]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/intel/i40e/i40e_txrx.c
ipv6: sr: select DST_CACHE by default
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
CommitLineData
fd0a05ce
JB
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
fd0a05ce
JB
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
dc641b73
GR
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
fd0a05ce
JB
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
1c112a64 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
fd0a05ce 29#include "i40e.h"
206812b5 30#include "i40e_prototype.h"
fd0a05ce
JB
31
32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34{
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40}
41
eaefbd06 42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
5e02f283
AD
43/**
44 * i40e_fdir - Generate a Flow Director descriptor based on fdata
45 * @tx_ring: Tx ring to send buffer on
46 * @fdata: Flow director filter data
47 * @add: Indicate if we are adding a rule or deleting one
48 *
49 **/
50static void i40e_fdir(struct i40e_ring *tx_ring,
51 struct i40e_fdir_filter *fdata, bool add)
52{
53 struct i40e_filter_program_desc *fdir_desc;
54 struct i40e_pf *pf = tx_ring->vsi->back;
55 u32 flex_ptype, dtype_cmd;
56 u16 i;
57
58 /* grab the next descriptor */
59 i = tx_ring->next_to_use;
60 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
61
62 i++;
63 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
64
65 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
66 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
67
68 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
69 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
70
71 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
72 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
73
0e588de1
JK
74 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
75 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
76
5e02f283
AD
77 /* Use LAN VSI Id if not programmed by user */
78 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
79 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
80 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
81
82 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
83
84 dtype_cmd |= add ?
85 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
86 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
87 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
88 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
89
90 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
91 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
92
93 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
94 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
95
96 if (fdata->cnt_index) {
97 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
98 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
99 ((u32)fdata->cnt_index <<
100 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
101 }
102
103 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
104 fdir_desc->rsvd = cpu_to_le32(0);
105 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
106 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
107}
108
49d7d933 109#define I40E_FD_CLEAN_DELAY 10
fd0a05ce
JB
110/**
111 * i40e_program_fdir_filter - Program a Flow Director filter
17a73f6b
JG
112 * @fdir_data: Packet data that will be filter parameters
113 * @raw_packet: the pre-allocated packet buffer for FDir
b40c82e6 114 * @pf: The PF pointer
fd0a05ce
JB
115 * @add: True for add/update, False for remove
116 **/
1eb846ac
AD
117static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
118 u8 *raw_packet, struct i40e_pf *pf,
119 bool add)
fd0a05ce 120{
49d7d933 121 struct i40e_tx_buffer *tx_buf, *first;
fd0a05ce
JB
122 struct i40e_tx_desc *tx_desc;
123 struct i40e_ring *tx_ring;
124 struct i40e_vsi *vsi;
125 struct device *dev;
126 dma_addr_t dma;
127 u32 td_cmd = 0;
128 u16 i;
129
130 /* find existing FDIR VSI */
4b816446 131 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
fd0a05ce
JB
132 if (!vsi)
133 return -ENOENT;
134
9f65e15b 135 tx_ring = vsi->tx_rings[0];
fd0a05ce
JB
136 dev = tx_ring->dev;
137
49d7d933 138 /* we need two descriptors to add/del a filter and we can wait */
ed245406
AD
139 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
140 if (!i)
141 return -EAGAIN;
49d7d933 142 msleep_interruptible(1);
ed245406 143 }
49d7d933 144
17a73f6b
JG
145 dma = dma_map_single(dev, raw_packet,
146 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
fd0a05ce
JB
147 if (dma_mapping_error(dev, dma))
148 goto dma_fail;
149
150 /* grab the next descriptor */
fc4ac67b 151 i = tx_ring->next_to_use;
49d7d933 152 first = &tx_ring->tx_bi[i];
5e02f283 153 i40e_fdir(tx_ring, fdir_data, add);
fd0a05ce
JB
154
155 /* Now program a dummy descriptor */
fc4ac67b
AD
156 i = tx_ring->next_to_use;
157 tx_desc = I40E_TX_DESC(tx_ring, i);
298deef1 158 tx_buf = &tx_ring->tx_bi[i];
fc4ac67b 159
49d7d933
ASJ
160 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
161
162 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
fd0a05ce 163
298deef1 164 /* record length, and DMA address */
17a73f6b 165 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
298deef1
ASJ
166 dma_unmap_addr_set(tx_buf, dma, dma);
167
fd0a05ce 168 tx_desc->buffer_addr = cpu_to_le64(dma);
eaefbd06 169 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
fd0a05ce 170
49d7d933
ASJ
171 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
172 tx_buf->raw_buf = (void *)raw_packet;
173
fd0a05ce 174 tx_desc->cmd_type_offset_bsz =
17a73f6b 175 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
fd0a05ce 176
fd0a05ce 177 /* Force memory writes to complete before letting h/w
49d7d933 178 * know there are new descriptors to fetch.
fd0a05ce
JB
179 */
180 wmb();
181
fc4ac67b 182 /* Mark the data descriptor to be watched */
49d7d933 183 first->next_to_watch = tx_desc;
fc4ac67b 184
fd0a05ce
JB
185 writel(tx_ring->next_to_use, tx_ring->tail);
186 return 0;
187
188dma_fail:
189 return -1;
190}
191
17a73f6b
JG
192#define IP_HEADER_OFFSET 14
193#define I40E_UDPIP_DUMMY_PACKET_LEN 42
194/**
195 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
196 * @vsi: pointer to the targeted VSI
197 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
198 * @add: true adds a filter, false removes it
199 *
200 * Returns 0 if the filters were successfully added or removed
201 **/
202static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
203 struct i40e_fdir_filter *fd_data,
49d7d933 204 bool add)
17a73f6b
JG
205{
206 struct i40e_pf *pf = vsi->back;
207 struct udphdr *udp;
208 struct iphdr *ip;
49d7d933 209 u8 *raw_packet;
17a73f6b 210 int ret;
17a73f6b
JG
211 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
212 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
214
49d7d933
ASJ
215 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
216 if (!raw_packet)
217 return -ENOMEM;
17a73f6b
JG
218 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
219
220 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
221 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
222 + sizeof(struct iphdr));
223
8ce43dce 224 ip->daddr = fd_data->dst_ip;
17a73f6b 225 udp->dest = fd_data->dst_port;
8ce43dce 226 ip->saddr = fd_data->src_ip;
17a73f6b
JG
227 udp->source = fd_data->src_port;
228
0e588de1
JK
229 if (fd_data->flex_filter) {
230 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
231 __be16 pattern = fd_data->flex_word;
232 u16 off = fd_data->flex_offset;
233
234 *((__force __be16 *)(payload + off)) = pattern;
235 }
236
b2d36c03
KS
237 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
238 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
239 if (ret) {
240 dev_info(&pf->pdev->dev,
e99bdd39
CW
241 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
242 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
243 /* Free the packet buffer since it wasn't added to the ring */
244 kfree(raw_packet);
245 return -EOPNOTSUPP;
4205d379 246 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
247 if (add)
248 dev_info(&pf->pdev->dev,
249 "Filter OK for PCTYPE %d loc = %d\n",
250 fd_data->pctype, fd_data->fd_id);
251 else
252 dev_info(&pf->pdev->dev,
253 "Filter deleted for PCTYPE %d loc = %d\n",
254 fd_data->pctype, fd_data->fd_id);
17a73f6b 255 }
a42e7a36 256
097dbf52
JK
257 if (add)
258 pf->fd_udp4_filter_cnt++;
259 else
260 pf->fd_udp4_filter_cnt--;
261
e5187ee3 262 return 0;
17a73f6b
JG
263}
264
265#define I40E_TCPIP_DUMMY_PACKET_LEN 54
266/**
267 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
268 * @vsi: pointer to the targeted VSI
269 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
270 * @add: true adds a filter, false removes it
271 *
272 * Returns 0 if the filters were successfully added or removed
273 **/
274static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
275 struct i40e_fdir_filter *fd_data,
49d7d933 276 bool add)
17a73f6b
JG
277{
278 struct i40e_pf *pf = vsi->back;
279 struct tcphdr *tcp;
280 struct iphdr *ip;
49d7d933 281 u8 *raw_packet;
17a73f6b
JG
282 int ret;
283 /* Dummy packet */
284 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
285 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
286 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
287 0x0, 0x72, 0, 0, 0, 0};
288
49d7d933
ASJ
289 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
290 if (!raw_packet)
291 return -ENOMEM;
17a73f6b
JG
292 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
293
294 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
295 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
296 + sizeof(struct iphdr));
297
8ce43dce 298 ip->daddr = fd_data->dst_ip;
17a73f6b 299 tcp->dest = fd_data->dst_port;
8ce43dce 300 ip->saddr = fd_data->src_ip;
17a73f6b
JG
301 tcp->source = fd_data->src_port;
302
0e588de1
JK
303 if (fd_data->flex_filter) {
304 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
305 __be16 pattern = fd_data->flex_word;
306 u16 off = fd_data->flex_offset;
307
308 *((__force __be16 *)(payload + off)) = pattern;
309 }
310
b2d36c03 311 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
17a73f6b 312 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
17a73f6b
JG
313 if (ret) {
314 dev_info(&pf->pdev->dev,
e99bdd39
CW
315 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
316 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
317 /* Free the packet buffer since it wasn't added to the ring */
318 kfree(raw_packet);
319 return -EOPNOTSUPP;
4205d379 320 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
321 if (add)
322 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
323 fd_data->pctype, fd_data->fd_id);
324 else
325 dev_info(&pf->pdev->dev,
326 "Filter deleted for PCTYPE %d loc = %d\n",
327 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
328 }
329
377cc249 330 if (add) {
097dbf52 331 pf->fd_tcp4_filter_cnt++;
377cc249
JK
332 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
333 I40E_DEBUG_FD & pf->hw.debug_mask)
334 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
335 pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
336 } else {
097dbf52
JK
337 pf->fd_tcp4_filter_cnt--;
338 if (pf->fd_tcp4_filter_cnt == 0) {
377cc249
JK
339 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
340 I40E_DEBUG_FD & pf->hw.debug_mask)
341 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
342 pf->hw_disabled_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
343 }
344 }
345
e5187ee3 346 return 0;
17a73f6b
JG
347}
348
f223c875
JK
349#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
350/**
351 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
352 * a specific flow spec
353 * @vsi: pointer to the targeted VSI
354 * @fd_data: the flow director data required for the FDir descriptor
355 * @add: true adds a filter, false removes it
356 *
357 * Returns 0 if the filters were successfully added or removed
358 **/
359static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
360 struct i40e_fdir_filter *fd_data,
361 bool add)
362{
363 struct i40e_pf *pf = vsi->back;
364 struct sctphdr *sctp;
365 struct iphdr *ip;
366 u8 *raw_packet;
367 int ret;
368 /* Dummy packet */
369 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
370 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
371 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
372
373 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
374 if (!raw_packet)
375 return -ENOMEM;
376 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
377
378 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
379 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
380 + sizeof(struct iphdr));
381
382 ip->daddr = fd_data->dst_ip;
383 sctp->dest = fd_data->dst_port;
384 ip->saddr = fd_data->src_ip;
385 sctp->source = fd_data->src_port;
386
387 if (fd_data->flex_filter) {
388 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
389 __be16 pattern = fd_data->flex_word;
390 u16 off = fd_data->flex_offset;
391
392 *((__force __be16 *)(payload + off)) = pattern;
393 }
394
395 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
396 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
397 if (ret) {
398 dev_info(&pf->pdev->dev,
399 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
400 fd_data->pctype, fd_data->fd_id, ret);
401 /* Free the packet buffer since it wasn't added to the ring */
402 kfree(raw_packet);
403 return -EOPNOTSUPP;
404 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
405 if (add)
406 dev_info(&pf->pdev->dev,
407 "Filter OK for PCTYPE %d loc = %d\n",
408 fd_data->pctype, fd_data->fd_id);
409 else
410 dev_info(&pf->pdev->dev,
411 "Filter deleted for PCTYPE %d loc = %d\n",
412 fd_data->pctype, fd_data->fd_id);
413 }
414
415 if (add)
416 pf->fd_sctp4_filter_cnt++;
417 else
418 pf->fd_sctp4_filter_cnt--;
419
420 return 0;
421}
422
17a73f6b
JG
423#define I40E_IP_DUMMY_PACKET_LEN 34
424/**
425 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
426 * a specific flow spec
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
429 * @add: true adds a filter, false removes it
430 *
431 * Returns 0 if the filters were successfully added or removed
432 **/
433static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
434 struct i40e_fdir_filter *fd_data,
49d7d933 435 bool add)
17a73f6b
JG
436{
437 struct i40e_pf *pf = vsi->back;
438 struct iphdr *ip;
49d7d933 439 u8 *raw_packet;
17a73f6b
JG
440 int ret;
441 int i;
442 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
443 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
444 0, 0, 0, 0};
445
17a73f6b
JG
446 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
447 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
49d7d933
ASJ
448 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
449 if (!raw_packet)
450 return -ENOMEM;
451 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
452 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
453
8ce43dce
JK
454 ip->saddr = fd_data->src_ip;
455 ip->daddr = fd_data->dst_ip;
49d7d933
ASJ
456 ip->protocol = 0;
457
0e588de1
JK
458 if (fd_data->flex_filter) {
459 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
460 __be16 pattern = fd_data->flex_word;
461 u16 off = fd_data->flex_offset;
462
463 *((__force __be16 *)(payload + off)) = pattern;
464 }
465
17a73f6b
JG
466 fd_data->pctype = i;
467 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
17a73f6b
JG
468 if (ret) {
469 dev_info(&pf->pdev->dev,
e99bdd39
CW
470 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
471 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
472 /* The packet buffer wasn't added to the ring so we
473 * need to free it now.
474 */
475 kfree(raw_packet);
476 return -EOPNOTSUPP;
4205d379 477 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
478 if (add)
479 dev_info(&pf->pdev->dev,
480 "Filter OK for PCTYPE %d loc = %d\n",
481 fd_data->pctype, fd_data->fd_id);
482 else
483 dev_info(&pf->pdev->dev,
484 "Filter deleted for PCTYPE %d loc = %d\n",
485 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
486 }
487 }
488
097dbf52
JK
489 if (add)
490 pf->fd_ip4_filter_cnt++;
491 else
492 pf->fd_ip4_filter_cnt--;
493
e5187ee3 494 return 0;
17a73f6b
JG
495}
496
497/**
498 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
499 * @vsi: pointer to the targeted VSI
500 * @cmd: command to get or set RX flow classification rules
501 * @add: true adds a filter, false removes it
502 *
503 **/
504int i40e_add_del_fdir(struct i40e_vsi *vsi,
505 struct i40e_fdir_filter *input, bool add)
506{
507 struct i40e_pf *pf = vsi->back;
17a73f6b
JG
508 int ret;
509
17a73f6b
JG
510 switch (input->flow_type & ~FLOW_EXT) {
511 case TCP_V4_FLOW:
49d7d933 512 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
513 break;
514 case UDP_V4_FLOW:
49d7d933 515 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 516 break;
f223c875
JK
517 case SCTP_V4_FLOW:
518 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
519 break;
17a73f6b
JG
520 case IP_USER_FLOW:
521 switch (input->ip4_proto) {
522 case IPPROTO_TCP:
49d7d933 523 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
524 break;
525 case IPPROTO_UDP:
49d7d933 526 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 527 break;
f223c875
JK
528 case IPPROTO_SCTP:
529 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
530 break;
e1da71ca 531 case IPPROTO_IP:
49d7d933 532 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
17a73f6b 533 break;
e1da71ca
AD
534 default:
535 /* We cannot support masking based on protocol */
536 goto unsupported_flow;
17a73f6b
JG
537 }
538 break;
539 default:
e1da71ca 540unsupported_flow:
c5ffe7e1 541 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
17a73f6b
JG
542 input->flow_type);
543 ret = -EINVAL;
544 }
545
a158aeaf
JK
546 /* The buffer allocated here will be normally be freed by
547 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
548 * completion. In the event of an error adding the buffer to the FDIR
549 * ring, it will immediately be freed. It may also be freed by
550 * i40e_clean_tx_ring() when closing the VSI.
551 */
17a73f6b
JG
552 return ret;
553}
554
fd0a05ce
JB
555/**
556 * i40e_fd_handle_status - check the Programming Status for FD
557 * @rx_ring: the Rx ring for this descriptor
55a5e60b 558 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
fd0a05ce
JB
559 * @prog_id: the id originally used for programming
560 *
561 * This is used to verify if the FD programming or invalidation
562 * requested by SW to the HW is successful or not and take actions accordingly.
563 **/
55a5e60b
ASJ
564static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
565 union i40e_rx_desc *rx_desc, u8 prog_id)
fd0a05ce 566{
55a5e60b
ASJ
567 struct i40e_pf *pf = rx_ring->vsi->back;
568 struct pci_dev *pdev = pf->pdev;
569 u32 fcnt_prog, fcnt_avail;
fd0a05ce 570 u32 error;
55a5e60b 571 u64 qw;
fd0a05ce 572
55a5e60b 573 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
fd0a05ce
JB
574 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
575 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
576
41a1d04b 577 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
3487b6c3 578 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
f7233c54
ASJ
579 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
580 (I40E_DEBUG_FD & pf->hw.debug_mask))
581 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
3487b6c3 582 pf->fd_inv);
55a5e60b 583
04294e38
ASJ
584 /* Check if the programming error is for ATR.
585 * If so, auto disable ATR and set a state for
586 * flush in progress. Next time we come here if flush is in
587 * progress do nothing, once flush is complete the state will
588 * be cleared.
589 */
590 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
591 return;
592
1e1be8f6
ASJ
593 pf->fd_add_err++;
594 /* store the current atr filter count */
595 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
596
04294e38 597 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
b77ac975
HR
598 (pf->hw_disabled_flags & I40E_FLAG_FD_SB_ENABLED)) {
599 pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
04294e38
ASJ
600 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
601 }
602
55a5e60b 603 /* filter programming failed most likely due to table full */
04294e38 604 fcnt_prog = i40e_get_global_fd_count(pf);
12957388 605 fcnt_avail = pf->fdir_pf_filter_count;
55a5e60b
ASJ
606 /* If ATR is running fcnt_prog can quickly change,
607 * if we are very close to full, it makes sense to disable
608 * FD ATR/SB and then re-enable it when there is room.
609 */
610 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
1e1be8f6 611 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
b77ac975 612 !(pf->hw_disabled_flags &
b814ba65 613 I40E_FLAG_FD_SB_ENABLED)) {
2e4875e3
ASJ
614 if (I40E_DEBUG_FD & pf->hw.debug_mask)
615 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
b77ac975 616 pf->hw_disabled_flags |=
55a5e60b 617 I40E_FLAG_FD_SB_ENABLED;
55a5e60b 618 }
55a5e60b 619 }
41a1d04b 620 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
13c2884f 621 if (I40E_DEBUG_FD & pf->hw.debug_mask)
e99bdd39 622 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
13c2884f 623 rx_desc->wb.qword0.hi_dword.fd_id);
55a5e60b 624 }
fd0a05ce
JB
625}
626
627/**
a5e9c572 628 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
fd0a05ce
JB
629 * @ring: the ring that owns the buffer
630 * @tx_buffer: the buffer to free
631 **/
a5e9c572
AD
632static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
633 struct i40e_tx_buffer *tx_buffer)
fd0a05ce 634{
a5e9c572 635 if (tx_buffer->skb) {
64bfd68e
AD
636 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
637 kfree(tx_buffer->raw_buf);
638 else
639 dev_kfree_skb_any(tx_buffer->skb);
a5e9c572 640 if (dma_unmap_len(tx_buffer, len))
fd0a05ce 641 dma_unmap_single(ring->dev,
35a1e2ad
AD
642 dma_unmap_addr(tx_buffer, dma),
643 dma_unmap_len(tx_buffer, len),
fd0a05ce 644 DMA_TO_DEVICE);
a5e9c572
AD
645 } else if (dma_unmap_len(tx_buffer, len)) {
646 dma_unmap_page(ring->dev,
647 dma_unmap_addr(tx_buffer, dma),
648 dma_unmap_len(tx_buffer, len),
649 DMA_TO_DEVICE);
fd0a05ce 650 }
a42e7a36 651
a5e9c572
AD
652 tx_buffer->next_to_watch = NULL;
653 tx_buffer->skb = NULL;
35a1e2ad 654 dma_unmap_len_set(tx_buffer, len, 0);
a5e9c572 655 /* tx_buffer must be completely set up in the transmit path */
fd0a05ce
JB
656}
657
658/**
659 * i40e_clean_tx_ring - Free any empty Tx buffers
660 * @tx_ring: ring to be cleaned
661 **/
662void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
663{
fd0a05ce
JB
664 unsigned long bi_size;
665 u16 i;
666
667 /* ring already cleared, nothing to do */
668 if (!tx_ring->tx_bi)
669 return;
670
671 /* Free all the Tx ring sk_buffs */
a5e9c572
AD
672 for (i = 0; i < tx_ring->count; i++)
673 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
fd0a05ce
JB
674
675 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
676 memset(tx_ring->tx_bi, 0, bi_size);
677
678 /* Zero out the descriptor ring */
679 memset(tx_ring->desc, 0, tx_ring->size);
680
681 tx_ring->next_to_use = 0;
682 tx_ring->next_to_clean = 0;
7070ce0a
AD
683
684 if (!tx_ring->netdev)
685 return;
686
687 /* cleanup Tx queue statistics */
e486bdfd 688 netdev_tx_reset_queue(txring_txq(tx_ring));
fd0a05ce
JB
689}
690
691/**
692 * i40e_free_tx_resources - Free Tx resources per queue
693 * @tx_ring: Tx descriptor ring for a specific queue
694 *
695 * Free all transmit software resources
696 **/
697void i40e_free_tx_resources(struct i40e_ring *tx_ring)
698{
699 i40e_clean_tx_ring(tx_ring);
700 kfree(tx_ring->tx_bi);
701 tx_ring->tx_bi = NULL;
702
703 if (tx_ring->desc) {
704 dma_free_coherent(tx_ring->dev, tx_ring->size,
705 tx_ring->desc, tx_ring->dma);
706 tx_ring->desc = NULL;
707 }
708}
709
710/**
711 * i40e_get_tx_pending - how many tx descriptors not processed
712 * @tx_ring: the ring of descriptors
dd353109 713 * @in_sw: is tx_pending being checked in SW or HW
fd0a05ce
JB
714 *
715 * Since there is no access to the ring head register
716 * in XL710, we need to use our local copies
717 **/
dd353109 718u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
fd0a05ce 719{
a68de58d
JB
720 u32 head, tail;
721
dd353109
ASJ
722 if (!in_sw)
723 head = i40e_get_head(ring);
724 else
725 head = ring->next_to_clean;
a68de58d
JB
726 tail = readl(ring->tail);
727
728 if (head != tail)
729 return (head < tail) ?
730 tail - head : (tail + ring->count - head);
731
732 return 0;
fd0a05ce
JB
733}
734
1dc8b538 735#define WB_STRIDE 4
d91649f5 736
fd0a05ce
JB
737/**
738 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
739 * @vsi: the VSI we care about
740 * @tx_ring: Tx ring to clean
741 * @napi_budget: Used to determine if we are in netpoll
fd0a05ce
JB
742 *
743 * Returns true if there's any budget left (e.g. the clean is finished)
744 **/
a619afe8
AD
745static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
746 struct i40e_ring *tx_ring, int napi_budget)
fd0a05ce
JB
747{
748 u16 i = tx_ring->next_to_clean;
749 struct i40e_tx_buffer *tx_buf;
1943d8ba 750 struct i40e_tx_desc *tx_head;
fd0a05ce 751 struct i40e_tx_desc *tx_desc;
a619afe8
AD
752 unsigned int total_bytes = 0, total_packets = 0;
753 unsigned int budget = vsi->work_limit;
fd0a05ce
JB
754
755 tx_buf = &tx_ring->tx_bi[i];
756 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572 757 i -= tx_ring->count;
fd0a05ce 758
1943d8ba
JB
759 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
760
a5e9c572
AD
761 do {
762 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
fd0a05ce
JB
763
764 /* if next_to_watch is not set then there is no work pending */
765 if (!eop_desc)
766 break;
767
a5e9c572
AD
768 /* prevent any other reads prior to eop_desc */
769 read_barrier_depends();
770
1943d8ba
JB
771 /* we have caught up to head, no work left to do */
772 if (tx_head == tx_desc)
fd0a05ce
JB
773 break;
774
c304fdac 775 /* clear next_to_watch to prevent false hangs */
fd0a05ce 776 tx_buf->next_to_watch = NULL;
fd0a05ce 777
a5e9c572
AD
778 /* update the statistics for this packet */
779 total_bytes += tx_buf->bytecount;
780 total_packets += tx_buf->gso_segs;
fd0a05ce 781
a5e9c572 782 /* free the skb */
a619afe8 783 napi_consume_skb(tx_buf->skb, napi_budget);
fd0a05ce 784
a5e9c572
AD
785 /* unmap skb header data */
786 dma_unmap_single(tx_ring->dev,
787 dma_unmap_addr(tx_buf, dma),
788 dma_unmap_len(tx_buf, len),
789 DMA_TO_DEVICE);
fd0a05ce 790
a5e9c572
AD
791 /* clear tx_buffer data */
792 tx_buf->skb = NULL;
793 dma_unmap_len_set(tx_buf, len, 0);
fd0a05ce 794
a5e9c572
AD
795 /* unmap remaining buffers */
796 while (tx_desc != eop_desc) {
fd0a05ce
JB
797
798 tx_buf++;
799 tx_desc++;
800 i++;
a5e9c572
AD
801 if (unlikely(!i)) {
802 i -= tx_ring->count;
fd0a05ce
JB
803 tx_buf = tx_ring->tx_bi;
804 tx_desc = I40E_TX_DESC(tx_ring, 0);
805 }
fd0a05ce 806
a5e9c572
AD
807 /* unmap any remaining paged data */
808 if (dma_unmap_len(tx_buf, len)) {
809 dma_unmap_page(tx_ring->dev,
810 dma_unmap_addr(tx_buf, dma),
811 dma_unmap_len(tx_buf, len),
812 DMA_TO_DEVICE);
813 dma_unmap_len_set(tx_buf, len, 0);
814 }
815 }
816
817 /* move us one more past the eop_desc for start of next pkt */
818 tx_buf++;
819 tx_desc++;
820 i++;
821 if (unlikely(!i)) {
822 i -= tx_ring->count;
823 tx_buf = tx_ring->tx_bi;
824 tx_desc = I40E_TX_DESC(tx_ring, 0);
825 }
826
016890b9
JB
827 prefetch(tx_desc);
828
a5e9c572
AD
829 /* update budget accounting */
830 budget--;
831 } while (likely(budget));
832
833 i += tx_ring->count;
fd0a05ce 834 tx_ring->next_to_clean = i;
980e9b11 835 u64_stats_update_begin(&tx_ring->syncp);
a114d0a6
AD
836 tx_ring->stats.bytes += total_bytes;
837 tx_ring->stats.packets += total_packets;
980e9b11 838 u64_stats_update_end(&tx_ring->syncp);
fd0a05ce
JB
839 tx_ring->q_vector->tx.total_bytes += total_bytes;
840 tx_ring->q_vector->tx.total_packets += total_packets;
a5e9c572 841
58044743 842 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
58044743
AS
843 /* check to see if there are < 4 descriptors
844 * waiting to be written back, then kick the hardware to force
845 * them to be written back in case we stay in NAPI.
846 * In this mode on X722 we do not enable Interrupt.
847 */
88dc9e6f 848 unsigned int j = i40e_get_tx_pending(tx_ring, false);
58044743
AS
849
850 if (budget &&
1dc8b538 851 ((j / WB_STRIDE) == 0) && (j > 0) &&
a619afe8 852 !test_bit(__I40E_DOWN, &vsi->state) &&
58044743
AS
853 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
854 tx_ring->arm_wb = true;
855 }
d91649f5 856
e486bdfd
AD
857 /* notify netdev of completed buffers */
858 netdev_tx_completed_queue(txring_txq(tx_ring),
7070ce0a
AD
859 total_packets, total_bytes);
860
fd0a05ce
JB
861#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
862 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
863 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
864 /* Make sure that anybody stopping the queue after this
865 * sees the new next_to_clean.
866 */
867 smp_mb();
868 if (__netif_subqueue_stopped(tx_ring->netdev,
869 tx_ring->queue_index) &&
a619afe8 870 !test_bit(__I40E_DOWN, &vsi->state)) {
fd0a05ce
JB
871 netif_wake_subqueue(tx_ring->netdev,
872 tx_ring->queue_index);
873 ++tx_ring->tx_stats.restart_queue;
874 }
875 }
876
d91649f5
JB
877 return !!budget;
878}
879
880/**
ecc6a239 881 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
d91649f5 882 * @vsi: the VSI we care about
ecc6a239 883 * @q_vector: the vector on which to enable writeback
d91649f5
JB
884 *
885 **/
ecc6a239
ASJ
886static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
887 struct i40e_q_vector *q_vector)
d91649f5 888{
8e0764b4 889 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 890 u32 val;
8e0764b4 891
ecc6a239
ASJ
892 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
893 return;
8e0764b4 894
ecc6a239
ASJ
895 if (q_vector->arm_wb_state)
896 return;
8e0764b4 897
ecc6a239
ASJ
898 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
899 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
900 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
a3d772a3 901
ecc6a239
ASJ
902 wr32(&vsi->back->hw,
903 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
904 val);
905 } else {
906 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
907 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
a3d772a3 908
ecc6a239
ASJ
909 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
910 }
911 q_vector->arm_wb_state = true;
912}
913
914/**
915 * i40e_force_wb - Issue SW Interrupt so HW does a wb
916 * @vsi: the VSI we care about
917 * @q_vector: the vector on which to force writeback
918 *
919 **/
920void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
921{
922 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
8e0764b4
ASJ
923 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
924 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
925 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
926 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
927 /* allow 00 to be written to the index */
928
929 wr32(&vsi->back->hw,
930 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
931 vsi->base_vector - 1), val);
932 } else {
933 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
934 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
935 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
936 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
937 /* allow 00 to be written to the index */
938
939 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
940 }
fd0a05ce
JB
941}
942
943/**
944 * i40e_set_new_dynamic_itr - Find new ITR level
945 * @rc: structure containing ring performance data
946 *
8f5e39ce
JB
947 * Returns true if ITR changed, false if not
948 *
fd0a05ce
JB
949 * Stores a new ITR value based on packets and byte counts during
950 * the last interrupt. The advantage of per interrupt computation
951 * is faster updates and more accurate ITR for the current traffic
952 * pattern. Constants in this function were computed based on
953 * theoretical maximum wire speed and thresholds were set based on
954 * testing data as well as attempting to minimize response time
955 * while increasing bulk throughput.
956 **/
8f5e39ce 957static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
fd0a05ce
JB
958{
959 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 960 struct i40e_q_vector *qv = rc->ring->q_vector;
fd0a05ce
JB
961 u32 new_itr = rc->itr;
962 int bytes_per_int;
51cc6d9f 963 int usecs;
fd0a05ce
JB
964
965 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 966 return false;
fd0a05ce
JB
967
968 /* simple throttlerate management
c56625d5 969 * 0-10MB/s lowest (50000 ints/s)
fd0a05ce 970 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
971 * 20-1249MB/s bulk (18000 ints/s)
972 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
973 *
974 * The math works out because the divisor is in 10^(-6) which
975 * turns the bytes/us input value into MB/s values, but
976 * make sure to use usecs, as the register values written
ee2319cf
JB
977 * are in 2 usec increments in the ITR registers, and make sure
978 * to use the smoothed values that the countdown timer gives us.
fd0a05ce 979 */
ee2319cf 980 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 981 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 982
de32e3ef 983 switch (new_latency_range) {
fd0a05ce
JB
984 case I40E_LOWEST_LATENCY:
985 if (bytes_per_int > 10)
986 new_latency_range = I40E_LOW_LATENCY;
987 break;
988 case I40E_LOW_LATENCY:
989 if (bytes_per_int > 20)
990 new_latency_range = I40E_BULK_LATENCY;
991 else if (bytes_per_int <= 10)
992 new_latency_range = I40E_LOWEST_LATENCY;
993 break;
994 case I40E_BULK_LATENCY:
c56625d5 995 case I40E_ULTRA_LATENCY:
de32e3ef
CW
996 default:
997 if (bytes_per_int <= 20)
998 new_latency_range = I40E_LOW_LATENCY;
fd0a05ce
JB
999 break;
1000 }
c56625d5
JB
1001
1002 /* this is to adjust RX more aggressively when streaming small
1003 * packets. The value of 40000 was picked as it is just beyond
1004 * what the hardware can receive per second if in low latency
1005 * mode.
1006 */
1007#define RX_ULTRA_PACKET_RATE 40000
1008
1009 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
1010 (&qv->rx == rc))
1011 new_latency_range = I40E_ULTRA_LATENCY;
1012
de32e3ef 1013 rc->latency_range = new_latency_range;
fd0a05ce
JB
1014
1015 switch (new_latency_range) {
1016 case I40E_LOWEST_LATENCY:
c56625d5 1017 new_itr = I40E_ITR_50K;
fd0a05ce
JB
1018 break;
1019 case I40E_LOW_LATENCY:
1020 new_itr = I40E_ITR_20K;
1021 break;
1022 case I40E_BULK_LATENCY:
c56625d5
JB
1023 new_itr = I40E_ITR_18K;
1024 break;
1025 case I40E_ULTRA_LATENCY:
fd0a05ce
JB
1026 new_itr = I40E_ITR_8K;
1027 break;
1028 default:
1029 break;
1030 }
1031
fd0a05ce
JB
1032 rc->total_bytes = 0;
1033 rc->total_packets = 0;
8f5e39ce
JB
1034
1035 if (new_itr != rc->itr) {
1036 rc->itr = new_itr;
1037 return true;
1038 }
1039
1040 return false;
fd0a05ce
JB
1041}
1042
fd0a05ce
JB
1043/**
1044 * i40e_clean_programming_status - clean the programming status descriptor
1045 * @rx_ring: the rx ring that has this descriptor
1046 * @rx_desc: the rx descriptor written back by HW
1047 *
1048 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1049 * status being successful or not and take actions accordingly. FCoE should
1050 * handle its context/filter programming/invalidation status and take actions.
1051 *
1052 **/
1053static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1054 union i40e_rx_desc *rx_desc)
1055{
1056 u64 qw;
1057 u8 id;
1058
1059 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1060 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1061 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1062
1063 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
55a5e60b 1064 i40e_fd_handle_status(rx_ring, rx_desc, id);
38e00438
VD
1065#ifdef I40E_FCOE
1066 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
1067 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
1068 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
1069#endif
fd0a05ce
JB
1070}
1071
1072/**
1073 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1074 * @tx_ring: the tx ring to set up
1075 *
1076 * Return 0 on success, negative on error
1077 **/
1078int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1079{
1080 struct device *dev = tx_ring->dev;
1081 int bi_size;
1082
1083 if (!dev)
1084 return -ENOMEM;
1085
e908f815
JB
1086 /* warn if we are about to overwrite the pointer */
1087 WARN_ON(tx_ring->tx_bi);
fd0a05ce
JB
1088 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1089 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1090 if (!tx_ring->tx_bi)
1091 goto err;
1092
1093 /* round up to nearest 4K */
1094 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
1095 /* add u32 for head writeback, align after this takes care of
1096 * guaranteeing this is at least one cache line in size
1097 */
1098 tx_ring->size += sizeof(u32);
fd0a05ce
JB
1099 tx_ring->size = ALIGN(tx_ring->size, 4096);
1100 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1101 &tx_ring->dma, GFP_KERNEL);
1102 if (!tx_ring->desc) {
1103 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1104 tx_ring->size);
1105 goto err;
1106 }
1107
1108 tx_ring->next_to_use = 0;
1109 tx_ring->next_to_clean = 0;
1110 return 0;
1111
1112err:
1113 kfree(tx_ring->tx_bi);
1114 tx_ring->tx_bi = NULL;
1115 return -ENOMEM;
1116}
1117
1118/**
1119 * i40e_clean_rx_ring - Free Rx buffers
1120 * @rx_ring: ring to be cleaned
1121 **/
1122void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1123{
fd0a05ce
JB
1124 unsigned long bi_size;
1125 u16 i;
1126
1127 /* ring already cleared, nothing to do */
1128 if (!rx_ring->rx_bi)
1129 return;
1130
e72e5659
SP
1131 if (rx_ring->skb) {
1132 dev_kfree_skb(rx_ring->skb);
1133 rx_ring->skb = NULL;
1134 }
1135
fd0a05ce
JB
1136 /* Free all the Rx ring sk_buffs */
1137 for (i = 0; i < rx_ring->count; i++) {
1a557afc
JB
1138 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1139
1a557afc
JB
1140 if (!rx_bi->page)
1141 continue;
1142
59605bc0
AD
1143 /* Invalidate cache lines that may have been written to by
1144 * device so that we avoid corrupting memory.
1145 */
1146 dma_sync_single_range_for_cpu(rx_ring->dev,
1147 rx_bi->dma,
1148 rx_bi->page_offset,
1149 I40E_RXBUFFER_2048,
1150 DMA_FROM_DEVICE);
1151
1152 /* free resources associated with mapping */
1153 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1154 PAGE_SIZE,
1155 DMA_FROM_DEVICE,
1156 I40E_RX_DMA_ATTR);
1a557afc
JB
1157 __free_pages(rx_bi->page, 0);
1158
1159 rx_bi->page = NULL;
1160 rx_bi->page_offset = 0;
fd0a05ce
JB
1161 }
1162
1163 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1164 memset(rx_ring->rx_bi, 0, bi_size);
1165
1166 /* Zero out the descriptor ring */
1167 memset(rx_ring->desc, 0, rx_ring->size);
1168
1a557afc 1169 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1170 rx_ring->next_to_clean = 0;
1171 rx_ring->next_to_use = 0;
1172}
1173
1174/**
1175 * i40e_free_rx_resources - Free Rx resources
1176 * @rx_ring: ring to clean the resources from
1177 *
1178 * Free all receive software resources
1179 **/
1180void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1181{
1182 i40e_clean_rx_ring(rx_ring);
1183 kfree(rx_ring->rx_bi);
1184 rx_ring->rx_bi = NULL;
1185
1186 if (rx_ring->desc) {
1187 dma_free_coherent(rx_ring->dev, rx_ring->size,
1188 rx_ring->desc, rx_ring->dma);
1189 rx_ring->desc = NULL;
1190 }
1191}
1192
1193/**
1194 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1195 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1196 *
1197 * Returns 0 on success, negative on failure
1198 **/
1199int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1200{
1201 struct device *dev = rx_ring->dev;
1202 int bi_size;
1203
e908f815
JB
1204 /* warn if we are about to overwrite the pointer */
1205 WARN_ON(rx_ring->rx_bi);
fd0a05ce
JB
1206 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1207 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1208 if (!rx_ring->rx_bi)
1209 goto err;
1210
f217d6ca 1211 u64_stats_init(&rx_ring->syncp);
638702bd 1212
fd0a05ce 1213 /* Round up to nearest 4K */
1a557afc 1214 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
fd0a05ce
JB
1215 rx_ring->size = ALIGN(rx_ring->size, 4096);
1216 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1217 &rx_ring->dma, GFP_KERNEL);
1218
1219 if (!rx_ring->desc) {
1220 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1221 rx_ring->size);
1222 goto err;
1223 }
1224
1a557afc 1225 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1226 rx_ring->next_to_clean = 0;
1227 rx_ring->next_to_use = 0;
1228
1229 return 0;
1230err:
1231 kfree(rx_ring->rx_bi);
1232 rx_ring->rx_bi = NULL;
1233 return -ENOMEM;
1234}
1235
1236/**
1237 * i40e_release_rx_desc - Store the new tail and head values
1238 * @rx_ring: ring to bump
1239 * @val: new head index
1240 **/
1241static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1242{
1243 rx_ring->next_to_use = val;
1a557afc
JB
1244
1245 /* update next to alloc since we have filled the ring */
1246 rx_ring->next_to_alloc = val;
1247
fd0a05ce
JB
1248 /* Force memory writes to complete before letting h/w
1249 * know there are new descriptors to fetch. (Only
1250 * applicable for weak-ordered memory model archs,
1251 * such as IA-64).
1252 */
1253 wmb();
1254 writel(val, rx_ring->tail);
1255}
1256
1257/**
1a557afc
JB
1258 * i40e_alloc_mapped_page - recycle or make a new page
1259 * @rx_ring: ring to use
1260 * @bi: rx_buffer struct to modify
c2e245ab 1261 *
1a557afc
JB
1262 * Returns true if the page was successfully allocated or
1263 * reused.
fd0a05ce 1264 **/
1a557afc
JB
1265static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1266 struct i40e_rx_buffer *bi)
a132af24 1267{
1a557afc
JB
1268 struct page *page = bi->page;
1269 dma_addr_t dma;
a132af24 1270
1a557afc
JB
1271 /* since we are recycling buffers we should seldom need to alloc */
1272 if (likely(page)) {
1273 rx_ring->rx_stats.page_reuse_count++;
1274 return true;
1275 }
a132af24 1276
1a557afc
JB
1277 /* alloc new page for storage */
1278 page = dev_alloc_page();
1279 if (unlikely(!page)) {
1280 rx_ring->rx_stats.alloc_page_failed++;
1281 return false;
1282 }
a132af24 1283
1a557afc 1284 /* map page for use */
59605bc0
AD
1285 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1286 PAGE_SIZE,
1287 DMA_FROM_DEVICE,
1288 I40E_RX_DMA_ATTR);
f16704e5 1289
1a557afc
JB
1290 /* if mapping failed free memory back to system since
1291 * there isn't much point in holding memory we can't use
f16704e5 1292 */
1a557afc
JB
1293 if (dma_mapping_error(rx_ring->dev, dma)) {
1294 __free_pages(page, 0);
1295 rx_ring->rx_stats.alloc_page_failed++;
1296 return false;
a132af24
MW
1297 }
1298
1a557afc
JB
1299 bi->dma = dma;
1300 bi->page = page;
1301 bi->page_offset = 0;
c2e245ab 1302
1a557afc
JB
1303 return true;
1304}
c2e245ab 1305
1a557afc
JB
1306/**
1307 * i40e_receive_skb - Send a completed packet up the stack
1308 * @rx_ring: rx ring in play
1309 * @skb: packet to send up
1310 * @vlan_tag: vlan tag for packet
1311 **/
1312static void i40e_receive_skb(struct i40e_ring *rx_ring,
1313 struct sk_buff *skb, u16 vlan_tag)
1314{
1315 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 1316
1a557afc
JB
1317 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1318 (vlan_tag & VLAN_VID_MASK))
1319 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1320
1321 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
1322}
1323
1324/**
1a557afc 1325 * i40e_alloc_rx_buffers - Replace used receive buffers
a132af24
MW
1326 * @rx_ring: ring to place buffers on
1327 * @cleaned_count: number of buffers to replace
c2e245ab 1328 *
1a557afc 1329 * Returns false if all allocations were successful, true if any fail
a132af24 1330 **/
1a557afc 1331bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
fd0a05ce 1332{
1a557afc 1333 u16 ntu = rx_ring->next_to_use;
fd0a05ce
JB
1334 union i40e_rx_desc *rx_desc;
1335 struct i40e_rx_buffer *bi;
fd0a05ce
JB
1336
1337 /* do nothing if no valid netdev defined */
1338 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 1339 return false;
fd0a05ce 1340
1a557afc
JB
1341 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1342 bi = &rx_ring->rx_bi[ntu];
fd0a05ce 1343
1a557afc
JB
1344 do {
1345 if (!i40e_alloc_mapped_page(rx_ring, bi))
1346 goto no_buffers;
fd0a05ce 1347
59605bc0
AD
1348 /* sync the buffer for use by the device */
1349 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1350 bi->page_offset,
1351 I40E_RXBUFFER_2048,
1352 DMA_FROM_DEVICE);
1353
1a557afc
JB
1354 /* Refresh the desc even if buffer_addrs didn't change
1355 * because each write-back erases this info.
1356 */
1357 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
fd0a05ce 1358
1a557afc
JB
1359 rx_desc++;
1360 bi++;
1361 ntu++;
1362 if (unlikely(ntu == rx_ring->count)) {
1363 rx_desc = I40E_RX_DESC(rx_ring, 0);
1364 bi = rx_ring->rx_bi;
1365 ntu = 0;
1366 }
1367
1368 /* clear the status bits for the next_to_use descriptor */
1369 rx_desc->wb.qword1.status_error_len = 0;
1370
1371 cleaned_count--;
1372 } while (cleaned_count);
1373
1374 if (rx_ring->next_to_use != ntu)
1375 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1376
1377 return false;
1378
fd0a05ce 1379no_buffers:
1a557afc
JB
1380 if (rx_ring->next_to_use != ntu)
1381 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1382
1383 /* make sure to come back via polling to try again after
1384 * allocation failure
1385 */
1386 return true;
fd0a05ce
JB
1387}
1388
fd0a05ce
JB
1389/**
1390 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1391 * @vsi: the VSI we care about
1392 * @skb: skb currently being received and modified
1a557afc
JB
1393 * @rx_desc: the receive descriptor
1394 *
1395 * skb->protocol must be set before this function is called
fd0a05ce
JB
1396 **/
1397static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1398 struct sk_buff *skb,
1a557afc 1399 union i40e_rx_desc *rx_desc)
fd0a05ce 1400{
1a557afc 1401 struct i40e_rx_ptype_decoded decoded;
1a557afc 1402 u32 rx_error, rx_status;
858296c8 1403 bool ipv4, ipv6;
1a557afc
JB
1404 u8 ptype;
1405 u64 qword;
1406
1407 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1408 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1409 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1410 I40E_RXD_QW1_ERROR_SHIFT;
1411 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1412 I40E_RXD_QW1_STATUS_SHIFT;
1413 decoded = decode_rx_desc_ptype(ptype);
8144f0f7 1414
fd0a05ce
JB
1415 skb->ip_summed = CHECKSUM_NONE;
1416
1a557afc
JB
1417 skb_checksum_none_assert(skb);
1418
fd0a05ce 1419 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
1420 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1421 return;
1422
1423 /* did the hardware decode the packet and checksum? */
41a1d04b 1424 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
1425 return;
1426
1427 /* both known and outer_ip must be set for the below code to work */
1428 if (!(decoded.known && decoded.outer_ip))
fd0a05ce
JB
1429 return;
1430
fad57330
AD
1431 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1432 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1433 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1434 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
1435
1436 if (ipv4 &&
41a1d04b
JB
1437 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1438 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
1439 goto checksum_fail;
1440
ddf1d0d7 1441 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 1442 if (ipv6 &&
41a1d04b 1443 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 1444 /* don't increment checksum err here, non-fatal err */
8ee75a8e
SN
1445 return;
1446
8a3c91cc 1447 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 1448 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
1449 goto checksum_fail;
1450
1451 /* handle packets that were not able to be checksummed due
1452 * to arrival speed, in this case the stack can compute
1453 * the csum.
1454 */
41a1d04b 1455 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
fd0a05ce 1456 return;
fd0a05ce 1457
858296c8
AD
1458 /* If there is an outer header present that might contain a checksum
1459 * we need to bump the checksum level by 1 to reflect the fact that
1460 * we are indicating we validated the inner checksum.
8a3c91cc 1461 */
858296c8
AD
1462 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1463 skb->csum_level = 1;
1464
1465 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1466 switch (decoded.inner_prot) {
1467 case I40E_RX_PTYPE_INNER_PROT_TCP:
1468 case I40E_RX_PTYPE_INNER_PROT_UDP:
1469 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1470 skb->ip_summed = CHECKSUM_UNNECESSARY;
1471 /* fall though */
1472 default:
1473 break;
1474 }
8a3c91cc
JB
1475
1476 return;
1477
1478checksum_fail:
1479 vsi->back->hw_csum_rx_error++;
fd0a05ce
JB
1480}
1481
1482/**
857942fd 1483 * i40e_ptype_to_htype - get a hash type
206812b5
JB
1484 * @ptype: the ptype value from the descriptor
1485 *
1486 * Returns a hash type to be used by skb_set_hash
1487 **/
1a557afc 1488static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
1489{
1490 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1491
1492 if (!decoded.known)
1493 return PKT_HASH_TYPE_NONE;
1494
1495 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1496 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1497 return PKT_HASH_TYPE_L4;
1498 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1499 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1500 return PKT_HASH_TYPE_L3;
1501 else
1502 return PKT_HASH_TYPE_L2;
1503}
1504
857942fd
ASJ
1505/**
1506 * i40e_rx_hash - set the hash value in the skb
1507 * @ring: descriptor ring
1508 * @rx_desc: specific descriptor
1509 **/
1510static inline void i40e_rx_hash(struct i40e_ring *ring,
1511 union i40e_rx_desc *rx_desc,
1512 struct sk_buff *skb,
1513 u8 rx_ptype)
1514{
1515 u32 hash;
1a557afc 1516 const __le64 rss_mask =
857942fd
ASJ
1517 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1518 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1519
a876c3ba 1520 if (!(ring->netdev->features & NETIF_F_RXHASH))
857942fd
ASJ
1521 return;
1522
1523 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1524 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1525 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1526 }
1527}
1528
a132af24 1529/**
1a557afc
JB
1530 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1531 * @rx_ring: rx descriptor ring packet is being transacted on
1532 * @rx_desc: pointer to the EOP Rx descriptor
1533 * @skb: pointer to current skb being populated
1534 * @rx_ptype: the packet type decoded by hardware
1535 *
1536 * This function checks the ring, descriptor, and packet information in
1537 * order to populate the hash, checksum, VLAN, protocol, and
1538 * other fields within the skb.
1539 **/
1540static inline
1541void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1542 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1543 u8 rx_ptype)
1544{
1545 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1546 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1547 I40E_RXD_QW1_STATUS_SHIFT;
144ed176
JK
1548 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1549 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1a557afc
JB
1550 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1551
12490501 1552 if (unlikely(tsynvalid))
144ed176 1553 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1a557afc
JB
1554
1555 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1556
1557 /* modifies the skb - consumes the enet header */
1558 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1559
1560 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1561
1562 skb_record_rx_queue(skb, rx_ring->queue_index);
1563}
1564
1a557afc
JB
1565/**
1566 * i40e_cleanup_headers - Correct empty headers
1567 * @rx_ring: rx descriptor ring packet is being transacted on
1568 * @skb: pointer to current skb being fixed
1569 *
1570 * Also address the case where we are pulling data in on pages only
1571 * and as such no data is present in the skb header.
1572 *
1573 * In addition if skb is not at least 60 bytes we need to pad it so that
1574 * it is large enough to qualify as a valid Ethernet frame.
1575 *
1576 * Returns true if an error was encountered and skb was freed.
1577 **/
1578static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1579{
1a557afc
JB
1580 /* if eth_skb_pad returns an error the skb was freed */
1581 if (eth_skb_pad(skb))
1582 return true;
1583
1584 return false;
1585}
1586
1587/**
1588 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1589 * @rx_ring: rx descriptor ring to store buffers on
1590 * @old_buff: donor buffer to have page reused
1591 *
1592 * Synchronizes page for reuse by the adapter
1593 **/
1594static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1595 struct i40e_rx_buffer *old_buff)
1596{
1597 struct i40e_rx_buffer *new_buff;
1598 u16 nta = rx_ring->next_to_alloc;
1599
1600 new_buff = &rx_ring->rx_bi[nta];
1601
1602 /* update, and store next to alloc */
1603 nta++;
1604 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1605
1606 /* transfer page from old buffer to new buffer */
1607 *new_buff = *old_buff;
1608}
1609
1610/**
9b37c937 1611 * i40e_page_is_reusable - check if any reuse is possible
1a557afc 1612 * @page: page struct to check
9b37c937
SP
1613 *
1614 * A page is not reusable if it was allocated under low memory
1615 * conditions, or it's not in the same NUMA node as this CPU.
1a557afc 1616 */
9b37c937 1617static inline bool i40e_page_is_reusable(struct page *page)
1a557afc 1618{
9b37c937
SP
1619 return (page_to_nid(page) == numa_mem_id()) &&
1620 !page_is_pfmemalloc(page);
1621}
1622
1623/**
1624 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1625 * the adapter for another receive
1626 *
1627 * @rx_buffer: buffer containing the page
1628 * @page: page address from rx_buffer
1629 * @truesize: actual size of the buffer in this page
1630 *
1631 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1632 * an unused region in the page.
1633 *
1634 * For small pages, @truesize will be a constant value, half the size
1635 * of the memory at page. We'll attempt to alternate between high and
1636 * low halves of the page, with one half ready for use by the hardware
1637 * and the other half being consumed by the stack. We use the page
1638 * ref count to determine whether the stack has finished consuming the
1639 * portion of this page that was passed up with a previous packet. If
1640 * the page ref count is >1, we'll assume the "other" half page is
1641 * still busy, and this page cannot be reused.
1642 *
1643 * For larger pages, @truesize will be the actual space used by the
1644 * received packet (adjusted upward to an even multiple of the cache
1645 * line size). This will advance through the page by the amount
1646 * actually consumed by the received packets while there is still
1647 * space for a buffer. Each region of larger pages will be used at
1648 * most once, after which the page will not be reused.
1649 *
1650 * In either case, if the page is reusable its refcount is increased.
1651 **/
1652static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1653 struct page *page,
1654 const unsigned int truesize)
1655{
1656#if (PAGE_SIZE >= 8192)
1657 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1658#endif
1659
1660 /* Is any reuse possible? */
1661 if (unlikely(!i40e_page_is_reusable(page)))
1662 return false;
1663
1664#if (PAGE_SIZE < 8192)
1665 /* if we are only owner of page we can reuse it */
1666 if (unlikely(page_count(page) != 1))
1667 return false;
1668
1669 /* flip page offset to other buffer */
1670 rx_buffer->page_offset ^= truesize;
1671#else
1672 /* move offset up to the next cache line */
1673 rx_buffer->page_offset += truesize;
1674
1675 if (rx_buffer->page_offset > last_offset)
1676 return false;
1677#endif
1678
1679 /* Inc ref count on page before passing it up to the stack */
1680 get_page(page);
1681
1682 return true;
1a557afc
JB
1683}
1684
1685/**
1686 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1687 * @rx_ring: rx descriptor ring to transact packets on
1688 * @rx_buffer: buffer containing page to add
7987dcd7 1689 * @size: packet length from rx_desc
1a557afc
JB
1690 * @skb: sk_buff to place the data into
1691 *
1692 * This function will add the data contained in rx_buffer->page to the skb.
1693 * This is done either through a direct copy if the data in the buffer is
1694 * less than the skb header size, otherwise it will just attach the page as
1695 * a frag to the skb.
1696 *
1697 * The function will then update the page offset if necessary and return
1698 * true if the buffer can be reused by the adapter.
1699 **/
1700static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1701 struct i40e_rx_buffer *rx_buffer,
7987dcd7 1702 unsigned int size,
1a557afc
JB
1703 struct sk_buff *skb)
1704{
1705 struct page *page = rx_buffer->page;
9b37c937 1706 unsigned char *va = page_address(page) + rx_buffer->page_offset;
1a557afc
JB
1707#if (PAGE_SIZE < 8192)
1708 unsigned int truesize = I40E_RXBUFFER_2048;
1709#else
1710 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1a557afc 1711#endif
9b37c937
SP
1712 unsigned int pull_len;
1713
1714 if (unlikely(skb_is_nonlinear(skb)))
1715 goto add_tail_frag;
1a557afc
JB
1716
1717 /* will the data fit in the skb we allocated? if so, just
1718 * copy it as it is pretty small anyway
1719 */
9b37c937 1720 if (size <= I40E_RX_HDR_SIZE) {
1a557afc
JB
1721 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1722
9b37c937
SP
1723 /* page is reusable, we can reuse buffer as-is */
1724 if (likely(i40e_page_is_reusable(page)))
1a557afc
JB
1725 return true;
1726
1727 /* this page cannot be reused so discard it */
1728 __free_pages(page, 0);
1729 return false;
1730 }
1731
9b37c937
SP
1732 /* we need the header to contain the greater of either
1733 * ETH_HLEN or 60 bytes if the skb->len is less than
1734 * 60 for skb_pad.
1735 */
1736 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1a557afc 1737
9b37c937
SP
1738 /* align pull length to size of long to optimize
1739 * memcpy performance
1740 */
1741 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1a557afc 1742
9b37c937
SP
1743 /* update all of the pointers */
1744 va += pull_len;
1745 size -= pull_len;
1a557afc 1746
9b37c937
SP
1747add_tail_frag:
1748 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1749 (unsigned long)va & ~PAGE_MASK, size, truesize);
1a557afc 1750
9b37c937 1751 return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1a557afc
JB
1752}
1753
1754/**
1755 * i40e_fetch_rx_buffer - Allocate skb and populate it
1756 * @rx_ring: rx descriptor ring to transact packets on
1757 * @rx_desc: descriptor containing info written by hardware
a132af24 1758 *
1a557afc
JB
1759 * This function allocates an skb on the fly, and populates it with the page
1760 * data from the current receive descriptor, taking care to set up the skb
1761 * correctly, as well as handling calling the page recycle function if
1762 * necessary.
1763 */
1764static inline
1765struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
e72e5659
SP
1766 union i40e_rx_desc *rx_desc,
1767 struct sk_buff *skb)
1a557afc 1768{
7987dcd7
SP
1769 u64 local_status_error_len =
1770 le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1771 unsigned int size =
1772 (local_status_error_len & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1773 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1a557afc 1774 struct i40e_rx_buffer *rx_buffer;
1a557afc
JB
1775 struct page *page;
1776
1777 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1778 page = rx_buffer->page;
1779 prefetchw(page);
1780
1a557afc
JB
1781 if (likely(!skb)) {
1782 void *page_addr = page_address(page) + rx_buffer->page_offset;
1783
1784 /* prefetch first cache line of first page */
1785 prefetch(page_addr);
1786#if L1_CACHE_BYTES < 128
1787 prefetch(page_addr + L1_CACHE_BYTES);
1788#endif
1789
1790 /* allocate a skb to store the frags */
1791 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1792 I40E_RX_HDR_SIZE,
1793 GFP_ATOMIC | __GFP_NOWARN);
1794 if (unlikely(!skb)) {
1795 rx_ring->rx_stats.alloc_buff_failed++;
1796 return NULL;
1797 }
1798
1799 /* we will be copying header into skb->data in
1800 * pskb_may_pull so it is in our interest to prefetch
1801 * it now to avoid a possible cache miss
1802 */
1803 prefetchw(skb->data);
1a557afc
JB
1804 }
1805
1806 /* we are reusing so sync this buffer for CPU use */
1807 dma_sync_single_range_for_cpu(rx_ring->dev,
1808 rx_buffer->dma,
1809 rx_buffer->page_offset,
7987dcd7 1810 size,
1a557afc
JB
1811 DMA_FROM_DEVICE);
1812
1813 /* pull page into skb */
7987dcd7 1814 if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1a557afc
JB
1815 /* hand second half of page back to the ring */
1816 i40e_reuse_rx_page(rx_ring, rx_buffer);
1817 rx_ring->rx_stats.page_reuse_count++;
1818 } else {
1819 /* we are not reusing the buffer so unmap it */
59605bc0
AD
1820 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1821 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1a557afc
JB
1822 }
1823
1824 /* clear contents of buffer_info */
1825 rx_buffer->page = NULL;
1826
1827 return skb;
1828}
1829
1830/**
1831 * i40e_is_non_eop - process handling of non-EOP buffers
1832 * @rx_ring: Rx ring being processed
1833 * @rx_desc: Rx descriptor for current buffer
1834 * @skb: Current socket buffer containing buffer in progress
1835 *
1836 * This function updates next to clean. If the buffer is an EOP buffer
1837 * this function exits returning false, otherwise it will place the
1838 * sk_buff in the next buffer to be chained and return true indicating
1839 * that this is in fact a non-EOP buffer.
a132af24 1840 **/
1a557afc
JB
1841static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1842 union i40e_rx_desc *rx_desc,
1843 struct sk_buff *skb)
1844{
1845 u32 ntc = rx_ring->next_to_clean + 1;
1846
1847 /* fetch, update, and store next to clean */
1848 ntc = (ntc < rx_ring->count) ? ntc : 0;
1849 rx_ring->next_to_clean = ntc;
1850
1851 prefetch(I40E_RX_DESC(rx_ring, ntc));
1852
1853#define staterrlen rx_desc->wb.qword1.status_error_len
1854 if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1855 i40e_clean_programming_status(rx_ring, rx_desc);
1a557afc
JB
1856 return true;
1857 }
1858 /* if we are the last buffer then there is nothing else to do */
1859#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1860 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1861 return false;
1862
1a557afc
JB
1863 rx_ring->rx_stats.non_eop_descs++;
1864
1865 return true;
1866}
1867
1868/**
1869 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1870 * @rx_ring: rx descriptor ring to transact packets on
1871 * @budget: Total limit on number of packets to process
1872 *
1873 * This function provides a "bounce buffer" approach to Rx interrupt
1874 * processing. The advantage to this is that on systems that have
1875 * expensive overhead for IOMMU access this provides a means of avoiding
1876 * it by maintaining the mapping of the page to the system.
1877 *
1878 * Returns amount of work completed
1879 **/
1880static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1881{
1882 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
e72e5659 1883 struct sk_buff *skb = rx_ring->skb;
a132af24 1884 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1885 bool failure = false;
a132af24 1886
1a557afc
JB
1887 while (likely(total_rx_packets < budget)) {
1888 union i40e_rx_desc *rx_desc;
a132af24 1889 u16 vlan_tag;
1a557afc
JB
1890 u8 rx_ptype;
1891 u64 qword;
1892
fd0a05ce
JB
1893 /* return some buffers to hardware, one at a time is too slow */
1894 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1895 failure = failure ||
1a557afc 1896 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
fd0a05ce
JB
1897 cleaned_count = 0;
1898 }
1899
1a557afc
JB
1900 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1901
1a557afc
JB
1902 /* status_error_len will always be zero for unused descriptors
1903 * because it's cleared in cleanup, and overlaps with hdr_addr
1904 * which is always zero because packet split isn't used, if the
1905 * hardware wrote DD then it will be non-zero
1906 */
99dad8b3
AD
1907 if (!i40e_test_staterr(rx_desc,
1908 BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1a557afc
JB
1909 break;
1910
a132af24
MW
1911 /* This memory barrier is needed to keep us from reading
1912 * any other fields out of the rx_desc until we know the
1913 * DD bit is set.
1914 */
67317166 1915 dma_rmb();
a132af24 1916
e72e5659 1917 skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb);
1a557afc
JB
1918 if (!skb)
1919 break;
a132af24 1920
a132af24
MW
1921 cleaned_count++;
1922
1a557afc 1923 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1924 continue;
a132af24 1925
1a557afc
JB
1926 /* ERR_MASK will only have valid bits if EOP set, and
1927 * what we are doing here is actually checking
1928 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929 * the error field
1930 */
1931 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1932 dev_kfree_skb_any(skb);
a132af24
MW
1933 continue;
1934 }
1935
e72e5659
SP
1936 if (i40e_cleanup_headers(rx_ring, skb)) {
1937 skb = NULL;
1a557afc 1938 continue;
e72e5659 1939 }
a132af24
MW
1940
1941 /* probably a little skewed due to removing CRC */
1942 total_rx_bytes += skb->len;
a132af24 1943
99dad8b3
AD
1944 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1945 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1946 I40E_RXD_QW1_PTYPE_SHIFT;
1947
1a557afc
JB
1948 /* populate checksum, VLAN, and protocol */
1949 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1950
a132af24 1951#ifdef I40E_FCOE
1f15d667
JB
1952 if (unlikely(
1953 i40e_rx_is_fcoe(rx_ptype) &&
1954 !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
a132af24
MW
1955 dev_kfree_skb_any(skb);
1956 continue;
1957 }
1958#endif
1a557afc
JB
1959
1960 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1961 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1962
a132af24 1963 i40e_receive_skb(rx_ring, skb, vlan_tag);
e72e5659 1964 skb = NULL;
a132af24 1965
1a557afc
JB
1966 /* update budget accounting */
1967 total_rx_packets++;
1968 }
fd0a05ce 1969
e72e5659
SP
1970 rx_ring->skb = skb;
1971
980e9b11 1972 u64_stats_update_begin(&rx_ring->syncp);
a114d0a6
AD
1973 rx_ring->stats.packets += total_rx_packets;
1974 rx_ring->stats.bytes += total_rx_bytes;
980e9b11 1975 u64_stats_update_end(&rx_ring->syncp);
fd0a05ce
JB
1976 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1977 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1978
1a557afc 1979 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 1980 return failure ? budget : total_rx_packets;
fd0a05ce
JB
1981}
1982
8f5e39ce
JB
1983static u32 i40e_buildreg_itr(const int type, const u16 itr)
1984{
1985 u32 val;
1986
1987 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
40d72a50
JB
1988 /* Don't clear PBA because that can cause lost interrupts that
1989 * came in while we were cleaning/polling
1990 */
8f5e39ce
JB
1991 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1992 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1993
1994 return val;
1995}
1996
1997/* a small macro to shorten up some long lines */
1998#define INTREG I40E_PFINT_DYN_CTLN
3c234c47 1999static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
65e87c03 2000{
3c234c47 2001 return vsi->rx_rings[idx]->rx_itr_setting;
65e87c03
JK
2002}
2003
3c234c47 2004static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
65e87c03 2005{
3c234c47 2006 return vsi->tx_rings[idx]->tx_itr_setting;
65e87c03 2007}
8f5e39ce 2008
de32e3ef
CW
2009/**
2010 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2011 * @vsi: the VSI we care about
2012 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2013 *
2014 **/
2015static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2016 struct i40e_q_vector *q_vector)
2017{
2018 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
2019 bool rx = false, tx = false;
2020 u32 rxval, txval;
de32e3ef 2021 int vector;
a75e8005 2022 int idx = q_vector->v_idx;
65e87c03 2023 int rx_itr_setting, tx_itr_setting;
de32e3ef
CW
2024
2025 vector = (q_vector->v_idx + vsi->base_vector);
8f5e39ce 2026
ee2319cf
JB
2027 /* avoid dynamic calculation if in countdown mode OR if
2028 * all dynamic is disabled
2029 */
8f5e39ce
JB
2030 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2031
3c234c47
CW
2032 rx_itr_setting = get_rx_itr(vsi, idx);
2033 tx_itr_setting = get_tx_itr(vsi, idx);
65e87c03 2034
ee2319cf 2035 if (q_vector->itr_countdown > 0 ||
65e87c03
JK
2036 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2037 !ITR_IS_DYNAMIC(tx_itr_setting))) {
ee2319cf
JB
2038 goto enable_int;
2039 }
2040
65e87c03 2041 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
2042 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2043 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 2044 }
8f5e39ce 2045
65e87c03 2046 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
2047 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2048 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
de32e3ef 2049 }
8f5e39ce
JB
2050
2051 if (rx || tx) {
2052 /* get the higher of the two ITR adjustments and
2053 * use the same value for both ITR registers
2054 * when in adaptive mode (Rx and/or Tx)
2055 */
2056 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2057
2058 q_vector->tx.itr = q_vector->rx.itr = itr;
2059 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2060 tx = true;
2061 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2062 rx = true;
2063 }
2064
2065 /* only need to enable the interrupt once, but need
2066 * to possibly update both ITR values
2067 */
2068 if (rx) {
2069 /* set the INTENA_MSK_MASK so that this first write
2070 * won't actually enable the interrupt, instead just
2071 * updating the ITR (it's bit 31 PF and VF)
2072 */
2073 rxval |= BIT(31);
2074 /* don't check _DOWN because interrupt isn't being enabled */
2075 wr32(hw, INTREG(vector - 1), rxval);
2076 }
2077
ee2319cf 2078enable_int:
8f5e39ce
JB
2079 if (!test_bit(__I40E_DOWN, &vsi->state))
2080 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
2081
2082 if (q_vector->itr_countdown)
2083 q_vector->itr_countdown--;
2084 else
2085 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
2086}
2087
fd0a05ce
JB
2088/**
2089 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2090 * @napi: napi struct with our devices info in it
2091 * @budget: amount of work driver is allowed to do this pass, in packets
2092 *
2093 * This function will clean all queues associated with a q_vector.
2094 *
2095 * Returns the amount of work done
2096 **/
2097int i40e_napi_poll(struct napi_struct *napi, int budget)
2098{
2099 struct i40e_q_vector *q_vector =
2100 container_of(napi, struct i40e_q_vector, napi);
2101 struct i40e_vsi *vsi = q_vector->vsi;
cd0b6fa6 2102 struct i40e_ring *ring;
fd0a05ce 2103 bool clean_complete = true;
d91649f5 2104 bool arm_wb = false;
fd0a05ce 2105 int budget_per_ring;
32b3e08f 2106 int work_done = 0;
fd0a05ce
JB
2107
2108 if (test_bit(__I40E_DOWN, &vsi->state)) {
2109 napi_complete(napi);
2110 return 0;
2111 }
2112
9c6c1259
KP
2113 /* Clear hung_detected bit */
2114 clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
cd0b6fa6
AD
2115 /* Since the actual Tx work is minimal, we can give the Tx a larger
2116 * budget and be more aggressive about cleaning up the Tx descriptors.
2117 */
d91649f5 2118 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 2119 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
2120 clean_complete = false;
2121 continue;
2122 }
2123 arm_wb |= ring->arm_wb;
0deda868 2124 ring->arm_wb = false;
d91649f5 2125 }
cd0b6fa6 2126
c67caceb
AD
2127 /* Handle case where we are called by netpoll with a budget of 0 */
2128 if (budget <= 0)
2129 goto tx_only;
2130
fd0a05ce
JB
2131 /* We attempt to distribute budget to each Rx queue fairly, but don't
2132 * allow the budget to go below 1 because that would exit polling early.
fd0a05ce
JB
2133 */
2134 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
cd0b6fa6 2135
a132af24 2136 i40e_for_each_ring(ring, q_vector->rx) {
1a557afc 2137 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
2138
2139 work_done += cleaned;
f2edaaaa
AD
2140 /* if we clean as many as budgeted, we must not be done */
2141 if (cleaned >= budget_per_ring)
2142 clean_complete = false;
a132af24 2143 }
fd0a05ce
JB
2144
2145 /* If work not completed, return budget and polling will return */
d91649f5 2146 if (!clean_complete) {
96db776a
AB
2147 const cpumask_t *aff_mask = &q_vector->affinity_mask;
2148 int cpu_id = smp_processor_id();
2149
2150 /* It is possible that the interrupt affinity has changed but,
2151 * if the cpu is pegged at 100%, polling will never exit while
2152 * traffic continues and the interrupt will be stuck on this
2153 * cpu. We check to make sure affinity is correct before we
2154 * continue to poll, otherwise we must stop polling so the
2155 * interrupt can move to the correct cpu.
2156 */
2157 if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2158 !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
c67caceb 2159tx_only:
96db776a
AB
2160 if (arm_wb) {
2161 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2162 i40e_enable_wb_on_itr(vsi, q_vector);
2163 }
2164 return budget;
164c9f54 2165 }
d91649f5 2166 }
fd0a05ce 2167
8e0764b4
ASJ
2168 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2169 q_vector->arm_wb_state = false;
2170
fd0a05ce 2171 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 2172 napi_complete_done(napi, work_done);
96db776a
AB
2173
2174 /* If we're prematurely stopping polling to fix the interrupt
2175 * affinity we want to make sure polling starts back up so we
2176 * issue a call to i40e_force_wb which triggers a SW interrupt.
2177 */
2178 if (!clean_complete)
2179 i40e_force_wb(vsi, q_vector);
2180 else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
40d72a50 2181 i40e_irq_dynamic_enable_icr0(vsi->back, false);
96db776a
AB
2182 else
2183 i40e_update_enable_itr(vsi, q_vector);
2184
6beb84a7 2185 return min(work_done, budget - 1);
fd0a05ce
JB
2186}
2187
2188/**
2189 * i40e_atr - Add a Flow Director ATR filter
2190 * @tx_ring: ring to add programming descriptor to
2191 * @skb: send buffer
89232c3b 2192 * @tx_flags: send tx flags
fd0a05ce
JB
2193 **/
2194static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
6b037cd4 2195 u32 tx_flags)
fd0a05ce
JB
2196{
2197 struct i40e_filter_program_desc *fdir_desc;
2198 struct i40e_pf *pf = tx_ring->vsi->back;
2199 union {
2200 unsigned char *network;
2201 struct iphdr *ipv4;
2202 struct ipv6hdr *ipv6;
2203 } hdr;
2204 struct tcphdr *th;
2205 unsigned int hlen;
2206 u32 flex_ptype, dtype_cmd;
ffcc55c0 2207 int l4_proto;
fc4ac67b 2208 u16 i;
fd0a05ce
JB
2209
2210 /* make sure ATR is enabled */
60ea5f83 2211 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
fd0a05ce
JB
2212 return;
2213
b77ac975 2214 if ((pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
04294e38
ASJ
2215 return;
2216
fd0a05ce
JB
2217 /* if sampling is disabled do nothing */
2218 if (!tx_ring->atr_sample_rate)
2219 return;
2220
6b037cd4 2221 /* Currently only IPv4/IPv6 with TCP is supported */
89232c3b
ASJ
2222 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2223 return;
fd0a05ce 2224
ffcc55c0
AD
2225 /* snag network header to get L4 type and address */
2226 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2227 skb_inner_network_header(skb) : skb_network_header(skb);
fd0a05ce 2228
ffcc55c0
AD
2229 /* Note: tx_flags gets modified to reflect inner protocols in
2230 * tx_enable_csum function if encap is enabled.
2231 */
2232 if (tx_flags & I40E_TX_FLAGS_IPV4) {
6b037cd4 2233 /* access ihl as u8 to avoid unaligned access on ia64 */
ffcc55c0
AD
2234 hlen = (hdr.network[0] & 0x0F) << 2;
2235 l4_proto = hdr.ipv4->protocol;
fd0a05ce 2236 } else {
ffcc55c0
AD
2237 hlen = hdr.network - skb->data;
2238 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2239 hlen -= hdr.network - skb->data;
fd0a05ce
JB
2240 }
2241
6b037cd4 2242 if (l4_proto != IPPROTO_TCP)
89232c3b
ASJ
2243 return;
2244
fd0a05ce
JB
2245 th = (struct tcphdr *)(hdr.network + hlen);
2246
55a5e60b 2247 /* Due to lack of space, no more new filters can be programmed */
b77ac975 2248 if (th->syn && (pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
55a5e60b 2249 return;
72b74869 2250 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
b77ac975 2251 (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
52eb95ef
ASJ
2252 /* HW ATR eviction will take care of removing filters on FIN
2253 * and RST packets.
2254 */
2255 if (th->fin || th->rst)
2256 return;
2257 }
55a5e60b
ASJ
2258
2259 tx_ring->atr_count++;
2260
ce806783
ASJ
2261 /* sample on all syn/fin/rst packets or once every atr sample rate */
2262 if (!th->fin &&
2263 !th->syn &&
2264 !th->rst &&
2265 (tx_ring->atr_count < tx_ring->atr_sample_rate))
fd0a05ce
JB
2266 return;
2267
2268 tx_ring->atr_count = 0;
2269
2270 /* grab the next descriptor */
fc4ac67b
AD
2271 i = tx_ring->next_to_use;
2272 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2273
2274 i++;
2275 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
2276
2277 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2278 I40E_TXD_FLTR_QW0_QINDEX_MASK;
6b037cd4 2279 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
fd0a05ce
JB
2280 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2281 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2282 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2283 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2284
2285 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2286
2287 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2288
ce806783 2289 dtype_cmd |= (th->fin || th->rst) ?
fd0a05ce
JB
2290 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2291 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2292 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2293 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2294
2295 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2296 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2297
2298 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2299 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2300
433c47de 2301 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
6a899024 2302 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
60ccd45c
ASJ
2303 dtype_cmd |=
2304 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2305 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2306 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2307 else
2308 dtype_cmd |=
2309 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2310 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2311 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
433c47de 2312
72b74869 2313 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
b77ac975 2314 (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
52eb95ef
ASJ
2315 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2316
fd0a05ce 2317 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
99753ea6 2318 fdir_desc->rsvd = cpu_to_le32(0);
fd0a05ce 2319 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
99753ea6 2320 fdir_desc->fd_id = cpu_to_le32(0);
fd0a05ce
JB
2321}
2322
fd0a05ce
JB
2323/**
2324 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2325 * @skb: send buffer
2326 * @tx_ring: ring to send buffer on
2327 * @flags: the tx flags to be set
2328 *
2329 * Checks the skb and set up correspondingly several generic transmit flags
2330 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2331 *
2332 * Returns error code indicate the frame should be dropped upon error and the
2333 * otherwise returns 0 to indicate the flags has been set properly.
2334 **/
38e00438 2335#ifdef I40E_FCOE
3e587cf3 2336inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
fd0a05ce
JB
2337 struct i40e_ring *tx_ring,
2338 u32 *flags)
3e587cf3
JB
2339#else
2340static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2341 struct i40e_ring *tx_ring,
2342 u32 *flags)
38e00438 2343#endif
fd0a05ce
JB
2344{
2345 __be16 protocol = skb->protocol;
2346 u32 tx_flags = 0;
2347
31eaaccf
GR
2348 if (protocol == htons(ETH_P_8021Q) &&
2349 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2350 /* When HW VLAN acceleration is turned off by the user the
2351 * stack sets the protocol to 8021q so that the driver
2352 * can take any steps required to support the SW only
2353 * VLAN handling. In our case the driver doesn't need
2354 * to take any further steps so just set the protocol
2355 * to the encapsulated ethertype.
2356 */
2357 skb->protocol = vlan_get_protocol(skb);
2358 goto out;
2359 }
2360
fd0a05ce 2361 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
2362 if (skb_vlan_tag_present(skb)) {
2363 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
fd0a05ce
JB
2364 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2365 /* else if it is a SW VLAN, check the next protocol and store the tag */
0e2fe46c 2366 } else if (protocol == htons(ETH_P_8021Q)) {
fd0a05ce 2367 struct vlan_hdr *vhdr, _vhdr;
6995b36c 2368
fd0a05ce
JB
2369 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2370 if (!vhdr)
2371 return -EINVAL;
2372
2373 protocol = vhdr->h_vlan_encapsulated_proto;
2374 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2375 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2376 }
2377
d40d00b1
NP
2378 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2379 goto out;
2380
fd0a05ce 2381 /* Insert 802.1p priority into VLAN header */
38e00438
VD
2382 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2383 (skb->priority != TC_PRIO_CONTROL)) {
fd0a05ce
JB
2384 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2385 tx_flags |= (skb->priority & 0x7) <<
2386 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2387 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2388 struct vlan_ethhdr *vhdr;
dd225bc6
FR
2389 int rc;
2390
2391 rc = skb_cow_head(skb, 0);
2392 if (rc < 0)
2393 return rc;
fd0a05ce
JB
2394 vhdr = (struct vlan_ethhdr *)skb->data;
2395 vhdr->h_vlan_TCI = htons(tx_flags >>
2396 I40E_TX_FLAGS_VLAN_SHIFT);
2397 } else {
2398 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2399 }
2400 }
d40d00b1
NP
2401
2402out:
fd0a05ce
JB
2403 *flags = tx_flags;
2404 return 0;
2405}
2406
fd0a05ce
JB
2407/**
2408 * i40e_tso - set up the tso context descriptor
52ea3e80 2409 * @first: pointer to first Tx buffer for xmit
fd0a05ce 2410 * @hdr_len: ptr to the size of the packet header
9c883bd3 2411 * @cd_type_cmd_tso_mss: Quad Word 1
fd0a05ce
JB
2412 *
2413 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2414 **/
52ea3e80
AD
2415static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2416 u64 *cd_type_cmd_tso_mss)
fd0a05ce 2417{
52ea3e80 2418 struct sk_buff *skb = first->skb;
03f9d6a5 2419 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
2420 union {
2421 struct iphdr *v4;
2422 struct ipv6hdr *v6;
2423 unsigned char *hdr;
2424 } ip;
c49a7bc3
AD
2425 union {
2426 struct tcphdr *tcp;
5453205c 2427 struct udphdr *udp;
c49a7bc3
AD
2428 unsigned char *hdr;
2429 } l4;
2430 u32 paylen, l4_offset;
52ea3e80 2431 u16 gso_segs, gso_size;
fd0a05ce 2432 int err;
fd0a05ce 2433
e9f6563d
SN
2434 if (skb->ip_summed != CHECKSUM_PARTIAL)
2435 return 0;
2436
fd0a05ce
JB
2437 if (!skb_is_gso(skb))
2438 return 0;
2439
dd225bc6
FR
2440 err = skb_cow_head(skb, 0);
2441 if (err < 0)
2442 return err;
fd0a05ce 2443
c777019a
AD
2444 ip.hdr = skb_network_header(skb);
2445 l4.hdr = skb_transport_header(skb);
df23075f 2446
c777019a
AD
2447 /* initialize outer IP header fields */
2448 if (ip.v4->version == 4) {
2449 ip.v4->tot_len = 0;
2450 ip.v4->check = 0;
c49a7bc3 2451 } else {
c777019a
AD
2452 ip.v6->payload_len = 0;
2453 }
2454
577389a5 2455 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 2456 SKB_GSO_GRE_CSUM |
7e13318d 2457 SKB_GSO_IPXIP4 |
bf2d1df3 2458 SKB_GSO_IPXIP6 |
577389a5 2459 SKB_GSO_UDP_TUNNEL |
5453205c 2460 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
2461 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2462 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2463 l4.udp->len = 0;
2464
5453205c
AD
2465 /* determine offset of outer transport header */
2466 l4_offset = l4.hdr - skb->data;
2467
2468 /* remove payload length from outer checksum */
24d41e5e 2469 paylen = skb->len - l4_offset;
b9c015d4
JK
2470 csum_replace_by_diff(&l4.udp->check,
2471 (__force __wsum)htonl(paylen));
5453205c
AD
2472 }
2473
c777019a
AD
2474 /* reset pointers to inner headers */
2475 ip.hdr = skb_inner_network_header(skb);
2476 l4.hdr = skb_inner_transport_header(skb);
2477
2478 /* initialize inner IP header fields */
2479 if (ip.v4->version == 4) {
2480 ip.v4->tot_len = 0;
2481 ip.v4->check = 0;
2482 } else {
2483 ip.v6->payload_len = 0;
2484 }
fd0a05ce
JB
2485 }
2486
c49a7bc3
AD
2487 /* determine offset of inner transport header */
2488 l4_offset = l4.hdr - skb->data;
2489
2490 /* remove payload length from inner checksum */
24d41e5e 2491 paylen = skb->len - l4_offset;
b9c015d4 2492 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
c49a7bc3
AD
2493
2494 /* compute length of segmentation header */
2495 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
fd0a05ce 2496
52ea3e80
AD
2497 /* pull values out of skb_shinfo */
2498 gso_size = skb_shinfo(skb)->gso_size;
2499 gso_segs = skb_shinfo(skb)->gso_segs;
2500
2501 /* update GSO size and bytecount with header size */
2502 first->gso_segs = gso_segs;
2503 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2504
fd0a05ce
JB
2505 /* find the field values */
2506 cd_cmd = I40E_TX_CTX_DESC_TSO;
2507 cd_tso_len = skb->len - *hdr_len;
52ea3e80 2508 cd_mss = gso_size;
03f9d6a5
AD
2509 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2510 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2511 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
fd0a05ce
JB
2512 return 1;
2513}
2514
beb0dff1
JK
2515/**
2516 * i40e_tsyn - set up the tsyn context descriptor
2517 * @tx_ring: ptr to the ring to send
2518 * @skb: ptr to the skb we're sending
2519 * @tx_flags: the collected send information
9c883bd3 2520 * @cd_type_cmd_tso_mss: Quad Word 1
beb0dff1
JK
2521 *
2522 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2523 **/
2524static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2525 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2526{
2527 struct i40e_pf *pf;
2528
2529 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2530 return 0;
2531
2532 /* Tx timestamps cannot be sampled when doing TSO */
2533 if (tx_flags & I40E_TX_FLAGS_TSO)
2534 return 0;
2535
2536 /* only timestamp the outbound packet if the user has requested it and
2537 * we are not already transmitting a packet to be timestamped
2538 */
2539 pf = i40e_netdev_to_pf(tx_ring->netdev);
22b4777d
JK
2540 if (!(pf->flags & I40E_FLAG_PTP))
2541 return 0;
2542
9ce34f02
JK
2543 if (pf->ptp_tx &&
2544 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
beb0dff1
JK
2545 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2546 pf->ptp_tx_skb = skb_get(skb);
2547 } else {
2548 return 0;
2549 }
2550
2551 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2552 I40E_TXD_CTX_QW1_CMD_SHIFT;
2553
beb0dff1
JK
2554 return 1;
2555}
2556
fd0a05ce
JB
2557/**
2558 * i40e_tx_enable_csum - Enable Tx checksum offloads
2559 * @skb: send buffer
89232c3b 2560 * @tx_flags: pointer to Tx flags currently set
fd0a05ce
JB
2561 * @td_cmd: Tx descriptor command bits to set
2562 * @td_offset: Tx descriptor header offsets to set
554f4544 2563 * @tx_ring: Tx descriptor ring
fd0a05ce
JB
2564 * @cd_tunneling: ptr to context desc bits
2565 **/
529f1f65
AD
2566static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2567 u32 *td_cmd, u32 *td_offset,
2568 struct i40e_ring *tx_ring,
2569 u32 *cd_tunneling)
fd0a05ce 2570{
b96b78f2
AD
2571 union {
2572 struct iphdr *v4;
2573 struct ipv6hdr *v6;
2574 unsigned char *hdr;
2575 } ip;
2576 union {
2577 struct tcphdr *tcp;
2578 struct udphdr *udp;
2579 unsigned char *hdr;
2580 } l4;
a3fd9d88 2581 unsigned char *exthdr;
d1bd743b 2582 u32 offset, cmd = 0;
a3fd9d88 2583 __be16 frag_off;
b96b78f2
AD
2584 u8 l4_proto = 0;
2585
529f1f65
AD
2586 if (skb->ip_summed != CHECKSUM_PARTIAL)
2587 return 0;
2588
b96b78f2
AD
2589 ip.hdr = skb_network_header(skb);
2590 l4.hdr = skb_transport_header(skb);
fd0a05ce 2591
475b4205
AD
2592 /* compute outer L2 header size */
2593 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2594
fd0a05ce 2595 if (skb->encapsulation) {
d1bd743b 2596 u32 tunnel = 0;
a0064728
AD
2597 /* define outer network header type */
2598 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
2599 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2600 I40E_TX_CTX_EXT_IP_IPV4 :
2601 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2602
a0064728
AD
2603 l4_proto = ip.v4->protocol;
2604 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 2605 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
2606
2607 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 2608 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
2609 if (l4.hdr != exthdr)
2610 ipv6_skip_exthdr(skb, exthdr - skb->data,
2611 &l4_proto, &frag_off);
a0064728
AD
2612 }
2613
2614 /* define outer transport */
2615 switch (l4_proto) {
45991204 2616 case IPPROTO_UDP:
475b4205 2617 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
6a899024 2618 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
45991204 2619 break;
c1d1791d 2620 case IPPROTO_GRE:
475b4205 2621 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728 2622 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
c1d1791d 2623 break;
577389a5
AD
2624 case IPPROTO_IPIP:
2625 case IPPROTO_IPV6:
2626 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2627 l4.hdr = skb_inner_network_header(skb);
2628 break;
45991204 2629 default:
529f1f65
AD
2630 if (*tx_flags & I40E_TX_FLAGS_TSO)
2631 return -1;
2632
2633 skb_checksum_help(skb);
2634 return 0;
45991204 2635 }
b96b78f2 2636
577389a5
AD
2637 /* compute outer L3 header size */
2638 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2639 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2640
2641 /* switch IP header pointer from outer to inner header */
2642 ip.hdr = skb_inner_network_header(skb);
2643
475b4205
AD
2644 /* compute tunnel header size */
2645 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2646 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2647
5453205c
AD
2648 /* indicate if we need to offload outer UDP header */
2649 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 2650 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
2651 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2652 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2653
475b4205
AD
2654 /* record tunnel offload values */
2655 *cd_tunneling |= tunnel;
2656
b96b78f2 2657 /* switch L4 header pointer from outer to inner */
b96b78f2 2658 l4.hdr = skb_inner_transport_header(skb);
a0064728 2659 l4_proto = 0;
fd0a05ce 2660
a0064728
AD
2661 /* reset type as we transition from outer to inner headers */
2662 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2663 if (ip.v4->version == 4)
2664 *tx_flags |= I40E_TX_FLAGS_IPV4;
2665 if (ip.v6->version == 6)
89232c3b 2666 *tx_flags |= I40E_TX_FLAGS_IPV6;
fd0a05ce
JB
2667 }
2668
2669 /* Enable IP checksum offloads */
89232c3b 2670 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 2671 l4_proto = ip.v4->protocol;
fd0a05ce
JB
2672 /* the stack computes the IP header already, the only time we
2673 * need the hardware to recompute it is in the case of TSO.
2674 */
475b4205
AD
2675 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2676 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2677 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 2678 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 2679 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
2680
2681 exthdr = ip.hdr + sizeof(*ip.v6);
2682 l4_proto = ip.v6->nexthdr;
2683 if (l4.hdr != exthdr)
2684 ipv6_skip_exthdr(skb, exthdr - skb->data,
2685 &l4_proto, &frag_off);
fd0a05ce 2686 }
b96b78f2 2687
475b4205
AD
2688 /* compute inner L3 header size */
2689 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
fd0a05ce
JB
2690
2691 /* Enable L4 checksum offloads */
b96b78f2 2692 switch (l4_proto) {
fd0a05ce
JB
2693 case IPPROTO_TCP:
2694 /* enable checksum offloads */
475b4205
AD
2695 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2696 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2697 break;
2698 case IPPROTO_SCTP:
2699 /* enable SCTP checksum offload */
475b4205
AD
2700 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2701 offset |= (sizeof(struct sctphdr) >> 2) <<
2702 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2703 break;
2704 case IPPROTO_UDP:
2705 /* enable UDP checksum offload */
475b4205
AD
2706 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2707 offset |= (sizeof(struct udphdr) >> 2) <<
2708 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2709 break;
2710 default:
529f1f65
AD
2711 if (*tx_flags & I40E_TX_FLAGS_TSO)
2712 return -1;
2713 skb_checksum_help(skb);
2714 return 0;
fd0a05ce 2715 }
475b4205
AD
2716
2717 *td_cmd |= cmd;
2718 *td_offset |= offset;
529f1f65
AD
2719
2720 return 1;
fd0a05ce
JB
2721}
2722
2723/**
2724 * i40e_create_tx_ctx Build the Tx context descriptor
2725 * @tx_ring: ring to create the descriptor on
2726 * @cd_type_cmd_tso_mss: Quad Word 1
2727 * @cd_tunneling: Quad Word 0 - bits 0-31
2728 * @cd_l2tag2: Quad Word 0 - bits 32-63
2729 **/
2730static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2731 const u64 cd_type_cmd_tso_mss,
2732 const u32 cd_tunneling, const u32 cd_l2tag2)
2733{
2734 struct i40e_tx_context_desc *context_desc;
fc4ac67b 2735 int i = tx_ring->next_to_use;
fd0a05ce 2736
ff40dd5d
JB
2737 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2738 !cd_tunneling && !cd_l2tag2)
fd0a05ce
JB
2739 return;
2740
2741 /* grab the next descriptor */
fc4ac67b
AD
2742 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2743
2744 i++;
2745 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
2746
2747 /* cpu_to_le32 and assign to struct fields */
2748 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2749 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 2750 context_desc->rsvd = cpu_to_le16(0);
fd0a05ce
JB
2751 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2752}
2753
4567dc10
ED
2754/**
2755 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2756 * @tx_ring: the ring to be checked
2757 * @size: the size buffer we want to assure is available
2758 *
2759 * Returns -EBUSY if a stop is needed, else 0
2760 **/
4ec441df 2761int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
4567dc10
ED
2762{
2763 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2764 /* Memory barrier before checking head and tail */
2765 smp_mb();
2766
2767 /* Check again in a case another CPU has just made room available. */
2768 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2769 return -EBUSY;
2770
2771 /* A reprieve! - use start_queue because it doesn't call schedule */
2772 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2773 ++tx_ring->tx_stats.restart_queue;
2774 return 0;
2775}
2776
71da6197 2777/**
3f3f7cb8 2778 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 2779 * @skb: send buffer
71da6197 2780 *
3f3f7cb8
AD
2781 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2782 * and so we need to figure out the cases where we need to linearize the skb.
2783 *
2784 * For TSO we need to count the TSO header and segment payload separately.
2785 * As such we need to check cases where we have 7 fragments or more as we
2786 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2787 * the segment payload in the first descriptor, and another 7 for the
2788 * fragments.
71da6197 2789 **/
2d37490b 2790bool __i40e_chk_linearize(struct sk_buff *skb)
71da6197 2791{
2d37490b 2792 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 2793 int nr_frags, sum;
71da6197 2794
3f3f7cb8 2795 /* no need to check if number of frags is less than 7 */
2d37490b 2796 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 2797 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 2798 return false;
71da6197 2799
2d37490b 2800 /* We need to walk through the list and validate that each group
841493a3 2801 * of 6 fragments totals at least gso_size.
2d37490b 2802 */
3f3f7cb8 2803 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
2804 frag = &skb_shinfo(skb)->frags[0];
2805
2806 /* Initialize size to the negative value of gso_size minus 1. We
2807 * use this as the worst case scenerio in which the frag ahead
2808 * of us only provides one byte which is why we are limited to 6
2809 * descriptors for a single transmit as the header and previous
2810 * fragment are already consuming 2 descriptors.
2811 */
3f3f7cb8 2812 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 2813
3f3f7cb8
AD
2814 /* Add size of frags 0 through 4 to create our initial sum */
2815 sum += skb_frag_size(frag++);
2816 sum += skb_frag_size(frag++);
2817 sum += skb_frag_size(frag++);
2818 sum += skb_frag_size(frag++);
2819 sum += skb_frag_size(frag++);
2d37490b
AD
2820
2821 /* Walk through fragments adding latest fragment, testing it, and
2822 * then removing stale fragments from the sum.
2823 */
2824 stale = &skb_shinfo(skb)->frags[0];
2825 for (;;) {
3f3f7cb8 2826 sum += skb_frag_size(frag++);
2d37490b
AD
2827
2828 /* if sum is negative we failed to make sufficient progress */
2829 if (sum < 0)
2830 return true;
2831
841493a3 2832 if (!nr_frags--)
2d37490b
AD
2833 break;
2834
3f3f7cb8 2835 sum -= skb_frag_size(stale++);
71da6197
AS
2836 }
2837
2d37490b 2838 return false;
71da6197
AS
2839}
2840
fd0a05ce
JB
2841/**
2842 * i40e_tx_map - Build the Tx descriptor
2843 * @tx_ring: ring to send buffer on
2844 * @skb: send buffer
2845 * @first: first buffer info buffer to use
2846 * @tx_flags: collected send information
2847 * @hdr_len: size of the packet header
2848 * @td_cmd: the command field in the descriptor
2849 * @td_offset: offset for checksum or crc
2850 **/
38e00438 2851#ifdef I40E_FCOE
3e587cf3 2852inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
fd0a05ce
JB
2853 struct i40e_tx_buffer *first, u32 tx_flags,
2854 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3e587cf3
JB
2855#else
2856static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2857 struct i40e_tx_buffer *first, u32 tx_flags,
2858 const u8 hdr_len, u32 td_cmd, u32 td_offset)
38e00438 2859#endif
fd0a05ce 2860{
fd0a05ce
JB
2861 unsigned int data_len = skb->data_len;
2862 unsigned int size = skb_headlen(skb);
a5e9c572 2863 struct skb_frag_struct *frag;
fd0a05ce
JB
2864 struct i40e_tx_buffer *tx_bi;
2865 struct i40e_tx_desc *tx_desc;
a5e9c572 2866 u16 i = tx_ring->next_to_use;
fd0a05ce
JB
2867 u32 td_tag = 0;
2868 dma_addr_t dma;
1dc8b538 2869 u16 desc_count = 1;
fd0a05ce 2870
fd0a05ce
JB
2871 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2872 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2873 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2874 I40E_TX_FLAGS_VLAN_SHIFT;
2875 }
2876
a5e9c572
AD
2877 first->tx_flags = tx_flags;
2878
2879 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2880
fd0a05ce 2881 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572
AD
2882 tx_bi = first;
2883
2884 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
2885 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2886
a5e9c572
AD
2887 if (dma_mapping_error(tx_ring->dev, dma))
2888 goto dma_error;
2889
2890 /* record length, and DMA address */
2891 dma_unmap_len_set(tx_bi, len, size);
2892 dma_unmap_addr_set(tx_bi, dma, dma);
2893
5c4654da
AD
2894 /* align size to end of page */
2895 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
a5e9c572
AD
2896 tx_desc->buffer_addr = cpu_to_le64(dma);
2897
2898 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
fd0a05ce
JB
2899 tx_desc->cmd_type_offset_bsz =
2900 build_ctob(td_cmd, td_offset,
5c4654da 2901 max_data, td_tag);
fd0a05ce 2902
fd0a05ce
JB
2903 tx_desc++;
2904 i++;
58044743
AS
2905 desc_count++;
2906
fd0a05ce
JB
2907 if (i == tx_ring->count) {
2908 tx_desc = I40E_TX_DESC(tx_ring, 0);
2909 i = 0;
2910 }
fd0a05ce 2911
5c4654da
AD
2912 dma += max_data;
2913 size -= max_data;
fd0a05ce 2914
5c4654da 2915 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
a5e9c572
AD
2916 tx_desc->buffer_addr = cpu_to_le64(dma);
2917 }
fd0a05ce
JB
2918
2919 if (likely(!data_len))
2920 break;
2921
a5e9c572
AD
2922 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2923 size, td_tag);
fd0a05ce
JB
2924
2925 tx_desc++;
2926 i++;
58044743
AS
2927 desc_count++;
2928
fd0a05ce
JB
2929 if (i == tx_ring->count) {
2930 tx_desc = I40E_TX_DESC(tx_ring, 0);
2931 i = 0;
2932 }
2933
a5e9c572
AD
2934 size = skb_frag_size(frag);
2935 data_len -= size;
fd0a05ce 2936
a5e9c572
AD
2937 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2938 DMA_TO_DEVICE);
fd0a05ce 2939
a5e9c572
AD
2940 tx_bi = &tx_ring->tx_bi[i];
2941 }
fd0a05ce 2942
1dc8b538 2943 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
a5e9c572
AD
2944
2945 i++;
2946 if (i == tx_ring->count)
2947 i = 0;
2948
2949 tx_ring->next_to_use = i;
2950
4567dc10 2951 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
58044743 2952
1dc8b538
AD
2953 /* write last descriptor with EOP bit */
2954 td_cmd |= I40E_TX_DESC_CMD_EOP;
2955
2956 /* We can OR these values together as they both are checked against
2957 * 4 below and at this point desc_count will be used as a boolean value
2958 * after this if/else block.
2959 */
2960 desc_count |= ++tx_ring->packet_stride;
2961
58044743 2962 /* Algorithm to optimize tail and RS bit setting:
1dc8b538
AD
2963 * if queue is stopped
2964 * mark RS bit
2965 * reset packet counter
2966 * else if xmit_more is supported and is true
2967 * advance packet counter to 4
2968 * reset desc_count to 0
58044743 2969 *
1dc8b538
AD
2970 * if desc_count >= 4
2971 * mark RS bit
2972 * reset packet counter
2973 * if desc_count > 0
2974 * update tail
58044743 2975 *
1dc8b538 2976 * Note: If there are less than 4 descriptors
58044743
AS
2977 * pending and interrupts were disabled the service task will
2978 * trigger a force WB.
2979 */
1dc8b538
AD
2980 if (netif_xmit_stopped(txring_txq(tx_ring))) {
2981 goto do_rs;
2982 } else if (skb->xmit_more) {
2983 /* set stride to arm on next packet and reset desc_count */
2984 tx_ring->packet_stride = WB_STRIDE;
2985 desc_count = 0;
2986 } else if (desc_count >= WB_STRIDE) {
2987do_rs:
2988 /* write last descriptor with RS bit set */
2989 td_cmd |= I40E_TX_DESC_CMD_RS;
58044743 2990 tx_ring->packet_stride = 0;
58044743 2991 }
58044743
AS
2992
2993 tx_desc->cmd_type_offset_bsz =
1dc8b538
AD
2994 build_ctob(td_cmd, td_offset, size, td_tag);
2995
2996 /* Force memory writes to complete before letting h/w know there
2997 * are new descriptors to fetch.
2998 *
2999 * We also use this memory barrier to make certain all of the
3000 * status bits have been updated before next_to_watch is written.
3001 */
3002 wmb();
3003
3004 /* set next_to_watch value indicating a packet is present */
3005 first->next_to_watch = tx_desc;
58044743 3006
a5e9c572 3007 /* notify HW of packet */
1dc8b538 3008 if (desc_count) {
58044743 3009 writel(i, tx_ring->tail);
1dc8b538
AD
3010
3011 /* we need this if more than one processor can write to our tail
3012 * at a time, it synchronizes IO on IA64/Altix systems
3013 */
3014 mmiowb();
58044743 3015 }
1dc8b538 3016
fd0a05ce
JB
3017 return;
3018
3019dma_error:
a5e9c572 3020 dev_info(tx_ring->dev, "TX DMA map failed\n");
fd0a05ce
JB
3021
3022 /* clear dma mappings for failed tx_bi map */
3023 for (;;) {
3024 tx_bi = &tx_ring->tx_bi[i];
a5e9c572 3025 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
fd0a05ce
JB
3026 if (tx_bi == first)
3027 break;
3028 if (i == 0)
3029 i = tx_ring->count;
3030 i--;
3031 }
3032
fd0a05ce
JB
3033 tx_ring->next_to_use = i;
3034}
3035
fd0a05ce
JB
3036/**
3037 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3038 * @skb: send buffer
3039 * @tx_ring: ring to send buffer on
3040 *
3041 * Returns NETDEV_TX_OK if sent, else an error code
3042 **/
3043static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3044 struct i40e_ring *tx_ring)
3045{
3046 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3047 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3048 struct i40e_tx_buffer *first;
3049 u32 td_offset = 0;
3050 u32 tx_flags = 0;
3051 __be16 protocol;
3052 u32 td_cmd = 0;
3053 u8 hdr_len = 0;
4ec441df 3054 int tso, count;
beb0dff1 3055 int tsyn;
6995b36c 3056
b74118f0
JB
3057 /* prefetch the data, we'll need it later */
3058 prefetch(skb->data);
3059
4ec441df 3060 count = i40e_xmit_descriptor_count(skb);
2d37490b 3061 if (i40e_chk_linearize(skb, count)) {
52ea3e80
AD
3062 if (__skb_linearize(skb)) {
3063 dev_kfree_skb_any(skb);
3064 return NETDEV_TX_OK;
3065 }
5c4654da 3066 count = i40e_txd_use_count(skb->len);
2d37490b
AD
3067 tx_ring->tx_stats.tx_linearize++;
3068 }
4ec441df
AD
3069
3070 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3071 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3072 * + 4 desc gap to avoid the cache line where head is,
3073 * + 1 desc for context descriptor,
3074 * otherwise try next time
3075 */
3076 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3077 tx_ring->tx_stats.tx_busy++;
fd0a05ce 3078 return NETDEV_TX_BUSY;
4ec441df 3079 }
fd0a05ce 3080
52ea3e80
AD
3081 /* record the location of the first descriptor for this packet */
3082 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3083 first->skb = skb;
3084 first->bytecount = skb->len;
3085 first->gso_segs = 1;
3086
fd0a05ce
JB
3087 /* prepare the xmit flags */
3088 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3089 goto out_drop;
3090
3091 /* obtain protocol of skb */
3d34dd03 3092 protocol = vlan_get_protocol(skb);
fd0a05ce 3093
fd0a05ce 3094 /* setup IPv4/IPv6 offloads */
0e2fe46c 3095 if (protocol == htons(ETH_P_IP))
fd0a05ce 3096 tx_flags |= I40E_TX_FLAGS_IPV4;
0e2fe46c 3097 else if (protocol == htons(ETH_P_IPV6))
fd0a05ce
JB
3098 tx_flags |= I40E_TX_FLAGS_IPV6;
3099
52ea3e80 3100 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
fd0a05ce
JB
3101
3102 if (tso < 0)
3103 goto out_drop;
3104 else if (tso)
3105 tx_flags |= I40E_TX_FLAGS_TSO;
3106
3bc67973
AD
3107 /* Always offload the checksum, since it's in the data descriptor */
3108 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3109 tx_ring, &cd_tunneling);
3110 if (tso < 0)
3111 goto out_drop;
3112
beb0dff1
JK
3113 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3114
3115 if (tsyn)
3116 tx_flags |= I40E_TX_FLAGS_TSYN;
3117
259afec7
JK
3118 skb_tx_timestamp(skb);
3119
b1941306
AD
3120 /* always enable CRC insertion offload */
3121 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3122
fd0a05ce
JB
3123 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3124 cd_tunneling, cd_l2tag2);
3125
3126 /* Add Flow Director ATR if it's enabled.
3127 *
3128 * NOTE: this must always be directly before the data descriptor.
3129 */
6b037cd4 3130 i40e_atr(tx_ring, skb, tx_flags);
fd0a05ce
JB
3131
3132 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3133 td_cmd, td_offset);
3134
fd0a05ce
JB
3135 return NETDEV_TX_OK;
3136
3137out_drop:
52ea3e80
AD
3138 dev_kfree_skb_any(first->skb);
3139 first->skb = NULL;
fd0a05ce
JB
3140 return NETDEV_TX_OK;
3141}
3142
3143/**
3144 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3145 * @skb: send buffer
3146 * @netdev: network interface device structure
3147 *
3148 * Returns NETDEV_TX_OK if sent, else an error code
3149 **/
3150netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3151{
3152 struct i40e_netdev_priv *np = netdev_priv(netdev);
3153 struct i40e_vsi *vsi = np->vsi;
9f65e15b 3154 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
fd0a05ce
JB
3155
3156 /* hardware can't handle really short frames, hardware padding works
3157 * beyond this point
3158 */
a94d9e22
AD
3159 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3160 return NETDEV_TX_OK;
fd0a05ce
JB
3161
3162 return i40e_xmit_frame_ring(skb, tx_ring);
3163}