]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/intel/fm10k/fm10k_pf.c
fm10k: fix typos on fall through comments
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / fm10k / fm10k_pf.c
CommitLineData
86641094 1/* Intel(R) Ethernet Switch Host Interface Driver
375ce90e 2 * Copyright(c) 2013 - 2017 Intel Corporation.
b6fec18f
AD
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include "fm10k_pf.h"
c2653865 22#include "fm10k_vf.h"
b6fec18f
AD
23
24/**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
27 *
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32{
33 s32 err;
34 u32 reg;
35 u16 i;
36
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
45
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 }
51
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
ce33624f
JK
54 if (err == FM10K_ERR_REQUESTS_PENDING) {
55 hw->mac.reset_while_pending++;
56 goto force_reset;
57 } else if (err) {
b6fec18f 58 return err;
ce33624f 59 }
b6fec18f
AD
60
61 /* Verify that DMA is no longer active */
62 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
63 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
64 return FM10K_ERR_DMA_PENDING;
65
ce33624f 66force_reset:
b6fec18f 67 /* Inititate data path reset */
ce33624f 68 reg = FM10K_DMA_CTRL_DATAPATH_RESET;
b6fec18f
AD
69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70
71 /* Flush write and allow 100us for reset to complete */
72 fm10k_write_flush(hw);
73 udelay(FM10K_RESET_TIMEOUT);
74
ce33624f
JK
75 /* Verify we made it out of reset */
76 reg = fm10k_read_reg(hw, FM10K_IP);
77 if (!(reg & FM10K_IP_NOTINRESET))
78 return FM10K_ERR_RESET_FAILED;
79
80 return 0;
b6fec18f
AD
81}
82
c2653865
AD
83/**
84 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
85 * @hw: pointer to hardware structure
86 *
87 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
88 **/
89static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
90{
91 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
92
93 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
94}
95
b6fec18f
AD
96/**
97 * fm10k_init_hw_pf - PF hardware initialization
98 * @hw: pointer to hardware structure
99 *
100 **/
101static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
102{
103 u32 dma_ctrl, txqctl;
104 u16 i;
105
106 /* Establish default VSI as valid */
107 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
108 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
109 FM10K_DGLORTMAP_ANY);
110
111 /* Invalidate all other GLORT entries */
112 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
113 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
114
115 /* reset ITR2(0) to point to itself */
116 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
117
118 /* reset VF ITR2(0) to point to 0 avoid PF registers */
119 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
120
121 /* loop through all PF ITR2 registers pointing them to the previous */
122 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
123 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
124
125 /* Enable interrupt moderator if not already enabled */
126 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
127
128 /* compute the default txqctl configuration */
129 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
130 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
131
132 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
133 /* configure rings for 256 Queue / 32 Descriptor cache mode */
134 fm10k_write_reg(hw, FM10K_TQDLOC(i),
135 (i * FM10K_TQDLOC_BASE_32_DESC) |
136 FM10K_TQDLOC_SIZE_32_DESC);
137 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
138
139 /* configure rings to provide TPH processing hints */
140 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
141 FM10K_TPH_TXCTRL_DESC_TPHEN |
142 FM10K_TPH_TXCTRL_DESC_RROEN |
143 FM10K_TPH_TXCTRL_DESC_WROEN |
144 FM10K_TPH_TXCTRL_DATA_RROEN);
145 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
146 FM10K_TPH_RXCTRL_DESC_TPHEN |
147 FM10K_TPH_RXCTRL_DESC_RROEN |
148 FM10K_TPH_RXCTRL_DATA_WROEN |
149 FM10K_TPH_RXCTRL_HDR_WROEN);
150 }
151
20076fa1
JK
152 /* set max hold interval to align with 1.024 usec in all modes and
153 * store ITR scale
154 */
b6fec18f
AD
155 switch (hw->bus.speed) {
156 case fm10k_bus_speed_2500:
157 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
20076fa1 158 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
b6fec18f
AD
159 break;
160 case fm10k_bus_speed_5000:
161 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
20076fa1 162 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
b6fec18f
AD
163 break;
164 case fm10k_bus_speed_8000:
165 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
20076fa1 166 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
b6fec18f
AD
167 break;
168 default:
169 dma_ctrl = 0;
20076fa1
JK
170 /* just in case, assume Gen3 ITR scale */
171 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
b6fec18f
AD
172 break;
173 }
174
175 /* Configure TSO flags */
176 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
177 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
178
179 /* Enable DMA engine
180 * Set Rx Descriptor size to 32
181 * Set Minimum MSS to 64
182 * Set Maximum number of Rx queues to 256 / 32 Descriptor
183 */
184 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
185 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
186 FM10K_DMA_CTRL_32_DESC;
187
188 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
189
190 /* record maximum queue count, we limit ourselves to 128 */
191 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
192
c2653865
AD
193 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
194 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
195
b6fec18f
AD
196 return 0;
197}
198
401b5383
AD
199/**
200 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
201 * @hw: pointer to hardware structure
202 * @vid: VLAN ID to add to table
203 * @vsi: Index indicating VF ID or PF ID in table
204 * @set: Indicates if this is a set or clear operation
205 *
206 * This function adds or removes the corresponding VLAN ID from the VLAN
207 * filter table for the corresponding function. In addition to the
208 * standard set/clear that supports one bit a multi-bit write is
209 * supported to set 64 bits at a time.
210 **/
211static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
212{
213 u32 vlan_table, reg, mask, bit, len;
214
215 /* verify the VSI index is valid */
216 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
217 return FM10K_ERR_PARAM;
218
219 /* VLAN multi-bit write:
220 * The multi-bit write has several parts to it.
d057d9a9
JK
221 * 24 16 8 0
222 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
401b5383
AD
223 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
224 * | RSVD0 | Length |C|RSVD0| VLAN ID |
225 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
226 *
227 * VLAN ID: Vlan Starting value
228 * RSVD0: Reserved section, must be 0
229 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
230 * Length: Number of times to repeat the bit being set
231 */
232 len = vid >> 16;
233 vid = (vid << 17) >> 17;
234
235 /* verify the reserved 0 fields are 0 */
eca32047 236 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
401b5383
AD
237 return FM10K_ERR_PARAM;
238
239 /* Loop through the table updating all required VLANs */
240 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
241 len < FM10K_VLAN_TABLE_VID_MAX;
242 len -= 32 - bit, reg++, bit = 0) {
243 /* record the initial state of the register */
244 vlan_table = fm10k_read_reg(hw, reg);
245
246 /* truncate mask if we are at the start or end of the run */
247 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
248
249 /* make necessary modifications to the register */
250 mask &= set ? ~vlan_table : vlan_table;
251 if (mask)
252 fm10k_write_reg(hw, reg, vlan_table ^ mask);
253 }
254
255 return 0;
256}
257
b6fec18f
AD
258/**
259 * fm10k_read_mac_addr_pf - Read device MAC address
260 * @hw: pointer to the HW structure
261 *
262 * Reads the device MAC address from the SM_AREA and stores the value.
263 **/
264static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
265{
266 u8 perm_addr[ETH_ALEN];
267 u32 serial_num;
b6fec18f
AD
268
269 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
270
271 /* last byte should be all 1's */
272 if ((~serial_num) << 24)
273 return FM10K_ERR_INVALID_MAC_ADDR;
274
275 perm_addr[0] = (u8)(serial_num >> 24);
276 perm_addr[1] = (u8)(serial_num >> 16);
277 perm_addr[2] = (u8)(serial_num >> 8);
278
279 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
280
281 /* first byte should be all 1's */
282 if ((~serial_num) >> 24)
283 return FM10K_ERR_INVALID_MAC_ADDR;
284
285 perm_addr[3] = (u8)(serial_num >> 16);
286 perm_addr[4] = (u8)(serial_num >> 8);
287 perm_addr[5] = (u8)(serial_num);
288
f0cf5c98
JK
289 ether_addr_copy(hw->mac.perm_addr, perm_addr);
290 ether_addr_copy(hw->mac.addr, perm_addr);
b6fec18f
AD
291
292 return 0;
293}
294
401b5383
AD
295/**
296 * fm10k_glort_valid_pf - Validate that the provided glort is valid
297 * @hw: pointer to the HW structure
298 * @glort: base glort to be validated
299 *
300 * This function will return an error if the provided glort is invalid
301 **/
302bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
303{
304 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
305
306 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
307}
308
309/**
eca32047 310 * fm10k_update_xc_addr_pf - Update device addresses
401b5383
AD
311 * @hw: pointer to the HW structure
312 * @glort: base resource tag for this request
313 * @mac: MAC address to add/remove from table
314 * @vid: VLAN ID to add/remove from table
315 * @add: Indicates if this is an add or remove operation
316 * @flags: flags field to indicate add and secure
317 *
318 * This function generates a message to the Switch API requesting
319 * that the given logical port add/remove the given L2 MAC/VLAN address.
320 **/
321static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
322 const u8 *mac, u16 vid, bool add, u8 flags)
323{
324 struct fm10k_mbx_info *mbx = &hw->mbx;
325 struct fm10k_mac_update mac_update;
326 u32 msg[5];
327
b32d15b9
JK
328 /* clear set bit from VLAN ID */
329 vid &= ~FM10K_VLAN_CLEAR;
330
aa502b4a 331 /* if glort or VLAN are not valid return error */
33a44c28 332 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
401b5383
AD
333 return FM10K_ERR_PARAM;
334
401b5383
AD
335 /* record fields */
336 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
337 ((u32)mac[3] << 16) |
338 ((u32)mac[4] << 8) |
339 ((u32)mac[5]));
9d4955b4
JK
340 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
341 ((u16)mac[1]));
401b5383
AD
342 mac_update.vlan = cpu_to_le16(vid);
343 mac_update.glort = cpu_to_le16(glort);
344 mac_update.action = add ? 0 : 1;
345 mac_update.flags = flags;
346
347 /* populate mac_update fields */
348 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
349 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
350 &mac_update, sizeof(mac_update));
351
352 /* load onto outgoing mailbox */
353 return mbx->ops.enqueue_tx(hw, mbx, msg);
354}
355
356/**
eca32047 357 * fm10k_update_uc_addr_pf - Update device unicast addresses
401b5383
AD
358 * @hw: pointer to the HW structure
359 * @glort: base resource tag for this request
360 * @mac: MAC address to add/remove from table
361 * @vid: VLAN ID to add/remove from table
362 * @add: Indicates if this is an add or remove operation
363 * @flags: flags field to indicate add and secure
364 *
365 * This function is used to add or remove unicast addresses for
366 * the PF.
367 **/
368static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
369 const u8 *mac, u16 vid, bool add, u8 flags)
370{
371 /* verify MAC address is valid */
372 if (!is_valid_ether_addr(mac))
373 return FM10K_ERR_PARAM;
374
375 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
376}
377
378/**
379 * fm10k_update_mc_addr_pf - Update device multicast addresses
380 * @hw: pointer to the HW structure
381 * @glort: base resource tag for this request
382 * @mac: MAC address to add/remove from table
383 * @vid: VLAN ID to add/remove from table
384 * @add: Indicates if this is an add or remove operation
385 *
386 * This function is used to add or remove multicast MAC addresses for
387 * the PF.
388 **/
389static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
390 const u8 *mac, u16 vid, bool add)
391{
392 /* verify multicast address is valid */
393 if (!is_multicast_ether_addr(mac))
394 return FM10K_ERR_PARAM;
395
396 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
397}
398
399/**
400 * fm10k_update_xcast_mode_pf - Request update of multicast mode
401 * @hw: pointer to hardware structure
402 * @glort: base resource tag for this request
403 * @mode: integer value indicating mode being requested
404 *
405 * This function will attempt to request a higher mode for the port
406 * so that it can enable either multicast, multicast promiscuous, or
407 * promiscuous mode of operation.
408 **/
409static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
410{
411 struct fm10k_mbx_info *mbx = &hw->mbx;
412 u32 msg[3], xcast_mode;
413
414 if (mode > FM10K_XCAST_MODE_NONE)
415 return FM10K_ERR_PARAM;
a4fcad65 416
401b5383
AD
417 /* if glort is not valid return error */
418 if (!fm10k_glort_valid_pf(hw, glort))
419 return FM10K_ERR_PARAM;
420
421 /* write xcast mode as a single u32 value,
422 * lower 16 bits: glort
423 * upper 16 bits: mode
424 */
425 xcast_mode = ((u32)mode << 16) | glort;
426
427 /* generate message requesting to change xcast mode */
428 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
429 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
430
431 /* load onto outgoing mailbox */
432 return mbx->ops.enqueue_tx(hw, mbx, msg);
433}
434
435/**
436 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
437 * @hw: pointer to hardware structure
438 *
439 * This function walks through the MSI-X vector table to determine the
440 * number of active interrupts and based on that information updates the
441 * interrupt moderator linked list.
442 **/
443static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
444{
445 u32 i;
446
447 /* Disable interrupt moderator */
448 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
449
450 /* loop through PF from last to first looking enabled vectors */
451 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
452 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
453 break;
454 }
455
eca32047 456 /* always reset VFITR2[0] to point to last enabled PF vector */
401b5383
AD
457 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
458
459 /* reset ITR2[0] to point to last enabled PF vector */
c2653865
AD
460 if (!hw->iov.num_vfs)
461 fm10k_write_reg(hw, FM10K_ITR2(0), i);
401b5383
AD
462
463 /* Enable interrupt moderator */
464 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
465}
466
467/**
468 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
469 * @hw: pointer to the HW structure
470 * @glort: base resource tag for this request
471 * @count: number of logical ports being updated
472 * @enable: boolean value indicating enable or disable
473 *
474 * This function is used to add/remove a logical port from the switch.
475 **/
476static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
477 u16 count, bool enable)
478{
479 struct fm10k_mbx_info *mbx = &hw->mbx;
480 u32 msg[3], lport_msg;
481
482 /* do nothing if we are being asked to create or destroy 0 ports */
483 if (!count)
484 return 0;
485
486 /* if glort is not valid return error */
487 if (!fm10k_glort_valid_pf(hw, glort))
488 return FM10K_ERR_PARAM;
489
11ec36a9
NMK
490 /* reset multicast mode if deleting lport */
491 if (!enable)
492 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
493
401b5383
AD
494 /* construct the lport message from the 2 pieces of data we have */
495 lport_msg = ((u32)count << 16) | glort;
496
497 /* generate lport create/delete message */
498 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
499 FM10K_PF_MSG_ID_LPORT_DELETE);
500 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
501
502 /* load onto outgoing mailbox */
503 return mbx->ops.enqueue_tx(hw, mbx, msg);
504}
505
506/**
507 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
508 * @hw: pointer to hardware structure
509 * @dglort: pointer to dglort configuration structure
510 *
511 * Reads the configuration structure contained in dglort_cfg and uses
512 * that information to then populate a DGLORTMAP/DEC entry and the queues
513 * to which it has been assigned.
514 **/
515static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
516 struct fm10k_dglort_cfg *dglort)
517{
518 u16 glort, queue_count, vsi_count, pc_count;
519 u16 vsi, queue, pc, q_idx;
520 u32 txqctl, dglortdec, dglortmap;
521
522 /* verify the dglort pointer */
523 if (!dglort)
524 return FM10K_ERR_PARAM;
525
526 /* verify the dglort values */
527 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
528 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
529 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
530 return FM10K_ERR_PARAM;
531
532 /* determine count of VSIs and queues */
fcdb0a99
BA
533 queue_count = BIT(dglort->rss_l + dglort->pc_l);
534 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
401b5383
AD
535 glort = dglort->glort;
536 q_idx = dglort->queue_b;
537
538 /* configure SGLORT for queues */
539 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
540 for (queue = 0; queue < queue_count; queue++, q_idx++) {
541 if (q_idx >= FM10K_MAX_QUEUES)
542 break;
543
544 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
545 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
546 }
547 }
548
549 /* determine count of PCs and queues */
fcdb0a99
BA
550 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
551 pc_count = BIT(dglort->pc_l);
401b5383
AD
552
553 /* configure PC for Tx queues */
554 for (pc = 0; pc < pc_count; pc++) {
555 q_idx = pc + dglort->queue_b;
556 for (queue = 0; queue < queue_count; queue++) {
557 if (q_idx >= FM10K_MAX_QUEUES)
558 break;
559
560 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
561 txqctl &= ~FM10K_TXQCTL_PC_MASK;
562 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
563 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
564
565 q_idx += pc_count;
566 }
567 }
568
569 /* configure DGLORTDEC */
570 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
571 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
572 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
573 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
574 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
575 ((u32)(dglort->queue_l));
576 if (dglort->inner_rss)
577 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
578
579 /* configure DGLORTMAP */
580 dglortmap = (dglort->idx == fm10k_dglort_default) ?
581 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
582 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
583 dglortmap |= dglort->glort;
584
585 /* write values to hardware */
586 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
587 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
588
589 return 0;
590}
591
c2653865
AD
592u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
593{
594 u16 num_pools = hw->iov.num_pools;
595
596 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
597 8 : FM10K_MAX_QUEUES_POOL;
598}
599
600u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
601{
602 u16 num_vfs = hw->iov.num_vfs;
603 u16 vf_q_idx = FM10K_MAX_QUEUES;
604
605 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
606
607 return vf_q_idx;
608}
609
610static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
611{
612 u16 num_pools = hw->iov.num_pools;
613
614 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
615 FM10K_MAX_VECTORS_POOL;
616}
617
618static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
619{
620 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
621
622 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
623
624 return vf_v_idx;
625}
626
627/**
628 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
629 * @hw: pointer to the HW structure
630 * @num_vfs: number of VFs to be allocated
631 * @num_pools: number of virtualization pools to be allocated
632 *
633 * Allocates queues and traffic classes to virtualization entities to prepare
634 * the PF for SR-IOV and VMDq
635 **/
636static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
637 u16 num_pools)
638{
639 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
640 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
641 int i, j;
642
643 /* hardware only supports up to 64 pools */
644 if (num_pools > 64)
645 return FM10K_ERR_PARAM;
646
647 /* the number of VFs cannot exceed the number of pools */
648 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
649 return FM10K_ERR_PARAM;
650
651 /* record number of virtualization entities */
652 hw->iov.num_vfs = num_vfs;
653 hw->iov.num_pools = num_pools;
654
655 /* determine qmap offsets and counts */
656 qmap_stride = (num_vfs > 8) ? 32 : 256;
657 qpp = fm10k_queues_per_pool(hw);
658 vpp = fm10k_vectors_per_pool(hw);
659
660 /* calculate starting index for queues */
661 vf_q_idx = fm10k_vf_queue_index(hw, 0);
662 qmap_idx = 0;
663
664 /* establish TCs with -1 credits and no quanta to prevent transmit */
665 for (i = 0; i < num_vfs; i++) {
666 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
667 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
668 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
669 FM10K_TC_CREDIT_CREDIT_MASK);
670 }
671
672 /* zero out all mbmem registers */
673 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
674 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
675
676 /* clear event notification of VF FLR */
677 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
678 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
679
680 /* loop through unallocated rings assigning them back to PF */
681 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
682 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
ded8b20d
JK
683 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
684 FM10K_TXQCTL_UNLIMITED_BW | vid);
c2653865
AD
685 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
686 }
687
688 /* PF should have already updated VFITR2[0] */
689
690 /* update all ITR registers to flow to VFITR2[0] */
691 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
692 if (!(i & (vpp - 1)))
693 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
694 else
695 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
696 }
697
698 /* update PF ITR2[0] to reference the last vector */
699 fm10k_write_reg(hw, FM10K_ITR2(0),
700 fm10k_vf_vector_index(hw, num_vfs - 1));
701
702 /* loop through rings populating rings and TCs */
703 for (i = 0; i < num_vfs; i++) {
704 /* record index for VF queue 0 for use in end of loop */
705 vf_q_idx0 = vf_q_idx;
706
707 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
708 /* assign VF and locked TC to queues */
709 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
710 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
711 (i << FM10K_TXQCTL_TC_SHIFT) | i |
712 FM10K_TXQCTL_VF | vid);
713 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
714 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
715 FM10K_RXDCTL_DROP_ON_EMPTY);
716 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
1aab144c
BA
717 (i << FM10K_RXQCTL_VF_SHIFT) |
718 FM10K_RXQCTL_VF);
c2653865
AD
719
720 /* map queue pair to VF */
721 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
722 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
723 }
724
725 /* repeat the first ring for all of the remaining VF rings */
726 for (; j < qmap_stride; j++, qmap_idx++) {
727 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
728 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
729 }
730 }
731
732 /* loop through remaining indexes assigning all to queue 0 */
733 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
734 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
735 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
736 qmap_idx++;
737 }
738
739 return 0;
740}
741
742/**
743 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
744 * @hw: pointer to the HW structure
745 * @vf_idx: index of VF receiving GLORT
746 * @rate: Rate indicated in Mb/s
747 *
748 * Configured the TC for a given VF to allow only up to a given number
749 * of Mb/s of outgoing Tx throughput.
750 **/
751static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
752{
753 /* configure defaults */
754 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
755 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
756
757 /* verify vf is in range */
758 if (vf_idx >= hw->iov.num_vfs)
759 return FM10K_ERR_PARAM;
760
761 /* set interval to align with 4.096 usec in all modes */
762 switch (hw->bus.speed) {
763 case fm10k_bus_speed_2500:
764 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
765 break;
766 case fm10k_bus_speed_5000:
767 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
768 break;
769 default:
770 break;
771 }
772
773 if (rate) {
774 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
775 return FM10K_ERR_PARAM;
776
777 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
778 * The rate is provided in Mbits per second
779 * To tralslate from rate to quanta we need to multiply the
780 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
781 * dealing with floating point we can round the values up
782 * to the nearest whole number ratio which gives us 128 / 125.
783 */
784 tc_rate = (rate * 128) / 125;
785
786 /* try to keep the rate limiting accurate by increasing
787 * the number of credits and interval for rates less than 4Gb/s
788 */
789 if (rate < 4000)
790 interval <<= 1;
791 else
792 tc_rate >>= 1;
793 }
794
795 /* update rate limiter with new values */
796 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
797 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
798 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
799
800 return 0;
801}
802
803/**
804 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
805 * @hw: pointer to the HW structure
806 * @vf_idx: index of VF receiving GLORT
807 *
808 * Update the interrupt moderator linked list to include any MSI-X
809 * interrupts which the VF has enabled in the MSI-X vector table.
810 **/
811static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
812{
813 u16 vf_v_idx, vf_v_limit, i;
814
815 /* verify vf is in range */
816 if (vf_idx >= hw->iov.num_vfs)
817 return FM10K_ERR_PARAM;
818
eca32047 819 /* determine vector offset and count */
c2653865
AD
820 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
821 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
822
823 /* search for first vector that is not masked */
824 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
825 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
826 break;
827 }
828
829 /* reset linked list so it now includes our active vectors */
830 if (vf_idx == (hw->iov.num_vfs - 1))
831 fm10k_write_reg(hw, FM10K_ITR2(0), i);
832 else
833 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
834
835 return 0;
836}
837
838/**
839 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
840 * @hw: pointer to the HW structure
841 * @vf_info: pointer to VF information structure
842 *
843 * Assign a MAC address and default VLAN to a VF and notify it of the update
844 **/
845static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
846 struct fm10k_vf_info *vf_info)
847{
848 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
849 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
850 s32 err = 0;
851 u16 vf_idx, vf_vid;
852
853 /* verify vf is in range */
854 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
855 return FM10K_ERR_PARAM;
856
857 /* determine qmap offsets and counts */
858 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
859 queues_per_pool = fm10k_queues_per_pool(hw);
860
861 /* calculate starting index for queues */
862 vf_idx = vf_info->vf_idx;
863 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
864 qmap_idx = qmap_stride * vf_idx;
865
5c69df8a
JK
866 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
867 * used here to indicate to the VF that it will not have privilege to
868 * write VLAN_TABLE. All policy is enforced on the PF but this allows
869 * the VF to correctly report errors to userspace rqeuests.
870 */
c2653865 871 if (vf_info->pf_vid)
5c69df8a 872 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
c2653865
AD
873 else
874 vf_vid = vf_info->sw_vid;
875
876 /* generate MAC_ADDR request */
877 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
878 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
879 vf_info->mac, vf_vid);
880
325782a1
JK
881 /* Configure Queue control register with new VLAN ID. The TXQCTL
882 * register is RO from the VF, so the PF must do this even in the
883 * case of notifying the VF of a new VID via the mailbox.
884 */
885 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
886 FM10K_TXQCTL_VID_MASK;
887 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
888 FM10K_TXQCTL_VF | vf_idx;
889
890 for (i = 0; i < queues_per_pool; i++)
891 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
892
893 /* try loading a message onto outgoing mailbox first */
894 if (vf_info->mbx.ops.enqueue_tx) {
895 err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
896 if (err != FM10K_MBX_ERR_NO_MBX)
897 return err;
898 err = 0;
899 }
900
901 /* If we aren't connected to a mailbox, this is most likely because
902 * the VF driver is not running. It should thus be safe to re-map
903 * queues and use the registers to pass the MAC address so that the VF
904 * driver gets correct information during its initialization.
905 */
906
907 /* MAP Tx queue back to 0 temporarily, and disable it */
908 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
909 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
c2653865
AD
910
911 /* verify ring has disabled before modifying base address registers */
912 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
913 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
914 /* limit ourselves to a 1ms timeout */
915 if (timeout == 10) {
916 err = FM10K_ERR_DMA_PENDING;
917 goto err_out;
918 }
919
920 usleep_range(100, 200);
921 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
922 }
923
924 /* Update base address registers to contain MAC address */
925 if (is_valid_ether_addr(vf_info->mac)) {
926 tdbal = (((u32)vf_info->mac[3]) << 24) |
927 (((u32)vf_info->mac[4]) << 16) |
928 (((u32)vf_info->mac[5]) << 8);
929
930 tdbah = (((u32)0xFF) << 24) |
931 (((u32)vf_info->mac[0]) << 16) |
932 (((u32)vf_info->mac[1]) << 8) |
933 ((u32)vf_info->mac[2]);
934 }
935
936 /* Record the base address into queue 0 */
937 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
938 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
939
20076fa1
JK
940 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
941 * to pass the information during VF initialization. See definition of
942 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
943 */
944 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
945 FM10K_TDLEN_ITR_SCALE_SHIFT);
946
c2653865 947err_out:
c2653865
AD
948 /* restore the queue back to VF ownership */
949 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
950 return err;
951}
952
953/**
954 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
955 * @hw: pointer to the HW structure
956 * @vf_info: pointer to VF information structure
957 *
958 * Reassign the interrupts and queues to a VF following an FLR
959 **/
960static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
961 struct fm10k_vf_info *vf_info)
962{
963 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
964 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
965 u16 vf_v_idx, vf_v_limit, vf_vid;
966 u8 vf_idx = vf_info->vf_idx;
967 int i;
968
969 /* verify vf is in range */
970 if (vf_idx >= hw->iov.num_vfs)
971 return FM10K_ERR_PARAM;
972
973 /* clear event notification of VF FLR */
fcdb0a99 974 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
c2653865
AD
975
976 /* force timeout and then disconnect the mailbox */
977 vf_info->mbx.timeout = 0;
978 if (vf_info->mbx.ops.disconnect)
979 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
980
eca32047 981 /* determine vector offset and count */
c2653865
AD
982 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
983 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
984
985 /* determine qmap offsets and counts */
986 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
987 queues_per_pool = fm10k_queues_per_pool(hw);
988 qmap_idx = qmap_stride * vf_idx;
989
990 /* make all the queues inaccessible to the VF */
991 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
992 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
993 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
994 }
995
996 /* calculate starting index for queues */
997 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
998
999 /* determine correct default VLAN ID */
1000 if (vf_info->pf_vid)
1001 vf_vid = vf_info->pf_vid;
1002 else
1003 vf_vid = vf_info->sw_vid;
1004
1005 /* configure Queue control register */
1006 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1007 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1008 FM10K_TXQCTL_VF | vf_idx;
1aab144c 1009 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
c2653865
AD
1010
1011 /* stop further DMA and reset queue ownership back to VF */
1012 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1013 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1014 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1015 fm10k_write_reg(hw, FM10K_RXDCTL(i),
1016 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1017 FM10K_RXDCTL_DROP_ON_EMPTY);
1018 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1019 }
1020
1021 /* reset TC with -1 credits and no quanta to prevent transmit */
1022 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1023 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1024 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1025 FM10K_TC_CREDIT_CREDIT_MASK);
1026
1027 /* update our first entry in the table based on previous VF */
1028 if (!vf_idx)
1029 hw->mac.ops.update_int_moderator(hw);
1030 else
1031 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1032
1033 /* reset linked list so it now includes our active vectors */
1034 if (vf_idx == (hw->iov.num_vfs - 1))
1035 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1036 else
1037 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1038
1039 /* link remaining vectors so that next points to previous */
1040 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1041 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1042
1043 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1044 for (i = FM10K_VFMBMEM_LEN; i--;)
1045 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1046 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1047 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1048 for (i = FM10K_RETA_SIZE; i--;)
1049 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1050 for (i = FM10K_RSSRK_SIZE; i--;)
1051 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1052 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1053
1054 /* Update base address registers to contain MAC address */
1055 if (is_valid_ether_addr(vf_info->mac)) {
1056 tdbal = (((u32)vf_info->mac[3]) << 24) |
1057 (((u32)vf_info->mac[4]) << 16) |
1058 (((u32)vf_info->mac[5]) << 8);
1059 tdbah = (((u32)0xFF) << 24) |
1060 (((u32)vf_info->mac[0]) << 16) |
1061 (((u32)vf_info->mac[1]) << 8) |
1062 ((u32)vf_info->mac[2]);
1063 }
1064
eca32047 1065 /* map queue pairs back to VF from last to first */
c2653865
AD
1066 for (i = queues_per_pool; i--;) {
1067 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1068 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
20076fa1
JK
1069 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1070 * explanation of how TDLEN is used.
1071 */
1072 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1073 hw->mac.itr_scale <<
1074 FM10K_TDLEN_ITR_SCALE_SHIFT);
c2653865
AD
1075 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1076 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1077 }
1078
fba341d5
JK
1079 /* repeat the first ring for all the remaining VF rings */
1080 for (i = queues_per_pool; i < qmap_stride; i++) {
1081 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1082 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1083 }
1084
c2653865
AD
1085 return 0;
1086}
1087
1088/**
1089 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1090 * @hw: pointer to hardware structure
1091 * @vf_info: pointer to VF information structure
1092 * @lport_idx: Logical port offset from the hardware glort
1093 * @flags: Set of capability flags to extend port beyond basic functionality
1094 *
1095 * This function allows enabling a VF port by assigning it a GLORT and
1096 * setting the flags so that it can enable an Rx mode.
1097 **/
1098static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1099 struct fm10k_vf_info *vf_info,
1100 u16 lport_idx, u8 flags)
1101{
1102 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1103
1104 /* if glort is not valid return error */
1105 if (!fm10k_glort_valid_pf(hw, glort))
1106 return FM10K_ERR_PARAM;
1107
1108 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1109 vf_info->glort = glort;
1110
1111 return 0;
1112}
1113
1114/**
1115 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1116 * @hw: pointer to hardware structure
1117 * @vf_info: pointer to VF information structure
1118 *
1119 * This function disables a VF port by stripping it of a GLORT and
1120 * setting the flags so that it cannot enable any Rx mode.
1121 **/
1122static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1123 struct fm10k_vf_info *vf_info)
1124{
1125 u32 msg[1];
1126
1127 /* need to disable the port if it is already enabled */
1128 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1129 /* notify switch that this port has been disabled */
1130 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1131
1132 /* generate port state response to notify VF it is not ready */
1133 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1134 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1135 }
1136
1137 /* clear flags and glort if it exists */
1138 vf_info->vf_flags = 0;
1139 vf_info->glort = 0;
1140}
1141
1142/**
1143 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1144 * @hw: pointer to hardware structure
1145 * @q: stats for all queues of a VF
1146 * @vf_idx: index of VF
1147 *
1148 * This function collects queue stats for VFs.
1149 **/
1150static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1151 struct fm10k_hw_stats_q *q,
1152 u16 vf_idx)
1153{
1154 u32 idx, qpp;
1155
1156 /* get stats for all of the queues */
1157 qpp = fm10k_queues_per_pool(hw);
1158 idx = fm10k_vf_queue_index(hw, vf_idx);
1159 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1160}
1161
1162/**
1163 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1164 * @hw: Pointer to hardware structure
1165 * @results: Pointer array to message, results[0] is pointer to message
1166 * @mbx: Pointer to mailbox information structure
1167 *
1168 * This function is a default handler for MSI-X requests from the VF. The
1169 * assumption is that in this case it is acceptable to just directly
eca32047 1170 * hand off the message from the VF to the underlying shared code.
c2653865
AD
1171 **/
1172s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1173 struct fm10k_mbx_info *mbx)
1174{
1175 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1176 u8 vf_idx = vf_info->vf_idx;
1177
1178 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1179}
1180
9adbac59 1181/**
aa502b4a 1182 * fm10k_iov_select_vid - Select correct default VLAN ID
9adbac59 1183 * @hw: Pointer to hardware structure
aa502b4a 1184 * @vid: VLAN ID to correct
9adbac59 1185 *
aa502b4a
JK
1186 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1187 * return either the pf_vid or sw_vid depending on which one is set.
9adbac59 1188 */
e214d85b 1189static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
9adbac59
JK
1190{
1191 if (!vid)
1192 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1193 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1194 return FM10K_ERR_PARAM;
1195 else
1196 return vid;
1197}
1198
c2653865
AD
1199/**
1200 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1201 * @hw: Pointer to hardware structure
1202 * @results: Pointer array to message, results[0] is pointer to message
1203 * @mbx: Pointer to mailbox information structure
1204 *
1205 * This function is a default handler for MAC/VLAN requests from the VF.
1206 * The assumption is that in this case it is acceptable to just directly
eca32047 1207 * hand off the message from the VF to the underlying shared code.
c2653865
AD
1208 **/
1209s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1210 struct fm10k_mbx_info *mbx)
1211{
1212 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
c2653865
AD
1213 u8 mac[ETH_ALEN];
1214 u32 *result;
9adbac59
JK
1215 int err = 0;
1216 bool set;
c2653865
AD
1217 u16 vlan;
1218 u32 vid;
1219
1220 /* we shouldn't be updating rules on a disabled interface */
1221 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1222 err = FM10K_ERR_PARAM;
1223
1224 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1225 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1226
1227 /* record VLAN id requested */
1228 err = fm10k_tlv_attr_get_u32(result, &vid);
1229 if (err)
1230 return err;
1231
9adbac59
JK
1232 set = !(vid & FM10K_VLAN_CLEAR);
1233 vid &= ~FM10K_VLAN_CLEAR;
1234
f808c5db
JK
1235 /* if the length field has been set, this is a multi-bit
1236 * update request. For multi-bit requests, simply disallow
1237 * them when the pf_vid has been set. In this case, the PF
1238 * should have already cleared the VLAN_TABLE, and if we
1239 * allowed them, it could allow a rogue VF to receive traffic
1240 * on a VLAN it was not assigned. In the single-bit case, we
1241 * need to modify requests for VLAN 0 to use the default PF or
1242 * SW vid when assigned.
1243 */
4ab0f79b 1244
f808c5db
JK
1245 if (vid >> 16) {
1246 /* prevent multi-bit requests when PF has
1247 * administratively set the VLAN for this VF
1248 */
1249 if (vf_info->pf_vid)
1250 return FM10K_ERR_PARAM;
1251 } else {
1252 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1253 if (err < 0)
1254 return err;
1255
1256 vid = err;
1257 }
c2653865
AD
1258
1259 /* update VSI info for VF in regards to VLAN table */
9adbac59 1260 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
c2653865
AD
1261 }
1262
1263 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1264 result = results[FM10K_MAC_VLAN_MSG_MAC];
1265
1266 /* record unicast MAC address requested */
1267 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1268 if (err)
1269 return err;
1270
1271 /* block attempts to set MAC for a locked device */
1272 if (is_valid_ether_addr(vf_info->mac) &&
6186ddf0 1273 !ether_addr_equal(mac, vf_info->mac))
c2653865
AD
1274 return FM10K_ERR_PARAM;
1275
9adbac59
JK
1276 set = !(vlan & FM10K_VLAN_CLEAR);
1277 vlan &= ~FM10K_VLAN_CLEAR;
1278
1279 err = fm10k_iov_select_vid(vf_info, vlan);
1280 if (err < 0)
1281 return err;
4ab0f79b
JK
1282
1283 vlan = (u16)err;
c2653865
AD
1284
1285 /* notify switch of request for new unicast address */
9adbac59
JK
1286 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1287 mac, vlan, set, 0);
c2653865
AD
1288 }
1289
1290 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1291 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1292
1293 /* record multicast MAC address requested */
1294 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1295 if (err)
1296 return err;
1297
1298 /* verify that the VF is allowed to request multicast */
1299 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1300 return FM10K_ERR_PARAM;
1301
9adbac59
JK
1302 set = !(vlan & FM10K_VLAN_CLEAR);
1303 vlan &= ~FM10K_VLAN_CLEAR;
1304
1305 err = fm10k_iov_select_vid(vf_info, vlan);
1306 if (err < 0)
1307 return err;
4ab0f79b
JK
1308
1309 vlan = (u16)err;
c2653865
AD
1310
1311 /* notify switch of request for new multicast address */
9adbac59
JK
1312 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1313 mac, vlan, set);
c2653865
AD
1314 }
1315
1316 return err;
1317}
1318
1319/**
1320 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1321 * @vf_info: VF info structure containing capability flags
1322 * @mode: Requested xcast mode
1323 *
1324 * This function outputs the mode that most closely matches the requested
1325 * mode. If not modes match it will request we disable the port
1326 **/
1327static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1328 u8 mode)
1329{
1330 u8 vf_flags = vf_info->vf_flags;
1331
1332 /* match up mode to capabilities as best as possible */
1333 switch (mode) {
1334 case FM10K_XCAST_MODE_PROMISC:
1335 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1336 return FM10K_XCAST_MODE_PROMISC;
375ce90e 1337 /* fall through */
c2653865
AD
1338 case FM10K_XCAST_MODE_ALLMULTI:
1339 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1340 return FM10K_XCAST_MODE_ALLMULTI;
375ce90e 1341 /* fall through */
c2653865
AD
1342 case FM10K_XCAST_MODE_MULTI:
1343 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1344 return FM10K_XCAST_MODE_MULTI;
375ce90e 1345 /* fall through */
c2653865
AD
1346 case FM10K_XCAST_MODE_NONE:
1347 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1348 return FM10K_XCAST_MODE_NONE;
375ce90e 1349 /* fall through */
c2653865
AD
1350 default:
1351 break;
1352 }
1353
1354 /* disable interface as it should not be able to request any */
1355 return FM10K_XCAST_MODE_DISABLE;
1356}
1357
1358/**
1359 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1360 * @hw: Pointer to hardware structure
1361 * @results: Pointer array to message, results[0] is pointer to message
1362 * @mbx: Pointer to mailbox information structure
1363 *
1364 * This function is a default handler for port state requests. The port
1365 * state requests for now are basic and consist of enabling or disabling
1366 * the port.
1367 **/
1368s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1369 struct fm10k_mbx_info *mbx)
1370{
1371 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1372 u32 *result;
1373 s32 err = 0;
1374 u32 msg[2];
1375 u8 mode = 0;
1376
1377 /* verify VF is allowed to enable even minimal mode */
1378 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1379 return FM10K_ERR_PARAM;
1380
1381 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1382 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1383
1384 /* XCAST mode update requested */
1385 err = fm10k_tlv_attr_get_u8(result, &mode);
1386 if (err)
1387 return FM10K_ERR_PARAM;
1388
1389 /* prep for possible demotion depending on capabilities */
1390 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1391
1392 /* if mode is not currently enabled, enable it */
fcdb0a99 1393 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
c2653865
AD
1394 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1395
1396 /* swap mode back to a bit flag */
1397 mode = FM10K_VF_FLAG_SET_MODE(mode);
1398 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1399 /* need to disable the port if it is already enabled */
1400 if (FM10K_VF_FLAG_ENABLED(vf_info))
1401 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1402 1, false);
1403
ee4373e7
JK
1404 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1405 * that we actually re-enable the LPORT state below. Note that
1406 * this has no impact if the VF is already disabled, as the
1407 * flags are already cleared.
1408 */
1409 if (!err)
1410 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1411
c2653865
AD
1412 /* when enabling the port we should reset the rate limiters */
1413 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1414
1415 /* set mode for minimal functionality */
1416 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1417
1418 /* generate port state response to notify VF it is ready */
1419 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1420 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1421 mbx->ops.enqueue_tx(hw, mbx, msg);
1422 }
1423
1424 /* if enable state toggled note the update */
1425 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1426 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1427 !!mode);
1428
1429 /* if state change succeeded, then update our stored state */
1430 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1431 if (!err)
1432 vf_info->vf_flags = mode;
1433
1434 return err;
1435}
1436
b6fec18f
AD
1437/**
1438 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1439 * @hw: pointer to hardware structure
1440 * @stats: pointer to the stats structure to update
1441 *
1442 * This function collects and aggregates global and per queue hardware
1443 * statistics.
1444 **/
1445static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1446 struct fm10k_hw_stats *stats)
1447{
1448 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1449 u32 id, id_prev;
1450
1451 /* Use Tx queue 0 as a canary to detect a reset */
1452 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1453
1454 /* Read Global Statistics */
1455 do {
1456 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1457 &stats->timeout);
1458 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1459 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1460 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1461 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1462 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1463 &stats->vlan_drop);
3d02b3df
BA
1464 loopback_drop =
1465 fm10k_read_hw_stats_32b(hw,
1466 FM10K_STATS_LOOPBACK_DROP,
1467 &stats->loopback_drop);
b6fec18f
AD
1468 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1469 FM10K_STATS_NODESC_DROP,
1470 &stats->nodesc_drop);
1471
1472 /* if value has not changed then we have consistent data */
1473 id_prev = id;
1474 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1475 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1476
1477 /* drop non-ID bits and set VALID ID bit */
1478 id &= FM10K_TXQCTL_ID_MASK;
1479 id |= FM10K_STAT_VALID;
1480
1481 /* Update Global Statistics */
1482 if (stats->stats_idx == id) {
1483 stats->timeout.count += timeout;
1484 stats->ur.count += ur;
1485 stats->ca.count += ca;
1486 stats->um.count += um;
1487 stats->xec.count += xec;
1488 stats->vlan_drop.count += vlan_drop;
1489 stats->loopback_drop.count += loopback_drop;
1490 stats->nodesc_drop.count += nodesc_drop;
1491 }
1492
1493 /* Update bases and record current PF id */
1494 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1495 fm10k_update_hw_base_32b(&stats->ur, ur);
1496 fm10k_update_hw_base_32b(&stats->ca, ca);
1497 fm10k_update_hw_base_32b(&stats->um, um);
1498 fm10k_update_hw_base_32b(&stats->xec, xec);
1499 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1500 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1501 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1502 stats->stats_idx = id;
1503
1504 /* Update Queue Statistics */
1505 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1506}
1507
1508/**
1509 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1510 * @hw: pointer to hardware structure
1511 * @stats: pointer to the stats structure to update
1512 *
1513 * This function resets the base for global and per queue hardware
1514 * statistics.
1515 **/
1516static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1517 struct fm10k_hw_stats *stats)
1518{
1519 /* Unbind Global Statistics */
1520 fm10k_unbind_hw_stats_32b(&stats->timeout);
1521 fm10k_unbind_hw_stats_32b(&stats->ur);
1522 fm10k_unbind_hw_stats_32b(&stats->ca);
1523 fm10k_unbind_hw_stats_32b(&stats->um);
1524 fm10k_unbind_hw_stats_32b(&stats->xec);
1525 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1526 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1527 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1528
1529 /* Unbind Queue Statistics */
1530 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1531
1532 /* Reinitialize bases for all stats */
1533 fm10k_update_hw_stats_pf(hw, stats);
1534}
1535
401b5383
AD
1536/**
1537 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1538 * @hw: pointer to hardware structure
1539 * @dma_mask: 64 bit DMA mask required for platform
1540 *
1541 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1542 * to limit the access to memory beyond what is physically in the system.
1543 **/
1544static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1545{
1546 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1547 u32 phyaddr = (u32)(dma_mask >> 32);
1548
1549 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1550}
1551
b6fec18f
AD
1552/**
1553 * fm10k_get_fault_pf - Record a fault in one of the interface units
1554 * @hw: pointer to hardware structure
1555 * @type: pointer to fault type register offset
1556 * @fault: pointer to memory location to record the fault
1557 *
1558 * Record the fault register contents to the fault data structure and
1559 * clear the entry from the register.
1560 *
1561 * Returns ERR_PARAM if invalid register is specified or no error is present.
1562 **/
1563static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1564 struct fm10k_fault *fault)
1565{
1566 u32 func;
1567
1568 /* verify the fault register is in range and is aligned */
1569 switch (type) {
1570 case FM10K_PCA_FAULT:
1571 case FM10K_THI_FAULT:
1572 case FM10K_FUM_FAULT:
1573 break;
1574 default:
1575 return FM10K_ERR_PARAM;
1576 }
1577
1578 /* only service faults that are valid */
1579 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1580 if (!(func & FM10K_FAULT_FUNC_VALID))
1581 return FM10K_ERR_PARAM;
1582
1583 /* read remaining fields */
1584 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1585 fault->address <<= 32;
1586 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1587 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1588
1589 /* clear valid bit to allow for next error */
1590 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1591
1592 /* Record which function triggered the error */
1593 if (func & FM10K_FAULT_FUNC_PF)
1594 fault->func = 0;
1595 else
1596 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1597 FM10K_FAULT_FUNC_VF_SHIFT);
1598
1599 /* record fault type */
1600 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1601
1602 return 0;
1603}
1604
401b5383
AD
1605/**
1606 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1607 * @hw: pointer to hardware structure
1608 *
1609 **/
1610static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1611{
1612 struct fm10k_mbx_info *mbx = &hw->mbx;
1613 u32 msg[1];
1614
1615 /* issue request asking for LPORT map */
1616 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1617
1618 /* load onto outgoing mailbox */
1619 return mbx->ops.enqueue_tx(hw, mbx, msg);
1620}
1621
1622/**
1623 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1624 * @hw: pointer to hardware structure
1625 * @switch_ready: pointer to boolean value that will record switch state
1626 *
d8ec92f2 1627 * This function will check the DMA_CTRL2 register and mailbox in order
401b5383
AD
1628 * to determine if the switch is ready for the PF to begin requesting
1629 * addresses and mapping traffic to the local interface.
1630 **/
1631static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1632{
401b5383
AD
1633 u32 dma_ctrl2;
1634
eca32047 1635 /* verify the switch is ready for interaction */
401b5383
AD
1636 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1637 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
0afd20e5 1638 return 0;
401b5383
AD
1639
1640 /* retrieve generic host state info */
0afd20e5 1641 return fm10k_get_host_state_generic(hw, switch_ready);
401b5383
AD
1642}
1643
1644/* This structure defines the attibutes to be parsed below */
1645const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
a7a7783a
JK
1646 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1647 sizeof(struct fm10k_swapi_error)),
401b5383
AD
1648 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1649 FM10K_TLV_ATTR_LAST
1650};
1651
1652/**
1653 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1654 * @hw: Pointer to hardware structure
1655 * @results: pointer array containing parsed data
1656 * @mbx: Pointer to mailbox information structure
1657 *
1658 * This handler configures the lport mapping based on the reply from the
1659 * switch API.
1660 **/
1661s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1662 struct fm10k_mbx_info *mbx)
1663{
1664 u16 glort, mask;
1665 u32 dglort_map;
1666 s32 err;
1667
1668 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1669 &dglort_map);
1670 if (err)
1671 return err;
1672
1673 /* extract values out of the header */
1674 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1675 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1676
1677 /* verify mask is set and none of the masked bits in glort are set */
1678 if (!mask || (glort & ~mask))
1679 return FM10K_ERR_PARAM;
1680
1681 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1682 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1683 return FM10K_ERR_PARAM;
1684
1685 /* record the glort, mask, and port count */
1686 hw->mac.dglort_map = dglort_map;
1687
1688 return 0;
1689}
1690
1691const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1692 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1693 FM10K_TLV_ATTR_LAST
1694};
1695
1696/**
1697 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1698 * @hw: Pointer to hardware structure
1699 * @results: pointer array containing parsed data
1700 * @mbx: Pointer to mailbox information structure
1701 *
1702 * This handler configures the default VLAN for the PF
1703 **/
bb269e8b
BA
1704static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1705 struct fm10k_mbx_info *mbx)
401b5383
AD
1706{
1707 u16 glort, pvid;
1708 u32 pvid_update;
1709 s32 err;
1710
1711 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1712 &pvid_update);
1713 if (err)
1714 return err;
1715
1716 /* extract values from the pvid update */
1717 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1718 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1719
1720 /* if glort is not valid return error */
1721 if (!fm10k_glort_valid_pf(hw, glort))
1722 return FM10K_ERR_PARAM;
1723
aa502b4a 1724 /* verify VLAN ID is valid */
401b5383
AD
1725 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1726 return FM10K_ERR_PARAM;
1727
1728 /* record the port VLAN ID value */
1729 hw->mac.default_vid = pvid;
1730
1731 return 0;
1732}
1733
1734/**
1735 * fm10k_record_global_table_data - Move global table data to swapi table info
1736 * @from: pointer to source table data structure
1737 * @to: pointer to destination table info structure
1738 *
1739 * This function is will copy table_data to the table_info contained in
1740 * the hw struct.
1741 **/
1742static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1743 struct fm10k_swapi_table_info *to)
1744{
1745 /* convert from le32 struct to CPU byte ordered values */
1746 to->used = le32_to_cpu(from->used);
1747 to->avail = le32_to_cpu(from->avail);
1748}
1749
1750const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1751 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1752 sizeof(struct fm10k_swapi_error)),
1753 FM10K_TLV_ATTR_LAST
1754};
1755
1756/**
1757 * fm10k_msg_err_pf - Message handler for error reply
1758 * @hw: Pointer to hardware structure
1759 * @results: pointer array containing parsed data
1760 * @mbx: Pointer to mailbox information structure
1761 *
1762 * This handler will capture the data for any error replies to previous
1763 * messages that the PF has sent.
1764 **/
1765s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1766 struct fm10k_mbx_info *mbx)
1767{
1768 struct fm10k_swapi_error err_msg;
1769 s32 err;
1770
1771 /* extract structure from message */
1772 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1773 &err_msg, sizeof(err_msg));
1774 if (err)
1775 return err;
1776
1777 /* record table status */
1778 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1779 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1780 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1781
1782 /* record SW API status value */
1783 hw->swapi.status = le32_to_cpu(err_msg.status);
1784
1785 return 0;
1786}
1787
1788static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1789 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1790 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1791 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1792 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1793 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1794 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1795 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1796};
1797
f329ad73 1798static const struct fm10k_mac_ops mac_ops_pf = {
4e458cfb
BA
1799 .get_bus_info = fm10k_get_bus_info_generic,
1800 .reset_hw = fm10k_reset_hw_pf,
1801 .init_hw = fm10k_init_hw_pf,
1802 .start_hw = fm10k_start_hw_generic,
1803 .stop_hw = fm10k_stop_hw_generic,
1804 .update_vlan = fm10k_update_vlan_pf,
1805 .read_mac_addr = fm10k_read_mac_addr_pf,
1806 .update_uc_addr = fm10k_update_uc_addr_pf,
1807 .update_mc_addr = fm10k_update_mc_addr_pf,
1808 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1809 .update_int_moderator = fm10k_update_int_moderator_pf,
1810 .update_lport_state = fm10k_update_lport_state_pf,
1811 .update_hw_stats = fm10k_update_hw_stats_pf,
1812 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1813 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1814 .set_dma_mask = fm10k_set_dma_mask_pf,
1815 .get_fault = fm10k_get_fault_pf,
1816 .get_host_state = fm10k_get_host_state_pf,
0afd20e5 1817 .request_lport_map = fm10k_request_lport_map_pf,
b6fec18f
AD
1818};
1819
f329ad73 1820static const struct fm10k_iov_ops iov_ops_pf = {
4e458cfb
BA
1821 .assign_resources = fm10k_iov_assign_resources_pf,
1822 .configure_tc = fm10k_iov_configure_tc_pf,
1823 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
c2653865 1824 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
4e458cfb
BA
1825 .reset_resources = fm10k_iov_reset_resources_pf,
1826 .set_lport = fm10k_iov_set_lport_pf,
1827 .reset_lport = fm10k_iov_reset_lport_pf,
1828 .update_stats = fm10k_iov_update_stats_pf,
c2653865
AD
1829};
1830
401b5383
AD
1831static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1832{
1833 fm10k_get_invariants_generic(hw);
1834
1835 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1836}
1837
f329ad73 1838const struct fm10k_info fm10k_pf_info = {
b6fec18f 1839 .mac = fm10k_mac_pf,
4e458cfb 1840 .get_invariants = fm10k_get_invariants_pf,
b6fec18f 1841 .mac_ops = &mac_ops_pf,
c2653865 1842 .iov_ops = &iov_ops_pf,
b6fec18f 1843};