 }
3149
3150 ew32(PSRCTL, psrctl);
3151 }
3152
cf955e6c
BG
3153 /* This is useful for sniffing bad packets. */
3154 if (adapter->netdev->features & NETIF_F_RXALL) {
3155 /* UPE and MPE will be handled by normal PROMISC logic
e921eb1a
BA
3156 * in e1000e_set_rx_mode
3157 */
e80bd1d1
BA
3158 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3159 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3160 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
cf955e6c 3161
e80bd1d1
BA
3162 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3163 E1000_RCTL_DPF | /* Allow filtered pause */
3164 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
cf955e6c
BG
3165 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3166 * and that breaks VLANs.
3167 */
3168 }
3169
bc7f75fa 3170 ew32(RCTL, rctl);
318a94d6 3171 /* just started the receive unit, no need to restart */
12d43f7d 3172 adapter->flags &= ~FLAG_RESTART_NOW;
bc7f75fa
AK
3173}
3174
3175/**
3176 * e1000_configure_rx - Configure Receive Unit after Reset
3177 * @adapter: board private structure
3178 *
3179 * Configure the Rx unit of the MAC after a reset.
3180 **/
3181static void e1000_configure_rx(struct e1000_adapter *adapter)
3182{
3183 struct e1000_hw *hw = &adapter->hw;
3184 struct e1000_ring *rx_ring = adapter->rx_ring;
3185 u64 rdba;
3186 u32 rdlen, rctl, rxcsum, ctrl_ext;
3187
3188 if (adapter->rx_ps_pages) {
3189 /* this is a 32 byte descriptor */
3190 rdlen = rx_ring->count *
af667a29 3191 sizeof(union e1000_rx_desc_packet_split);
bc7f75fa
AK
3192 adapter->clean_rx = e1000_clean_rx_irq_ps;
3193 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae 3194 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
5f450212 3195 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
97ac8cae
BA
3196 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3197 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 3198 } else {
5f450212 3199 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
bc7f75fa
AK
3200 adapter->clean_rx = e1000_clean_rx_irq;
3201 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3202 }
3203
3204 /* disable receives while setting up the descriptors */
3205 rctl = er32(RCTL);
7f99ae63
BA
3206 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3207 ew32(RCTL, rctl & ~E1000_RCTL_EN);
bc7f75fa 3208 e1e_flush();
ab6973ae 3209 usleep_range(10000, 11000);
bc7f75fa 3210
3a3b7586 3211 if (adapter->flags2 & FLAG2_DMA_BURST) {
e921eb1a 3212 /* set the writeback threshold (only takes effect if the RDTR
3a3b7586 3213 * is set). set GRAN=1 and write back up to 0x4 worth, and
af667a29 3214 * enable prefetching of 0x20 Rx descriptors
3a3b7586
JB
3215 * granularity = 01
3216 * wthresh = 04,
3217 * hthresh = 04,
3218 * pthresh = 0x20
3219 */
3220 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3221 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3a3b7586
JB
3222 }
3223
bc7f75fa
AK
3224 /* set the Receive Delay Timer Register */
3225 ew32(RDTR, adapter->rx_int_delay);
3226
3227 /* irq moderation */
3228 ew32(RADV, adapter->rx_abs_int_delay);
828bac87 3229 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
22a4cca2 3230 e1000e_write_itr(adapter, adapter->itr);
bc7f75fa
AK
3231
3232 ctrl_ext = er32(CTRL_EXT);
bc7f75fa
AK
3233 /* Auto-Mask interrupts upon ICR access */
3234 ctrl_ext |= E1000_CTRL_EXT_IAME;
3235 ew32(IAM, 0xffffffff);
3236 ew32(CTRL_EXT, ctrl_ext);
3237 e1e_flush();
3238
e921eb1a 3239 /* Setup the HW Rx Head and Tail Descriptor Pointers and
ad68076e
BA
3240 * the Base and Length of the Rx Descriptor Ring
3241 */
bc7f75fa 3242 rdba = rx_ring->dma;
1e36052e
BA
3243 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3244 ew32(RDBAH(0), (rdba >> 32));
3245 ew32(RDLEN(0), rdlen);
3246 ew32(RDH(0), 0);
3247 ew32(RDT(0), 0);
3248 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3249 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
bc7f75fa 3250
0845d45e
JJB
3251 writel(0, rx_ring->head);
3252 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3253 e1000e_update_rdt_wa(rx_ring, 0);
3254 else
3255 writel(0, rx_ring->tail);
3256
bc7f75fa
AK
3257 /* Enable Receive Checksum Offload for TCP and UDP */
3258 rxcsum = er32(RXCSUM);
2e1706f2 3259 if (adapter->netdev->features & NETIF_F_RXCSUM)
bc7f75fa 3260 rxcsum |= E1000_RXCSUM_TUOFL;
2e1706f2 3261 else
bc7f75fa 3262 rxcsum &= ~E1000_RXCSUM_TUOFL;
bc7f75fa
AK
3263 ew32(RXCSUM, rxcsum);
3264
3e35d991
BA
3265 /* With jumbo frames, excessive C-state transition latencies result
3266 * in dropped transactions.
3267 */
3268 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3269 u32 lat =
3270 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3271 adapter->max_frame_size) * 8 / 1000;
3272
3273 if (adapter->flags & FLAG_IS_ICH) {
53ec5498 3274 u32 rxdctl = er32(RXDCTL(0));
6cf08d1c 3275
b701cacd 3276 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
53ec5498 3277 }
3e35d991 3278
8299b006
MT
3279 dev_info(&adapter->pdev->dev,
3280 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
e2c65448 3281 pm_qos_update_request(&adapter->pm_qos_req, lat);
3e35d991 3282 } else {
e2c65448 3283 pm_qos_update_request(&adapter->pm_qos_req,
3e35d991 3284 PM_QOS_DEFAULT_VALUE);
97ac8cae 3285 }
bc7f75fa
AK
3286
3287 /* Enable Receives */
3288 ew32(RCTL, rctl);
3289}
3290
3291/**
ef9b965a
JB
3292 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3293 * @netdev: network interface device structure
bc7f75fa 3294 *
ef9b965a
JB
3295 * Writes multicast address list to the MTA hash table.
3296 * Returns: -ENOMEM on failure
3297 * 0 on no addresses written
3298 * X on writing X addresses to MTA
3299 */
3300static int e1000e_write_mc_addr_list(struct net_device *netdev)
3301{
3302 struct e1000_adapter *adapter = netdev_priv(netdev);
3303 struct e1000_hw *hw = &adapter->hw;
3304 struct netdev_hw_addr *ha;
3305 u8 *mta_list;
3306 int i;
3307
3308 if (netdev_mc_empty(netdev)) {
3309 /* nothing to program, so clear mc list */
3310 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3311 return 0;
3312 }
3313
6396bb22 3314 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
ef9b965a
JB
3315 if (!mta_list)
3316 return -ENOMEM;
3317
3318 /* update_mc_addr_list expects a packed array of only addresses. */
3319 i = 0;
3320 netdev_for_each_mc_addr(ha, netdev)
f0ff4398 3321 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
ef9b965a
JB
3322
3323 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3324 kfree(mta_list);
3325
3326 return netdev_mc_count(netdev);
3327}
3328
3329/**
3330 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3331 * @netdev: network interface device structure
bc7f75fa 3332 *
ef9b965a
JB
3333 * Writes unicast address list to the RAR table.
3334 * Returns: -ENOMEM on failure/insufficient address space
3335 * 0 on no addresses written
3336 * X on writing X addresses to the RAR table
bc7f75fa 3337 **/
ef9b965a 3338static int e1000e_write_uc_addr_list(struct net_device *netdev)
bc7f75fa 3339{
ef9b965a
JB
3340 struct e1000_adapter *adapter = netdev_priv(netdev);
3341 struct e1000_hw *hw = &adapter->hw;
b3e5bf1f 3342 unsigned int rar_entries;
ef9b965a
JB
3343 int count = 0;
3344
b3e5bf1f
DE
3345 rar_entries = hw->mac.ops.rar_get_count(hw);
3346
ef9b965a
JB
3347 /* save a rar entry for our hardware address */
3348 rar_entries--;
3349
3350 /* save a rar entry for the LAA workaround */
3351 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3352 rar_entries--;
3353
3354 /* return ENOMEM indicating insufficient memory for addresses */
3355 if (netdev_uc_count(netdev) > rar_entries)
3356 return -ENOMEM;
3357
3358 if (!netdev_uc_empty(netdev) && rar_entries) {
3359 struct netdev_hw_addr *ha;
3360
e921eb1a 3361 /* write the addresses in reverse order to avoid write
ef9b965a
JB
3362 * combining
3363 */
3364 netdev_for_each_uc_addr(ha, netdev) {
847042a6 3365 int ret_val;
b3e5bf1f 3366
ef9b965a
JB
3367 if (!rar_entries)
3368 break;
847042a6
BW
3369 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3370 if (ret_val < 0)
b3e5bf1f 3371 return -ENOMEM;
ef9b965a
JB
3372 count++;
3373 }
3374 }
3375
3376 /* zero out the remaining RAR entries not used above */
3377 for (; rar_entries > 0; rar_entries--) {
3378 ew32(RAH(rar_entries), 0);
3379 ew32(RAL(rar_entries), 0);
3380 }
3381 e1e_flush();
3382
3383 return count;
bc7f75fa
AK
3384}
3385
3386/**
ef9b965a 3387 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
bc7f75fa
AK
3388 * @netdev: network interface device structure
3389 *
ef9b965a
JB
3390 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3391 * address list or the network interface flags are updated. This routine is
3392 * responsible for configuring the hardware for proper unicast, multicast,
bc7f75fa
AK
3393 * promiscuous mode, and all-multi behavior.
3394 **/
ef9b965a 3395static void e1000e_set_rx_mode(struct net_device *netdev)
bc7f75fa
AK
3396{
3397 struct e1000_adapter *adapter = netdev_priv(netdev);
3398 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 3399 u32 rctl;
bc7f75fa 3400
63eb48f1
DE
3401 if (pm_runtime_suspended(netdev->dev.parent))
3402 return;
3403
bc7f75fa 3404 /* Check for Promiscuous and All Multicast modes */
bc7f75fa
AK
3405 rctl = er32(RCTL);
3406
ef9b965a
JB
3407 /* clear the affected bits */
3408 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3409
bc7f75fa
AK
3410 if (netdev->flags & IFF_PROMISC) {
3411 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
86d70e53
JK
3412 /* Do not hardware filter VLANs in promisc mode */
3413 e1000e_vlan_filter_disable(adapter);
bc7f75fa 3414 } else {
ef9b965a 3415 int count;
3d3a1676 3416
746b9f02
PM
3417 if (netdev->flags & IFF_ALLMULTI) {
3418 rctl |= E1000_RCTL_MPE;
746b9f02 3419 } else {
e921eb1a 3420 /* Write addresses to the MTA, if the attempt fails
ef9b965a
JB
3421 * then we should just turn on promiscuous mode so
3422 * that we can at least receive multicast traffic
3423 */
3424 count = e1000e_write_mc_addr_list(netdev);
3425 if (count < 0)
3426 rctl |= E1000_RCTL_MPE;
746b9f02 3427 }
86d70e53 3428 e1000e_vlan_filter_enable(adapter);
e921eb1a 3429 /* Write addresses to available RAR registers, if there is not
ef9b965a
JB
3430 * sufficient space to store all the addresses then enable
3431 * unicast promiscuous mode
bc7f75fa 3432 */
ef9b965a
JB
3433 count = e1000e_write_uc_addr_list(netdev);
3434 if (count < 0)
3435 rctl |= E1000_RCTL_UPE;
bc7f75fa 3436 }
86d70e53 3437
ef9b965a
JB
3438 ew32(RCTL, rctl);
3439
83808641 3440 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
86d70e53
JK
3441 e1000e_vlan_strip_enable(adapter);
3442 else
3443 e1000e_vlan_strip_disable(adapter);
bc7f75fa
AK
3444}
3445
70495a50
BA
3446static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3447{
3448 struct e1000_hw *hw = &adapter->hw;
3449 u32 mrqc, rxcsum;
5c8d19da 3450 u32 rss_key[10];
70495a50 3451 int i;
70495a50 3452
5c8d19da 3453 netdev_rss_key_fill(rss_key, sizeof(rss_key));
70495a50 3454 for (i = 0; i < 10; i++)
5c8d19da 3455 ew32(RSSRK(i), rss_key[i]);
70495a50
BA
3456
3457 /* Direct all traffic to queue 0 */
3458 for (i = 0; i < 32; i++)
3459 ew32(RETA(i), 0);
3460
e921eb1a 3461 /* Disable raw packet checksumming so that RSS hash is placed in
70495a50
BA
3462 * descriptor on writeback.
3463 */
3464 rxcsum = er32(RXCSUM);
3465 rxcsum |= E1000_RXCSUM_PCSD;
3466
3467 ew32(RXCSUM, rxcsum);
3468
3469 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3470 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3471 E1000_MRQC_RSS_FIELD_IPV6 |
3472 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3473 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3474
3475 ew32(MRQC, mrqc);
3476}
3477
b67e1913
BA
3478/**
3479 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3480 * @adapter: board private structure
3481 * @timinca: pointer to returned time increment attributes
3482 *
3483 * Get attributes for incrementing the System Time Register SYSTIML/H at
3484 * the default base frequency, and set the cyclecounter shift value.
3485 **/
d89777bf 3486s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
b67e1913
BA
3487{
3488 struct e1000_hw *hw = &adapter->hw;
3489 u32 incvalue, incperiod, shift;
3490
79849ebc
DE
3491 /* Make sure clock is enabled on I217/I218/I219 before checking
3492 * the frequency
3493 */
c8744f44 3494 if ((hw->mac.type >= e1000_pch_lpt) &&
b67e1913
BA
3495 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3496 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3497 u32 fextnvm7 = er32(FEXTNVM7);
3498
18dd2392
JK
3499 if (!(fextnvm7 & BIT(0))) {
3500 ew32(FEXTNVM7, fextnvm7 | BIT(0));
b67e1913
BA
3501 e1e_flush();
3502 }
3503 }
3504
3505 switch (hw->mac.type) {
3506 case e1000_pch2lan:
5313eecc 3507 /* Stable 96MHz frequency */
68fe1d5d
SN
3508 incperiod = INCPERIOD_96MHZ;
3509 incvalue = INCVALUE_96MHZ;
3510 shift = INCVALUE_SHIFT_96MHZ;
3511 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
5313eecc 3512 break;
b67e1913 3513 case e1000_pch_lpt:
83129b37 3514 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
b67e1913 3515 /* Stable 96MHz frequency */
68fe1d5d
SN
3516 incperiod = INCPERIOD_96MHZ;
3517 incvalue = INCVALUE_96MHZ;
3518 shift = INCVALUE_SHIFT_96MHZ;
3519 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
83129b37
YL
3520 } else {
3521 /* Stable 25MHz frequency */
68fe1d5d
SN
3522 incperiod = INCPERIOD_25MHZ;
3523 incvalue = INCVALUE_25MHZ;
3524 shift = INCVALUE_SHIFT_25MHZ;
83129b37
YL
3525 adapter->cc.shift = shift;
3526 }
3527 break;
3528 case e1000_pch_spt:
fff200ca
BP
3529 /* Stable 24MHz frequency */
3530 incperiod = INCPERIOD_24MHZ;
3531 incvalue = INCVALUE_24MHZ;
3532 shift = INCVALUE_SHIFT_24MHZ;
3533 adapter->cc.shift = shift;
3534 break;
68fe1d5d
SN
3535 case e1000_pch_cnp:
3536 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3537 /* Stable 24MHz frequency */
3538 incperiod = INCPERIOD_24MHZ;
3539 incvalue = INCVALUE_24MHZ;
3540 shift = INCVALUE_SHIFT_24MHZ;
3541 adapter->cc.shift = shift;
3542 } else {
3543 /* Stable 38400KHz frequency */
3544 incperiod = INCPERIOD_38400KHZ;
3545 incvalue = INCVALUE_38400KHZ;
3546 shift = INCVALUE_SHIFT_38400KHZ;
3547 adapter->cc.shift = shift;
3548 }
3549 break;
b67e1913
BA
3550 case e1000_82574:
3551 case e1000_82583:
3552 /* Stable 25MHz frequency */
68fe1d5d
SN
3553 incperiod = INCPERIOD_25MHZ;
3554 incvalue = INCVALUE_25MHZ;
3555 shift = INCVALUE_SHIFT_25MHZ;
b67e1913
BA
3556 adapter->cc.shift = shift;
3557 break;
3558 default:
3559 return -EINVAL;
3560 }
3561
3562 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3563 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3564
3565 return 0;
3566}
3567
3568/**
3569 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3570 * @adapter: board private structure
3571 *
3572 * Outgoing time stamping can be enabled and disabled. Play nice and
3573 * disable it when requested, although it shouldn't cause any overhead
3574 * when no packet needs it. At most one packet in the queue may be
3575 * marked for time stamping, otherwise it would be impossible to tell
3576 * for sure to which packet the hardware time stamp belongs.
3577 *
3578 * Incoming time stamping has to be configured via the hardware filters.
3579 * Not all combinations are supported, in particular event type has to be
3580 * specified. Matching the kind of event packet is not supported, with the
3581 * exception of "all V2 events regardless of level 2 or 4".
3582 **/
62d7e3a2
BH
3583static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3584 struct hwtstamp_config *config)
b67e1913
BA
3585{
3586 struct e1000_hw *hw = &adapter->hw;
b67e1913
BA
3587 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3588 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
d89777bf
BA
3589 u32 rxmtrl = 0;
3590 u16 rxudp = 0;
3591 bool is_l4 = false;
3592 bool is_l2 = false;
b67e1913 3593 u32 regval;
b67e1913
BA
3594
3595 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3596 return -EINVAL;
3597
3598 /* flags reserved for future extensions - must be zero */
3599 if (config->flags)
3600 return -EINVAL;
3601
3602 switch (config->tx_type) {
3603 case HWTSTAMP_TX_OFF:
3604 tsync_tx_ctl = 0;
3605 break;
3606 case HWTSTAMP_TX_ON:
3607 break;
3608 default:
3609 return -ERANGE;
3610 }
3611
3612 switch (config->rx_filter) {
3613 case HWTSTAMP_FILTER_NONE:
3614 tsync_rx_ctl = 0;
3615 break;
d89777bf
BA
3616 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3617 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3619 is_l4 = true;
3620 break;
3621 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3622 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3623 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3624 is_l4 = true;
3625 break;
3626 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3627 /* Also time stamps V2 L2 Path Delay Request/Response */
3628 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3629 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3630 is_l2 = true;
3631 break;
3632 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3633 /* Also time stamps V2 L2 Path Delay Request/Response. */
3634 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3635 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3636 is_l2 = true;
3637 break;
3638 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3639 /* Hardware cannot filter just V2 L4 Sync messages;
3640 * fall-through to V2 (both L2 and L4) Sync.
3641 */
3642 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3643 /* Also time stamps V2 Path Delay Request/Response. */
3644 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3645 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3646 is_l2 = true;
3647 is_l4 = true;
3648 break;
3649 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3650 /* Hardware cannot filter just V2 L4 Delay Request messages;
3651 * fall-through to V2 (both L2 and L4) Delay Request.
3652 */
3653 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654 /* Also time stamps V2 Path Delay Request/Response. */
3655 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657 is_l2 = true;
3658 is_l4 = true;
3659 break;
3660 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3663 * fall-through to all V2 (both L2 and L4) Events.
3664 */
3665 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3666 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3667 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3668 is_l2 = true;
3669 is_l4 = true;
3670 break;
3671 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3672 /* For V1, the hardware can only filter Sync messages or
3673 * Delay Request messages but not both so fall-through to
3674 * time stamp all packets.
3675 */
e3412575 3676 case HWTSTAMP_FILTER_NTP_ALL:
b67e1913 3677 case HWTSTAMP_FILTER_ALL:
d89777bf
BA
3678 is_l2 = true;
3679 is_l4 = true;
b67e1913
BA
3680 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3681 config->rx_filter = HWTSTAMP_FILTER_ALL;
3682 break;
3683 default:
3684 return -ERANGE;
3685 }
3686
62d7e3a2
BH
3687 adapter->hwtstamp_config = *config;
3688
b67e1913
BA
3689 /* enable/disable Tx h/w time stamping */
3690 regval = er32(TSYNCTXCTL);
3691 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3692 regval |= tsync_tx_ctl;
3693 ew32(TSYNCTXCTL, regval);
3694 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3695 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3696 e_err("Timesync Tx Control register not set as expected\n");
3697 return -EAGAIN;
3698 }
3699
3700 /* enable/disable Rx h/w time stamping */
3701 regval = er32(TSYNCRXCTL);
3702 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3703 regval |= tsync_rx_ctl;
3704 ew32(TSYNCRXCTL, regval);
3705 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3706 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3707 (regval & (E1000_TSYNCRXCTL_ENABLED |
3708 E1000_TSYNCRXCTL_TYPE_MASK))) {
3709 e_err("Timesync Rx Control register not set as expected\n");
3710 return -EAGAIN;
3711 }
3712
d89777bf
BA
3713 /* L2: define ethertype filter for time stamped packets */
3714 if (is_l2)
3715 rxmtrl |= ETH_P_1588;
3716
3717 /* define which PTP packets get time stamped */
3718 ew32(RXMTRL, rxmtrl);
3719
3720 /* Filter by destination port */
3721 if (is_l4) {
3722 rxudp = PTP_EV_PORT;
3723 cpu_to_be16s(&rxudp);
3724 }
3725 ew32(RXUDP, rxudp);
3726
3727 e1e_flush();
3728
b67e1913 3729 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
70806a7f
BA
3730 er32(RXSTMPH);
3731 er32(TXSTMPH);
b67e1913 3732
b67e1913
BA
3733 return 0;
3734}
3735
bc7f75fa 3736/**
ad68076e 3737 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
3738 * @adapter: private board structure
3739 **/
3740static void e1000_configure(struct e1000_adapter *adapter)
3741{
55aa6985
BA
3742 struct e1000_ring *rx_ring = adapter->rx_ring;
3743
ef9b965a 3744 e1000e_set_rx_mode(adapter->netdev);
bc7f75fa
AK
3745
3746 e1000_restore_vlan(adapter);
cd791618 3747 e1000_init_manageability_pt(adapter);
bc7f75fa
AK
3748
3749 e1000_configure_tx(adapter);
70495a50
BA
3750
3751 if (adapter->netdev->features & NETIF_F_RXHASH)
3752 e1000e_setup_rss_hash(adapter);
bc7f75fa
AK
3753 e1000_setup_rctl(adapter);
3754 e1000_configure_rx(adapter);
55aa6985 3755 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
bc7f75fa
AK
3756}
3757
3758/**
3759 * e1000e_power_up_phy - restore link in case the phy was powered down
3760 * @adapter: address of board private structure
3761 *
3762 * The phy may be powered down to save power and turn off link when the
3763 * driver is unloaded and wake on lan is not enabled (among others)
3764 * *** this routine MUST be followed by a call to e1000e_reset ***
3765 **/
3766void e1000e_power_up_phy(struct e1000_adapter *adapter)
3767{
17f208de
BA
3768 if (adapter->hw.phy.ops.power_up)
3769 adapter->hw.phy.ops.power_up(&adapter->hw);
bc7f75fa
AK
3770
3771 adapter->hw.mac.ops.setup_link(&adapter->hw);
3772}
3773
3774/**
3775 * e1000_power_down_phy - Power down the PHY
3776 *
17f208de
BA
3777 * Power down the PHY so no link is implied when interface is down.
3778 * The PHY cannot be powered down if management or WoL is active.
bc7f75fa
AK
3779 */
3780static void e1000_power_down_phy(struct e1000_adapter *adapter)
3781{
17f208de
BA
3782 if (adapter->hw.phy.ops.power_down)
3783 adapter->hw.phy.ops.power_down(&adapter->hw);
bc7f75fa
AK
3784}
3785
ad851fbb
YL
3786/**
3787 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3788 *
3789 * We want to clear all pending descriptors from the TX ring.
3790 * zeroing happens when the HW reads the regs. We assign the ring itself as
3791 * the data of the next descriptor. We don't care about the data we are about
3792 * to reset the HW.
3793 */
3794static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3795{
3796 struct e1000_hw *hw = &adapter->hw;
3797 struct e1000_ring *tx_ring = adapter->tx_ring;
3798 struct e1000_tx_desc *tx_desc = NULL;
3799 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3800 u16 size = 512;
3801
3802 tctl = er32(TCTL);
3803 ew32(TCTL, tctl | E1000_TCTL_EN);
3804 tdt = er32(TDT(0));
3805 BUG_ON(tdt != tx_ring->next_to_use);
3806 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3807 tx_desc->buffer_addr = tx_ring->dma;
3808
3809 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3810 tx_desc->upper.data = 0;
3811 /* flush descriptors to memory before notifying the HW */
3812 wmb();
3813 tx_ring->next_to_use++;
3814 if (tx_ring->next_to_use == tx_ring->count)
3815 tx_ring->next_to_use = 0;
3816 ew32(TDT(0), tx_ring->next_to_use);
ad851fbb
YL
3817 usleep_range(200, 250);
3818}
3819
3820/**
3821 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3822 *
3823 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3824 */
3825static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3826{
3827 u32 rctl, rxdctl;
3828 struct e1000_hw *hw = &adapter->hw;
3829
3830 rctl = er32(RCTL);
3831 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3832 e1e_flush();
3833 usleep_range(100, 150);
3834
3835 rxdctl = er32(RXDCTL(0));
3836 /* zero the lower 14 bits (prefetch and host thresholds) */
3837 rxdctl &= 0xffffc000;
3838
3839 /* update thresholds: prefetch threshold to 31, host threshold to 1
3840 * and make sure the granularity is "descriptors" and not "cache lines"
3841 */
18dd2392 3842 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
ad851fbb
YL
3843
3844 ew32(RXDCTL(0), rxdctl);
3845 /* momentarily enable the RX ring for the changes to take effect */
3846 ew32(RCTL, rctl | E1000_RCTL_EN);
3847 e1e_flush();
3848 usleep_range(100, 150);
3849 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850}
3851
3852/**
3853 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3854 *
3855 * In i219, the descriptor rings must be emptied before resetting the HW
3856 * or before changing the device state to D3 during runtime (runtime PM).
3857 *
3858 * Failure to do this will cause the HW to enter a unit hang state which can
3859 * only be released by PCI reset on the device
3860 *
3861 */
3862
3863static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3864{
ff917429 3865 u16 hang_state;
ad851fbb
YL
3866 u32 fext_nvm11, tdlen;
3867 struct e1000_hw *hw = &adapter->hw;
3868
3869 /* First, disable MULR fix in FEXTNVM11 */
3870 fext_nvm11 = er32(FEXTNVM11);
3871 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3872 ew32(FEXTNVM11, fext_nvm11);
3873 /* do nothing if we're not in faulty state, or if the queue is empty */
3874 tdlen = er32(TDLEN(0));
ff917429
YL
3875 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3876 &hang_state);
3877 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
ad851fbb
YL
3878 return;
3879 e1000_flush_tx_ring(adapter);
3880 /* recheck, maybe the fault is caused by the rx ring */
ff917429
YL
3881 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3882 &hang_state);
3883 if (hang_state & FLUSH_DESC_REQUIRED)
ad851fbb
YL
3884 e1000_flush_rx_ring(adapter);
3885}
3886
aa524b66
JK
3887/**
3888 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3889 * @adapter: board private structure
3890 *
3891 * When the MAC is reset, all hardware bits for timesync will be reset to the
3892 * default values. This function will restore the settings last in place.
3893 * Since the clock SYSTIME registers are reset, we will simply restore the
3894 * cyclecounter to the kernel real clock time.
3895 **/
3896static void e1000e_systim_reset(struct e1000_adapter *adapter)
3897{
3898 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3899 struct e1000_hw *hw = &adapter->hw;
3900 unsigned long flags;
3901 u32 timinca;
3902 s32 ret_val;
3903
3904 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3905 return;
3906
3907 if (info->adjfreq) {
3908 /* restore the previous ptp frequency delta */
3909 ret_val = info->adjfreq(info, adapter->ptp_delta);
3910 } else {
3911 /* set the default base frequency if no adjustment possible */
3912 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3913 if (!ret_val)
3914 ew32(TIMINCA, timinca);
3915 }
3916
3917 if (ret_val) {
3918 dev_warn(&adapter->pdev->dev,
3919 "Failed to restore TIMINCA clock rate delta: %d\n",
3920 ret_val);
3921 return;
3922 }
3923
3924 /* reset the systim ns time counter */
3925 spin_lock_irqsave(&adapter->systim_lock, flags);
3926 timecounter_init(&adapter->tc, &adapter->cc,
3927 ktime_to_ns(ktime_get_real()));
3928 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3929
3930 /* restore the previous hwtstamp configuration settings */
3931 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3932}
3933
bc7f75fa
AK
3934/**
3935 * e1000e_reset - bring the hardware into a known good state
3936 *
3937 * This function boots the hardware and enables some settings that
3938 * require a configuration cycle of the hardware - those cannot be
3939 * set/changed during runtime. After reset the device needs to be
ad68076e 3940 * properly configured for Rx, Tx etc.
bc7f75fa
AK
3941 */
3942void e1000e_reset(struct e1000_adapter *adapter)
3943{
3944 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 3945 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
3946 struct e1000_hw *hw = &adapter->hw;
3947 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 3948 u32 pba = adapter->pba;
bc7f75fa
AK
3949 u16 hwm;
3950
ad68076e 3951 /* reset Packet Buffer Allocation to default */
318a94d6 3952 ew32(PBA, pba);
df762464 3953
8084b86d 3954 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
e921eb1a 3955 /* To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
3956 * large enough to accommodate two full transmit packets,
3957 * rounded up to the next 1KB and expressed in KB. Likewise,
3958 * the Rx FIFO should be large enough to accommodate at least
3959 * one full receive packet and is similarly rounded up and
ad68076e
BA
3960 * expressed in KB.
3961 */
df762464 3962 pba = er32(PBA);
bc7f75fa 3963 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 3964 tx_space = pba >> 16;
bc7f75fa 3965 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 3966 pba &= 0xffff;
e921eb1a 3967 /* the Tx fifo also stores 16 bytes of information about the Tx
ad68076e 3968 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
3969 */
3970 min_tx_space = (adapter->max_frame_size +
e5fe2541 3971 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
bc7f75fa
AK
3972 min_tx_space = ALIGN(min_tx_space, 1024);
3973 min_tx_space >>= 10;
3974 /* software strips receive CRC, so leave room for it */
318a94d6 3975 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
3976 min_rx_space = ALIGN(min_rx_space, 1024);
3977 min_rx_space >>= 10;
3978
e921eb1a 3979 /* If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 3980 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
3981 * allocation, take space away from current Rx allocation
3982 */
df762464
AK
3983 if ((tx_space < min_tx_space) &&
3984 ((min_tx_space - tx_space) < pba)) {
3985 pba -= min_tx_space - tx_space;
bc7f75fa 3986
e921eb1a 3987 /* if short on Rx space, Rx wins and must trump Tx
419e551c 3988 * adjustment
ad68076e 3989 */
79d4e908 3990 if (pba < min_rx_space)
df762464 3991 pba = min_rx_space;
bc7f75fa 3992 }
df762464
AK
3993
3994 ew32(PBA, pba);
bc7f75fa
AK
3995 }
3996
e921eb1a 3997 /* flow control settings
ad68076e 3998 *
38eb394e 3999 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
4000 * (or the size used for early receive) above it in the Rx FIFO.
4001 * Set it to the lower of:
4002 * - 90% of the Rx FIFO size, and
38eb394e 4003 * - the full Rx FIFO size minus one full frame
ad68076e 4004 */
d3738bb8
BA
4005 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4006 fc->pause_time = 0xFFFF;
4007 else
4008 fc->pause_time = E1000_FC_PAUSE_TIME;
b20caa80 4009 fc->send_xon = true;
d3738bb8
BA
4010 fc->current_mode = fc->requested_mode;
4011
4012 switch (hw->mac.type) {
79d4e908
BA
4013 case e1000_ich9lan:
4014 case e1000_ich10lan:
4015 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4016 pba = 14;
4017 ew32(PBA, pba);
4018 fc->high_water = 0x2800;
4019 fc->low_water = fc->high_water - 8;
4020 break;
4021 }
4022 /* fall-through */
d3738bb8 4023 default:
79d4e908
BA
4024 hwm = min(((pba << 10) * 9 / 10),
4025 ((pba << 10) - adapter->max_frame_size));
d3738bb8 4026
e80bd1d1 4027 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
d3738bb8
BA
4028 fc->low_water = fc->high_water - 8;
4029 break;
4030 case e1000_pchlan:
e921eb1a 4031 /* Workaround PCH LOM adapter hangs with certain network
38eb394e
BA
4032 * loads. If hangs persist, try disabling Tx flow control.
4033 */
4034 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035 fc->high_water = 0x3500;
e80bd1d1 4036 fc->low_water = 0x1500;
38eb394e
BA
4037 } else {
4038 fc->high_water = 0x5000;
e80bd1d1 4039 fc->low_water = 0x3000;
38eb394e 4040 }
a305595b 4041 fc->refresh_time = 0x1000;
d3738bb8
BA
4042 break;
4043 case e1000_pch2lan:
2fbe4526 4044 case e1000_pch_lpt:
79849ebc 4045 case e1000_pch_spt:
c8744f44 4046 case e1000_pch_cnp:
f74dc880
MBM
4047 fc->refresh_time = 0xFFFF;
4048 fc->pause_time = 0xFFFF;
347b5201
BA
4049
4050 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4051 fc->high_water = 0x05C20;
4052 fc->low_water = 0x05048;
347b5201 4053 break;
828bac87 4054 }
347b5201 4055
ce345e08
BA
4056 pba = 14;
4057 ew32(PBA, pba);
347b5201
BA
4058 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4059 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
d3738bb8 4060 break;
38eb394e 4061 }
bc7f75fa 4062
e921eb1a 4063 /* Alignment of Tx data is on an arbitrary byte boundary with the
d821a4c4
BA
4064 * maximum size per Tx descriptor limited only to the transmit
4065 * allocation of the packet buffer minus 96 bytes with an upper
4066 * limit of 24KB due to receive synchronization limitations.
4067 */
4068 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4069 24 << 10);
4070
e921eb1a 4071 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
79d4e908 4072 * fit in receive buffer.
828bac87
BA
4073 */
4074 if (adapter->itr_setting & 0x3) {
79d4e908 4075 if ((adapter->max_frame_size * 2) > (pba << 10)) {
828bac87
BA
4076 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4077 dev_info(&adapter->pdev->dev,
17e813ec 4078 "Interrupt Throttle Rate off\n");
828bac87 4079 adapter->flags2 |= FLAG2_DISABLE_AIM;
22a4cca2 4080 e1000e_write_itr(adapter, 0);
828bac87
BA
4081 }
4082 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4083 dev_info(&adapter->pdev->dev,
17e813ec 4084 "Interrupt Throttle Rate on\n");
828bac87
BA
4085 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4086 adapter->itr = 20000;
22a4cca2 4087 e1000e_write_itr(adapter, adapter->itr);
828bac87
BA
4088 }
4089 }
4090
c8744f44 4091 if (hw->mac.type >= e1000_pch_spt)
0ffc5646 4092 e1000_flush_desc_rings(adapter);
bc7f75fa
AK
4093 /* Allow time for pending master requests to run */
4094 mac->ops.reset_hw(hw);
97ac8cae 4095
e921eb1a 4096 /* For parts with AMT enabled, let the firmware know
97ac8cae
BA
4097 * that the network interface is in control
4098 */
c43bc57e 4099 if (adapter->flags & FLAG_HAS_AMT)
31dbe5b4 4100 e1000e_get_hw_control(adapter);
97ac8cae 4101
bc7f75fa
AK
4102 ew32(WUC, 0);
4103
4104 if (mac->ops.init_hw(hw))
44defeb3 4105 e_err("Hardware Error\n");
bc7f75fa
AK
4106
4107 e1000_update_mng_vlan(adapter);
4108
4109 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4110 ew32(VET, ETH_P_8021Q);
4111
4112 e1000e_reset_adaptive(hw);
31dbe5b4 4113
aa524b66
JK
4114 /* restore systim and hwtstamp settings */
4115 e1000e_systim_reset(adapter);
b67e1913 4116
d495bcb8
BA
4117 /* Set EEE advertisement as appropriate */
4118 if (adapter->flags2 & FLAG2_HAS_EEE) {
4119 s32 ret_val;
4120 u16 adv_addr;
4121
4122 switch (hw->phy.type) {
4123 case e1000_phy_82579:
4124 adv_addr = I82579_EEE_ADVERTISEMENT;
4125 break;
4126 case e1000_phy_i217:
4127 adv_addr = I217_EEE_ADVERTISEMENT;
4128 break;
4129 default:
4130 dev_err(&adapter->pdev->dev,
4131 "Invalid PHY type setting EEE advertisement\n");
4132 return;
4133 }
4134
4135 ret_val = hw->phy.ops.acquire(hw);
4136 if (ret_val) {
4137 dev_err(&adapter->pdev->dev,
4138 "EEE advertisement - unable to acquire PHY\n");
4139 return;
4140 }
4141
4142 e1000_write_emi_reg_locked(hw, adv_addr,
4143 hw->dev_spec.ich8lan.eee_disable ?
4144 0 : adapter->eee_advert);
4145
4146 hw->phy.ops.release(hw);
4147 }
4148
31dbe5b4 4149 if (!netif_running(adapter->netdev) &&
28002099 4150 !test_bit(__E1000_TESTING, &adapter->state))
31dbe5b4 4151 e1000_power_down_phy(adapter);
31dbe5b4 4152
bc7f75fa
AK
4153 e1000_get_phy_info(hw);
4154
918d7197
BA
4155 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4156 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
bc7f75fa 4157 u16 phy_data = 0;
e921eb1a 4158 /* speed up time to link by disabling smart power down, ignore
bc7f75fa 4159 * the return value of this function because there is nothing
ad68076e
BA
4160 * different we would do if it failed
4161 */
bc7f75fa
AK
4162 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4163 phy_data &= ~IGP02E1000_PM_SPD;
4164 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4165 }
c8744f44 4166 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
ec945cfb
YL
4167 u32 reg;
4168
4169 /* Fextnvm7 @ 0xe4[2] = 1 */
4170 reg = er32(FEXTNVM7);
4171 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4172 ew32(FEXTNVM7, reg);
4173 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4174 reg = er32(FEXTNVM9);
4175 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4176 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4177 ew32(FEXTNVM9, reg);
4178 }
4179
bc7f75fa
AK
4180}
4181
a61cfe4f
BP
4182/**
4183 * e1000e_trigger_lsc - trigger an LSC interrupt
4184 * @adapter:
4185 *
4186 * Fire a link status change interrupt to start the watchdog.
4187 **/
4188static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
bc7f75fa
AK
4189{
4190 struct e1000_hw *hw = &adapter->hw;
4191
a61cfe4f 4192 if (adapter->msix_entries)
4aea7a5c 4193 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
a61cfe4f
BP
4194 else
4195 ew32(ICS, E1000_ICS_LSC);
4196}
4197
4198void e1000e_up(struct e1000_adapter *adapter)
4199{
bc7f75fa
AK
4200 /* hardware has been reset, we need to reload some things */
4201 e1000_configure(adapter);
4202
4203 clear_bit(__E1000_DOWN, &adapter->state);
4204
4662e82b
BA
4205 if (adapter->msix_entries)
4206 e1000_configure_msix(adapter);
bc7f75fa
AK
4207 e1000_irq_enable(adapter);
4208
d17ba0f6 4209 /* Tx queue started by watchdog timer when link is up */
4cb9be7a 4210
a61cfe4f 4211 e1000e_trigger_lsc(adapter);
bc7f75fa
AK
4212}
4213
713b3c9e
JB
4214static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4215{
4216 struct e1000_hw *hw = &adapter->hw;
4217
4218 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4219 return;
4220
4221 /* flush pending descriptor writebacks to memory */
4222 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4223 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4224
4225 /* execute the writes immediately */
4226 e1e_flush();
bf03085f 4227
e921eb1a 4228 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
bf03085f
MV
4229 * write is successful
4230 */
4231 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4232 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
713b3c9e
JB
4233
4234 /* execute the writes immediately */
4235 e1e_flush();
4236}
4237
67fd4fcb
JK
4238static void e1000e_update_stats(struct e1000_adapter *adapter);
4239
28002099
DE
4240/**
4241 * e1000e_down - quiesce the device and optionally reset the hardware
4242 * @adapter: board private structure
4243 * @reset: boolean flag to reset the hardware or not
4244 */
4245void e1000e_down(struct e1000_adapter *adapter, bool reset)
bc7f75fa
AK
4246{
4247 struct net_device *netdev = adapter->netdev;
4248 struct e1000_hw *hw = &adapter->hw;
4249 u32 tctl, rctl;
4250
e921eb1a 4251 /* signal that we're down so the interrupt handler does not
ad68076e
BA
4252 * reschedule our watchdog timer
4253 */
bc7f75fa
AK
4254 set_bit(__E1000_DOWN, &adapter->state);
4255
a60a132e
ET
4256 netif_carrier_off(netdev);
4257
bc7f75fa
AK
4258 /* disable receives in the hardware */
4259 rctl = er32(RCTL);
7f99ae63
BA
4260 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4261 ew32(RCTL, rctl & ~E1000_RCTL_EN);
bc7f75fa
AK
4262 /* flush and sleep below */
4263
4cb9be7a 4264 netif_stop_queue(netdev);
bc7f75fa
AK
4265
4266 /* disable transmits in the hardware */
4267 tctl = er32(TCTL);
4268 tctl &= ~E1000_TCTL_EN;
4269 ew32(TCTL, tctl);
7f99ae63 4270
bc7f75fa
AK
4271 /* flush both disables and wait for them to finish */
4272 e1e_flush();
ab6973ae 4273 usleep_range(10000, 11000);
bc7f75fa 4274
bc7f75fa
AK
4275 e1000_irq_disable(adapter);
4276
a3b87a4c
BA
4277 napi_synchronize(&adapter->napi);
4278
b4275924 4279 del_timer_sync(&adapter->watchdog_timer);
bc7f75fa
AK
4280 del_timer_sync(&adapter->phy_info_timer);
4281
67fd4fcb
JK
4282 spin_lock(&adapter->stats64_lock);
4283 e1000e_update_stats(adapter);
4284 spin_unlock(&adapter->stats64_lock);
4285
400484fa 4286 e1000e_flush_descriptors(adapter);
400484fa 4287
bc7f75fa
AK
4288 adapter->link_speed = 0;
4289 adapter->link_duplex = 0;
4290
da1e2046
BA
4291 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4292 if ((hw->mac.type >= e1000_pch2lan) &&
4293 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4294 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4295 e_dbg("failed to disable jumbo frame workaround mode\n");
4296
0ffc5646
YL
4297 if (!pci_channel_offline(adapter->pdev)) {
4298 if (reset)
4299 e1000e_reset(adapter);
c8744f44 4300 else if (hw->mac.type >= e1000_pch_spt)
0ffc5646
YL
4301 e1000_flush_desc_rings(adapter);
4302 }
4303 e1000_clean_tx_ring(adapter->tx_ring);
4304 e1000_clean_rx_ring(adapter->rx_ring);
bc7f75fa
AK
4305}
4306
4307void e1000e_reinit_locked(struct e1000_adapter *adapter)
4308{
4309 might_sleep();
4310 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
ab6973ae 4311 usleep_range(1000, 1100);
28002099 4312 e1000e_down(adapter, true);
bc7f75fa
AK
4313 e1000e_up(adapter);
4314 clear_bit(__E1000_RESETTING, &adapter->state);
4315}
4316
0be5b96c
JW
4317/**
4318 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4319 * @hw: pointer to the HW structure
98942d70
ML
4320 * @systim: PHC time value read, sanitized and returned
4321 * @sts: structure to hold system time before and after reading SYSTIML,
4322 * may be NULL
0be5b96c
JW
4323 *
4324 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4325 * check to see that the time is incrementing at a reasonable
4326 * rate and is a multiple of incvalue.
4327 **/
98942d70
ML
4328static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4329 struct ptp_system_timestamp *sts)
0be5b96c
JW
4330{
4331 u64 time_delta, rem, temp;
a5a1d1c2 4332 u64 systim_next;
0be5b96c
JW
4333 u32 incvalue;
4334 int i;
4335
4336 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4337 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4338 /* latch SYSTIMH on read of SYSTIML */
98942d70 4339 ptp_read_system_prets(sts);
a5a1d1c2 4340 systim_next = (u64)er32(SYSTIML);
98942d70 4341 ptp_read_system_postts(sts);
a5a1d1c2 4342 systim_next |= (u64)er32(SYSTIMH) << 32;
0be5b96c
JW
4343
4344 time_delta = systim_next - systim;
4345 temp = time_delta;
4346 /* VMWare users have seen incvalue of zero, don't div / 0 */
4347 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4348
4349 systim = systim_next;
4350
4351 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4352 break;
4353 }
4354
4355 return systim;
4356}
4357
b67e1913 4358/**
98942d70
ML
4359 * e1000e_read_systim - read SYSTIM register
4360 * @adapter: board private structure
4361 * @sts: structure which will contain system time before and after reading
4362 * SYSTIML, may be NULL
b67e1913 4363 **/
98942d70
ML
4364u64 e1000e_read_systim(struct e1000_adapter *adapter,
4365 struct ptp_system_timestamp *sts)
b67e1913 4366{
b67e1913 4367 struct e1000_hw *hw = &adapter->hw;
98942d70 4368 u32 systimel, systimel_2, systimeh;
a5a1d1c2 4369 u64 systim;
37b12910
RA
4370 /* SYSTIMH latching upon SYSTIML read does not work well.
4371 * This means that if SYSTIML overflows after we read it but before
4372 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4373 * will experience a huge non linear increment in the systime value
4374 * to fix that we test for overflow and if true, we re-read systime.
83129b37 4375 */
98942d70 4376 ptp_read_system_prets(sts);
ab507c9a 4377 systimel = er32(SYSTIML);
98942d70 4378 ptp_read_system_postts(sts);
37b12910 4379 systimeh = er32(SYSTIMH);
ab507c9a
DV
4380 /* Is systimel is so large that overflow is possible? */
4381 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
98942d70
ML
4382 ptp_read_system_prets(sts);
4383 systimel_2 = er32(SYSTIML);
4384 ptp_read_system_postts(sts);
ab507c9a
DV
4385 if (systimel > systimel_2) {
4386 /* There was an overflow, read again SYSTIMH, and use
4387 * systimel_2
4388 */
4389 systimeh = er32(SYSTIMH);
4390 systimel = systimel_2;
4391 }
37b12910 4392 }
a5a1d1c2
TG
4393 systim = (u64)systimel;
4394 systim |= (u64)systimeh << 32;
b67e1913 4395
0be5b96c 4396 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
98942d70 4397 systim = e1000e_sanitize_systim(hw, systim, sts);
5e7ff970 4398
b67e1913
BA
4399 return systim;
4400}
4401
98942d70
ML
4402/**
4403 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4404 * @cc: cyclecounter structure
4405 **/
4406static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4407{
4408 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4409 cc);
4410
4411 return e1000e_read_systim(adapter, NULL);
4412}
4413
bc7f75fa
AK
4414/**
4415 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4416 * @adapter: board private structure to initialize
4417 *
4418 * e1000_sw_init initializes the Adapter private data structure.
4419 * Fields are initialized based on PCI device information and
4420 * OS network device settings (MTU size).
4421 **/
9f9a12f8 4422static int e1000_sw_init(struct e1000_adapter *adapter)
bc7f75fa 4423{
bc7f75fa
AK
4424 struct net_device *netdev = adapter->netdev;
4425
8084b86d 4426 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
bc7f75fa 4427 adapter->rx_ps_bsize0 = 128;
8084b86d 4428 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
318a94d6 4429 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
55aa6985
BA
4430 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4431 adapter->rx_ring_count = E1000_DEFAULT_RXD;
bc7f75fa 4432
67fd4fcb
JK
4433 spin_lock_init(&adapter->stats64_lock);
4434
4662e82b 4435 e1000e_set_interrupt_capability(adapter);
bc7f75fa 4436
4662e82b
BA
4437 if (e1000_alloc_queues(adapter))
4438 return -ENOMEM;
bc7f75fa 4439
b67e1913
BA
4440 /* Setup hardware time stamping cyclecounter */
4441 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4442 adapter->cc.read = e1000e_cyclecounter_read;
4d045b4c 4443 adapter->cc.mask = CYCLECOUNTER_MASK(64);
b67e1913
BA
4444 adapter->cc.mult = 1;
4445 /* cc.shift set in e1000e_get_base_tininca() */
4446
4447 spin_lock_init(&adapter->systim_lock);
4448 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4449 }
4450
bc7f75fa 4451 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
4452 e1000_irq_disable(adapter);
4453
bc7f75fa
AK
4454 set_bit(__E1000_DOWN, &adapter->state);
4455 return 0;
bc7f75fa
AK
4456}
4457
f8d59f78
BA
4458/**
4459 * e1000_intr_msi_test - Interrupt Handler
4460 * @irq: interrupt number
4461 * @data: pointer to a network interface device structure
4462 **/
8bb62869 4463static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
f8d59f78
BA
4464{
4465 struct net_device *netdev = data;
4466 struct e1000_adapter *adapter = netdev_priv(netdev);
4467 struct e1000_hw *hw = &adapter->hw;
4468 u32 icr = er32(ICR);
4469
3bb99fe2 4470 e_dbg("icr is %08X\n", icr);
f8d59f78
BA
4471 if (icr & E1000_ICR_RXSEQ) {
4472 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
e921eb1a 4473 /* Force memory writes to complete before acknowledging the
bc76329d
BA
4474 * interrupt is handled.
4475 */
f8d59f78
BA
4476 wmb();
4477 }
4478
4479 return IRQ_HANDLED;
4480}
4481
4482/**
4483 * e1000_test_msi_interrupt - Returns 0 for successful test
4484 * @adapter: board private struct
4485 *
4486 * code flow taken from tg3.c
4487 **/
4488static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4489{
4490 struct net_device *netdev = adapter->netdev;
4491 struct e1000_hw *hw = &adapter->hw;
4492 int err;
4493
4494 /* poll_enable hasn't been called yet, so don't need disable */
4495 /* clear any pending events */
4496 er32(ICR);
4497
4498 /* free the real vector and request a test handler */
4499 e1000_free_irq(adapter);
4662e82b 4500 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
4501
4502 /* Assume that the test fails, if it succeeds then the test
e921eb1a
BA
4503 * MSI irq handler will unset this flag
4504 */
f8d59f78
BA
4505 adapter->flags |= FLAG_MSI_TEST_FAILED;
4506
4507 err = pci_enable_msi(adapter->pdev);
4508 if (err)
4509 goto msi_test_failed;
4510
a0607fd3 4511 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
f8d59f78
BA
4512 netdev->name, netdev);
4513 if (err) {
4514 pci_disable_msi(adapter->pdev);
4515 goto msi_test_failed;
4516 }
4517
e921eb1a 4518 /* Force memory writes to complete before enabling and firing an
bc76329d
BA
4519 * interrupt.
4520 */
f8d59f78
BA
4521 wmb();
4522
4523 e1000_irq_enable(adapter);
4524
4525 /* fire an unusual interrupt on the test handler */
4526 ew32(ICS, E1000_ICS_RXSEQ);
4527 e1e_flush();
569a3aff 4528 msleep(100);
f8d59f78
BA
4529
4530 e1000_irq_disable(adapter);
4531
bc76329d 4532 rmb(); /* read flags after interrupt has been fired */
f8d59f78
BA
4533
4534 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 4535 adapter->int_mode = E1000E_INT_MODE_LEGACY;
068e8a30 4536 e_info("MSI interrupt test failed, using legacy interrupt.\n");
24b706b2 4537 } else {
068e8a30 4538 e_dbg("MSI interrupt test succeeded!\n");
24b706b2 4539 }
f8d59f78
BA
4540
4541 free_irq(adapter->pdev->irq, netdev);
4542 pci_disable_msi(adapter->pdev);
4543
f8d59f78 4544msi_test_failed:
4662e82b 4545 e1000e_set_interrupt_capability(adapter);
068e8a30 4546 return e1000_request_irq(adapter);
f8d59f78
BA
4547}
4548
4549/**
4550 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4551 * @adapter: board private struct
4552 *
4553 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4554 **/
4555static int e1000_test_msi(struct e1000_adapter *adapter)
4556{
4557 int err;
4558 u16 pci_cmd;
4559
4560 if (!(adapter->flags & FLAG_MSI_ENABLED))
4561 return 0;
4562
4563 /* disable SERR in case the MSI write causes a master abort */
4564 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
36f2407f
DN
4565 if (pci_cmd & PCI_COMMAND_SERR)
4566 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4567 pci_cmd & ~PCI_COMMAND_SERR);
f8d59f78
BA
4568
4569 err = e1000_test_msi_interrupt(adapter);
4570
36f2407f
DN
4571 /* re-enable SERR */
4572 if (pci_cmd & PCI_COMMAND_SERR) {
4573 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4574 pci_cmd |= PCI_COMMAND_SERR;
4575 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4576 }
f8d59f78 4577
f8d59f78
BA
4578 return err;
4579}
4580
bc7f75fa 4581/**
d5ea45da 4582 * e1000e_open - Called when a network interface is made active
bc7f75fa
AK
4583 * @netdev: network interface device structure
4584 *
4585 * Returns 0 on success, negative value on failure
4586 *
4587 * The open entry point is called when a network interface is made
4588 * active by the system (IFF_UP). At this point all resources needed
4589 * for transmit and receive operations are allocated, the interrupt
4590 * handler is registered with the OS, the watchdog timer is started,
4591 * and the stack is notified that the interface is ready.
4592 **/
d5ea45da 4593int e1000e_open(struct net_device *netdev)
bc7f75fa
AK
4594{
4595 struct e1000_adapter *adapter = netdev_priv(netdev);
4596 struct e1000_hw *hw = &adapter->hw;
23606cf5 4597 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
4598 int err;
4599
4600 /* disallow open during test */
4601 if (test_bit(__E1000_TESTING, &adapter->state))
4602 return -EBUSY;
4603
23606cf5
RW
4604 pm_runtime_get_sync(&pdev->dev);
4605
9c563d20 4606 netif_carrier_off(netdev);
d17ba0f6 4607 netif_stop_queue(netdev);
9c563d20 4608
bc7f75fa 4609 /* allocate transmit descriptors */
55aa6985 4610 err = e1000e_setup_tx_resources(adapter->tx_ring);
bc7f75fa
AK
4611 if (err)
4612 goto err_setup_tx;
4613
4614 /* allocate receive descriptors */
55aa6985 4615 err = e1000e_setup_rx_resources(adapter->rx_ring);
bc7f75fa
AK
4616 if (err)
4617 goto err_setup_rx;
4618
e921eb1a 4619 /* If AMT is enabled, let the firmware know that the network
11b08be8
BA
4620 * interface is now open and reset the part to a known state.
4621 */
4622 if (adapter->flags & FLAG_HAS_AMT) {
31dbe5b4 4623 e1000e_get_hw_control(adapter);
11b08be8
BA
4624 e1000e_reset(adapter);
4625 }
4626
bc7f75fa
AK
4627 e1000e_power_up_phy(adapter);
4628
4629 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
e5fe2541 4630 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
bc7f75fa
AK
4631 e1000_update_mng_vlan(adapter);
4632
79d4e908 4633 /* DMA latency requirement to workaround jumbo issue */
e2c65448 4634 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
3e35d991 4635 PM_QOS_DEFAULT_VALUE);
c128ec29 4636
e921eb1a 4637 /* before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
4638 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4639 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
4640 * clean_rx handler before we do so.
4641 */
bc7f75fa
AK
4642 e1000_configure(adapter);
4643
4644 err = e1000_request_irq(adapter);
4645 if (err)
4646 goto err_req_irq;
4647
e921eb1a 4648 /* Work around PCIe errata with MSI interrupts causing some chipsets to
f8d59f78
BA
4649 * ignore e1000e MSI messages, which means we need to test our MSI
4650 * interrupt now
4651 */
4662e82b 4652 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
4653 err = e1000_test_msi(adapter);
4654 if (err) {
4655 e_err("Interrupt allocation failed\n");
4656 goto err_req_irq;
4657 }
4658 }
4659
bc7f75fa
AK
4660 /* From here on the code is the same as e1000e_up() */
4661 clear_bit(__E1000_DOWN, &adapter->state);
4662
4663 napi_enable(&adapter->napi);
4664
4665 e1000_irq_enable(adapter);
4666
09357b00 4667 adapter->tx_hang_recheck = false;
d55b53ff 4668
66148bab 4669 hw->mac.get_link_status = true;
23606cf5
RW
4670 pm_runtime_put(&pdev->dev);
4671
a61cfe4f 4672 e1000e_trigger_lsc(adapter);
bc7f75fa
AK
4673
4674 return 0;
4675
4676err_req_irq:
7faae964 4677 pm_qos_remove_request(&adapter->pm_qos_req);
31dbe5b4 4678 e1000e_release_hw_control(adapter);
bc7f75fa 4679 e1000_power_down_phy(adapter);
55aa6985 4680 e1000e_free_rx_resources(adapter->rx_ring);
bc7f75fa 4681err_setup_rx:
55aa6985 4682 e1000e_free_tx_resources(adapter->tx_ring);
bc7f75fa
AK
4683err_setup_tx:
4684 e1000e_reset(adapter);
23606cf5 4685 pm_runtime_put_sync(&pdev->dev);
bc7f75fa
AK
4686
4687 return err;
4688}
4689
4690/**
d5ea45da 4691 * e1000e_close - Disables a network interface
bc7f75fa
AK
4692 * @netdev: network interface device structure
4693 *
4694 * Returns 0, this is not allowed to fail
4695 *
4696 * The close entry point is called when an interface is de-activated
4697 * by the OS. The hardware is still under the drivers control, but
4698 * needs to be disabled. A global MAC reset is issued to stop the
4699 * hardware, and all transmit and receive resources are freed.
4700 **/
d5ea45da 4701int e1000e_close(struct net_device *netdev)
bc7f75fa
AK
4702{
4703 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5 4704 struct pci_dev *pdev = adapter->pdev;
bb9e44d0
BA
4705 int count = E1000_CHECK_RESET_COUNT;
4706
4707 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
ab6973ae 4708 usleep_range(10000, 11000);
bc7f75fa
AK
4709
4710 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
23606cf5
RW
4711
4712 pm_runtime_get_sync(&pdev->dev);
4713
94d0b5b5 4714 if (netif_device_present(netdev)) {
28002099 4715 e1000e_down(adapter, true);
23606cf5 4716 e1000_free_irq(adapter);
63eb48f1
DE
4717
4718 /* Link status message must follow this format */
94d0b5b5 4719 pr_info("%s NIC Link is Down\n", netdev->name);
23606cf5 4720 }
a3b87a4c
BA
4721
4722 napi_disable(&adapter->napi);
4723
55aa6985
BA
4724 e1000e_free_tx_resources(adapter->tx_ring);
4725 e1000e_free_rx_resources(adapter->rx_ring);
bc7f75fa 4726
e921eb1a 4727 /* kill manageability vlan ID if supported, but not if a vlan with
ad68076e
BA
4728 * the same ID is registered on the host OS (let 8021q kill it)
4729 */
e5fe2541 4730 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
80d5c368
PM
4731 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4732 adapter->mng_vlan_id);
bc7f75fa 4733
e921eb1a 4734 /* If AMT is enabled, let the firmware know that the network
ad68076e
BA
4735 * interface is now closed
4736 */
31dbe5b4
BA
4737 if ((adapter->flags & FLAG_HAS_AMT) &&
4738 !test_bit(__E1000_TESTING, &adapter->state))
4739 e1000e_release_hw_control(adapter);
bc7f75fa 4740
e2c65448 4741 pm_qos_remove_request(&adapter->pm_qos_req);
c128ec29 4742
23606cf5
RW
4743 pm_runtime_put_sync(&pdev->dev);
4744
bc7f75fa
AK
4745 return 0;
4746}
fc830b78 4747
bc7f75fa
AK
4748/**
4749 * e1000_set_mac - Change the Ethernet Address of the NIC
4750 * @netdev: network interface device structure
4751 * @p: pointer to an address structure
4752 *
4753 * Returns 0 on success, negative on failure
4754 **/
4755static int e1000_set_mac(struct net_device *netdev, void *p)
4756{
4757 struct e1000_adapter *adapter = netdev_priv(netdev);
69e1e019 4758 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
4759 struct sockaddr *addr = p;
4760
4761 if (!is_valid_ether_addr(addr->sa_data))
4762 return -EADDRNOTAVAIL;
4763
4764 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4765 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4766
69e1e019 4767 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
bc7f75fa
AK
4768
4769 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4770 /* activate the work around */
4771 e1000e_set_laa_state_82571(&adapter->hw, 1);
4772
e921eb1a 4773 /* Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
4774 * between the time RAR[0] gets clobbered and the time it
4775 * gets fixed (in e1000_watchdog), the actual LAA is in one
4776 * of the RARs and no incoming packets directed to this port
4777 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
4778 * RAR[14]
4779 */
69e1e019
BA
4780 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4781 adapter->hw.mac.rar_entry_count - 1);
bc7f75fa
AK
4782 }
4783
4784 return 0;
4785}
4786
a8f88ff5
JB
4787/**
4788 * e1000e_update_phy_task - work thread to update phy
4789 * @work: pointer to our work struct
4790 *
4791 * this worker thread exists because we must acquire a
4792 * semaphore to read the phy, which we could msleep while
4793 * waiting for it, and we can't msleep in a timer.
4794 **/
4795static void e1000e_update_phy_task(struct work_struct *work)
4796{
4797 struct e1000_adapter *adapter = container_of(work,
17e813ec
BA
4798 struct e1000_adapter,
4799 update_phy_task);
a03206ed 4800 struct e1000_hw *hw = &adapter->hw;
615b32af
JB
4801
4802 if (test_bit(__E1000_DOWN, &adapter->state))
4803 return;
4804
a03206ed
DE
4805 e1000_get_phy_info(hw);
4806
4807 /* Enable EEE on 82579 after link up */
50844bb7 4808 if (hw->phy.type >= e1000_phy_82579)
a03206ed 4809 e1000_set_eee_pchlan(hw);
a8f88ff5
JB
4810}
4811
e921eb1a
BA
4812/**
4813 * e1000_update_phy_info - timre call-back to update PHY info
4814 * @data: pointer to adapter cast into an unsigned long
4815 *
ad68076e
BA
4816 * Need to wait a few seconds after link up to get diagnostic information from
4817 * the phy
e921eb1a 4818 **/
26566eae 4819static void e1000_update_phy_info(struct timer_list *t)
bc7f75fa 4820{
26566eae 4821 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
615b32af
JB
4822
4823 if (test_bit(__E1000_DOWN, &adapter->state))
4824 return;
4825
a8f88ff5 4826 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
4827}
4828
8c7bbb92
BA
4829/**
4830 * e1000e_update_phy_stats - Update the PHY statistics counters
4831 * @adapter: board private structure
2b6b168d
BA
4832 *
4833 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
8c7bbb92
BA
4834 **/
4835static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4836{
4837 struct e1000_hw *hw = &adapter->hw;
4838 s32 ret_val;
4839 u16 phy_data;
4840
4841 ret_val = hw->phy.ops.acquire(hw);
4842 if (ret_val)
4843 return;
4844
e921eb1a 4845 /* A page set is expensive so check if already on desired page.
8c7bbb92
BA
4846 * If not, set to the page with the PHY status registers.
4847 */
2b6b168d 4848 hw->phy.addr = 1;
8c7bbb92
BA
4849 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4850 &phy_data);
4851 if (ret_val)
4852 goto release;
2b6b168d
BA
4853 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4854 ret_val = hw->phy.ops.set_page(hw,
4855 HV_STATS_PAGE << IGP_PAGE_SHIFT);
8c7bbb92
BA
4856 if (ret_val)
4857 goto release;
4858 }
4859
8c7bbb92 4860 /* Single Collision Count */
2b6b168d
BA
4861 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4862 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
8c7bbb92
BA
4863 if (!ret_val)
4864 adapter->stats.scc += phy_data;
4865
4866 /* Excessive Collision Count */
2b6b168d
BA
4867 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4868 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
8c7bbb92
BA
4869 if (!ret_val)
4870 adapter->stats.ecol += phy_data;
4871
4872 /* Multiple Collision Count */
2b6b168d
BA
4873 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4874 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
8c7bbb92
BA
4875 if (!ret_val)
4876 adapter->stats.mcc += phy_data;
4877
4878 /* Late Collision Count */
2b6b168d
BA
4879 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4880 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
8c7bbb92
BA
4881 if (!ret_val)
4882 adapter->stats.latecol += phy_data;
4883
4884 /* Collision Count - also used for adaptive IFS */
2b6b168d
BA
4885 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4886 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
8c7bbb92
BA
4887 if (!ret_val)
4888 hw->mac.collision_delta = phy_data;
4889
4890 /* Defer Count */
2b6b168d
BA
4891 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4892 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
8c7bbb92
BA
4893 if (!ret_val)
4894 adapter->stats.dc += phy_data;
4895
4896 /* Transmit with no CRS */
2b6b168d
BA
4897 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4898 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
8c7bbb92
BA
4899 if (!ret_val)
4900 adapter->stats.tncrs += phy_data;
4901
4902release:
4903 hw->phy.ops.release(hw);
4904}
4905
bc7f75fa
AK
4906/**
4907 * e1000e_update_stats - Update the board statistics counters
4908 * @adapter: board private structure
4909 **/
67fd4fcb 4910static void e1000e_update_stats(struct e1000_adapter *adapter)
bc7f75fa 4911{
7274c20f 4912 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
4913 struct e1000_hw *hw = &adapter->hw;
4914 struct pci_dev *pdev = adapter->pdev;
bc7f75fa 4915
e921eb1a 4916 /* Prevent stats update while adapter is being reset, or if the pci
bc7f75fa
AK
4917 * connection is down.
4918 */
4919 if (adapter->link_speed == 0)
4920 return;
4921 if (pci_channel_offline(pdev))
4922 return;
4923
bc7f75fa
AK
4924 adapter->stats.crcerrs += er32(CRCERRS);
4925 adapter->stats.gprc += er32(GPRC);
7c25769f 4926 adapter->stats.gorc += er32(GORCL);
e80bd1d1 4927 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
4928 adapter->stats.bprc += er32(BPRC);
4929 adapter->stats.mprc += er32(MPRC);
4930 adapter->stats.roc += er32(ROC);
4931
bc7f75fa 4932 adapter->stats.mpc += er32(MPC);
8c7bbb92
BA
4933
4934 /* Half-duplex statistics */
4935 if (adapter->link_duplex == HALF_DUPLEX) {
4936 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4937 e1000e_update_phy_stats(adapter);
4938 } else {
4939 adapter->stats.scc += er32(SCC);
4940 adapter->stats.ecol += er32(ECOL);
4941 adapter->stats.mcc += er32(MCC);
4942 adapter->stats.latecol += er32(LATECOL);
4943 adapter->stats.dc += er32(DC);
4944
4945 hw->mac.collision_delta = er32(COLC);
4946
4947 if ((hw->mac.type != e1000_82574) &&
4948 (hw->mac.type != e1000_82583))
4949 adapter->stats.tncrs += er32(TNCRS);
4950 }
4951 adapter->stats.colc += hw->mac.collision_delta;
a4f58f54 4952 }
8c7bbb92 4953
bc7f75fa
AK
4954 adapter->stats.xonrxc += er32(XONRXC);
4955 adapter->stats.xontxc += er32(XONTXC);
4956 adapter->stats.xoffrxc += er32(XOFFRXC);
4957 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 4958 adapter->stats.gptc += er32(GPTC);
7c25769f 4959 adapter->stats.gotc += er32(GOTCL);
e80bd1d1 4960 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
4961 adapter->stats.rnbc += er32(RNBC);
4962 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
4963
4964 adapter->stats.mptc += er32(MPTC);
4965 adapter->stats.bptc += er32(BPTC);
4966
4967 /* used for adaptive IFS */
4968
4969 hw->mac.tx_packet_delta = er32(TPT);
4970 adapter->stats.tpt += hw->mac.tx_packet_delta;
bc7f75fa
AK
4971
4972 adapter->stats.algnerrc += er32(ALGNERRC);
4973 adapter->stats.rxerrc += er32(RXERRC);
bc7f75fa
AK
4974 adapter->stats.cexterr += er32(CEXTERR);
4975 adapter->stats.tsctc += er32(TSCTC);
4976 adapter->stats.tsctfc += er32(TSCTFC);
4977
bc7f75fa 4978 /* Fill out the OS statistics structure */
7274c20f
AK
4979 netdev->stats.multicast = adapter->stats.mprc;
4980 netdev->stats.collisions = adapter->stats.colc;
bc7f75fa
AK
4981
4982 /* Rx Errors */
4983
e921eb1a 4984 /* RLEC on some newer hardware can be incorrect so build
ad68076e
BA
4985 * our own version based on RUC and ROC
4986 */
7274c20f 4987 netdev->stats.rx_errors = adapter->stats.rxerrc +
f0ff4398
BA
4988 adapter->stats.crcerrs + adapter->stats.algnerrc +
4989 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
7274c20f 4990 netdev->stats.rx_length_errors = adapter->stats.ruc +
f0ff4398 4991 adapter->stats.roc;
7274c20f
AK
4992 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4993 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4994 netdev->stats.rx_missed_errors = adapter->stats.mpc;
bc7f75fa
AK
4995
4996 /* Tx Errors */
f0ff4398 4997 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
7274c20f
AK
4998 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4999 netdev->stats.tx_window_errors = adapter->stats.latecol;
5000 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
bc7f75fa
AK
5001
5002 /* Tx Dropped needs to be maintained elsewhere */
5003
bc7f75fa
AK
5004 /* Management Stats */
5005 adapter->stats.mgptc += er32(MGTPTC);
5006 adapter->stats.mgprc += er32(MGTPRC);
5007 adapter->stats.mgpdc += er32(MGTPDC);
94fb848b
BA
5008
5009 /* Correctable ECC Errors */
c8744f44 5010 if (hw->mac.type >= e1000_pch_lpt) {
94fb848b 5011 u32 pbeccsts = er32(PBECCSTS);
6cf08d1c 5012
94fb848b
BA
5013 adapter->corr_errors +=
5014 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5015 adapter->uncorr_errors +=
5016 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5017 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5018 }
bc7f75fa
AK
5019}
5020
7c25769f
BA
5021/**
5022 * e1000_phy_read_status - Update the PHY register status snapshot
5023 * @adapter: board private structure
5024 **/
5025static void e1000_phy_read_status(struct e1000_adapter *adapter)
5026{
5027 struct e1000_hw *hw = &adapter->hw;
5028 struct e1000_phy_regs *phy = &adapter->phy_regs;
7c25769f 5029
97390ab8
BA
5030 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5031 (er32(STATUS) & E1000_STATUS_LU) &&
7c25769f 5032 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
90da0669
BA
5033 int ret_val;
5034
c2ade1a4
BA
5035 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5036 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5037 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5038 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5039 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5040 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5041 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5042 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
7c25769f 5043 if (ret_val)
44defeb3 5044 e_warn("Error reading PHY register\n");
7c25769f 5045 } else {
e921eb1a 5046 /* Do not read PHY registers if link is not up
7c25769f
BA
5047 * Set values to typical power-on defaults
5048 */
5049 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5050 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5051 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5052 BMSR_ERCAP);
5053 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5054 ADVERTISE_ALL | ADVERTISE_CSMA);
5055 phy->lpa = 0;
5056 phy->expansion = EXPANSION_ENABLENPAGE;
5057 phy->ctrl1000 = ADVERTISE_1000FULL;
5058 phy->stat1000 = 0;
5059 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5060 }
7c25769f
BA
5061}
5062
bc7f75fa
AK
5063static void e1000_print_link_info(struct e1000_adapter *adapter)
5064{
bc7f75fa
AK
5065 struct e1000_hw *hw = &adapter->hw;
5066 u32 ctrl = er32(CTRL);
5067
8f12fe86 5068 /* Link status message must follow this format for user tools */
7dbc1672
BA
5069 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5070 adapter->netdev->name, adapter->link_speed,
ef456f85
JK
5071 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5072 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5073 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5074 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
bc7f75fa
AK
5075}
5076
0c6bdb30 5077static bool e1000e_has_link(struct e1000_adapter *adapter)
318a94d6
JK
5078{
5079 struct e1000_hw *hw = &adapter->hw;
3db1cd5c 5080 bool link_active = false;
318a94d6
JK
5081 s32 ret_val = 0;
5082
e921eb1a 5083 /* get_link_status is set on LSC (link status) interrupt or
318a94d6 5084 * Rx sequence error interrupt. get_link_status will stay
65a29da1 5085 * true until the check_for_link establishes link
318a94d6
JK
5086 * for copper adapters ONLY
5087 */
5088 switch (hw->phy.media_type) {
5089 case e1000_media_type_copper:
5090 if (hw->mac.get_link_status) {
5091 ret_val = hw->mac.ops.check_for_link(hw);
3016e0a0 5092 link_active = !hw->mac.get_link_status;
318a94d6 5093 } else {
3db1cd5c 5094 link_active = true;
318a94d6
JK
5095 }
5096 break;
5097 case e1000_media_type_fiber:
5098 ret_val = hw->mac.ops.check_for_link(hw);
5099 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5100 break;
5101 case e1000_media_type_internal_serdes:
5102 ret_val = hw->mac.ops.check_for_link(hw);
65a29da1 5103 link_active = hw->mac.serdes_has_link;
318a94d6
JK
5104 break;
5105 default:
5106 case e1000_media_type_unknown:
5107 break;
5108 }
5109
d3509f8b 5110 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
318a94d6
JK
5111 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5112 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 5113 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
5114 }
5115
5116 return link_active;
5117}
5118
5119static void e1000e_enable_receives(struct e1000_adapter *adapter)
5120{
5121 /* make sure the receive unit is started */
5122 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
12d43f7d 5123 (adapter->flags & FLAG_RESTART_NOW)) {
318a94d6
JK
5124 struct e1000_hw *hw = &adapter->hw;
5125 u32 rctl = er32(RCTL);
6cf08d1c 5126
318a94d6 5127 ew32(RCTL, rctl | E1000_RCTL_EN);
12d43f7d 5128 adapter->flags &= ~FLAG_RESTART_NOW;
318a94d6
JK
5129 }
5130}
5131
ff10e13c
CW
5132static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5133{
5134 struct e1000_hw *hw = &adapter->hw;
5135
e921eb1a 5136 /* With 82574 controllers, PHY needs to be checked periodically
ff10e13c
CW
5137 * for hung state and reset, if two calls return true
5138 */
5139 if (e1000_check_phy_82574(hw))
5140 adapter->phy_hang_count++;
5141 else
5142 adapter->phy_hang_count = 0;
5143
5144 if (adapter->phy_hang_count > 1) {
5145 adapter->phy_hang_count = 0;
d9554e96 5146 e_dbg("PHY appears hung - resetting\n");
ff10e13c
CW
5147 schedule_work(&adapter->reset_task);
5148 }
5149}
5150
b4275924
JK
5151/**
5152 * e1000_watchdog - Timer Call-back
5153 * @data: pointer to adapter cast into an unsigned long
5154 **/
5155static void e1000_watchdog(struct timer_list *t)
5156{
5157 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5158
5159 /* Do the rest outside of interrupt context */
5160 schedule_work(&adapter->watchdog_task);
5161
5162 /* TODO: make this use queue_delayed_work() */
5163}
5164
bc7f75fa
AK
5165static void e1000_watchdog_task(struct work_struct *work)
5166{
5167 struct e1000_adapter *adapter = container_of(work,
17e813ec 5168 struct e1000_adapter,
b4275924 5169 watchdog_task);
bc7f75fa
AK
5170 struct net_device *netdev = adapter->netdev;
5171 struct e1000_mac_info *mac = &adapter->hw.mac;
75eb0fad 5172 struct e1000_phy_info *phy = &adapter->hw.phy;
bc7f75fa 5173 struct e1000_ring *tx_ring = adapter->tx_ring;
def4ec6d 5174 u32 dmoff_exit_timeout = 100, tries = 0;
bc7f75fa 5175 struct e1000_hw *hw = &adapter->hw;
def4ec6d 5176 u32 link, tctl, pcim_state;
bc7f75fa 5177
615b32af
JB
5178 if (test_bit(__E1000_DOWN, &adapter->state))
5179 return;
5180
b405e8df 5181 link = e1000e_has_link(adapter);
318a94d6 5182 if ((netif_carrier_ok(netdev)) && link) {
23606cf5
RW
5183 /* Cancel scheduled suspend requests. */
5184 pm_runtime_resume(netdev->dev.parent);
5185
318a94d6 5186 e1000e_enable_receives(adapter);
bc7f75fa 5187 goto link_up;
bc7f75fa
AK
5188 }
5189
5190 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5191 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5192 e1000_update_mng_vlan(adapter);
5193
bc7f75fa
AK
5194 if (link) {
5195 if (!netif_carrier_ok(netdev)) {
3db1cd5c 5196 bool txb2b = true;
23606cf5
RW
5197
5198 /* Cancel scheduled suspend requests. */
5199 pm_runtime_resume(netdev->dev.parent);
5200
def4ec6d 5201 /* Checking if MAC is in DMoff state*/
ff65c8bb 5202 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
def4ec6d 5203 pcim_state = er32(STATUS);
ff65c8bb
SN
5204 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5205 if (tries++ == dmoff_exit_timeout) {
5206 e_dbg("Error in exiting dmoff\n");
5207 break;
5208 }
5209 usleep_range(10000, 20000);
5210 pcim_state = er32(STATUS);
5211
5212 /* Checking if MAC exited DMoff state */
5213 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5214 e1000_phy_hw_reset(&adapter->hw);
5215 }
def4ec6d
VL
5216 }
5217
318a94d6 5218 /* update snapshot of PHY registers on LSC */
7c25769f 5219 e1000_phy_read_status(adapter);
bc7f75fa 5220 mac->ops.get_link_up_info(&adapter->hw,
17e813ec
BA
5221 &adapter->link_speed,
5222 &adapter->link_duplex);
bc7f75fa 5223 e1000_print_link_info(adapter);
e792cd91
KS
5224
5225 /* check if SmartSpeed worked */
5226 e1000e_check_downshift(hw);
5227 if (phy->speed_downgraded)
5228 netdev_warn(netdev,
5229 "Link Speed was downgraded by SmartSpeed\n");
5230
e921eb1a 5231 /* On supported PHYs, check for duplex mismatch only
f4187b56
BA
5232 * if link has autonegotiated at 10/100 half
5233 */
5234 if ((hw->phy.type == e1000_phy_igp_3 ||
5235 hw->phy.type == e1000_phy_bm) &&
138953bb 5236 hw->mac.autoneg &&
f4187b56
BA
5237 (adapter->link_speed == SPEED_10 ||
5238 adapter->link_speed == SPEED_100) &&
5239 (adapter->link_duplex == HALF_DUPLEX)) {
5240 u16 autoneg_exp;
5241
c2ade1a4 5242 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
f4187b56 5243
c2ade1a4 5244 if (!(autoneg_exp & EXPANSION_NWAY))
ef456f85 5245 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
f4187b56
BA
5246 }
5247
f49c57e1 5248 /* adjust timeout factor according to speed/duplex */
bc7f75fa
AK
5249 adapter->tx_timeout_factor = 1;
5250 switch (adapter->link_speed) {
5251 case SPEED_10:
3db1cd5c 5252 txb2b = false;
10f1b492 5253 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
5254 break;
5255 case SPEED_100:
3db1cd5c 5256 txb2b = false;
4c86e0b9 5257 adapter->tx_timeout_factor = 10;
bc7f75fa
AK
5258 break;
5259 }
5260
e921eb1a 5261 /* workaround: re-program speed mode bit after
ad68076e
BA
5262 * link-up event
5263 */
bc7f75fa
AK
5264 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5265 !txb2b) {
5266 u32 tarc0;
6cf08d1c 5267
e9ec2c0f 5268 tarc0 = er32(TARC(0));
bc7f75fa 5269 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 5270 ew32(TARC(0), tarc0);
bc7f75fa
AK
5271 }
5272
e921eb1a 5273 /* disable TSO for pcie and 10/100 speeds, to avoid
ad68076e
BA
5274 * some hardware issues
5275 */
bc7f75fa
AK
5276 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5277 switch (adapter->link_speed) {
5278 case SPEED_10:
5279 case SPEED_100:
44defeb3 5280 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
5281 netdev->features &= ~NETIF_F_TSO;
5282 netdev->features &= ~NETIF_F_TSO6;
5283 break;
5284 case SPEED_1000:
5285 netdev->features |= NETIF_F_TSO;
5286 netdev->features |= NETIF_F_TSO6;
5287 break;
5288 default:
5289 /* oops */
5290 break;
5291 }
d364a579
KHF
5292 if (hw->mac.type == e1000_pch_spt) {
5293 netdev->features &= ~NETIF_F_TSO;
5294 netdev->features &= ~NETIF_F_TSO6;
5295 }
bc7f75fa
AK
5296 }
5297
e921eb1a 5298 /* enable transmits in the hardware, need to do this
ad68076e
BA
5299 * after setting TARC(0)
5300 */
bc7f75fa
AK
5301 tctl = er32(TCTL);
5302 tctl |= E1000_TCTL_EN;
5303 ew32(TCTL, tctl);
5304
e921eb1a 5305 /* Perform any post-link-up configuration before
75eb0fad
BA
5306 * reporting link up.
5307 */
5308 if (phy->ops.cfg_on_link_up)
5309 phy->ops.cfg_on_link_up(hw);
5310
d17ba0f6 5311 netif_wake_queue(netdev);
bc7f75fa 5312 netif_carrier_on(netdev);
bc7f75fa
AK
5313
5314 if (!test_bit(__E1000_DOWN, &adapter->state))
5315 mod_timer(&adapter->phy_info_timer,
5316 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
5317 }
5318 } else {
5319 if (netif_carrier_ok(netdev)) {
5320 adapter->link_speed = 0;
5321 adapter->link_duplex = 0;
8f12fe86 5322 /* Link status message must follow this format */
7dbc1672 5323 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
bc7f75fa 5324 netif_carrier_off(netdev);
d17ba0f6 5325 netif_stop_queue(netdev);
bc7f75fa
AK
5326 if (!test_bit(__E1000_DOWN, &adapter->state))
5327 mod_timer(&adapter->phy_info_timer,
5328 round_jiffies(jiffies + 2 * HZ));
5329
d9554e96
DE
5330 /* 8000ES2LAN requires a Rx packet buffer work-around
5331 * on link down event; reset the controller to flush
5332 * the Rx packet buffer.
12d43f7d 5333 */
caff422e 5334 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
12d43f7d 5335 adapter->flags |= FLAG_RESTART_NOW;
23606cf5
RW
5336 else
5337 pm_schedule_suspend(netdev->dev.parent,
17e813ec 5338 LINK_TIMEOUT);
bc7f75fa
AK
5339 }
5340 }
5341
5342link_up:
67fd4fcb 5343 spin_lock(&adapter->stats64_lock);
bc7f75fa
AK
5344 e1000e_update_stats(adapter);
5345
5346 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5347 adapter->tpt_old = adapter->stats.tpt;
5348 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5349 adapter->colc_old = adapter->stats.colc;
5350
7c25769f
BA
5351 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5352 adapter->gorc_old = adapter->stats.gorc;
5353 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5354 adapter->gotc_old = adapter->stats.gotc;
2084b114 5355 spin_unlock(&adapter->stats64_lock);
bc7f75fa 5356
caff422e
KK
5357 /* If the link is lost the controller stops DMA, but
5358 * if there is queued Tx work it cannot be done. So
5359 * reset the controller to flush the Tx packet buffers.
5360 */
5361 if (!netif_carrier_ok(netdev) &&
5362 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5363 adapter->flags |= FLAG_RESTART_NOW;
5364
d9554e96 5365 /* If reset is necessary, do it outside of interrupt context. */
12d43f7d 5366 if (adapter->flags & FLAG_RESTART_NOW) {
90da0669
BA
5367 schedule_work(&adapter->reset_task);
5368 /* return immediately since reset is imminent */
5369 return;
bc7f75fa
AK
5370 }
5371
12d43f7d
BA
5372 e1000e_update_adaptive(&adapter->hw);
5373
eab2abf5
JB
5374 /* Simple mode for Interrupt Throttle Rate (ITR) */
5375 if (adapter->itr_setting == 4) {
e921eb1a 5376 /* Symmetric Tx/Rx gets a reduced ITR=2000;
eab2abf5
JB
5377 * Total asymmetrical Tx or Rx gets ITR=8000;
5378 * everyone else is between 2000-8000.
5379 */
5380 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5381 u32 dif = (adapter->gotc > adapter->gorc ?
17e813ec
BA
5382 adapter->gotc - adapter->gorc :
5383 adapter->gorc - adapter->gotc) / 10000;
eab2abf5
JB
5384 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5385
22a4cca2 5386 e1000e_write_itr(adapter, itr);
eab2abf5
JB
5387 }
5388
ad68076e 5389 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
5390 if (adapter->msix_entries)
5391 ew32(ICS, adapter->rx_ring->ims_val);
5392 else
5393 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa 5394
713b3c9e
JB
5395 /* flush pending descriptors to memory before detecting Tx hang */
5396 e1000e_flush_descriptors(adapter);
5397
bc7f75fa 5398 /* Force detection of hung controller every watchdog period */
3db1cd5c 5399 adapter->detect_tx_hung = true;
bc7f75fa 5400
e921eb1a 5401 /* With 82571 controllers, LAA may be overwritten due to controller
ad68076e
BA
5402 * reset from the other port. Set the appropriate LAA in RAR[0]
5403 */
bc7f75fa 5404 if (e1000e_get_laa_state_82571(hw))
69e1e019 5405 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
bc7f75fa 5406
ff10e13c
CW
5407 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5408 e1000e_check_82574_phy_workaround(adapter);
5409
b67e1913
BA
5410 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5411 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5412 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5413 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5414 er32(RXSTMPH);
5415 adapter->rx_hwtstamp_cleared++;
5416 } else {
5417 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5418 }
5419 }
5420
bc7f75fa
AK
5421 /* Reset the timer */
5422 if (!test_bit(__E1000_DOWN, &adapter->state))
b4275924
JK
5423 mod_timer(&adapter->watchdog_timer,
5424 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
5425}
5426
5427#define E1000_TX_FLAGS_CSUM 0x00000001
5428#define E1000_TX_FLAGS_VLAN 0x00000002
5429#define E1000_TX_FLAGS_TSO 0x00000004
5430#define E1000_TX_FLAGS_IPV4 0x00000008
943146de 5431#define E1000_TX_FLAGS_NO_FCS 0x00000010
b67e1913 5432#define E1000_TX_FLAGS_HWTSTAMP 0x00000020
bc7f75fa
AK
5433#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5434#define E1000_TX_FLAGS_VLAN_SHIFT 16
5435
47ccd1ed
VY
5436static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5437 __be16 protocol)
bc7f75fa 5438{
bc7f75fa
AK
5439 struct e1000_context_desc *context_desc;
5440 struct e1000_buffer *buffer_info;
5441 unsigned int i;
5442 u32 cmd_length = 0;
70443ae9 5443 u16 ipcse = 0, mss;
bc7f75fa 5444 u8 ipcss, ipcso, tucss, tucso, hdr_len;
bcf1f57f 5445 int err;
bc7f75fa 5446
3d5e33c9
BA
5447 if (!skb_is_gso(skb))
5448 return 0;
bc7f75fa 5449
bcf1f57f
FR
5450 err = skb_cow_head(skb, 0);
5451 if (err < 0)
5452 return err;
bc7f75fa 5453
3d5e33c9
BA
5454 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5455 mss = skb_shinfo(skb)->gso_size;
47ccd1ed 5456 if (protocol == htons(ETH_P_IP)) {
3d5e33c9
BA
5457 struct iphdr *iph = ip_hdr(skb);
5458 iph->tot_len = 0;
5459 iph->check = 0;
5460 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
f0ff4398 5461 0, IPPROTO_TCP, 0);
3d5e33c9
BA
5462 cmd_length = E1000_TXD_CMD_IP;
5463 ipcse = skb_transport_offset(skb) - 1;
8e1e8a47 5464 } else if (skb_is_gso_v6(skb)) {
3d5e33c9
BA
5465 ipv6_hdr(skb)->payload_len = 0;
5466 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
f0ff4398
BA
5467 &ipv6_hdr(skb)->daddr,
5468 0, IPPROTO_TCP, 0);
3d5e33c9
BA
5469 ipcse = 0;
5470 }
5471 ipcss = skb_network_offset(skb);
5472 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5473 tucss = skb_transport_offset(skb);
5474 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3d5e33c9
BA
5475
5476 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
f0ff4398 5477 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3d5e33c9
BA
5478
5479 i = tx_ring->next_to_use;
5480 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5481 buffer_info = &tx_ring->buffer_info[i];
5482
e80bd1d1
BA
5483 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5484 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5485 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3d5e33c9
BA
5486 context_desc->upper_setup.tcp_fields.tucss = tucss;
5487 context_desc->upper_setup.tcp_fields.tucso = tucso;
70443ae9 5488 context_desc->upper_setup.tcp_fields.tucse = 0;
e80bd1d1 5489 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3d5e33c9
BA
5490 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5491 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5492
5493 buffer_info->time_stamp = jiffies;
5494 buffer_info->next_to_watch = i;
5495
5496 i++;
5497 if (i == tx_ring->count)
5498 i = 0;
5499 tx_ring->next_to_use = i;
5500
5501 return 1;
bc7f75fa
AK
5502}
5503
47ccd1ed
VY
5504static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5505 __be16 protocol)
bc7f75fa 5506{
55aa6985 5507 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
5508 struct e1000_context_desc *context_desc;
5509 struct e1000_buffer *buffer_info;
5510 unsigned int i;
5511 u8 css;
af807c82 5512 u32 cmd_len = E1000_TXD_CMD_DEXT;
bc7f75fa 5513
af807c82 5514 if (skb->ip_summed != CHECKSUM_PARTIAL)
3992c8ed 5515 return false;
bc7f75fa 5516
3f518390 5517 switch (protocol) {
09640e63 5518 case cpu_to_be16(ETH_P_IP):
af807c82
DG
5519 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5520 cmd_len |= E1000_TXD_CMD_TCP;
5521 break;
09640e63 5522 case cpu_to_be16(ETH_P_IPV6):
af807c82
DG
5523 /* XXX not handling all IPV6 headers */
5524 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5525 cmd_len |= E1000_TXD_CMD_TCP;
5526 break;
5527 default:
5528 if (unlikely(net_ratelimit()))
5f66f208
AJ
5529 e_warn("checksum_partial proto=%x!\n",
5530 be16_to_cpu(protocol));
af807c82 5531 break;
bc7f75fa
AK
5532 }
5533
0d0b1672 5534 css = skb_checksum_start_offset(skb);
af807c82
DG
5535
5536 i = tx_ring->next_to_use;
5537 buffer_info = &tx_ring->buffer_info[i];
5538 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5539
5540 context_desc->lower_setup.ip_config = 0;
5541 context_desc->upper_setup.tcp_fields.tucss = css;
f0ff4398 5542 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
af807c82
DG
5543 context_desc->upper_setup.tcp_fields.tucse = 0;
5544 context_desc->tcp_seg_setup.data = 0;
5545 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5546
5547 buffer_info->time_stamp = jiffies;
5548 buffer_info->next_to_watch = i;
5549
5550 i++;
5551 if (i == tx_ring->count)
5552 i = 0;
5553 tx_ring->next_to_use = i;
5554
3992c8ed 5555 return true;
bc7f75fa
AK
5556}
5557
55aa6985
BA
5558static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5559 unsigned int first, unsigned int max_per_txd,
d821a4c4 5560 unsigned int nr_frags)
bc7f75fa 5561{
55aa6985 5562 struct e1000_adapter *adapter = tx_ring->adapter;
03b1320d 5563 struct pci_dev *pdev = adapter->pdev;
1b7719c4 5564 struct e1000_buffer *buffer_info;
8ddc951c 5565 unsigned int len = skb_headlen(skb);
03b1320d 5566 unsigned int offset = 0, size, count = 0, i;
9ed318d5 5567 unsigned int f, bytecount, segs;
bc7f75fa
AK
5568
5569 i = tx_ring->next_to_use;
5570
5571 while (len) {
1b7719c4 5572 buffer_info = &tx_ring->buffer_info[i];
bc7f75fa
AK
5573 size = min(len, max_per_txd);
5574
bc7f75fa 5575 buffer_info->length = size;
bc7f75fa 5576 buffer_info->time_stamp = jiffies;
bc7f75fa 5577 buffer_info->next_to_watch = i;
0be3f55f
NN
5578 buffer_info->dma = dma_map_single(&pdev->dev,
5579 skb->data + offset,
af667a29 5580 size, DMA_TO_DEVICE);
03b1320d 5581 buffer_info->mapped_as_page = false;
0be3f55f 5582 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
03b1320d 5583 goto dma_error;
bc7f75fa
AK
5584
5585 len -= size;
5586 offset += size;
03b1320d 5587 count++;
1b7719c4
AD
5588
5589 if (len) {
5590 i++;
5591 if (i == tx_ring->count)
5592 i = 0;
5593 }
bc7f75fa
AK
5594 }
5595
5596 for (f = 0; f < nr_frags; f++) {
d7840976 5597 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
bc7f75fa 5598
9e903e08 5599 len = skb_frag_size(frag);
877749bf 5600 offset = 0;
bc7f75fa
AK
5601
5602 while (len) {
1b7719c4
AD
5603 i++;
5604 if (i == tx_ring->count)
5605 i = 0;
5606
bc7f75fa
AK
5607 buffer_info = &tx_ring->buffer_info[i];
5608 size = min(len, max_per_txd);
bc7f75fa
AK
5609
5610 buffer_info->length = size;
5611 buffer_info->time_stamp = jiffies;
bc7f75fa 5612 buffer_info->next_to_watch = i;
877749bf 5613 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
17e813ec
BA
5614 offset, size,
5615 DMA_TO_DEVICE);
03b1320d 5616 buffer_info->mapped_as_page = true;
0be3f55f 5617 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
03b1320d 5618 goto dma_error;
bc7f75fa
AK
5619
5620 len -= size;
5621 offset += size;
5622 count++;
bc7f75fa
AK
5623 }
5624 }
5625
af667a29 5626 segs = skb_shinfo(skb)->gso_segs ? : 1;
9ed318d5
TH
5627 /* multiply data chunks by size of headers */
5628 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5629
bc7f75fa 5630 tx_ring->buffer_info[i].skb = skb;
9ed318d5
TH
5631 tx_ring->buffer_info[i].segs = segs;
5632 tx_ring->buffer_info[i].bytecount = bytecount;
bc7f75fa
AK
5633 tx_ring->buffer_info[first].next_to_watch = i;
5634
5635 return count;
03b1320d
AD
5636
5637dma_error:
af667a29 5638 dev_err(&pdev->dev, "Tx DMA map failed\n");
03b1320d 5639 buffer_info->dma = 0;
c1fa347f 5640 if (count)
03b1320d 5641 count--;
c1fa347f
RK
5642
5643 while (count--) {
af667a29 5644 if (i == 0)
03b1320d 5645 i += tx_ring->count;
c1fa347f 5646 i--;
03b1320d 5647 buffer_info = &tx_ring->buffer_info[i];
377b6273 5648 e1000_put_txbuf(tx_ring, buffer_info, true);
03b1320d
AD
5649 }
5650
5651 return 0;
bc7f75fa
AK
5652}
5653
55aa6985 5654static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
bc7f75fa 5655{
55aa6985 5656 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
5657 struct e1000_tx_desc *tx_desc = NULL;
5658 struct e1000_buffer *buffer_info;
5659 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5660 unsigned int i;
5661
5662 if (tx_flags & E1000_TX_FLAGS_TSO) {
5663 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
f0ff4398 5664 E1000_TXD_CMD_TSE;
bc7f75fa
AK
5665 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5666
5667 if (tx_flags & E1000_TX_FLAGS_IPV4)
5668 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5669 }
5670
5671 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5672 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5673 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5674 }
5675
5676 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5677 txd_lower |= E1000_TXD_CMD_VLE;
5678 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5679 }
5680
943146de
BG
5681 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5682 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5683
b67e1913
BA
5684 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5685 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5686 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5687 }
5688
bc7f75fa
AK
5689 i = tx_ring->next_to_use;
5690
36b973df 5691 do {
bc7f75fa
AK
5692 buffer_info = &tx_ring->buffer_info[i];
5693 tx_desc = E1000_TX_DESC(*tx_ring, i);
5694 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
f0ff4398
BA
5695 tx_desc->lower.data = cpu_to_le32(txd_lower |
5696 buffer_info->length);
bc7f75fa
AK
5697 tx_desc->upper.data = cpu_to_le32(txd_upper);
5698
5699 i++;
5700 if (i == tx_ring->count)
5701 i = 0;
36b973df 5702 } while (--count > 0);
bc7f75fa
AK
5703
5704 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5705
943146de
BG
5706 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5707 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5708 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5709
e921eb1a 5710 /* Force memory writes to complete before letting h/w
bc7f75fa
AK
5711 * know there are new descriptors to fetch. (Only
5712 * applicable for weak-ordered memory model archs,
ad68076e
BA
5713 * such as IA-64).
5714 */
bc7f75fa
AK
5715 wmb();
5716
5717 tx_ring->next_to_use = i;
bc7f75fa
AK
5718}
5719
5720#define MINIMUM_DHCP_PACKET_SIZE 282
5721static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5722 struct sk_buff *skb)
5723{
e80bd1d1 5724 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
5725 u16 length, offset;
5726
df8a39de
JP
5727 if (skb_vlan_tag_present(skb) &&
5728 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
d60923c4
BA
5729 (adapter->hw.mng_cookie.status &
5730 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5731 return 0;
bc7f75fa
AK
5732
5733 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5734 return 0;
5735
53aa82da 5736 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
bc7f75fa
AK
5737 return 0;
5738
5739 {
362e20ca 5740 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
bc7f75fa
AK
5741 struct udphdr *udp;
5742
5743 if (ip->protocol != IPPROTO_UDP)
5744 return 0;
5745
5746 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5747 if (ntohs(udp->dest) != 67)
5748 return 0;
5749
5750 offset = (u8 *)udp + 8 - skb->data;
5751 length = skb->len - offset;
5752 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5753 }
5754
5755 return 0;
5756}
5757
55aa6985 5758static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
bc7f75fa 5759{
55aa6985 5760 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa 5761
55aa6985 5762 netif_stop_queue(adapter->netdev);
e921eb1a 5763 /* Herbert's original patch had:
bc7f75fa 5764 * smp_mb__after_netif_stop_queue();
ad68076e
BA
5765 * but since that doesn't exist yet, just open code it.
5766 */
bc7f75fa
AK
5767 smp_mb();
5768
e921eb1a 5769 /* We need to check again in a case another CPU has just
ad68076e
BA
5770 * made room available.
5771 */
55aa6985 5772 if (e1000_desc_unused(tx_ring) < size)
bc7f75fa
AK
5773 return -EBUSY;
5774
5775 /* A reprieve! */
55aa6985 5776 netif_start_queue(adapter->netdev);
bc7f75fa
AK
5777 ++adapter->restart_queue;
5778 return 0;
5779}
5780
55aa6985 5781static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
bc7f75fa 5782{
d821a4c4
BA
5783 BUG_ON(size > tx_ring->count);
5784
55aa6985 5785 if (e1000_desc_unused(tx_ring) >= size)
bc7f75fa 5786 return 0;
55aa6985 5787 return __e1000_maybe_stop_tx(tx_ring, size);
bc7f75fa
AK
5788}
5789
3b29a56d
SH
5790static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5791 struct net_device *netdev)
bc7f75fa
AK
5792{
5793 struct e1000_adapter *adapter = netdev_priv(netdev);
5794 struct e1000_ring *tx_ring = adapter->tx_ring;
5795 unsigned int first;
bc7f75fa 5796 unsigned int tx_flags = 0;
e743d313 5797 unsigned int len = skb_headlen(skb);
4e6c709c
AK
5798 unsigned int nr_frags;
5799 unsigned int mss;
bc7f75fa
AK
5800 int count = 0;
5801 int tso;
5802 unsigned int f;
47ccd1ed 5803 __be16 protocol = vlan_get_protocol(skb);
bc7f75fa
AK
5804
5805 if (test_bit(__E1000_DOWN, &adapter->state)) {
5806 dev_kfree_skb_any(skb);
5807 return NETDEV_TX_OK;
5808 }
5809
5810 if (skb->len <= 0) {
5811 dev_kfree_skb_any(skb);
5812 return NETDEV_TX_OK;
5813 }
5814
e921eb1a 5815 /* The minimum packet size with TCTL.PSP set is 17 bytes so
6e97c170
TD
5816 * pad skb in order to meet this minimum size requirement
5817 */
a94d9e22
AD
5818 if (skb_put_padto(skb, 17))
5819 return NETDEV_TX_OK;
6e97c170 5820
bc7f75fa 5821 mss = skb_shinfo(skb)->gso_size;
bc7f75fa
AK
5822 if (mss) {
5823 u8 hdr_len;
bc7f75fa 5824
e921eb1a 5825 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
ad68076e
BA
5826 * points to just header, pull a few bytes of payload from
5827 * frags into skb->data
5828 */
bc7f75fa 5829 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
e921eb1a 5830 /* we do this workaround for ES2LAN, but it is un-necessary,
ad68076e
BA
5831 * avoiding it could save a lot of cycles
5832 */
4e6c709c 5833 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
5834 unsigned int pull_size;
5835
a2a5b323 5836 pull_size = min_t(unsigned int, 4, skb->data_len);
bc7f75fa 5837 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 5838 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
5839 dev_kfree_skb_any(skb);
5840 return NETDEV_TX_OK;
5841 }
e743d313 5842 len = skb_headlen(skb);
bc7f75fa
AK
5843 }
5844 }
5845
5846 /* reserve a descriptor for the offload context */
5847 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5848 count++;
5849 count++;
5850
d821a4c4 5851 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
bc7f75fa
AK
5852
5853 nr_frags = skb_shinfo(skb)->nr_frags;
5854 for (f = 0; f < nr_frags; f++)
d821a4c4
BA
5855 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5856 adapter->tx_fifo_limit);
bc7f75fa
AK
5857
5858 if (adapter->hw.mac.tx_pkt_filtering)
5859 e1000_transfer_dhcp_info(adapter, skb);
5860
e921eb1a 5861 /* need: count + 2 desc gap to keep tail from touching
ad68076e
BA
5862 * head, otherwise try next time
5863 */
55aa6985 5864 if (e1000_maybe_stop_tx(tx_ring, count + 2))
bc7f75fa 5865 return NETDEV_TX_BUSY;
bc7f75fa 5866
df8a39de 5867 if (skb_vlan_tag_present(skb)) {
bc7f75fa 5868 tx_flags |= E1000_TX_FLAGS_VLAN;
df8a39de
JP
5869 tx_flags |= (skb_vlan_tag_get(skb) <<
5870 E1000_TX_FLAGS_VLAN_SHIFT);
bc7f75fa
AK
5871 }
5872
5873 first = tx_ring->next_to_use;
5874
47ccd1ed 5875 tso = e1000_tso(tx_ring, skb, protocol);
bc7f75fa
AK
5876 if (tso < 0) {
5877 dev_kfree_skb_any(skb);
bc7f75fa
AK
5878 return NETDEV_TX_OK;
5879 }
5880
5881 if (tso)
5882 tx_flags |= E1000_TX_FLAGS_TSO;
47ccd1ed 5883 else if (e1000_tx_csum(tx_ring, skb, protocol))
bc7f75fa
AK
5884 tx_flags |= E1000_TX_FLAGS_CSUM;
5885
e921eb1a 5886 /* Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 5887 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
5888 * no longer assume, we must.
5889 */
47ccd1ed 5890 if (protocol == htons(ETH_P_IP))
bc7f75fa
AK
5891 tx_flags |= E1000_TX_FLAGS_IPV4;
5892
943146de
BG
5893 if (unlikely(skb->no_fcs))
5894 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5895
25985edc 5896 /* if count is 0 then mapping error has occurred */
d821a4c4
BA
5897 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5898 nr_frags);
1b7719c4 5899 if (count) {
6930895d 5900 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
cff57141
JK
5901 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5902 if (!adapter->tx_hwtstamp_skb) {
5903 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5904 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5905 adapter->tx_hwtstamp_skb = skb_get(skb);
5906 adapter->tx_hwtstamp_start = jiffies;
5907 schedule_work(&adapter->tx_hwtstamp_work);
5908 } else {
5909 adapter->tx_hwtstamp_skipped++;
5910 }
b67e1913 5911 }
80be3129 5912
74abc9b1
ML
5913 skb_tx_timestamp(skb);
5914
3f0cfa3b 5915 netdev_sent_queue(netdev, skb->len);
55aa6985 5916 e1000_tx_queue(tx_ring, tx_flags, count);
1b7719c4 5917 /* Make sure there is space in the ring for the next send. */
d821a4c4
BA
5918 e1000_maybe_stop_tx(tx_ring,
5919 (MAX_SKB_FRAGS *
5920 DIV_ROUND_UP(PAGE_SIZE,
5921 adapter->tx_fifo_limit) + 2));
472f31f5 5922
6b16f9ee 5923 if (!netdev_xmit_more() ||
472f31f5
FW
5924 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5925 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5926 e1000e_update_tdt_wa(tx_ring,
5927 tx_ring->next_to_use);
5928 else
5929 writel(tx_ring->next_to_use, tx_ring->tail);
472f31f5 5930 }
1b7719c4 5931 } else {
bc7f75fa 5932 dev_kfree_skb_any(skb);
1b7719c4
AD
5933 tx_ring->buffer_info[first].time_stamp = 0;
5934 tx_ring->next_to_use = first;
bc7f75fa
AK
5935 }
5936
bc7f75fa
AK
5937 return NETDEV_TX_OK;
5938}
5939
5940/**
5941 * e1000_tx_timeout - Respond to a Tx Hang
5942 * @netdev: network interface device structure
5943 **/
5944static void e1000_tx_timeout(struct net_device *netdev)
5945{
5946 struct e1000_adapter *adapter = netdev_priv(netdev);
5947
5948 /* Do the reset outside of interrupt context */
5949 adapter->tx_timeout_count++;
5950 schedule_work(&adapter->reset_task);
5951}
5952
5953static void e1000_reset_task(struct work_struct *work)
5954{
5955 struct e1000_adapter *adapter;
5956 adapter = container_of(work, struct e1000_adapter, reset_task);
5957
e8e8f100 5958 rtnl_lock();
615b32af 5959 /* don't run the task if already down */
e8e8f100
VL
5960 if (test_bit(__E1000_DOWN, &adapter->state)) {
5961 rtnl_unlock();
615b32af 5962 return;
e8e8f100 5963 }
615b32af 5964
12d43f7d 5965 if (!(adapter->flags & FLAG_RESTART_NOW)) {
affa9dfb 5966 e1000e_dump(adapter);
12d43f7d 5967 e_err("Reset adapter unexpectedly\n");
affa9dfb 5968 }
bc7f75fa 5969 e1000e_reinit_locked(adapter);
e8e8f100 5970 rtnl_unlock();
bc7f75fa
AK
5971}
5972
5973/**
67fd4fcb 5974 * e1000_get_stats64 - Get System Network Statistics
bc7f75fa 5975 * @netdev: network interface device structure
67fd4fcb 5976 * @stats: rtnl_link_stats64 pointer
bc7f75fa
AK
5977 *
5978 * Returns the address of the device statistics structure.
bc7f75fa 5979 **/
bc1f4470 5980void e1000e_get_stats64(struct net_device *netdev,
5981 struct rtnl_link_stats64 *stats)
bc7f75fa 5982{
67fd4fcb
JK
5983 struct e1000_adapter *adapter = netdev_priv(netdev);
5984
67fd4fcb
JK
5985 spin_lock(&adapter->stats64_lock);
5986 e1000e_update_stats(adapter);
5987 /* Fill out the OS statistics structure */
5988 stats->rx_bytes = adapter->stats.gorc;
5989 stats->rx_packets = adapter->stats.gprc;
5990 stats->tx_bytes = adapter->stats.gotc;
5991 stats->tx_packets = adapter->stats.gptc;
5992 stats->multicast = adapter->stats.mprc;
5993 stats->collisions = adapter->stats.colc;
5994
5995 /* Rx Errors */
5996
e921eb1a 5997 /* RLEC on some newer hardware can be incorrect so build
67fd4fcb
JK
5998 * our own version based on RUC and ROC
5999 */
6000 stats->rx_errors = adapter->stats.rxerrc +
f0ff4398
BA
6001 adapter->stats.crcerrs + adapter->stats.algnerrc +
6002 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6003 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
67fd4fcb
JK
6004 stats->rx_crc_errors = adapter->stats.crcerrs;
6005 stats->rx_frame_errors = adapter->stats.algnerrc;
6006 stats->rx_missed_errors = adapter->stats.mpc;
6007
6008 /* Tx Errors */
f0ff4398 6009 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
67fd4fcb
JK
6010 stats->tx_aborted_errors = adapter->stats.ecol;
6011 stats->tx_window_errors = adapter->stats.latecol;
6012 stats->tx_carrier_errors = adapter->stats.tncrs;
6013
6014 /* Tx Dropped needs to be maintained elsewhere */
6015
6016 spin_unlock(&adapter->stats64_lock);
bc7f75fa
AK
6017}
6018
6019/**
6020 * e1000_change_mtu - Change the Maximum Transfer Unit
6021 * @netdev: network interface device structure
6022 * @new_mtu: new value for maximum frame size
6023 *
6024 * Returns 0 on success, negative on failure
6025 **/
6026static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6027{
6028 struct e1000_adapter *adapter = netdev_priv(netdev);
8084b86d 6029 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
bc7f75fa 6030
2adc55c9 6031 /* Jumbo frame support */
91c527a5 6032 if ((new_mtu > ETH_DATA_LEN) &&
2e1706f2
BA
6033 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6034 e_err("Jumbo Frames not supported.\n");
6035 return -EINVAL;
bc7f75fa
AK
6036 }
6037
2fbe4526
BA
6038 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6039 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
a1ce6473
BA
6040 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6041 (new_mtu > ETH_DATA_LEN)) {
2fbe4526 6042 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
a1ce6473
BA
6043 return -EINVAL;
6044 }
6045
bc7f75fa 6046 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
ab6973ae 6047 usleep_range(1000, 1100);
610c9928 6048 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
318a94d6 6049 adapter->max_frame_size = max_frame;
610c9928
BA
6050 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6051 netdev->mtu = new_mtu;
63eb48f1
DE
6052
6053 pm_runtime_get_sync(netdev->dev.parent);
6054
bc7f75fa 6055 if (netif_running(netdev))
28002099 6056 e1000e_down(adapter, true);
bc7f75fa 6057
e921eb1a 6058 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
6059 * means we reserve 2 more, this pushes us to allocate from the next
6060 * larger slab size.
ad68076e 6061 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
6062 * However with the new *_jumbo_rx* routines, jumbo receives will use
6063 * fragmented skbs
ad68076e 6064 */
bc7f75fa 6065
9926146b 6066 if (max_frame <= 2048)
bc7f75fa
AK
6067 adapter->rx_buffer_len = 2048;
6068 else
6069 adapter->rx_buffer_len = 4096;
6070
6071 /* adjust allocation if LPE protects us, and we aren't using SBP */
8084b86d
AD
6072 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6073 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
bc7f75fa 6074
bc7f75fa
AK
6075 if (netif_running(netdev))
6076 e1000e_up(adapter);
6077 else
6078 e1000e_reset(adapter);
6079
63eb48f1
DE
6080 pm_runtime_put_sync(netdev->dev.parent);
6081
bc7f75fa
AK
6082 clear_bit(__E1000_RESETTING, &adapter->state);
6083
6084 return 0;
6085}
6086
6087static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6088 int cmd)
6089{
6090 struct e1000_adapter *adapter = netdev_priv(netdev);
6091 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 6092
318a94d6 6093 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
6094 return -EOPNOTSUPP;
6095
6096 switch (cmd) {
6097 case SIOCGMIIPHY:
6098 data->phy_id = adapter->hw.phy.addr;
6099 break;
6100 case SIOCGMIIREG:
b16a002e
BA
6101 e1000_phy_read_status(adapter);
6102
7c25769f
BA
6103 switch (data->reg_num & 0x1F) {
6104 case MII_BMCR:
6105 data->val_out = adapter->phy_regs.bmcr;
6106 break;
6107 case MII_BMSR:
6108 data->val_out = adapter->phy_regs.bmsr;
6109 break;
6110 case MII_PHYSID1:
6111 data->val_out = (adapter->hw.phy.id >> 16);
6112 break;
6113 case MII_PHYSID2:
6114 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6115 break;
6116 case MII_ADVERTISE:
6117 data->val_out = adapter->phy_regs.advertise;
6118 break;
6119 case MII_LPA:
6120 data->val_out = adapter->phy_regs.lpa;
6121 break;
6122 case MII_EXPANSION:
6123 data->val_out = adapter->phy_regs.expansion;
6124 break;
6125 case MII_CTRL1000:
6126 data->val_out = adapter->phy_regs.ctrl1000;
6127 break;
6128 case MII_STAT1000:
6129 data->val_out = adapter->phy_regs.stat1000;
6130 break;
6131 case MII_ESTATUS:
6132 data->val_out = adapter->phy_regs.estatus;
6133 break;
6134 default:
bc7f75fa
AK
6135 return -EIO;
6136 }
bc7f75fa
AK
6137 break;
6138 case SIOCSMIIREG:
6139 default:
6140 return -EOPNOTSUPP;
6141 }
6142 return 0;
6143}
6144
b67e1913
BA
6145/**
6146 * e1000e_hwtstamp_ioctl - control hardware time stamping
6147 * @netdev: network interface device structure
6148 * @ifreq: interface request
6149 *
6150 * Outgoing time stamping can be enabled and disabled. Play nice and
6151 * disable it when requested, although it shouldn't cause any overhead
6152 * when no packet needs it. At most one packet in the queue may be
6153 * marked for time stamping, otherwise it would be impossible to tell
6154 * for sure to which packet the hardware time stamp belongs.
6155 *
6156 * Incoming time stamping has to be configured via the hardware filters.
6157 * Not all combinations are supported, in particular event type has to be
6158 * specified. Matching the kind of event packet is not supported, with the
6159 * exception of "all V2 events regardless of level 2 or 4".
6160 **/
4e8cff64 6161static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
b67e1913
BA
6162{
6163 struct e1000_adapter *adapter = netdev_priv(netdev);
6164 struct hwtstamp_config config;
6165 int ret_val;
6166
6167 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6168 return -EFAULT;
6169
62d7e3a2 6170 ret_val = e1000e_config_hwtstamp(adapter, &config);
b67e1913
BA
6171 if (ret_val)
6172 return ret_val;
6173
d89777bf
BA
6174 switch (config.rx_filter) {
6175 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6176 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6177 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6178 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6179 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6180 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6181 /* With V2 type filters which specify a Sync or Delay Request,
6182 * Path Delay Request/Response messages are also time stamped
6183 * by hardware so notify the caller the requested packets plus
6184 * some others are time stamped.
6185 */
6186 config.rx_filter = HWTSTAMP_FILTER_SOME;
6187 break;
6188 default:
6189 break;
6190 }
6191
b67e1913
BA
6192 return copy_to_user(ifr->ifr_data, &config,
6193 sizeof(config)) ? -EFAULT : 0;
6194}
6195
4e8cff64
BH
6196static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6197{
6198 struct e1000_adapter *adapter = netdev_priv(netdev);
6199
6200 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6201 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6202}
6203
bc7f75fa
AK
6204static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6205{
6206 switch (cmd) {
6207 case SIOCGMIIPHY:
6208 case SIOCGMIIREG:
6209 case SIOCSMIIREG:
6210 return e1000_mii_ioctl(netdev, ifr, cmd);
b67e1913 6211 case SIOCSHWTSTAMP:
4e8cff64
BH
6212 return e1000e_hwtstamp_set(netdev, ifr);
6213 case SIOCGHWTSTAMP:
6214 return e1000e_hwtstamp_get(netdev, ifr);
bc7f75fa
AK
6215 default:
6216 return -EOPNOTSUPP;
6217 }
6218}
6219
a4f58f54
BA
6220static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6221{
6222 struct e1000_hw *hw = &adapter->hw;
74f350ee 6223 u32 i, mac_reg, wuc;
2b6b168d 6224 u16 phy_reg, wuc_enable;
70806a7f 6225 int retval;
a4f58f54
BA
6226
6227 /* copy MAC RARs to PHY RARs */
d3738bb8 6228 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
a4f58f54 6229
2b6b168d
BA
6230 retval = hw->phy.ops.acquire(hw);
6231 if (retval) {
6232 e_err("Could not acquire PHY\n");
6233 return retval;
6234 }
6235
6236 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6237 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6238 if (retval)
75ce1532 6239 goto release;
2b6b168d
BA
6240
6241 /* copy MAC MTA to PHY MTA - only needed for pchlan */
a4f58f54
BA
6242 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6243 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
2b6b168d
BA
6244 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6245 (u16)(mac_reg & 0xFFFF));
6246 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6247 (u16)((mac_reg >> 16) & 0xFFFF));
a4f58f54
BA
6248 }
6249
6250 /* configure PHY Rx Control register */
2b6b168d 6251 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
a4f58f54
BA
6252 mac_reg = er32(RCTL);
6253 if (mac_reg & E1000_RCTL_UPE)
6254 phy_reg |= BM_RCTL_UPE;
6255 if (mac_reg & E1000_RCTL_MPE)
6256 phy_reg |= BM_RCTL_MPE;
6257 phy_reg &= ~(BM_RCTL_MO_MASK);
6258 if (mac_reg & E1000_RCTL_MO_3)
6259 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
17e813ec 6260 << BM_RCTL_MO_SHIFT);
a4f58f54
BA
6261 if (mac_reg & E1000_RCTL_BAM)
6262 phy_reg |= BM_RCTL_BAM;
6263 if (mac_reg & E1000_RCTL_PMCF)
6264 phy_reg |= BM_RCTL_PMCF;
6265 mac_reg = er32(CTRL);
6266 if (mac_reg & E1000_CTRL_RFCE)
6267 phy_reg |= BM_RCTL_RFCE;
2b6b168d 6268 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
a4f58f54 6269
74f350ee
DE
6270 wuc = E1000_WUC_PME_EN;
6271 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6272 wuc |= E1000_WUC_APME;
6273
a4f58f54
BA
6274 /* enable PHY wakeup in MAC register */
6275 ew32(WUFC, wufc);
74f350ee
DE
6276 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6277 E1000_WUC_PME_STATUS | wuc));
a4f58f54
BA
6278
6279 /* configure and enable PHY wakeup in PHY registers */
2b6b168d 6280 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
74f350ee 6281 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
a4f58f54
BA
6282
6283 /* activate PHY wakeup */
2b6b168d
BA
6284 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6285 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
a4f58f54
BA
6286 if (retval)
6287 e_err("Could not set PHY Host Wakeup bit\n");
75ce1532 6288release:
94d8186a 6289 hw->phy.ops.release(hw);
a4f58f54
BA
6290
6291 return retval;
6292}
6293
2a7e19af
DE
6294static void e1000e_flush_lpic(struct pci_dev *pdev)
6295{
6296 struct net_device *netdev = pci_get_drvdata(pdev);
6297 struct e1000_adapter *adapter = netdev_priv(netdev);
6298 struct e1000_hw *hw = &adapter->hw;
6299 u32 ret_val;
6300
6301 pm_runtime_get_sync(netdev->dev.parent);
6302
6303 ret_val = hw->phy.ops.acquire(hw);
6304 if (ret_val)
6305 goto fl_out;
6306
6307 pr_info("EEE TX LPI TIMER: %08X\n",
6308 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6309
6310 hw->phy.ops.release(hw);
6311
6312fl_out:
6313 pm_runtime_put_sync(netdev->dev.parent);
6314}
6315
76bd88da
SN
6316/* S0ix implementation */
6317static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6318{
6319 struct e1000_hw *hw = &adapter->hw;
6320 u32 mac_data;
6321 u16 phy_data;
6322
6323 /* Disable the periodic inband message,
6324 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6325 */
6326 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6327 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6328 phy_data |= BIT(10);
6329 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6330
6331 /* Make sure we don't exit K1 every time a new packet arrives
6332 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6333 */
6334 e1e_rphy(hw, I217_CGFREG, &phy_data);
6335 phy_data |= BIT(5);
6336 e1e_wphy(hw, I217_CGFREG, phy_data);
6337
6338 /* Change the MAC/PHY interface to SMBus
6339 * Force the SMBus in PHY page769_23[0] = 1
6340 * Force the SMBus in MAC CTRL_EXT[11] = 1
6341 */
6342 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6343 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6344 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6345 mac_data = er32(CTRL_EXT);
6346 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6347 ew32(CTRL_EXT, mac_data);
6348
6349 /* DFT control: PHY bit: page769_20[0] = 1
6350 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6351 */
6352 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6353 phy_data |= BIT(0);
6354 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6355
6356 mac_data = er32(EXTCNF_CTRL);
6357 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6358 ew32(EXTCNF_CTRL, mac_data);
6359
6360 /* Check MAC Tx/Rx packet buffer pointers.
6361 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6362 * pending traffic indication that would prevent power gating.
6363 */
6364 mac_data = er32(TDFH);
6365 if (mac_data)
6366 ew32(TDFH, 0);
6367 mac_data = er32(TDFT);
6368 if (mac_data)
6369 ew32(TDFT, 0);
6370 mac_data = er32(TDFHS);
6371 if (mac_data)
6372 ew32(TDFHS, 0);
6373 mac_data = er32(TDFTS);
6374 if (mac_data)
6375 ew32(TDFTS, 0);
6376 mac_data = er32(TDFPC);
6377 if (mac_data)
6378 ew32(TDFPC, 0);
6379 mac_data = er32(RDFH);
6380 if (mac_data)
6381 ew32(RDFH, 0);
6382 mac_data = er32(RDFT);
6383 if (mac_data)
6384 ew32(RDFT, 0);
6385 mac_data = er32(RDFHS);
6386 if (mac_data)
6387 ew32(RDFHS, 0);
6388 mac_data = er32(RDFTS);
6389 if (mac_data)
6390 ew32(RDFTS, 0);
6391 mac_data = er32(RDFPC);
6392 if (mac_data)
6393 ew32(RDFPC, 0);
6394
6395 /* Enable the Dynamic Power Gating in the MAC */
6396 mac_data = er32(FEXTNVM7);
6397 mac_data |= BIT(22);
6398 ew32(FEXTNVM7, mac_data);
6399
6400 /* Disable the time synchronization clock */
6401 mac_data = er32(FEXTNVM7);
6402 mac_data |= BIT(31);
6403 mac_data &= ~BIT(0);
6404 ew32(FEXTNVM7, mac_data);
6405
6406 /* Dynamic Power Gating Enable */
6407 mac_data = er32(CTRL_EXT);
6408 mac_data |= BIT(3);
6409 ew32(CTRL_EXT, mac_data);
6410
6411 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6412 mac_data = er32(CTRL_EXT);
6413 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6414 ew32(CTRL_EXT, mac_data);
6415
6416 /* No MAC DPG gating SLP_S0 in modern standby
6417 * Switch the logic of the lanphypc to use PMC counter
6418 */
6419 mac_data = er32(FEXTNVM5);
6420 mac_data |= BIT(7);
6421 ew32(FEXTNVM5, mac_data);
6422}
6423
6424static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6425{
6426 struct e1000_hw *hw = &adapter->hw;
6427 u32 mac_data;
6428 u16 phy_data;
6429
6430 /* Disable the Dynamic Power Gating in the MAC */
6431 mac_data = er32(FEXTNVM7);
6432 mac_data &= 0xFFBFFFFF;
6433 ew32(FEXTNVM7, mac_data);
6434
6435 /* Enable the time synchronization clock */
6436 mac_data = er32(FEXTNVM7);
6437 mac_data |= BIT(0);
6438 ew32(FEXTNVM7, mac_data);
6439
6440 /* Disable Dynamic Power Gating */
6441 mac_data = er32(CTRL_EXT);
6442 mac_data &= 0xFFFFFFF7;
6443 ew32(CTRL_EXT, mac_data);
6444
6445 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6446 mac_data = er32(CTRL_EXT);
6447 mac_data &= 0xFFF7FFFF;
6448 ew32(CTRL_EXT, mac_data);
6449
6450 /* Revert the lanphypc logic to use the internal Gbe counter
6451 * and not the PMC counter
6452 */
6453 mac_data = er32(FEXTNVM5);
6454 mac_data &= 0xFFFFFF7F;
6455 ew32(FEXTNVM5, mac_data);
6456
6457 /* Enable the periodic inband message,
6458 * Request PCIe clock in K1 page770_17[10:9] =01b
6459 */
6460 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6461 phy_data &= 0xFBFF;
6462 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6463 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6464
6465 /* Return back configuration
6466 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6467 */
6468 e1e_rphy(hw, I217_CGFREG, &phy_data);
6469 phy_data &= 0xFFDF;
6470 e1e_wphy(hw, I217_CGFREG, phy_data);
6471
6472 /* Change the MAC/PHY interface to Kumeran
6473 * Unforce the SMBus in PHY page769_23[0] = 0
6474 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6475 */
6476 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6477 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6478 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6479 mac_data = er32(CTRL_EXT);
6480 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6481 ew32(CTRL_EXT, mac_data);
6482}
6483
28002099 6484static int e1000e_pm_freeze(struct device *dev)
bc7f75fa 6485{
ee2e80c1 6486 struct net_device *netdev = dev_get_drvdata(dev);
bc7f75fa 6487 struct e1000_adapter *adapter = netdev_priv(netdev);
94d0b5b5 6488 bool present;
bc7f75fa 6489
94d0b5b5
AD
6490 rtnl_lock();
6491
6492 present = netif_device_present(netdev);
bc7f75fa
AK
6493 netif_device_detach(netdev);
6494
94d0b5b5 6495 if (present && netif_running(netdev)) {
bb9e44d0
BA
6496 int count = E1000_CHECK_RESET_COUNT;
6497
6498 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
ab6973ae 6499 usleep_range(10000, 11000);
bb9e44d0 6500
bc7f75fa 6501 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
28002099
DE
6502
6503 /* Quiesce the device without resetting the hardware */
6504 e1000e_down(adapter, false);
bc7f75fa
AK
6505 e1000_free_irq(adapter);
6506 }
94d0b5b5
AD
6507 rtnl_unlock();
6508
9f47a48e 6509 e1000e_reset_interrupt_capability(adapter);
bc7f75fa 6510
28002099
DE
6511 /* Allow time for pending master requests to run */
6512 e1000e_disable_pcie_master(&adapter->hw);
6513
6514 return 0;
6515}
6516
6517static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6518{
6519 struct net_device *netdev = pci_get_drvdata(pdev);
6520 struct e1000_adapter *adapter = netdev_priv(netdev);
6521 struct e1000_hw *hw = &adapter->hw;
021a1eac 6522 u32 ctrl, ctrl_ext, rctl, status, wufc;
28002099
DE
6523 int retval = 0;
6524
021a1eac
CY
6525 /* Runtime suspend should only enable wakeup for link changes */
6526 if (runtime)
6527 wufc = E1000_WUFC_LNKC;
6528 else if (device_may_wakeup(&pdev->dev))
6529 wufc = adapter->wol;
6530 else
6531 wufc = 0;
6532
bc7f75fa
AK
6533 status = er32(STATUS);
6534 if (status & E1000_STATUS_LU)
6535 wufc &= ~E1000_WUFC_LNKC;
6536
6537 if (wufc) {
6538 e1000_setup_rctl(adapter);
ef9b965a 6539 e1000e_set_rx_mode(netdev);
bc7f75fa
AK
6540
6541 /* turn on all-multi mode if wake on multicast is enabled */
6542 if (wufc & E1000_WUFC_MC) {
6543 rctl = er32(RCTL);
6544 rctl |= E1000_RCTL_MPE;
6545 ew32(RCTL, rctl);
6546 }
6547
6548 ctrl = er32(CTRL);
a4f58f54
BA
6549 ctrl |= E1000_CTRL_ADVD3WUC;
6550 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6551 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
bc7f75fa
AK
6552 ew32(CTRL, ctrl);
6553
318a94d6
JK
6554 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6555 adapter->hw.phy.media_type ==
6556 e1000_media_type_internal_serdes) {
bc7f75fa
AK
6557 /* keep the laser running in D3 */
6558 ctrl_ext = er32(CTRL_EXT);
93a23f48 6559 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
bc7f75fa
AK
6560 ew32(CTRL_EXT, ctrl_ext);
6561 }
6562
63eb48f1
DE
6563 if (!runtime)
6564 e1000e_power_up_phy(adapter);
6565
97ac8cae 6566 if (adapter->flags & FLAG_IS_ICH)
99730e4c 6567 e1000_suspend_workarounds_ich8lan(&adapter->hw);
97ac8cae 6568
82776a4b 6569 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
a4f58f54
BA
6570 /* enable wakeup by the PHY */
6571 retval = e1000_init_phy_wakeup(adapter, wufc);
6572 if (retval)
6573 return retval;
6574 } else {
6575 /* enable wakeup by the MAC */
6576 ew32(WUFC, wufc);
6577 ew32(WUC, E1000_WUC_PME_EN);
6578 }
bc7f75fa
AK
6579 } else {
6580 ew32(WUC, 0);
6581 ew32(WUFC, 0);
28002099
DE
6582
6583 e1000_power_down_phy(adapter);
bc7f75fa
AK
6584 }
6585
74f350ee 6586 if (adapter->hw.phy.type == e1000_phy_igp_3) {
bc7f75fa 6587 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
c8744f44 6588 } else if (hw->mac.type >= e1000_pch_lpt) {
021a1eac 6589 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
74f350ee
DE
6590 /* ULP does not support wake from unicast, multicast
6591 * or broadcast.
6592 */
6593 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6594
6595 if (retval)
6596 return retval;
6597 }
6598
f5ac7445
RA
6599 /* Ensure that the appropriate bits are set in LPI_CTRL
6600 * for EEE in Sx
6601 */
6602 if ((hw->phy.type >= e1000_phy_i217) &&
6603 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6604 u16 lpi_ctrl = 0;
6605
6606 retval = hw->phy.ops.acquire(hw);
6607 if (!retval) {
6608 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6609 &lpi_ctrl);
6610 if (!retval) {
6611 if (adapter->eee_advert &
6612 hw->dev_spec.ich8lan.eee_lp_ability &
6613 I82579_EEE_100_SUPPORTED)
6614 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6615 if (adapter->eee_advert &
6616 hw->dev_spec.ich8lan.eee_lp_ability &
6617 I82579_EEE_1000_SUPPORTED)
6618 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6619
6620 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6621 lpi_ctrl);
6622 }
6623 }
6624 hw->phy.ops.release(hw);
6625 }
bc7f75fa 6626
e921eb1a 6627 /* Release control of h/w to f/w. If f/w is AMT enabled, this
ad68076e
BA
6628 * would have already happened in close and is redundant.
6629 */
31dbe5b4 6630 e1000e_release_hw_control(adapter);
bc7f75fa 6631
24b41c97
DN
6632 pci_clear_master(pdev);
6633
e921eb1a 6634 /* The pci-e switch on some quad port adapters will report a
005cbdfc
AD
6635 * correctable error when the MAC transitions from D0 to D3. To
6636 * prevent this we need to mask off the correctable errors on the
6637 * downstream port of the pci-e switch.
e8c254c5
LZ
6638 *
6639 * We don't have the associated upstream bridge while assigning
6640 * the PCI device into guest. For example, the KVM on power is
6641 * one of the cases.
005cbdfc
AD
6642 */
6643 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6644 struct pci_dev *us_dev = pdev->bus->self;
005cbdfc
AD
6645 u16 devctl;
6646
e8c254c5
LZ
6647 if (!us_dev)
6648 return 0;
6649
f8c0fcac
JL
6650 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6651 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6652 (devctl & ~PCI_EXP_DEVCTL_CERE));
005cbdfc 6653
66148bab
KK
6654 pci_save_state(pdev);
6655 pci_prepare_to_sleep(pdev);
005cbdfc 6656
f8c0fcac 6657 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
005cbdfc 6658 }
66148bab
KK
6659
6660 return 0;
bc7f75fa
AK
6661}
6662
13129d9b 6663/**
beb0a152 6664 * __e1000e_disable_aspm - Disable ASPM states
13129d9b
CW
6665 * @pdev: pointer to PCI device struct
6666 * @state: bit-mask of ASPM states to disable
beb0a152 6667 * @locked: indication if this context holds pci_bus_sem locked.
13129d9b
CW
6668 *
6669 * Some devices *must* have certain ASPM states disabled per hardware errata.
6670 **/
beb0a152 6671static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6f461f6c 6672{
13129d9b
CW
6673 struct pci_dev *parent = pdev->bus->self;
6674 u16 aspm_dis_mask = 0;
6675 u16 pdev_aspmc, parent_aspmc;
6676
6677 switch (state) {
6678 case PCIE_LINK_STATE_L0S:
6679 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6680 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6681 /* fall-through - can't have L1 without L0s */
6682 case PCIE_LINK_STATE_L1:
6683 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6684 break;
6685 default:
6686 return;
6687 }
6688
6689 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6690 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6691
6692 if (parent) {
6693 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6694 &parent_aspmc);
6695 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6696 }
6697
6698 /* Nothing to do if the ASPM states to be disabled already are */
6699 if (!(pdev_aspmc & aspm_dis_mask) &&
6700 (!parent || !(parent_aspmc & aspm_dis_mask)))
6701 return;
6702
6703 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6704 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6705 "L0s" : "",
6706 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6707 "L1" : "");
6708
6709#ifdef CONFIG_PCIEASPM
beb0a152
YL
6710 if (locked)
6711 pci_disable_link_state_locked(pdev, state);
6712 else
6713 pci_disable_link_state(pdev, state);
ffe0b2ff 6714
13129d9b
CW
6715 /* Double-check ASPM control. If not disabled by the above, the
6716 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6717 * not enabled); override by writing PCI config space directly.
6718 */
6719 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6720 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6721
6722 if (!(aspm_dis_mask & pdev_aspmc))
6723 return;
6724#endif
ffe0b2ff 6725
e921eb1a 6726 /* Both device and parent should have the same ASPM setting.
6f461f6c 6727 * Disable ASPM in downstream component first and then upstream.
1eae4eb2 6728 */
13129d9b 6729 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6f461f6c 6730
13129d9b
CW
6731 if (parent)
6732 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6733 aspm_dis_mask);
1eae4eb2
AK
6734}
6735
beb0a152
YL
6736/**
6737 * e1000e_disable_aspm - Disable ASPM states.
6738 * @pdev: pointer to PCI device struct
6739 * @state: bit-mask of ASPM states to disable
6740 *
6741 * This function acquires the pci_bus_sem!
6742 * Some devices *must* have certain ASPM states disabled per hardware errata.
6743 **/
6744static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6745{
6746 __e1000e_disable_aspm(pdev, state, 0);
6747}
6748
6749/**
6750 * e1000e_disable_aspm_locked Disable ASPM states.
6751 * @pdev: pointer to PCI device struct
6752 * @state: bit-mask of ASPM states to disable
6753 *
6754 * This function must be called with pci_bus_sem acquired!
6755 * Some devices *must* have certain ASPM states disabled per hardware errata.
6756 **/
6757static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6758{
6759 __e1000e_disable_aspm(pdev, state, 1);
6760}
6761
94d0b5b5
AD
6762static int e1000e_pm_thaw(struct device *dev)
6763{
6764 struct net_device *netdev = dev_get_drvdata(dev);
6765 struct e1000_adapter *adapter = netdev_priv(netdev);
6766 int rc = 0;
6767
6768 e1000e_set_interrupt_capability(adapter);
6769
6770 rtnl_lock();
6771 if (netif_running(netdev)) {
6772 rc = e1000_request_irq(adapter);
6773 if (rc)
6774 goto err_irq;
6775
6776 e1000e_up(adapter);
6777 }
6778
6779 netif_device_attach(netdev);
6780err_irq:
6781 rtnl_unlock();
6782
6783 return rc;
6784}
6785
aa338601 6786#ifdef CONFIG_PM
23606cf5 6787static int __e1000_resume(struct pci_dev *pdev)
bc7f75fa
AK
6788{
6789 struct net_device *netdev = pci_get_drvdata(pdev);
6790 struct e1000_adapter *adapter = netdev_priv(netdev);
6791 struct e1000_hw *hw = &adapter->hw;
78cd29d5 6792 u16 aspm_disable_flag = 0;
bc7f75fa 6793
78cd29d5
BA
6794 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6795 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6796 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6797 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6798 if (aspm_disable_flag)
2758f9ed 6799 e1000e_disable_aspm(pdev, aspm_disable_flag);
78cd29d5 6800
66148bab 6801 pci_set_master(pdev);
6e4f6f6b 6802
2fbe4526 6803 if (hw->mac.type >= e1000_pch2lan)
99730e4c
BA
6804 e1000_resume_workarounds_pchlan(&adapter->hw);
6805
bc7f75fa 6806 e1000e_power_up_phy(adapter);
a4f58f54
BA
6807
6808 /* report the system wakeup cause from S3/S4 */
6809 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6810 u16 phy_data;
6811
6812 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6813 if (phy_data) {
6814 e_info("PHY Wakeup cause - %s\n",
17e813ec
BA
6815 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6816 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6817 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6818 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6819 phy_data & E1000_WUS_LNKC ?
6820 "Link Status Change" : "other");
a4f58f54
BA
6821 }
6822 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6823 } else {
6824 u32 wus = er32(WUS);
6cf08d1c 6825
a4f58f54
BA
6826 if (wus) {
6827 e_info("MAC Wakeup cause - %s\n",
17e813ec
BA
6828 wus & E1000_WUS_EX ? "Unicast Packet" :
6829 wus & E1000_WUS_MC ? "Multicast Packet" :
6830 wus & E1000_WUS_BC ? "Broadcast Packet" :
6831 wus & E1000_WUS_MAG ? "Magic Packet" :
6832 wus & E1000_WUS_LNKC ? "Link Status Change" :
6833 "other");
a4f58f54
BA
6834 }
6835 ew32(WUS, ~0);
6836 }
6837
bc7f75fa 6838 e1000e_reset(adapter);
bc7f75fa 6839
cd791618 6840 e1000_init_manageability_pt(adapter);
bc7f75fa 6841
e921eb1a 6842 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 6843 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
6844 * under the control of the driver.
6845 */
c43bc57e 6846 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 6847 e1000e_get_hw_control(adapter);
bc7f75fa
AK
6848
6849 return 0;
6850}
23606cf5 6851
3e7986f6 6852#ifdef CONFIG_PM_SLEEP
28002099 6853static int e1000e_pm_suspend(struct device *dev)
a0340162 6854{
76bd88da
SN
6855 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6856 struct e1000_adapter *adapter = netdev_priv(netdev);
a0340162 6857 struct pci_dev *pdev = to_pci_dev(dev);
76bd88da 6858 struct e1000_hw *hw = &adapter->hw;
833521eb 6859 int rc;
a0340162 6860
2a7e19af
DE
6861 e1000e_flush_lpic(pdev);
6862
28002099
DE
6863 e1000e_pm_freeze(dev);
6864
833521eb
CW
6865 rc = __e1000_shutdown(pdev, false);
6866 if (rc)
6867 e1000e_pm_thaw(dev);
6868
76bd88da 6869 /* Introduce S0ix implementation */
7bb734ad 6870 if (hw->mac.type >= e1000_pch_cnp)
76bd88da
SN
6871 e1000e_s0ix_entry_flow(adapter);
6872
833521eb 6873 return rc;
a0340162
RW
6874}
6875
28002099 6876static int e1000e_pm_resume(struct device *dev)
23606cf5 6877{
76bd88da
SN
6878 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6879 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5 6880 struct pci_dev *pdev = to_pci_dev(dev);
76bd88da 6881 struct e1000_hw *hw = &adapter->hw;
28002099 6882 int rc;
23606cf5 6883
76bd88da 6884 /* Introduce S0ix implementation */
7bb734ad 6885 if (hw->mac.type >= e1000_pch_cnp)
76bd88da
SN
6886 e1000e_s0ix_exit_flow(adapter);
6887
28002099
DE
6888 rc = __e1000_resume(pdev);
6889 if (rc)
6890 return rc;
23606cf5 6891
28002099 6892 return e1000e_pm_thaw(dev);
23606cf5 6893}
38a529b5 6894#endif /* CONFIG_PM_SLEEP */
a0340162 6895
63eb48f1 6896static int e1000e_pm_runtime_idle(struct device *dev)
a0340162 6897{
ee2e80c1 6898 struct net_device *netdev = dev_get_drvdata(dev);
a0340162 6899 struct e1000_adapter *adapter = netdev_priv(netdev);
2116bc25 6900 u16 eee_lp;
a0340162 6901
2116bc25
DE
6902 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6903
6904 if (!e1000e_has_link(adapter)) {
6905 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
63eb48f1 6906 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
2116bc25 6907 }
a0340162 6908
63eb48f1 6909 return -EBUSY;
a0340162
RW
6910}
6911
63eb48f1 6912static int e1000e_pm_runtime_resume(struct device *dev)
a0340162
RW
6913{
6914 struct pci_dev *pdev = to_pci_dev(dev);
6915 struct net_device *netdev = pci_get_drvdata(pdev);
6916 struct e1000_adapter *adapter = netdev_priv(netdev);
63eb48f1 6917 int rc;
a0340162 6918
63eb48f1
DE
6919 rc = __e1000_resume(pdev);
6920 if (rc)
6921 return rc;
a0340162 6922
63eb48f1 6923 if (netdev->flags & IFF_UP)
386164d9 6924 e1000e_up(adapter);
a0340162 6925
63eb48f1 6926 return rc;
a0340162 6927}
23606cf5 6928
63eb48f1 6929static int e1000e_pm_runtime_suspend(struct device *dev)
23606cf5
RW
6930{
6931 struct pci_dev *pdev = to_pci_dev(dev);
6932 struct net_device *netdev = pci_get_drvdata(pdev);
6933 struct e1000_adapter *adapter = netdev_priv(netdev);
6934
63eb48f1
DE
6935 if (netdev->flags & IFF_UP) {
6936 int count = E1000_CHECK_RESET_COUNT;
6937
6938 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
ab6973ae 6939 usleep_range(10000, 11000);
23606cf5 6940
63eb48f1
DE
6941 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6942
6943 /* Down the device without resetting the hardware */
6944 e1000e_down(adapter, false);
6945 }
6946
6947 if (__e1000_shutdown(pdev, true)) {
6948 e1000e_pm_runtime_resume(dev);
6949 return -EBUSY;
6950 }
6951
6952 return 0;
23606cf5 6953}
aa338601 6954#endif /* CONFIG_PM */
bc7f75fa
AK
6955
6956static void e1000_shutdown(struct pci_dev *pdev)
6957{
2a7e19af
DE
6958 e1000e_flush_lpic(pdev);
6959
28002099
DE
6960 e1000e_pm_freeze(&pdev->dev);
6961
66148bab 6962 __e1000_shutdown(pdev, false);
bc7f75fa
AK
6963}
6964
6965#ifdef CONFIG_NET_POLL_CONTROLLER
147b2c8c 6966
8bb62869 6967static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
147b2c8c
DD
6968{
6969 struct net_device *netdev = data;
6970 struct e1000_adapter *adapter = netdev_priv(netdev);
147b2c8c
DD
6971
6972 if (adapter->msix_entries) {
90da0669
BA
6973 int vector, msix_irq;
6974
147b2c8c
DD
6975 vector = 0;
6976 msix_irq = adapter->msix_entries[vector].vector;
fd8e597b
KK
6977 if (disable_hardirq(msix_irq))
6978 e1000_intr_msix_rx(msix_irq, netdev);
147b2c8c
DD
6979 enable_irq(msix_irq);
6980
6981 vector++;
6982 msix_irq = adapter->msix_entries[vector].vector;
fd8e597b
KK
6983 if (disable_hardirq(msix_irq))
6984 e1000_intr_msix_tx(msix_irq, netdev);
147b2c8c
DD
6985 enable_irq(msix_irq);
6986
6987 vector++;
6988 msix_irq = adapter->msix_entries[vector].vector;
fd8e597b
KK
6989 if (disable_hardirq(msix_irq))
6990 e1000_msix_other(msix_irq, netdev);
147b2c8c
DD
6991 enable_irq(msix_irq);
6992 }
6993
6994 return IRQ_HANDLED;
6995}
6996
e921eb1a
BA
6997/**
6998 * e1000_netpoll
6999 * @netdev: network interface device structure
7000 *
bc7f75fa
AK
7001 * Polling 'interrupt' - used by things like netconsole to send skbs
7002 * without having to re-enable interrupts. It's not called while
7003 * the interrupt routine is executing.
7004 */
7005static void e1000_netpoll(struct net_device *netdev)
7006{
7007 struct e1000_adapter *adapter = netdev_priv(netdev);
7008
147b2c8c
DD
7009 switch (adapter->int_mode) {
7010 case E1000E_INT_MODE_MSIX:
7011 e1000_intr_msix(adapter->pdev->irq, netdev);
7012 break;
7013 case E1000E_INT_MODE_MSI:
31119129
WC
7014 if (disable_hardirq(adapter->pdev->irq))
7015 e1000_intr_msi(adapter->pdev->irq, netdev);
147b2c8c
DD
7016 enable_irq(adapter->pdev->irq);
7017 break;
e80bd1d1 7018 default: /* E1000E_INT_MODE_LEGACY */
31119129
WC
7019 if (disable_hardirq(adapter->pdev->irq))
7020 e1000_intr(adapter->pdev->irq, netdev);
147b2c8c
DD
7021 enable_irq(adapter->pdev->irq);
7022 break;
7023 }
bc7f75fa
AK
7024}
7025#endif
7026
7027/**
7028 * e1000_io_error_detected - called when PCI error is detected
7029 * @pdev: Pointer to PCI device
7030 * @state: The current pci connection state
7031 *
7032 * This function is called after a PCI bus error affecting
7033 * this device has been detected.
7034 */
7035static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7036 pci_channel_state_t state)
7037{
94d0b5b5 7038 e1000e_pm_freeze(&pdev->dev);
bc7f75fa 7039
c93b5a76
MM
7040 if (state == pci_channel_io_perm_failure)
7041 return PCI_ERS_RESULT_DISCONNECT;
7042
bc7f75fa
AK
7043 pci_disable_device(pdev);
7044
7045 /* Request a slot slot reset. */
7046 return PCI_ERS_RESULT_NEED_RESET;
7047}
7048
7049/**
7050 * e1000_io_slot_reset - called after the pci bus has been reset.
7051 * @pdev: Pointer to PCI device
7052 *
7053 * Restart the card from scratch, as if from a cold-boot. Implementation
28002099 7054 * resembles the first-half of the e1000e_pm_resume routine.
bc7f75fa
AK
7055 */
7056static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7057{
7058 struct net_device *netdev = pci_get_drvdata(pdev);
7059 struct e1000_adapter *adapter = netdev_priv(netdev);
7060 struct e1000_hw *hw = &adapter->hw;
78cd29d5 7061 u16 aspm_disable_flag = 0;
6e4f6f6b 7062 int err;
111b9dc5 7063 pci_ers_result_t result;
bc7f75fa 7064
78cd29d5
BA
7065 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7066 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6f461f6c 7067 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
78cd29d5
BA
7068 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7069 if (aspm_disable_flag)
2758f9ed 7070 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
78cd29d5 7071
f0f422e5 7072 err = pci_enable_device_mem(pdev);
6e4f6f6b 7073 if (err) {
bc7f75fa
AK
7074 dev_err(&pdev->dev,
7075 "Cannot re-enable PCI device after reset.\n");
111b9dc5
JB
7076 result = PCI_ERS_RESULT_DISCONNECT;
7077 } else {
23606cf5 7078 pdev->state_saved = true;
111b9dc5 7079 pci_restore_state(pdev);
66148bab 7080 pci_set_master(pdev);
bc7f75fa 7081
111b9dc5
JB
7082 pci_enable_wake(pdev, PCI_D3hot, 0);
7083 pci_enable_wake(pdev, PCI_D3cold, 0);
bc7f75fa 7084
111b9dc5
JB
7085 e1000e_reset(adapter);
7086 ew32(WUS, ~0);
7087 result = PCI_ERS_RESULT_RECOVERED;
7088 }
bc7f75fa 7089
111b9dc5 7090 return result;
bc7f75fa
AK
7091}
7092
7093/**
7094 * e1000_io_resume - called when traffic can start flowing again.
7095 * @pdev: Pointer to PCI device
7096 *
7097 * This callback is called when the error recovery driver tells us that
7098 * its OK to resume normal operation. Implementation resembles the
28002099 7099 * second-half of the e1000e_pm_resume routine.
bc7f75fa
AK
7100 */
7101static void e1000_io_resume(struct pci_dev *pdev)
7102{
7103 struct net_device *netdev = pci_get_drvdata(pdev);
7104 struct e1000_adapter *adapter = netdev_priv(netdev);
7105
cd791618 7106 e1000_init_manageability_pt(adapter);
bc7f75fa 7107
94d0b5b5 7108 e1000e_pm_thaw(&pdev->dev);
bc7f75fa 7109
e921eb1a 7110 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 7111 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
7112 * under the control of the driver.
7113 */
c43bc57e 7114 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7115 e1000e_get_hw_control(adapter);
bc7f75fa
AK
7116}
7117
7118static void e1000_print_device_info(struct e1000_adapter *adapter)
7119{
7120 struct e1000_hw *hw = &adapter->hw;
7121 struct net_device *netdev = adapter->netdev;
073287c0
BA
7122 u32 ret_val;
7123 u8 pba_str[E1000_PBANUM_LENGTH];
bc7f75fa
AK
7124
7125 /* print bus type/speed/width info */
a5cc7642 7126 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
44defeb3
JK
7127 /* bus width */
7128 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
f0ff4398 7129 "Width x1"),
44defeb3 7130 /* MAC address */
7c510e4b 7131 netdev->dev_addr);
44defeb3
JK
7132 e_info("Intel(R) PRO/%s Network Connection\n",
7133 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
073287c0
BA
7134 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7135 E1000_PBANUM_LENGTH);
7136 if (ret_val)
f2315bf1 7137 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
073287c0
BA
7138 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7139 hw->mac.type, hw->phy.type, pba_str);
bc7f75fa
AK
7140}
7141
10aa4c04
AK
7142static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7143{
7144 struct e1000_hw *hw = &adapter->hw;
7145 int ret_val;
7146 u16 buf = 0;
7147
7148 if (hw->mac.type != e1000_82573)
7149 return;
7150
7151 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
e885d762 7152 le16_to_cpus(&buf);
18dd2392 7153 if (!ret_val && (!(buf & BIT(0)))) {
10aa4c04 7154 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
7155 dev_warn(&adapter->pdev->dev,
7156 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04 7157 }
10aa4c04
AK
7158}
7159
55e7fe5b
AD
7160static netdev_features_t e1000_fix_features(struct net_device *netdev,
7161 netdev_features_t features)
7162{
7163 struct e1000_adapter *adapter = netdev_priv(netdev);
7164 struct e1000_hw *hw = &adapter->hw;
7165
7166 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7167 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7168 features &= ~NETIF_F_RXFCS;
7169
83808641
JW
7170 /* Since there is no support for separate Rx/Tx vlan accel
7171 * enable/disable make sure Tx flag is always in same state as Rx.
7172 */
7173 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7174 features |= NETIF_F_HW_VLAN_CTAG_TX;
7175 else
7176 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7177
55e7fe5b
AD
7178 return features;
7179}
7180
c8f44aff 7181static int e1000_set_features(struct net_device *netdev,
70495a50 7182 netdev_features_t features)
dc221294
BA
7183{
7184 struct e1000_adapter *adapter = netdev_priv(netdev);
c8f44aff 7185 netdev_features_t changed = features ^ netdev->features;
dc221294
BA
7186
7187 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7188 adapter->flags |= FLAG_TSO_FORCE;
7189
f646968f 7190 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
cf955e6c
BG
7191 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7192 NETIF_F_RXALL)))
dc221294
BA
7193 return 0;
7194
0184039a
BG
7195 if (changed & NETIF_F_RXFCS) {
7196 if (features & NETIF_F_RXFCS) {
7197 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7198 } else {
7199 /* We need to take it back to defaults, which might mean
7200 * stripping is still disabled at the adapter level.
7201 */
7202 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7203 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7204 else
7205 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7206 }
7207 }
7208
70495a50
BA
7209 netdev->features = features;
7210
dc221294
BA
7211 if (netif_running(netdev))
7212 e1000e_reinit_locked(adapter);
7213 else
7214 e1000e_reset(adapter);
7215
b0ddfe2b 7216 return 1;
dc221294
BA
7217}
7218
651c2466 7219static const struct net_device_ops e1000e_netdev_ops = {
d5ea45da
SA
7220 .ndo_open = e1000e_open,
7221 .ndo_stop = e1000e_close,
00829823 7222 .ndo_start_xmit = e1000_xmit_frame,
67fd4fcb 7223 .ndo_get_stats64 = e1000e_get_stats64,
ef9b965a 7224 .ndo_set_rx_mode = e1000e_set_rx_mode,
651c2466
SH
7225 .ndo_set_mac_address = e1000_set_mac,
7226 .ndo_change_mtu = e1000_change_mtu,
7227 .ndo_do_ioctl = e1000_ioctl,
7228 .ndo_tx_timeout = e1000_tx_timeout,
7229 .ndo_validate_addr = eth_validate_addr,
7230
651c2466
SH
7231 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7232 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7233#ifdef CONFIG_NET_POLL_CONTROLLER
7234 .ndo_poll_controller = e1000_netpoll,
7235#endif
dc221294 7236 .ndo_set_features = e1000_set_features,
55e7fe5b 7237 .ndo_fix_features = e1000_fix_features,
f2701b18 7238 .ndo_features_check = passthru_features_check,
651c2466
SH
7239};
7240
bc7f75fa
AK
7241/**
7242 * e1000_probe - Device Initialization Routine
7243 * @pdev: PCI device information struct
7244 * @ent: entry in e1000_pci_tbl
7245 *
7246 * Returns 0 on success, negative on failure
7247 *
7248 * e1000_probe initializes an adapter identified by a pci_dev structure.
7249 * The OS initialization, configuring of the adapter private structure,
7250 * and a hardware reset occur.
7251 **/
1dd06ae8 7252static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
bc7f75fa
AK
7253{
7254 struct net_device *netdev;
7255 struct e1000_adapter *adapter;
7256 struct e1000_hw *hw;
7257 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
7258 resource_size_t mmio_start, mmio_len;
7259 resource_size_t flash_start, flash_len;
bc7f75fa 7260 static int cards_found;
78cd29d5 7261 u16 aspm_disable_flag = 0;
17e813ec 7262 int bars, i, err, pci_using_dac;
bc7f75fa
AK
7263 u16 eeprom_data = 0;
7264 u16 eeprom_apme_mask = E1000_EEPROM_APME;
847042a6 7265 s32 ret_val = 0;
bc7f75fa 7266
78cd29d5
BA
7267 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7268 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6f461f6c 7269 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
78cd29d5
BA
7270 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7271 if (aspm_disable_flag)
7272 e1000e_disable_aspm(pdev, aspm_disable_flag);
6e4f6f6b 7273
f0f422e5 7274 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
7275 if (err)
7276 return err;
7277
7278 pci_using_dac = 0;
718a39eb 7279 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
bc7f75fa 7280 if (!err) {
718a39eb 7281 pci_using_dac = 1;
bc7f75fa 7282 } else {
718a39eb 7283 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
bc7f75fa 7284 if (err) {
718a39eb
RK
7285 dev_err(&pdev->dev,
7286 "No usable DMA configuration, aborting\n");
7287 goto err_dma;
bc7f75fa
AK
7288 }
7289 }
7290
17e813ec
BA
7291 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7292 err = pci_request_selected_regions_exclusive(pdev, bars,
7293 e1000e_driver_name);
bc7f75fa
AK
7294 if (err)
7295 goto err_pci_reg;
7296
68eac460 7297 /* AER (Advanced Error Reporting) hooks */
19d5afd4 7298 pci_enable_pcie_error_reporting(pdev);
68eac460 7299
bc7f75fa 7300 pci_set_master(pdev);
438b365a
BA
7301 /* PCI config space info */
7302 err = pci_save_state(pdev);
7303 if (err)
7304 goto err_alloc_etherdev;
bc7f75fa
AK
7305
7306 err = -ENOMEM;
7307 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7308 if (!netdev)
7309 goto err_alloc_etherdev;
7310
bc7f75fa
AK
7311 SET_NETDEV_DEV(netdev, &pdev->dev);
7312
f85e4dfa
TH
7313 netdev->irq = pdev->irq;
7314
bc7f75fa
AK
7315 pci_set_drvdata(pdev, netdev);
7316 adapter = netdev_priv(netdev);
7317 hw = &adapter->hw;
7318 adapter->netdev = netdev;
7319 adapter->pdev = pdev;
7320 adapter->ei = ei;
7321 adapter->pba = ei->pba;
7322 adapter->flags = ei->flags;
eb7c3adb 7323 adapter->flags2 = ei->flags2;
bc7f75fa
AK
7324 adapter->hw.adapter = adapter;
7325 adapter->hw.mac.type = ei->mac;
2adc55c9 7326 adapter->max_hw_frame_size = ei->max_hw_frame_size;
b3f4d599 7327 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
bc7f75fa
AK
7328
7329 mmio_start = pci_resource_start(pdev, 0);
7330 mmio_len = pci_resource_len(pdev, 0);
7331
7332 err = -EIO;
7333 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7334 if (!adapter->hw.hw_addr)
7335 goto err_ioremap;
7336
7337 if ((adapter->flags & FLAG_HAS_FLASH) &&
1103a631
YL
7338 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7339 (hw->mac.type < e1000_pch_spt)) {
bc7f75fa
AK
7340 flash_start = pci_resource_start(pdev, 1);
7341 flash_len = pci_resource_len(pdev, 1);
7342 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7343 if (!adapter->hw.flash_address)
7344 goto err_flashmap;
7345 }
7346
d495bcb8
BA
7347 /* Set default EEE advertisement */
7348 if (adapter->flags2 & FLAG2_HAS_EEE)
7349 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7350
bc7f75fa 7351 /* construct the net_device struct */
e80bd1d1 7352 netdev->netdev_ops = &e1000e_netdev_ops;
bc7f75fa 7353 e1000e_set_ethtool_ops(netdev);
e80bd1d1 7354 netdev->watchdog_timeo = 5 * HZ;
c58c8a78 7355 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
f2315bf1 7356 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
bc7f75fa
AK
7357
7358 netdev->mem_start = mmio_start;
7359 netdev->mem_end = mmio_start + mmio_len;
7360
7361 adapter->bd_number = cards_found++;
7362
4662e82b
BA
7363 e1000e_check_options(adapter);
7364
bc7f75fa
AK
7365 /* setup adapter struct */
7366 err = e1000_sw_init(adapter);
7367 if (err)
7368 goto err_sw_init;
7369
bc7f75fa
AK
7370 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7371 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7372 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7373
69e3fd8c 7374 err = ei->get_variants(adapter);
bc7f75fa
AK
7375 if (err)
7376 goto err_hw_init;
7377
4a770358 7378 if ((adapter->flags & FLAG_IS_ICH) &&
152c0a97
YL
7379 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7380 (hw->mac.type < e1000_pch_spt))
4a770358
BA
7381 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7382
bc7f75fa
AK
7383 hw->mac.ops.get_bus_info(&adapter->hw);
7384
318a94d6 7385 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
7386
7387 /* Copper options */
318a94d6 7388 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
7389 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7390 adapter->hw.phy.disable_polarity_correction = 0;
7391 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7392 }
7393
470a5420 7394 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
185095fb
BA
7395 dev_info(&pdev->dev,
7396 "PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa 7397
dc221294
BA
7398 /* Set initial default active device features */
7399 netdev->features = (NETIF_F_SG |
f646968f
PM
7400 NETIF_F_HW_VLAN_CTAG_RX |
7401 NETIF_F_HW_VLAN_CTAG_TX |
dc221294
BA
7402 NETIF_F_TSO |
7403 NETIF_F_TSO6 |
70495a50 7404 NETIF_F_RXHASH |
dc221294
BA
7405 NETIF_F_RXCSUM |
7406 NETIF_F_HW_CSUM);
7407
7408 /* Set user-changeable features (subset of all device features) */
7409 netdev->hw_features = netdev->features;
0184039a 7410 netdev->hw_features |= NETIF_F_RXFCS;
943146de 7411 netdev->priv_flags |= IFF_SUPP_NOFCS;
cf955e6c 7412 netdev->hw_features |= NETIF_F_RXALL;
bc7f75fa
AK
7413
7414 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
f646968f 7415 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
bc7f75fa 7416
dc221294
BA
7417 netdev->vlan_features |= (NETIF_F_SG |
7418 NETIF_F_TSO |
7419 NETIF_F_TSO6 |
7420 NETIF_F_HW_CSUM);
a5136e23 7421
ef9b965a
JB
7422 netdev->priv_flags |= IFF_UNICAST_FLT;
7423
7b872a55 7424 if (pci_using_dac) {
bc7f75fa 7425 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
7426 netdev->vlan_features |= NETIF_F_HIGHDMA;
7427 }
bc7f75fa 7428
91c527a5
JW
7429 /* MTU range: 68 - max_hw_frame_size */
7430 netdev->min_mtu = ETH_MIN_MTU;
7431 netdev->max_mtu = adapter->max_hw_frame_size -
7432 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7433
bc7f75fa
AK
7434 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7435 adapter->flags |= FLAG_MNG_PT_ENABLED;
7436
e921eb1a 7437 /* before reading the NVM, reset the controller to
ad68076e
BA
7438 * put the device in a known good starting state
7439 */
bc7f75fa
AK
7440 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7441
e921eb1a 7442 /* systems with ASPM and others may see the checksum fail on the first
bc7f75fa
AK
7443 * attempt. Let's give it a few tries
7444 */
7445 for (i = 0;; i++) {
7446 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7447 break;
7448 if (i == 2) {
185095fb 7449 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
7450 err = -EIO;
7451 goto err_eeprom;
7452 }
7453 }
7454
10aa4c04
AK
7455 e1000_eeprom_checks(adapter);
7456
608f8a0d 7457 /* copy the MAC address */
bc7f75fa 7458 if (e1000e_read_mac_addr(&adapter->hw))
185095fb
BA
7459 dev_err(&pdev->dev,
7460 "NVM Read Error while reading MAC address\n");
bc7f75fa
AK
7461
7462 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
bc7f75fa 7463
aaeb6cdf 7464 if (!is_valid_ether_addr(netdev->dev_addr)) {
185095fb 7465 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
aaeb6cdf 7466 netdev->dev_addr);
bc7f75fa
AK
7467 err = -EIO;
7468 goto err_eeprom;
7469 }
7470
b4275924 7471 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
26566eae 7472 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
bc7f75fa
AK
7473
7474 INIT_WORK(&adapter->reset_task, e1000_reset_task);
b4275924 7475 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
7476 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7477 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
41cec6f1 7478 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
bc7f75fa 7479
bc7f75fa
AK
7480 /* Initialize link parameters. User can change them with ethtool */
7481 adapter->hw.mac.autoneg = 1;
3db1cd5c 7482 adapter->fc_autoneg = true;
5c48ef3e
BA
7483 adapter->hw.fc.requested_mode = e1000_fc_default;
7484 adapter->hw.fc.current_mode = e1000_fc_default;
bc7f75fa
AK
7485 adapter->hw.phy.autoneg_advertised = 0x2f;
7486
e921eb1a 7487 /* Initial Wake on LAN setting - If APM wake is enabled in
bc7f75fa
AK
7488 * the EEPROM, enable the ACPI Magic Packet filter
7489 */
7490 if (adapter->flags & FLAG_APME_IN_WUC) {
7491 /* APME bit in EEPROM is mapped to WUC.APME */
7492 eeprom_data = er32(WUC);
7493 eeprom_apme_mask = E1000_WUC_APME;
4def99bb
BA
7494 if ((hw->mac.type > e1000_ich10lan) &&
7495 (eeprom_data & E1000_WUC_PHY_WAKE))
a4f58f54 7496 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
bc7f75fa
AK
7497 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7498 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7499 (adapter->hw.bus.func == 1))
847042a6 7500 ret_val = e1000_read_nvm(&adapter->hw,
491a04d2
DE
7501 NVM_INIT_CONTROL3_PORT_B,
7502 1, &eeprom_data);
bc7f75fa 7503 else
847042a6 7504 ret_val = e1000_read_nvm(&adapter->hw,
491a04d2
DE
7505 NVM_INIT_CONTROL3_PORT_A,
7506 1, &eeprom_data);
bc7f75fa
AK
7507 }
7508
7509 /* fetch WoL from EEPROM */
847042a6
BW
7510 if (ret_val)
7511 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
491a04d2 7512 else if (eeprom_data & eeprom_apme_mask)
bc7f75fa
AK
7513 adapter->eeprom_wol |= E1000_WUFC_MAG;
7514
e921eb1a 7515 /* now that we have the eeprom settings, apply the special cases
bc7f75fa
AK
7516 * where the eeprom may be wrong or the board simply won't support
7517 * wake on lan on a particular port
7518 */
7519 if (!(adapter->flags & FLAG_HAS_WOL))
7520 adapter->eeprom_wol = 0;
7521
7522 /* initialize the wol settings based on the eeprom settings */
7523 adapter->wol = adapter->eeprom_wol;
66148bab
KK
7524
7525 /* make sure adapter isn't asleep if manageability is enabled */
7526 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7527 (hw->mac.ops.check_mng_mode(hw)))
7528 device_wakeup_enable(&pdev->dev);
bc7f75fa 7529
84527590 7530 /* save off EEPROM version number */
847042a6 7531 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
491a04d2 7532
847042a6
BW
7533 if (ret_val) {
7534 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
491a04d2
DE
7535 adapter->eeprom_vers = 0;
7536 }
84527590 7537
aa524b66
JK
7538 /* init PTP hardware clock */
7539 e1000e_ptp_init(adapter);
7540
bc7f75fa
AK
7541 /* reset the hardware with the new settings */
7542 e1000e_reset(adapter);
7543
e921eb1a 7544 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 7545 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
7546 * under the control of the driver.
7547 */
c43bc57e 7548 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7549 e1000e_get_hw_control(adapter);
bc7f75fa 7550
f2315bf1 7551 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
bc7f75fa
AK
7552 err = register_netdev(netdev);
7553 if (err)
7554 goto err_register;
7555
9c563d20
JB
7556 /* carrier off reporting is important to ethtool even BEFORE open */
7557 netif_carrier_off(netdev);
7558
bc7f75fa
AK
7559 e1000_print_device_info(adapter);
7560
59f58708
KHF
7561 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
7562
459d69c4 7563 if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
f3ec4f87 7564 pm_runtime_put_noidle(&pdev->dev);
23606cf5 7565
bc7f75fa
AK
7566 return 0;
7567
7568err_register:
c43bc57e 7569 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7570 e1000e_release_hw_control(adapter);
bc7f75fa 7571err_eeprom:
470a5420 7572 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
bc7f75fa 7573 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 7574err_hw_init:
bc7f75fa
AK
7575 kfree(adapter->tx_ring);
7576 kfree(adapter->rx_ring);
7577err_sw_init:
1103a631 7578 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
c43bc57e 7579 iounmap(adapter->hw.flash_address);
e82f54ba 7580 e1000e_reset_interrupt_capability(adapter);
c43bc57e 7581err_flashmap:
bc7f75fa
AK
7582 iounmap(adapter->hw.hw_addr);
7583err_ioremap:
7584 free_netdev(netdev);
7585err_alloc_etherdev:
59ca1767 7586 pci_disable_pcie_error_reporting(pdev);
56d766d6 7587 pci_release_mem_regions(pdev);
bc7f75fa
AK
7588err_pci_reg:
7589err_dma:
7590 pci_disable_device(pdev);
7591 return err;
7592}
7593
7594/**
7595 * e1000_remove - Device Removal Routine
7596 * @pdev: PCI device information struct
7597 *
7598 * e1000_remove is called by the PCI subsystem to alert the driver
7599 * that it should release a PCI device. The could be caused by a
7600 * Hot-Plug event, or because the driver is going to be removed from
7601 * memory.
7602 **/
9f9a12f8 7603static void e1000_remove(struct pci_dev *pdev)
bc7f75fa
AK
7604{
7605 struct net_device *netdev = pci_get_drvdata(pdev);
7606 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5 7607
d89777bf
BA
7608 e1000e_ptp_remove(adapter);
7609
e921eb1a 7610 /* The timers may be rescheduled, so explicitly disable them
23f333a2 7611 * from being rescheduled.
ad68076e 7612 */
4f2d8236 7613 set_bit(__E1000_DOWN, &adapter->state);
b4275924 7614 del_timer_sync(&adapter->watchdog_timer);
bc7f75fa
AK
7615 del_timer_sync(&adapter->phy_info_timer);
7616
41cec6f1 7617 cancel_work_sync(&adapter->reset_task);
b4275924 7618 cancel_work_sync(&adapter->watchdog_task);
41cec6f1
BA
7619 cancel_work_sync(&adapter->downshift_task);
7620 cancel_work_sync(&adapter->update_phy_task);
7621 cancel_work_sync(&adapter->print_hang_task);
bc7f75fa 7622
b67e1913
BA
7623 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7624 cancel_work_sync(&adapter->tx_hwtstamp_work);
7625 if (adapter->tx_hwtstamp_skb) {
377b6273 7626 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
b67e1913
BA
7627 adapter->tx_hwtstamp_skb = NULL;
7628 }
7629 }
7630
17f208de
BA
7631 unregister_netdev(netdev);
7632
f3ec4f87
AS
7633 if (pci_dev_run_wake(pdev))
7634 pm_runtime_get_noresume(&pdev->dev);
23606cf5 7635
e921eb1a 7636 /* Release control of h/w to f/w. If f/w is AMT enabled, this
ad68076e
BA
7637 * would have already happened in close and is redundant.
7638 */
31dbe5b4 7639 e1000e_release_hw_control(adapter);
bc7f75fa 7640
4662e82b 7641 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
7642 kfree(adapter->tx_ring);
7643 kfree(adapter->rx_ring);
7644
7645 iounmap(adapter->hw.hw_addr);
1103a631
YL
7646 if ((adapter->hw.flash_address) &&
7647 (adapter->hw.mac.type < e1000_pch_spt))
bc7f75fa 7648 iounmap(adapter->hw.flash_address);
56d766d6 7649 pci_release_mem_regions(pdev);
bc7f75fa
AK
7650
7651 free_netdev(netdev);
7652
111b9dc5 7653 /* AER disable */
19d5afd4 7654 pci_disable_pcie_error_reporting(pdev);
111b9dc5 7655
bc7f75fa
AK
7656 pci_disable_device(pdev);
7657}
7658
7659/* PCI Error Recovery (ERS) */
3646f0e5 7660static const struct pci_error_handlers e1000_err_handler = {
bc7f75fa
AK
7661 .error_detected = e1000_io_error_detected,
7662 .slot_reset = e1000_io_slot_reset,
7663 .resume = e1000_io_resume,
7664};
7665
0e8e842b 7666static const struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
7667 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7668 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7669 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
c29c3ba5
BA
7670 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7671 board_82571 },
bc7f75fa
AK
7672 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7673 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
7674 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7675 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7676 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 7677
bc7f75fa
AK
7678 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7679 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7680 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7681 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 7682
bc7f75fa
AK
7683 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7684 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7685 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 7686
4662e82b 7687 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
bef28b11 7688 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
8c81c9c3 7689 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
4662e82b 7690
bc7f75fa
AK
7691 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7692 board_80003es2lan },
7693 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7694 board_80003es2lan },
7695 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7696 board_80003es2lan },
7697 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7698 board_80003es2lan },
ad68076e 7699
bc7f75fa
AK
7700 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7701 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7702 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7703 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7704 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7705 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7706 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
9e135a2e 7707 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
ad68076e 7708
bc7f75fa
AK
7709 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7710 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7711 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7712 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7713 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 7714 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
7715 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7716 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7717 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7718
7719 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7720 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7721 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 7722
f4187b56
BA
7723 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7724 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
10df0b91 7725 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
f4187b56 7726
a4f58f54
BA
7727 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7728 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7729 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7730 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7731
d3738bb8
BA
7732 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7733 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7734
2fbe4526
BA
7735 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7736 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
16e310ae
BA
7737 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7738 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
91a3d82f
BA
7739 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7740 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7741 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7742 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
79849ebc
DE
7743 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7744 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7745 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7746 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
f3ed935d 7747 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
9cd34b3a
RA
7748 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7749 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7750 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7751 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
3a3173b9
SN
7752 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7753 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7754 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7755 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
48f76b68
SN
7756 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7757 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7758 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7759 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
ceaad0e5
SN
7760 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7761 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7762 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7763 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7764 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7765 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
2fbe4526 7766
f36bb6ca 7767 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
bc7f75fa
AK
7768};
7769MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7770
23606cf5 7771static const struct dev_pm_ops e1000_pm_ops = {
72f72dcc 7772#ifdef CONFIG_PM_SLEEP
28002099
DE
7773 .suspend = e1000e_pm_suspend,
7774 .resume = e1000e_pm_resume,
7775 .freeze = e1000e_pm_freeze,
7776 .thaw = e1000e_pm_thaw,
7777 .poweroff = e1000e_pm_suspend,
7778 .restore = e1000e_pm_resume,
72f72dcc 7779#endif
63eb48f1
DE
7780 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7781 e1000e_pm_runtime_idle)
23606cf5
RW
7782};
7783
bc7f75fa
AK
7784/* PCI Device API Driver */
7785static struct pci_driver e1000_driver = {
7786 .name = e1000e_driver_name,
7787 .id_table = e1000_pci_tbl,
7788 .probe = e1000_probe,
9f9a12f8 7789 .remove = e1000_remove,
f36bb6ca
BA
7790 .driver = {
7791 .pm = &e1000_pm_ops,
7792 },
bc7f75fa
AK
7793 .shutdown = e1000_shutdown,
7794 .err_handler = &e1000_err_handler
7795};
7796
7797/**
7798 * e1000_init_module - Driver Registration Routine
7799 *
7800 * e1000_init_module is the first routine called when the driver is
7801 * loaded. All it does is register with the PCI subsystem.
7802 **/
7803static int __init e1000_init_module(void)
7804{
8544b9f7
BA
7805 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7806 e1000e_driver_version);
529498cd 7807 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
53ec5498 7808
5a5e889c 7809 return pci_register_driver(&e1000_driver);
bc7f75fa
AK
7810}
7811module_init(e1000_init_module);
7812
7813/**
7814 * e1000_exit_module - Driver Exit Cleanup Routine
7815 *
7816 * e1000_exit_module is called just before the driver is removed
7817 * from memory.
7818 **/
7819static void __exit e1000_exit_module(void)
7820{
7821 pci_unregister_driver(&e1000_driver);
7822}
7823module_exit(e1000_exit_module);
7824
bc7f75fa
AK
7825MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7826MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
98674ebe 7827MODULE_LICENSE("GPL v2");
bc7f75fa
AK
7828MODULE_VERSION(DRV_VERSION);
7829
06c24b91 7830/* netdev.c */