]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/intel/i40e/i40e_txrx.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
CommitLineData
ae06c70b 1// SPDX-License-Identifier: GPL-2.0
51dce24b 2/* Copyright(c) 2013 - 2018 Intel Corporation. */
fd0a05ce 3
1c112a64 4#include <linux/prefetch.h>
0c8493d9 5#include <linux/bpf_trace.h>
87128824 6#include <net/xdp.h>
fd0a05ce 7#include "i40e.h"
ed0980c4 8#include "i40e_trace.h"
206812b5 9#include "i40e_prototype.h"
20a739db 10#include "i40e_txrx_common.h"
0a714186 11#include "i40e_xsk.h"
fd0a05ce 12
eaefbd06 13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
5e02f283
AD
14/**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
21static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23{
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
0e588de1
JK
45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
5e02f283
AD
48 /* Use LAN VSI Id if not programmed by user */
49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55 dtype_cmd |= add ?
56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67 if (fdata->cnt_index) {
68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 ((u32)fdata->cnt_index <<
71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 }
73
74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 fdir_desc->rsvd = cpu_to_le32(0);
76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78}
79
49d7d933 80#define I40E_FD_CLEAN_DELAY 10
fd0a05ce
JB
81/**
82 * i40e_program_fdir_filter - Program a Flow Director filter
17a73f6b
JG
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
b40c82e6 85 * @pf: The PF pointer
fd0a05ce
JB
86 * @add: True for add/update, False for remove
87 **/
1eb846ac
AD
88static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 u8 *raw_packet, struct i40e_pf *pf,
90 bool add)
fd0a05ce 91{
49d7d933 92 struct i40e_tx_buffer *tx_buf, *first;
fd0a05ce
JB
93 struct i40e_tx_desc *tx_desc;
94 struct i40e_ring *tx_ring;
95 struct i40e_vsi *vsi;
96 struct device *dev;
97 dma_addr_t dma;
98 u32 td_cmd = 0;
99 u16 i;
100
101 /* find existing FDIR VSI */
4b816446 102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
fd0a05ce
JB
103 if (!vsi)
104 return -ENOENT;
105
9f65e15b 106 tx_ring = vsi->tx_rings[0];
fd0a05ce
JB
107 dev = tx_ring->dev;
108
49d7d933 109 /* we need two descriptors to add/del a filter and we can wait */
ed245406
AD
110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 if (!i)
112 return -EAGAIN;
49d7d933 113 msleep_interruptible(1);
ed245406 114 }
49d7d933 115
17a73f6b
JG
116 dma = dma_map_single(dev, raw_packet,
117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
fd0a05ce
JB
118 if (dma_mapping_error(dev, dma))
119 goto dma_fail;
120
121 /* grab the next descriptor */
fc4ac67b 122 i = tx_ring->next_to_use;
49d7d933 123 first = &tx_ring->tx_bi[i];
5e02f283 124 i40e_fdir(tx_ring, fdir_data, add);
fd0a05ce
JB
125
126 /* Now program a dummy descriptor */
fc4ac67b
AD
127 i = tx_ring->next_to_use;
128 tx_desc = I40E_TX_DESC(tx_ring, i);
298deef1 129 tx_buf = &tx_ring->tx_bi[i];
fc4ac67b 130
49d7d933
ASJ
131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
fd0a05ce 134
298deef1 135 /* record length, and DMA address */
17a73f6b 136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
298deef1
ASJ
137 dma_unmap_addr_set(tx_buf, dma, dma);
138
fd0a05ce 139 tx_desc->buffer_addr = cpu_to_le64(dma);
eaefbd06 140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
fd0a05ce 141
49d7d933
ASJ
142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 tx_buf->raw_buf = (void *)raw_packet;
144
fd0a05ce 145 tx_desc->cmd_type_offset_bsz =
17a73f6b 146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
fd0a05ce 147
fd0a05ce 148 /* Force memory writes to complete before letting h/w
49d7d933 149 * know there are new descriptors to fetch.
fd0a05ce
JB
150 */
151 wmb();
152
fc4ac67b 153 /* Mark the data descriptor to be watched */
49d7d933 154 first->next_to_watch = tx_desc;
fc4ac67b 155
fd0a05ce
JB
156 writel(tx_ring->next_to_use, tx_ring->tail);
157 return 0;
158
159dma_fail:
160 return -1;
161}
162
17a73f6b
JG
163#define IP_HEADER_OFFSET 14
164#define I40E_UDPIP_DUMMY_PACKET_LEN 42
165/**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
173static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 struct i40e_fdir_filter *fd_data,
49d7d933 175 bool add)
17a73f6b
JG
176{
177 struct i40e_pf *pf = vsi->back;
178 struct udphdr *udp;
179 struct iphdr *ip;
49d7d933 180 u8 *raw_packet;
17a73f6b 181 int ret;
17a73f6b
JG
182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
49d7d933
ASJ
186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 if (!raw_packet)
188 return -ENOMEM;
17a73f6b
JG
189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 + sizeof(struct iphdr));
194
8ce43dce 195 ip->daddr = fd_data->dst_ip;
17a73f6b 196 udp->dest = fd_data->dst_port;
8ce43dce 197 ip->saddr = fd_data->src_ip;
17a73f6b
JG
198 udp->source = fd_data->src_port;
199
0e588de1
JK
200 if (fd_data->flex_filter) {
201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 __be16 pattern = fd_data->flex_word;
203 u16 off = fd_data->flex_offset;
204
205 *((__force __be16 *)(payload + off)) = pattern;
206 }
207
b2d36c03
KS
208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 if (ret) {
211 dev_info(&pf->pdev->dev,
e99bdd39
CW
212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
214 /* Free the packet buffer since it wasn't added to the ring */
215 kfree(raw_packet);
216 return -EOPNOTSUPP;
4205d379 217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
218 if (add)
219 dev_info(&pf->pdev->dev,
220 "Filter OK for PCTYPE %d loc = %d\n",
221 fd_data->pctype, fd_data->fd_id);
222 else
223 dev_info(&pf->pdev->dev,
224 "Filter deleted for PCTYPE %d loc = %d\n",
225 fd_data->pctype, fd_data->fd_id);
17a73f6b 226 }
a42e7a36 227
097dbf52
JK
228 if (add)
229 pf->fd_udp4_filter_cnt++;
230 else
231 pf->fd_udp4_filter_cnt--;
232
e5187ee3 233 return 0;
17a73f6b
JG
234}
235
236#define I40E_TCPIP_DUMMY_PACKET_LEN 54
237/**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
245static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 struct i40e_fdir_filter *fd_data,
49d7d933 247 bool add)
17a73f6b
JG
248{
249 struct i40e_pf *pf = vsi->back;
250 struct tcphdr *tcp;
251 struct iphdr *ip;
49d7d933 252 u8 *raw_packet;
17a73f6b
JG
253 int ret;
254 /* Dummy packet */
255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 0x0, 0x72, 0, 0, 0, 0};
259
49d7d933
ASJ
260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 if (!raw_packet)
262 return -ENOMEM;
17a73f6b
JG
263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 + sizeof(struct iphdr));
268
8ce43dce 269 ip->daddr = fd_data->dst_ip;
17a73f6b 270 tcp->dest = fd_data->dst_port;
8ce43dce 271 ip->saddr = fd_data->src_ip;
17a73f6b
JG
272 tcp->source = fd_data->src_port;
273
0e588de1
JK
274 if (fd_data->flex_filter) {
275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 __be16 pattern = fd_data->flex_word;
277 u16 off = fd_data->flex_offset;
278
279 *((__force __be16 *)(payload + off)) = pattern;
280 }
281
b2d36c03 282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
17a73f6b 283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
17a73f6b
JG
284 if (ret) {
285 dev_info(&pf->pdev->dev,
e99bdd39
CW
286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
288 /* Free the packet buffer since it wasn't added to the ring */
289 kfree(raw_packet);
290 return -EOPNOTSUPP;
4205d379 291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
292 if (add)
293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 fd_data->pctype, fd_data->fd_id);
295 else
296 dev_info(&pf->pdev->dev,
297 "Filter deleted for PCTYPE %d loc = %d\n",
298 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
299 }
300
377cc249 301 if (add) {
097dbf52 302 pf->fd_tcp4_filter_cnt++;
377cc249
JK
303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 I40E_DEBUG_FD & pf->hw.debug_mask)
305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
134201ae 306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
377cc249 307 } else {
097dbf52 308 pf->fd_tcp4_filter_cnt--;
377cc249
JK
309 }
310
e5187ee3 311 return 0;
17a73f6b
JG
312}
313
f223c875
JK
314#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315/**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
324static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 struct i40e_fdir_filter *fd_data,
326 bool add)
327{
328 struct i40e_pf *pf = vsi->back;
329 struct sctphdr *sctp;
330 struct iphdr *ip;
331 u8 *raw_packet;
332 int ret;
333 /* Dummy packet */
334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 if (!raw_packet)
340 return -ENOMEM;
341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 + sizeof(struct iphdr));
346
347 ip->daddr = fd_data->dst_ip;
348 sctp->dest = fd_data->dst_port;
349 ip->saddr = fd_data->src_ip;
350 sctp->source = fd_data->src_port;
351
352 if (fd_data->flex_filter) {
353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 __be16 pattern = fd_data->flex_word;
355 u16 off = fd_data->flex_offset;
356
357 *((__force __be16 *)(payload + off)) = pattern;
358 }
359
360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 if (ret) {
363 dev_info(&pf->pdev->dev,
364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 fd_data->pctype, fd_data->fd_id, ret);
366 /* Free the packet buffer since it wasn't added to the ring */
367 kfree(raw_packet);
368 return -EOPNOTSUPP;
369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 if (add)
371 dev_info(&pf->pdev->dev,
372 "Filter OK for PCTYPE %d loc = %d\n",
373 fd_data->pctype, fd_data->fd_id);
374 else
375 dev_info(&pf->pdev->dev,
376 "Filter deleted for PCTYPE %d loc = %d\n",
377 fd_data->pctype, fd_data->fd_id);
378 }
379
380 if (add)
381 pf->fd_sctp4_filter_cnt++;
382 else
383 pf->fd_sctp4_filter_cnt--;
384
385 return 0;
386}
387
17a73f6b
JG
388#define I40E_IP_DUMMY_PACKET_LEN 34
389/**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
398static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 struct i40e_fdir_filter *fd_data,
49d7d933 400 bool add)
17a73f6b
JG
401{
402 struct i40e_pf *pf = vsi->back;
403 struct iphdr *ip;
49d7d933 404 u8 *raw_packet;
17a73f6b
JG
405 int ret;
406 int i;
407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 0, 0, 0, 0};
410
17a73f6b
JG
411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
49d7d933
ASJ
413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 if (!raw_packet)
415 return -ENOMEM;
416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
8ce43dce
JK
419 ip->saddr = fd_data->src_ip;
420 ip->daddr = fd_data->dst_ip;
49d7d933
ASJ
421 ip->protocol = 0;
422
0e588de1
JK
423 if (fd_data->flex_filter) {
424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 __be16 pattern = fd_data->flex_word;
426 u16 off = fd_data->flex_offset;
427
428 *((__force __be16 *)(payload + off)) = pattern;
429 }
430
17a73f6b
JG
431 fd_data->pctype = i;
432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
17a73f6b
JG
433 if (ret) {
434 dev_info(&pf->pdev->dev,
e99bdd39
CW
435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
437 /* The packet buffer wasn't added to the ring so we
438 * need to free it now.
439 */
440 kfree(raw_packet);
441 return -EOPNOTSUPP;
4205d379 442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
443 if (add)
444 dev_info(&pf->pdev->dev,
445 "Filter OK for PCTYPE %d loc = %d\n",
446 fd_data->pctype, fd_data->fd_id);
447 else
448 dev_info(&pf->pdev->dev,
449 "Filter deleted for PCTYPE %d loc = %d\n",
450 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
451 }
452 }
453
097dbf52
JK
454 if (add)
455 pf->fd_ip4_filter_cnt++;
456 else
457 pf->fd_ip4_filter_cnt--;
458
e5187ee3 459 return 0;
17a73f6b
JG
460}
461
462/**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
f5254429 465 * @input: filter to add or delete
17a73f6b
JG
466 * @add: true adds a filter, false removes it
467 *
468 **/
469int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 struct i40e_fdir_filter *input, bool add)
471{
472 struct i40e_pf *pf = vsi->back;
17a73f6b
JG
473 int ret;
474
17a73f6b
JG
475 switch (input->flow_type & ~FLOW_EXT) {
476 case TCP_V4_FLOW:
49d7d933 477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
478 break;
479 case UDP_V4_FLOW:
49d7d933 480 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 481 break;
f223c875
JK
482 case SCTP_V4_FLOW:
483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 break;
17a73f6b
JG
485 case IP_USER_FLOW:
486 switch (input->ip4_proto) {
487 case IPPROTO_TCP:
49d7d933 488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
489 break;
490 case IPPROTO_UDP:
49d7d933 491 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 492 break;
f223c875
JK
493 case IPPROTO_SCTP:
494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 break;
e1da71ca 496 case IPPROTO_IP:
49d7d933 497 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
17a73f6b 498 break;
e1da71ca
AD
499 default:
500 /* We cannot support masking based on protocol */
a346fb83
JK
501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 input->ip4_proto);
503 return -EINVAL;
17a73f6b
JG
504 }
505 break;
506 default:
a346fb83 507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
17a73f6b 508 input->flow_type);
a346fb83 509 return -EINVAL;
17a73f6b
JG
510 }
511
a158aeaf
JK
512 /* The buffer allocated here will be normally be freed by
513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 * completion. In the event of an error adding the buffer to the FDIR
515 * ring, it will immediately be freed. It may also be freed by
516 * i40e_clean_tx_ring() when closing the VSI.
517 */
17a73f6b
JG
518 return ret;
519}
520
fd0a05ce
JB
521/**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
55a5e60b 524 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
fd0a05ce
JB
525 * @prog_id: the id originally used for programming
526 *
527 * This is used to verify if the FD programming or invalidation
528 * requested by SW to the HW is successful or not and take actions accordingly.
529 **/
20a739db
BT
530void i40e_fd_handle_status(struct i40e_ring *rx_ring,
531 union i40e_rx_desc *rx_desc, u8 prog_id)
fd0a05ce 532{
55a5e60b
ASJ
533 struct i40e_pf *pf = rx_ring->vsi->back;
534 struct pci_dev *pdev = pf->pdev;
535 u32 fcnt_prog, fcnt_avail;
fd0a05ce 536 u32 error;
55a5e60b 537 u64 qw;
fd0a05ce 538
55a5e60b 539 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
fd0a05ce
JB
540 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
541 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
542
41a1d04b 543 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
3487b6c3 544 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
f7233c54
ASJ
545 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
546 (I40E_DEBUG_FD & pf->hw.debug_mask))
547 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
3487b6c3 548 pf->fd_inv);
55a5e60b 549
04294e38
ASJ
550 /* Check if the programming error is for ATR.
551 * If so, auto disable ATR and set a state for
552 * flush in progress. Next time we come here if flush is in
553 * progress do nothing, once flush is complete the state will
554 * be cleared.
555 */
0da36b97 556 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
04294e38
ASJ
557 return;
558
1e1be8f6
ASJ
559 pf->fd_add_err++;
560 /* store the current atr filter count */
561 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
562
04294e38 563 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
134201ae
JK
564 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
565 /* These set_bit() calls aren't atomic with the
566 * test_bit() here, but worse case we potentially
567 * disable ATR and queue a flush right after SB
568 * support is re-enabled. That shouldn't cause an
569 * issue in practice
570 */
571 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
0da36b97 572 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
04294e38
ASJ
573 }
574
55a5e60b 575 /* filter programming failed most likely due to table full */
04294e38 576 fcnt_prog = i40e_get_global_fd_count(pf);
12957388 577 fcnt_avail = pf->fdir_pf_filter_count;
55a5e60b
ASJ
578 /* If ATR is running fcnt_prog can quickly change,
579 * if we are very close to full, it makes sense to disable
580 * FD ATR/SB and then re-enable it when there is room.
581 */
582 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
1e1be8f6 583 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
134201ae
JK
584 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
585 pf->state))
2e4875e3
ASJ
586 if (I40E_DEBUG_FD & pf->hw.debug_mask)
587 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
55a5e60b 588 }
41a1d04b 589 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
13c2884f 590 if (I40E_DEBUG_FD & pf->hw.debug_mask)
e99bdd39 591 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
13c2884f 592 rx_desc->wb.qword0.hi_dword.fd_id);
55a5e60b 593 }
fd0a05ce
JB
594}
595
596/**
a5e9c572 597 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
fd0a05ce
JB
598 * @ring: the ring that owns the buffer
599 * @tx_buffer: the buffer to free
600 **/
a5e9c572
AD
601static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
602 struct i40e_tx_buffer *tx_buffer)
fd0a05ce 603{
a5e9c572 604 if (tx_buffer->skb) {
64bfd68e
AD
605 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
606 kfree(tx_buffer->raw_buf);
74608d17 607 else if (ring_is_xdp(ring))
03993094 608 xdp_return_frame(tx_buffer->xdpf);
64bfd68e
AD
609 else
610 dev_kfree_skb_any(tx_buffer->skb);
a5e9c572 611 if (dma_unmap_len(tx_buffer, len))
fd0a05ce 612 dma_unmap_single(ring->dev,
35a1e2ad
AD
613 dma_unmap_addr(tx_buffer, dma),
614 dma_unmap_len(tx_buffer, len),
fd0a05ce 615 DMA_TO_DEVICE);
a5e9c572
AD
616 } else if (dma_unmap_len(tx_buffer, len)) {
617 dma_unmap_page(ring->dev,
618 dma_unmap_addr(tx_buffer, dma),
619 dma_unmap_len(tx_buffer, len),
620 DMA_TO_DEVICE);
fd0a05ce 621 }
a42e7a36 622
a5e9c572
AD
623 tx_buffer->next_to_watch = NULL;
624 tx_buffer->skb = NULL;
35a1e2ad 625 dma_unmap_len_set(tx_buffer, len, 0);
a5e9c572 626 /* tx_buffer must be completely set up in the transmit path */
fd0a05ce
JB
627}
628
629/**
630 * i40e_clean_tx_ring - Free any empty Tx buffers
631 * @tx_ring: ring to be cleaned
632 **/
633void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
634{
fd0a05ce
JB
635 unsigned long bi_size;
636 u16 i;
637
9dbb1370
BT
638 if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
639 i40e_xsk_clean_tx_ring(tx_ring);
640 } else {
641 /* ring already cleared, nothing to do */
642 if (!tx_ring->tx_bi)
643 return;
fd0a05ce 644
9dbb1370
BT
645 /* Free all the Tx ring sk_buffs */
646 for (i = 0; i < tx_ring->count; i++)
647 i40e_unmap_and_free_tx_resource(tx_ring,
648 &tx_ring->tx_bi[i]);
649 }
fd0a05ce
JB
650
651 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
652 memset(tx_ring->tx_bi, 0, bi_size);
653
654 /* Zero out the descriptor ring */
655 memset(tx_ring->desc, 0, tx_ring->size);
656
657 tx_ring->next_to_use = 0;
658 tx_ring->next_to_clean = 0;
7070ce0a
AD
659
660 if (!tx_ring->netdev)
661 return;
662
663 /* cleanup Tx queue statistics */
e486bdfd 664 netdev_tx_reset_queue(txring_txq(tx_ring));
fd0a05ce
JB
665}
666
667/**
668 * i40e_free_tx_resources - Free Tx resources per queue
669 * @tx_ring: Tx descriptor ring for a specific queue
670 *
671 * Free all transmit software resources
672 **/
673void i40e_free_tx_resources(struct i40e_ring *tx_ring)
674{
675 i40e_clean_tx_ring(tx_ring);
676 kfree(tx_ring->tx_bi);
677 tx_ring->tx_bi = NULL;
678
679 if (tx_ring->desc) {
680 dma_free_coherent(tx_ring->dev, tx_ring->size,
681 tx_ring->desc, tx_ring->dma);
682 tx_ring->desc = NULL;
683 }
684}
685
686/**
687 * i40e_get_tx_pending - how many tx descriptors not processed
f5254429 688 * @ring: the ring of descriptors
04d41051 689 * @in_sw: use SW variables
fd0a05ce
JB
690 *
691 * Since there is no access to the ring head register
692 * in XL710, we need to use our local copies
693 **/
04d41051 694u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
fd0a05ce 695{
a68de58d
JB
696 u32 head, tail;
697
04d41051
AB
698 if (!in_sw) {
699 head = i40e_get_head(ring);
700 tail = readl(ring->tail);
701 } else {
702 head = ring->next_to_clean;
703 tail = ring->next_to_use;
704 }
a68de58d
JB
705
706 if (head != tail)
707 return (head < tail) ?
708 tail - head : (tail + ring->count - head);
709
710 return 0;
fd0a05ce
JB
711}
712
07d44190
SM
713/**
714 * i40e_detect_recover_hung - Function to detect and recover hung_queues
715 * @vsi: pointer to vsi struct with tx queues
716 *
717 * VSI has netdev and netdev has TX queues. This function is to check each of
718 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
719 **/
720void i40e_detect_recover_hung(struct i40e_vsi *vsi)
721{
722 struct i40e_ring *tx_ring = NULL;
723 struct net_device *netdev;
724 unsigned int i;
725 int packets;
726
727 if (!vsi)
728 return;
729
730 if (test_bit(__I40E_VSI_DOWN, vsi->state))
731 return;
732
733 netdev = vsi->netdev;
734 if (!netdev)
735 return;
736
737 if (!netif_carrier_ok(netdev))
738 return;
739
740 for (i = 0; i < vsi->num_queue_pairs; i++) {
741 tx_ring = vsi->tx_rings[i];
742 if (tx_ring && tx_ring->desc) {
743 /* If packet counter has not changed the queue is
744 * likely stalled, so force an interrupt for this
745 * queue.
746 *
747 * prev_pkt_ctr would be negative if there was no
748 * pending work.
749 */
750 packets = tx_ring->stats.packets & INT_MAX;
751 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
752 i40e_force_wb(vsi, tx_ring->q_vector);
753 continue;
754 }
755
756 /* Memory barrier between read of packet count and call
757 * to i40e_get_tx_pending()
758 */
759 smp_rmb();
760 tx_ring->tx_stats.prev_pkt_ctr =
04d41051 761 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
07d44190
SM
762 }
763 }
764}
765
fd0a05ce
JB
766/**
767 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
768 * @vsi: the VSI we care about
769 * @tx_ring: Tx ring to clean
770 * @napi_budget: Used to determine if we are in netpoll
fd0a05ce
JB
771 *
772 * Returns true if there's any budget left (e.g. the clean is finished)
773 **/
a619afe8
AD
774static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
775 struct i40e_ring *tx_ring, int napi_budget)
fd0a05ce 776{
97e42ef4 777 int i = tx_ring->next_to_clean;
fd0a05ce 778 struct i40e_tx_buffer *tx_buf;
1943d8ba 779 struct i40e_tx_desc *tx_head;
fd0a05ce 780 struct i40e_tx_desc *tx_desc;
a619afe8
AD
781 unsigned int total_bytes = 0, total_packets = 0;
782 unsigned int budget = vsi->work_limit;
fd0a05ce
JB
783
784 tx_buf = &tx_ring->tx_bi[i];
785 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572 786 i -= tx_ring->count;
fd0a05ce 787
1943d8ba
JB
788 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
789
a5e9c572
AD
790 do {
791 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
fd0a05ce
JB
792
793 /* if next_to_watch is not set then there is no work pending */
794 if (!eop_desc)
795 break;
796
a5e9c572 797 /* prevent any other reads prior to eop_desc */
52c6912f 798 smp_rmb();
a5e9c572 799
ed0980c4 800 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
1943d8ba
JB
801 /* we have caught up to head, no work left to do */
802 if (tx_head == tx_desc)
fd0a05ce
JB
803 break;
804
c304fdac 805 /* clear next_to_watch to prevent false hangs */
fd0a05ce 806 tx_buf->next_to_watch = NULL;
fd0a05ce 807
a5e9c572
AD
808 /* update the statistics for this packet */
809 total_bytes += tx_buf->bytecount;
810 total_packets += tx_buf->gso_segs;
fd0a05ce 811
74608d17
BT
812 /* free the skb/XDP data */
813 if (ring_is_xdp(tx_ring))
03993094 814 xdp_return_frame(tx_buf->xdpf);
74608d17
BT
815 else
816 napi_consume_skb(tx_buf->skb, napi_budget);
fd0a05ce 817
a5e9c572
AD
818 /* unmap skb header data */
819 dma_unmap_single(tx_ring->dev,
820 dma_unmap_addr(tx_buf, dma),
821 dma_unmap_len(tx_buf, len),
822 DMA_TO_DEVICE);
fd0a05ce 823
a5e9c572
AD
824 /* clear tx_buffer data */
825 tx_buf->skb = NULL;
826 dma_unmap_len_set(tx_buf, len, 0);
fd0a05ce 827
a5e9c572
AD
828 /* unmap remaining buffers */
829 while (tx_desc != eop_desc) {
ed0980c4
SP
830 i40e_trace(clean_tx_irq_unmap,
831 tx_ring, tx_desc, tx_buf);
fd0a05ce
JB
832
833 tx_buf++;
834 tx_desc++;
835 i++;
a5e9c572
AD
836 if (unlikely(!i)) {
837 i -= tx_ring->count;
fd0a05ce
JB
838 tx_buf = tx_ring->tx_bi;
839 tx_desc = I40E_TX_DESC(tx_ring, 0);
840 }
fd0a05ce 841
a5e9c572
AD
842 /* unmap any remaining paged data */
843 if (dma_unmap_len(tx_buf, len)) {
844 dma_unmap_page(tx_ring->dev,
845 dma_unmap_addr(tx_buf, dma),
846 dma_unmap_len(tx_buf, len),
847 DMA_TO_DEVICE);
848 dma_unmap_len_set(tx_buf, len, 0);
849 }
850 }
851
852 /* move us one more past the eop_desc for start of next pkt */
853 tx_buf++;
854 tx_desc++;
855 i++;
856 if (unlikely(!i)) {
857 i -= tx_ring->count;
858 tx_buf = tx_ring->tx_bi;
859 tx_desc = I40E_TX_DESC(tx_ring, 0);
860 }
861
016890b9
JB
862 prefetch(tx_desc);
863
a5e9c572
AD
864 /* update budget accounting */
865 budget--;
866 } while (likely(budget));
867
868 i += tx_ring->count;
fd0a05ce 869 tx_ring->next_to_clean = i;
a96e7472
MK
870 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
871 i40e_arm_wb(tx_ring, vsi, budget);
d91649f5 872
74608d17
BT
873 if (ring_is_xdp(tx_ring))
874 return !!budget;
875
e486bdfd
AD
876 /* notify netdev of completed buffers */
877 netdev_tx_completed_queue(txring_txq(tx_ring),
7070ce0a
AD
878 total_packets, total_bytes);
879
b85c94b6 880#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
fd0a05ce
JB
881 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
882 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
883 /* Make sure that anybody stopping the queue after this
884 * sees the new next_to_clean.
885 */
886 smp_mb();
887 if (__netif_subqueue_stopped(tx_ring->netdev,
888 tx_ring->queue_index) &&
0da36b97 889 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
fd0a05ce
JB
890 netif_wake_subqueue(tx_ring->netdev,
891 tx_ring->queue_index);
892 ++tx_ring->tx_stats.restart_queue;
893 }
894 }
895
d91649f5
JB
896 return !!budget;
897}
898
899/**
ecc6a239 900 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
d91649f5 901 * @vsi: the VSI we care about
ecc6a239 902 * @q_vector: the vector on which to enable writeback
d91649f5
JB
903 *
904 **/
ecc6a239
ASJ
905static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
906 struct i40e_q_vector *q_vector)
d91649f5 907{
8e0764b4 908 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 909 u32 val;
8e0764b4 910
ecc6a239
ASJ
911 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
912 return;
8e0764b4 913
ecc6a239
ASJ
914 if (q_vector->arm_wb_state)
915 return;
8e0764b4 916
ecc6a239
ASJ
917 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
918 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
919 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
a3d772a3 920
ecc6a239 921 wr32(&vsi->back->hw,
a3f9fb5e 922 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
ecc6a239
ASJ
923 val);
924 } else {
925 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
926 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
a3d772a3 927
ecc6a239
ASJ
928 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
929 }
930 q_vector->arm_wb_state = true;
931}
932
933/**
934 * i40e_force_wb - Issue SW Interrupt so HW does a wb
935 * @vsi: the VSI we care about
936 * @q_vector: the vector on which to force writeback
937 *
938 **/
939void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
940{
941 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
8e0764b4
ASJ
942 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
943 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
944 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
945 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
946 /* allow 00 to be written to the index */
947
948 wr32(&vsi->back->hw,
a3f9fb5e 949 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
8e0764b4
ASJ
950 } else {
951 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
952 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
953 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
954 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
955 /* allow 00 to be written to the index */
956
957 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
958 }
fd0a05ce
JB
959}
960
a0073a4b
AD
961static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
962 struct i40e_ring_container *rc)
963{
964 return &q_vector->rx == rc;
965}
966
967static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
968{
969 unsigned int divisor;
970
971 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
972 case I40E_LINK_SPEED_40GB:
973 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
974 break;
975 case I40E_LINK_SPEED_25GB:
976 case I40E_LINK_SPEED_20GB:
977 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
978 break;
979 default:
980 case I40E_LINK_SPEED_10GB:
981 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
982 break;
983 case I40E_LINK_SPEED_1GB:
984 case I40E_LINK_SPEED_100MB:
985 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
986 break;
987 }
988
989 return divisor;
990}
991
fd0a05ce 992/**
a0073a4b
AD
993 * i40e_update_itr - update the dynamic ITR value based on statistics
994 * @q_vector: structure containing interrupt and ring information
fd0a05ce
JB
995 * @rc: structure containing ring performance data
996 *
a0073a4b
AD
997 * Stores a new ITR value based on packets and byte
998 * counts during the last interrupt. The advantage of per interrupt
999 * computation is faster updates and more accurate ITR for the current
1000 * traffic pattern. Constants in this function were computed
1001 * based on theoretical maximum wire speed and thresholds were set based
1002 * on testing data as well as attempting to minimize response time
fd0a05ce
JB
1003 * while increasing bulk throughput.
1004 **/
a0073a4b
AD
1005static void i40e_update_itr(struct i40e_q_vector *q_vector,
1006 struct i40e_ring_container *rc)
fd0a05ce 1007{
a0073a4b
AD
1008 unsigned int avg_wire_size, packets, bytes, itr;
1009 unsigned long next_update = jiffies;
fd0a05ce 1010
a0073a4b
AD
1011 /* If we don't have any rings just leave ourselves set for maximum
1012 * possible latency so we take ourselves out of the equation.
1013 */
71dc3719 1014 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
a0073a4b 1015 return;
71dc3719 1016
a0073a4b
AD
1017 /* For Rx we want to push the delay up and default to low latency.
1018 * for Tx we want to pull the delay down and default to high latency.
1019 */
1020 itr = i40e_container_is_rx(q_vector, rc) ?
1021 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1022 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1023
1024 /* If we didn't update within up to 1 - 2 jiffies we can assume
1025 * that either packets are coming in so slow there hasn't been
1026 * any work, or that there is so much work that NAPI is dealing
1027 * with interrupt moderation and we don't need to do anything.
1028 */
1029 if (time_after(next_update, rc->next_update))
1030 goto clear_counts;
1031
1032 /* If itr_countdown is set it means we programmed an ITR within
1033 * the last 4 interrupt cycles. This has a side effect of us
1034 * potentially firing an early interrupt. In order to work around
1035 * this we need to throw out any data received for a few
1036 * interrupts following the update.
1037 */
1038 if (q_vector->itr_countdown) {
1039 itr = rc->target_itr;
1040 goto clear_counts;
1041 }
fd0a05ce 1042
a0073a4b
AD
1043 packets = rc->total_packets;
1044 bytes = rc->total_bytes;
742c9875 1045
a0073a4b
AD
1046 if (i40e_container_is_rx(q_vector, rc)) {
1047 /* If Rx there are 1 to 4 packets and bytes are less than
1048 * 9000 assume insufficient data to use bulk rate limiting
1049 * approach unless Tx is already in bulk rate limiting. We
1050 * are likely latency driven.
1051 */
1052 if (packets && packets < 4 && bytes < 9000 &&
1053 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1054 itr = I40E_ITR_ADAPTIVE_LATENCY;
1055 goto adjust_by_size;
1056 }
1057 } else if (packets < 4) {
1058 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1059 * bulk mode and we are receiving 4 or fewer packets just
1060 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1061 * that the Rx can relax.
1062 */
1063 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1064 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1065 I40E_ITR_ADAPTIVE_MAX_USECS)
1066 goto clear_counts;
1067 } else if (packets > 32) {
1068 /* If we have processed over 32 packets in a single interrupt
1069 * for Tx assume we need to switch over to "bulk" mode.
1070 */
1071 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1072 }
1073
1074 /* We have no packets to actually measure against. This means
1075 * either one of the other queues on this vector is active or
1076 * we are a Tx queue doing TSO with too high of an interrupt rate.
1077 *
1078 * Between 4 and 56 we can assume that our current interrupt delay
1079 * is only slightly too low. As such we should increase it by a small
1080 * fixed amount.
742c9875 1081 */
a0073a4b
AD
1082 if (packets < 56) {
1083 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1084 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1085 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1086 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1087 }
1088 goto clear_counts;
742c9875
JK
1089 }
1090
a0073a4b
AD
1091 if (packets <= 256) {
1092 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1093 itr &= I40E_ITR_MASK;
1094
1095 /* Between 56 and 112 is our "goldilocks" zone where we are
1096 * working out "just right". Just report that our current
1097 * ITR is good for us.
1098 */
1099 if (packets <= 112)
1100 goto clear_counts;
1101
1102 /* If packet count is 128 or greater we are likely looking
1103 * at a slight overrun of the delay we want. Try halving
1104 * our delay to see if that will cut the number of packets
1105 * in half per interrupt.
1106 */
1107 itr /= 2;
1108 itr &= I40E_ITR_MASK;
1109 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1110 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1111
1112 goto clear_counts;
1113 }
1114
1115 /* The paths below assume we are dealing with a bulk ITR since
1116 * number of packets is greater than 256. We are just going to have
1117 * to compute a value and try to bring the count under control,
1118 * though for smaller packet sizes there isn't much we can do as
1119 * NAPI polling will likely be kicking in sooner rather than later.
1120 */
1121 itr = I40E_ITR_ADAPTIVE_BULK;
1122
1123adjust_by_size:
1124 /* If packet counts are 256 or greater we can assume we have a gross
1125 * overestimation of what the rate should be. Instead of trying to fine
1126 * tune it just use the formula below to try and dial in an exact value
1127 * give the current packet size of the frame.
1128 */
1129 avg_wire_size = bytes / packets;
1130
1131 /* The following is a crude approximation of:
1132 * wmem_default / (size + overhead) = desired_pkts_per_int
1133 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1134 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
51cc6d9f 1135 *
a0073a4b
AD
1136 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1137 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1138 * formula down to
1139 *
1140 * (170 * (size + 24)) / (size + 640) = ITR
1141 *
1142 * We first do some math on the packet size and then finally bitshift
1143 * by 8 after rounding up. We also have to account for PCIe link speed
1144 * difference as ITR scales based on this.
fd0a05ce 1145 */
a0073a4b
AD
1146 if (avg_wire_size <= 60) {
1147 /* Start at 250k ints/sec */
1148 avg_wire_size = 4096;
1149 } else if (avg_wire_size <= 380) {
1150 /* 250K ints/sec to 60K ints/sec */
1151 avg_wire_size *= 40;
1152 avg_wire_size += 1696;
1153 } else if (avg_wire_size <= 1084) {
1154 /* 60K ints/sec to 36K ints/sec */
1155 avg_wire_size *= 15;
1156 avg_wire_size += 11452;
1157 } else if (avg_wire_size <= 1980) {
1158 /* 36K ints/sec to 30K ints/sec */
1159 avg_wire_size *= 5;
1160 avg_wire_size += 22420;
1161 } else {
1162 /* plateau at a limit of 30K ints/sec */
1163 avg_wire_size = 32256;
fd0a05ce 1164 }
c56625d5 1165
a0073a4b
AD
1166 /* If we are in low latency mode halve our delay which doubles the
1167 * rate to somewhere between 100K to 16K ints/sec
1168 */
1169 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1170 avg_wire_size /= 2;
fd0a05ce 1171
a0073a4b
AD
1172 /* Resultant value is 256 times larger than it needs to be. This
1173 * gives us room to adjust the value as needed to either increase
1174 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1175 *
1176 * Use addition as we have already recorded the new latency flag
1177 * for the ITR value.
1178 */
1179 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1180 I40E_ITR_ADAPTIVE_MIN_INC;
1181
1182 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1183 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1184 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
fd0a05ce
JB
1185 }
1186
a0073a4b
AD
1187clear_counts:
1188 /* write back value */
1189 rc->target_itr = itr;
1190
1191 /* next update should occur within next jiffy */
1192 rc->next_update = next_update + 1;
1193
fd0a05ce
JB
1194 rc->total_bytes = 0;
1195 rc->total_packets = 0;
1196}
1197
2b9478ff
AD
1198/**
1199 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1200 * @rx_ring: rx descriptor ring to store buffers on
1201 * @old_buff: donor buffer to have page reused
1202 *
1203 * Synchronizes page for reuse by the adapter
1204 **/
1205static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1206 struct i40e_rx_buffer *old_buff)
1207{
1208 struct i40e_rx_buffer *new_buff;
1209 u16 nta = rx_ring->next_to_alloc;
1210
1211 new_buff = &rx_ring->rx_bi[nta];
1212
1213 /* update, and store next to alloc */
1214 nta++;
1215 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1216
1217 /* transfer page from old buffer to new buffer */
1218 new_buff->dma = old_buff->dma;
1219 new_buff->page = old_buff->page;
1220 new_buff->page_offset = old_buff->page_offset;
1221 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
6d7aad1d
BT
1222
1223 rx_ring->rx_stats.page_reuse_count++;
1224
1225 /* clear contents of buffer_info */
1226 old_buff->page = NULL;
2b9478ff
AD
1227}
1228
0e626ff7
AD
1229/**
1230 * i40e_rx_is_programming_status - check for programming status descriptor
1231 * @qw: qword representing status_error_len in CPU ordering
1232 *
1233 * The value of in the descriptor length field indicate if this
1234 * is a programming status descriptor for flow director or FCoE
1235 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1236 * it is a packet descriptor.
1237 **/
1238static inline bool i40e_rx_is_programming_status(u64 qw)
1239{
1240 /* The Rx filter programming status and SPH bit occupy the same
1241 * spot in the descriptor. Since we don't support packet split we
1242 * can just reuse the bit as an indication that this is a
1243 * programming status descriptor.
1244 */
1245 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1246}
1247
fd0a05ce 1248/**
6d7aad1d 1249 * i40e_clean_programming_status - try clean the programming status descriptor
fd0a05ce
JB
1250 * @rx_ring: the rx ring that has this descriptor
1251 * @rx_desc: the rx descriptor written back by HW
0e626ff7 1252 * @qw: qword representing status_error_len in CPU ordering
fd0a05ce
JB
1253 *
1254 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1255 * status being successful or not and take actions accordingly. FCoE should
1256 * handle its context/filter programming/invalidation status and take actions.
1257 *
6d7aad1d 1258 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
fd0a05ce 1259 **/
20a739db 1260struct i40e_rx_buffer *i40e_clean_programming_status(
6d7aad1d
BT
1261 struct i40e_ring *rx_ring,
1262 union i40e_rx_desc *rx_desc,
1263 u64 qw)
fd0a05ce 1264{
2b9478ff 1265 struct i40e_rx_buffer *rx_buffer;
6d7aad1d 1266 u32 ntc;
fd0a05ce
JB
1267 u8 id;
1268
6d7aad1d
BT
1269 if (!i40e_rx_is_programming_status(qw))
1270 return NULL;
1271
1272 ntc = rx_ring->next_to_clean;
1273
0e626ff7 1274 /* fetch, update, and store next to clean */
2b9478ff 1275 rx_buffer = &rx_ring->rx_bi[ntc++];
0e626ff7
AD
1276 ntc = (ntc < rx_ring->count) ? ntc : 0;
1277 rx_ring->next_to_clean = ntc;
1278
1279 prefetch(I40E_RX_DESC(rx_ring, ntc));
1280
fd0a05ce
JB
1281 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1282 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1283
1284 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
55a5e60b 1285 i40e_fd_handle_status(rx_ring, rx_desc, id);
6d7aad1d
BT
1286
1287 return rx_buffer;
fd0a05ce
JB
1288}
1289
1290/**
1291 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1292 * @tx_ring: the tx ring to set up
1293 *
1294 * Return 0 on success, negative on error
1295 **/
1296int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1297{
1298 struct device *dev = tx_ring->dev;
1299 int bi_size;
1300
1301 if (!dev)
1302 return -ENOMEM;
1303
e908f815
JB
1304 /* warn if we are about to overwrite the pointer */
1305 WARN_ON(tx_ring->tx_bi);
fd0a05ce
JB
1306 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1307 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1308 if (!tx_ring->tx_bi)
1309 goto err;
1310
7d6d0677
FF
1311 u64_stats_init(&tx_ring->syncp);
1312
fd0a05ce
JB
1313 /* round up to nearest 4K */
1314 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
1315 /* add u32 for head writeback, align after this takes care of
1316 * guaranteeing this is at least one cache line in size
1317 */
1318 tx_ring->size += sizeof(u32);
fd0a05ce
JB
1319 tx_ring->size = ALIGN(tx_ring->size, 4096);
1320 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1321 &tx_ring->dma, GFP_KERNEL);
1322 if (!tx_ring->desc) {
1323 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1324 tx_ring->size);
1325 goto err;
1326 }
1327
1328 tx_ring->next_to_use = 0;
1329 tx_ring->next_to_clean = 0;
07d44190 1330 tx_ring->tx_stats.prev_pkt_ctr = -1;
fd0a05ce
JB
1331 return 0;
1332
1333err:
1334 kfree(tx_ring->tx_bi);
1335 tx_ring->tx_bi = NULL;
1336 return -ENOMEM;
1337}
1338
1339/**
1340 * i40e_clean_rx_ring - Free Rx buffers
1341 * @rx_ring: ring to be cleaned
1342 **/
1343void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1344{
fd0a05ce
JB
1345 unsigned long bi_size;
1346 u16 i;
1347
1348 /* ring already cleared, nothing to do */
1349 if (!rx_ring->rx_bi)
1350 return;
1351
e72e5659
SP
1352 if (rx_ring->skb) {
1353 dev_kfree_skb(rx_ring->skb);
1354 rx_ring->skb = NULL;
1355 }
1356
411dc16f
BT
1357 if (rx_ring->xsk_umem) {
1358 i40e_xsk_clean_rx_ring(rx_ring);
0a714186 1359 goto skip_free;
411dc16f 1360 }
0a714186 1361
fd0a05ce
JB
1362 /* Free all the Rx ring sk_buffs */
1363 for (i = 0; i < rx_ring->count; i++) {
1a557afc
JB
1364 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1365
1a557afc
JB
1366 if (!rx_bi->page)
1367 continue;
1368
59605bc0
AD
1369 /* Invalidate cache lines that may have been written to by
1370 * device so that we avoid corrupting memory.
1371 */
1372 dma_sync_single_range_for_cpu(rx_ring->dev,
1373 rx_bi->dma,
1374 rx_bi->page_offset,
98efd694 1375 rx_ring->rx_buf_len,
59605bc0
AD
1376 DMA_FROM_DEVICE);
1377
1378 /* free resources associated with mapping */
1379 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
98efd694 1380 i40e_rx_pg_size(rx_ring),
59605bc0
AD
1381 DMA_FROM_DEVICE,
1382 I40E_RX_DMA_ATTR);
98efd694 1383
1793668c 1384 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1a557afc
JB
1385
1386 rx_bi->page = NULL;
1387 rx_bi->page_offset = 0;
fd0a05ce
JB
1388 }
1389
0a714186 1390skip_free:
fd0a05ce
JB
1391 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1392 memset(rx_ring->rx_bi, 0, bi_size);
1393
1394 /* Zero out the descriptor ring */
1395 memset(rx_ring->desc, 0, rx_ring->size);
1396
1a557afc 1397 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1398 rx_ring->next_to_clean = 0;
1399 rx_ring->next_to_use = 0;
1400}
1401
1402/**
1403 * i40e_free_rx_resources - Free Rx resources
1404 * @rx_ring: ring to clean the resources from
1405 *
1406 * Free all receive software resources
1407 **/
1408void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1409{
1410 i40e_clean_rx_ring(rx_ring);
87128824
JDB
1411 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1412 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
0c8493d9 1413 rx_ring->xdp_prog = NULL;
fd0a05ce
JB
1414 kfree(rx_ring->rx_bi);
1415 rx_ring->rx_bi = NULL;
1416
1417 if (rx_ring->desc) {
1418 dma_free_coherent(rx_ring->dev, rx_ring->size,
1419 rx_ring->desc, rx_ring->dma);
1420 rx_ring->desc = NULL;
1421 }
1422}
1423
1424/**
1425 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1426 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1427 *
1428 * Returns 0 on success, negative on failure
1429 **/
1430int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1431{
1432 struct device *dev = rx_ring->dev;
87128824 1433 int err = -ENOMEM;
fd0a05ce
JB
1434 int bi_size;
1435
e908f815
JB
1436 /* warn if we are about to overwrite the pointer */
1437 WARN_ON(rx_ring->rx_bi);
fd0a05ce
JB
1438 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1439 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1440 if (!rx_ring->rx_bi)
1441 goto err;
1442
f217d6ca 1443 u64_stats_init(&rx_ring->syncp);
638702bd 1444
fd0a05ce 1445 /* Round up to nearest 4K */
1a557afc 1446 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
fd0a05ce
JB
1447 rx_ring->size = ALIGN(rx_ring->size, 4096);
1448 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1449 &rx_ring->dma, GFP_KERNEL);
1450
1451 if (!rx_ring->desc) {
1452 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1453 rx_ring->size);
1454 goto err;
1455 }
1456
1a557afc 1457 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1458 rx_ring->next_to_clean = 0;
1459 rx_ring->next_to_use = 0;
1460
87128824
JDB
1461 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1462 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1463 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1464 rx_ring->queue_index);
1465 if (err < 0)
1466 goto err;
1467 }
1468
0c8493d9
BT
1469 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1470
fd0a05ce
JB
1471 return 0;
1472err:
1473 kfree(rx_ring->rx_bi);
1474 rx_ring->rx_bi = NULL;
87128824 1475 return err;
fd0a05ce
JB
1476}
1477
1478/**
1479 * i40e_release_rx_desc - Store the new tail and head values
1480 * @rx_ring: ring to bump
1481 * @val: new head index
1482 **/
20a739db 1483void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
fd0a05ce
JB
1484{
1485 rx_ring->next_to_use = val;
1a557afc
JB
1486
1487 /* update next to alloc since we have filled the ring */
1488 rx_ring->next_to_alloc = val;
1489
fd0a05ce
JB
1490 /* Force memory writes to complete before letting h/w
1491 * know there are new descriptors to fetch. (Only
1492 * applicable for weak-ordered memory model archs,
1493 * such as IA-64).
1494 */
1495 wmb();
1496 writel(val, rx_ring->tail);
1497}
1498
ca9ec088
AD
1499/**
1500 * i40e_rx_offset - Return expected offset into page to access data
1501 * @rx_ring: Ring we are requesting offset of
1502 *
1503 * Returns the offset value for ring into the data buffer.
1504 */
1505static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1506{
1507 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1508}
1509
fd0a05ce 1510/**
1a557afc
JB
1511 * i40e_alloc_mapped_page - recycle or make a new page
1512 * @rx_ring: ring to use
1513 * @bi: rx_buffer struct to modify
c2e245ab 1514 *
1a557afc
JB
1515 * Returns true if the page was successfully allocated or
1516 * reused.
fd0a05ce 1517 **/
1a557afc
JB
1518static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1519 struct i40e_rx_buffer *bi)
a132af24 1520{
1a557afc
JB
1521 struct page *page = bi->page;
1522 dma_addr_t dma;
a132af24 1523
1a557afc
JB
1524 /* since we are recycling buffers we should seldom need to alloc */
1525 if (likely(page)) {
1526 rx_ring->rx_stats.page_reuse_count++;
1527 return true;
1528 }
a132af24 1529
1a557afc 1530 /* alloc new page for storage */
98efd694 1531 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1a557afc
JB
1532 if (unlikely(!page)) {
1533 rx_ring->rx_stats.alloc_page_failed++;
1534 return false;
1535 }
a132af24 1536
1a557afc 1537 /* map page for use */
59605bc0 1538 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
98efd694 1539 i40e_rx_pg_size(rx_ring),
59605bc0
AD
1540 DMA_FROM_DEVICE,
1541 I40E_RX_DMA_ATTR);
f16704e5 1542
1a557afc
JB
1543 /* if mapping failed free memory back to system since
1544 * there isn't much point in holding memory we can't use
f16704e5 1545 */
1a557afc 1546 if (dma_mapping_error(rx_ring->dev, dma)) {
98efd694 1547 __free_pages(page, i40e_rx_pg_order(rx_ring));
1a557afc
JB
1548 rx_ring->rx_stats.alloc_page_failed++;
1549 return false;
a132af24
MW
1550 }
1551
1a557afc
JB
1552 bi->dma = dma;
1553 bi->page = page;
ca9ec088 1554 bi->page_offset = i40e_rx_offset(rx_ring);
8ce29c67
BT
1555 page_ref_add(page, USHRT_MAX - 1);
1556 bi->pagecnt_bias = USHRT_MAX;
c2e245ab 1557
1a557afc
JB
1558 return true;
1559}
c2e245ab 1560
a132af24 1561/**
1a557afc 1562 * i40e_alloc_rx_buffers - Replace used receive buffers
a132af24
MW
1563 * @rx_ring: ring to place buffers on
1564 * @cleaned_count: number of buffers to replace
c2e245ab 1565 *
1a557afc 1566 * Returns false if all allocations were successful, true if any fail
a132af24 1567 **/
1a557afc 1568bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
fd0a05ce 1569{
1a557afc 1570 u16 ntu = rx_ring->next_to_use;
fd0a05ce
JB
1571 union i40e_rx_desc *rx_desc;
1572 struct i40e_rx_buffer *bi;
fd0a05ce
JB
1573
1574 /* do nothing if no valid netdev defined */
1575 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 1576 return false;
fd0a05ce 1577
1a557afc
JB
1578 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1579 bi = &rx_ring->rx_bi[ntu];
fd0a05ce 1580
1a557afc
JB
1581 do {
1582 if (!i40e_alloc_mapped_page(rx_ring, bi))
1583 goto no_buffers;
fd0a05ce 1584
59605bc0
AD
1585 /* sync the buffer for use by the device */
1586 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1587 bi->page_offset,
98efd694 1588 rx_ring->rx_buf_len,
59605bc0
AD
1589 DMA_FROM_DEVICE);
1590
1a557afc
JB
1591 /* Refresh the desc even if buffer_addrs didn't change
1592 * because each write-back erases this info.
1593 */
1594 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
fd0a05ce 1595
1a557afc
JB
1596 rx_desc++;
1597 bi++;
1598 ntu++;
1599 if (unlikely(ntu == rx_ring->count)) {
1600 rx_desc = I40E_RX_DESC(rx_ring, 0);
1601 bi = rx_ring->rx_bi;
1602 ntu = 0;
1603 }
1604
1605 /* clear the status bits for the next_to_use descriptor */
1606 rx_desc->wb.qword1.status_error_len = 0;
1607
1608 cleaned_count--;
1609 } while (cleaned_count);
1610
1611 if (rx_ring->next_to_use != ntu)
1612 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1613
1614 return false;
1615
fd0a05ce 1616no_buffers:
1a557afc
JB
1617 if (rx_ring->next_to_use != ntu)
1618 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1619
1620 /* make sure to come back via polling to try again after
1621 * allocation failure
1622 */
1623 return true;
fd0a05ce
JB
1624}
1625
fd0a05ce
JB
1626/**
1627 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1628 * @vsi: the VSI we care about
1629 * @skb: skb currently being received and modified
1a557afc 1630 * @rx_desc: the receive descriptor
fd0a05ce
JB
1631 **/
1632static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1633 struct sk_buff *skb,
1a557afc 1634 union i40e_rx_desc *rx_desc)
fd0a05ce 1635{
1a557afc 1636 struct i40e_rx_ptype_decoded decoded;
1a557afc 1637 u32 rx_error, rx_status;
858296c8 1638 bool ipv4, ipv6;
1a557afc
JB
1639 u8 ptype;
1640 u64 qword;
1641
1642 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1643 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1644 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1645 I40E_RXD_QW1_ERROR_SHIFT;
1646 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1647 I40E_RXD_QW1_STATUS_SHIFT;
1648 decoded = decode_rx_desc_ptype(ptype);
8144f0f7 1649
fd0a05ce
JB
1650 skb->ip_summed = CHECKSUM_NONE;
1651
1a557afc
JB
1652 skb_checksum_none_assert(skb);
1653
fd0a05ce 1654 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
1655 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1656 return;
1657
1658 /* did the hardware decode the packet and checksum? */
41a1d04b 1659 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
1660 return;
1661
1662 /* both known and outer_ip must be set for the below code to work */
1663 if (!(decoded.known && decoded.outer_ip))
fd0a05ce
JB
1664 return;
1665
fad57330
AD
1666 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1668 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1669 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
1670
1671 if (ipv4 &&
41a1d04b
JB
1672 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1673 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
1674 goto checksum_fail;
1675
ddf1d0d7 1676 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 1677 if (ipv6 &&
41a1d04b 1678 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 1679 /* don't increment checksum err here, non-fatal err */
8ee75a8e
SN
1680 return;
1681
8a3c91cc 1682 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 1683 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
1684 goto checksum_fail;
1685
1686 /* handle packets that were not able to be checksummed due
1687 * to arrival speed, in this case the stack can compute
1688 * the csum.
1689 */
41a1d04b 1690 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
fd0a05ce 1691 return;
fd0a05ce 1692
858296c8
AD
1693 /* If there is an outer header present that might contain a checksum
1694 * we need to bump the checksum level by 1 to reflect the fact that
1695 * we are indicating we validated the inner checksum.
8a3c91cc 1696 */
858296c8
AD
1697 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1698 skb->csum_level = 1;
1699
1700 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1701 switch (decoded.inner_prot) {
1702 case I40E_RX_PTYPE_INNER_PROT_TCP:
1703 case I40E_RX_PTYPE_INNER_PROT_UDP:
1704 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1705 skb->ip_summed = CHECKSUM_UNNECESSARY;
1706 /* fall though */
1707 default:
1708 break;
1709 }
8a3c91cc
JB
1710
1711 return;
1712
1713checksum_fail:
1714 vsi->back->hw_csum_rx_error++;
fd0a05ce
JB
1715}
1716
1717/**
857942fd 1718 * i40e_ptype_to_htype - get a hash type
206812b5
JB
1719 * @ptype: the ptype value from the descriptor
1720 *
1721 * Returns a hash type to be used by skb_set_hash
1722 **/
1a557afc 1723static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
1724{
1725 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1726
1727 if (!decoded.known)
1728 return PKT_HASH_TYPE_NONE;
1729
1730 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1731 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1732 return PKT_HASH_TYPE_L4;
1733 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1734 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1735 return PKT_HASH_TYPE_L3;
1736 else
1737 return PKT_HASH_TYPE_L2;
1738}
1739
857942fd
ASJ
1740/**
1741 * i40e_rx_hash - set the hash value in the skb
1742 * @ring: descriptor ring
1743 * @rx_desc: specific descriptor
f5254429
JK
1744 * @skb: skb currently being received and modified
1745 * @rx_ptype: Rx packet type
857942fd
ASJ
1746 **/
1747static inline void i40e_rx_hash(struct i40e_ring *ring,
1748 union i40e_rx_desc *rx_desc,
1749 struct sk_buff *skb,
1750 u8 rx_ptype)
1751{
1752 u32 hash;
1a557afc 1753 const __le64 rss_mask =
857942fd
ASJ
1754 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1755 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1756
a876c3ba 1757 if (!(ring->netdev->features & NETIF_F_RXHASH))
857942fd
ASJ
1758 return;
1759
1760 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1761 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1762 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1763 }
1764}
1765
a132af24 1766/**
1a557afc
JB
1767 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1768 * @rx_ring: rx descriptor ring packet is being transacted on
1769 * @rx_desc: pointer to the EOP Rx descriptor
1770 * @skb: pointer to current skb being populated
1771 * @rx_ptype: the packet type decoded by hardware
1772 *
1773 * This function checks the ring, descriptor, and packet information in
1774 * order to populate the hash, checksum, VLAN, protocol, and
1775 * other fields within the skb.
1776 **/
1a557afc 1777void i40e_process_skb_fields(struct i40e_ring *rx_ring,
800b8f63 1778 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1a557afc
JB
1779{
1780 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1781 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1782 I40E_RXD_QW1_STATUS_SHIFT;
144ed176
JK
1783 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1784 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1a557afc 1785 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
800b8f63
MM
1786 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1787 I40E_RXD_QW1_PTYPE_SHIFT;
1a557afc 1788
12490501 1789 if (unlikely(tsynvalid))
144ed176 1790 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1a557afc
JB
1791
1792 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1793
1a557afc
JB
1794 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1795
1796 skb_record_rx_queue(skb, rx_ring->queue_index);
a5b268e4 1797
2a508c64
MM
1798 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1799 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1800
1801 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1802 le16_to_cpu(vlan_tag));
1803 }
1804
a5b268e4
AD
1805 /* modifies the skb - consumes the enet header */
1806 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1a557afc
JB
1807}
1808
1a557afc
JB
1809/**
1810 * i40e_cleanup_headers - Correct empty headers
1811 * @rx_ring: rx descriptor ring packet is being transacted on
1812 * @skb: pointer to current skb being fixed
0c8493d9 1813 * @rx_desc: pointer to the EOP Rx descriptor
1a557afc
JB
1814 *
1815 * Also address the case where we are pulling data in on pages only
1816 * and as such no data is present in the skb header.
1817 *
1818 * In addition if skb is not at least 60 bytes we need to pad it so that
1819 * it is large enough to qualify as a valid Ethernet frame.
1820 *
1821 * Returns true if an error was encountered and skb was freed.
1822 **/
0c8493d9
BT
1823static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1824 union i40e_rx_desc *rx_desc)
1825
1a557afc 1826{
0c8493d9
BT
1827 /* XDP packets use error pointer so abort at this point */
1828 if (IS_ERR(skb))
1829 return true;
1830
1831 /* ERR_MASK will only have valid bits if EOP set, and
1832 * what we are doing here is actually checking
1833 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1834 * the error field
1835 */
1836 if (unlikely(i40e_test_staterr(rx_desc,
1837 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1838 dev_kfree_skb_any(skb);
1839 return true;
1840 }
1841
1a557afc
JB
1842 /* if eth_skb_pad returns an error the skb was freed */
1843 if (eth_skb_pad(skb))
1844 return true;
1845
1846 return false;
1847}
1848
1a557afc 1849/**
9b37c937 1850 * i40e_page_is_reusable - check if any reuse is possible
1a557afc 1851 * @page: page struct to check
9b37c937
SP
1852 *
1853 * A page is not reusable if it was allocated under low memory
1854 * conditions, or it's not in the same NUMA node as this CPU.
1a557afc 1855 */
9b37c937 1856static inline bool i40e_page_is_reusable(struct page *page)
1a557afc 1857{
9b37c937
SP
1858 return (page_to_nid(page) == numa_mem_id()) &&
1859 !page_is_pfmemalloc(page);
1860}
1861
1862/**
1863 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1864 * the adapter for another receive
1865 *
1866 * @rx_buffer: buffer containing the page
9b37c937
SP
1867 *
1868 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1869 * an unused region in the page.
1870 *
1871 * For small pages, @truesize will be a constant value, half the size
1872 * of the memory at page. We'll attempt to alternate between high and
1873 * low halves of the page, with one half ready for use by the hardware
1874 * and the other half being consumed by the stack. We use the page
1875 * ref count to determine whether the stack has finished consuming the
1876 * portion of this page that was passed up with a previous packet. If
1877 * the page ref count is >1, we'll assume the "other" half page is
1878 * still busy, and this page cannot be reused.
1879 *
1880 * For larger pages, @truesize will be the actual space used by the
1881 * received packet (adjusted upward to an even multiple of the cache
1882 * line size). This will advance through the page by the amount
1883 * actually consumed by the received packets while there is still
1884 * space for a buffer. Each region of larger pages will be used at
1885 * most once, after which the page will not be reused.
1886 *
1887 * In either case, if the page is reusable its refcount is increased.
1888 **/
a0cfc313 1889static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
9b37c937 1890{
a0cfc313
AD
1891 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1892 struct page *page = rx_buffer->page;
9b37c937
SP
1893
1894 /* Is any reuse possible? */
1895 if (unlikely(!i40e_page_is_reusable(page)))
1896 return false;
1897
1898#if (PAGE_SIZE < 8192)
1899 /* if we are only owner of page we can reuse it */
a0cfc313 1900 if (unlikely((page_count(page) - pagecnt_bias) > 1))
9b37c937 1901 return false;
9b37c937 1902#else
98efd694
AD
1903#define I40E_LAST_OFFSET \
1904 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1905 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
9b37c937
SP
1906 return false;
1907#endif
1908
1793668c
AD
1909 /* If we have drained the page fragment pool we need to update
1910 * the pagecnt_bias and page count so that we fully restock the
1911 * number of references the driver holds.
1912 */
8ce29c67
BT
1913 if (unlikely(pagecnt_bias == 1)) {
1914 page_ref_add(page, USHRT_MAX - 1);
1793668c
AD
1915 rx_buffer->pagecnt_bias = USHRT_MAX;
1916 }
a0cfc313 1917
9b37c937 1918 return true;
1a557afc
JB
1919}
1920
1921/**
1922 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1923 * @rx_ring: rx descriptor ring to transact packets on
1924 * @rx_buffer: buffer containing page to add
1a557afc 1925 * @skb: sk_buff to place the data into
a0cfc313 1926 * @size: packet length from rx_desc
1a557afc
JB
1927 *
1928 * This function will add the data contained in rx_buffer->page to the skb.
fa2343e9 1929 * It will just attach the page as a frag to the skb.
1a557afc 1930 *
fa2343e9 1931 * The function will then update the page offset.
1a557afc 1932 **/
a0cfc313 1933static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1a557afc 1934 struct i40e_rx_buffer *rx_buffer,
a0cfc313
AD
1935 struct sk_buff *skb,
1936 unsigned int size)
1a557afc 1937{
1a557afc 1938#if (PAGE_SIZE < 8192)
98efd694 1939 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1a557afc 1940#else
ca9ec088 1941 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1a557afc 1942#endif
1a557afc 1943
fa2343e9
AD
1944 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1945 rx_buffer->page_offset, size, truesize);
1a557afc 1946
a0cfc313
AD
1947 /* page is being used so we must update the page offset */
1948#if (PAGE_SIZE < 8192)
1949 rx_buffer->page_offset ^= truesize;
1950#else
1951 rx_buffer->page_offset += truesize;
1952#endif
1a557afc
JB
1953}
1954
9a064128
AD
1955/**
1956 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1957 * @rx_ring: rx descriptor ring to transact packets on
1958 * @size: size of buffer to add to skb
1959 *
1960 * This function will pull an Rx buffer from the ring and synchronize it
1961 * for use by the CPU.
1962 */
1963static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1964 const unsigned int size)
1965{
1966 struct i40e_rx_buffer *rx_buffer;
1967
1968 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1969 prefetchw(rx_buffer->page);
1970
1971 /* we are reusing so sync this buffer for CPU use */
1972 dma_sync_single_range_for_cpu(rx_ring->dev,
1973 rx_buffer->dma,
1974 rx_buffer->page_offset,
1975 size,
1976 DMA_FROM_DEVICE);
1977
a0cfc313
AD
1978 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1979 rx_buffer->pagecnt_bias--;
1980
9a064128
AD
1981 return rx_buffer;
1982}
1983
1a557afc 1984/**
fa2343e9 1985 * i40e_construct_skb - Allocate skb and populate it
1a557afc 1986 * @rx_ring: rx descriptor ring to transact packets on
9a064128 1987 * @rx_buffer: rx buffer to pull data from
0c8493d9 1988 * @xdp: xdp_buff pointing to the data
a132af24 1989 *
fa2343e9
AD
1990 * This function allocates an skb. It then populates it with the page
1991 * data from the current receive descriptor, taking care to set up the
1992 * skb correctly.
1a557afc 1993 */
fa2343e9
AD
1994static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1995 struct i40e_rx_buffer *rx_buffer,
0c8493d9 1996 struct xdp_buff *xdp)
1a557afc 1997{
0c8493d9 1998 unsigned int size = xdp->data_end - xdp->data;
fa2343e9 1999#if (PAGE_SIZE < 8192)
98efd694 2000 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
fa2343e9
AD
2001#else
2002 unsigned int truesize = SKB_DATA_ALIGN(size);
2003#endif
2004 unsigned int headlen;
2005 struct sk_buff *skb;
1a557afc 2006
fa2343e9 2007 /* prefetch first cache line of first page */
0c8493d9 2008 prefetch(xdp->data);
1a557afc 2009#if L1_CACHE_BYTES < 128
0c8493d9 2010 prefetch(xdp->data + L1_CACHE_BYTES);
1a557afc 2011#endif
cc5b114d
DB
2012 /* Note, we get here by enabling legacy-rx via:
2013 *
2014 * ethtool --set-priv-flags <dev> legacy-rx on
2015 *
2016 * In this mode, we currently get 0 extra XDP headroom as
2017 * opposed to having legacy-rx off, where we process XDP
2018 * packets going to stack via i40e_build_skb(). The latter
2019 * provides us currently with 192 bytes of headroom.
2020 *
2021 * For i40e_construct_skb() mode it means that the
2022 * xdp->data_meta will always point to xdp->data, since
2023 * the helper cannot expand the head. Should this ever
2024 * change in future for legacy-rx mode on, then lets also
2025 * add xdp->data_meta handling here.
2026 */
1a557afc 2027
fa2343e9
AD
2028 /* allocate a skb to store the frags */
2029 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2030 I40E_RX_HDR_SIZE,
2031 GFP_ATOMIC | __GFP_NOWARN);
2032 if (unlikely(!skb))
2033 return NULL;
2034
2035 /* Determine available headroom for copy */
2036 headlen = size;
2037 if (headlen > I40E_RX_HDR_SIZE)
c43f1255
SF
2038 headlen = eth_get_headlen(skb->dev, xdp->data,
2039 I40E_RX_HDR_SIZE);
1a557afc 2040
fa2343e9 2041 /* align pull length to size of long to optimize memcpy performance */
0c8493d9
BT
2042 memcpy(__skb_put(skb, headlen), xdp->data,
2043 ALIGN(headlen, sizeof(long)));
fa2343e9
AD
2044
2045 /* update all of the pointers */
2046 size -= headlen;
2047 if (size) {
2048 skb_add_rx_frag(skb, 0, rx_buffer->page,
2049 rx_buffer->page_offset + headlen,
2050 size, truesize);
2051
2052 /* buffer is used by skb, update page_offset */
2053#if (PAGE_SIZE < 8192)
2054 rx_buffer->page_offset ^= truesize;
2055#else
2056 rx_buffer->page_offset += truesize;
2057#endif
2058 } else {
2059 /* buffer is unused, reset bias back to rx_buffer */
2060 rx_buffer->pagecnt_bias++;
2061 }
a0cfc313
AD
2062
2063 return skb;
2064}
2065
f8b45b74
AD
2066/**
2067 * i40e_build_skb - Build skb around an existing buffer
2068 * @rx_ring: Rx descriptor ring to transact packets on
2069 * @rx_buffer: Rx buffer to pull data from
0c8493d9 2070 * @xdp: xdp_buff pointing to the data
f8b45b74
AD
2071 *
2072 * This function builds an skb around an existing Rx buffer, taking care
2073 * to set up the skb correctly and avoid any memcpy overhead.
2074 */
2075static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2076 struct i40e_rx_buffer *rx_buffer,
0c8493d9 2077 struct xdp_buff *xdp)
f8b45b74 2078{
cc5b114d 2079 unsigned int metasize = xdp->data - xdp->data_meta;
f8b45b74
AD
2080#if (PAGE_SIZE < 8192)
2081 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2082#else
2aae918c 2083 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
c51818d5
DB
2084 SKB_DATA_ALIGN(xdp->data_end -
2085 xdp->data_hard_start);
f8b45b74
AD
2086#endif
2087 struct sk_buff *skb;
2088
cc5b114d
DB
2089 /* Prefetch first cache line of first page. If xdp->data_meta
2090 * is unused, this points exactly as xdp->data, otherwise we
2091 * likely have a consumer accessing first few bytes of meta
2092 * data, and then actual data.
2093 */
2094 prefetch(xdp->data_meta);
f8b45b74 2095#if L1_CACHE_BYTES < 128
cc5b114d 2096 prefetch(xdp->data_meta + L1_CACHE_BYTES);
f8b45b74
AD
2097#endif
2098 /* build an skb around the page buffer */
0c8493d9 2099 skb = build_skb(xdp->data_hard_start, truesize);
f8b45b74
AD
2100 if (unlikely(!skb))
2101 return NULL;
2102
2103 /* update pointers within the skb to store the data */
c51818d5 2104 skb_reserve(skb, xdp->data - xdp->data_hard_start);
cc5b114d
DB
2105 __skb_put(skb, xdp->data_end - xdp->data);
2106 if (metasize)
2107 skb_metadata_set(skb, metasize);
f8b45b74
AD
2108
2109 /* buffer is used by skb, update page_offset */
2110#if (PAGE_SIZE < 8192)
2111 rx_buffer->page_offset ^= truesize;
2112#else
2113 rx_buffer->page_offset += truesize;
2114#endif
2115
2116 return skb;
2117}
2118
a0cfc313
AD
2119/**
2120 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2121 * @rx_ring: rx descriptor ring to transact packets on
2122 * @rx_buffer: rx buffer to pull data from
2123 *
2124 * This function will clean up the contents of the rx_buffer. It will
11a350c9 2125 * either recycle the buffer or unmap it and free the associated resources.
a0cfc313
AD
2126 */
2127static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2128 struct i40e_rx_buffer *rx_buffer)
2129{
2130 if (i40e_can_reuse_rx_page(rx_buffer)) {
1a557afc
JB
2131 /* hand second half of page back to the ring */
2132 i40e_reuse_rx_page(rx_ring, rx_buffer);
1a557afc
JB
2133 } else {
2134 /* we are not reusing the buffer so unmap it */
98efd694
AD
2135 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2136 i40e_rx_pg_size(rx_ring),
59605bc0 2137 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1793668c
AD
2138 __page_frag_cache_drain(rx_buffer->page,
2139 rx_buffer->pagecnt_bias);
6d7aad1d
BT
2140 /* clear contents of buffer_info */
2141 rx_buffer->page = NULL;
1a557afc 2142 }
1a557afc
JB
2143}
2144
2145/**
2146 * i40e_is_non_eop - process handling of non-EOP buffers
2147 * @rx_ring: Rx ring being processed
2148 * @rx_desc: Rx descriptor for current buffer
2149 * @skb: Current socket buffer containing buffer in progress
2150 *
2151 * This function updates next to clean. If the buffer is an EOP buffer
2152 * this function exits returning false, otherwise it will place the
2153 * sk_buff in the next buffer to be chained and return true indicating
2154 * that this is in fact a non-EOP buffer.
a132af24 2155 **/
1a557afc
JB
2156static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2157 union i40e_rx_desc *rx_desc,
2158 struct sk_buff *skb)
2159{
2160 u32 ntc = rx_ring->next_to_clean + 1;
2161
2162 /* fetch, update, and store next to clean */
2163 ntc = (ntc < rx_ring->count) ? ntc : 0;
2164 rx_ring->next_to_clean = ntc;
2165
2166 prefetch(I40E_RX_DESC(rx_ring, ntc));
2167
1a557afc
JB
2168 /* if we are the last buffer then there is nothing else to do */
2169#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2170 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2171 return false;
2172
1a557afc
JB
2173 rx_ring->rx_stats.non_eop_descs++;
2174
2175 return true;
2176}
2177
44fa2dbd 2178static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
74608d17 2179 struct i40e_ring *xdp_ring);
0c8493d9 2180
20a739db 2181int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
44fa2dbd
JDB
2182{
2183 struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2184
2185 if (unlikely(!xdpf))
2186 return I40E_XDP_CONSUMED;
2187
2188 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2189}
2190
0c8493d9
BT
2191/**
2192 * i40e_run_xdp - run an XDP program
2193 * @rx_ring: Rx ring being processed
2194 * @xdp: XDP buffer containing the frame
2195 **/
2196static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2197 struct xdp_buff *xdp)
2198{
d9314c47 2199 int err, result = I40E_XDP_PASS;
74608d17 2200 struct i40e_ring *xdp_ring;
0c8493d9
BT
2201 struct bpf_prog *xdp_prog;
2202 u32 act;
2203
2204 rcu_read_lock();
2205 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2206
2207 if (!xdp_prog)
2208 goto xdp_out;
2209
b411ef11
JDB
2210 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2211
0c8493d9
BT
2212 act = bpf_prog_run_xdp(xdp_prog, xdp);
2213 switch (act) {
2214 case XDP_PASS:
2215 break;
74608d17
BT
2216 case XDP_TX:
2217 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
44fa2dbd 2218 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
74608d17 2219 break;
d9314c47
BT
2220 case XDP_REDIRECT:
2221 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2e689312 2222 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
d9314c47 2223 break;
0c8493d9
BT
2224 default:
2225 bpf_warn_invalid_xdp_action(act);
f7c3ca2d 2226 /* fall through */
0c8493d9
BT
2227 case XDP_ABORTED:
2228 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
f7c3ca2d 2229 /* fall through -- handle aborts by dropping packet */
0c8493d9
BT
2230 case XDP_DROP:
2231 result = I40E_XDP_CONSUMED;
2232 break;
2233 }
2234xdp_out:
2235 rcu_read_unlock();
2236 return ERR_PTR(-result);
2237}
2238
74608d17
BT
2239/**
2240 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2241 * @rx_ring: Rx ring
2242 * @rx_buffer: Rx buffer to adjust
2243 * @size: Size of adjustment
2244 **/
2245static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2246 struct i40e_rx_buffer *rx_buffer,
2247 unsigned int size)
2248{
2249#if (PAGE_SIZE < 8192)
2250 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2251
2252 rx_buffer->page_offset ^= truesize;
2253#else
2254 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2255
2256 rx_buffer->page_offset += truesize;
2257#endif
2258}
2259
6d7aad1d
BT
2260/**
2261 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2262 * @xdp_ring: XDP Tx ring
2263 *
2264 * This function updates the XDP Tx ring tail register.
2265 **/
20a739db 2266void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
d9314c47
BT
2267{
2268 /* Force memory writes to complete before letting h/w
2269 * know there are new descriptors to fetch.
2270 */
2271 wmb();
2272 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2273}
2274
6d7aad1d
BT
2275/**
2276 * i40e_update_rx_stats - Update Rx ring statistics
2277 * @rx_ring: rx descriptor ring
2278 * @total_rx_bytes: number of bytes received
2279 * @total_rx_packets: number of packets received
2280 *
2281 * This function updates the Rx ring statistics.
2282 **/
20a739db
BT
2283void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2284 unsigned int total_rx_bytes,
2285 unsigned int total_rx_packets)
6d7aad1d
BT
2286{
2287 u64_stats_update_begin(&rx_ring->syncp);
2288 rx_ring->stats.packets += total_rx_packets;
2289 rx_ring->stats.bytes += total_rx_bytes;
2290 u64_stats_update_end(&rx_ring->syncp);
2291 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2292 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2293}
2294
2295/**
2296 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2297 * @rx_ring: Rx ring
2298 * @xdp_res: Result of the receive batch
2299 *
2300 * This function bumps XDP Tx tail and/or flush redirect map, and
2301 * should be called when a batch of packets has been processed in the
2302 * napi loop.
2303 **/
20a739db 2304void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
6d7aad1d
BT
2305{
2306 if (xdp_res & I40E_XDP_REDIR)
2307 xdp_do_flush_map();
2308
2309 if (xdp_res & I40E_XDP_TX) {
2310 struct i40e_ring *xdp_ring =
2311 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2312
2313 i40e_xdp_ring_update_tail(xdp_ring);
2314 }
2315}
2316
1a557afc
JB
2317/**
2318 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2319 * @rx_ring: rx descriptor ring to transact packets on
2320 * @budget: Total limit on number of packets to process
2321 *
2322 * This function provides a "bounce buffer" approach to Rx interrupt
2323 * processing. The advantage to this is that on systems that have
2324 * expensive overhead for IOMMU access this provides a means of avoiding
2325 * it by maintaining the mapping of the page to the system.
2326 *
2327 * Returns amount of work completed
2328 **/
2329static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
2330{
2331 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
e72e5659 2332 struct sk_buff *skb = rx_ring->skb;
a132af24 2333 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2e689312
JDB
2334 unsigned int xdp_xmit = 0;
2335 bool failure = false;
87128824
JDB
2336 struct xdp_buff xdp;
2337
2338 xdp.rxq = &rx_ring->xdp_rxq;
a132af24 2339
b85c94b6 2340 while (likely(total_rx_packets < (unsigned int)budget)) {
9a064128 2341 struct i40e_rx_buffer *rx_buffer;
1a557afc 2342 union i40e_rx_desc *rx_desc;
d57c0e08 2343 unsigned int size;
1a557afc
JB
2344 u64 qword;
2345
fd0a05ce
JB
2346 /* return some buffers to hardware, one at a time is too slow */
2347 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 2348 failure = failure ||
1a557afc 2349 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
fd0a05ce
JB
2350 cleaned_count = 0;
2351 }
2352
1a557afc
JB
2353 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2354
1a557afc
JB
2355 /* status_error_len will always be zero for unused descriptors
2356 * because it's cleared in cleanup, and overlaps with hdr_addr
2357 * which is always zero because packet split isn't used, if the
d57c0e08 2358 * hardware wrote DD then the length will be non-zero
1a557afc 2359 */
d57c0e08 2360 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1a557afc 2361
a132af24 2362 /* This memory barrier is needed to keep us from reading
d57c0e08
AD
2363 * any other fields out of the rx_desc until we have
2364 * verified the descriptor has been written back.
a132af24 2365 */
67317166 2366 dma_rmb();
a132af24 2367
6d7aad1d
BT
2368 rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2369 qword);
2370 if (unlikely(rx_buffer)) {
2371 i40e_reuse_rx_page(rx_ring, rx_buffer);
62b4c669 2372 cleaned_count++;
0e626ff7
AD
2373 continue;
2374 }
6d7aad1d 2375
0e626ff7
AD
2376 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2377 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2378 if (!size)
2379 break;
2380
ed0980c4 2381 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
9a064128
AD
2382 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2383
fa2343e9 2384 /* retrieve a buffer from the ring */
0c8493d9
BT
2385 if (!skb) {
2386 xdp.data = page_address(rx_buffer->page) +
2387 rx_buffer->page_offset;
cc5b114d 2388 xdp.data_meta = xdp.data;
0c8493d9
BT
2389 xdp.data_hard_start = xdp.data -
2390 i40e_rx_offset(rx_ring);
2391 xdp.data_end = xdp.data + size;
2392
2393 skb = i40e_run_xdp(rx_ring, &xdp);
2394 }
2395
2396 if (IS_ERR(skb)) {
2e689312
JDB
2397 unsigned int xdp_res = -PTR_ERR(skb);
2398
2399 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2400 xdp_xmit |= xdp_res;
74608d17
BT
2401 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2402 } else {
2403 rx_buffer->pagecnt_bias++;
2404 }
0c8493d9
BT
2405 total_rx_bytes += size;
2406 total_rx_packets++;
0c8493d9 2407 } else if (skb) {
fa2343e9 2408 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
0c8493d9
BT
2409 } else if (ring_uses_build_skb(rx_ring)) {
2410 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2411 } else {
2412 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2413 }
fa2343e9
AD
2414
2415 /* exit if we failed to retrieve a buffer */
2416 if (!skb) {
2417 rx_ring->rx_stats.alloc_buff_failed++;
2418 rx_buffer->pagecnt_bias++;
1a557afc 2419 break;
fa2343e9 2420 }
a132af24 2421
a0cfc313 2422 i40e_put_rx_buffer(rx_ring, rx_buffer);
a132af24
MW
2423 cleaned_count++;
2424
1a557afc 2425 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 2426 continue;
a132af24 2427
0c8493d9 2428 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
e72e5659 2429 skb = NULL;
1a557afc 2430 continue;
e72e5659 2431 }
a132af24
MW
2432
2433 /* probably a little skewed due to removing CRC */
2434 total_rx_bytes += skb->len;
a132af24 2435
1a557afc 2436 /* populate checksum, VLAN, and protocol */
800b8f63 2437 i40e_process_skb_fields(rx_ring, rx_desc, skb);
1a557afc 2438
ed0980c4 2439 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2a508c64 2440 napi_gro_receive(&rx_ring->q_vector->napi, skb);
e72e5659 2441 skb = NULL;
a132af24 2442
1a557afc
JB
2443 /* update budget accounting */
2444 total_rx_packets++;
2445 }
fd0a05ce 2446
6d7aad1d 2447 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
e72e5659
SP
2448 rx_ring->skb = skb;
2449
6d7aad1d 2450 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
fd0a05ce 2451
1a557afc 2452 /* guarantee a trip back through this routine if there was a failure */
b85c94b6 2453 return failure ? budget : (int)total_rx_packets;
fd0a05ce
JB
2454}
2455
92418fb1 2456static inline u32 i40e_buildreg_itr(const int type, u16 itr)
8f5e39ce
JB
2457{
2458 u32 val;
2459
4ff17929
AD
2460 /* We don't bother with setting the CLEARPBA bit as the data sheet
2461 * points out doing so is "meaningless since it was already
2462 * auto-cleared". The auto-clearing happens when the interrupt is
2463 * asserted.
2464 *
2465 * Hardware errata 28 for also indicates that writing to a
2466 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2467 * an event in the PBA anyway so we need to rely on the automask
2468 * to hold pending events for us until the interrupt is re-enabled
92418fb1
AD
2469 *
2470 * The itr value is reported in microseconds, and the register
2471 * value is recorded in 2 microsecond units. For this reason we
2472 * only need to shift by the interval shift - 1 instead of the
2473 * full value.
4ff17929 2474 */
92418fb1
AD
2475 itr &= I40E_ITR_MASK;
2476
8f5e39ce 2477 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
8f5e39ce 2478 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
92418fb1 2479 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
8f5e39ce
JB
2480
2481 return val;
2482}
2483
2484/* a small macro to shorten up some long lines */
2485#define INTREG I40E_PFINT_DYN_CTLN
2486
a0073a4b
AD
2487/* The act of updating the ITR will cause it to immediately trigger. In order
2488 * to prevent this from throwing off adaptive update statistics we defer the
2489 * update so that it can only happen so often. So after either Tx or Rx are
2490 * updated we make the adaptive scheme wait until either the ITR completely
2491 * expires via the next_update expiration or we have been through at least
2492 * 3 interrupts.
2493 */
2494#define ITR_COUNTDOWN_START 3
2495
de32e3ef
CW
2496/**
2497 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2498 * @vsi: the VSI we care about
2499 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2500 *
2501 **/
2502static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2503 struct i40e_q_vector *q_vector)
2504{
2505 struct i40e_hw *hw = &vsi->back->hw;
556fdfd6 2506 u32 intval;
de32e3ef 2507
9254c0e3
JK
2508 /* If we don't have MSIX, then we only need to re-enable icr0 */
2509 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
dbadbbe2 2510 i40e_irq_dynamic_enable_icr0(vsi->back);
9254c0e3
JK
2511 return;
2512 }
2513
a0073a4b
AD
2514 /* These will do nothing if dynamic updates are not enabled */
2515 i40e_update_itr(q_vector, &q_vector->tx);
2516 i40e_update_itr(q_vector, &q_vector->rx);
ee2319cf 2517
a0073a4b
AD
2518 /* This block of logic allows us to get away with only updating
2519 * one ITR value with each interrupt. The idea is to perform a
2520 * pseudo-lazy update with the following criteria.
2521 *
2522 * 1. Rx is given higher priority than Tx if both are in same state
2523 * 2. If we must reduce an ITR that is given highest priority.
2524 * 3. We then give priority to increasing ITR based on amount.
2525 */
2526 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2527 /* Rx ITR needs to be reduced, this is highest priority */
556fdfd6
AD
2528 intval = i40e_buildreg_itr(I40E_RX_ITR,
2529 q_vector->rx.target_itr);
2530 q_vector->rx.current_itr = q_vector->rx.target_itr;
a0073a4b
AD
2531 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2532 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2533 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2534 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2535 /* Tx ITR needs to be reduced, this is second priority
2536 * Tx ITR needs to be increased more than Rx, fourth priority
2537 */
556fdfd6
AD
2538 intval = i40e_buildreg_itr(I40E_TX_ITR,
2539 q_vector->tx.target_itr);
2540 q_vector->tx.current_itr = q_vector->tx.target_itr;
a0073a4b
AD
2541 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2543 /* Rx ITR needs to be increased, third priority */
2544 intval = i40e_buildreg_itr(I40E_RX_ITR,
2545 q_vector->rx.target_itr);
2546 q_vector->rx.current_itr = q_vector->rx.target_itr;
2547 q_vector->itr_countdown = ITR_COUNTDOWN_START;
556fdfd6 2548 } else {
a0073a4b 2549 /* No ITR update, lowest priority */
556fdfd6 2550 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
a0073a4b
AD
2551 if (q_vector->itr_countdown)
2552 q_vector->itr_countdown--;
556fdfd6
AD
2553 }
2554
0da36b97 2555 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
556fdfd6 2556 wr32(hw, INTREG(q_vector->reg_idx), intval);
de32e3ef
CW
2557}
2558
fd0a05ce
JB
2559/**
2560 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2561 * @napi: napi struct with our devices info in it
2562 * @budget: amount of work driver is allowed to do this pass, in packets
2563 *
2564 * This function will clean all queues associated with a q_vector.
2565 *
2566 * Returns the amount of work done
2567 **/
2568int i40e_napi_poll(struct napi_struct *napi, int budget)
2569{
2570 struct i40e_q_vector *q_vector =
2571 container_of(napi, struct i40e_q_vector, napi);
2572 struct i40e_vsi *vsi = q_vector->vsi;
cd0b6fa6 2573 struct i40e_ring *ring;
fd0a05ce 2574 bool clean_complete = true;
d91649f5 2575 bool arm_wb = false;
fd0a05ce 2576 int budget_per_ring;
32b3e08f 2577 int work_done = 0;
fd0a05ce 2578
0da36b97 2579 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
fd0a05ce
JB
2580 napi_complete(napi);
2581 return 0;
2582 }
2583
cd0b6fa6
AD
2584 /* Since the actual Tx work is minimal, we can give the Tx a larger
2585 * budget and be more aggressive about cleaning up the Tx descriptors.
2586 */
d91649f5 2587 i40e_for_each_ring(ring, q_vector->tx) {
1328dcdd
MK
2588 bool wd = ring->xsk_umem ?
2589 i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2590 i40e_clean_tx_irq(vsi, ring, budget);
2591
2592 if (!wd) {
f2edaaaa
AD
2593 clean_complete = false;
2594 continue;
2595 }
2596 arm_wb |= ring->arm_wb;
0deda868 2597 ring->arm_wb = false;
d91649f5 2598 }
cd0b6fa6 2599
c67caceb
AD
2600 /* Handle case where we are called by netpoll with a budget of 0 */
2601 if (budget <= 0)
2602 goto tx_only;
2603
fd0a05ce
JB
2604 /* We attempt to distribute budget to each Rx queue fairly, but don't
2605 * allow the budget to go below 1 because that would exit polling early.
fd0a05ce
JB
2606 */
2607 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
cd0b6fa6 2608
a132af24 2609 i40e_for_each_ring(ring, q_vector->rx) {
0a714186
BT
2610 int cleaned = ring->xsk_umem ?
2611 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612 i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
2613
2614 work_done += cleaned;
f2edaaaa
AD
2615 /* if we clean as many as budgeted, we must not be done */
2616 if (cleaned >= budget_per_ring)
2617 clean_complete = false;
a132af24 2618 }
fd0a05ce
JB
2619
2620 /* If work not completed, return budget and polling will return */
d91649f5 2621 if (!clean_complete) {
96db776a
AB
2622 int cpu_id = smp_processor_id();
2623
2624 /* It is possible that the interrupt affinity has changed but,
2625 * if the cpu is pegged at 100%, polling will never exit while
2626 * traffic continues and the interrupt will be stuck on this
2627 * cpu. We check to make sure affinity is correct before we
2628 * continue to poll, otherwise we must stop polling so the
2629 * interrupt can move to the correct cpu.
2630 */
6d977729
JK
2631 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632 /* Tell napi that we are done polling */
2633 napi_complete_done(napi, work_done);
2634
2635 /* Force an interrupt */
2636 i40e_force_wb(vsi, q_vector);
2637
2638 /* Return budget-1 so that polling stops */
2639 return budget - 1;
2640 }
c67caceb 2641tx_only:
6d977729
JK
2642 if (arm_wb) {
2643 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 2645 }
6d977729 2646 return budget;
d91649f5 2647 }
fd0a05ce 2648
8e0764b4
ASJ
2649 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650 q_vector->arm_wb_state = false;
2651
0bcd952f
JB
2652 /* Exit the polling mode, but don't re-enable interrupts if stack might
2653 * poll us due to busy-polling
2654 */
2655 if (likely(napi_complete_done(napi, work_done)))
2656 i40e_update_enable_itr(vsi, q_vector);
96db776a 2657
6beb84a7 2658 return min(work_done, budget - 1);
fd0a05ce
JB
2659}
2660
2661/**
2662 * i40e_atr - Add a Flow Director ATR filter
2663 * @tx_ring: ring to add programming descriptor to
2664 * @skb: send buffer
89232c3b 2665 * @tx_flags: send tx flags
fd0a05ce
JB
2666 **/
2667static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
6b037cd4 2668 u32 tx_flags)
fd0a05ce
JB
2669{
2670 struct i40e_filter_program_desc *fdir_desc;
2671 struct i40e_pf *pf = tx_ring->vsi->back;
2672 union {
2673 unsigned char *network;
2674 struct iphdr *ipv4;
2675 struct ipv6hdr *ipv6;
2676 } hdr;
2677 struct tcphdr *th;
2678 unsigned int hlen;
2679 u32 flex_ptype, dtype_cmd;
ffcc55c0 2680 int l4_proto;
fc4ac67b 2681 u16 i;
fd0a05ce
JB
2682
2683 /* make sure ATR is enabled */
60ea5f83 2684 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
fd0a05ce
JB
2685 return;
2686
134201ae 2687 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
04294e38
ASJ
2688 return;
2689
fd0a05ce
JB
2690 /* if sampling is disabled do nothing */
2691 if (!tx_ring->atr_sample_rate)
2692 return;
2693
6b037cd4 2694 /* Currently only IPv4/IPv6 with TCP is supported */
89232c3b
ASJ
2695 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696 return;
fd0a05ce 2697
ffcc55c0
AD
2698 /* snag network header to get L4 type and address */
2699 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700 skb_inner_network_header(skb) : skb_network_header(skb);
fd0a05ce 2701
ffcc55c0
AD
2702 /* Note: tx_flags gets modified to reflect inner protocols in
2703 * tx_enable_csum function if encap is enabled.
2704 */
2705 if (tx_flags & I40E_TX_FLAGS_IPV4) {
6b037cd4 2706 /* access ihl as u8 to avoid unaligned access on ia64 */
ffcc55c0
AD
2707 hlen = (hdr.network[0] & 0x0F) << 2;
2708 l4_proto = hdr.ipv4->protocol;
fd0a05ce 2709 } else {
601a2e7a
JB
2710 /* find the start of the innermost ipv6 header */
2711 unsigned int inner_hlen = hdr.network - skb->data;
2712 unsigned int h_offset = inner_hlen;
2713
2714 /* this function updates h_offset to the end of the header */
2715 l4_proto =
2716 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717 /* hlen will contain our best estimate of the tcp header */
2718 hlen = h_offset - inner_hlen;
fd0a05ce
JB
2719 }
2720
6b037cd4 2721 if (l4_proto != IPPROTO_TCP)
89232c3b
ASJ
2722 return;
2723
fd0a05ce
JB
2724 th = (struct tcphdr *)(hdr.network + hlen);
2725
55a5e60b 2726 /* Due to lack of space, no more new filters can be programmed */
134201ae 2727 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
55a5e60b 2728 return;
6964e53f 2729 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
52eb95ef
ASJ
2730 /* HW ATR eviction will take care of removing filters on FIN
2731 * and RST packets.
2732 */
2733 if (th->fin || th->rst)
2734 return;
2735 }
55a5e60b
ASJ
2736
2737 tx_ring->atr_count++;
2738
ce806783
ASJ
2739 /* sample on all syn/fin/rst packets or once every atr sample rate */
2740 if (!th->fin &&
2741 !th->syn &&
2742 !th->rst &&
2743 (tx_ring->atr_count < tx_ring->atr_sample_rate))
fd0a05ce
JB
2744 return;
2745
2746 tx_ring->atr_count = 0;
2747
2748 /* grab the next descriptor */
fc4ac67b
AD
2749 i = tx_ring->next_to_use;
2750 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751
2752 i++;
2753 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
2754
2755 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756 I40E_TXD_FLTR_QW0_QINDEX_MASK;
6b037cd4 2757 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
fd0a05ce
JB
2758 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762
2763 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764
2765 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766
ce806783 2767 dtype_cmd |= (th->fin || th->rst) ?
fd0a05ce
JB
2768 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772
2773 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775
2776 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778
433c47de 2779 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
6a899024 2780 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
60ccd45c
ASJ
2781 dtype_cmd |=
2782 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785 else
2786 dtype_cmd |=
2787 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
433c47de 2790
6964e53f 2791 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
52eb95ef
ASJ
2792 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793
fd0a05ce 2794 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
99753ea6 2795 fdir_desc->rsvd = cpu_to_le32(0);
fd0a05ce 2796 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
99753ea6 2797 fdir_desc->fd_id = cpu_to_le32(0);
fd0a05ce
JB
2798}
2799
fd0a05ce
JB
2800/**
2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802 * @skb: send buffer
2803 * @tx_ring: ring to send buffer on
2804 * @flags: the tx flags to be set
2805 *
2806 * Checks the skb and set up correspondingly several generic transmit flags
2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808 *
2809 * Returns error code indicate the frame should be dropped upon error and the
2810 * otherwise returns 0 to indicate the flags has been set properly.
2811 **/
3e587cf3
JB
2812static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813 struct i40e_ring *tx_ring,
2814 u32 *flags)
fd0a05ce
JB
2815{
2816 __be16 protocol = skb->protocol;
2817 u32 tx_flags = 0;
2818
31eaaccf
GR
2819 if (protocol == htons(ETH_P_8021Q) &&
2820 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821 /* When HW VLAN acceleration is turned off by the user the
2822 * stack sets the protocol to 8021q so that the driver
2823 * can take any steps required to support the SW only
2824 * VLAN handling. In our case the driver doesn't need
2825 * to take any further steps so just set the protocol
2826 * to the encapsulated ethertype.
2827 */
2828 skb->protocol = vlan_get_protocol(skb);
2829 goto out;
2830 }
2831
fd0a05ce 2832 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
2833 if (skb_vlan_tag_present(skb)) {
2834 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
fd0a05ce
JB
2835 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836 /* else if it is a SW VLAN, check the next protocol and store the tag */
0e2fe46c 2837 } else if (protocol == htons(ETH_P_8021Q)) {
fd0a05ce 2838 struct vlan_hdr *vhdr, _vhdr;
6995b36c 2839
fd0a05ce
JB
2840 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841 if (!vhdr)
2842 return -EINVAL;
2843
2844 protocol = vhdr->h_vlan_encapsulated_proto;
2845 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847 }
2848
d40d00b1
NP
2849 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850 goto out;
2851
fd0a05ce 2852 /* Insert 802.1p priority into VLAN header */
38e00438
VD
2853 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854 (skb->priority != TC_PRIO_CONTROL)) {
fd0a05ce
JB
2855 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856 tx_flags |= (skb->priority & 0x7) <<
2857 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859 struct vlan_ethhdr *vhdr;
dd225bc6
FR
2860 int rc;
2861
2862 rc = skb_cow_head(skb, 0);
2863 if (rc < 0)
2864 return rc;
fd0a05ce
JB
2865 vhdr = (struct vlan_ethhdr *)skb->data;
2866 vhdr->h_vlan_TCI = htons(tx_flags >>
2867 I40E_TX_FLAGS_VLAN_SHIFT);
2868 } else {
2869 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870 }
2871 }
d40d00b1
NP
2872
2873out:
fd0a05ce
JB
2874 *flags = tx_flags;
2875 return 0;
2876}
2877
fd0a05ce
JB
2878/**
2879 * i40e_tso - set up the tso context descriptor
52ea3e80 2880 * @first: pointer to first Tx buffer for xmit
fd0a05ce 2881 * @hdr_len: ptr to the size of the packet header
9c883bd3 2882 * @cd_type_cmd_tso_mss: Quad Word 1
fd0a05ce
JB
2883 *
2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885 **/
52ea3e80
AD
2886static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887 u64 *cd_type_cmd_tso_mss)
fd0a05ce 2888{
52ea3e80 2889 struct sk_buff *skb = first->skb;
03f9d6a5 2890 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
2891 union {
2892 struct iphdr *v4;
2893 struct ipv6hdr *v6;
2894 unsigned char *hdr;
2895 } ip;
c49a7bc3
AD
2896 union {
2897 struct tcphdr *tcp;
5453205c 2898 struct udphdr *udp;
c49a7bc3
AD
2899 unsigned char *hdr;
2900 } l4;
2901 u32 paylen, l4_offset;
52ea3e80 2902 u16 gso_segs, gso_size;
fd0a05ce 2903 int err;
fd0a05ce 2904
e9f6563d
SN
2905 if (skb->ip_summed != CHECKSUM_PARTIAL)
2906 return 0;
2907
fd0a05ce
JB
2908 if (!skb_is_gso(skb))
2909 return 0;
2910
dd225bc6
FR
2911 err = skb_cow_head(skb, 0);
2912 if (err < 0)
2913 return err;
fd0a05ce 2914
c777019a
AD
2915 ip.hdr = skb_network_header(skb);
2916 l4.hdr = skb_transport_header(skb);
df23075f 2917
c777019a
AD
2918 /* initialize outer IP header fields */
2919 if (ip.v4->version == 4) {
2920 ip.v4->tot_len = 0;
2921 ip.v4->check = 0;
c49a7bc3 2922 } else {
c777019a
AD
2923 ip.v6->payload_len = 0;
2924 }
2925
577389a5 2926 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 2927 SKB_GSO_GRE_CSUM |
7e13318d 2928 SKB_GSO_IPXIP4 |
bf2d1df3 2929 SKB_GSO_IPXIP6 |
577389a5 2930 SKB_GSO_UDP_TUNNEL |
5453205c 2931 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
2932 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934 l4.udp->len = 0;
2935
5453205c
AD
2936 /* determine offset of outer transport header */
2937 l4_offset = l4.hdr - skb->data;
2938
2939 /* remove payload length from outer checksum */
24d41e5e 2940 paylen = skb->len - l4_offset;
b9c015d4
JK
2941 csum_replace_by_diff(&l4.udp->check,
2942 (__force __wsum)htonl(paylen));
5453205c
AD
2943 }
2944
c777019a
AD
2945 /* reset pointers to inner headers */
2946 ip.hdr = skb_inner_network_header(skb);
2947 l4.hdr = skb_inner_transport_header(skb);
2948
2949 /* initialize inner IP header fields */
2950 if (ip.v4->version == 4) {
2951 ip.v4->tot_len = 0;
2952 ip.v4->check = 0;
2953 } else {
2954 ip.v6->payload_len = 0;
2955 }
fd0a05ce
JB
2956 }
2957
c49a7bc3
AD
2958 /* determine offset of inner transport header */
2959 l4_offset = l4.hdr - skb->data;
2960
2961 /* remove payload length from inner checksum */
24d41e5e 2962 paylen = skb->len - l4_offset;
c49a7bc3 2963
3fd8ed56
JH
2964 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2965 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2966 /* compute length of segmentation header */
2967 *hdr_len = sizeof(*l4.udp) + l4_offset;
2968 } else {
2969 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2970 /* compute length of segmentation header */
2971 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2972 }
fd0a05ce 2973
52ea3e80
AD
2974 /* pull values out of skb_shinfo */
2975 gso_size = skb_shinfo(skb)->gso_size;
2976 gso_segs = skb_shinfo(skb)->gso_segs;
2977
2978 /* update GSO size and bytecount with header size */
2979 first->gso_segs = gso_segs;
2980 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2981
fd0a05ce
JB
2982 /* find the field values */
2983 cd_cmd = I40E_TX_CTX_DESC_TSO;
2984 cd_tso_len = skb->len - *hdr_len;
52ea3e80 2985 cd_mss = gso_size;
03f9d6a5
AD
2986 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2987 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2988 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
fd0a05ce
JB
2989 return 1;
2990}
2991
beb0dff1
JK
2992/**
2993 * i40e_tsyn - set up the tsyn context descriptor
2994 * @tx_ring: ptr to the ring to send
2995 * @skb: ptr to the skb we're sending
2996 * @tx_flags: the collected send information
9c883bd3 2997 * @cd_type_cmd_tso_mss: Quad Word 1
beb0dff1
JK
2998 *
2999 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3000 **/
3001static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3002 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3003{
3004 struct i40e_pf *pf;
3005
3006 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3007 return 0;
3008
3009 /* Tx timestamps cannot be sampled when doing TSO */
3010 if (tx_flags & I40E_TX_FLAGS_TSO)
3011 return 0;
3012
3013 /* only timestamp the outbound packet if the user has requested it and
3014 * we are not already transmitting a packet to be timestamped
3015 */
3016 pf = i40e_netdev_to_pf(tx_ring->netdev);
22b4777d
JK
3017 if (!(pf->flags & I40E_FLAG_PTP))
3018 return 0;
3019
9ce34f02 3020 if (pf->ptp_tx &&
0da36b97 3021 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
beb0dff1 3022 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
0bc0706b 3023 pf->ptp_tx_start = jiffies;
beb0dff1
JK
3024 pf->ptp_tx_skb = skb_get(skb);
3025 } else {
2955faca 3026 pf->tx_hwtstamp_skipped++;
beb0dff1
JK
3027 return 0;
3028 }
3029
3030 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3031 I40E_TXD_CTX_QW1_CMD_SHIFT;
3032
beb0dff1
JK
3033 return 1;
3034}
3035
fd0a05ce
JB
3036/**
3037 * i40e_tx_enable_csum - Enable Tx checksum offloads
3038 * @skb: send buffer
89232c3b 3039 * @tx_flags: pointer to Tx flags currently set
fd0a05ce
JB
3040 * @td_cmd: Tx descriptor command bits to set
3041 * @td_offset: Tx descriptor header offsets to set
554f4544 3042 * @tx_ring: Tx descriptor ring
fd0a05ce
JB
3043 * @cd_tunneling: ptr to context desc bits
3044 **/
529f1f65
AD
3045static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3046 u32 *td_cmd, u32 *td_offset,
3047 struct i40e_ring *tx_ring,
3048 u32 *cd_tunneling)
fd0a05ce 3049{
b96b78f2
AD
3050 union {
3051 struct iphdr *v4;
3052 struct ipv6hdr *v6;
3053 unsigned char *hdr;
3054 } ip;
3055 union {
3056 struct tcphdr *tcp;
3057 struct udphdr *udp;
3058 unsigned char *hdr;
3059 } l4;
a3fd9d88 3060 unsigned char *exthdr;
d1bd743b 3061 u32 offset, cmd = 0;
a3fd9d88 3062 __be16 frag_off;
b96b78f2
AD
3063 u8 l4_proto = 0;
3064
529f1f65
AD
3065 if (skb->ip_summed != CHECKSUM_PARTIAL)
3066 return 0;
3067
b96b78f2
AD
3068 ip.hdr = skb_network_header(skb);
3069 l4.hdr = skb_transport_header(skb);
fd0a05ce 3070
475b4205
AD
3071 /* compute outer L2 header size */
3072 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3073
fd0a05ce 3074 if (skb->encapsulation) {
d1bd743b 3075 u32 tunnel = 0;
a0064728
AD
3076 /* define outer network header type */
3077 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
3078 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3079 I40E_TX_CTX_EXT_IP_IPV4 :
3080 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3081
a0064728
AD
3082 l4_proto = ip.v4->protocol;
3083 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 3084 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
3085
3086 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 3087 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
3088 if (l4.hdr != exthdr)
3089 ipv6_skip_exthdr(skb, exthdr - skb->data,
3090 &l4_proto, &frag_off);
a0064728
AD
3091 }
3092
3093 /* define outer transport */
3094 switch (l4_proto) {
45991204 3095 case IPPROTO_UDP:
475b4205 3096 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
6a899024 3097 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
45991204 3098 break;
c1d1791d 3099 case IPPROTO_GRE:
475b4205 3100 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728 3101 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
c1d1791d 3102 break;
577389a5
AD
3103 case IPPROTO_IPIP:
3104 case IPPROTO_IPV6:
3105 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3106 l4.hdr = skb_inner_network_header(skb);
3107 break;
45991204 3108 default:
529f1f65
AD
3109 if (*tx_flags & I40E_TX_FLAGS_TSO)
3110 return -1;
3111
3112 skb_checksum_help(skb);
3113 return 0;
45991204 3114 }
b96b78f2 3115
577389a5
AD
3116 /* compute outer L3 header size */
3117 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3118 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3119
3120 /* switch IP header pointer from outer to inner header */
3121 ip.hdr = skb_inner_network_header(skb);
3122
475b4205
AD
3123 /* compute tunnel header size */
3124 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3125 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3126
5453205c
AD
3127 /* indicate if we need to offload outer UDP header */
3128 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 3129 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
3130 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3131 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3132
475b4205
AD
3133 /* record tunnel offload values */
3134 *cd_tunneling |= tunnel;
3135
b96b78f2 3136 /* switch L4 header pointer from outer to inner */
b96b78f2 3137 l4.hdr = skb_inner_transport_header(skb);
a0064728 3138 l4_proto = 0;
fd0a05ce 3139
a0064728
AD
3140 /* reset type as we transition from outer to inner headers */
3141 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3142 if (ip.v4->version == 4)
3143 *tx_flags |= I40E_TX_FLAGS_IPV4;
3144 if (ip.v6->version == 6)
89232c3b 3145 *tx_flags |= I40E_TX_FLAGS_IPV6;
fd0a05ce
JB
3146 }
3147
3148 /* Enable IP checksum offloads */
89232c3b 3149 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 3150 l4_proto = ip.v4->protocol;
fd0a05ce
JB
3151 /* the stack computes the IP header already, the only time we
3152 * need the hardware to recompute it is in the case of TSO.
3153 */
475b4205
AD
3154 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3155 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3156 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 3157 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 3158 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
3159
3160 exthdr = ip.hdr + sizeof(*ip.v6);
3161 l4_proto = ip.v6->nexthdr;
3162 if (l4.hdr != exthdr)
3163 ipv6_skip_exthdr(skb, exthdr - skb->data,
3164 &l4_proto, &frag_off);
fd0a05ce 3165 }
b96b78f2 3166
475b4205
AD
3167 /* compute inner L3 header size */
3168 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
fd0a05ce
JB
3169
3170 /* Enable L4 checksum offloads */
b96b78f2 3171 switch (l4_proto) {
fd0a05ce
JB
3172 case IPPROTO_TCP:
3173 /* enable checksum offloads */
475b4205
AD
3174 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3175 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
3176 break;
3177 case IPPROTO_SCTP:
3178 /* enable SCTP checksum offload */
475b4205
AD
3179 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3180 offset |= (sizeof(struct sctphdr) >> 2) <<
3181 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
3182 break;
3183 case IPPROTO_UDP:
3184 /* enable UDP checksum offload */
475b4205
AD
3185 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3186 offset |= (sizeof(struct udphdr) >> 2) <<
3187 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
3188 break;
3189 default:
529f1f65
AD
3190 if (*tx_flags & I40E_TX_FLAGS_TSO)
3191 return -1;
3192 skb_checksum_help(skb);
3193 return 0;
fd0a05ce 3194 }
475b4205
AD
3195
3196 *td_cmd |= cmd;
3197 *td_offset |= offset;
529f1f65
AD
3198
3199 return 1;
fd0a05ce
JB
3200}
3201
3202/**
3203 * i40e_create_tx_ctx Build the Tx context descriptor
3204 * @tx_ring: ring to create the descriptor on
3205 * @cd_type_cmd_tso_mss: Quad Word 1
3206 * @cd_tunneling: Quad Word 0 - bits 0-31
3207 * @cd_l2tag2: Quad Word 0 - bits 32-63
3208 **/
3209static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3210 const u64 cd_type_cmd_tso_mss,
3211 const u32 cd_tunneling, const u32 cd_l2tag2)
3212{
3213 struct i40e_tx_context_desc *context_desc;
fc4ac67b 3214 int i = tx_ring->next_to_use;
fd0a05ce 3215
ff40dd5d
JB
3216 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3217 !cd_tunneling && !cd_l2tag2)
fd0a05ce
JB
3218 return;
3219
3220 /* grab the next descriptor */
fc4ac67b
AD
3221 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3222
3223 i++;
3224 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
3225
3226 /* cpu_to_le32 and assign to struct fields */
3227 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3228 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 3229 context_desc->rsvd = cpu_to_le16(0);
fd0a05ce
JB
3230 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3231}
3232
4567dc10
ED
3233/**
3234 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3235 * @tx_ring: the ring to be checked
3236 * @size: the size buffer we want to assure is available
3237 *
3238 * Returns -EBUSY if a stop is needed, else 0
3239 **/
4ec441df 3240int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
4567dc10
ED
3241{
3242 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3243 /* Memory barrier before checking head and tail */
3244 smp_mb();
3245
3246 /* Check again in a case another CPU has just made room available. */
3247 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3248 return -EBUSY;
3249
3250 /* A reprieve! - use start_queue because it doesn't call schedule */
3251 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3252 ++tx_ring->tx_stats.restart_queue;
3253 return 0;
3254}
3255
71da6197 3256/**
3f3f7cb8 3257 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 3258 * @skb: send buffer
71da6197 3259 *
3f3f7cb8
AD
3260 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3261 * and so we need to figure out the cases where we need to linearize the skb.
3262 *
3263 * For TSO we need to count the TSO header and segment payload separately.
3264 * As such we need to check cases where we have 7 fragments or more as we
3265 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3266 * the segment payload in the first descriptor, and another 7 for the
3267 * fragments.
71da6197 3268 **/
2d37490b 3269bool __i40e_chk_linearize(struct sk_buff *skb)
71da6197 3270{
d7840976 3271 const skb_frag_t *frag, *stale;
3f3f7cb8 3272 int nr_frags, sum;
71da6197 3273
3f3f7cb8 3274 /* no need to check if number of frags is less than 7 */
2d37490b 3275 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 3276 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 3277 return false;
71da6197 3278
2d37490b 3279 /* We need to walk through the list and validate that each group
841493a3 3280 * of 6 fragments totals at least gso_size.
2d37490b 3281 */
3f3f7cb8 3282 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
3283 frag = &skb_shinfo(skb)->frags[0];
3284
3285 /* Initialize size to the negative value of gso_size minus 1. We
3286 * use this as the worst case scenerio in which the frag ahead
3287 * of us only provides one byte which is why we are limited to 6
3288 * descriptors for a single transmit as the header and previous
3289 * fragment are already consuming 2 descriptors.
3290 */
3f3f7cb8 3291 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 3292
3f3f7cb8
AD
3293 /* Add size of frags 0 through 4 to create our initial sum */
3294 sum += skb_frag_size(frag++);
3295 sum += skb_frag_size(frag++);
3296 sum += skb_frag_size(frag++);
3297 sum += skb_frag_size(frag++);
3298 sum += skb_frag_size(frag++);
2d37490b
AD
3299
3300 /* Walk through fragments adding latest fragment, testing it, and
3301 * then removing stale fragments from the sum.
3302 */
248de22e
AD
3303 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3304 int stale_size = skb_frag_size(stale);
3305
3f3f7cb8 3306 sum += skb_frag_size(frag++);
2d37490b 3307
248de22e
AD
3308 /* The stale fragment may present us with a smaller
3309 * descriptor than the actual fragment size. To account
3310 * for that we need to remove all the data on the front and
3311 * figure out what the remainder would be in the last
3312 * descriptor associated with the fragment.
3313 */
3314 if (stale_size > I40E_MAX_DATA_PER_TXD) {
b54c9d5b 3315 int align_pad = -(skb_frag_off(stale)) &
248de22e
AD
3316 (I40E_MAX_READ_REQ_SIZE - 1);
3317
3318 sum -= align_pad;
3319 stale_size -= align_pad;
3320
3321 do {
3322 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3323 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3324 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3325 }
3326
2d37490b
AD
3327 /* if sum is negative we failed to make sufficient progress */
3328 if (sum < 0)
3329 return true;
3330
841493a3 3331 if (!nr_frags--)
2d37490b
AD
3332 break;
3333
248de22e 3334 sum -= stale_size;
71da6197
AS
3335 }
3336
2d37490b 3337 return false;
71da6197
AS
3338}
3339
fd0a05ce
JB
3340/**
3341 * i40e_tx_map - Build the Tx descriptor
3342 * @tx_ring: ring to send buffer on
3343 * @skb: send buffer
3344 * @first: first buffer info buffer to use
3345 * @tx_flags: collected send information
3346 * @hdr_len: size of the packet header
3347 * @td_cmd: the command field in the descriptor
3348 * @td_offset: offset for checksum or crc
69077577
JK
3349 *
3350 * Returns 0 on success, -1 on failure to DMA
fd0a05ce 3351 **/
69077577
JK
3352static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3353 struct i40e_tx_buffer *first, u32 tx_flags,
3354 const u8 hdr_len, u32 td_cmd, u32 td_offset)
fd0a05ce 3355{
fd0a05ce
JB
3356 unsigned int data_len = skb->data_len;
3357 unsigned int size = skb_headlen(skb);
d7840976 3358 skb_frag_t *frag;
fd0a05ce
JB
3359 struct i40e_tx_buffer *tx_bi;
3360 struct i40e_tx_desc *tx_desc;
a5e9c572 3361 u16 i = tx_ring->next_to_use;
fd0a05ce
JB
3362 u32 td_tag = 0;
3363 dma_addr_t dma;
1dc8b538 3364 u16 desc_count = 1;
fd0a05ce 3365
fd0a05ce
JB
3366 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3367 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3368 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3369 I40E_TX_FLAGS_VLAN_SHIFT;
3370 }
3371
a5e9c572
AD
3372 first->tx_flags = tx_flags;
3373
3374 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3375
fd0a05ce 3376 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572
AD
3377 tx_bi = first;
3378
3379 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
3380 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3381
a5e9c572
AD
3382 if (dma_mapping_error(tx_ring->dev, dma))
3383 goto dma_error;
3384
3385 /* record length, and DMA address */
3386 dma_unmap_len_set(tx_bi, len, size);
3387 dma_unmap_addr_set(tx_bi, dma, dma);
3388
5c4654da
AD
3389 /* align size to end of page */
3390 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
a5e9c572
AD
3391 tx_desc->buffer_addr = cpu_to_le64(dma);
3392
3393 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
fd0a05ce
JB
3394 tx_desc->cmd_type_offset_bsz =
3395 build_ctob(td_cmd, td_offset,
5c4654da 3396 max_data, td_tag);
fd0a05ce 3397
fd0a05ce
JB
3398 tx_desc++;
3399 i++;
58044743
AS
3400 desc_count++;
3401
fd0a05ce
JB
3402 if (i == tx_ring->count) {
3403 tx_desc = I40E_TX_DESC(tx_ring, 0);
3404 i = 0;
3405 }
fd0a05ce 3406
5c4654da
AD
3407 dma += max_data;
3408 size -= max_data;
fd0a05ce 3409
5c4654da 3410 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
a5e9c572
AD
3411 tx_desc->buffer_addr = cpu_to_le64(dma);
3412 }
fd0a05ce
JB
3413
3414 if (likely(!data_len))
3415 break;
3416
a5e9c572
AD
3417 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3418 size, td_tag);
fd0a05ce
JB
3419
3420 tx_desc++;
3421 i++;
58044743
AS
3422 desc_count++;
3423
fd0a05ce
JB
3424 if (i == tx_ring->count) {
3425 tx_desc = I40E_TX_DESC(tx_ring, 0);
3426 i = 0;
3427 }
3428
a5e9c572
AD
3429 size = skb_frag_size(frag);
3430 data_len -= size;
fd0a05ce 3431
a5e9c572
AD
3432 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3433 DMA_TO_DEVICE);
fd0a05ce 3434
a5e9c572
AD
3435 tx_bi = &tx_ring->tx_bi[i];
3436 }
fd0a05ce 3437
1dc8b538 3438 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
a5e9c572
AD
3439
3440 i++;
3441 if (i == tx_ring->count)
3442 i = 0;
3443
3444 tx_ring->next_to_use = i;
3445
4567dc10 3446 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
58044743 3447
1dc8b538
AD
3448 /* write last descriptor with EOP bit */
3449 td_cmd |= I40E_TX_DESC_CMD_EOP;
3450
a5340d93
JK
3451 /* We OR these values together to check both against 4 (WB_STRIDE)
3452 * below. This is safe since we don't re-use desc_count afterwards.
1dc8b538
AD
3453 */
3454 desc_count |= ++tx_ring->packet_stride;
3455
a5340d93 3456 if (desc_count >= WB_STRIDE) {
1dc8b538
AD
3457 /* write last descriptor with RS bit set */
3458 td_cmd |= I40E_TX_DESC_CMD_RS;
58044743 3459 tx_ring->packet_stride = 0;
58044743 3460 }
58044743
AS
3461
3462 tx_desc->cmd_type_offset_bsz =
1dc8b538
AD
3463 build_ctob(td_cmd, td_offset, size, td_tag);
3464
a9e51058
JK
3465 skb_tx_timestamp(skb);
3466
1dc8b538
AD
3467 /* Force memory writes to complete before letting h/w know there
3468 * are new descriptors to fetch.
3469 *
3470 * We also use this memory barrier to make certain all of the
3471 * status bits have been updated before next_to_watch is written.
3472 */
3473 wmb();
3474
3475 /* set next_to_watch value indicating a packet is present */
3476 first->next_to_watch = tx_desc;
58044743 3477
a5e9c572 3478 /* notify HW of packet */
6b16f9ee 3479 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
58044743
AS
3480 writel(i, tx_ring->tail);
3481 }
1dc8b538 3482
69077577 3483 return 0;
fd0a05ce
JB
3484
3485dma_error:
a5e9c572 3486 dev_info(tx_ring->dev, "TX DMA map failed\n");
fd0a05ce
JB
3487
3488 /* clear dma mappings for failed tx_bi map */
3489 for (;;) {
3490 tx_bi = &tx_ring->tx_bi[i];
a5e9c572 3491 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
fd0a05ce
JB
3492 if (tx_bi == first)
3493 break;
3494 if (i == 0)
3495 i = tx_ring->count;
3496 i--;
3497 }
3498
fd0a05ce 3499 tx_ring->next_to_use = i;
69077577
JK
3500
3501 return -1;
fd0a05ce
JB
3502}
3503
74608d17
BT
3504/**
3505 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3506 * @xdp: data to transmit
3507 * @xdp_ring: XDP Tx ring
3508 **/
44fa2dbd 3509static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
74608d17
BT
3510 struct i40e_ring *xdp_ring)
3511{
74608d17
BT
3512 u16 i = xdp_ring->next_to_use;
3513 struct i40e_tx_buffer *tx_bi;
3514 struct i40e_tx_desc *tx_desc;
8554768c 3515 void *data = xdpf->data;
44fa2dbd 3516 u32 size = xdpf->len;
74608d17
BT
3517 dma_addr_t dma;
3518
3519 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3520 xdp_ring->tx_stats.tx_busy++;
3521 return I40E_XDP_CONSUMED;
3522 }
8554768c 3523 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
74608d17
BT
3524 if (dma_mapping_error(xdp_ring->dev, dma))
3525 return I40E_XDP_CONSUMED;
3526
3527 tx_bi = &xdp_ring->tx_bi[i];
3528 tx_bi->bytecount = size;
3529 tx_bi->gso_segs = 1;
b411ef11 3530 tx_bi->xdpf = xdpf;
74608d17
BT
3531
3532 /* record length, and DMA address */
3533 dma_unmap_len_set(tx_bi, len, size);
3534 dma_unmap_addr_set(tx_bi, dma, dma);
3535
3536 tx_desc = I40E_TX_DESC(xdp_ring, i);
3537 tx_desc->buffer_addr = cpu_to_le64(dma);
3538 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3539 | I40E_TXD_CMD,
3540 0, size, 0);
3541
3542 /* Make certain all of the status bits have been updated
3543 * before next_to_watch is written.
3544 */
3545 smp_wmb();
3546
3547 i++;
3548 if (i == xdp_ring->count)
3549 i = 0;
3550
3551 tx_bi->next_to_watch = tx_desc;
3552 xdp_ring->next_to_use = i;
3553
3554 return I40E_XDP_TX;
3555}
3556
fd0a05ce
JB
3557/**
3558 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3559 * @skb: send buffer
3560 * @tx_ring: ring to send buffer on
3561 *
3562 * Returns NETDEV_TX_OK if sent, else an error code
3563 **/
3564static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3565 struct i40e_ring *tx_ring)
3566{
3567 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3568 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3569 struct i40e_tx_buffer *first;
3570 u32 td_offset = 0;
3571 u32 tx_flags = 0;
3572 __be16 protocol;
3573 u32 td_cmd = 0;
3574 u8 hdr_len = 0;
4ec441df 3575 int tso, count;
beb0dff1 3576 int tsyn;
6995b36c 3577
b74118f0
JB
3578 /* prefetch the data, we'll need it later */
3579 prefetch(skb->data);
3580
ed0980c4
SP
3581 i40e_trace(xmit_frame_ring, skb, tx_ring);
3582
4ec441df 3583 count = i40e_xmit_descriptor_count(skb);
2d37490b 3584 if (i40e_chk_linearize(skb, count)) {
52ea3e80
AD
3585 if (__skb_linearize(skb)) {
3586 dev_kfree_skb_any(skb);
3587 return NETDEV_TX_OK;
3588 }
5c4654da 3589 count = i40e_txd_use_count(skb->len);
2d37490b
AD
3590 tx_ring->tx_stats.tx_linearize++;
3591 }
4ec441df
AD
3592
3593 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3594 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3595 * + 4 desc gap to avoid the cache line where head is,
3596 * + 1 desc for context descriptor,
3597 * otherwise try next time
3598 */
3599 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3600 tx_ring->tx_stats.tx_busy++;
fd0a05ce 3601 return NETDEV_TX_BUSY;
4ec441df 3602 }
fd0a05ce 3603
52ea3e80
AD
3604 /* record the location of the first descriptor for this packet */
3605 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3606 first->skb = skb;
3607 first->bytecount = skb->len;
3608 first->gso_segs = 1;
3609
fd0a05ce
JB
3610 /* prepare the xmit flags */
3611 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3612 goto out_drop;
3613
3614 /* obtain protocol of skb */
3d34dd03 3615 protocol = vlan_get_protocol(skb);
fd0a05ce 3616
fd0a05ce 3617 /* setup IPv4/IPv6 offloads */
0e2fe46c 3618 if (protocol == htons(ETH_P_IP))
fd0a05ce 3619 tx_flags |= I40E_TX_FLAGS_IPV4;
0e2fe46c 3620 else if (protocol == htons(ETH_P_IPV6))
fd0a05ce
JB
3621 tx_flags |= I40E_TX_FLAGS_IPV6;
3622
52ea3e80 3623 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
fd0a05ce
JB
3624
3625 if (tso < 0)
3626 goto out_drop;
3627 else if (tso)
3628 tx_flags |= I40E_TX_FLAGS_TSO;
3629
3bc67973
AD
3630 /* Always offload the checksum, since it's in the data descriptor */
3631 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3632 tx_ring, &cd_tunneling);
3633 if (tso < 0)
3634 goto out_drop;
3635
beb0dff1
JK
3636 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3637
3638 if (tsyn)
3639 tx_flags |= I40E_TX_FLAGS_TSYN;
3640
b1941306
AD
3641 /* always enable CRC insertion offload */
3642 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3643
fd0a05ce
JB
3644 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3645 cd_tunneling, cd_l2tag2);
3646
3647 /* Add Flow Director ATR if it's enabled.
3648 *
3649 * NOTE: this must always be directly before the data descriptor.
3650 */
6b037cd4 3651 i40e_atr(tx_ring, skb, tx_flags);
fd0a05ce 3652
69077577
JK
3653 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3654 td_cmd, td_offset))
3655 goto cleanup_tx_tstamp;
fd0a05ce 3656
fd0a05ce
JB
3657 return NETDEV_TX_OK;
3658
3659out_drop:
ed0980c4 3660 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
52ea3e80
AD
3661 dev_kfree_skb_any(first->skb);
3662 first->skb = NULL;
69077577
JK
3663cleanup_tx_tstamp:
3664 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3665 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3666
3667 dev_kfree_skb_any(pf->ptp_tx_skb);
3668 pf->ptp_tx_skb = NULL;
3669 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3670 }
3671
fd0a05ce
JB
3672 return NETDEV_TX_OK;
3673}
3674
3675/**
3676 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3677 * @skb: send buffer
3678 * @netdev: network interface device structure
3679 *
3680 * Returns NETDEV_TX_OK if sent, else an error code
3681 **/
3682netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3683{
3684 struct i40e_netdev_priv *np = netdev_priv(netdev);
3685 struct i40e_vsi *vsi = np->vsi;
9f65e15b 3686 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
fd0a05ce
JB
3687
3688 /* hardware can't handle really short frames, hardware padding works
3689 * beyond this point
3690 */
a94d9e22
AD
3691 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3692 return NETDEV_TX_OK;
fd0a05ce
JB
3693
3694 return i40e_xmit_frame_ring(skb, tx_ring);
3695}
d9314c47
BT
3696
3697/**
3698 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3699 * @dev: netdev
3700 * @xdp: XDP buffer
3701 *
735fc405
JDB
3702 * Returns number of frames successfully sent. Frames that fail are
3703 * free'ed via XDP return API.
3704 *
3705 * For error cases, a negative errno code is returned and no-frames
3706 * are transmitted (caller must handle freeing frames).
d9314c47 3707 **/
42b33468
JDB
3708int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3709 u32 flags)
d9314c47
BT
3710{
3711 struct i40e_netdev_priv *np = netdev_priv(dev);
3712 unsigned int queue_index = smp_processor_id();
3713 struct i40e_vsi *vsi = np->vsi;
59eb2a88 3714 struct i40e_pf *pf = vsi->back;
cdb57ed0 3715 struct i40e_ring *xdp_ring;
735fc405
JDB
3716 int drops = 0;
3717 int i;
d9314c47
BT
3718
3719 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3720 return -ENETDOWN;
3721
59eb2a88
BT
3722 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3723 test_bit(__I40E_CONFIG_BUSY, pf->state))
d9314c47
BT
3724 return -ENXIO;
3725
cdb57ed0 3726 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
42b33468
JDB
3727 return -EINVAL;
3728
cdb57ed0
JDB
3729 xdp_ring = vsi->xdp_rings[queue_index];
3730
735fc405
JDB
3731 for (i = 0; i < n; i++) {
3732 struct xdp_frame *xdpf = frames[i];
3733 int err;
d9314c47 3734
cdb57ed0 3735 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
735fc405
JDB
3736 if (err != I40E_XDP_TX) {
3737 xdp_return_frame_rx_napi(xdpf);
3738 drops++;
3739 }
3740 }
3741
cdb57ed0
JDB
3742 if (unlikely(flags & XDP_XMIT_FLUSH))
3743 i40e_xdp_ring_update_tail(xdp_ring);
d9314c47 3744
735fc405 3745 return n - drops;
d9314c47 3746}