]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/ethernet/intel/i40e/i40e_txrx.h
i40e/i40evf: Remove reference to ring->dtype
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.h
CommitLineData
7daa6bf3
JB
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
c2e245ab 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7daa6bf3
JB
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
dc641b73
GR
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
7daa6bf3
JB
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
36fac581
VD
27#ifndef _I40E_TXRX_H_
28#define _I40E_TXRX_H_
29
aee8087f 30/* Interrupt Throttling and Rate Limiting Goodies */
7daa6bf3 31
3126dcb7 32#define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */
79442d38 33#define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */
7daa6bf3 34#define I40E_ITR_100K 0x0005
c56625d5 35#define I40E_ITR_50K 0x000A
7daa6bf3 36#define I40E_ITR_20K 0x0019
c56625d5 37#define I40E_ITR_18K 0x001B
7daa6bf3
JB
38#define I40E_ITR_8K 0x003E
39#define I40E_ITR_4K 0x007A
ac26fc13 40#define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
ee2319cf
JB
41#define I40E_ITR_RX_DEF I40E_ITR_20K
42#define I40E_ITR_TX_DEF I40E_ITR_20K
7daa6bf3
JB
43#define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
44#define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */
45#define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */
46#define I40E_DEFAULT_IRQ_WORK 256
47#define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
48#define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
49#define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
ac26fc13
JB
50/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
51 * the value of the rate limit is non-zero
52 */
53#define INTRL_ENA BIT(6)
54#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
55#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
56#define I40E_INTRL_8K 125 /* 8000 ints/sec */
57#define I40E_INTRL_62K 16 /* 62500 ints/sec */
58#define I40E_INTRL_83K 12 /* 83333 ints/sec */
7daa6bf3
JB
59
60#define I40E_QUEUE_END_OF_LIST 0x7FF
61
0319577f
JB
62/* this enum matches hardware bits and is meant to be used by DYN_CTLN
63 * registers and QINT registers or more generally anywhere in the manual
64 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
65 * register but instead is a special value meaning "don't update" ITR0/1/2.
66 */
67enum i40e_dyn_idx_t {
68 I40E_IDX_ITR0 = 0,
69 I40E_IDX_ITR1 = 1,
70 I40E_IDX_ITR2 = 2,
71 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
72};
73
74/* these are indexes into ITRN registers */
75#define I40E_RX_ITR I40E_IDX_ITR0
76#define I40E_TX_ITR I40E_IDX_ITR1
77#define I40E_PE_ITR I40E_IDX_ITR2
78
12dc4fe3
MW
79/* Supported RSS offloads */
80#define I40E_DEFAULT_RSS_HENA ( \
41a1d04b
JB
81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
83 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
84 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
85 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
90 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
91 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
12dc4fe3 92
e25d00b8 93#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
9c70d7ce
JB
94 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
95 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
96 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
97 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
98 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
99 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
e25d00b8
ASJ
100
101#define i40e_pf_get_default_rss_hena(pf) \
102 (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
103 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
104
7daa6bf3
JB
105/* Supported Rx Buffer Sizes */
106#define I40E_RXBUFFER_512 512 /* Used for packet split */
107#define I40E_RXBUFFER_2048 2048
108#define I40E_RXBUFFER_3072 3072 /* For FCoE MTU of 2158 */
109#define I40E_RXBUFFER_4096 4096
110#define I40E_RXBUFFER_8192 8192
111#define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
112
113/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
114 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
115 * this adds up to 512 bytes of extra data meaning the smallest allocation
116 * we could have is 1K.
117 * i.e. RXBUFFER_512 --> size-1024 slab
118 */
119#define I40E_RX_HDR_SIZE I40E_RXBUFFER_512
120
121/* How many Rx Buffers do we bundle into one write to the hardware ? */
122#define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */
a132af24
MW
123#define I40E_RX_INCREMENT(r, i) \
124 do { \
125 (i)++; \
126 if ((i) == (r)->count) \
127 i = 0; \
128 r->next_to_clean = i; \
129 } while (0)
130
7daa6bf3
JB
131#define I40E_RX_NEXT_DESC(r, i, n) \
132 do { \
133 (i)++; \
134 if ((i) == (r)->count) \
135 i = 0; \
136 (n) = I40E_RX_DESC((r), (i)); \
137 } while (0)
138
139#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
140 do { \
141 I40E_RX_NEXT_DESC((r), (i), (n)); \
142 prefetch((n)); \
143 } while (0)
144
145#define i40e_rx_desc i40e_32byte_rx_desc
146
71da6197 147#define I40E_MAX_BUFFER_TXD 8
7daa6bf3 148#define I40E_MIN_TX_LEN 17
5c4654da
AD
149
150/* The size limit for a transmit buffer in a descriptor is (16K - 1).
151 * In order to align with the read requests we will align the value to
152 * the nearest 4K which represents our maximum read request size.
153 */
154#define I40E_MAX_READ_REQ_SIZE 4096
155#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
156#define I40E_MAX_DATA_PER_TXD_ALIGNED \
157 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
158
159/* This ugly bit of math is equivalent to DIV_ROUNDUP(size, X) where X is
160 * the value I40E_MAX_DATA_PER_TXD_ALIGNED. It is needed due to the fact
161 * that 12K is not a power of 2 and division is expensive. It is used to
162 * approximate the number of descriptors used per linear buffer. Note
163 * that this will overestimate in some cases as it doesn't account for the
164 * fact that we will add up to 4K - 1 in aligning the 12K buffer, however
165 * the error should not impact things much as large buffers usually mean
166 * we will use fewer descriptors then there are frags in an skb.
167 */
168static inline unsigned int i40e_txd_use_count(unsigned int size)
169{
170 const unsigned int max = I40E_MAX_DATA_PER_TXD_ALIGNED;
171 const unsigned int reciprocal = ((1ull << 32) - 1 + (max / 2)) / max;
172 unsigned int adjust = ~(u32)0;
173
174 /* if we rounded up on the reciprocal pull down the adjustment */
175 if ((max * reciprocal) > adjust)
176 adjust = ~(u32)(reciprocal - 1);
177
178 return (u32)((((u64)size * reciprocal) + adjust) >> 32);
179}
7daa6bf3
JB
180
181/* Tx Descriptors needed, worst case */
980093eb 182#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
810b3ae4 183#define I40E_MIN_DESC_PENDING 4
7daa6bf3 184
41a1d04b
JB
185#define I40E_TX_FLAGS_HW_VLAN BIT(1)
186#define I40E_TX_FLAGS_SW_VLAN BIT(2)
187#define I40E_TX_FLAGS_TSO BIT(3)
188#define I40E_TX_FLAGS_IPV4 BIT(4)
189#define I40E_TX_FLAGS_IPV6 BIT(5)
190#define I40E_TX_FLAGS_FCCRC BIT(6)
191#define I40E_TX_FLAGS_FSO BIT(7)
192#define I40E_TX_FLAGS_TSYN BIT(8)
193#define I40E_TX_FLAGS_FD_SB BIT(9)
6a899024 194#define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
7daa6bf3
JB
195#define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
196#define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
197#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
198#define I40E_TX_FLAGS_VLAN_SHIFT 16
199
200struct i40e_tx_buffer {
7daa6bf3 201 struct i40e_tx_desc *next_to_watch;
49d7d933
ASJ
202 union {
203 struct sk_buff *skb;
204 void *raw_buf;
205 };
7daa6bf3 206 unsigned int bytecount;
35a1e2ad 207 unsigned short gso_segs;
6995b36c 208
35a1e2ad
AD
209 DEFINE_DMA_UNMAP_ADDR(dma);
210 DEFINE_DMA_UNMAP_LEN(len);
211 u32 tx_flags;
7daa6bf3
JB
212};
213
214struct i40e_rx_buffer {
215 struct sk_buff *skb;
a132af24 216 void *hdr_buf;
7daa6bf3
JB
217 dma_addr_t dma;
218 struct page *page;
219 dma_addr_t page_dma;
220 unsigned int page_offset;
221};
222
a114d0a6 223struct i40e_queue_stats {
7daa6bf3
JB
224 u64 packets;
225 u64 bytes;
a114d0a6
AD
226};
227
228struct i40e_tx_queue_stats {
7daa6bf3
JB
229 u64 restart_queue;
230 u64 tx_busy;
7daa6bf3 231 u64 tx_done_old;
2fc3d715 232 u64 tx_linearize;
164c9f54 233 u64 tx_force_wb;
dd353109 234 u64 tx_lost_interrupt;
7daa6bf3
JB
235};
236
237struct i40e_rx_queue_stats {
7daa6bf3 238 u64 non_eop_descs;
420136cc
MW
239 u64 alloc_page_failed;
240 u64 alloc_buff_failed;
f16704e5
MW
241 u64 page_reuse_count;
242 u64 realloc_count;
7daa6bf3
JB
243};
244
245enum i40e_ring_state_t {
246 __I40E_TX_FDIR_INIT_DONE,
247 __I40E_TX_XPS_INIT_DONE,
7daa6bf3
JB
248 __I40E_RX_16BYTE_DESC_ENABLED,
249};
250
7daa6bf3
JB
251#define ring_is_16byte_desc_enabled(ring) \
252 test_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
253#define set_ring_16byte_desc_enabled(ring) \
254 set_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
255#define clear_ring_16byte_desc_enabled(ring) \
256 clear_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
257
258/* struct that defines a descriptor ring, associated with a VSI */
259struct i40e_ring {
cd0b6fa6 260 struct i40e_ring *next; /* pointer to next ring in q_vector */
7daa6bf3
JB
261 void *desc; /* Descriptor ring memory */
262 struct device *dev; /* Used for DMA mapping */
263 struct net_device *netdev; /* netdev ring maps to */
264 union {
265 struct i40e_tx_buffer *tx_bi;
266 struct i40e_rx_buffer *rx_bi;
267 };
268 unsigned long state;
269 u16 queue_index; /* Queue number of ring */
270 u8 dcb_tc; /* Traffic class of ring */
271 u8 __iomem *tail;
272
a75e8005
KL
273 /* high bit set means dynamic, use accessor routines to read/write.
274 * hardware only supports 2us resolution for the ITR registers.
275 * these values always store the USER setting, and must be converted
276 * before programming to a register.
277 */
278 u16 rx_itr_setting;
279 u16 tx_itr_setting;
280
7daa6bf3
JB
281 u16 count; /* Number of descriptors */
282 u16 reg_idx; /* HW register index of the ring */
283 u16 rx_hdr_len;
284 u16 rx_buf_len;
7daa6bf3 285#define I40E_RX_DTYPE_NO_SPLIT 0
a132af24
MW
286#define I40E_RX_DTYPE_HEADER_SPLIT 1
287#define I40E_RX_DTYPE_SPLIT_ALWAYS 2
7daa6bf3
JB
288#define I40E_RX_SPLIT_L2 0x1
289#define I40E_RX_SPLIT_IP 0x2
290#define I40E_RX_SPLIT_TCP_UDP 0x4
291#define I40E_RX_SPLIT_SCTP 0x8
292
293 /* used in interrupt processing */
294 u16 next_to_use;
295 u16 next_to_clean;
296
297 u8 atr_sample_rate;
298 u8 atr_count;
299
beb0dff1
JK
300 unsigned long last_rx_timestamp;
301
7daa6bf3 302 bool ring_active; /* is ring online or not */
d91649f5 303 bool arm_wb; /* do something to arm write back */
58044743 304 u8 packet_stride;
7daa6bf3 305
8e0764b4
ASJ
306 u16 flags;
307#define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
58044743 308#define I40E_TXR_FLAGS_LAST_XMIT_MORE_SET BIT(2)
527274c7 309
7daa6bf3 310 /* stats structs */
a114d0a6 311 struct i40e_queue_stats stats;
980e9b11 312 struct u64_stats_sync syncp;
7daa6bf3
JB
313 union {
314 struct i40e_tx_queue_stats tx_stats;
315 struct i40e_rx_queue_stats rx_stats;
316 };
317
318 unsigned int size; /* length of descriptor ring in bytes */
319 dma_addr_t dma; /* physical address of ring */
320
321 struct i40e_vsi *vsi; /* Backreference to associated VSI */
322 struct i40e_q_vector *q_vector; /* Backreference to associated vector */
9f65e15b
AD
323
324 struct rcu_head rcu; /* to avoid race on free */
7daa6bf3
JB
325} ____cacheline_internodealigned_in_smp;
326
327enum i40e_latency_range {
328 I40E_LOWEST_LATENCY = 0,
329 I40E_LOW_LATENCY = 1,
330 I40E_BULK_LATENCY = 2,
c56625d5 331 I40E_ULTRA_LATENCY = 3,
7daa6bf3
JB
332};
333
334struct i40e_ring_container {
7daa6bf3 335 /* array of pointers to rings */
cd0b6fa6 336 struct i40e_ring *ring;
7daa6bf3
JB
337 unsigned int total_bytes; /* total bytes processed this int */
338 unsigned int total_packets; /* total packets processed this int */
339 u16 count;
340 enum i40e_latency_range latency_range;
341 u16 itr;
342};
343
cd0b6fa6
AD
344/* iterator for handling rings in ring container */
345#define i40e_for_each_ring(pos, head) \
346 for (pos = (head).ring; pos != NULL; pos = pos->next)
347
c2e245ab
JB
348bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rxr, u16 cleaned_count);
349bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rxr, u16 cleaned_count);
a132af24 350void i40e_alloc_rx_headers(struct i40e_ring *rxr);
7daa6bf3
JB
351netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
352void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
353void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
354int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
355int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
356void i40e_free_tx_resources(struct i40e_ring *tx_ring);
357void i40e_free_rx_resources(struct i40e_ring *rx_ring);
358int i40e_napi_poll(struct napi_struct *napi, int budget);
38e00438
VD
359#ifdef I40E_FCOE
360void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
361 struct i40e_tx_buffer *first, u32 tx_flags,
362 const u8 hdr_len, u32 td_cmd, u32 td_offset);
38e00438
VD
363int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
364 struct i40e_ring *tx_ring, u32 *flags);
365#endif
b03a8c1f 366void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
dd353109 367u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
4ec441df 368int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
2d37490b 369bool __i40e_chk_linearize(struct sk_buff *skb);
1e6d6f8c
KP
370
371/**
372 * i40e_get_head - Retrieve head from head writeback
373 * @tx_ring: tx ring to fetch head of
374 *
375 * Returns value of Tx ring head based on value stored
376 * in head write-back location
377 **/
378static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
379{
380 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
381
382 return le32_to_cpu(*(volatile __le32 *)head);
383}
4ec441df
AD
384
385/**
386 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
387 * @skb: send buffer
388 * @tx_ring: ring to send buffer on
389 *
390 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
391 * there is not enough descriptors available in this ring since we need at least
392 * one descriptor.
393 **/
394static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
395{
396 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
397 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
398 int count = 0, size = skb_headlen(skb);
399
400 for (;;) {
5c4654da 401 count += i40e_txd_use_count(size);
4ec441df
AD
402
403 if (!nr_frags--)
404 break;
405
406 size = skb_frag_size(frag++);
407 }
408
409 return count;
410}
411
412/**
413 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
414 * @tx_ring: the ring to be checked
415 * @size: the size buffer we want to assure is available
416 *
417 * Returns 0 if stop is not needed
418 **/
419static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
420{
421 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
422 return 0;
423 return __i40e_maybe_stop_tx(tx_ring, size);
424}
2d37490b
AD
425
426/**
427 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
428 * @skb: send buffer
429 * @count: number of buffers used
430 *
431 * Note: Our HW can't scatter-gather more than 8 fragments to build
432 * a packet on the wire and so we need to figure out the cases where we
433 * need to linearize the skb.
434 **/
435static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
436{
3f3f7cb8
AD
437 /* Both TSO and single send will work if count is less than 8 */
438 if (likely(count < I40E_MAX_BUFFER_TXD))
2d37490b
AD
439 return false;
440
3f3f7cb8
AD
441 if (skb_is_gso(skb))
442 return __i40e_chk_linearize(skb);
443
444 /* we can support up to 8 data buffers for a single send */
445 return count != I40E_MAX_BUFFER_TXD;
2d37490b 446}
1f15d667
JB
447
448/**
449 * i40e_rx_is_fcoe - returns true if the Rx packet type is FCoE
450 * @ptype: the packet type field from Rx descriptor write-back
451 **/
452static inline bool i40e_rx_is_fcoe(u16 ptype)
453{
454 return (ptype >= I40E_RX_PTYPE_L2_FCOE_PAY3) &&
455 (ptype <= I40E_RX_PTYPE_L2_FCOE_VFT_FCOTHER);
456}
36fac581 457#endif /* _I40E_TXRX_H_ */