]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/intel/i40e/i40e_txrx.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
CommitLineData
fd0a05ce
JB
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
fd0a05ce
JB
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
dc641b73
GR
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
fd0a05ce
JB
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
1c112a64 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
0c8493d9 29#include <linux/bpf_trace.h>
fd0a05ce 30#include "i40e.h"
ed0980c4 31#include "i40e_trace.h"
206812b5 32#include "i40e_prototype.h"
fd0a05ce
JB
33
34static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 u32 td_tag)
36{
37 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
39 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
42}
43
eaefbd06 44#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
5e02f283
AD
45/**
46 * i40e_fdir - Generate a Flow Director descriptor based on fdata
47 * @tx_ring: Tx ring to send buffer on
48 * @fdata: Flow director filter data
49 * @add: Indicate if we are adding a rule or deleting one
50 *
51 **/
52static void i40e_fdir(struct i40e_ring *tx_ring,
53 struct i40e_fdir_filter *fdata, bool add)
54{
55 struct i40e_filter_program_desc *fdir_desc;
56 struct i40e_pf *pf = tx_ring->vsi->back;
57 u32 flex_ptype, dtype_cmd;
58 u16 i;
59
60 /* grab the next descriptor */
61 i = tx_ring->next_to_use;
62 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
63
64 i++;
65 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
66
67 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
68 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
69
70 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
71 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
72
73 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
74 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
75
0e588de1
JK
76 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
77 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
78
5e02f283
AD
79 /* Use LAN VSI Id if not programmed by user */
80 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
81 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
82 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
83
84 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
85
86 dtype_cmd |= add ?
87 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
88 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
89 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
90 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
91
92 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
93 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
94
95 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
96 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
97
98 if (fdata->cnt_index) {
99 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
100 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
101 ((u32)fdata->cnt_index <<
102 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
103 }
104
105 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
106 fdir_desc->rsvd = cpu_to_le32(0);
107 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
108 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
109}
110
49d7d933 111#define I40E_FD_CLEAN_DELAY 10
fd0a05ce
JB
112/**
113 * i40e_program_fdir_filter - Program a Flow Director filter
17a73f6b
JG
114 * @fdir_data: Packet data that will be filter parameters
115 * @raw_packet: the pre-allocated packet buffer for FDir
b40c82e6 116 * @pf: The PF pointer
fd0a05ce
JB
117 * @add: True for add/update, False for remove
118 **/
1eb846ac
AD
119static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
120 u8 *raw_packet, struct i40e_pf *pf,
121 bool add)
fd0a05ce 122{
49d7d933 123 struct i40e_tx_buffer *tx_buf, *first;
fd0a05ce
JB
124 struct i40e_tx_desc *tx_desc;
125 struct i40e_ring *tx_ring;
126 struct i40e_vsi *vsi;
127 struct device *dev;
128 dma_addr_t dma;
129 u32 td_cmd = 0;
130 u16 i;
131
132 /* find existing FDIR VSI */
4b816446 133 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
fd0a05ce
JB
134 if (!vsi)
135 return -ENOENT;
136
9f65e15b 137 tx_ring = vsi->tx_rings[0];
fd0a05ce
JB
138 dev = tx_ring->dev;
139
49d7d933 140 /* we need two descriptors to add/del a filter and we can wait */
ed245406
AD
141 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
142 if (!i)
143 return -EAGAIN;
49d7d933 144 msleep_interruptible(1);
ed245406 145 }
49d7d933 146
17a73f6b
JG
147 dma = dma_map_single(dev, raw_packet,
148 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
fd0a05ce
JB
149 if (dma_mapping_error(dev, dma))
150 goto dma_fail;
151
152 /* grab the next descriptor */
fc4ac67b 153 i = tx_ring->next_to_use;
49d7d933 154 first = &tx_ring->tx_bi[i];
5e02f283 155 i40e_fdir(tx_ring, fdir_data, add);
fd0a05ce
JB
156
157 /* Now program a dummy descriptor */
fc4ac67b
AD
158 i = tx_ring->next_to_use;
159 tx_desc = I40E_TX_DESC(tx_ring, i);
298deef1 160 tx_buf = &tx_ring->tx_bi[i];
fc4ac67b 161
49d7d933
ASJ
162 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
163
164 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
fd0a05ce 165
298deef1 166 /* record length, and DMA address */
17a73f6b 167 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
298deef1
ASJ
168 dma_unmap_addr_set(tx_buf, dma, dma);
169
fd0a05ce 170 tx_desc->buffer_addr = cpu_to_le64(dma);
eaefbd06 171 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
fd0a05ce 172
49d7d933
ASJ
173 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
174 tx_buf->raw_buf = (void *)raw_packet;
175
fd0a05ce 176 tx_desc->cmd_type_offset_bsz =
17a73f6b 177 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
fd0a05ce 178
fd0a05ce 179 /* Force memory writes to complete before letting h/w
49d7d933 180 * know there are new descriptors to fetch.
fd0a05ce
JB
181 */
182 wmb();
183
fc4ac67b 184 /* Mark the data descriptor to be watched */
49d7d933 185 first->next_to_watch = tx_desc;
fc4ac67b 186
fd0a05ce
JB
187 writel(tx_ring->next_to_use, tx_ring->tail);
188 return 0;
189
190dma_fail:
191 return -1;
192}
193
17a73f6b
JG
194#define IP_HEADER_OFFSET 14
195#define I40E_UDPIP_DUMMY_PACKET_LEN 42
196/**
197 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
198 * @vsi: pointer to the targeted VSI
199 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
200 * @add: true adds a filter, false removes it
201 *
202 * Returns 0 if the filters were successfully added or removed
203 **/
204static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
205 struct i40e_fdir_filter *fd_data,
49d7d933 206 bool add)
17a73f6b
JG
207{
208 struct i40e_pf *pf = vsi->back;
209 struct udphdr *udp;
210 struct iphdr *ip;
49d7d933 211 u8 *raw_packet;
17a73f6b 212 int ret;
17a73f6b
JG
213 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
214 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
215 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
216
49d7d933
ASJ
217 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
218 if (!raw_packet)
219 return -ENOMEM;
17a73f6b
JG
220 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
221
222 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
223 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
224 + sizeof(struct iphdr));
225
8ce43dce 226 ip->daddr = fd_data->dst_ip;
17a73f6b 227 udp->dest = fd_data->dst_port;
8ce43dce 228 ip->saddr = fd_data->src_ip;
17a73f6b
JG
229 udp->source = fd_data->src_port;
230
0e588de1
JK
231 if (fd_data->flex_filter) {
232 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
233 __be16 pattern = fd_data->flex_word;
234 u16 off = fd_data->flex_offset;
235
236 *((__force __be16 *)(payload + off)) = pattern;
237 }
238
b2d36c03
KS
239 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
240 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
241 if (ret) {
242 dev_info(&pf->pdev->dev,
e99bdd39
CW
243 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
244 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
245 /* Free the packet buffer since it wasn't added to the ring */
246 kfree(raw_packet);
247 return -EOPNOTSUPP;
4205d379 248 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
249 if (add)
250 dev_info(&pf->pdev->dev,
251 "Filter OK for PCTYPE %d loc = %d\n",
252 fd_data->pctype, fd_data->fd_id);
253 else
254 dev_info(&pf->pdev->dev,
255 "Filter deleted for PCTYPE %d loc = %d\n",
256 fd_data->pctype, fd_data->fd_id);
17a73f6b 257 }
a42e7a36 258
097dbf52
JK
259 if (add)
260 pf->fd_udp4_filter_cnt++;
261 else
262 pf->fd_udp4_filter_cnt--;
263
e5187ee3 264 return 0;
17a73f6b
JG
265}
266
267#define I40E_TCPIP_DUMMY_PACKET_LEN 54
268/**
269 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
270 * @vsi: pointer to the targeted VSI
271 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
272 * @add: true adds a filter, false removes it
273 *
274 * Returns 0 if the filters were successfully added or removed
275 **/
276static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
277 struct i40e_fdir_filter *fd_data,
49d7d933 278 bool add)
17a73f6b
JG
279{
280 struct i40e_pf *pf = vsi->back;
281 struct tcphdr *tcp;
282 struct iphdr *ip;
49d7d933 283 u8 *raw_packet;
17a73f6b
JG
284 int ret;
285 /* Dummy packet */
286 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
287 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
288 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
289 0x0, 0x72, 0, 0, 0, 0};
290
49d7d933
ASJ
291 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
292 if (!raw_packet)
293 return -ENOMEM;
17a73f6b
JG
294 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
295
296 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
297 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
298 + sizeof(struct iphdr));
299
8ce43dce 300 ip->daddr = fd_data->dst_ip;
17a73f6b 301 tcp->dest = fd_data->dst_port;
8ce43dce 302 ip->saddr = fd_data->src_ip;
17a73f6b
JG
303 tcp->source = fd_data->src_port;
304
0e588de1
JK
305 if (fd_data->flex_filter) {
306 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
307 __be16 pattern = fd_data->flex_word;
308 u16 off = fd_data->flex_offset;
309
310 *((__force __be16 *)(payload + off)) = pattern;
311 }
312
b2d36c03 313 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
17a73f6b 314 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
17a73f6b
JG
315 if (ret) {
316 dev_info(&pf->pdev->dev,
e99bdd39
CW
317 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
318 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
319 /* Free the packet buffer since it wasn't added to the ring */
320 kfree(raw_packet);
321 return -EOPNOTSUPP;
4205d379 322 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
323 if (add)
324 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
325 fd_data->pctype, fd_data->fd_id);
326 else
327 dev_info(&pf->pdev->dev,
328 "Filter deleted for PCTYPE %d loc = %d\n",
329 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
330 }
331
377cc249 332 if (add) {
097dbf52 333 pf->fd_tcp4_filter_cnt++;
377cc249
JK
334 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
335 I40E_DEBUG_FD & pf->hw.debug_mask)
336 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
47994c11 337 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
377cc249 338 } else {
097dbf52 339 pf->fd_tcp4_filter_cnt--;
377cc249
JK
340 }
341
e5187ee3 342 return 0;
17a73f6b
JG
343}
344
f223c875
JK
345#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
346/**
347 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
348 * a specific flow spec
349 * @vsi: pointer to the targeted VSI
350 * @fd_data: the flow director data required for the FDir descriptor
351 * @add: true adds a filter, false removes it
352 *
353 * Returns 0 if the filters were successfully added or removed
354 **/
355static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
356 struct i40e_fdir_filter *fd_data,
357 bool add)
358{
359 struct i40e_pf *pf = vsi->back;
360 struct sctphdr *sctp;
361 struct iphdr *ip;
362 u8 *raw_packet;
363 int ret;
364 /* Dummy packet */
365 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
366 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
368
369 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
370 if (!raw_packet)
371 return -ENOMEM;
372 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
373
374 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
375 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
376 + sizeof(struct iphdr));
377
378 ip->daddr = fd_data->dst_ip;
379 sctp->dest = fd_data->dst_port;
380 ip->saddr = fd_data->src_ip;
381 sctp->source = fd_data->src_port;
382
383 if (fd_data->flex_filter) {
384 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
385 __be16 pattern = fd_data->flex_word;
386 u16 off = fd_data->flex_offset;
387
388 *((__force __be16 *)(payload + off)) = pattern;
389 }
390
391 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
392 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
393 if (ret) {
394 dev_info(&pf->pdev->dev,
395 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
396 fd_data->pctype, fd_data->fd_id, ret);
397 /* Free the packet buffer since it wasn't added to the ring */
398 kfree(raw_packet);
399 return -EOPNOTSUPP;
400 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
401 if (add)
402 dev_info(&pf->pdev->dev,
403 "Filter OK for PCTYPE %d loc = %d\n",
404 fd_data->pctype, fd_data->fd_id);
405 else
406 dev_info(&pf->pdev->dev,
407 "Filter deleted for PCTYPE %d loc = %d\n",
408 fd_data->pctype, fd_data->fd_id);
409 }
410
411 if (add)
412 pf->fd_sctp4_filter_cnt++;
413 else
414 pf->fd_sctp4_filter_cnt--;
415
416 return 0;
417}
418
17a73f6b
JG
419#define I40E_IP_DUMMY_PACKET_LEN 34
420/**
421 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
422 * a specific flow spec
423 * @vsi: pointer to the targeted VSI
424 * @fd_data: the flow director data required for the FDir descriptor
17a73f6b
JG
425 * @add: true adds a filter, false removes it
426 *
427 * Returns 0 if the filters were successfully added or removed
428 **/
429static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
430 struct i40e_fdir_filter *fd_data,
49d7d933 431 bool add)
17a73f6b
JG
432{
433 struct i40e_pf *pf = vsi->back;
434 struct iphdr *ip;
49d7d933 435 u8 *raw_packet;
17a73f6b
JG
436 int ret;
437 int i;
438 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
439 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
440 0, 0, 0, 0};
441
17a73f6b
JG
442 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
443 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
49d7d933
ASJ
444 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
445 if (!raw_packet)
446 return -ENOMEM;
447 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
448 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
449
8ce43dce
JK
450 ip->saddr = fd_data->src_ip;
451 ip->daddr = fd_data->dst_ip;
49d7d933
ASJ
452 ip->protocol = 0;
453
0e588de1
JK
454 if (fd_data->flex_filter) {
455 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
456 __be16 pattern = fd_data->flex_word;
457 u16 off = fd_data->flex_offset;
458
459 *((__force __be16 *)(payload + off)) = pattern;
460 }
461
17a73f6b
JG
462 fd_data->pctype = i;
463 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
17a73f6b
JG
464 if (ret) {
465 dev_info(&pf->pdev->dev,
e99bdd39
CW
466 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
467 fd_data->pctype, fd_data->fd_id, ret);
e5187ee3
JK
468 /* The packet buffer wasn't added to the ring so we
469 * need to free it now.
470 */
471 kfree(raw_packet);
472 return -EOPNOTSUPP;
4205d379 473 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
f7233c54
ASJ
474 if (add)
475 dev_info(&pf->pdev->dev,
476 "Filter OK for PCTYPE %d loc = %d\n",
477 fd_data->pctype, fd_data->fd_id);
478 else
479 dev_info(&pf->pdev->dev,
480 "Filter deleted for PCTYPE %d loc = %d\n",
481 fd_data->pctype, fd_data->fd_id);
17a73f6b
JG
482 }
483 }
484
097dbf52
JK
485 if (add)
486 pf->fd_ip4_filter_cnt++;
487 else
488 pf->fd_ip4_filter_cnt--;
489
e5187ee3 490 return 0;
17a73f6b
JG
491}
492
493/**
494 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
495 * @vsi: pointer to the targeted VSI
496 * @cmd: command to get or set RX flow classification rules
497 * @add: true adds a filter, false removes it
498 *
499 **/
500int i40e_add_del_fdir(struct i40e_vsi *vsi,
501 struct i40e_fdir_filter *input, bool add)
502{
503 struct i40e_pf *pf = vsi->back;
17a73f6b
JG
504 int ret;
505
17a73f6b
JG
506 switch (input->flow_type & ~FLOW_EXT) {
507 case TCP_V4_FLOW:
49d7d933 508 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
509 break;
510 case UDP_V4_FLOW:
49d7d933 511 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 512 break;
f223c875
JK
513 case SCTP_V4_FLOW:
514 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
515 break;
17a73f6b
JG
516 case IP_USER_FLOW:
517 switch (input->ip4_proto) {
518 case IPPROTO_TCP:
49d7d933 519 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
17a73f6b
JG
520 break;
521 case IPPROTO_UDP:
49d7d933 522 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
17a73f6b 523 break;
f223c875
JK
524 case IPPROTO_SCTP:
525 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
526 break;
e1da71ca 527 case IPPROTO_IP:
49d7d933 528 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
17a73f6b 529 break;
e1da71ca
AD
530 default:
531 /* We cannot support masking based on protocol */
a346fb83
JK
532 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
533 input->ip4_proto);
534 return -EINVAL;
17a73f6b
JG
535 }
536 break;
537 default:
a346fb83 538 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
17a73f6b 539 input->flow_type);
a346fb83 540 return -EINVAL;
17a73f6b
JG
541 }
542
a158aeaf
JK
543 /* The buffer allocated here will be normally be freed by
544 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
545 * completion. In the event of an error adding the buffer to the FDIR
546 * ring, it will immediately be freed. It may also be freed by
547 * i40e_clean_tx_ring() when closing the VSI.
548 */
17a73f6b
JG
549 return ret;
550}
551
fd0a05ce
JB
552/**
553 * i40e_fd_handle_status - check the Programming Status for FD
554 * @rx_ring: the Rx ring for this descriptor
55a5e60b 555 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
fd0a05ce
JB
556 * @prog_id: the id originally used for programming
557 *
558 * This is used to verify if the FD programming or invalidation
559 * requested by SW to the HW is successful or not and take actions accordingly.
560 **/
55a5e60b
ASJ
561static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
562 union i40e_rx_desc *rx_desc, u8 prog_id)
fd0a05ce 563{
55a5e60b
ASJ
564 struct i40e_pf *pf = rx_ring->vsi->back;
565 struct pci_dev *pdev = pf->pdev;
566 u32 fcnt_prog, fcnt_avail;
fd0a05ce 567 u32 error;
55a5e60b 568 u64 qw;
fd0a05ce 569
55a5e60b 570 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
fd0a05ce
JB
571 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
572 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
573
41a1d04b 574 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
3487b6c3 575 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
f7233c54
ASJ
576 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
577 (I40E_DEBUG_FD & pf->hw.debug_mask))
578 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
3487b6c3 579 pf->fd_inv);
55a5e60b 580
04294e38
ASJ
581 /* Check if the programming error is for ATR.
582 * If so, auto disable ATR and set a state for
583 * flush in progress. Next time we come here if flush is in
584 * progress do nothing, once flush is complete the state will
585 * be cleared.
586 */
0da36b97 587 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
04294e38
ASJ
588 return;
589
1e1be8f6
ASJ
590 pf->fd_add_err++;
591 /* store the current atr filter count */
592 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
593
04294e38 594 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
47994c11
JK
595 pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
596 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
0da36b97 597 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
04294e38
ASJ
598 }
599
55a5e60b 600 /* filter programming failed most likely due to table full */
04294e38 601 fcnt_prog = i40e_get_global_fd_count(pf);
12957388 602 fcnt_avail = pf->fdir_pf_filter_count;
55a5e60b
ASJ
603 /* If ATR is running fcnt_prog can quickly change,
604 * if we are very close to full, it makes sense to disable
605 * FD ATR/SB and then re-enable it when there is room.
606 */
607 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
1e1be8f6 608 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
47994c11
JK
609 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
610 pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
2e4875e3
ASJ
611 if (I40E_DEBUG_FD & pf->hw.debug_mask)
612 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
55a5e60b 613 }
55a5e60b 614 }
41a1d04b 615 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
13c2884f 616 if (I40E_DEBUG_FD & pf->hw.debug_mask)
e99bdd39 617 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
13c2884f 618 rx_desc->wb.qword0.hi_dword.fd_id);
55a5e60b 619 }
fd0a05ce
JB
620}
621
622/**
a5e9c572 623 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
fd0a05ce
JB
624 * @ring: the ring that owns the buffer
625 * @tx_buffer: the buffer to free
626 **/
a5e9c572
AD
627static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
628 struct i40e_tx_buffer *tx_buffer)
fd0a05ce 629{
a5e9c572 630 if (tx_buffer->skb) {
64bfd68e
AD
631 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
632 kfree(tx_buffer->raw_buf);
74608d17
BT
633 else if (ring_is_xdp(ring))
634 page_frag_free(tx_buffer->raw_buf);
64bfd68e
AD
635 else
636 dev_kfree_skb_any(tx_buffer->skb);
a5e9c572 637 if (dma_unmap_len(tx_buffer, len))
fd0a05ce 638 dma_unmap_single(ring->dev,
35a1e2ad
AD
639 dma_unmap_addr(tx_buffer, dma),
640 dma_unmap_len(tx_buffer, len),
fd0a05ce 641 DMA_TO_DEVICE);
a5e9c572
AD
642 } else if (dma_unmap_len(tx_buffer, len)) {
643 dma_unmap_page(ring->dev,
644 dma_unmap_addr(tx_buffer, dma),
645 dma_unmap_len(tx_buffer, len),
646 DMA_TO_DEVICE);
fd0a05ce 647 }
a42e7a36 648
a5e9c572
AD
649 tx_buffer->next_to_watch = NULL;
650 tx_buffer->skb = NULL;
35a1e2ad 651 dma_unmap_len_set(tx_buffer, len, 0);
a5e9c572 652 /* tx_buffer must be completely set up in the transmit path */
fd0a05ce
JB
653}
654
655/**
656 * i40e_clean_tx_ring - Free any empty Tx buffers
657 * @tx_ring: ring to be cleaned
658 **/
659void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
660{
fd0a05ce
JB
661 unsigned long bi_size;
662 u16 i;
663
664 /* ring already cleared, nothing to do */
665 if (!tx_ring->tx_bi)
666 return;
667
668 /* Free all the Tx ring sk_buffs */
a5e9c572
AD
669 for (i = 0; i < tx_ring->count; i++)
670 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
fd0a05ce
JB
671
672 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
673 memset(tx_ring->tx_bi, 0, bi_size);
674
675 /* Zero out the descriptor ring */
676 memset(tx_ring->desc, 0, tx_ring->size);
677
678 tx_ring->next_to_use = 0;
679 tx_ring->next_to_clean = 0;
7070ce0a
AD
680
681 if (!tx_ring->netdev)
682 return;
683
684 /* cleanup Tx queue statistics */
e486bdfd 685 netdev_tx_reset_queue(txring_txq(tx_ring));
fd0a05ce
JB
686}
687
688/**
689 * i40e_free_tx_resources - Free Tx resources per queue
690 * @tx_ring: Tx descriptor ring for a specific queue
691 *
692 * Free all transmit software resources
693 **/
694void i40e_free_tx_resources(struct i40e_ring *tx_ring)
695{
696 i40e_clean_tx_ring(tx_ring);
697 kfree(tx_ring->tx_bi);
698 tx_ring->tx_bi = NULL;
699
700 if (tx_ring->desc) {
701 dma_free_coherent(tx_ring->dev, tx_ring->size,
702 tx_ring->desc, tx_ring->dma);
703 tx_ring->desc = NULL;
704 }
705}
706
707/**
708 * i40e_get_tx_pending - how many tx descriptors not processed
709 * @tx_ring: the ring of descriptors
710 *
711 * Since there is no access to the ring head register
712 * in XL710, we need to use our local copies
713 **/
17daabb5 714u32 i40e_get_tx_pending(struct i40e_ring *ring)
fd0a05ce 715{
a68de58d
JB
716 u32 head, tail;
717
17daabb5 718 head = i40e_get_head(ring);
a68de58d
JB
719 tail = readl(ring->tail);
720
721 if (head != tail)
722 return (head < tail) ?
723 tail - head : (tail + ring->count - head);
724
725 return 0;
fd0a05ce
JB
726}
727
1dc8b538 728#define WB_STRIDE 4
d91649f5 729
fd0a05ce
JB
730/**
731 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
732 * @vsi: the VSI we care about
733 * @tx_ring: Tx ring to clean
734 * @napi_budget: Used to determine if we are in netpoll
fd0a05ce
JB
735 *
736 * Returns true if there's any budget left (e.g. the clean is finished)
737 **/
a619afe8
AD
738static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
739 struct i40e_ring *tx_ring, int napi_budget)
fd0a05ce
JB
740{
741 u16 i = tx_ring->next_to_clean;
742 struct i40e_tx_buffer *tx_buf;
1943d8ba 743 struct i40e_tx_desc *tx_head;
fd0a05ce 744 struct i40e_tx_desc *tx_desc;
a619afe8
AD
745 unsigned int total_bytes = 0, total_packets = 0;
746 unsigned int budget = vsi->work_limit;
fd0a05ce
JB
747
748 tx_buf = &tx_ring->tx_bi[i];
749 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572 750 i -= tx_ring->count;
fd0a05ce 751
1943d8ba
JB
752 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
753
a5e9c572
AD
754 do {
755 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
fd0a05ce
JB
756
757 /* if next_to_watch is not set then there is no work pending */
758 if (!eop_desc)
759 break;
760
a5e9c572
AD
761 /* prevent any other reads prior to eop_desc */
762 read_barrier_depends();
763
ed0980c4 764 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
1943d8ba
JB
765 /* we have caught up to head, no work left to do */
766 if (tx_head == tx_desc)
fd0a05ce
JB
767 break;
768
c304fdac 769 /* clear next_to_watch to prevent false hangs */
fd0a05ce 770 tx_buf->next_to_watch = NULL;
fd0a05ce 771
a5e9c572
AD
772 /* update the statistics for this packet */
773 total_bytes += tx_buf->bytecount;
774 total_packets += tx_buf->gso_segs;
fd0a05ce 775
74608d17
BT
776 /* free the skb/XDP data */
777 if (ring_is_xdp(tx_ring))
778 page_frag_free(tx_buf->raw_buf);
779 else
780 napi_consume_skb(tx_buf->skb, napi_budget);
fd0a05ce 781
a5e9c572
AD
782 /* unmap skb header data */
783 dma_unmap_single(tx_ring->dev,
784 dma_unmap_addr(tx_buf, dma),
785 dma_unmap_len(tx_buf, len),
786 DMA_TO_DEVICE);
fd0a05ce 787
a5e9c572
AD
788 /* clear tx_buffer data */
789 tx_buf->skb = NULL;
790 dma_unmap_len_set(tx_buf, len, 0);
fd0a05ce 791
a5e9c572
AD
792 /* unmap remaining buffers */
793 while (tx_desc != eop_desc) {
ed0980c4
SP
794 i40e_trace(clean_tx_irq_unmap,
795 tx_ring, tx_desc, tx_buf);
fd0a05ce
JB
796
797 tx_buf++;
798 tx_desc++;
799 i++;
a5e9c572
AD
800 if (unlikely(!i)) {
801 i -= tx_ring->count;
fd0a05ce
JB
802 tx_buf = tx_ring->tx_bi;
803 tx_desc = I40E_TX_DESC(tx_ring, 0);
804 }
fd0a05ce 805
a5e9c572
AD
806 /* unmap any remaining paged data */
807 if (dma_unmap_len(tx_buf, len)) {
808 dma_unmap_page(tx_ring->dev,
809 dma_unmap_addr(tx_buf, dma),
810 dma_unmap_len(tx_buf, len),
811 DMA_TO_DEVICE);
812 dma_unmap_len_set(tx_buf, len, 0);
813 }
814 }
815
816 /* move us one more past the eop_desc for start of next pkt */
817 tx_buf++;
818 tx_desc++;
819 i++;
820 if (unlikely(!i)) {
821 i -= tx_ring->count;
822 tx_buf = tx_ring->tx_bi;
823 tx_desc = I40E_TX_DESC(tx_ring, 0);
824 }
825
016890b9
JB
826 prefetch(tx_desc);
827
a5e9c572
AD
828 /* update budget accounting */
829 budget--;
830 } while (likely(budget));
831
832 i += tx_ring->count;
fd0a05ce 833 tx_ring->next_to_clean = i;
980e9b11 834 u64_stats_update_begin(&tx_ring->syncp);
a114d0a6
AD
835 tx_ring->stats.bytes += total_bytes;
836 tx_ring->stats.packets += total_packets;
980e9b11 837 u64_stats_update_end(&tx_ring->syncp);
fd0a05ce
JB
838 tx_ring->q_vector->tx.total_bytes += total_bytes;
839 tx_ring->q_vector->tx.total_packets += total_packets;
a5e9c572 840
58044743 841 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
58044743
AS
842 /* check to see if there are < 4 descriptors
843 * waiting to be written back, then kick the hardware to force
844 * them to be written back in case we stay in NAPI.
845 * In this mode on X722 we do not enable Interrupt.
846 */
17daabb5 847 unsigned int j = i40e_get_tx_pending(tx_ring);
58044743
AS
848
849 if (budget &&
1dc8b538 850 ((j / WB_STRIDE) == 0) && (j > 0) &&
0da36b97 851 !test_bit(__I40E_VSI_DOWN, vsi->state) &&
58044743
AS
852 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
853 tx_ring->arm_wb = true;
854 }
d91649f5 855
74608d17
BT
856 if (ring_is_xdp(tx_ring))
857 return !!budget;
858
e486bdfd
AD
859 /* notify netdev of completed buffers */
860 netdev_tx_completed_queue(txring_txq(tx_ring),
7070ce0a
AD
861 total_packets, total_bytes);
862
fd0a05ce
JB
863#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
864 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
865 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
866 /* Make sure that anybody stopping the queue after this
867 * sees the new next_to_clean.
868 */
869 smp_mb();
870 if (__netif_subqueue_stopped(tx_ring->netdev,
871 tx_ring->queue_index) &&
0da36b97 872 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
fd0a05ce
JB
873 netif_wake_subqueue(tx_ring->netdev,
874 tx_ring->queue_index);
875 ++tx_ring->tx_stats.restart_queue;
876 }
877 }
878
d91649f5
JB
879 return !!budget;
880}
881
882/**
ecc6a239 883 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
d91649f5 884 * @vsi: the VSI we care about
ecc6a239 885 * @q_vector: the vector on which to enable writeback
d91649f5
JB
886 *
887 **/
ecc6a239
ASJ
888static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
889 struct i40e_q_vector *q_vector)
d91649f5 890{
8e0764b4 891 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 892 u32 val;
8e0764b4 893
ecc6a239
ASJ
894 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
895 return;
8e0764b4 896
ecc6a239
ASJ
897 if (q_vector->arm_wb_state)
898 return;
8e0764b4 899
ecc6a239
ASJ
900 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
901 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
902 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
a3d772a3 903
ecc6a239
ASJ
904 wr32(&vsi->back->hw,
905 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
906 val);
907 } else {
908 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
909 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
a3d772a3 910
ecc6a239
ASJ
911 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
912 }
913 q_vector->arm_wb_state = true;
914}
915
916/**
917 * i40e_force_wb - Issue SW Interrupt so HW does a wb
918 * @vsi: the VSI we care about
919 * @q_vector: the vector on which to force writeback
920 *
921 **/
922void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
923{
924 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
8e0764b4
ASJ
925 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
926 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
927 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
928 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
929 /* allow 00 to be written to the index */
930
931 wr32(&vsi->back->hw,
932 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
933 vsi->base_vector - 1), val);
934 } else {
935 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
936 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
937 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
938 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
939 /* allow 00 to be written to the index */
940
941 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
942 }
fd0a05ce
JB
943}
944
945/**
946 * i40e_set_new_dynamic_itr - Find new ITR level
947 * @rc: structure containing ring performance data
948 *
8f5e39ce
JB
949 * Returns true if ITR changed, false if not
950 *
fd0a05ce
JB
951 * Stores a new ITR value based on packets and byte counts during
952 * the last interrupt. The advantage of per interrupt computation
953 * is faster updates and more accurate ITR for the current traffic
954 * pattern. Constants in this function were computed based on
955 * theoretical maximum wire speed and thresholds were set based on
956 * testing data as well as attempting to minimize response time
957 * while increasing bulk throughput.
958 **/
8f5e39ce 959static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
fd0a05ce
JB
960{
961 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 962 struct i40e_q_vector *qv = rc->ring->q_vector;
fd0a05ce
JB
963 u32 new_itr = rc->itr;
964 int bytes_per_int;
51cc6d9f 965 int usecs;
fd0a05ce
JB
966
967 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 968 return false;
fd0a05ce
JB
969
970 /* simple throttlerate management
c56625d5 971 * 0-10MB/s lowest (50000 ints/s)
fd0a05ce 972 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
973 * 20-1249MB/s bulk (18000 ints/s)
974 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
975 *
976 * The math works out because the divisor is in 10^(-6) which
977 * turns the bytes/us input value into MB/s values, but
978 * make sure to use usecs, as the register values written
ee2319cf
JB
979 * are in 2 usec increments in the ITR registers, and make sure
980 * to use the smoothed values that the countdown timer gives us.
fd0a05ce 981 */
ee2319cf 982 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 983 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 984
de32e3ef 985 switch (new_latency_range) {
fd0a05ce
JB
986 case I40E_LOWEST_LATENCY:
987 if (bytes_per_int > 10)
988 new_latency_range = I40E_LOW_LATENCY;
989 break;
990 case I40E_LOW_LATENCY:
991 if (bytes_per_int > 20)
992 new_latency_range = I40E_BULK_LATENCY;
993 else if (bytes_per_int <= 10)
994 new_latency_range = I40E_LOWEST_LATENCY;
995 break;
996 case I40E_BULK_LATENCY:
c56625d5 997 case I40E_ULTRA_LATENCY:
de32e3ef
CW
998 default:
999 if (bytes_per_int <= 20)
1000 new_latency_range = I40E_LOW_LATENCY;
fd0a05ce
JB
1001 break;
1002 }
c56625d5
JB
1003
1004 /* this is to adjust RX more aggressively when streaming small
1005 * packets. The value of 40000 was picked as it is just beyond
1006 * what the hardware can receive per second if in low latency
1007 * mode.
1008 */
1009#define RX_ULTRA_PACKET_RATE 40000
1010
1011 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
1012 (&qv->rx == rc))
1013 new_latency_range = I40E_ULTRA_LATENCY;
1014
de32e3ef 1015 rc->latency_range = new_latency_range;
fd0a05ce
JB
1016
1017 switch (new_latency_range) {
1018 case I40E_LOWEST_LATENCY:
c56625d5 1019 new_itr = I40E_ITR_50K;
fd0a05ce
JB
1020 break;
1021 case I40E_LOW_LATENCY:
1022 new_itr = I40E_ITR_20K;
1023 break;
1024 case I40E_BULK_LATENCY:
c56625d5
JB
1025 new_itr = I40E_ITR_18K;
1026 break;
1027 case I40E_ULTRA_LATENCY:
fd0a05ce
JB
1028 new_itr = I40E_ITR_8K;
1029 break;
1030 default:
1031 break;
1032 }
1033
fd0a05ce
JB
1034 rc->total_bytes = 0;
1035 rc->total_packets = 0;
8f5e39ce
JB
1036
1037 if (new_itr != rc->itr) {
1038 rc->itr = new_itr;
1039 return true;
1040 }
1041
1042 return false;
fd0a05ce
JB
1043}
1044
0e626ff7
AD
1045/**
1046 * i40e_rx_is_programming_status - check for programming status descriptor
1047 * @qw: qword representing status_error_len in CPU ordering
1048 *
1049 * The value of in the descriptor length field indicate if this
1050 * is a programming status descriptor for flow director or FCoE
1051 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1052 * it is a packet descriptor.
1053 **/
1054static inline bool i40e_rx_is_programming_status(u64 qw)
1055{
1056 /* The Rx filter programming status and SPH bit occupy the same
1057 * spot in the descriptor. Since we don't support packet split we
1058 * can just reuse the bit as an indication that this is a
1059 * programming status descriptor.
1060 */
1061 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1062}
1063
fd0a05ce
JB
1064/**
1065 * i40e_clean_programming_status - clean the programming status descriptor
1066 * @rx_ring: the rx ring that has this descriptor
1067 * @rx_desc: the rx descriptor written back by HW
0e626ff7 1068 * @qw: qword representing status_error_len in CPU ordering
fd0a05ce
JB
1069 *
1070 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1071 * status being successful or not and take actions accordingly. FCoE should
1072 * handle its context/filter programming/invalidation status and take actions.
1073 *
1074 **/
1075static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
0e626ff7
AD
1076 union i40e_rx_desc *rx_desc,
1077 u64 qw)
fd0a05ce 1078{
0e626ff7 1079 u32 ntc = rx_ring->next_to_clean + 1;
fd0a05ce
JB
1080 u8 id;
1081
0e626ff7
AD
1082 /* fetch, update, and store next to clean */
1083 ntc = (ntc < rx_ring->count) ? ntc : 0;
1084 rx_ring->next_to_clean = ntc;
1085
1086 prefetch(I40E_RX_DESC(rx_ring, ntc));
1087
fd0a05ce
JB
1088 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1089 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1090
1091 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
55a5e60b 1092 i40e_fd_handle_status(rx_ring, rx_desc, id);
fd0a05ce
JB
1093}
1094
1095/**
1096 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1097 * @tx_ring: the tx ring to set up
1098 *
1099 * Return 0 on success, negative on error
1100 **/
1101int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1102{
1103 struct device *dev = tx_ring->dev;
1104 int bi_size;
1105
1106 if (!dev)
1107 return -ENOMEM;
1108
e908f815
JB
1109 /* warn if we are about to overwrite the pointer */
1110 WARN_ON(tx_ring->tx_bi);
fd0a05ce
JB
1111 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1112 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1113 if (!tx_ring->tx_bi)
1114 goto err;
1115
7d6d0677
FF
1116 u64_stats_init(&tx_ring->syncp);
1117
fd0a05ce
JB
1118 /* round up to nearest 4K */
1119 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
1120 /* add u32 for head writeback, align after this takes care of
1121 * guaranteeing this is at least one cache line in size
1122 */
1123 tx_ring->size += sizeof(u32);
fd0a05ce
JB
1124 tx_ring->size = ALIGN(tx_ring->size, 4096);
1125 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1126 &tx_ring->dma, GFP_KERNEL);
1127 if (!tx_ring->desc) {
1128 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1129 tx_ring->size);
1130 goto err;
1131 }
1132
1133 tx_ring->next_to_use = 0;
1134 tx_ring->next_to_clean = 0;
1135 return 0;
1136
1137err:
1138 kfree(tx_ring->tx_bi);
1139 tx_ring->tx_bi = NULL;
1140 return -ENOMEM;
1141}
1142
1143/**
1144 * i40e_clean_rx_ring - Free Rx buffers
1145 * @rx_ring: ring to be cleaned
1146 **/
1147void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1148{
fd0a05ce
JB
1149 unsigned long bi_size;
1150 u16 i;
1151
1152 /* ring already cleared, nothing to do */
1153 if (!rx_ring->rx_bi)
1154 return;
1155
e72e5659
SP
1156 if (rx_ring->skb) {
1157 dev_kfree_skb(rx_ring->skb);
1158 rx_ring->skb = NULL;
1159 }
1160
fd0a05ce
JB
1161 /* Free all the Rx ring sk_buffs */
1162 for (i = 0; i < rx_ring->count; i++) {
1a557afc
JB
1163 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1164
1a557afc
JB
1165 if (!rx_bi->page)
1166 continue;
1167
59605bc0
AD
1168 /* Invalidate cache lines that may have been written to by
1169 * device so that we avoid corrupting memory.
1170 */
1171 dma_sync_single_range_for_cpu(rx_ring->dev,
1172 rx_bi->dma,
1173 rx_bi->page_offset,
98efd694 1174 rx_ring->rx_buf_len,
59605bc0
AD
1175 DMA_FROM_DEVICE);
1176
1177 /* free resources associated with mapping */
1178 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
98efd694 1179 i40e_rx_pg_size(rx_ring),
59605bc0
AD
1180 DMA_FROM_DEVICE,
1181 I40E_RX_DMA_ATTR);
98efd694 1182
1793668c 1183 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1a557afc
JB
1184
1185 rx_bi->page = NULL;
1186 rx_bi->page_offset = 0;
fd0a05ce
JB
1187 }
1188
1189 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1190 memset(rx_ring->rx_bi, 0, bi_size);
1191
1192 /* Zero out the descriptor ring */
1193 memset(rx_ring->desc, 0, rx_ring->size);
1194
1a557afc 1195 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1196 rx_ring->next_to_clean = 0;
1197 rx_ring->next_to_use = 0;
1198}
1199
1200/**
1201 * i40e_free_rx_resources - Free Rx resources
1202 * @rx_ring: ring to clean the resources from
1203 *
1204 * Free all receive software resources
1205 **/
1206void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1207{
1208 i40e_clean_rx_ring(rx_ring);
0c8493d9 1209 rx_ring->xdp_prog = NULL;
fd0a05ce
JB
1210 kfree(rx_ring->rx_bi);
1211 rx_ring->rx_bi = NULL;
1212
1213 if (rx_ring->desc) {
1214 dma_free_coherent(rx_ring->dev, rx_ring->size,
1215 rx_ring->desc, rx_ring->dma);
1216 rx_ring->desc = NULL;
1217 }
1218}
1219
1220/**
1221 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1222 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1223 *
1224 * Returns 0 on success, negative on failure
1225 **/
1226int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1227{
1228 struct device *dev = rx_ring->dev;
1229 int bi_size;
1230
e908f815
JB
1231 /* warn if we are about to overwrite the pointer */
1232 WARN_ON(rx_ring->rx_bi);
fd0a05ce
JB
1233 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1234 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1235 if (!rx_ring->rx_bi)
1236 goto err;
1237
f217d6ca 1238 u64_stats_init(&rx_ring->syncp);
638702bd 1239
fd0a05ce 1240 /* Round up to nearest 4K */
1a557afc 1241 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
fd0a05ce
JB
1242 rx_ring->size = ALIGN(rx_ring->size, 4096);
1243 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1244 &rx_ring->dma, GFP_KERNEL);
1245
1246 if (!rx_ring->desc) {
1247 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1248 rx_ring->size);
1249 goto err;
1250 }
1251
1a557afc 1252 rx_ring->next_to_alloc = 0;
fd0a05ce
JB
1253 rx_ring->next_to_clean = 0;
1254 rx_ring->next_to_use = 0;
1255
0c8493d9
BT
1256 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1257
fd0a05ce
JB
1258 return 0;
1259err:
1260 kfree(rx_ring->rx_bi);
1261 rx_ring->rx_bi = NULL;
1262 return -ENOMEM;
1263}
1264
1265/**
1266 * i40e_release_rx_desc - Store the new tail and head values
1267 * @rx_ring: ring to bump
1268 * @val: new head index
1269 **/
1270static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1271{
1272 rx_ring->next_to_use = val;
1a557afc
JB
1273
1274 /* update next to alloc since we have filled the ring */
1275 rx_ring->next_to_alloc = val;
1276
fd0a05ce
JB
1277 /* Force memory writes to complete before letting h/w
1278 * know there are new descriptors to fetch. (Only
1279 * applicable for weak-ordered memory model archs,
1280 * such as IA-64).
1281 */
1282 wmb();
1283 writel(val, rx_ring->tail);
1284}
1285
ca9ec088
AD
1286/**
1287 * i40e_rx_offset - Return expected offset into page to access data
1288 * @rx_ring: Ring we are requesting offset of
1289 *
1290 * Returns the offset value for ring into the data buffer.
1291 */
1292static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1293{
1294 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1295}
1296
fd0a05ce 1297/**
1a557afc
JB
1298 * i40e_alloc_mapped_page - recycle or make a new page
1299 * @rx_ring: ring to use
1300 * @bi: rx_buffer struct to modify
c2e245ab 1301 *
1a557afc
JB
1302 * Returns true if the page was successfully allocated or
1303 * reused.
fd0a05ce 1304 **/
1a557afc
JB
1305static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1306 struct i40e_rx_buffer *bi)
a132af24 1307{
1a557afc
JB
1308 struct page *page = bi->page;
1309 dma_addr_t dma;
a132af24 1310
1a557afc
JB
1311 /* since we are recycling buffers we should seldom need to alloc */
1312 if (likely(page)) {
1313 rx_ring->rx_stats.page_reuse_count++;
1314 return true;
1315 }
a132af24 1316
1a557afc 1317 /* alloc new page for storage */
98efd694 1318 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1a557afc
JB
1319 if (unlikely(!page)) {
1320 rx_ring->rx_stats.alloc_page_failed++;
1321 return false;
1322 }
a132af24 1323
1a557afc 1324 /* map page for use */
59605bc0 1325 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
98efd694 1326 i40e_rx_pg_size(rx_ring),
59605bc0
AD
1327 DMA_FROM_DEVICE,
1328 I40E_RX_DMA_ATTR);
f16704e5 1329
1a557afc
JB
1330 /* if mapping failed free memory back to system since
1331 * there isn't much point in holding memory we can't use
f16704e5 1332 */
1a557afc 1333 if (dma_mapping_error(rx_ring->dev, dma)) {
98efd694 1334 __free_pages(page, i40e_rx_pg_order(rx_ring));
1a557afc
JB
1335 rx_ring->rx_stats.alloc_page_failed++;
1336 return false;
a132af24
MW
1337 }
1338
1a557afc
JB
1339 bi->dma = dma;
1340 bi->page = page;
ca9ec088 1341 bi->page_offset = i40e_rx_offset(rx_ring);
a0cfc313
AD
1342
1343 /* initialize pagecnt_bias to 1 representing we fully own page */
1793668c 1344 bi->pagecnt_bias = 1;
c2e245ab 1345
1a557afc
JB
1346 return true;
1347}
c2e245ab 1348
1a557afc
JB
1349/**
1350 * i40e_receive_skb - Send a completed packet up the stack
1351 * @rx_ring: rx ring in play
1352 * @skb: packet to send up
1353 * @vlan_tag: vlan tag for packet
1354 **/
1355static void i40e_receive_skb(struct i40e_ring *rx_ring,
1356 struct sk_buff *skb, u16 vlan_tag)
1357{
1358 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 1359
1a557afc
JB
1360 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1361 (vlan_tag & VLAN_VID_MASK))
1362 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1363
1364 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
1365}
1366
1367/**
1a557afc 1368 * i40e_alloc_rx_buffers - Replace used receive buffers
a132af24
MW
1369 * @rx_ring: ring to place buffers on
1370 * @cleaned_count: number of buffers to replace
c2e245ab 1371 *
1a557afc 1372 * Returns false if all allocations were successful, true if any fail
a132af24 1373 **/
1a557afc 1374bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
fd0a05ce 1375{
1a557afc 1376 u16 ntu = rx_ring->next_to_use;
fd0a05ce
JB
1377 union i40e_rx_desc *rx_desc;
1378 struct i40e_rx_buffer *bi;
fd0a05ce
JB
1379
1380 /* do nothing if no valid netdev defined */
1381 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 1382 return false;
fd0a05ce 1383
1a557afc
JB
1384 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1385 bi = &rx_ring->rx_bi[ntu];
fd0a05ce 1386
1a557afc
JB
1387 do {
1388 if (!i40e_alloc_mapped_page(rx_ring, bi))
1389 goto no_buffers;
fd0a05ce 1390
59605bc0
AD
1391 /* sync the buffer for use by the device */
1392 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1393 bi->page_offset,
98efd694 1394 rx_ring->rx_buf_len,
59605bc0
AD
1395 DMA_FROM_DEVICE);
1396
1a557afc
JB
1397 /* Refresh the desc even if buffer_addrs didn't change
1398 * because each write-back erases this info.
1399 */
1400 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
fd0a05ce 1401
1a557afc
JB
1402 rx_desc++;
1403 bi++;
1404 ntu++;
1405 if (unlikely(ntu == rx_ring->count)) {
1406 rx_desc = I40E_RX_DESC(rx_ring, 0);
1407 bi = rx_ring->rx_bi;
1408 ntu = 0;
1409 }
1410
1411 /* clear the status bits for the next_to_use descriptor */
1412 rx_desc->wb.qword1.status_error_len = 0;
1413
1414 cleaned_count--;
1415 } while (cleaned_count);
1416
1417 if (rx_ring->next_to_use != ntu)
1418 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1419
1420 return false;
1421
fd0a05ce 1422no_buffers:
1a557afc
JB
1423 if (rx_ring->next_to_use != ntu)
1424 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
1425
1426 /* make sure to come back via polling to try again after
1427 * allocation failure
1428 */
1429 return true;
fd0a05ce
JB
1430}
1431
fd0a05ce
JB
1432/**
1433 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1434 * @vsi: the VSI we care about
1435 * @skb: skb currently being received and modified
1a557afc 1436 * @rx_desc: the receive descriptor
fd0a05ce
JB
1437 **/
1438static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1439 struct sk_buff *skb,
1a557afc 1440 union i40e_rx_desc *rx_desc)
fd0a05ce 1441{
1a557afc 1442 struct i40e_rx_ptype_decoded decoded;
1a557afc 1443 u32 rx_error, rx_status;
858296c8 1444 bool ipv4, ipv6;
1a557afc
JB
1445 u8 ptype;
1446 u64 qword;
1447
1448 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1449 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1450 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1451 I40E_RXD_QW1_ERROR_SHIFT;
1452 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1453 I40E_RXD_QW1_STATUS_SHIFT;
1454 decoded = decode_rx_desc_ptype(ptype);
8144f0f7 1455
fd0a05ce
JB
1456 skb->ip_summed = CHECKSUM_NONE;
1457
1a557afc
JB
1458 skb_checksum_none_assert(skb);
1459
fd0a05ce 1460 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
1461 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1462 return;
1463
1464 /* did the hardware decode the packet and checksum? */
41a1d04b 1465 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
1466 return;
1467
1468 /* both known and outer_ip must be set for the below code to work */
1469 if (!(decoded.known && decoded.outer_ip))
fd0a05ce
JB
1470 return;
1471
fad57330
AD
1472 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1473 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1474 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1475 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
1476
1477 if (ipv4 &&
41a1d04b
JB
1478 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1479 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
1480 goto checksum_fail;
1481
ddf1d0d7 1482 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 1483 if (ipv6 &&
41a1d04b 1484 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 1485 /* don't increment checksum err here, non-fatal err */
8ee75a8e
SN
1486 return;
1487
8a3c91cc 1488 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 1489 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
1490 goto checksum_fail;
1491
1492 /* handle packets that were not able to be checksummed due
1493 * to arrival speed, in this case the stack can compute
1494 * the csum.
1495 */
41a1d04b 1496 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
fd0a05ce 1497 return;
fd0a05ce 1498
858296c8
AD
1499 /* If there is an outer header present that might contain a checksum
1500 * we need to bump the checksum level by 1 to reflect the fact that
1501 * we are indicating we validated the inner checksum.
8a3c91cc 1502 */
858296c8
AD
1503 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1504 skb->csum_level = 1;
1505
1506 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1507 switch (decoded.inner_prot) {
1508 case I40E_RX_PTYPE_INNER_PROT_TCP:
1509 case I40E_RX_PTYPE_INNER_PROT_UDP:
1510 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1511 skb->ip_summed = CHECKSUM_UNNECESSARY;
1512 /* fall though */
1513 default:
1514 break;
1515 }
8a3c91cc
JB
1516
1517 return;
1518
1519checksum_fail:
1520 vsi->back->hw_csum_rx_error++;
fd0a05ce
JB
1521}
1522
1523/**
857942fd 1524 * i40e_ptype_to_htype - get a hash type
206812b5
JB
1525 * @ptype: the ptype value from the descriptor
1526 *
1527 * Returns a hash type to be used by skb_set_hash
1528 **/
1a557afc 1529static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
1530{
1531 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1532
1533 if (!decoded.known)
1534 return PKT_HASH_TYPE_NONE;
1535
1536 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1537 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1538 return PKT_HASH_TYPE_L4;
1539 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1540 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1541 return PKT_HASH_TYPE_L3;
1542 else
1543 return PKT_HASH_TYPE_L2;
1544}
1545
857942fd
ASJ
1546/**
1547 * i40e_rx_hash - set the hash value in the skb
1548 * @ring: descriptor ring
1549 * @rx_desc: specific descriptor
1550 **/
1551static inline void i40e_rx_hash(struct i40e_ring *ring,
1552 union i40e_rx_desc *rx_desc,
1553 struct sk_buff *skb,
1554 u8 rx_ptype)
1555{
1556 u32 hash;
1a557afc 1557 const __le64 rss_mask =
857942fd
ASJ
1558 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1559 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1560
a876c3ba 1561 if (!(ring->netdev->features & NETIF_F_RXHASH))
857942fd
ASJ
1562 return;
1563
1564 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1565 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1566 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1567 }
1568}
1569
a132af24 1570/**
1a557afc
JB
1571 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1572 * @rx_ring: rx descriptor ring packet is being transacted on
1573 * @rx_desc: pointer to the EOP Rx descriptor
1574 * @skb: pointer to current skb being populated
1575 * @rx_ptype: the packet type decoded by hardware
1576 *
1577 * This function checks the ring, descriptor, and packet information in
1578 * order to populate the hash, checksum, VLAN, protocol, and
1579 * other fields within the skb.
1580 **/
1581static inline
1582void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1583 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1584 u8 rx_ptype)
1585{
1586 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1587 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1588 I40E_RXD_QW1_STATUS_SHIFT;
144ed176
JK
1589 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1590 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1a557afc
JB
1591 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1592
12490501 1593 if (unlikely(tsynvalid))
144ed176 1594 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1a557afc
JB
1595
1596 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1597
1a557afc
JB
1598 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1599
1600 skb_record_rx_queue(skb, rx_ring->queue_index);
a5b268e4
AD
1601
1602 /* modifies the skb - consumes the enet header */
1603 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1a557afc
JB
1604}
1605
1a557afc
JB
1606/**
1607 * i40e_cleanup_headers - Correct empty headers
1608 * @rx_ring: rx descriptor ring packet is being transacted on
1609 * @skb: pointer to current skb being fixed
0c8493d9 1610 * @rx_desc: pointer to the EOP Rx descriptor
1a557afc
JB
1611 *
1612 * Also address the case where we are pulling data in on pages only
1613 * and as such no data is present in the skb header.
1614 *
1615 * In addition if skb is not at least 60 bytes we need to pad it so that
1616 * it is large enough to qualify as a valid Ethernet frame.
1617 *
1618 * Returns true if an error was encountered and skb was freed.
1619 **/
0c8493d9
BT
1620static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1621 union i40e_rx_desc *rx_desc)
1622
1a557afc 1623{
0c8493d9
BT
1624 /* XDP packets use error pointer so abort at this point */
1625 if (IS_ERR(skb))
1626 return true;
1627
1628 /* ERR_MASK will only have valid bits if EOP set, and
1629 * what we are doing here is actually checking
1630 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1631 * the error field
1632 */
1633 if (unlikely(i40e_test_staterr(rx_desc,
1634 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1635 dev_kfree_skb_any(skb);
1636 return true;
1637 }
1638
1a557afc
JB
1639 /* if eth_skb_pad returns an error the skb was freed */
1640 if (eth_skb_pad(skb))
1641 return true;
1642
1643 return false;
1644}
1645
1646/**
1647 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1648 * @rx_ring: rx descriptor ring to store buffers on
1649 * @old_buff: donor buffer to have page reused
1650 *
1651 * Synchronizes page for reuse by the adapter
1652 **/
1653static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1654 struct i40e_rx_buffer *old_buff)
1655{
1656 struct i40e_rx_buffer *new_buff;
1657 u16 nta = rx_ring->next_to_alloc;
1658
1659 new_buff = &rx_ring->rx_bi[nta];
1660
1661 /* update, and store next to alloc */
1662 nta++;
1663 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1664
1665 /* transfer page from old buffer to new buffer */
1793668c
AD
1666 new_buff->dma = old_buff->dma;
1667 new_buff->page = old_buff->page;
1668 new_buff->page_offset = old_buff->page_offset;
1669 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1a557afc
JB
1670}
1671
1672/**
9b37c937 1673 * i40e_page_is_reusable - check if any reuse is possible
1a557afc 1674 * @page: page struct to check
9b37c937
SP
1675 *
1676 * A page is not reusable if it was allocated under low memory
1677 * conditions, or it's not in the same NUMA node as this CPU.
1a557afc 1678 */
9b37c937 1679static inline bool i40e_page_is_reusable(struct page *page)
1a557afc 1680{
9b37c937
SP
1681 return (page_to_nid(page) == numa_mem_id()) &&
1682 !page_is_pfmemalloc(page);
1683}
1684
1685/**
1686 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1687 * the adapter for another receive
1688 *
1689 * @rx_buffer: buffer containing the page
9b37c937
SP
1690 *
1691 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1692 * an unused region in the page.
1693 *
1694 * For small pages, @truesize will be a constant value, half the size
1695 * of the memory at page. We'll attempt to alternate between high and
1696 * low halves of the page, with one half ready for use by the hardware
1697 * and the other half being consumed by the stack. We use the page
1698 * ref count to determine whether the stack has finished consuming the
1699 * portion of this page that was passed up with a previous packet. If
1700 * the page ref count is >1, we'll assume the "other" half page is
1701 * still busy, and this page cannot be reused.
1702 *
1703 * For larger pages, @truesize will be the actual space used by the
1704 * received packet (adjusted upward to an even multiple of the cache
1705 * line size). This will advance through the page by the amount
1706 * actually consumed by the received packets while there is still
1707 * space for a buffer. Each region of larger pages will be used at
1708 * most once, after which the page will not be reused.
1709 *
1710 * In either case, if the page is reusable its refcount is increased.
1711 **/
a0cfc313 1712static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
9b37c937 1713{
a0cfc313
AD
1714 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1715 struct page *page = rx_buffer->page;
9b37c937
SP
1716
1717 /* Is any reuse possible? */
1718 if (unlikely(!i40e_page_is_reusable(page)))
1719 return false;
1720
1721#if (PAGE_SIZE < 8192)
1722 /* if we are only owner of page we can reuse it */
a0cfc313 1723 if (unlikely((page_count(page) - pagecnt_bias) > 1))
9b37c937 1724 return false;
9b37c937 1725#else
98efd694
AD
1726#define I40E_LAST_OFFSET \
1727 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1728 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
9b37c937
SP
1729 return false;
1730#endif
1731
1793668c
AD
1732 /* If we have drained the page fragment pool we need to update
1733 * the pagecnt_bias and page count so that we fully restock the
1734 * number of references the driver holds.
1735 */
a0cfc313 1736 if (unlikely(!pagecnt_bias)) {
1793668c
AD
1737 page_ref_add(page, USHRT_MAX);
1738 rx_buffer->pagecnt_bias = USHRT_MAX;
1739 }
a0cfc313 1740
9b37c937 1741 return true;
1a557afc
JB
1742}
1743
1744/**
1745 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1746 * @rx_ring: rx descriptor ring to transact packets on
1747 * @rx_buffer: buffer containing page to add
1a557afc 1748 * @skb: sk_buff to place the data into
a0cfc313 1749 * @size: packet length from rx_desc
1a557afc
JB
1750 *
1751 * This function will add the data contained in rx_buffer->page to the skb.
fa2343e9 1752 * It will just attach the page as a frag to the skb.
1a557afc 1753 *
fa2343e9 1754 * The function will then update the page offset.
1a557afc 1755 **/
a0cfc313 1756static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1a557afc 1757 struct i40e_rx_buffer *rx_buffer,
a0cfc313
AD
1758 struct sk_buff *skb,
1759 unsigned int size)
1a557afc 1760{
1a557afc 1761#if (PAGE_SIZE < 8192)
98efd694 1762 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1a557afc 1763#else
ca9ec088 1764 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1a557afc 1765#endif
1a557afc 1766
fa2343e9
AD
1767 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1768 rx_buffer->page_offset, size, truesize);
1a557afc 1769
a0cfc313
AD
1770 /* page is being used so we must update the page offset */
1771#if (PAGE_SIZE < 8192)
1772 rx_buffer->page_offset ^= truesize;
1773#else
1774 rx_buffer->page_offset += truesize;
1775#endif
1a557afc
JB
1776}
1777
9a064128
AD
1778/**
1779 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1780 * @rx_ring: rx descriptor ring to transact packets on
1781 * @size: size of buffer to add to skb
1782 *
1783 * This function will pull an Rx buffer from the ring and synchronize it
1784 * for use by the CPU.
1785 */
1786static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1787 const unsigned int size)
1788{
1789 struct i40e_rx_buffer *rx_buffer;
1790
1791 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1792 prefetchw(rx_buffer->page);
1793
1794 /* we are reusing so sync this buffer for CPU use */
1795 dma_sync_single_range_for_cpu(rx_ring->dev,
1796 rx_buffer->dma,
1797 rx_buffer->page_offset,
1798 size,
1799 DMA_FROM_DEVICE);
1800
a0cfc313
AD
1801 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1802 rx_buffer->pagecnt_bias--;
1803
9a064128
AD
1804 return rx_buffer;
1805}
1806
1a557afc 1807/**
fa2343e9 1808 * i40e_construct_skb - Allocate skb and populate it
1a557afc 1809 * @rx_ring: rx descriptor ring to transact packets on
9a064128 1810 * @rx_buffer: rx buffer to pull data from
0c8493d9 1811 * @xdp: xdp_buff pointing to the data
a132af24 1812 *
fa2343e9
AD
1813 * This function allocates an skb. It then populates it with the page
1814 * data from the current receive descriptor, taking care to set up the
1815 * skb correctly.
1a557afc 1816 */
fa2343e9
AD
1817static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1818 struct i40e_rx_buffer *rx_buffer,
0c8493d9 1819 struct xdp_buff *xdp)
1a557afc 1820{
0c8493d9 1821 unsigned int size = xdp->data_end - xdp->data;
fa2343e9 1822#if (PAGE_SIZE < 8192)
98efd694 1823 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
fa2343e9
AD
1824#else
1825 unsigned int truesize = SKB_DATA_ALIGN(size);
1826#endif
1827 unsigned int headlen;
1828 struct sk_buff *skb;
1a557afc 1829
fa2343e9 1830 /* prefetch first cache line of first page */
0c8493d9 1831 prefetch(xdp->data);
1a557afc 1832#if L1_CACHE_BYTES < 128
0c8493d9 1833 prefetch(xdp->data + L1_CACHE_BYTES);
1a557afc
JB
1834#endif
1835
fa2343e9
AD
1836 /* allocate a skb to store the frags */
1837 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1838 I40E_RX_HDR_SIZE,
1839 GFP_ATOMIC | __GFP_NOWARN);
1840 if (unlikely(!skb))
1841 return NULL;
1842
1843 /* Determine available headroom for copy */
1844 headlen = size;
1845 if (headlen > I40E_RX_HDR_SIZE)
0c8493d9 1846 headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1a557afc 1847
fa2343e9 1848 /* align pull length to size of long to optimize memcpy performance */
0c8493d9
BT
1849 memcpy(__skb_put(skb, headlen), xdp->data,
1850 ALIGN(headlen, sizeof(long)));
fa2343e9
AD
1851
1852 /* update all of the pointers */
1853 size -= headlen;
1854 if (size) {
1855 skb_add_rx_frag(skb, 0, rx_buffer->page,
1856 rx_buffer->page_offset + headlen,
1857 size, truesize);
1858
1859 /* buffer is used by skb, update page_offset */
1860#if (PAGE_SIZE < 8192)
1861 rx_buffer->page_offset ^= truesize;
1862#else
1863 rx_buffer->page_offset += truesize;
1864#endif
1865 } else {
1866 /* buffer is unused, reset bias back to rx_buffer */
1867 rx_buffer->pagecnt_bias++;
1868 }
a0cfc313
AD
1869
1870 return skb;
1871}
1872
f8b45b74
AD
1873/**
1874 * i40e_build_skb - Build skb around an existing buffer
1875 * @rx_ring: Rx descriptor ring to transact packets on
1876 * @rx_buffer: Rx buffer to pull data from
0c8493d9 1877 * @xdp: xdp_buff pointing to the data
f8b45b74
AD
1878 *
1879 * This function builds an skb around an existing Rx buffer, taking care
1880 * to set up the skb correctly and avoid any memcpy overhead.
1881 */
1882static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1883 struct i40e_rx_buffer *rx_buffer,
0c8493d9 1884 struct xdp_buff *xdp)
f8b45b74 1885{
0c8493d9 1886 unsigned int size = xdp->data_end - xdp->data;
f8b45b74
AD
1887#if (PAGE_SIZE < 8192)
1888 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1889#else
2aae918c
BT
1890 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1891 SKB_DATA_ALIGN(I40E_SKB_PAD + size);
f8b45b74
AD
1892#endif
1893 struct sk_buff *skb;
1894
1895 /* prefetch first cache line of first page */
0c8493d9 1896 prefetch(xdp->data);
f8b45b74 1897#if L1_CACHE_BYTES < 128
0c8493d9 1898 prefetch(xdp->data + L1_CACHE_BYTES);
f8b45b74
AD
1899#endif
1900 /* build an skb around the page buffer */
0c8493d9 1901 skb = build_skb(xdp->data_hard_start, truesize);
f8b45b74
AD
1902 if (unlikely(!skb))
1903 return NULL;
1904
1905 /* update pointers within the skb to store the data */
1906 skb_reserve(skb, I40E_SKB_PAD);
1907 __skb_put(skb, size);
1908
1909 /* buffer is used by skb, update page_offset */
1910#if (PAGE_SIZE < 8192)
1911 rx_buffer->page_offset ^= truesize;
1912#else
1913 rx_buffer->page_offset += truesize;
1914#endif
1915
1916 return skb;
1917}
1918
a0cfc313
AD
1919/**
1920 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1921 * @rx_ring: rx descriptor ring to transact packets on
1922 * @rx_buffer: rx buffer to pull data from
1923 *
1924 * This function will clean up the contents of the rx_buffer. It will
1925 * either recycle the bufer or unmap it and free the associated resources.
1926 */
1927static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1928 struct i40e_rx_buffer *rx_buffer)
1929{
1930 if (i40e_can_reuse_rx_page(rx_buffer)) {
1a557afc
JB
1931 /* hand second half of page back to the ring */
1932 i40e_reuse_rx_page(rx_ring, rx_buffer);
1933 rx_ring->rx_stats.page_reuse_count++;
1934 } else {
1935 /* we are not reusing the buffer so unmap it */
98efd694
AD
1936 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1937 i40e_rx_pg_size(rx_ring),
59605bc0 1938 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1793668c
AD
1939 __page_frag_cache_drain(rx_buffer->page,
1940 rx_buffer->pagecnt_bias);
1a557afc
JB
1941 }
1942
1943 /* clear contents of buffer_info */
1944 rx_buffer->page = NULL;
1a557afc
JB
1945}
1946
1947/**
1948 * i40e_is_non_eop - process handling of non-EOP buffers
1949 * @rx_ring: Rx ring being processed
1950 * @rx_desc: Rx descriptor for current buffer
1951 * @skb: Current socket buffer containing buffer in progress
1952 *
1953 * This function updates next to clean. If the buffer is an EOP buffer
1954 * this function exits returning false, otherwise it will place the
1955 * sk_buff in the next buffer to be chained and return true indicating
1956 * that this is in fact a non-EOP buffer.
a132af24 1957 **/
1a557afc
JB
1958static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1959 union i40e_rx_desc *rx_desc,
1960 struct sk_buff *skb)
1961{
1962 u32 ntc = rx_ring->next_to_clean + 1;
1963
1964 /* fetch, update, and store next to clean */
1965 ntc = (ntc < rx_ring->count) ? ntc : 0;
1966 rx_ring->next_to_clean = ntc;
1967
1968 prefetch(I40E_RX_DESC(rx_ring, ntc));
1969
1a557afc
JB
1970 /* if we are the last buffer then there is nothing else to do */
1971#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1972 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1973 return false;
1974
1a557afc
JB
1975 rx_ring->rx_stats.non_eop_descs++;
1976
1977 return true;
1978}
1979
0c8493d9
BT
1980#define I40E_XDP_PASS 0
1981#define I40E_XDP_CONSUMED 1
74608d17
BT
1982#define I40E_XDP_TX 2
1983
1984static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
1985 struct i40e_ring *xdp_ring);
0c8493d9
BT
1986
1987/**
1988 * i40e_run_xdp - run an XDP program
1989 * @rx_ring: Rx ring being processed
1990 * @xdp: XDP buffer containing the frame
1991 **/
1992static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
1993 struct xdp_buff *xdp)
1994{
1995 int result = I40E_XDP_PASS;
74608d17 1996 struct i40e_ring *xdp_ring;
0c8493d9
BT
1997 struct bpf_prog *xdp_prog;
1998 u32 act;
1999
2000 rcu_read_lock();
2001 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2002
2003 if (!xdp_prog)
2004 goto xdp_out;
2005
2006 act = bpf_prog_run_xdp(xdp_prog, xdp);
2007 switch (act) {
2008 case XDP_PASS:
2009 break;
74608d17
BT
2010 case XDP_TX:
2011 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2012 result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2013 break;
0c8493d9
BT
2014 default:
2015 bpf_warn_invalid_xdp_action(act);
0c8493d9
BT
2016 case XDP_ABORTED:
2017 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2018 /* fallthrough -- handle aborts by dropping packet */
2019 case XDP_DROP:
2020 result = I40E_XDP_CONSUMED;
2021 break;
2022 }
2023xdp_out:
2024 rcu_read_unlock();
2025 return ERR_PTR(-result);
2026}
2027
74608d17
BT
2028/**
2029 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2030 * @rx_ring: Rx ring
2031 * @rx_buffer: Rx buffer to adjust
2032 * @size: Size of adjustment
2033 **/
2034static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2035 struct i40e_rx_buffer *rx_buffer,
2036 unsigned int size)
2037{
2038#if (PAGE_SIZE < 8192)
2039 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2040
2041 rx_buffer->page_offset ^= truesize;
2042#else
2043 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2044
2045 rx_buffer->page_offset += truesize;
2046#endif
2047}
2048
1a557afc
JB
2049/**
2050 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2051 * @rx_ring: rx descriptor ring to transact packets on
2052 * @budget: Total limit on number of packets to process
2053 *
2054 * This function provides a "bounce buffer" approach to Rx interrupt
2055 * processing. The advantage to this is that on systems that have
2056 * expensive overhead for IOMMU access this provides a means of avoiding
2057 * it by maintaining the mapping of the page to the system.
2058 *
2059 * Returns amount of work completed
2060 **/
2061static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
2062{
2063 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
e72e5659 2064 struct sk_buff *skb = rx_ring->skb;
a132af24 2065 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
74608d17 2066 bool failure = false, xdp_xmit = false;
a132af24 2067
1a557afc 2068 while (likely(total_rx_packets < budget)) {
9a064128 2069 struct i40e_rx_buffer *rx_buffer;
1a557afc 2070 union i40e_rx_desc *rx_desc;
0c8493d9 2071 struct xdp_buff xdp;
d57c0e08 2072 unsigned int size;
a132af24 2073 u16 vlan_tag;
1a557afc
JB
2074 u8 rx_ptype;
2075 u64 qword;
2076
fd0a05ce
JB
2077 /* return some buffers to hardware, one at a time is too slow */
2078 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 2079 failure = failure ||
1a557afc 2080 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
fd0a05ce
JB
2081 cleaned_count = 0;
2082 }
2083
1a557afc
JB
2084 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2085
1a557afc
JB
2086 /* status_error_len will always be zero for unused descriptors
2087 * because it's cleared in cleanup, and overlaps with hdr_addr
2088 * which is always zero because packet split isn't used, if the
d57c0e08 2089 * hardware wrote DD then the length will be non-zero
1a557afc 2090 */
d57c0e08 2091 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1a557afc 2092
a132af24 2093 /* This memory barrier is needed to keep us from reading
d57c0e08
AD
2094 * any other fields out of the rx_desc until we have
2095 * verified the descriptor has been written back.
a132af24 2096 */
67317166 2097 dma_rmb();
a132af24 2098
0e626ff7
AD
2099 if (unlikely(i40e_rx_is_programming_status(qword))) {
2100 i40e_clean_programming_status(rx_ring, rx_desc, qword);
2101 continue;
2102 }
2103 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2104 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2105 if (!size)
2106 break;
2107
ed0980c4 2108 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
9a064128
AD
2109 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2110
fa2343e9 2111 /* retrieve a buffer from the ring */
0c8493d9
BT
2112 if (!skb) {
2113 xdp.data = page_address(rx_buffer->page) +
2114 rx_buffer->page_offset;
2115 xdp.data_hard_start = xdp.data -
2116 i40e_rx_offset(rx_ring);
2117 xdp.data_end = xdp.data + size;
2118
2119 skb = i40e_run_xdp(rx_ring, &xdp);
2120 }
2121
2122 if (IS_ERR(skb)) {
74608d17
BT
2123 if (PTR_ERR(skb) == -I40E_XDP_TX) {
2124 xdp_xmit = true;
2125 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2126 } else {
2127 rx_buffer->pagecnt_bias++;
2128 }
0c8493d9
BT
2129 total_rx_bytes += size;
2130 total_rx_packets++;
0c8493d9 2131 } else if (skb) {
fa2343e9 2132 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
0c8493d9
BT
2133 } else if (ring_uses_build_skb(rx_ring)) {
2134 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2135 } else {
2136 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2137 }
fa2343e9
AD
2138
2139 /* exit if we failed to retrieve a buffer */
2140 if (!skb) {
2141 rx_ring->rx_stats.alloc_buff_failed++;
2142 rx_buffer->pagecnt_bias++;
1a557afc 2143 break;
fa2343e9 2144 }
a132af24 2145
a0cfc313 2146 i40e_put_rx_buffer(rx_ring, rx_buffer);
a132af24
MW
2147 cleaned_count++;
2148
1a557afc 2149 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 2150 continue;
a132af24 2151
0c8493d9 2152 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
e72e5659 2153 skb = NULL;
1a557afc 2154 continue;
e72e5659 2155 }
a132af24
MW
2156
2157 /* probably a little skewed due to removing CRC */
2158 total_rx_bytes += skb->len;
a132af24 2159
99dad8b3
AD
2160 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2161 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2162 I40E_RXD_QW1_PTYPE_SHIFT;
2163
1a557afc
JB
2164 /* populate checksum, VLAN, and protocol */
2165 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 2166
1a557afc
JB
2167 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2168 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2169
ed0980c4 2170 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
a132af24 2171 i40e_receive_skb(rx_ring, skb, vlan_tag);
e72e5659 2172 skb = NULL;
a132af24 2173
1a557afc
JB
2174 /* update budget accounting */
2175 total_rx_packets++;
2176 }
fd0a05ce 2177
74608d17
BT
2178 if (xdp_xmit) {
2179 struct i40e_ring *xdp_ring;
2180
2181 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2182
2183 /* Force memory writes to complete before letting h/w
2184 * know there are new descriptors to fetch.
2185 */
2186 wmb();
2187
2188 writel(xdp_ring->next_to_use, xdp_ring->tail);
2189 }
2190
e72e5659
SP
2191 rx_ring->skb = skb;
2192
980e9b11 2193 u64_stats_update_begin(&rx_ring->syncp);
a114d0a6
AD
2194 rx_ring->stats.packets += total_rx_packets;
2195 rx_ring->stats.bytes += total_rx_bytes;
980e9b11 2196 u64_stats_update_end(&rx_ring->syncp);
fd0a05ce
JB
2197 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2198 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2199
1a557afc 2200 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 2201 return failure ? budget : total_rx_packets;
fd0a05ce
JB
2202}
2203
8f5e39ce
JB
2204static u32 i40e_buildreg_itr(const int type, const u16 itr)
2205{
2206 u32 val;
2207
2208 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
40d72a50
JB
2209 /* Don't clear PBA because that can cause lost interrupts that
2210 * came in while we were cleaning/polling
2211 */
8f5e39ce
JB
2212 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2213 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2214
2215 return val;
2216}
2217
2218/* a small macro to shorten up some long lines */
2219#define INTREG I40E_PFINT_DYN_CTLN
3c234c47 2220static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
65e87c03 2221{
3c234c47 2222 return vsi->rx_rings[idx]->rx_itr_setting;
65e87c03
JK
2223}
2224
3c234c47 2225static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
65e87c03 2226{
3c234c47 2227 return vsi->tx_rings[idx]->tx_itr_setting;
65e87c03 2228}
8f5e39ce 2229
de32e3ef
CW
2230/**
2231 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2232 * @vsi: the VSI we care about
2233 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2234 *
2235 **/
2236static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2237 struct i40e_q_vector *q_vector)
2238{
2239 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
2240 bool rx = false, tx = false;
2241 u32 rxval, txval;
de32e3ef 2242 int vector;
a75e8005 2243 int idx = q_vector->v_idx;
65e87c03 2244 int rx_itr_setting, tx_itr_setting;
de32e3ef
CW
2245
2246 vector = (q_vector->v_idx + vsi->base_vector);
8f5e39ce 2247
ee2319cf
JB
2248 /* avoid dynamic calculation if in countdown mode OR if
2249 * all dynamic is disabled
2250 */
8f5e39ce
JB
2251 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2252
3c234c47
CW
2253 rx_itr_setting = get_rx_itr(vsi, idx);
2254 tx_itr_setting = get_tx_itr(vsi, idx);
65e87c03 2255
ee2319cf 2256 if (q_vector->itr_countdown > 0 ||
65e87c03
JK
2257 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2258 !ITR_IS_DYNAMIC(tx_itr_setting))) {
ee2319cf
JB
2259 goto enable_int;
2260 }
2261
65e87c03 2262 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
2263 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2264 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 2265 }
8f5e39ce 2266
65e87c03 2267 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
2268 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2269 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
de32e3ef 2270 }
8f5e39ce
JB
2271
2272 if (rx || tx) {
2273 /* get the higher of the two ITR adjustments and
2274 * use the same value for both ITR registers
2275 * when in adaptive mode (Rx and/or Tx)
2276 */
2277 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2278
2279 q_vector->tx.itr = q_vector->rx.itr = itr;
2280 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2281 tx = true;
2282 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2283 rx = true;
2284 }
2285
2286 /* only need to enable the interrupt once, but need
2287 * to possibly update both ITR values
2288 */
2289 if (rx) {
2290 /* set the INTENA_MSK_MASK so that this first write
2291 * won't actually enable the interrupt, instead just
2292 * updating the ITR (it's bit 31 PF and VF)
2293 */
2294 rxval |= BIT(31);
2295 /* don't check _DOWN because interrupt isn't being enabled */
2296 wr32(hw, INTREG(vector - 1), rxval);
2297 }
2298
ee2319cf 2299enable_int:
0da36b97 2300 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
8f5e39ce 2301 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
2302
2303 if (q_vector->itr_countdown)
2304 q_vector->itr_countdown--;
2305 else
2306 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
2307}
2308
fd0a05ce
JB
2309/**
2310 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2311 * @napi: napi struct with our devices info in it
2312 * @budget: amount of work driver is allowed to do this pass, in packets
2313 *
2314 * This function will clean all queues associated with a q_vector.
2315 *
2316 * Returns the amount of work done
2317 **/
2318int i40e_napi_poll(struct napi_struct *napi, int budget)
2319{
2320 struct i40e_q_vector *q_vector =
2321 container_of(napi, struct i40e_q_vector, napi);
2322 struct i40e_vsi *vsi = q_vector->vsi;
cd0b6fa6 2323 struct i40e_ring *ring;
fd0a05ce 2324 bool clean_complete = true;
d91649f5 2325 bool arm_wb = false;
fd0a05ce 2326 int budget_per_ring;
32b3e08f 2327 int work_done = 0;
fd0a05ce 2328
0da36b97 2329 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
fd0a05ce
JB
2330 napi_complete(napi);
2331 return 0;
2332 }
2333
cd0b6fa6
AD
2334 /* Since the actual Tx work is minimal, we can give the Tx a larger
2335 * budget and be more aggressive about cleaning up the Tx descriptors.
2336 */
d91649f5 2337 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 2338 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
2339 clean_complete = false;
2340 continue;
2341 }
2342 arm_wb |= ring->arm_wb;
0deda868 2343 ring->arm_wb = false;
d91649f5 2344 }
cd0b6fa6 2345
c67caceb
AD
2346 /* Handle case where we are called by netpoll with a budget of 0 */
2347 if (budget <= 0)
2348 goto tx_only;
2349
fd0a05ce
JB
2350 /* We attempt to distribute budget to each Rx queue fairly, but don't
2351 * allow the budget to go below 1 because that would exit polling early.
fd0a05ce
JB
2352 */
2353 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
cd0b6fa6 2354
a132af24 2355 i40e_for_each_ring(ring, q_vector->rx) {
1a557afc 2356 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
2357
2358 work_done += cleaned;
f2edaaaa
AD
2359 /* if we clean as many as budgeted, we must not be done */
2360 if (cleaned >= budget_per_ring)
2361 clean_complete = false;
a132af24 2362 }
fd0a05ce
JB
2363
2364 /* If work not completed, return budget and polling will return */
d91649f5 2365 if (!clean_complete) {
96db776a
AB
2366 const cpumask_t *aff_mask = &q_vector->affinity_mask;
2367 int cpu_id = smp_processor_id();
2368
2369 /* It is possible that the interrupt affinity has changed but,
2370 * if the cpu is pegged at 100%, polling will never exit while
2371 * traffic continues and the interrupt will be stuck on this
2372 * cpu. We check to make sure affinity is correct before we
2373 * continue to poll, otherwise we must stop polling so the
2374 * interrupt can move to the correct cpu.
2375 */
2376 if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2377 !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
c67caceb 2378tx_only:
96db776a
AB
2379 if (arm_wb) {
2380 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2381 i40e_enable_wb_on_itr(vsi, q_vector);
2382 }
2383 return budget;
164c9f54 2384 }
d91649f5 2385 }
fd0a05ce 2386
8e0764b4
ASJ
2387 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2388 q_vector->arm_wb_state = false;
2389
fd0a05ce 2390 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 2391 napi_complete_done(napi, work_done);
96db776a
AB
2392
2393 /* If we're prematurely stopping polling to fix the interrupt
2394 * affinity we want to make sure polling starts back up so we
2395 * issue a call to i40e_force_wb which triggers a SW interrupt.
2396 */
2397 if (!clean_complete)
2398 i40e_force_wb(vsi, q_vector);
2399 else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
40d72a50 2400 i40e_irq_dynamic_enable_icr0(vsi->back, false);
96db776a
AB
2401 else
2402 i40e_update_enable_itr(vsi, q_vector);
2403
6beb84a7 2404 return min(work_done, budget - 1);
fd0a05ce
JB
2405}
2406
2407/**
2408 * i40e_atr - Add a Flow Director ATR filter
2409 * @tx_ring: ring to add programming descriptor to
2410 * @skb: send buffer
89232c3b 2411 * @tx_flags: send tx flags
fd0a05ce
JB
2412 **/
2413static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
6b037cd4 2414 u32 tx_flags)
fd0a05ce
JB
2415{
2416 struct i40e_filter_program_desc *fdir_desc;
2417 struct i40e_pf *pf = tx_ring->vsi->back;
2418 union {
2419 unsigned char *network;
2420 struct iphdr *ipv4;
2421 struct ipv6hdr *ipv6;
2422 } hdr;
2423 struct tcphdr *th;
2424 unsigned int hlen;
2425 u32 flex_ptype, dtype_cmd;
ffcc55c0 2426 int l4_proto;
fc4ac67b 2427 u16 i;
fd0a05ce
JB
2428
2429 /* make sure ATR is enabled */
60ea5f83 2430 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
fd0a05ce
JB
2431 return;
2432
47994c11 2433 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
04294e38
ASJ
2434 return;
2435
fd0a05ce
JB
2436 /* if sampling is disabled do nothing */
2437 if (!tx_ring->atr_sample_rate)
2438 return;
2439
6b037cd4 2440 /* Currently only IPv4/IPv6 with TCP is supported */
89232c3b
ASJ
2441 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2442 return;
fd0a05ce 2443
ffcc55c0
AD
2444 /* snag network header to get L4 type and address */
2445 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2446 skb_inner_network_header(skb) : skb_network_header(skb);
fd0a05ce 2447
ffcc55c0
AD
2448 /* Note: tx_flags gets modified to reflect inner protocols in
2449 * tx_enable_csum function if encap is enabled.
2450 */
2451 if (tx_flags & I40E_TX_FLAGS_IPV4) {
6b037cd4 2452 /* access ihl as u8 to avoid unaligned access on ia64 */
ffcc55c0
AD
2453 hlen = (hdr.network[0] & 0x0F) << 2;
2454 l4_proto = hdr.ipv4->protocol;
fd0a05ce 2455 } else {
ffcc55c0
AD
2456 hlen = hdr.network - skb->data;
2457 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2458 hlen -= hdr.network - skb->data;
fd0a05ce
JB
2459 }
2460
6b037cd4 2461 if (l4_proto != IPPROTO_TCP)
89232c3b
ASJ
2462 return;
2463
fd0a05ce
JB
2464 th = (struct tcphdr *)(hdr.network + hlen);
2465
55a5e60b 2466 /* Due to lack of space, no more new filters can be programmed */
47994c11 2467 if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
55a5e60b 2468 return;
6964e53f 2469 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
52eb95ef
ASJ
2470 /* HW ATR eviction will take care of removing filters on FIN
2471 * and RST packets.
2472 */
2473 if (th->fin || th->rst)
2474 return;
2475 }
55a5e60b
ASJ
2476
2477 tx_ring->atr_count++;
2478
ce806783
ASJ
2479 /* sample on all syn/fin/rst packets or once every atr sample rate */
2480 if (!th->fin &&
2481 !th->syn &&
2482 !th->rst &&
2483 (tx_ring->atr_count < tx_ring->atr_sample_rate))
fd0a05ce
JB
2484 return;
2485
2486 tx_ring->atr_count = 0;
2487
2488 /* grab the next descriptor */
fc4ac67b
AD
2489 i = tx_ring->next_to_use;
2490 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2491
2492 i++;
2493 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
2494
2495 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2496 I40E_TXD_FLTR_QW0_QINDEX_MASK;
6b037cd4 2497 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
fd0a05ce
JB
2498 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2499 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2500 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2501 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2502
2503 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2504
2505 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2506
ce806783 2507 dtype_cmd |= (th->fin || th->rst) ?
fd0a05ce
JB
2508 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2509 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2510 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2511 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2512
2513 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2514 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2515
2516 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2517 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2518
433c47de 2519 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
6a899024 2520 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
60ccd45c
ASJ
2521 dtype_cmd |=
2522 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2523 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2524 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2525 else
2526 dtype_cmd |=
2527 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2528 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2529 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
433c47de 2530
6964e53f 2531 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
52eb95ef
ASJ
2532 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2533
fd0a05ce 2534 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
99753ea6 2535 fdir_desc->rsvd = cpu_to_le32(0);
fd0a05ce 2536 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
99753ea6 2537 fdir_desc->fd_id = cpu_to_le32(0);
fd0a05ce
JB
2538}
2539
fd0a05ce
JB
2540/**
2541 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2542 * @skb: send buffer
2543 * @tx_ring: ring to send buffer on
2544 * @flags: the tx flags to be set
2545 *
2546 * Checks the skb and set up correspondingly several generic transmit flags
2547 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2548 *
2549 * Returns error code indicate the frame should be dropped upon error and the
2550 * otherwise returns 0 to indicate the flags has been set properly.
2551 **/
3e587cf3
JB
2552static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2553 struct i40e_ring *tx_ring,
2554 u32 *flags)
fd0a05ce
JB
2555{
2556 __be16 protocol = skb->protocol;
2557 u32 tx_flags = 0;
2558
31eaaccf
GR
2559 if (protocol == htons(ETH_P_8021Q) &&
2560 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2561 /* When HW VLAN acceleration is turned off by the user the
2562 * stack sets the protocol to 8021q so that the driver
2563 * can take any steps required to support the SW only
2564 * VLAN handling. In our case the driver doesn't need
2565 * to take any further steps so just set the protocol
2566 * to the encapsulated ethertype.
2567 */
2568 skb->protocol = vlan_get_protocol(skb);
2569 goto out;
2570 }
2571
fd0a05ce 2572 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
2573 if (skb_vlan_tag_present(skb)) {
2574 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
fd0a05ce
JB
2575 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2576 /* else if it is a SW VLAN, check the next protocol and store the tag */
0e2fe46c 2577 } else if (protocol == htons(ETH_P_8021Q)) {
fd0a05ce 2578 struct vlan_hdr *vhdr, _vhdr;
6995b36c 2579
fd0a05ce
JB
2580 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2581 if (!vhdr)
2582 return -EINVAL;
2583
2584 protocol = vhdr->h_vlan_encapsulated_proto;
2585 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2586 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2587 }
2588
d40d00b1
NP
2589 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2590 goto out;
2591
fd0a05ce 2592 /* Insert 802.1p priority into VLAN header */
38e00438
VD
2593 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2594 (skb->priority != TC_PRIO_CONTROL)) {
fd0a05ce
JB
2595 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2596 tx_flags |= (skb->priority & 0x7) <<
2597 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2598 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2599 struct vlan_ethhdr *vhdr;
dd225bc6
FR
2600 int rc;
2601
2602 rc = skb_cow_head(skb, 0);
2603 if (rc < 0)
2604 return rc;
fd0a05ce
JB
2605 vhdr = (struct vlan_ethhdr *)skb->data;
2606 vhdr->h_vlan_TCI = htons(tx_flags >>
2607 I40E_TX_FLAGS_VLAN_SHIFT);
2608 } else {
2609 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2610 }
2611 }
d40d00b1
NP
2612
2613out:
fd0a05ce
JB
2614 *flags = tx_flags;
2615 return 0;
2616}
2617
fd0a05ce
JB
2618/**
2619 * i40e_tso - set up the tso context descriptor
52ea3e80 2620 * @first: pointer to first Tx buffer for xmit
fd0a05ce 2621 * @hdr_len: ptr to the size of the packet header
9c883bd3 2622 * @cd_type_cmd_tso_mss: Quad Word 1
fd0a05ce
JB
2623 *
2624 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2625 **/
52ea3e80
AD
2626static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2627 u64 *cd_type_cmd_tso_mss)
fd0a05ce 2628{
52ea3e80 2629 struct sk_buff *skb = first->skb;
03f9d6a5 2630 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
2631 union {
2632 struct iphdr *v4;
2633 struct ipv6hdr *v6;
2634 unsigned char *hdr;
2635 } ip;
c49a7bc3
AD
2636 union {
2637 struct tcphdr *tcp;
5453205c 2638 struct udphdr *udp;
c49a7bc3
AD
2639 unsigned char *hdr;
2640 } l4;
2641 u32 paylen, l4_offset;
52ea3e80 2642 u16 gso_segs, gso_size;
fd0a05ce 2643 int err;
fd0a05ce 2644
e9f6563d
SN
2645 if (skb->ip_summed != CHECKSUM_PARTIAL)
2646 return 0;
2647
fd0a05ce
JB
2648 if (!skb_is_gso(skb))
2649 return 0;
2650
dd225bc6
FR
2651 err = skb_cow_head(skb, 0);
2652 if (err < 0)
2653 return err;
fd0a05ce 2654
c777019a
AD
2655 ip.hdr = skb_network_header(skb);
2656 l4.hdr = skb_transport_header(skb);
df23075f 2657
c777019a
AD
2658 /* initialize outer IP header fields */
2659 if (ip.v4->version == 4) {
2660 ip.v4->tot_len = 0;
2661 ip.v4->check = 0;
c49a7bc3 2662 } else {
c777019a
AD
2663 ip.v6->payload_len = 0;
2664 }
2665
577389a5 2666 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 2667 SKB_GSO_GRE_CSUM |
7e13318d 2668 SKB_GSO_IPXIP4 |
bf2d1df3 2669 SKB_GSO_IPXIP6 |
577389a5 2670 SKB_GSO_UDP_TUNNEL |
5453205c 2671 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
2672 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2673 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2674 l4.udp->len = 0;
2675
5453205c
AD
2676 /* determine offset of outer transport header */
2677 l4_offset = l4.hdr - skb->data;
2678
2679 /* remove payload length from outer checksum */
24d41e5e 2680 paylen = skb->len - l4_offset;
b9c015d4
JK
2681 csum_replace_by_diff(&l4.udp->check,
2682 (__force __wsum)htonl(paylen));
5453205c
AD
2683 }
2684
c777019a
AD
2685 /* reset pointers to inner headers */
2686 ip.hdr = skb_inner_network_header(skb);
2687 l4.hdr = skb_inner_transport_header(skb);
2688
2689 /* initialize inner IP header fields */
2690 if (ip.v4->version == 4) {
2691 ip.v4->tot_len = 0;
2692 ip.v4->check = 0;
2693 } else {
2694 ip.v6->payload_len = 0;
2695 }
fd0a05ce
JB
2696 }
2697
c49a7bc3
AD
2698 /* determine offset of inner transport header */
2699 l4_offset = l4.hdr - skb->data;
2700
2701 /* remove payload length from inner checksum */
24d41e5e 2702 paylen = skb->len - l4_offset;
b9c015d4 2703 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
c49a7bc3
AD
2704
2705 /* compute length of segmentation header */
2706 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
fd0a05ce 2707
52ea3e80
AD
2708 /* pull values out of skb_shinfo */
2709 gso_size = skb_shinfo(skb)->gso_size;
2710 gso_segs = skb_shinfo(skb)->gso_segs;
2711
2712 /* update GSO size and bytecount with header size */
2713 first->gso_segs = gso_segs;
2714 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2715
fd0a05ce
JB
2716 /* find the field values */
2717 cd_cmd = I40E_TX_CTX_DESC_TSO;
2718 cd_tso_len = skb->len - *hdr_len;
52ea3e80 2719 cd_mss = gso_size;
03f9d6a5
AD
2720 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2721 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2722 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
fd0a05ce
JB
2723 return 1;
2724}
2725
beb0dff1
JK
2726/**
2727 * i40e_tsyn - set up the tsyn context descriptor
2728 * @tx_ring: ptr to the ring to send
2729 * @skb: ptr to the skb we're sending
2730 * @tx_flags: the collected send information
9c883bd3 2731 * @cd_type_cmd_tso_mss: Quad Word 1
beb0dff1
JK
2732 *
2733 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2734 **/
2735static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2736 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2737{
2738 struct i40e_pf *pf;
2739
2740 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2741 return 0;
2742
2743 /* Tx timestamps cannot be sampled when doing TSO */
2744 if (tx_flags & I40E_TX_FLAGS_TSO)
2745 return 0;
2746
2747 /* only timestamp the outbound packet if the user has requested it and
2748 * we are not already transmitting a packet to be timestamped
2749 */
2750 pf = i40e_netdev_to_pf(tx_ring->netdev);
22b4777d
JK
2751 if (!(pf->flags & I40E_FLAG_PTP))
2752 return 0;
2753
9ce34f02 2754 if (pf->ptp_tx &&
0da36b97 2755 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
beb0dff1 2756 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
0bc0706b 2757 pf->ptp_tx_start = jiffies;
beb0dff1
JK
2758 pf->ptp_tx_skb = skb_get(skb);
2759 } else {
2955faca 2760 pf->tx_hwtstamp_skipped++;
beb0dff1
JK
2761 return 0;
2762 }
2763
2764 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2765 I40E_TXD_CTX_QW1_CMD_SHIFT;
2766
beb0dff1
JK
2767 return 1;
2768}
2769
fd0a05ce
JB
2770/**
2771 * i40e_tx_enable_csum - Enable Tx checksum offloads
2772 * @skb: send buffer
89232c3b 2773 * @tx_flags: pointer to Tx flags currently set
fd0a05ce
JB
2774 * @td_cmd: Tx descriptor command bits to set
2775 * @td_offset: Tx descriptor header offsets to set
554f4544 2776 * @tx_ring: Tx descriptor ring
fd0a05ce
JB
2777 * @cd_tunneling: ptr to context desc bits
2778 **/
529f1f65
AD
2779static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2780 u32 *td_cmd, u32 *td_offset,
2781 struct i40e_ring *tx_ring,
2782 u32 *cd_tunneling)
fd0a05ce 2783{
b96b78f2
AD
2784 union {
2785 struct iphdr *v4;
2786 struct ipv6hdr *v6;
2787 unsigned char *hdr;
2788 } ip;
2789 union {
2790 struct tcphdr *tcp;
2791 struct udphdr *udp;
2792 unsigned char *hdr;
2793 } l4;
a3fd9d88 2794 unsigned char *exthdr;
d1bd743b 2795 u32 offset, cmd = 0;
a3fd9d88 2796 __be16 frag_off;
b96b78f2
AD
2797 u8 l4_proto = 0;
2798
529f1f65
AD
2799 if (skb->ip_summed != CHECKSUM_PARTIAL)
2800 return 0;
2801
b96b78f2
AD
2802 ip.hdr = skb_network_header(skb);
2803 l4.hdr = skb_transport_header(skb);
fd0a05ce 2804
475b4205
AD
2805 /* compute outer L2 header size */
2806 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2807
fd0a05ce 2808 if (skb->encapsulation) {
d1bd743b 2809 u32 tunnel = 0;
a0064728
AD
2810 /* define outer network header type */
2811 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
2812 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2813 I40E_TX_CTX_EXT_IP_IPV4 :
2814 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2815
a0064728
AD
2816 l4_proto = ip.v4->protocol;
2817 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 2818 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
2819
2820 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 2821 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
2822 if (l4.hdr != exthdr)
2823 ipv6_skip_exthdr(skb, exthdr - skb->data,
2824 &l4_proto, &frag_off);
a0064728
AD
2825 }
2826
2827 /* define outer transport */
2828 switch (l4_proto) {
45991204 2829 case IPPROTO_UDP:
475b4205 2830 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
6a899024 2831 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
45991204 2832 break;
c1d1791d 2833 case IPPROTO_GRE:
475b4205 2834 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728 2835 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
c1d1791d 2836 break;
577389a5
AD
2837 case IPPROTO_IPIP:
2838 case IPPROTO_IPV6:
2839 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2840 l4.hdr = skb_inner_network_header(skb);
2841 break;
45991204 2842 default:
529f1f65
AD
2843 if (*tx_flags & I40E_TX_FLAGS_TSO)
2844 return -1;
2845
2846 skb_checksum_help(skb);
2847 return 0;
45991204 2848 }
b96b78f2 2849
577389a5
AD
2850 /* compute outer L3 header size */
2851 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2852 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2853
2854 /* switch IP header pointer from outer to inner header */
2855 ip.hdr = skb_inner_network_header(skb);
2856
475b4205
AD
2857 /* compute tunnel header size */
2858 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2859 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2860
5453205c
AD
2861 /* indicate if we need to offload outer UDP header */
2862 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 2863 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
2864 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2865 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2866
475b4205
AD
2867 /* record tunnel offload values */
2868 *cd_tunneling |= tunnel;
2869
b96b78f2 2870 /* switch L4 header pointer from outer to inner */
b96b78f2 2871 l4.hdr = skb_inner_transport_header(skb);
a0064728 2872 l4_proto = 0;
fd0a05ce 2873
a0064728
AD
2874 /* reset type as we transition from outer to inner headers */
2875 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2876 if (ip.v4->version == 4)
2877 *tx_flags |= I40E_TX_FLAGS_IPV4;
2878 if (ip.v6->version == 6)
89232c3b 2879 *tx_flags |= I40E_TX_FLAGS_IPV6;
fd0a05ce
JB
2880 }
2881
2882 /* Enable IP checksum offloads */
89232c3b 2883 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 2884 l4_proto = ip.v4->protocol;
fd0a05ce
JB
2885 /* the stack computes the IP header already, the only time we
2886 * need the hardware to recompute it is in the case of TSO.
2887 */
475b4205
AD
2888 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2889 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2890 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 2891 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 2892 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
2893
2894 exthdr = ip.hdr + sizeof(*ip.v6);
2895 l4_proto = ip.v6->nexthdr;
2896 if (l4.hdr != exthdr)
2897 ipv6_skip_exthdr(skb, exthdr - skb->data,
2898 &l4_proto, &frag_off);
fd0a05ce 2899 }
b96b78f2 2900
475b4205
AD
2901 /* compute inner L3 header size */
2902 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
fd0a05ce
JB
2903
2904 /* Enable L4 checksum offloads */
b96b78f2 2905 switch (l4_proto) {
fd0a05ce
JB
2906 case IPPROTO_TCP:
2907 /* enable checksum offloads */
475b4205
AD
2908 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2909 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2910 break;
2911 case IPPROTO_SCTP:
2912 /* enable SCTP checksum offload */
475b4205
AD
2913 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2914 offset |= (sizeof(struct sctphdr) >> 2) <<
2915 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2916 break;
2917 case IPPROTO_UDP:
2918 /* enable UDP checksum offload */
475b4205
AD
2919 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2920 offset |= (sizeof(struct udphdr) >> 2) <<
2921 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
fd0a05ce
JB
2922 break;
2923 default:
529f1f65
AD
2924 if (*tx_flags & I40E_TX_FLAGS_TSO)
2925 return -1;
2926 skb_checksum_help(skb);
2927 return 0;
fd0a05ce 2928 }
475b4205
AD
2929
2930 *td_cmd |= cmd;
2931 *td_offset |= offset;
529f1f65
AD
2932
2933 return 1;
fd0a05ce
JB
2934}
2935
2936/**
2937 * i40e_create_tx_ctx Build the Tx context descriptor
2938 * @tx_ring: ring to create the descriptor on
2939 * @cd_type_cmd_tso_mss: Quad Word 1
2940 * @cd_tunneling: Quad Word 0 - bits 0-31
2941 * @cd_l2tag2: Quad Word 0 - bits 32-63
2942 **/
2943static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2944 const u64 cd_type_cmd_tso_mss,
2945 const u32 cd_tunneling, const u32 cd_l2tag2)
2946{
2947 struct i40e_tx_context_desc *context_desc;
fc4ac67b 2948 int i = tx_ring->next_to_use;
fd0a05ce 2949
ff40dd5d
JB
2950 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2951 !cd_tunneling && !cd_l2tag2)
fd0a05ce
JB
2952 return;
2953
2954 /* grab the next descriptor */
fc4ac67b
AD
2955 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2956
2957 i++;
2958 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
fd0a05ce
JB
2959
2960 /* cpu_to_le32 and assign to struct fields */
2961 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2962 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 2963 context_desc->rsvd = cpu_to_le16(0);
fd0a05ce
JB
2964 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2965}
2966
4567dc10
ED
2967/**
2968 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2969 * @tx_ring: the ring to be checked
2970 * @size: the size buffer we want to assure is available
2971 *
2972 * Returns -EBUSY if a stop is needed, else 0
2973 **/
4ec441df 2974int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
4567dc10
ED
2975{
2976 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2977 /* Memory barrier before checking head and tail */
2978 smp_mb();
2979
2980 /* Check again in a case another CPU has just made room available. */
2981 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2982 return -EBUSY;
2983
2984 /* A reprieve! - use start_queue because it doesn't call schedule */
2985 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2986 ++tx_ring->tx_stats.restart_queue;
2987 return 0;
2988}
2989
71da6197 2990/**
3f3f7cb8 2991 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 2992 * @skb: send buffer
71da6197 2993 *
3f3f7cb8
AD
2994 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2995 * and so we need to figure out the cases where we need to linearize the skb.
2996 *
2997 * For TSO we need to count the TSO header and segment payload separately.
2998 * As such we need to check cases where we have 7 fragments or more as we
2999 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3000 * the segment payload in the first descriptor, and another 7 for the
3001 * fragments.
71da6197 3002 **/
2d37490b 3003bool __i40e_chk_linearize(struct sk_buff *skb)
71da6197 3004{
2d37490b 3005 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 3006 int nr_frags, sum;
71da6197 3007
3f3f7cb8 3008 /* no need to check if number of frags is less than 7 */
2d37490b 3009 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 3010 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 3011 return false;
71da6197 3012
2d37490b 3013 /* We need to walk through the list and validate that each group
841493a3 3014 * of 6 fragments totals at least gso_size.
2d37490b 3015 */
3f3f7cb8 3016 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
3017 frag = &skb_shinfo(skb)->frags[0];
3018
3019 /* Initialize size to the negative value of gso_size minus 1. We
3020 * use this as the worst case scenerio in which the frag ahead
3021 * of us only provides one byte which is why we are limited to 6
3022 * descriptors for a single transmit as the header and previous
3023 * fragment are already consuming 2 descriptors.
3024 */
3f3f7cb8 3025 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 3026
3f3f7cb8
AD
3027 /* Add size of frags 0 through 4 to create our initial sum */
3028 sum += skb_frag_size(frag++);
3029 sum += skb_frag_size(frag++);
3030 sum += skb_frag_size(frag++);
3031 sum += skb_frag_size(frag++);
3032 sum += skb_frag_size(frag++);
2d37490b
AD
3033
3034 /* Walk through fragments adding latest fragment, testing it, and
3035 * then removing stale fragments from the sum.
3036 */
3037 stale = &skb_shinfo(skb)->frags[0];
3038 for (;;) {
3f3f7cb8 3039 sum += skb_frag_size(frag++);
2d37490b
AD
3040
3041 /* if sum is negative we failed to make sufficient progress */
3042 if (sum < 0)
3043 return true;
3044
841493a3 3045 if (!nr_frags--)
2d37490b
AD
3046 break;
3047
3f3f7cb8 3048 sum -= skb_frag_size(stale++);
71da6197
AS
3049 }
3050
2d37490b 3051 return false;
71da6197
AS
3052}
3053
fd0a05ce
JB
3054/**
3055 * i40e_tx_map - Build the Tx descriptor
3056 * @tx_ring: ring to send buffer on
3057 * @skb: send buffer
3058 * @first: first buffer info buffer to use
3059 * @tx_flags: collected send information
3060 * @hdr_len: size of the packet header
3061 * @td_cmd: the command field in the descriptor
3062 * @td_offset: offset for checksum or crc
69077577
JK
3063 *
3064 * Returns 0 on success, -1 on failure to DMA
fd0a05ce 3065 **/
69077577
JK
3066static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3067 struct i40e_tx_buffer *first, u32 tx_flags,
3068 const u8 hdr_len, u32 td_cmd, u32 td_offset)
fd0a05ce 3069{
fd0a05ce
JB
3070 unsigned int data_len = skb->data_len;
3071 unsigned int size = skb_headlen(skb);
a5e9c572 3072 struct skb_frag_struct *frag;
fd0a05ce
JB
3073 struct i40e_tx_buffer *tx_bi;
3074 struct i40e_tx_desc *tx_desc;
a5e9c572 3075 u16 i = tx_ring->next_to_use;
fd0a05ce
JB
3076 u32 td_tag = 0;
3077 dma_addr_t dma;
1dc8b538 3078 u16 desc_count = 1;
fd0a05ce 3079
fd0a05ce
JB
3080 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3081 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3082 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3083 I40E_TX_FLAGS_VLAN_SHIFT;
3084 }
3085
a5e9c572
AD
3086 first->tx_flags = tx_flags;
3087
3088 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3089
fd0a05ce 3090 tx_desc = I40E_TX_DESC(tx_ring, i);
a5e9c572
AD
3091 tx_bi = first;
3092
3093 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
3094 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3095
a5e9c572
AD
3096 if (dma_mapping_error(tx_ring->dev, dma))
3097 goto dma_error;
3098
3099 /* record length, and DMA address */
3100 dma_unmap_len_set(tx_bi, len, size);
3101 dma_unmap_addr_set(tx_bi, dma, dma);
3102
5c4654da
AD
3103 /* align size to end of page */
3104 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
a5e9c572
AD
3105 tx_desc->buffer_addr = cpu_to_le64(dma);
3106
3107 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
fd0a05ce
JB
3108 tx_desc->cmd_type_offset_bsz =
3109 build_ctob(td_cmd, td_offset,
5c4654da 3110 max_data, td_tag);
fd0a05ce 3111
fd0a05ce
JB
3112 tx_desc++;
3113 i++;
58044743
AS
3114 desc_count++;
3115
fd0a05ce
JB
3116 if (i == tx_ring->count) {
3117 tx_desc = I40E_TX_DESC(tx_ring, 0);
3118 i = 0;
3119 }
fd0a05ce 3120
5c4654da
AD
3121 dma += max_data;
3122 size -= max_data;
fd0a05ce 3123
5c4654da 3124 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
a5e9c572
AD
3125 tx_desc->buffer_addr = cpu_to_le64(dma);
3126 }
fd0a05ce
JB
3127
3128 if (likely(!data_len))
3129 break;
3130
a5e9c572
AD
3131 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3132 size, td_tag);
fd0a05ce
JB
3133
3134 tx_desc++;
3135 i++;
58044743
AS
3136 desc_count++;
3137
fd0a05ce
JB
3138 if (i == tx_ring->count) {
3139 tx_desc = I40E_TX_DESC(tx_ring, 0);
3140 i = 0;
3141 }
3142
a5e9c572
AD
3143 size = skb_frag_size(frag);
3144 data_len -= size;
fd0a05ce 3145
a5e9c572
AD
3146 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3147 DMA_TO_DEVICE);
fd0a05ce 3148
a5e9c572
AD
3149 tx_bi = &tx_ring->tx_bi[i];
3150 }
fd0a05ce 3151
1dc8b538 3152 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
a5e9c572
AD
3153
3154 i++;
3155 if (i == tx_ring->count)
3156 i = 0;
3157
3158 tx_ring->next_to_use = i;
3159
4567dc10 3160 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
58044743 3161
1dc8b538
AD
3162 /* write last descriptor with EOP bit */
3163 td_cmd |= I40E_TX_DESC_CMD_EOP;
3164
3165 /* We can OR these values together as they both are checked against
3166 * 4 below and at this point desc_count will be used as a boolean value
3167 * after this if/else block.
3168 */
3169 desc_count |= ++tx_ring->packet_stride;
3170
58044743 3171 /* Algorithm to optimize tail and RS bit setting:
1dc8b538
AD
3172 * if queue is stopped
3173 * mark RS bit
3174 * reset packet counter
3175 * else if xmit_more is supported and is true
3176 * advance packet counter to 4
3177 * reset desc_count to 0
58044743 3178 *
1dc8b538
AD
3179 * if desc_count >= 4
3180 * mark RS bit
3181 * reset packet counter
3182 * if desc_count > 0
3183 * update tail
58044743 3184 *
1dc8b538 3185 * Note: If there are less than 4 descriptors
58044743
AS
3186 * pending and interrupts were disabled the service task will
3187 * trigger a force WB.
3188 */
1dc8b538
AD
3189 if (netif_xmit_stopped(txring_txq(tx_ring))) {
3190 goto do_rs;
3191 } else if (skb->xmit_more) {
3192 /* set stride to arm on next packet and reset desc_count */
3193 tx_ring->packet_stride = WB_STRIDE;
3194 desc_count = 0;
3195 } else if (desc_count >= WB_STRIDE) {
3196do_rs:
3197 /* write last descriptor with RS bit set */
3198 td_cmd |= I40E_TX_DESC_CMD_RS;
58044743 3199 tx_ring->packet_stride = 0;
58044743 3200 }
58044743
AS
3201
3202 tx_desc->cmd_type_offset_bsz =
1dc8b538
AD
3203 build_ctob(td_cmd, td_offset, size, td_tag);
3204
3205 /* Force memory writes to complete before letting h/w know there
3206 * are new descriptors to fetch.
3207 *
3208 * We also use this memory barrier to make certain all of the
3209 * status bits have been updated before next_to_watch is written.
3210 */
3211 wmb();
3212
3213 /* set next_to_watch value indicating a packet is present */
3214 first->next_to_watch = tx_desc;
58044743 3215
a5e9c572 3216 /* notify HW of packet */
1dc8b538 3217 if (desc_count) {
58044743 3218 writel(i, tx_ring->tail);
1dc8b538
AD
3219
3220 /* we need this if more than one processor can write to our tail
3221 * at a time, it synchronizes IO on IA64/Altix systems
3222 */
3223 mmiowb();
58044743 3224 }
1dc8b538 3225
69077577 3226 return 0;
fd0a05ce
JB
3227
3228dma_error:
a5e9c572 3229 dev_info(tx_ring->dev, "TX DMA map failed\n");
fd0a05ce
JB
3230
3231 /* clear dma mappings for failed tx_bi map */
3232 for (;;) {
3233 tx_bi = &tx_ring->tx_bi[i];
a5e9c572 3234 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
fd0a05ce
JB
3235 if (tx_bi == first)
3236 break;
3237 if (i == 0)
3238 i = tx_ring->count;
3239 i--;
3240 }
3241
fd0a05ce 3242 tx_ring->next_to_use = i;
69077577
JK
3243
3244 return -1;
fd0a05ce
JB
3245}
3246
74608d17
BT
3247/**
3248 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3249 * @xdp: data to transmit
3250 * @xdp_ring: XDP Tx ring
3251 **/
3252static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3253 struct i40e_ring *xdp_ring)
3254{
3255 u32 size = xdp->data_end - xdp->data;
3256 u16 i = xdp_ring->next_to_use;
3257 struct i40e_tx_buffer *tx_bi;
3258 struct i40e_tx_desc *tx_desc;
3259 dma_addr_t dma;
3260
3261 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3262 xdp_ring->tx_stats.tx_busy++;
3263 return I40E_XDP_CONSUMED;
3264 }
3265
3266 dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3267 if (dma_mapping_error(xdp_ring->dev, dma))
3268 return I40E_XDP_CONSUMED;
3269
3270 tx_bi = &xdp_ring->tx_bi[i];
3271 tx_bi->bytecount = size;
3272 tx_bi->gso_segs = 1;
3273 tx_bi->raw_buf = xdp->data;
3274
3275 /* record length, and DMA address */
3276 dma_unmap_len_set(tx_bi, len, size);
3277 dma_unmap_addr_set(tx_bi, dma, dma);
3278
3279 tx_desc = I40E_TX_DESC(xdp_ring, i);
3280 tx_desc->buffer_addr = cpu_to_le64(dma);
3281 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3282 | I40E_TXD_CMD,
3283 0, size, 0);
3284
3285 /* Make certain all of the status bits have been updated
3286 * before next_to_watch is written.
3287 */
3288 smp_wmb();
3289
3290 i++;
3291 if (i == xdp_ring->count)
3292 i = 0;
3293
3294 tx_bi->next_to_watch = tx_desc;
3295 xdp_ring->next_to_use = i;
3296
3297 return I40E_XDP_TX;
3298}
3299
fd0a05ce
JB
3300/**
3301 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3302 * @skb: send buffer
3303 * @tx_ring: ring to send buffer on
3304 *
3305 * Returns NETDEV_TX_OK if sent, else an error code
3306 **/
3307static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3308 struct i40e_ring *tx_ring)
3309{
3310 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3311 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3312 struct i40e_tx_buffer *first;
3313 u32 td_offset = 0;
3314 u32 tx_flags = 0;
3315 __be16 protocol;
3316 u32 td_cmd = 0;
3317 u8 hdr_len = 0;
4ec441df 3318 int tso, count;
beb0dff1 3319 int tsyn;
6995b36c 3320
b74118f0
JB
3321 /* prefetch the data, we'll need it later */
3322 prefetch(skb->data);
3323
ed0980c4
SP
3324 i40e_trace(xmit_frame_ring, skb, tx_ring);
3325
4ec441df 3326 count = i40e_xmit_descriptor_count(skb);
2d37490b 3327 if (i40e_chk_linearize(skb, count)) {
52ea3e80
AD
3328 if (__skb_linearize(skb)) {
3329 dev_kfree_skb_any(skb);
3330 return NETDEV_TX_OK;
3331 }
5c4654da 3332 count = i40e_txd_use_count(skb->len);
2d37490b
AD
3333 tx_ring->tx_stats.tx_linearize++;
3334 }
4ec441df
AD
3335
3336 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3337 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3338 * + 4 desc gap to avoid the cache line where head is,
3339 * + 1 desc for context descriptor,
3340 * otherwise try next time
3341 */
3342 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3343 tx_ring->tx_stats.tx_busy++;
fd0a05ce 3344 return NETDEV_TX_BUSY;
4ec441df 3345 }
fd0a05ce 3346
52ea3e80
AD
3347 /* record the location of the first descriptor for this packet */
3348 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3349 first->skb = skb;
3350 first->bytecount = skb->len;
3351 first->gso_segs = 1;
3352
fd0a05ce
JB
3353 /* prepare the xmit flags */
3354 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3355 goto out_drop;
3356
3357 /* obtain protocol of skb */
3d34dd03 3358 protocol = vlan_get_protocol(skb);
fd0a05ce 3359
fd0a05ce 3360 /* setup IPv4/IPv6 offloads */
0e2fe46c 3361 if (protocol == htons(ETH_P_IP))
fd0a05ce 3362 tx_flags |= I40E_TX_FLAGS_IPV4;
0e2fe46c 3363 else if (protocol == htons(ETH_P_IPV6))
fd0a05ce
JB
3364 tx_flags |= I40E_TX_FLAGS_IPV6;
3365
52ea3e80 3366 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
fd0a05ce
JB
3367
3368 if (tso < 0)
3369 goto out_drop;
3370 else if (tso)
3371 tx_flags |= I40E_TX_FLAGS_TSO;
3372
3bc67973
AD
3373 /* Always offload the checksum, since it's in the data descriptor */
3374 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3375 tx_ring, &cd_tunneling);
3376 if (tso < 0)
3377 goto out_drop;
3378
beb0dff1
JK
3379 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3380
3381 if (tsyn)
3382 tx_flags |= I40E_TX_FLAGS_TSYN;
3383
259afec7
JK
3384 skb_tx_timestamp(skb);
3385
b1941306
AD
3386 /* always enable CRC insertion offload */
3387 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3388
fd0a05ce
JB
3389 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3390 cd_tunneling, cd_l2tag2);
3391
3392 /* Add Flow Director ATR if it's enabled.
3393 *
3394 * NOTE: this must always be directly before the data descriptor.
3395 */
6b037cd4 3396 i40e_atr(tx_ring, skb, tx_flags);
fd0a05ce 3397
69077577
JK
3398 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3399 td_cmd, td_offset))
3400 goto cleanup_tx_tstamp;
fd0a05ce 3401
fd0a05ce
JB
3402 return NETDEV_TX_OK;
3403
3404out_drop:
ed0980c4 3405 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
52ea3e80
AD
3406 dev_kfree_skb_any(first->skb);
3407 first->skb = NULL;
69077577
JK
3408cleanup_tx_tstamp:
3409 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3410 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3411
3412 dev_kfree_skb_any(pf->ptp_tx_skb);
3413 pf->ptp_tx_skb = NULL;
3414 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3415 }
3416
fd0a05ce
JB
3417 return NETDEV_TX_OK;
3418}
3419
3420/**
3421 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3422 * @skb: send buffer
3423 * @netdev: network interface device structure
3424 *
3425 * Returns NETDEV_TX_OK if sent, else an error code
3426 **/
3427netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3428{
3429 struct i40e_netdev_priv *np = netdev_priv(netdev);
3430 struct i40e_vsi *vsi = np->vsi;
9f65e15b 3431 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
fd0a05ce
JB
3432
3433 /* hardware can't handle really short frames, hardware padding works
3434 * beyond this point
3435 */
a94d9e22
AD
3436 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3437 return NETDEV_TX_OK;
fd0a05ce
JB
3438
3439 return i40e_xmit_frame_ring(skb, tx_ring);
3440}