]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/intel/i40e/i40e_ptp.c
intel-ethernet: clean up W=1 warnings in kdoc
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_ptp.c
CommitLineData
ae06c70b 1// SPDX-License-Identifier: GPL-2.0
51dce24b 2/* Copyright(c) 2013 - 2018 Intel Corporation. */
beb0dff1
JK
3
4#include "i40e.h"
beb0dff1
JK
5#include <linux/ptp_classify.h>
6
7/* The XL710 timesync is very much like Intel's 82599 design when it comes to
8 * the fundamental clock design. However, the clock operations are much simpler
9 * in the XL710 because the device supports a full 64 bits of nanoseconds.
10 * Because the field is so wide, we can forgo the cycle counter and just
11 * operate with the nanosecond field directly without fear of overflow.
12 *
13 * Much like the 82599, the update period is dependent upon the link speed:
14 * At 40Gb link or no link, the period is 1.6ns.
15 * At 10Gb link, the period is multiplied by 2. (3.2ns)
16 * At 1Gb link, the period is multiplied by 20. (32ns)
17 * 1588 functionality is not supported at 100Mbps.
18 */
830e0dd9
JK
19#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
20#define I40E_PTP_10GB_INCVAL_MULT 2
21#define I40E_PTP_1GB_INCVAL_MULT 20
beb0dff1 22
41a1d04b
JB
23#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
24#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \
beb0dff1 25 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
beb0dff1
JK
26
27/**
28 * i40e_ptp_read - Read the PHC time from the device
29 * @pf: Board private structure
30 * @ts: timespec structure to hold the current time value
9a2d57a7 31 * @sts: structure to hold the system time before and after reading the PHC
beb0dff1
JK
32 *
33 * This function reads the PRTTSYN_TIME registers and stores them in a
34 * timespec. However, since the registers are 64 bits of nanoseconds, we must
35 * convert the result to a timespec before we can return.
36 **/
9a2d57a7
ML
37static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
38 struct ptp_system_timestamp *sts)
beb0dff1
JK
39{
40 struct i40e_hw *hw = &pf->hw;
41 u32 hi, lo;
42 u64 ns;
43
44 /* The timer latches on the lowest register read. */
9a2d57a7 45 ptp_read_system_prets(sts);
beb0dff1 46 lo = rd32(hw, I40E_PRTTSYN_TIME_L);
9a2d57a7 47 ptp_read_system_postts(sts);
beb0dff1
JK
48 hi = rd32(hw, I40E_PRTTSYN_TIME_H);
49
50 ns = (((u64)hi) << 32) | lo;
51
6f7a9b8a 52 *ts = ns_to_timespec64(ns);
beb0dff1
JK
53}
54
55/**
56 * i40e_ptp_write - Write the PHC time to the device
57 * @pf: Board private structure
58 * @ts: timespec structure that holds the new time value
59 *
60 * This function writes the PRTTSYN_TIME registers with the user value. Since
61 * we receive a timespec from the stack, we must convert that timespec into
62 * nanoseconds before programming the registers.
63 **/
6f7a9b8a 64static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
beb0dff1
JK
65{
66 struct i40e_hw *hw = &pf->hw;
6f7a9b8a 67 u64 ns = timespec64_to_ns(ts);
beb0dff1
JK
68
69 /* The timer will not update until the high register is written, so
70 * write the low register first.
71 */
72 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
73 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
74}
75
76/**
77 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
78 * @hwtstamps: Timestamp structure to update
79 * @timestamp: Timestamp from the hardware
80 *
81 * We need to convert the NIC clock value into a hwtstamp which can be used by
82 * the upper level timestamping functions. Since the timestamp is simply a 64-
83 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
84 **/
85static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
86 u64 timestamp)
87{
88 memset(hwtstamps, 0, sizeof(*hwtstamps));
89
90 hwtstamps->hwtstamp = ns_to_ktime(timestamp);
91}
92
93/**
94 * i40e_ptp_adjfreq - Adjust the PHC frequency
95 * @ptp: The PTP clock structure
96 * @ppb: Parts per billion adjustment from the base
97 *
98 * Adjust the frequency of the PHC by the indicated parts per billion from the
99 * base frequency.
100 **/
101static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
102{
103 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
104 struct i40e_hw *hw = &pf->hw;
105 u64 adj, freq, diff;
106 int neg_adj = 0;
107
108 if (ppb < 0) {
109 neg_adj = 1;
110 ppb = -ppb;
111 }
112
830e0dd9 113 freq = I40E_PTP_40GB_INCVAL;
beb0dff1
JK
114 freq *= ppb;
115 diff = div_u64(freq, 1000000000ULL);
116
117 if (neg_adj)
830e0dd9 118 adj = I40E_PTP_40GB_INCVAL - diff;
beb0dff1 119 else
830e0dd9
JK
120 adj = I40E_PTP_40GB_INCVAL + diff;
121
122 /* At some link speeds, the base incval is so large that directly
123 * multiplying by ppb would result in arithmetic overflow even when
124 * using a u64. Avoid this by instead calculating the new incval
125 * always in terms of the 40GbE clock rate and then multiplying by the
126 * link speed factor afterwards. This does result in slightly lower
127 * precision at lower link speeds, but it is fairly minor.
128 */
129 smp_mb(); /* Force any pending update before accessing. */
130 adj *= READ_ONCE(pf->ptp_adj_mult);
beb0dff1
JK
131
132 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
133 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
134
135 return 0;
136}
137
138/**
139 * i40e_ptp_adjtime - Adjust the PHC time
140 * @ptp: The PTP clock structure
141 * @delta: Offset in nanoseconds to adjust the PHC time by
142 *
4d607043 143 * Adjust the current clock time by a delta specified in nanoseconds.
beb0dff1
JK
144 **/
145static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
146{
147 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
b3ccbbce 148 struct timespec64 now, then;
beb0dff1 149
b3ccbbce 150 then = ns_to_timespec64(delta);
19551262 151 mutex_lock(&pf->tmreg_lock);
beb0dff1 152
9a2d57a7 153 i40e_ptp_read(pf, &now, NULL);
b3ccbbce 154 now = timespec64_add(now, then);
6f7a9b8a 155 i40e_ptp_write(pf, (const struct timespec64 *)&now);
beb0dff1 156
19551262 157 mutex_unlock(&pf->tmreg_lock);
beb0dff1
JK
158
159 return 0;
160}
161
162/**
9a2d57a7 163 * i40e_ptp_gettimex - Get the time of the PHC
beb0dff1
JK
164 * @ptp: The PTP clock structure
165 * @ts: timespec structure to hold the current time value
9a2d57a7 166 * @sts: structure to hold the system time before and after reading the PHC
beb0dff1
JK
167 *
168 * Read the device clock and return the correct value on ns, after converting it
169 * into a timespec struct.
170 **/
9a2d57a7
ML
171static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
172 struct ptp_system_timestamp *sts)
beb0dff1
JK
173{
174 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
beb0dff1 175
19551262 176 mutex_lock(&pf->tmreg_lock);
9a2d57a7 177 i40e_ptp_read(pf, ts, sts);
19551262 178 mutex_unlock(&pf->tmreg_lock);
beb0dff1
JK
179
180 return 0;
181}
182
183/**
184 * i40e_ptp_settime - Set the time of the PHC
185 * @ptp: The PTP clock structure
186 * @ts: timespec structure that holds the new time value
187 *
188 * Set the device clock to the user input value. The conversion from timespec
189 * to ns happens in the write function.
190 **/
191static int i40e_ptp_settime(struct ptp_clock_info *ptp,
6f7a9b8a 192 const struct timespec64 *ts)
beb0dff1
JK
193{
194 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
beb0dff1 195
19551262 196 mutex_lock(&pf->tmreg_lock);
beb0dff1 197 i40e_ptp_write(pf, ts);
19551262 198 mutex_unlock(&pf->tmreg_lock);
beb0dff1
JK
199
200 return 0;
201}
202
beb0dff1 203/**
69d1a70c 204 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
beb0dff1
JK
205 * @ptp: The PTP clock structure
206 * @rq: The requested feature to change
207 * @on: Enable/disable flag
208 *
209 * The XL710 does not support any of the ancillary features of the PHC
210 * subsystem, so this function may just return.
211 **/
69d1a70c
JK
212static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
213 struct ptp_clock_request *rq, int on)
beb0dff1
JK
214{
215 return -EOPNOTSUPP;
216}
217
12490501
JK
218/**
219 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
220 * @pf: the PF data structure
221 *
222 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
223 * for noticed latch events. This allows the driver to keep track of the first
224 * time a latch event was noticed which will be used to help clear out Rx
225 * timestamps for packets that got dropped or lost.
226 *
227 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
228 * expected to be called only while under the ptp_rx_lock.
229 **/
230static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
231{
232 struct i40e_hw *hw = &pf->hw;
233 u32 prttsyn_stat, new_latch_events;
234 int i;
235
236 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
237 new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
238
239 /* Update the jiffies time for any newly latched timestamp. This
240 * ensures that we store the time that we first discovered a timestamp
241 * was latched by the hardware. The service task will later determine
242 * if we should free the latch and drop that timestamp should too much
243 * time pass. This flow ensures that we only update jiffies for new
244 * events latched since the last time we checked, and not all events
245 * currently latched, so that the service task accounting remains
246 * accurate.
247 */
248 for (i = 0; i < 4; i++) {
249 if (new_latch_events & BIT(i))
250 pf->latch_events[i] = jiffies;
251 }
252
253 /* Finally, we store the current status of the Rx timestamp latches */
254 pf->latch_event_flags = prttsyn_stat;
255
256 return prttsyn_stat;
257}
258
beb0dff1
JK
259/**
260 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
61189556 261 * @pf: The PF private data structure
beb0dff1
JK
262 *
263 * This watchdog task is scheduled to detect error case where hardware has
264 * dropped an Rx packet that was timestamped when the ring is full. The
265 * particular error is rare but leaves the device in a state unable to timestamp
266 * any future packets.
267 **/
61189556 268void i40e_ptp_rx_hang(struct i40e_pf *pf)
beb0dff1 269{
beb0dff1 270 struct i40e_hw *hw = &pf->hw;
e6e3fc2b 271 unsigned int i, cleared = 0;
beb0dff1 272
b535a013
JK
273 /* Since we cannot turn off the Rx timestamp logic if the device is
274 * configured for Tx timestamping, we check if Rx timestamping is
275 * configured. We don't want to spuriously warn about Rx timestamp
276 * hangs if we don't care about the timestamps.
277 */
278 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
beb0dff1
JK
279 return;
280
12490501 281 spin_lock_bh(&pf->ptp_rx_lock);
beb0dff1 282
12490501
JK
283 /* Update current latch times for Rx events */
284 i40e_ptp_get_rx_events(pf);
beb0dff1 285
12490501
JK
286 /* Check all the currently latched Rx events and see whether they have
287 * been latched for over a second. It is assumed that any timestamp
288 * should have been cleared within this time, or else it was captured
289 * for a dropped frame that the driver never received. Thus, we will
290 * clear any timestamp that has been latched for over 1 second.
291 */
292 for (i = 0; i < 4; i++) {
293 if ((pf->latch_event_flags & BIT(i)) &&
294 time_is_before_jiffies(pf->latch_events[i] + HZ)) {
295 rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
296 pf->latch_event_flags &= ~BIT(i);
e6e3fc2b 297 cleared++;
12490501 298 }
beb0dff1
JK
299 }
300
12490501 301 spin_unlock_bh(&pf->ptp_rx_lock);
e6e3fc2b
JK
302
303 /* Log a warning if more than 2 timestamps got dropped in the same
304 * check. We don't want to warn about all drops because it can occur
305 * in normal scenarios such as PTP frames on multicast addresses we
306 * aren't listening to. However, administrator should know if this is
307 * the reason packets aren't receiving timestamps.
308 */
309 if (cleared > 2)
310 dev_dbg(&pf->pdev->dev,
311 "Dropped %d missed RXTIME timestamp events\n",
312 cleared);
313
314 /* Finally, update the rx_hwtstamp_cleared counter */
315 pf->rx_hwtstamp_cleared += cleared;
beb0dff1
JK
316}
317
0bc0706b
JK
318/**
319 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
320 * @pf: The PF private data structure
321 *
322 * This watchdog task is run periodically to make sure that we clear the Tx
323 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
324 * time. It is unexpected in the normal case but if it occurs it results in
9c0c3b83 325 * permanently preventing timestamps of future packets.
0bc0706b
JK
326 **/
327void i40e_ptp_tx_hang(struct i40e_pf *pf)
328{
c79756cb
JK
329 struct sk_buff *skb;
330
0bc0706b
JK
331 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
332 return;
333
334 /* Nothing to do if we're not already waiting for a timestamp */
335 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
336 return;
337
338 /* We already have a handler routine which is run when we are notified
339 * of a Tx timestamp in the hardware. If we don't get an interrupt
340 * within a second it is reasonable to assume that we never will.
341 */
342 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
c79756cb 343 skb = pf->ptp_tx_skb;
0bc0706b
JK
344 pf->ptp_tx_skb = NULL;
345 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
c79756cb
JK
346
347 /* Free the skb after we clear the bitlock */
348 dev_kfree_skb_any(skb);
0bc0706b
JK
349 pf->tx_hwtstamp_timeouts++;
350 }
351}
352
beb0dff1
JK
353/**
354 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
355 * @pf: Board private structure
356 *
357 * Read the value of the Tx timestamp from the registers, convert it into a
358 * value consumable by the stack, and store that result into the shhwtstamps
359 * struct before returning it up the stack.
360 **/
361void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
362{
363 struct skb_shared_hwtstamps shhwtstamps;
bbc4e7d2 364 struct sk_buff *skb = pf->ptp_tx_skb;
beb0dff1
JK
365 struct i40e_hw *hw = &pf->hw;
366 u32 hi, lo;
367 u64 ns;
368
22b4777d
JK
369 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
370 return;
371
372 /* don't attempt to timestamp if we don't have an skb */
373 if (!pf->ptp_tx_skb)
374 return;
375
beb0dff1
JK
376 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
377 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
378
379 ns = (((u64)hi) << 32) | lo;
beb0dff1 380 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
bbc4e7d2
JK
381
382 /* Clear the bit lock as soon as possible after reading the register,
383 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
384 * applications might wake up and attempt to request another transmit
385 * timestamp prior to the bit lock being cleared.
386 */
beb0dff1 387 pf->ptp_tx_skb = NULL;
0da36b97 388 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
bbc4e7d2
JK
389
390 /* Notify the stack and free the skb after we've unlocked */
391 skb_tstamp_tx(skb, &shhwtstamps);
392 dev_kfree_skb_any(skb);
beb0dff1
JK
393}
394
395/**
396 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
397 * @pf: Board private structure
398 * @skb: Particular skb to send timestamp with
399 * @index: Index into the receive timestamp registers for the timestamp
400 *
401 * The XL710 receives a notification in the receive descriptor with an offset
402 * into the set of RXTIME registers where the timestamp is for that skb. This
403 * function goes and fetches the receive timestamp from that offset, if a valid
404 * one exists. The RXTIME registers are in ns, so we must convert the result
405 * first.
406 **/
407void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
408{
409 u32 prttsyn_stat, hi, lo;
410 struct i40e_hw *hw;
411 u64 ns;
412
413 /* Since we cannot turn off the Rx timestamp logic if the device is
414 * doing Tx timestamping, check if Rx timestamping is configured.
415 */
22b4777d 416 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
beb0dff1
JK
417 return;
418
419 hw = &pf->hw;
420
12490501
JK
421 spin_lock_bh(&pf->ptp_rx_lock);
422
423 /* Get current Rx events and update latch times */
424 prttsyn_stat = i40e_ptp_get_rx_events(pf);
beb0dff1 425
12490501
JK
426 /* TODO: Should we warn about missing Rx timestamp event? */
427 if (!(prttsyn_stat & BIT(index))) {
428 spin_unlock_bh(&pf->ptp_rx_lock);
beb0dff1 429 return;
12490501
JK
430 }
431
432 /* Clear the latched event since we're about to read its register */
433 pf->latch_event_flags &= ~BIT(index);
beb0dff1
JK
434
435 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
436 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
437
12490501
JK
438 spin_unlock_bh(&pf->ptp_rx_lock);
439
beb0dff1
JK
440 ns = (((u64)hi) << 32) | lo;
441
442 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
443}
444
445/**
446 * i40e_ptp_set_increment - Utility function to update clock increment rate
447 * @pf: Board private structure
448 *
449 * During a link change, the DMA frequency that drives the 1588 logic will
450 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
451 * we must update the increment value per clock tick.
452 **/
453void i40e_ptp_set_increment(struct i40e_pf *pf)
454{
455 struct i40e_link_status *hw_link_info;
456 struct i40e_hw *hw = &pf->hw;
457 u64 incval;
830e0dd9 458 u32 mult;
beb0dff1
JK
459
460 hw_link_info = &hw->phy.link_info;
461
462 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
463
464 switch (hw_link_info->link_speed) {
465 case I40E_LINK_SPEED_10GB:
830e0dd9 466 mult = I40E_PTP_10GB_INCVAL_MULT;
beb0dff1
JK
467 break;
468 case I40E_LINK_SPEED_1GB:
830e0dd9 469 mult = I40E_PTP_1GB_INCVAL_MULT;
beb0dff1
JK
470 break;
471 case I40E_LINK_SPEED_100MB:
e684fa34
SN
472 {
473 static int warn_once;
474
475 if (!warn_once) {
476 dev_warn(&pf->pdev->dev,
477 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
478 warn_once++;
479 }
830e0dd9 480 mult = 0;
beb0dff1 481 break;
e684fa34 482 }
beb0dff1
JK
483 case I40E_LINK_SPEED_40GB:
484 default:
830e0dd9 485 mult = 1;
beb0dff1
JK
486 break;
487 }
488
830e0dd9
JK
489 /* The increment value is calculated by taking the base 40GbE incvalue
490 * and multiplying it by a factor based on the link speed.
491 */
492 incval = I40E_PTP_40GB_INCVAL * mult;
493
beb0dff1
JK
494 /* Write the new increment value into the increment register. The
495 * hardware will not update the clock until both registers have been
496 * written.
497 */
498 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
499 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
500
501 /* Update the base adjustement value. */
830e0dd9 502 WRITE_ONCE(pf->ptp_adj_mult, mult);
beb0dff1
JK
503 smp_mb(); /* Force the above update. */
504}
505
506/**
507 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
508 * @pf: Board private structure
f5254429 509 * @ifr: ioctl data
beb0dff1
JK
510 *
511 * Obtain the current hardware timestamping settigs as requested. To do this,
512 * keep a shadow copy of the timestamp settings rather than attempting to
513 * deconstruct it from the registers.
514 **/
515int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
516{
517 struct hwtstamp_config *config = &pf->tstamp_config;
518
fe88bda9
JK
519 if (!(pf->flags & I40E_FLAG_PTP))
520 return -EOPNOTSUPP;
521
beb0dff1
JK
522 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
523 -EFAULT : 0;
524}
525
526/**
18946455 527 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
beb0dff1 528 * @pf: Board private structure
18946455 529 * @config: hwtstamp settings requested or saved
beb0dff1 530 *
18946455
JK
531 * Control hardware registers to enter the specific mode requested by the
532 * user. Also used during reset path to ensure that timestamp settings are
533 * maintained.
beb0dff1 534 *
18946455
JK
535 * Note: modifies config in place, and may update the requested mode to be
536 * more broad if the specific filter is not directly supported.
beb0dff1 537 **/
18946455
JK
538static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
539 struct hwtstamp_config *config)
beb0dff1
JK
540{
541 struct i40e_hw *hw = &pf->hw;
fe88bda9 542 u32 tsyntype, regval;
beb0dff1 543
beb0dff1
JK
544 /* Reserved for future extensions. */
545 if (config->flags)
546 return -EINVAL;
547
beb0dff1
JK
548 switch (config->tx_type) {
549 case HWTSTAMP_TX_OFF:
550 pf->ptp_tx = false;
551 break;
552 case HWTSTAMP_TX_ON:
553 pf->ptp_tx = true;
554 break;
555 default:
556 return -ERANGE;
557 }
558
559 switch (config->rx_filter) {
560 case HWTSTAMP_FILTER_NONE:
561 pf->ptp_rx = false;
4fda14ca
JK
562 /* We set the type to V1, but do not enable UDP packet
563 * recognition. In this way, we should be as close to
564 * disabling PTP Rx timestamps as possible since V1 packets
565 * are always UDP, since L2 packets are a V2 feature.
566 */
567 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
beb0dff1
JK
568 break;
569 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
570 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
571 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
d36e41dc 572 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1e28e861 573 return -ERANGE;
beb0dff1
JK
574 pf->ptp_rx = true;
575 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
576 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
577 I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
578 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
579 break;
580 case HWTSTAMP_FILTER_PTP_V2_EVENT:
beb0dff1
JK
581 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
582 case HWTSTAMP_FILTER_PTP_V2_SYNC:
beb0dff1
JK
583 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
584 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
beb0dff1 585 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
d36e41dc 586 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1e28e861 587 return -ERANGE;
5463fce6 588 fallthrough;
1e28e861
JK
589 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
590 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
591 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
beb0dff1
JK
592 pf->ptp_rx = true;
593 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1e28e861 594 I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
d36e41dc 595 if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1e28e861
JK
596 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
597 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
598 } else {
599 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
600 }
beb0dff1 601 break;
e3412575 602 case HWTSTAMP_FILTER_NTP_ALL:
beb0dff1
JK
603 case HWTSTAMP_FILTER_ALL:
604 default:
605 return -ERANGE;
606 }
607
608 /* Clear out all 1588-related registers to clear and unlatch them. */
12490501 609 spin_lock_bh(&pf->ptp_rx_lock);
beb0dff1
JK
610 rd32(hw, I40E_PRTTSYN_STAT_0);
611 rd32(hw, I40E_PRTTSYN_TXTIME_H);
612 rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
613 rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
614 rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
615 rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
12490501
JK
616 pf->latch_event_flags = 0;
617 spin_unlock_bh(&pf->ptp_rx_lock);
beb0dff1
JK
618
619 /* Enable/disable the Tx timestamp interrupt based on user input. */
620 regval = rd32(hw, I40E_PRTTSYN_CTL0);
621 if (pf->ptp_tx)
622 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
623 else
624 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
625 wr32(hw, I40E_PRTTSYN_CTL0, regval);
626
627 regval = rd32(hw, I40E_PFINT_ICR0_ENA);
628 if (pf->ptp_tx)
629 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
630 else
631 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
632 wr32(hw, I40E_PFINT_ICR0_ENA, regval);
633
4fda14ca
JK
634 /* Although there is no simple on/off switch for Rx, we "disable" Rx
635 * timestamps by setting to V1 only mode and clear the UDP
636 * recognition. This ought to disable all PTP Rx timestamps as V1
637 * packets are always over UDP. Note that software is configured to
638 * ignore Rx timestamps via the pf->ptp_rx flag.
beb0dff1 639 */
4fda14ca
JK
640 regval = rd32(hw, I40E_PRTTSYN_CTL1);
641 /* clear everything but the enable bit */
642 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
643 /* now enable bits for desired Rx timestamps */
644 regval |= tsyntype;
645 wr32(hw, I40E_PRTTSYN_CTL1, regval);
beb0dff1 646
18946455
JK
647 return 0;
648}
649
650/**
651 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
652 * @pf: Board private structure
f5254429 653 * @ifr: ioctl data
18946455
JK
654 *
655 * Respond to the user filter requests and make the appropriate hardware
656 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
657 * logic, so keep track in software of whether to indicate these timestamps
658 * or not.
659 *
660 * It is permissible to "upgrade" the user request to a broader filter, as long
661 * as the user receives the timestamps they care about and the user is notified
662 * the filter has been broadened.
663 **/
664int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
665{
d19af2af 666 struct hwtstamp_config config;
18946455
JK
667 int err;
668
fe88bda9
JK
669 if (!(pf->flags & I40E_FLAG_PTP))
670 return -EOPNOTSUPP;
671
d19af2af 672 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
18946455
JK
673 return -EFAULT;
674
d19af2af 675 err = i40e_ptp_set_timestamp_mode(pf, &config);
18946455
JK
676 if (err)
677 return err;
678
d19af2af
JK
679 /* save these settings for future reference */
680 pf->tstamp_config = config;
681
682 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
beb0dff1
JK
683 -EFAULT : 0;
684}
685
686/**
fbd5e2df 687 * i40e_ptp_create_clock - Create PTP clock device for userspace
beb0dff1
JK
688 * @pf: Board private structure
689 *
fbd5e2df
JK
690 * This function creates a new PTP clock device. It only creates one if we
691 * don't already have one, so it is safe to call. Will return error if it
692 * can't create one, but success if we already have a device. Should be used
693 * by i40e_ptp_init to create clock initially, and prevent global resets from
694 * creating new clock devices.
beb0dff1 695 **/
fbd5e2df 696static long i40e_ptp_create_clock(struct i40e_pf *pf)
beb0dff1 697{
fbd5e2df
JK
698 /* no need to create a clock device if we already have one */
699 if (!IS_ERR_OR_NULL(pf->ptp_clock))
700 return 0;
beb0dff1 701
4ff2d854 702 strlcpy(pf->ptp_caps.name, i40e_driver_name,
7eb74ff8 703 sizeof(pf->ptp_caps.name) - 1);
beb0dff1
JK
704 pf->ptp_caps.owner = THIS_MODULE;
705 pf->ptp_caps.max_adj = 999999999;
706 pf->ptp_caps.n_ext_ts = 0;
707 pf->ptp_caps.pps = 0;
708 pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
709 pf->ptp_caps.adjtime = i40e_ptp_adjtime;
9a2d57a7 710 pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
6f7a9b8a 711 pf->ptp_caps.settime64 = i40e_ptp_settime;
69d1a70c 712 pf->ptp_caps.enable = i40e_ptp_feature_enable;
beb0dff1
JK
713
714 /* Attempt to register the clock before enabling the hardware. */
715 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
6995b36c 716 if (IS_ERR(pf->ptp_clock))
fbd5e2df 717 return PTR_ERR(pf->ptp_clock);
fbd5e2df
JK
718
719 /* clear the hwtstamp settings here during clock create, instead of
720 * during regular init, so that we can maintain settings across a
721 * reset or suspend.
722 */
723 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
724 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
725
bf4bf09b 726 /* Set the previous "reset" time to the current Kernel clock time */
c4d8d90c 727 ktime_get_real_ts64(&pf->ptp_prev_hw_time);
bf4bf09b
JK
728 pf->ptp_reset_start = ktime_get();
729
fbd5e2df
JK
730 return 0;
731}
732
bf4bf09b
JK
733/**
734 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
735 * @pf: Board private structure
736 *
737 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
738 * be called at the end of preparing to reset, just before hardware reset
739 * occurs, in order to preserve the PTP time as close as possible across
740 * resets.
741 */
742void i40e_ptp_save_hw_time(struct i40e_pf *pf)
743{
744 /* don't try to access the PTP clock if it's not enabled */
745 if (!(pf->flags & I40E_FLAG_PTP))
746 return;
747
748 i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
749 /* Get a monotonic starting time for this reset */
750 pf->ptp_reset_start = ktime_get();
751}
752
753/**
754 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
755 * @pf: Board private structure
756 *
757 * Restore the PTP hardware clock registers. We previously cached the PTP
758 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
759 * update this value based on the time delta since the time was saved, using
760 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
761 *
762 * This ensures that the hardware clock is restored to nearly what it should
763 * have been if a reset had not occurred.
764 */
765void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
766{
767 ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
768
769 /* Update the previous HW time with the ktime delta */
770 timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
771
772 /* Restore the hardware clock registers */
773 i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
774}
775
fbd5e2df
JK
776/**
777 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
778 * @pf: Board private structure
779 *
780 * This function sets device up for 1588 support. The first time it is run, it
781 * will create a PHC clock device. It does not create a clock device if one
782 * already exists. It also reconfigures the device after a reset.
bf4bf09b
JK
783 *
784 * The first time a clock is created, i40e_ptp_create_clock will set
785 * pf->ptp_prev_hw_time to the current system time. During resets, it is
786 * expected that this timespec will be set to the last known PTP clock time,
787 * in order to preserve the clock time as close as possible across a reset.
fbd5e2df
JK
788 **/
789void i40e_ptp_init(struct i40e_pf *pf)
790{
791 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
792 struct i40e_hw *hw = &pf->hw;
fe88bda9 793 u32 pf_id;
fbd5e2df
JK
794 long err;
795
fe88bda9
JK
796 /* Only one PF is assigned to control 1588 logic per port. Do not
797 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
798 */
799 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
800 I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
801 if (hw->pf_id != pf_id) {
802 pf->flags &= ~I40E_FLAG_PTP;
803 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
804 __func__,
805 netdev->name);
806 return;
807 }
808
19551262 809 mutex_init(&pf->tmreg_lock);
12490501 810 spin_lock_init(&pf->ptp_rx_lock);
fbd5e2df
JK
811
812 /* ensure we have a clock device */
813 err = i40e_ptp_create_clock(pf);
814 if (err) {
beb0dff1
JK
815 pf->ptp_clock = NULL;
816 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
817 __func__);
efee95f4 818 } else if (pf->ptp_clock) {
beb0dff1
JK
819 u32 regval;
820
6dec1017
SN
821 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
822 dev_info(&pf->pdev->dev, "PHC enabled\n");
beb0dff1
JK
823 pf->flags |= I40E_FLAG_PTP;
824
825 /* Ensure the clocks are running. */
826 regval = rd32(hw, I40E_PRTTSYN_CTL0);
827 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
828 wr32(hw, I40E_PRTTSYN_CTL0, regval);
829 regval = rd32(hw, I40E_PRTTSYN_CTL1);
830 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
831 wr32(hw, I40E_PRTTSYN_CTL1, regval);
832
833 /* Set the increment value per clock tick. */
834 i40e_ptp_set_increment(pf);
835
18946455
JK
836 /* reset timestamping mode */
837 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
beb0dff1 838
bf4bf09b
JK
839 /* Restore the clock time based on last known value */
840 i40e_ptp_restore_hw_time(pf);
beb0dff1
JK
841 }
842}
843
844/**
845 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
846 * @pf: Board private structure
847 *
848 * This function handles the cleanup work required from the initialization by
849 * clearing out the important information and unregistering the PHC.
850 **/
851void i40e_ptp_stop(struct i40e_pf *pf)
852{
853 pf->flags &= ~I40E_FLAG_PTP;
854 pf->ptp_tx = false;
855 pf->ptp_rx = false;
856
beb0dff1 857 if (pf->ptp_tx_skb) {
bdf27523
JK
858 struct sk_buff *skb = pf->ptp_tx_skb;
859
beb0dff1 860 pf->ptp_tx_skb = NULL;
0da36b97 861 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
bdf27523 862 dev_kfree_skb_any(skb);
beb0dff1
JK
863 }
864
865 if (pf->ptp_clock) {
866 ptp_clock_unregister(pf->ptp_clock);
867 pf->ptp_clock = NULL;
868 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
869 pf->vsi[pf->lan_vsi]->netdev->name);
870 }
871}