]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/i40evf/i40e_txrx.c
i40evf: support queue-specific settings for interrupt moderation
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
64bfd68e
AD
54 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55 kfree(tx_buffer->raw_buf);
56 else
57 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
58 if (dma_unmap_len(tx_buffer, len))
59 dma_unmap_single(ring->dev,
60 dma_unmap_addr(tx_buffer, dma),
61 dma_unmap_len(tx_buffer, len),
62 DMA_TO_DEVICE);
63 } else if (dma_unmap_len(tx_buffer, len)) {
64 dma_unmap_page(ring->dev,
65 dma_unmap_addr(tx_buffer, dma),
66 dma_unmap_len(tx_buffer, len),
67 DMA_TO_DEVICE);
68 }
a42e7a36 69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
e486bdfd 106 netdev_tx_reset_queue(txring_txq(tx_ring));
7f12ad74
GR
107}
108
109/**
110 * i40evf_free_tx_resources - Free Tx resources per queue
111 * @tx_ring: Tx descriptor ring for a specific queue
112 *
113 * Free all transmit software resources
114 **/
115void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116{
117 i40evf_clean_tx_ring(tx_ring);
118 kfree(tx_ring->tx_bi);
119 tx_ring->tx_bi = NULL;
120
121 if (tx_ring->desc) {
122 dma_free_coherent(tx_ring->dev, tx_ring->size,
123 tx_ring->desc, tx_ring->dma);
124 tx_ring->desc = NULL;
125 }
126}
127
a68de58d 128/**
9c6c1259
KP
129 * i40evf_get_tx_pending - how many Tx descriptors not processed
130 * @tx_ring: the ring of descriptors
dd353109 131 * @in_sw: is tx_pending being checked in SW or HW
a68de58d 132 *
9c6c1259
KP
133 * Since there is no access to the ring head register
134 * in XL710, we need to use our local copies
a68de58d 135 **/
dd353109 136u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
a68de58d 137{
9c6c1259 138 u32 head, tail;
a68de58d 139
dd353109
ASJ
140 if (!in_sw)
141 head = i40e_get_head(ring);
142 else
143 head = ring->next_to_clean;
9c6c1259
KP
144 tail = readl(ring->tail);
145
146 if (head != tail)
147 return (head < tail) ?
148 tail - head : (tail + ring->count - head);
149
150 return 0;
a68de58d
JB
151}
152
c29af37f
ASJ
153#define WB_STRIDE 0x3
154
7f12ad74
GR
155/**
156 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
157 * @vsi: the VSI we care about
158 * @tx_ring: Tx ring to clean
159 * @napi_budget: Used to determine if we are in netpoll
7f12ad74
GR
160 *
161 * Returns true if there's any budget left (e.g. the clean is finished)
162 **/
a619afe8
AD
163static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
164 struct i40e_ring *tx_ring, int napi_budget)
7f12ad74
GR
165{
166 u16 i = tx_ring->next_to_clean;
167 struct i40e_tx_buffer *tx_buf;
1943d8ba 168 struct i40e_tx_desc *tx_head;
7f12ad74 169 struct i40e_tx_desc *tx_desc;
a619afe8
AD
170 unsigned int total_bytes = 0, total_packets = 0;
171 unsigned int budget = vsi->work_limit;
7f12ad74
GR
172
173 tx_buf = &tx_ring->tx_bi[i];
174 tx_desc = I40E_TX_DESC(tx_ring, i);
175 i -= tx_ring->count;
176
1943d8ba
JB
177 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
178
7f12ad74
GR
179 do {
180 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
181
182 /* if next_to_watch is not set then there is no work pending */
183 if (!eop_desc)
184 break;
185
186 /* prevent any other reads prior to eop_desc */
187 read_barrier_depends();
188
1943d8ba
JB
189 /* we have caught up to head, no work left to do */
190 if (tx_head == tx_desc)
7f12ad74
GR
191 break;
192
193 /* clear next_to_watch to prevent false hangs */
194 tx_buf->next_to_watch = NULL;
195
196 /* update the statistics for this packet */
197 total_bytes += tx_buf->bytecount;
198 total_packets += tx_buf->gso_segs;
199
200 /* free the skb */
a619afe8 201 napi_consume_skb(tx_buf->skb, napi_budget);
7f12ad74
GR
202
203 /* unmap skb header data */
204 dma_unmap_single(tx_ring->dev,
205 dma_unmap_addr(tx_buf, dma),
206 dma_unmap_len(tx_buf, len),
207 DMA_TO_DEVICE);
208
209 /* clear tx_buffer data */
210 tx_buf->skb = NULL;
211 dma_unmap_len_set(tx_buf, len, 0);
212
213 /* unmap remaining buffers */
214 while (tx_desc != eop_desc) {
215
216 tx_buf++;
217 tx_desc++;
218 i++;
219 if (unlikely(!i)) {
220 i -= tx_ring->count;
221 tx_buf = tx_ring->tx_bi;
222 tx_desc = I40E_TX_DESC(tx_ring, 0);
223 }
224
225 /* unmap any remaining paged data */
226 if (dma_unmap_len(tx_buf, len)) {
227 dma_unmap_page(tx_ring->dev,
228 dma_unmap_addr(tx_buf, dma),
229 dma_unmap_len(tx_buf, len),
230 DMA_TO_DEVICE);
231 dma_unmap_len_set(tx_buf, len, 0);
232 }
233 }
234
235 /* move us one more past the eop_desc for start of next pkt */
236 tx_buf++;
237 tx_desc++;
238 i++;
239 if (unlikely(!i)) {
240 i -= tx_ring->count;
241 tx_buf = tx_ring->tx_bi;
242 tx_desc = I40E_TX_DESC(tx_ring, 0);
243 }
244
016890b9
JB
245 prefetch(tx_desc);
246
7f12ad74
GR
247 /* update budget accounting */
248 budget--;
249 } while (likely(budget));
250
251 i += tx_ring->count;
252 tx_ring->next_to_clean = i;
253 u64_stats_update_begin(&tx_ring->syncp);
254 tx_ring->stats.bytes += total_bytes;
255 tx_ring->stats.packets += total_packets;
256 u64_stats_update_end(&tx_ring->syncp);
257 tx_ring->q_vector->tx.total_bytes += total_bytes;
258 tx_ring->q_vector->tx.total_packets += total_packets;
259
f6d83d13 260 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
f6d83d13
ASJ
261 /* check to see if there are < 4 descriptors
262 * waiting to be written back, then kick the hardware to force
263 * them to be written back in case we stay in NAPI.
264 * In this mode on X722 we do not enable Interrupt.
265 */
88dc9e6f 266 unsigned int j = i40evf_get_tx_pending(tx_ring, false);
f6d83d13
ASJ
267
268 if (budget &&
269 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
a619afe8 270 !test_bit(__I40E_DOWN, &vsi->state) &&
f6d83d13
ASJ
271 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
272 tx_ring->arm_wb = true;
273 }
274
e486bdfd
AD
275 /* notify netdev of completed buffers */
276 netdev_tx_completed_queue(txring_txq(tx_ring),
7f12ad74
GR
277 total_packets, total_bytes);
278
279#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
280 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
281 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
282 /* Make sure that anybody stopping the queue after this
283 * sees the new next_to_clean.
284 */
285 smp_mb();
286 if (__netif_subqueue_stopped(tx_ring->netdev,
287 tx_ring->queue_index) &&
a619afe8 288 !test_bit(__I40E_DOWN, &vsi->state)) {
7f12ad74
GR
289 netif_wake_subqueue(tx_ring->netdev,
290 tx_ring->queue_index);
291 ++tx_ring->tx_stats.restart_queue;
292 }
293 }
294
b03a8c1f 295 return !!budget;
7f12ad74
GR
296}
297
c29af37f 298/**
ecc6a239 299 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 300 * @vsi: the VSI we care about
ecc6a239 301 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
302 *
303 **/
ecc6a239
ASJ
304static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
305 struct i40e_q_vector *q_vector)
c29af37f 306{
8e0764b4 307 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 308 u32 val;
8e0764b4 309
ecc6a239
ASJ
310 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
311 return;
312
313 if (q_vector->arm_wb_state)
314 return;
315
316 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
317 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
318
319 wr32(&vsi->back->hw,
320 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
321 vsi->base_vector - 1), val);
322 q_vector->arm_wb_state = true;
323}
324
325/**
326 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
327 * @vsi: the VSI we care about
328 * @q_vector: the vector on which to force writeback
329 *
330 **/
331void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
332{
333 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
334 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
335 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
336 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
337 /* allow 00 to be written to the index */;
338
339 wr32(&vsi->back->hw,
340 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
341 val);
c29af37f
ASJ
342}
343
7f12ad74
GR
344/**
345 * i40e_set_new_dynamic_itr - Find new ITR level
346 * @rc: structure containing ring performance data
347 *
8f5e39ce
JB
348 * Returns true if ITR changed, false if not
349 *
7f12ad74
GR
350 * Stores a new ITR value based on packets and byte counts during
351 * the last interrupt. The advantage of per interrupt computation
352 * is faster updates and more accurate ITR for the current traffic
353 * pattern. Constants in this function were computed based on
354 * theoretical maximum wire speed and thresholds were set based on
355 * testing data as well as attempting to minimize response time
356 * while increasing bulk throughput.
357 **/
8f5e39ce 358static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
359{
360 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 361 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
362 u32 new_itr = rc->itr;
363 int bytes_per_int;
51cc6d9f 364 int usecs;
7f12ad74
GR
365
366 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 367 return false;
7f12ad74
GR
368
369 /* simple throttlerate management
c56625d5 370 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 371 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
372 * 20-1249MB/s bulk (18000 ints/s)
373 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
374 *
375 * The math works out because the divisor is in 10^(-6) which
376 * turns the bytes/us input value into MB/s values, but
377 * make sure to use usecs, as the register values written
ee2319cf
JB
378 * are in 2 usec increments in the ITR registers, and make sure
379 * to use the smoothed values that the countdown timer gives us.
7f12ad74 380 */
ee2319cf 381 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 382 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 383
de32e3ef 384 switch (new_latency_range) {
7f12ad74
GR
385 case I40E_LOWEST_LATENCY:
386 if (bytes_per_int > 10)
387 new_latency_range = I40E_LOW_LATENCY;
388 break;
389 case I40E_LOW_LATENCY:
390 if (bytes_per_int > 20)
391 new_latency_range = I40E_BULK_LATENCY;
392 else if (bytes_per_int <= 10)
393 new_latency_range = I40E_LOWEST_LATENCY;
394 break;
395 case I40E_BULK_LATENCY:
c56625d5 396 case I40E_ULTRA_LATENCY:
de32e3ef
CW
397 default:
398 if (bytes_per_int <= 20)
399 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
400 break;
401 }
c56625d5
JB
402
403 /* this is to adjust RX more aggressively when streaming small
404 * packets. The value of 40000 was picked as it is just beyond
405 * what the hardware can receive per second if in low latency
406 * mode.
407 */
408#define RX_ULTRA_PACKET_RATE 40000
409
410 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
411 (&qv->rx == rc))
412 new_latency_range = I40E_ULTRA_LATENCY;
413
de32e3ef 414 rc->latency_range = new_latency_range;
7f12ad74
GR
415
416 switch (new_latency_range) {
417 case I40E_LOWEST_LATENCY:
c56625d5 418 new_itr = I40E_ITR_50K;
7f12ad74
GR
419 break;
420 case I40E_LOW_LATENCY:
421 new_itr = I40E_ITR_20K;
422 break;
423 case I40E_BULK_LATENCY:
c56625d5
JB
424 new_itr = I40E_ITR_18K;
425 break;
426 case I40E_ULTRA_LATENCY:
7f12ad74
GR
427 new_itr = I40E_ITR_8K;
428 break;
429 default:
430 break;
431 }
432
7f12ad74
GR
433 rc->total_bytes = 0;
434 rc->total_packets = 0;
8f5e39ce
JB
435
436 if (new_itr != rc->itr) {
437 rc->itr = new_itr;
438 return true;
439 }
440
441 return false;
7f12ad74
GR
442}
443
4eeb1fff 444/**
7f12ad74
GR
445 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
446 * @tx_ring: the tx ring to set up
447 *
448 * Return 0 on success, negative on error
449 **/
450int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
451{
452 struct device *dev = tx_ring->dev;
453 int bi_size;
454
455 if (!dev)
456 return -ENOMEM;
457
67c818a1
MW
458 /* warn if we are about to overwrite the pointer */
459 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
460 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
461 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
462 if (!tx_ring->tx_bi)
463 goto err;
464
465 /* round up to nearest 4K */
466 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
467 /* add u32 for head writeback, align after this takes care of
468 * guaranteeing this is at least one cache line in size
469 */
470 tx_ring->size += sizeof(u32);
7f12ad74
GR
471 tx_ring->size = ALIGN(tx_ring->size, 4096);
472 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
473 &tx_ring->dma, GFP_KERNEL);
474 if (!tx_ring->desc) {
475 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
476 tx_ring->size);
477 goto err;
478 }
479
480 tx_ring->next_to_use = 0;
481 tx_ring->next_to_clean = 0;
482 return 0;
483
484err:
485 kfree(tx_ring->tx_bi);
486 tx_ring->tx_bi = NULL;
487 return -ENOMEM;
488}
489
490/**
491 * i40evf_clean_rx_ring - Free Rx buffers
492 * @rx_ring: ring to be cleaned
493 **/
494void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
495{
496 struct device *dev = rx_ring->dev;
7f12ad74
GR
497 unsigned long bi_size;
498 u16 i;
499
500 /* ring already cleared, nothing to do */
501 if (!rx_ring->rx_bi)
502 return;
503
504 /* Free all the Rx ring sk_buffs */
505 for (i = 0; i < rx_ring->count; i++) {
ab9ad98e
JB
506 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
507
7f12ad74
GR
508 if (rx_bi->skb) {
509 dev_kfree_skb(rx_bi->skb);
510 rx_bi->skb = NULL;
511 }
ab9ad98e
JB
512 if (!rx_bi->page)
513 continue;
514
515 dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
516 __free_pages(rx_bi->page, 0);
517
518 rx_bi->page = NULL;
519 rx_bi->page_offset = 0;
7f12ad74
GR
520 }
521
522 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
523 memset(rx_ring->rx_bi, 0, bi_size);
524
525 /* Zero out the descriptor ring */
526 memset(rx_ring->desc, 0, rx_ring->size);
527
ab9ad98e 528 rx_ring->next_to_alloc = 0;
7f12ad74
GR
529 rx_ring->next_to_clean = 0;
530 rx_ring->next_to_use = 0;
531}
532
533/**
534 * i40evf_free_rx_resources - Free Rx resources
535 * @rx_ring: ring to clean the resources from
536 *
537 * Free all receive software resources
538 **/
539void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
540{
541 i40evf_clean_rx_ring(rx_ring);
542 kfree(rx_ring->rx_bi);
543 rx_ring->rx_bi = NULL;
544
545 if (rx_ring->desc) {
546 dma_free_coherent(rx_ring->dev, rx_ring->size,
547 rx_ring->desc, rx_ring->dma);
548 rx_ring->desc = NULL;
549 }
550}
551
552/**
553 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
554 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
555 *
556 * Returns 0 on success, negative on failure
557 **/
558int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
559{
560 struct device *dev = rx_ring->dev;
561 int bi_size;
562
67c818a1
MW
563 /* warn if we are about to overwrite the pointer */
564 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
565 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
566 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
567 if (!rx_ring->rx_bi)
568 goto err;
569
f217d6ca 570 u64_stats_init(&rx_ring->syncp);
638702bd 571
7f12ad74 572 /* Round up to nearest 4K */
ab9ad98e 573 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
7f12ad74
GR
574 rx_ring->size = ALIGN(rx_ring->size, 4096);
575 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
576 &rx_ring->dma, GFP_KERNEL);
577
578 if (!rx_ring->desc) {
579 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
580 rx_ring->size);
581 goto err;
582 }
583
ab9ad98e 584 rx_ring->next_to_alloc = 0;
7f12ad74
GR
585 rx_ring->next_to_clean = 0;
586 rx_ring->next_to_use = 0;
587
588 return 0;
589err:
590 kfree(rx_ring->rx_bi);
591 rx_ring->rx_bi = NULL;
592 return -ENOMEM;
593}
594
595/**
596 * i40e_release_rx_desc - Store the new tail and head values
597 * @rx_ring: ring to bump
598 * @val: new head index
599 **/
600static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
601{
602 rx_ring->next_to_use = val;
ab9ad98e
JB
603
604 /* update next to alloc since we have filled the ring */
605 rx_ring->next_to_alloc = val;
606
7f12ad74
GR
607 /* Force memory writes to complete before letting h/w
608 * know there are new descriptors to fetch. (Only
609 * applicable for weak-ordered memory model archs,
610 * such as IA-64).
611 */
612 wmb();
613 writel(val, rx_ring->tail);
614}
615
616/**
ab9ad98e
JB
617 * i40e_alloc_mapped_page - recycle or make a new page
618 * @rx_ring: ring to use
619 * @bi: rx_buffer struct to modify
c2e245ab 620 *
ab9ad98e
JB
621 * Returns true if the page was successfully allocated or
622 * reused.
a132af24 623 **/
ab9ad98e
JB
624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
625 struct i40e_rx_buffer *bi)
a132af24 626{
ab9ad98e
JB
627 struct page *page = bi->page;
628 dma_addr_t dma;
a132af24 629
ab9ad98e
JB
630 /* since we are recycling buffers we should seldom need to alloc */
631 if (likely(page)) {
632 rx_ring->rx_stats.page_reuse_count++;
633 return true;
634 }
a132af24 635
ab9ad98e
JB
636 /* alloc new page for storage */
637 page = dev_alloc_page();
638 if (unlikely(!page)) {
639 rx_ring->rx_stats.alloc_page_failed++;
640 return false;
641 }
a132af24 642
ab9ad98e
JB
643 /* map page for use */
644 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
f16704e5 645
ab9ad98e
JB
646 /* if mapping failed free memory back to system since
647 * there isn't much point in holding memory we can't use
f16704e5 648 */
ab9ad98e
JB
649 if (dma_mapping_error(rx_ring->dev, dma)) {
650 __free_pages(page, 0);
651 rx_ring->rx_stats.alloc_page_failed++;
652 return false;
a132af24
MW
653 }
654
ab9ad98e
JB
655 bi->dma = dma;
656 bi->page = page;
657 bi->page_offset = 0;
c2e245ab 658
ab9ad98e
JB
659 return true;
660}
c2e245ab 661
ab9ad98e
JB
662/**
663 * i40e_receive_skb - Send a completed packet up the stack
664 * @rx_ring: rx ring in play
665 * @skb: packet to send up
666 * @vlan_tag: vlan tag for packet
667 **/
668static void i40e_receive_skb(struct i40e_ring *rx_ring,
669 struct sk_buff *skb, u16 vlan_tag)
670{
671 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 672
ab9ad98e
JB
673 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
674 (vlan_tag & VLAN_VID_MASK))
675 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
676
677 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
678}
679
680/**
ab9ad98e 681 * i40evf_alloc_rx_buffers - Replace used receive buffers
7f12ad74
GR
682 * @rx_ring: ring to place buffers on
683 * @cleaned_count: number of buffers to replace
c2e245ab 684 *
ab9ad98e 685 * Returns false if all allocations were successful, true if any fail
7f12ad74 686 **/
ab9ad98e 687bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74 688{
ab9ad98e 689 u16 ntu = rx_ring->next_to_use;
7f12ad74
GR
690 union i40e_rx_desc *rx_desc;
691 struct i40e_rx_buffer *bi;
7f12ad74
GR
692
693 /* do nothing if no valid netdev defined */
694 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 695 return false;
7f12ad74 696
ab9ad98e
JB
697 rx_desc = I40E_RX_DESC(rx_ring, ntu);
698 bi = &rx_ring->rx_bi[ntu];
7f12ad74 699
ab9ad98e
JB
700 do {
701 if (!i40e_alloc_mapped_page(rx_ring, bi))
702 goto no_buffers;
7f12ad74 703
ab9ad98e
JB
704 /* Refresh the desc even if buffer_addrs didn't change
705 * because each write-back erases this info.
706 */
707 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
a132af24 708 rx_desc->read.hdr_addr = 0;
7f12ad74 709
ab9ad98e
JB
710 rx_desc++;
711 bi++;
712 ntu++;
713 if (unlikely(ntu == rx_ring->count)) {
714 rx_desc = I40E_RX_DESC(rx_ring, 0);
715 bi = rx_ring->rx_bi;
716 ntu = 0;
717 }
718
719 /* clear the status bits for the next_to_use descriptor */
720 rx_desc->wb.qword1.status_error_len = 0;
721
722 cleaned_count--;
723 } while (cleaned_count);
724
725 if (rx_ring->next_to_use != ntu)
726 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
727
728 return false;
729
7f12ad74 730no_buffers:
ab9ad98e
JB
731 if (rx_ring->next_to_use != ntu)
732 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
733
734 /* make sure to come back via polling to try again after
735 * allocation failure
736 */
737 return true;
7f12ad74
GR
738}
739
7f12ad74
GR
740/**
741 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
742 * @vsi: the VSI we care about
743 * @skb: skb currently being received and modified
ab9ad98e
JB
744 * @rx_desc: the receive descriptor
745 *
746 * skb->protocol must be set before this function is called
7f12ad74
GR
747 **/
748static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
749 struct sk_buff *skb,
ab9ad98e 750 union i40e_rx_desc *rx_desc)
7f12ad74 751{
ab9ad98e 752 struct i40e_rx_ptype_decoded decoded;
ab9ad98e 753 u32 rx_error, rx_status;
858296c8 754 bool ipv4, ipv6;
ab9ad98e
JB
755 u8 ptype;
756 u64 qword;
757
758 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
759 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
760 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
761 I40E_RXD_QW1_ERROR_SHIFT;
762 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
763 I40E_RXD_QW1_STATUS_SHIFT;
764 decoded = decode_rx_desc_ptype(ptype);
7f12ad74 765
7f12ad74
GR
766 skb->ip_summed = CHECKSUM_NONE;
767
ab9ad98e
JB
768 skb_checksum_none_assert(skb);
769
7f12ad74 770 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
771 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
772 return;
773
774 /* did the hardware decode the packet and checksum? */
41a1d04b 775 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
776 return;
777
778 /* both known and outer_ip must be set for the below code to work */
779 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
780 return;
781
fad57330
AD
782 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
783 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
784 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
785 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
786
787 if (ipv4 &&
41a1d04b
JB
788 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
789 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
790 goto checksum_fail;
791
ddf1d0d7 792 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 793 if (ipv6 &&
41a1d04b 794 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 795 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
796 return;
797
8a3c91cc 798 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 799 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
800 goto checksum_fail;
801
802 /* handle packets that were not able to be checksummed due
803 * to arrival speed, in this case the stack can compute
804 * the csum.
805 */
41a1d04b 806 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 807 return;
7f12ad74 808
858296c8
AD
809 /* If there is an outer header present that might contain a checksum
810 * we need to bump the checksum level by 1 to reflect the fact that
811 * we are indicating we validated the inner checksum.
8a3c91cc 812 */
858296c8
AD
813 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
814 skb->csum_level = 1;
815
816 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
817 switch (decoded.inner_prot) {
818 case I40E_RX_PTYPE_INNER_PROT_TCP:
819 case I40E_RX_PTYPE_INNER_PROT_UDP:
820 case I40E_RX_PTYPE_INNER_PROT_SCTP:
821 skb->ip_summed = CHECKSUM_UNNECESSARY;
822 /* fall though */
823 default:
824 break;
825 }
8a3c91cc
JB
826
827 return;
828
829checksum_fail:
830 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
831}
832
833/**
857942fd 834 * i40e_ptype_to_htype - get a hash type
206812b5
JB
835 * @ptype: the ptype value from the descriptor
836 *
837 * Returns a hash type to be used by skb_set_hash
838 **/
ab9ad98e 839static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
840{
841 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
842
843 if (!decoded.known)
844 return PKT_HASH_TYPE_NONE;
845
846 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
847 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
848 return PKT_HASH_TYPE_L4;
849 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
850 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
851 return PKT_HASH_TYPE_L3;
852 else
853 return PKT_HASH_TYPE_L2;
854}
855
857942fd
ASJ
856/**
857 * i40e_rx_hash - set the hash value in the skb
858 * @ring: descriptor ring
859 * @rx_desc: specific descriptor
860 **/
861static inline void i40e_rx_hash(struct i40e_ring *ring,
862 union i40e_rx_desc *rx_desc,
863 struct sk_buff *skb,
864 u8 rx_ptype)
865{
866 u32 hash;
ab9ad98e 867 const __le64 rss_mask =
857942fd
ASJ
868 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
869 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
870
871 if (ring->netdev->features & NETIF_F_RXHASH)
872 return;
873
874 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
875 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
876 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
877 }
878}
879
7f12ad74 880/**
ab9ad98e
JB
881 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
882 * @rx_ring: rx descriptor ring packet is being transacted on
883 * @rx_desc: pointer to the EOP Rx descriptor
884 * @skb: pointer to current skb being populated
885 * @rx_ptype: the packet type decoded by hardware
7f12ad74 886 *
ab9ad98e
JB
887 * This function checks the ring, descriptor, and packet information in
888 * order to populate the hash, checksum, VLAN, protocol, and
889 * other fields within the skb.
7f12ad74 890 **/
ab9ad98e
JB
891static inline
892void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
893 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
894 u8 rx_ptype)
7f12ad74 895{
ab9ad98e 896 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
7f12ad74 897
ab9ad98e
JB
898 /* modifies the skb - consumes the enet header */
899 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
a132af24 900
ab9ad98e 901 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
a132af24 902
ab9ad98e
JB
903 skb_record_rx_queue(skb, rx_ring->queue_index);
904}
a132af24 905
ab9ad98e
JB
906/**
907 * i40e_pull_tail - i40e specific version of skb_pull_tail
908 * @rx_ring: rx descriptor ring packet is being transacted on
909 * @skb: pointer to current skb being adjusted
910 *
911 * This function is an i40e specific version of __pskb_pull_tail. The
912 * main difference between this version and the original function is that
913 * this function can make several assumptions about the state of things
914 * that allow for significant optimizations versus the standard function.
915 * As a result we can do things like drop a frag and maintain an accurate
916 * truesize for the skb.
917 */
918static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
919{
920 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
921 unsigned char *va;
922 unsigned int pull_len;
8b6ed9c2 923
ab9ad98e
JB
924 /* it is valid to use page_address instead of kmap since we are
925 * working with pages allocated out of the lomem pool per
926 * alloc_page(GFP_ATOMIC)
927 */
928 va = skb_frag_address(frag);
7f12ad74 929
ab9ad98e
JB
930 /* we need the header to contain the greater of either ETH_HLEN or
931 * 60 bytes if the skb->len is less than 60 for skb_pad.
932 */
933 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
7f12ad74 934
ab9ad98e
JB
935 /* align pull length to size of long to optimize memcpy performance */
936 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
7f12ad74 937
ab9ad98e
JB
938 /* update all of the pointers */
939 skb_frag_size_sub(frag, pull_len);
940 frag->page_offset += pull_len;
941 skb->data_len -= pull_len;
942 skb->tail += pull_len;
943}
7f12ad74 944
ab9ad98e
JB
945/**
946 * i40e_cleanup_headers - Correct empty headers
947 * @rx_ring: rx descriptor ring packet is being transacted on
948 * @skb: pointer to current skb being fixed
949 *
950 * Also address the case where we are pulling data in on pages only
951 * and as such no data is present in the skb header.
952 *
953 * In addition if skb is not at least 60 bytes we need to pad it so that
954 * it is large enough to qualify as a valid Ethernet frame.
955 *
956 * Returns true if an error was encountered and skb was freed.
957 **/
958static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
959{
960 /* place header in linear portion of buffer */
961 if (skb_is_nonlinear(skb))
962 i40e_pull_tail(rx_ring, skb);
7f12ad74 963
ab9ad98e
JB
964 /* if eth_skb_pad returns an error the skb was freed */
965 if (eth_skb_pad(skb))
966 return true;
7f12ad74 967
ab9ad98e
JB
968 return false;
969}
857942fd 970
ab9ad98e
JB
971/**
972 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
973 * @rx_ring: rx descriptor ring to store buffers on
974 * @old_buff: donor buffer to have page reused
975 *
976 * Synchronizes page for reuse by the adapter
977 **/
978static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
979 struct i40e_rx_buffer *old_buff)
980{
981 struct i40e_rx_buffer *new_buff;
982 u16 nta = rx_ring->next_to_alloc;
7f12ad74 983
ab9ad98e 984 new_buff = &rx_ring->rx_bi[nta];
7f12ad74 985
ab9ad98e
JB
986 /* update, and store next to alloc */
987 nta++;
988 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7f12ad74 989
ab9ad98e
JB
990 /* transfer page from old buffer to new buffer */
991 *new_buff = *old_buff;
992}
993
994/**
995 * i40e_page_is_reserved - check if reuse is possible
996 * @page: page struct to check
997 */
998static inline bool i40e_page_is_reserved(struct page *page)
999{
1000 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1001}
1002
1003/**
1004 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1005 * @rx_ring: rx descriptor ring to transact packets on
1006 * @rx_buffer: buffer containing page to add
1007 * @rx_desc: descriptor containing length of buffer written by hardware
1008 * @skb: sk_buff to place the data into
1009 *
1010 * This function will add the data contained in rx_buffer->page to the skb.
1011 * This is done either through a direct copy if the data in the buffer is
1012 * less than the skb header size, otherwise it will just attach the page as
1013 * a frag to the skb.
1014 *
1015 * The function will then update the page offset if necessary and return
1016 * true if the buffer can be reused by the adapter.
1017 **/
1018static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1019 struct i40e_rx_buffer *rx_buffer,
1020 union i40e_rx_desc *rx_desc,
1021 struct sk_buff *skb)
1022{
1023 struct page *page = rx_buffer->page;
1024 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1025 unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1026 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1027#if (PAGE_SIZE < 8192)
1028 unsigned int truesize = I40E_RXBUFFER_2048;
1029#else
1030 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1031 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
a132af24 1032#endif
7f12ad74 1033
ab9ad98e
JB
1034 /* will the data fit in the skb we allocated? if so, just
1035 * copy it as it is pretty small anyway
1036 */
1037 if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1038 unsigned char *va = page_address(page) + rx_buffer->page_offset;
7f12ad74 1039
ab9ad98e 1040 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
a132af24 1041
ab9ad98e
JB
1042 /* page is not reserved, we can reuse buffer as-is */
1043 if (likely(!i40e_page_is_reserved(page)))
1044 return true;
a132af24 1045
ab9ad98e
JB
1046 /* this page cannot be reused so discard it */
1047 __free_pages(page, 0);
1048 return false;
1049 }
1050
1051 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1052 rx_buffer->page_offset, size, truesize);
1053
1054 /* avoid re-using remote pages */
1055 if (unlikely(i40e_page_is_reserved(page)))
1056 return false;
1057
1058#if (PAGE_SIZE < 8192)
1059 /* if we are only owner of page we can reuse it */
1060 if (unlikely(page_count(page) != 1))
1061 return false;
1062
1063 /* flip page offset to other buffer */
1064 rx_buffer->page_offset ^= truesize;
1065#else
1066 /* move offset up to the next cache line */
1067 rx_buffer->page_offset += truesize;
1068
1069 if (rx_buffer->page_offset > last_offset)
1070 return false;
1071#endif
1072
1073 /* Even if we own the page, we are not allowed to use atomic_set()
1074 * This would break get_page_unless_zero() users.
1075 */
1076 get_page(rx_buffer->page);
1077
1078 return true;
1079}
1080
1081/**
1082 * i40evf_fetch_rx_buffer - Allocate skb and populate it
1083 * @rx_ring: rx descriptor ring to transact packets on
1084 * @rx_desc: descriptor containing info written by hardware
1085 *
1086 * This function allocates an skb on the fly, and populates it with the page
1087 * data from the current receive descriptor, taking care to set up the skb
1088 * correctly, as well as handling calling the page recycle function if
1089 * necessary.
1090 */
1091static inline
1092struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
1093 union i40e_rx_desc *rx_desc)
1094{
1095 struct i40e_rx_buffer *rx_buffer;
1096 struct sk_buff *skb;
1097 struct page *page;
1098
1099 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1100 page = rx_buffer->page;
1101 prefetchw(page);
1102
1103 skb = rx_buffer->skb;
1104
1105 if (likely(!skb)) {
1106 void *page_addr = page_address(page) + rx_buffer->page_offset;
1107
1108 /* prefetch first cache line of first page */
1109 prefetch(page_addr);
1110#if L1_CACHE_BYTES < 128
1111 prefetch(page_addr + L1_CACHE_BYTES);
1112#endif
1113
1114 /* allocate a skb to store the frags */
1115 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1116 I40E_RX_HDR_SIZE,
1117 GFP_ATOMIC | __GFP_NOWARN);
1118 if (unlikely(!skb)) {
1119 rx_ring->rx_stats.alloc_buff_failed++;
1120 return NULL;
1121 }
1122
1123 /* we will be copying header into skb->data in
1124 * pskb_may_pull so it is in our interest to prefetch
1125 * it now to avoid a possible cache miss
1126 */
1127 prefetchw(skb->data);
1128 } else {
1129 rx_buffer->skb = NULL;
1130 }
1131
1132 /* we are reusing so sync this buffer for CPU use */
1133 dma_sync_single_range_for_cpu(rx_ring->dev,
1134 rx_buffer->dma,
1135 rx_buffer->page_offset,
1136 I40E_RXBUFFER_2048,
1137 DMA_FROM_DEVICE);
1138
1139 /* pull page into skb */
1140 if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1141 /* hand second half of page back to the ring */
1142 i40e_reuse_rx_page(rx_ring, rx_buffer);
1143 rx_ring->rx_stats.page_reuse_count++;
1144 } else {
1145 /* we are not reusing the buffer so unmap it */
1146 dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1147 DMA_FROM_DEVICE);
1148 }
1149
1150 /* clear contents of buffer_info */
1151 rx_buffer->page = NULL;
1152
1153 return skb;
1154}
1155
1156/**
1157 * i40e_is_non_eop - process handling of non-EOP buffers
1158 * @rx_ring: Rx ring being processed
1159 * @rx_desc: Rx descriptor for current buffer
1160 * @skb: Current socket buffer containing buffer in progress
1161 *
1162 * This function updates next to clean. If the buffer is an EOP buffer
1163 * this function exits returning false, otherwise it will place the
1164 * sk_buff in the next buffer to be chained and return true indicating
1165 * that this is in fact a non-EOP buffer.
1166 **/
1167static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1168 union i40e_rx_desc *rx_desc,
1169 struct sk_buff *skb)
1170{
1171 u32 ntc = rx_ring->next_to_clean + 1;
1172
1173 /* fetch, update, and store next to clean */
1174 ntc = (ntc < rx_ring->count) ? ntc : 0;
1175 rx_ring->next_to_clean = ntc;
1176
1177 prefetch(I40E_RX_DESC(rx_ring, ntc));
1178
1179 /* if we are the last buffer then there is nothing else to do */
1180#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1181 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1182 return false;
1183
1184 /* place skb in next buffer to be received */
1185 rx_ring->rx_bi[ntc].skb = skb;
1186 rx_ring->rx_stats.non_eop_descs++;
1187
1188 return true;
a132af24
MW
1189}
1190
1191/**
ab9ad98e
JB
1192 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1193 * @rx_ring: rx descriptor ring to transact packets on
1194 * @budget: Total limit on number of packets to process
1195 *
1196 * This function provides a "bounce buffer" approach to Rx interrupt
1197 * processing. The advantage to this is that on systems that have
1198 * expensive overhead for IOMMU access this provides a means of avoiding
1199 * it by maintaining the mapping of the page to the system.
a132af24 1200 *
ab9ad98e 1201 * Returns amount of work completed
a132af24 1202 **/
ab9ad98e 1203static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1204{
1205 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1206 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1207 bool failure = false;
a132af24 1208
ab9ad98e
JB
1209 while (likely(total_rx_packets < budget)) {
1210 union i40e_rx_desc *rx_desc;
a132af24 1211 struct sk_buff *skb;
ab9ad98e 1212 u32 rx_status;
a132af24 1213 u16 vlan_tag;
ab9ad98e
JB
1214 u8 rx_ptype;
1215 u64 qword;
1216
7f12ad74
GR
1217 /* return some buffers to hardware, one at a time is too slow */
1218 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1219 failure = failure ||
ab9ad98e 1220 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
7f12ad74
GR
1221 cleaned_count = 0;
1222 }
1223
ab9ad98e
JB
1224 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1225
7f12ad74 1226 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
ab9ad98e
JB
1227 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1228 I40E_RXD_QW1_PTYPE_SHIFT;
7f12ad74 1229 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
ab9ad98e 1230 I40E_RXD_QW1_STATUS_SHIFT;
a132af24 1231
41a1d04b 1232 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1233 break;
1234
ab9ad98e
JB
1235 /* status_error_len will always be zero for unused descriptors
1236 * because it's cleared in cleanup, and overlaps with hdr_addr
1237 * which is always zero because packet split isn't used, if the
1238 * hardware wrote DD then it will be non-zero
1239 */
1240 if (!rx_desc->wb.qword1.status_error_len)
1241 break;
1242
a132af24
MW
1243 /* This memory barrier is needed to keep us from reading
1244 * any other fields out of the rx_desc until we know the
1245 * DD bit is set.
1246 */
67317166 1247 dma_rmb();
a132af24 1248
ab9ad98e
JB
1249 skb = i40evf_fetch_rx_buffer(rx_ring, rx_desc);
1250 if (!skb)
1251 break;
a132af24 1252
a132af24
MW
1253 cleaned_count++;
1254
ab9ad98e 1255 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1256 continue;
a132af24 1257
ab9ad98e
JB
1258 /* ERR_MASK will only have valid bits if EOP set, and
1259 * what we are doing here is actually checking
1260 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1261 * the error field
1262 */
1263 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1264 dev_kfree_skb_any(skb);
a132af24
MW
1265 continue;
1266 }
1267
ab9ad98e
JB
1268 if (i40e_cleanup_headers(rx_ring, skb))
1269 continue;
1270
a132af24
MW
1271 /* probably a little skewed due to removing CRC */
1272 total_rx_bytes += skb->len;
a132af24 1273
ab9ad98e
JB
1274 /* populate checksum, VLAN, and protocol */
1275 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1276
a132af24 1277
ab9ad98e
JB
1278 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1279 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1280
a132af24
MW
1281 i40e_receive_skb(rx_ring, skb, vlan_tag);
1282
ab9ad98e
JB
1283 /* update budget accounting */
1284 total_rx_packets++;
1285 }
7f12ad74 1286
7f12ad74
GR
1287 u64_stats_update_begin(&rx_ring->syncp);
1288 rx_ring->stats.packets += total_rx_packets;
1289 rx_ring->stats.bytes += total_rx_bytes;
1290 u64_stats_update_end(&rx_ring->syncp);
1291 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1292 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1293
ab9ad98e 1294 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 1295 return failure ? budget : total_rx_packets;
7f12ad74
GR
1296}
1297
8f5e39ce
JB
1298static u32 i40e_buildreg_itr(const int type, const u16 itr)
1299{
1300 u32 val;
1301
1302 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1303 /* Don't clear PBA because that can cause lost interrupts that
1304 * came in while we were cleaning/polling
1305 */
8f5e39ce
JB
1306 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1307 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1308
1309 return val;
1310}
1311
1312/* a small macro to shorten up some long lines */
1313#define INTREG I40E_VFINT_DYN_CTLN1
65e87c03
JK
1314static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
1315{
1316 struct i40evf_adapter *adapter = vsi->back;
1317
1318 return !!(adapter->rx_rings[idx].rx_itr_setting);
1319}
1320
1321static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
1322{
1323 struct i40evf_adapter *adapter = vsi->back;
1324
1325 return !!(adapter->tx_rings[idx].tx_itr_setting);
1326}
8f5e39ce 1327
de32e3ef
CW
1328/**
1329 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1330 * @vsi: the VSI we care about
1331 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1332 *
1333 **/
1334static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1335 struct i40e_q_vector *q_vector)
1336{
1337 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1338 bool rx = false, tx = false;
1339 u32 rxval, txval;
de32e3ef 1340 int vector;
65e87c03
JK
1341 int idx = q_vector->v_idx;
1342 int rx_itr_setting, tx_itr_setting;
de32e3ef
CW
1343
1344 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1345
1346 /* avoid dynamic calculation if in countdown mode OR if
1347 * all dynamic is disabled
1348 */
8f5e39ce
JB
1349 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1350
65e87c03
JK
1351 rx_itr_setting = get_rx_itr_enabled(vsi, idx);
1352 tx_itr_setting = get_tx_itr_enabled(vsi, idx);
1353
ee2319cf 1354 if (q_vector->itr_countdown > 0 ||
65e87c03
JK
1355 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1356 !ITR_IS_DYNAMIC(tx_itr_setting))) {
ee2319cf
JB
1357 goto enable_int;
1358 }
1359
65e87c03 1360 if (ITR_IS_DYNAMIC(rx_itr_setting)) {
8f5e39ce
JB
1361 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1362 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1363 }
4eeb1fff 1364
65e87c03 1365 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
1366 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1367 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1368 }
4eeb1fff 1369
8f5e39ce
JB
1370 if (rx || tx) {
1371 /* get the higher of the two ITR adjustments and
1372 * use the same value for both ITR registers
1373 * when in adaptive mode (Rx and/or Tx)
1374 */
1375 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1376
1377 q_vector->tx.itr = q_vector->rx.itr = itr;
1378 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1379 tx = true;
1380 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1381 rx = true;
de32e3ef 1382 }
8f5e39ce
JB
1383
1384 /* only need to enable the interrupt once, but need
1385 * to possibly update both ITR values
1386 */
1387 if (rx) {
1388 /* set the INTENA_MSK_MASK so that this first write
1389 * won't actually enable the interrupt, instead just
1390 * updating the ITR (it's bit 31 PF and VF)
1391 */
1392 rxval |= BIT(31);
1393 /* don't check _DOWN because interrupt isn't being enabled */
1394 wr32(hw, INTREG(vector - 1), rxval);
1395 }
1396
ee2319cf 1397enable_int:
8f5e39ce
JB
1398 if (!test_bit(__I40E_DOWN, &vsi->state))
1399 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1400
1401 if (q_vector->itr_countdown)
1402 q_vector->itr_countdown--;
1403 else
1404 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1405}
1406
7f12ad74
GR
1407/**
1408 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1409 * @napi: napi struct with our devices info in it
1410 * @budget: amount of work driver is allowed to do this pass, in packets
1411 *
1412 * This function will clean all queues associated with a q_vector.
1413 *
1414 * Returns the amount of work done
1415 **/
1416int i40evf_napi_poll(struct napi_struct *napi, int budget)
1417{
1418 struct i40e_q_vector *q_vector =
1419 container_of(napi, struct i40e_q_vector, napi);
1420 struct i40e_vsi *vsi = q_vector->vsi;
1421 struct i40e_ring *ring;
1422 bool clean_complete = true;
c29af37f 1423 bool arm_wb = false;
7f12ad74 1424 int budget_per_ring;
32b3e08f 1425 int work_done = 0;
7f12ad74
GR
1426
1427 if (test_bit(__I40E_DOWN, &vsi->state)) {
1428 napi_complete(napi);
1429 return 0;
1430 }
1431
1432 /* Since the actual Tx work is minimal, we can give the Tx a larger
1433 * budget and be more aggressive about cleaning up the Tx descriptors.
1434 */
c29af37f 1435 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 1436 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
1437 clean_complete = false;
1438 continue;
1439 }
1440 arm_wb |= ring->arm_wb;
0deda868 1441 ring->arm_wb = false;
c29af37f 1442 }
7f12ad74 1443
c67caceb
AD
1444 /* Handle case where we are called by netpoll with a budget of 0 */
1445 if (budget <= 0)
1446 goto tx_only;
1447
7f12ad74
GR
1448 /* We attempt to distribute budget to each Rx queue fairly, but don't
1449 * allow the budget to go below 1 because that would exit polling early.
1450 */
1451 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1452
a132af24 1453 i40e_for_each_ring(ring, q_vector->rx) {
ab9ad98e 1454 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
1455
1456 work_done += cleaned;
f2edaaaa
AD
1457 /* if we clean as many as budgeted, we must not be done */
1458 if (cleaned >= budget_per_ring)
1459 clean_complete = false;
a132af24 1460 }
7f12ad74
GR
1461
1462 /* If work not completed, return budget and polling will return */
c29af37f 1463 if (!clean_complete) {
c67caceb 1464tx_only:
164c9f54
ASJ
1465 if (arm_wb) {
1466 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
ecc6a239 1467 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 1468 }
7f12ad74 1469 return budget;
c29af37f 1470 }
7f12ad74 1471
8e0764b4
ASJ
1472 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1473 q_vector->arm_wb_state = false;
1474
7f12ad74 1475 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1476 napi_complete_done(napi, work_done);
de32e3ef 1477 i40e_update_enable_itr(vsi, q_vector);
7f12ad74
GR
1478 return 0;
1479}
1480
1481/**
3e587cf3 1482 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1483 * @skb: send buffer
1484 * @tx_ring: ring to send buffer on
1485 * @flags: the tx flags to be set
1486 *
1487 * Checks the skb and set up correspondingly several generic transmit flags
1488 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1489 *
1490 * Returns error code indicate the frame should be dropped upon error and the
1491 * otherwise returns 0 to indicate the flags has been set properly.
1492 **/
3e587cf3
JB
1493static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1494 struct i40e_ring *tx_ring,
1495 u32 *flags)
7f12ad74
GR
1496{
1497 __be16 protocol = skb->protocol;
1498 u32 tx_flags = 0;
1499
31eaaccf
GR
1500 if (protocol == htons(ETH_P_8021Q) &&
1501 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1502 /* When HW VLAN acceleration is turned off by the user the
1503 * stack sets the protocol to 8021q so that the driver
1504 * can take any steps required to support the SW only
1505 * VLAN handling. In our case the driver doesn't need
1506 * to take any further steps so just set the protocol
1507 * to the encapsulated ethertype.
1508 */
1509 skb->protocol = vlan_get_protocol(skb);
1510 goto out;
1511 }
1512
7f12ad74 1513 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1514 if (skb_vlan_tag_present(skb)) {
1515 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1516 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1517 /* else if it is a SW VLAN, check the next protocol and store the tag */
1518 } else if (protocol == htons(ETH_P_8021Q)) {
1519 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1520
7f12ad74
GR
1521 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1522 if (!vhdr)
1523 return -EINVAL;
1524
1525 protocol = vhdr->h_vlan_encapsulated_proto;
1526 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1527 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1528 }
1529
31eaaccf 1530out:
7f12ad74
GR
1531 *flags = tx_flags;
1532 return 0;
1533}
1534
1535/**
1536 * i40e_tso - set up the tso context descriptor
7f12ad74 1537 * @skb: ptr to the skb we're sending
7f12ad74 1538 * @hdr_len: ptr to the size of the packet header
9c883bd3 1539 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1540 *
1541 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1542 **/
84b07992 1543static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
7f12ad74 1544{
03f9d6a5 1545 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
1546 union {
1547 struct iphdr *v4;
1548 struct ipv6hdr *v6;
1549 unsigned char *hdr;
1550 } ip;
c49a7bc3
AD
1551 union {
1552 struct tcphdr *tcp;
5453205c 1553 struct udphdr *udp;
c49a7bc3
AD
1554 unsigned char *hdr;
1555 } l4;
1556 u32 paylen, l4_offset;
7f12ad74 1557 int err;
7f12ad74 1558
e9f6563d
SN
1559 if (skb->ip_summed != CHECKSUM_PARTIAL)
1560 return 0;
1561
7f12ad74
GR
1562 if (!skb_is_gso(skb))
1563 return 0;
1564
fe6d4aa4
FR
1565 err = skb_cow_head(skb, 0);
1566 if (err < 0)
1567 return err;
7f12ad74 1568
c777019a
AD
1569 ip.hdr = skb_network_header(skb);
1570 l4.hdr = skb_transport_header(skb);
85e76d03 1571
c777019a
AD
1572 /* initialize outer IP header fields */
1573 if (ip.v4->version == 4) {
1574 ip.v4->tot_len = 0;
1575 ip.v4->check = 0;
c49a7bc3 1576 } else {
c777019a
AD
1577 ip.v6->payload_len = 0;
1578 }
1579
577389a5 1580 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 1581 SKB_GSO_GRE_CSUM |
7e13318d 1582 SKB_GSO_IPXIP4 |
bf2d1df3 1583 SKB_GSO_IPXIP6 |
577389a5 1584 SKB_GSO_UDP_TUNNEL |
5453205c 1585 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
1586 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1587 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1588 l4.udp->len = 0;
1589
5453205c
AD
1590 /* determine offset of outer transport header */
1591 l4_offset = l4.hdr - skb->data;
1592
1593 /* remove payload length from outer checksum */
24d41e5e
AD
1594 paylen = skb->len - l4_offset;
1595 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
5453205c
AD
1596 }
1597
c777019a
AD
1598 /* reset pointers to inner headers */
1599 ip.hdr = skb_inner_network_header(skb);
1600 l4.hdr = skb_inner_transport_header(skb);
1601
1602 /* initialize inner IP header fields */
1603 if (ip.v4->version == 4) {
1604 ip.v4->tot_len = 0;
1605 ip.v4->check = 0;
1606 } else {
1607 ip.v6->payload_len = 0;
1608 }
7f12ad74
GR
1609 }
1610
c49a7bc3
AD
1611 /* determine offset of inner transport header */
1612 l4_offset = l4.hdr - skb->data;
1613
1614 /* remove payload length from inner checksum */
24d41e5e
AD
1615 paylen = skb->len - l4_offset;
1616 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
c49a7bc3
AD
1617
1618 /* compute length of segmentation header */
1619 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
7f12ad74
GR
1620
1621 /* find the field values */
1622 cd_cmd = I40E_TX_CTX_DESC_TSO;
1623 cd_tso_len = skb->len - *hdr_len;
1624 cd_mss = skb_shinfo(skb)->gso_size;
03f9d6a5
AD
1625 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1626 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1627 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
7f12ad74
GR
1628 return 1;
1629}
1630
1631/**
1632 * i40e_tx_enable_csum - Enable Tx checksum offloads
1633 * @skb: send buffer
89232c3b 1634 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1635 * @td_cmd: Tx descriptor command bits to set
1636 * @td_offset: Tx descriptor header offsets to set
529f1f65 1637 * @tx_ring: Tx descriptor ring
7f12ad74
GR
1638 * @cd_tunneling: ptr to context desc bits
1639 **/
529f1f65
AD
1640static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1641 u32 *td_cmd, u32 *td_offset,
1642 struct i40e_ring *tx_ring,
1643 u32 *cd_tunneling)
7f12ad74 1644{
b96b78f2
AD
1645 union {
1646 struct iphdr *v4;
1647 struct ipv6hdr *v6;
1648 unsigned char *hdr;
1649 } ip;
1650 union {
1651 struct tcphdr *tcp;
1652 struct udphdr *udp;
1653 unsigned char *hdr;
1654 } l4;
a3fd9d88 1655 unsigned char *exthdr;
d1bd743b 1656 u32 offset, cmd = 0;
a3fd9d88 1657 __be16 frag_off;
b96b78f2
AD
1658 u8 l4_proto = 0;
1659
529f1f65
AD
1660 if (skb->ip_summed != CHECKSUM_PARTIAL)
1661 return 0;
1662
b96b78f2
AD
1663 ip.hdr = skb_network_header(skb);
1664 l4.hdr = skb_transport_header(skb);
7f12ad74 1665
475b4205
AD
1666 /* compute outer L2 header size */
1667 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1668
7f12ad74 1669 if (skb->encapsulation) {
d1bd743b 1670 u32 tunnel = 0;
a0064728
AD
1671 /* define outer network header type */
1672 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
1673 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1674 I40E_TX_CTX_EXT_IP_IPV4 :
1675 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1676
a0064728
AD
1677 l4_proto = ip.v4->protocol;
1678 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1679 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
1680
1681 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 1682 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
1683 if (l4.hdr != exthdr)
1684 ipv6_skip_exthdr(skb, exthdr - skb->data,
1685 &l4_proto, &frag_off);
a0064728
AD
1686 }
1687
1688 /* define outer transport */
1689 switch (l4_proto) {
45991204 1690 case IPPROTO_UDP:
475b4205 1691 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1692 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204 1693 break;
a0064728 1694 case IPPROTO_GRE:
475b4205 1695 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728
AD
1696 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1697 break;
577389a5
AD
1698 case IPPROTO_IPIP:
1699 case IPPROTO_IPV6:
1700 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1701 l4.hdr = skb_inner_network_header(skb);
1702 break;
45991204 1703 default:
529f1f65
AD
1704 if (*tx_flags & I40E_TX_FLAGS_TSO)
1705 return -1;
1706
1707 skb_checksum_help(skb);
1708 return 0;
45991204 1709 }
b96b78f2 1710
577389a5
AD
1711 /* compute outer L3 header size */
1712 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1713 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1714
1715 /* switch IP header pointer from outer to inner header */
1716 ip.hdr = skb_inner_network_header(skb);
1717
475b4205
AD
1718 /* compute tunnel header size */
1719 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1720 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1721
5453205c
AD
1722 /* indicate if we need to offload outer UDP header */
1723 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 1724 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
1725 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1726 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1727
475b4205
AD
1728 /* record tunnel offload values */
1729 *cd_tunneling |= tunnel;
1730
b96b78f2 1731 /* switch L4 header pointer from outer to inner */
b96b78f2 1732 l4.hdr = skb_inner_transport_header(skb);
a0064728 1733 l4_proto = 0;
7f12ad74 1734
a0064728
AD
1735 /* reset type as we transition from outer to inner headers */
1736 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1737 if (ip.v4->version == 4)
1738 *tx_flags |= I40E_TX_FLAGS_IPV4;
1739 if (ip.v6->version == 6)
89232c3b 1740 *tx_flags |= I40E_TX_FLAGS_IPV6;
7f12ad74
GR
1741 }
1742
1743 /* Enable IP checksum offloads */
89232c3b 1744 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 1745 l4_proto = ip.v4->protocol;
7f12ad74
GR
1746 /* the stack computes the IP header already, the only time we
1747 * need the hardware to recompute it is in the case of TSO.
1748 */
475b4205
AD
1749 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1750 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1751 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 1752 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1753 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
1754
1755 exthdr = ip.hdr + sizeof(*ip.v6);
1756 l4_proto = ip.v6->nexthdr;
1757 if (l4.hdr != exthdr)
1758 ipv6_skip_exthdr(skb, exthdr - skb->data,
1759 &l4_proto, &frag_off);
7f12ad74 1760 }
b96b78f2 1761
475b4205
AD
1762 /* compute inner L3 header size */
1763 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
7f12ad74
GR
1764
1765 /* Enable L4 checksum offloads */
b96b78f2 1766 switch (l4_proto) {
7f12ad74
GR
1767 case IPPROTO_TCP:
1768 /* enable checksum offloads */
475b4205
AD
1769 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1770 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1771 break;
1772 case IPPROTO_SCTP:
1773 /* enable SCTP checksum offload */
475b4205
AD
1774 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1775 offset |= (sizeof(struct sctphdr) >> 2) <<
1776 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1777 break;
1778 case IPPROTO_UDP:
1779 /* enable UDP checksum offload */
475b4205
AD
1780 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1781 offset |= (sizeof(struct udphdr) >> 2) <<
1782 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1783 break;
1784 default:
529f1f65
AD
1785 if (*tx_flags & I40E_TX_FLAGS_TSO)
1786 return -1;
1787 skb_checksum_help(skb);
1788 return 0;
7f12ad74 1789 }
475b4205
AD
1790
1791 *td_cmd |= cmd;
1792 *td_offset |= offset;
529f1f65
AD
1793
1794 return 1;
7f12ad74
GR
1795}
1796
1797/**
1798 * i40e_create_tx_ctx Build the Tx context descriptor
1799 * @tx_ring: ring to create the descriptor on
1800 * @cd_type_cmd_tso_mss: Quad Word 1
1801 * @cd_tunneling: Quad Word 0 - bits 0-31
1802 * @cd_l2tag2: Quad Word 0 - bits 32-63
1803 **/
1804static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1805 const u64 cd_type_cmd_tso_mss,
1806 const u32 cd_tunneling, const u32 cd_l2tag2)
1807{
1808 struct i40e_tx_context_desc *context_desc;
1809 int i = tx_ring->next_to_use;
1810
ff40dd5d
JB
1811 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1812 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1813 return;
1814
1815 /* grab the next descriptor */
1816 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1817
1818 i++;
1819 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1820
1821 /* cpu_to_le32 and assign to struct fields */
1822 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1823 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1824 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1825 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1826}
1827
4eeb1fff 1828/**
3f3f7cb8 1829 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 1830 * @skb: send buffer
71da6197 1831 *
3f3f7cb8
AD
1832 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1833 * and so we need to figure out the cases where we need to linearize the skb.
1834 *
1835 * For TSO we need to count the TSO header and segment payload separately.
1836 * As such we need to check cases where we have 7 fragments or more as we
1837 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1838 * the segment payload in the first descriptor, and another 7 for the
1839 * fragments.
71da6197 1840 **/
2d37490b 1841bool __i40evf_chk_linearize(struct sk_buff *skb)
71da6197 1842{
2d37490b 1843 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 1844 int nr_frags, sum;
71da6197 1845
3f3f7cb8 1846 /* no need to check if number of frags is less than 7 */
2d37490b 1847 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 1848 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 1849 return false;
71da6197 1850
2d37490b 1851 /* We need to walk through the list and validate that each group
841493a3 1852 * of 6 fragments totals at least gso_size.
2d37490b 1853 */
3f3f7cb8 1854 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
1855 frag = &skb_shinfo(skb)->frags[0];
1856
1857 /* Initialize size to the negative value of gso_size minus 1. We
1858 * use this as the worst case scenerio in which the frag ahead
1859 * of us only provides one byte which is why we are limited to 6
1860 * descriptors for a single transmit as the header and previous
1861 * fragment are already consuming 2 descriptors.
1862 */
3f3f7cb8 1863 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 1864
3f3f7cb8
AD
1865 /* Add size of frags 0 through 4 to create our initial sum */
1866 sum += skb_frag_size(frag++);
1867 sum += skb_frag_size(frag++);
1868 sum += skb_frag_size(frag++);
1869 sum += skb_frag_size(frag++);
1870 sum += skb_frag_size(frag++);
2d37490b
AD
1871
1872 /* Walk through fragments adding latest fragment, testing it, and
1873 * then removing stale fragments from the sum.
1874 */
1875 stale = &skb_shinfo(skb)->frags[0];
1876 for (;;) {
3f3f7cb8 1877 sum += skb_frag_size(frag++);
2d37490b
AD
1878
1879 /* if sum is negative we failed to make sufficient progress */
1880 if (sum < 0)
1881 return true;
1882
841493a3 1883 if (!nr_frags--)
2d37490b
AD
1884 break;
1885
3f3f7cb8 1886 sum -= skb_frag_size(stale++);
71da6197
AS
1887 }
1888
2d37490b 1889 return false;
71da6197
AS
1890}
1891
8f6a2b05
JB
1892/**
1893 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1894 * @tx_ring: the ring to be checked
1895 * @size: the size buffer we want to assure is available
1896 *
1897 * Returns -EBUSY if a stop is needed, else 0
1898 **/
4ec441df 1899int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1900{
1901 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1902 /* Memory barrier before checking head and tail */
1903 smp_mb();
1904
1905 /* Check again in a case another CPU has just made room available. */
1906 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1907 return -EBUSY;
1908
1909 /* A reprieve! - use start_queue because it doesn't call schedule */
1910 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1911 ++tx_ring->tx_stats.restart_queue;
1912 return 0;
1913}
1914
7f12ad74 1915/**
3e587cf3 1916 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1917 * @tx_ring: ring to send buffer on
1918 * @skb: send buffer
1919 * @first: first buffer info buffer to use
1920 * @tx_flags: collected send information
1921 * @hdr_len: size of the packet header
1922 * @td_cmd: the command field in the descriptor
1923 * @td_offset: offset for checksum or crc
1924 **/
3e587cf3
JB
1925static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1926 struct i40e_tx_buffer *first, u32 tx_flags,
1927 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1928{
1929 unsigned int data_len = skb->data_len;
1930 unsigned int size = skb_headlen(skb);
1931 struct skb_frag_struct *frag;
1932 struct i40e_tx_buffer *tx_bi;
1933 struct i40e_tx_desc *tx_desc;
1934 u16 i = tx_ring->next_to_use;
1935 u32 td_tag = 0;
1936 dma_addr_t dma;
1937 u16 gso_segs;
6a7fded7
ASJ
1938 u16 desc_count = 0;
1939 bool tail_bump = true;
1940 bool do_rs = false;
7f12ad74
GR
1941
1942 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1943 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1944 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1945 I40E_TX_FLAGS_VLAN_SHIFT;
1946 }
1947
1948 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1949 gso_segs = skb_shinfo(skb)->gso_segs;
1950 else
1951 gso_segs = 1;
1952
1953 /* multiply data chunks by size of headers */
1954 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1955 first->gso_segs = gso_segs;
1956 first->skb = skb;
1957 first->tx_flags = tx_flags;
1958
1959 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1960
1961 tx_desc = I40E_TX_DESC(tx_ring, i);
1962 tx_bi = first;
1963
1964 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
1965 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1966
7f12ad74
GR
1967 if (dma_mapping_error(tx_ring->dev, dma))
1968 goto dma_error;
1969
1970 /* record length, and DMA address */
1971 dma_unmap_len_set(tx_bi, len, size);
1972 dma_unmap_addr_set(tx_bi, dma, dma);
1973
5c4654da
AD
1974 /* align size to end of page */
1975 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
7f12ad74
GR
1976 tx_desc->buffer_addr = cpu_to_le64(dma);
1977
1978 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1979 tx_desc->cmd_type_offset_bsz =
1980 build_ctob(td_cmd, td_offset,
5c4654da 1981 max_data, td_tag);
7f12ad74
GR
1982
1983 tx_desc++;
1984 i++;
6a7fded7
ASJ
1985 desc_count++;
1986
7f12ad74
GR
1987 if (i == tx_ring->count) {
1988 tx_desc = I40E_TX_DESC(tx_ring, 0);
1989 i = 0;
1990 }
1991
5c4654da
AD
1992 dma += max_data;
1993 size -= max_data;
7f12ad74 1994
5c4654da 1995 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
7f12ad74
GR
1996 tx_desc->buffer_addr = cpu_to_le64(dma);
1997 }
1998
1999 if (likely(!data_len))
2000 break;
2001
2002 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2003 size, td_tag);
2004
2005 tx_desc++;
2006 i++;
6a7fded7
ASJ
2007 desc_count++;
2008
7f12ad74
GR
2009 if (i == tx_ring->count) {
2010 tx_desc = I40E_TX_DESC(tx_ring, 0);
2011 i = 0;
2012 }
2013
2014 size = skb_frag_size(frag);
2015 data_len -= size;
2016
2017 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2018 DMA_TO_DEVICE);
2019
2020 tx_bi = &tx_ring->tx_bi[i];
2021 }
2022
7f12ad74
GR
2023 /* set next_to_watch value indicating a packet is present */
2024 first->next_to_watch = tx_desc;
2025
2026 i++;
2027 if (i == tx_ring->count)
2028 i = 0;
2029
2030 tx_ring->next_to_use = i;
2031
e486bdfd 2032 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4ec441df 2033 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7
ASJ
2034
2035 /* Algorithm to optimize tail and RS bit setting:
2036 * if xmit_more is supported
2037 * if xmit_more is true
2038 * do not update tail and do not mark RS bit.
2039 * if xmit_more is false and last xmit_more was false
2040 * if every packet spanned less than 4 desc
2041 * then set RS bit on 4th packet and update tail
2042 * on every packet
2043 * else
2044 * update tail and set RS bit on every packet.
2045 * if xmit_more is false and last_xmit_more was true
2046 * update tail and set RS bit.
6a7fded7
ASJ
2047 *
2048 * Optimization: wmb to be issued only in case of tail update.
2049 * Also optimize the Descriptor WB path for RS bit with the same
2050 * algorithm.
2051 *
2052 * Note: If there are less than 4 packets
2053 * pending and interrupts were disabled the service task will
2054 * trigger a force WB.
2055 */
2056 if (skb->xmit_more &&
e486bdfd 2057 !netif_xmit_stopped(txring_txq(tx_ring))) {
6a7fded7
ASJ
2058 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2059 tail_bump = false;
2060 } else if (!skb->xmit_more &&
e486bdfd 2061 !netif_xmit_stopped(txring_txq(tx_ring)) &&
6a7fded7
ASJ
2062 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2063 (tx_ring->packet_stride < WB_STRIDE) &&
2064 (desc_count < WB_STRIDE)) {
2065 tx_ring->packet_stride++;
2066 } else {
2067 tx_ring->packet_stride = 0;
2068 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2069 do_rs = true;
2070 }
2071 if (do_rs)
2072 tx_ring->packet_stride = 0;
2073
2074 tx_desc->cmd_type_offset_bsz =
2075 build_ctob(td_cmd, td_offset, size, td_tag) |
2076 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2077 I40E_TX_DESC_CMD_EOP) <<
2078 I40E_TXD_QW1_CMD_SHIFT);
2079
7f12ad74 2080 /* notify HW of packet */
ffeac836 2081 if (!tail_bump) {
489ce7a4 2082 prefetchw(tx_desc + 1);
ffeac836 2083 } else {
6a7fded7
ASJ
2084 /* Force memory writes to complete before letting h/w
2085 * know there are new descriptors to fetch. (Only
2086 * applicable for weak-ordered memory model archs,
2087 * such as IA-64).
2088 */
2089 wmb();
2090 writel(i, tx_ring->tail);
2091 }
7f12ad74
GR
2092 return;
2093
2094dma_error:
2095 dev_info(tx_ring->dev, "TX DMA map failed\n");
2096
2097 /* clear dma mappings for failed tx_bi map */
2098 for (;;) {
2099 tx_bi = &tx_ring->tx_bi[i];
2100 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2101 if (tx_bi == first)
2102 break;
2103 if (i == 0)
2104 i = tx_ring->count;
2105 i--;
2106 }
2107
2108 tx_ring->next_to_use = i;
2109}
2110
7f12ad74
GR
2111/**
2112 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2113 * @skb: send buffer
2114 * @tx_ring: ring to send buffer on
2115 *
2116 * Returns NETDEV_TX_OK if sent, else an error code
2117 **/
2118static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2119 struct i40e_ring *tx_ring)
2120{
2121 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2122 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2123 struct i40e_tx_buffer *first;
2124 u32 td_offset = 0;
2125 u32 tx_flags = 0;
2126 __be16 protocol;
2127 u32 td_cmd = 0;
2128 u8 hdr_len = 0;
4ec441df 2129 int tso, count;
6995b36c 2130
b74118f0
JB
2131 /* prefetch the data, we'll need it later */
2132 prefetch(skb->data);
2133
4ec441df 2134 count = i40e_xmit_descriptor_count(skb);
2d37490b
AD
2135 if (i40e_chk_linearize(skb, count)) {
2136 if (__skb_linearize(skb))
2137 goto out_drop;
5c4654da 2138 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2139 tx_ring->tx_stats.tx_linearize++;
2140 }
4ec441df
AD
2141
2142 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2143 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2144 * + 4 desc gap to avoid the cache line where head is,
2145 * + 1 desc for context descriptor,
2146 * otherwise try next time
2147 */
2148 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2149 tx_ring->tx_stats.tx_busy++;
7f12ad74 2150 return NETDEV_TX_BUSY;
4ec441df 2151 }
7f12ad74
GR
2152
2153 /* prepare the xmit flags */
3e587cf3 2154 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2155 goto out_drop;
2156
2157 /* obtain protocol of skb */
a12c4158 2158 protocol = vlan_get_protocol(skb);
7f12ad74
GR
2159
2160 /* record the location of the first descriptor for this packet */
2161 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2162
2163 /* setup IPv4/IPv6 offloads */
2164 if (protocol == htons(ETH_P_IP))
2165 tx_flags |= I40E_TX_FLAGS_IPV4;
2166 else if (protocol == htons(ETH_P_IPV6))
2167 tx_flags |= I40E_TX_FLAGS_IPV6;
2168
84b07992 2169 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2170
2171 if (tso < 0)
2172 goto out_drop;
2173 else if (tso)
2174 tx_flags |= I40E_TX_FLAGS_TSO;
2175
7f12ad74 2176 /* Always offload the checksum, since it's in the data descriptor */
529f1f65
AD
2177 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2178 tx_ring, &cd_tunneling);
2179 if (tso < 0)
2180 goto out_drop;
7f12ad74 2181
3bc67973
AD
2182 skb_tx_timestamp(skb);
2183
2184 /* always enable CRC insertion offload */
2185 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2186
7f12ad74
GR
2187 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2188 cd_tunneling, cd_l2tag2);
2189
3e587cf3
JB
2190 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2191 td_cmd, td_offset);
7f12ad74 2192
7f12ad74
GR
2193 return NETDEV_TX_OK;
2194
2195out_drop:
2196 dev_kfree_skb_any(skb);
2197 return NETDEV_TX_OK;
2198}
2199
2200/**
2201 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2202 * @skb: send buffer
2203 * @netdev: network interface device structure
2204 *
2205 * Returns NETDEV_TX_OK if sent, else an error code
2206 **/
2207netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2208{
2209 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2210 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2211
2212 /* hardware can't handle really short frames, hardware padding works
2213 * beyond this point
2214 */
2215 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2216 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2217 return NETDEV_TX_OK;
2218 skb->len = I40E_MIN_TX_LEN;
2219 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2220 }
2221
2222 return i40e_xmit_frame_ring(skb, tx_ring);
2223}