]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/ethernet/intel/i40evf/i40e_txrx.c
Merge tag 'wireless-drivers-for-davem-2017-11-22' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
ed0980c4 31#include "i40e_trace.h"
206812b5 32#include "i40e_prototype.h"
7f12ad74
GR
33
34static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 u32 td_tag)
36{
37 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
39 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
42}
43
44#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45
46/**
47 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
48 * @ring: the ring that owns the buffer
49 * @tx_buffer: the buffer to free
50 **/
51static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
52 struct i40e_tx_buffer *tx_buffer)
53{
54 if (tx_buffer->skb) {
64bfd68e
AD
55 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
56 kfree(tx_buffer->raw_buf);
57 else
58 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
59 if (dma_unmap_len(tx_buffer, len))
60 dma_unmap_single(ring->dev,
61 dma_unmap_addr(tx_buffer, dma),
62 dma_unmap_len(tx_buffer, len),
63 DMA_TO_DEVICE);
64 } else if (dma_unmap_len(tx_buffer, len)) {
65 dma_unmap_page(ring->dev,
66 dma_unmap_addr(tx_buffer, dma),
67 dma_unmap_len(tx_buffer, len),
68 DMA_TO_DEVICE);
69 }
a42e7a36 70
7f12ad74
GR
71 tx_buffer->next_to_watch = NULL;
72 tx_buffer->skb = NULL;
73 dma_unmap_len_set(tx_buffer, len, 0);
74 /* tx_buffer must be completely set up in the transmit path */
75}
76
77/**
78 * i40evf_clean_tx_ring - Free any empty Tx buffers
79 * @tx_ring: ring to be cleaned
80 **/
81void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
82{
83 unsigned long bi_size;
84 u16 i;
85
86 /* ring already cleared, nothing to do */
87 if (!tx_ring->tx_bi)
88 return;
89
90 /* Free all the Tx ring sk_buffs */
91 for (i = 0; i < tx_ring->count; i++)
92 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
93
94 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
95 memset(tx_ring->tx_bi, 0, bi_size);
96
97 /* Zero out the descriptor ring */
98 memset(tx_ring->desc, 0, tx_ring->size);
99
100 tx_ring->next_to_use = 0;
101 tx_ring->next_to_clean = 0;
102
103 if (!tx_ring->netdev)
104 return;
105
106 /* cleanup Tx queue statistics */
e486bdfd 107 netdev_tx_reset_queue(txring_txq(tx_ring));
7f12ad74
GR
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
dd353109 132 * @in_sw: is tx_pending being checked in SW or HW
a68de58d 133 *
9c6c1259
KP
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
a68de58d 136 **/
dd353109 137u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
a68de58d 138{
9c6c1259 139 u32 head, tail;
a68de58d 140
b1cb07db 141 head = ring->next_to_clean;
9c6c1259
KP
142 tail = readl(ring->tail);
143
144 if (head != tail)
145 return (head < tail) ?
146 tail - head : (tail + ring->count - head);
147
148 return 0;
a68de58d
JB
149}
150
1dc8b538 151#define WB_STRIDE 4
c29af37f 152
7f12ad74
GR
153/**
154 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
155 * @vsi: the VSI we care about
156 * @tx_ring: Tx ring to clean
157 * @napi_budget: Used to determine if we are in netpoll
7f12ad74
GR
158 *
159 * Returns true if there's any budget left (e.g. the clean is finished)
160 **/
a619afe8
AD
161static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
162 struct i40e_ring *tx_ring, int napi_budget)
7f12ad74
GR
163{
164 u16 i = tx_ring->next_to_clean;
165 struct i40e_tx_buffer *tx_buf;
166 struct i40e_tx_desc *tx_desc;
a619afe8
AD
167 unsigned int total_bytes = 0, total_packets = 0;
168 unsigned int budget = vsi->work_limit;
7f12ad74
GR
169
170 tx_buf = &tx_ring->tx_bi[i];
171 tx_desc = I40E_TX_DESC(tx_ring, i);
172 i -= tx_ring->count;
173
174 do {
175 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177 /* if next_to_watch is not set then there is no work pending */
178 if (!eop_desc)
179 break;
180
181 /* prevent any other reads prior to eop_desc */
f72271e2 182 smp_rmb();
7f12ad74 183
ed0980c4 184 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
b1cb07db
PB
185 /* if the descriptor isn't done, no work yet to do */
186 if (!(eop_desc->cmd_type_offset_bsz &
187 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
7f12ad74
GR
188 break;
189
190 /* clear next_to_watch to prevent false hangs */
191 tx_buf->next_to_watch = NULL;
192
193 /* update the statistics for this packet */
194 total_bytes += tx_buf->bytecount;
195 total_packets += tx_buf->gso_segs;
196
197 /* free the skb */
a619afe8 198 napi_consume_skb(tx_buf->skb, napi_budget);
7f12ad74
GR
199
200 /* unmap skb header data */
201 dma_unmap_single(tx_ring->dev,
202 dma_unmap_addr(tx_buf, dma),
203 dma_unmap_len(tx_buf, len),
204 DMA_TO_DEVICE);
205
206 /* clear tx_buffer data */
207 tx_buf->skb = NULL;
208 dma_unmap_len_set(tx_buf, len, 0);
209
210 /* unmap remaining buffers */
211 while (tx_desc != eop_desc) {
ed0980c4
SP
212 i40e_trace(clean_tx_irq_unmap,
213 tx_ring, tx_desc, tx_buf);
7f12ad74
GR
214
215 tx_buf++;
216 tx_desc++;
217 i++;
218 if (unlikely(!i)) {
219 i -= tx_ring->count;
220 tx_buf = tx_ring->tx_bi;
221 tx_desc = I40E_TX_DESC(tx_ring, 0);
222 }
223
224 /* unmap any remaining paged data */
225 if (dma_unmap_len(tx_buf, len)) {
226 dma_unmap_page(tx_ring->dev,
227 dma_unmap_addr(tx_buf, dma),
228 dma_unmap_len(tx_buf, len),
229 DMA_TO_DEVICE);
230 dma_unmap_len_set(tx_buf, len, 0);
231 }
232 }
233
234 /* move us one more past the eop_desc for start of next pkt */
235 tx_buf++;
236 tx_desc++;
237 i++;
238 if (unlikely(!i)) {
239 i -= tx_ring->count;
240 tx_buf = tx_ring->tx_bi;
241 tx_desc = I40E_TX_DESC(tx_ring, 0);
242 }
243
016890b9
JB
244 prefetch(tx_desc);
245
7f12ad74
GR
246 /* update budget accounting */
247 budget--;
248 } while (likely(budget));
249
250 i += tx_ring->count;
251 tx_ring->next_to_clean = i;
252 u64_stats_update_begin(&tx_ring->syncp);
253 tx_ring->stats.bytes += total_bytes;
254 tx_ring->stats.packets += total_packets;
255 u64_stats_update_end(&tx_ring->syncp);
256 tx_ring->q_vector->tx.total_bytes += total_bytes;
257 tx_ring->q_vector->tx.total_packets += total_packets;
258
f6d83d13 259 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
f6d83d13
ASJ
260 /* check to see if there are < 4 descriptors
261 * waiting to be written back, then kick the hardware to force
262 * them to be written back in case we stay in NAPI.
263 * In this mode on X722 we do not enable Interrupt.
264 */
88dc9e6f 265 unsigned int j = i40evf_get_tx_pending(tx_ring, false);
f6d83d13
ASJ
266
267 if (budget &&
1dc8b538 268 ((j / WB_STRIDE) == 0) && (j > 0) &&
0da36b97 269 !test_bit(__I40E_VSI_DOWN, vsi->state) &&
f6d83d13
ASJ
270 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
271 tx_ring->arm_wb = true;
272 }
273
e486bdfd
AD
274 /* notify netdev of completed buffers */
275 netdev_tx_completed_queue(txring_txq(tx_ring),
7f12ad74
GR
276 total_packets, total_bytes);
277
b85c94b6 278#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
7f12ad74
GR
279 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
280 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
281 /* Make sure that anybody stopping the queue after this
282 * sees the new next_to_clean.
283 */
284 smp_mb();
285 if (__netif_subqueue_stopped(tx_ring->netdev,
286 tx_ring->queue_index) &&
0da36b97 287 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
7f12ad74
GR
288 netif_wake_subqueue(tx_ring->netdev,
289 tx_ring->queue_index);
290 ++tx_ring->tx_stats.restart_queue;
291 }
292 }
293
b03a8c1f 294 return !!budget;
7f12ad74
GR
295}
296
c29af37f 297/**
ecc6a239 298 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 299 * @vsi: the VSI we care about
ecc6a239 300 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
301 *
302 **/
ecc6a239
ASJ
303static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
304 struct i40e_q_vector *q_vector)
c29af37f 305{
8e0764b4 306 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 307 u32 val;
8e0764b4 308
ecc6a239
ASJ
309 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
310 return;
311
312 if (q_vector->arm_wb_state)
313 return;
314
315 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
316 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
317
318 wr32(&vsi->back->hw,
319 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
320 vsi->base_vector - 1), val);
321 q_vector->arm_wb_state = true;
322}
323
324/**
325 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
326 * @vsi: the VSI we care about
327 * @q_vector: the vector on which to force writeback
328 *
329 **/
330void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
331{
332 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
333 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
334 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
335 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
336 /* allow 00 to be written to the index */;
337
338 wr32(&vsi->back->hw,
339 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
340 val);
c29af37f
ASJ
341}
342
7f12ad74
GR
343/**
344 * i40e_set_new_dynamic_itr - Find new ITR level
345 * @rc: structure containing ring performance data
346 *
8f5e39ce
JB
347 * Returns true if ITR changed, false if not
348 *
7f12ad74
GR
349 * Stores a new ITR value based on packets and byte counts during
350 * the last interrupt. The advantage of per interrupt computation
351 * is faster updates and more accurate ITR for the current traffic
352 * pattern. Constants in this function were computed based on
353 * theoretical maximum wire speed and thresholds were set based on
354 * testing data as well as attempting to minimize response time
355 * while increasing bulk throughput.
356 **/
8f5e39ce 357static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
358{
359 enum i40e_latency_range new_latency_range = rc->latency_range;
360 u32 new_itr = rc->itr;
2b634bb0 361 int bytes_per_usec;
742c9875 362 unsigned int usecs, estimated_usecs;
7f12ad74
GR
363
364 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 365 return false;
7f12ad74 366
742c9875 367 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
2b634bb0 368 bytes_per_usec = rc->total_bytes / usecs;
742c9875
JK
369
370 /* The calculations in this algorithm depend on interrupts actually
371 * firing at the ITR rate. This may not happen if the packet rate is
372 * really low, or if we've been napi polling. Check to make sure
373 * that's not the case before we continue.
374 */
375 estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
376 if (estimated_usecs > usecs) {
377 new_latency_range = I40E_LOW_LATENCY;
378 goto reset_latency;
379 }
380
7f12ad74 381 /* simple throttlerate management
c56625d5 382 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 383 * 10-20MB/s low (20000 ints/s)
c56625d5 384 * 20-1249MB/s bulk (18000 ints/s)
51cc6d9f
JB
385 *
386 * The math works out because the divisor is in 10^(-6) which
387 * turns the bytes/us input value into MB/s values, but
388 * make sure to use usecs, as the register values written
ee2319cf
JB
389 * are in 2 usec increments in the ITR registers, and make sure
390 * to use the smoothed values that the countdown timer gives us.
7f12ad74 391 */
de32e3ef 392 switch (new_latency_range) {
7f12ad74 393 case I40E_LOWEST_LATENCY:
2b634bb0 394 if (bytes_per_usec > 10)
7f12ad74
GR
395 new_latency_range = I40E_LOW_LATENCY;
396 break;
397 case I40E_LOW_LATENCY:
2b634bb0 398 if (bytes_per_usec > 20)
7f12ad74 399 new_latency_range = I40E_BULK_LATENCY;
2b634bb0 400 else if (bytes_per_usec <= 10)
7f12ad74
GR
401 new_latency_range = I40E_LOWEST_LATENCY;
402 break;
403 case I40E_BULK_LATENCY:
de32e3ef 404 default:
2b634bb0 405 if (bytes_per_usec <= 20)
de32e3ef 406 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
407 break;
408 }
c56625d5 409
742c9875 410reset_latency:
de32e3ef 411 rc->latency_range = new_latency_range;
7f12ad74
GR
412
413 switch (new_latency_range) {
414 case I40E_LOWEST_LATENCY:
c56625d5 415 new_itr = I40E_ITR_50K;
7f12ad74
GR
416 break;
417 case I40E_LOW_LATENCY:
418 new_itr = I40E_ITR_20K;
419 break;
420 case I40E_BULK_LATENCY:
c56625d5
JB
421 new_itr = I40E_ITR_18K;
422 break;
7f12ad74
GR
423 default:
424 break;
425 }
426
7f12ad74
GR
427 rc->total_bytes = 0;
428 rc->total_packets = 0;
742c9875 429 rc->last_itr_update = jiffies;
8f5e39ce
JB
430
431 if (new_itr != rc->itr) {
432 rc->itr = new_itr;
433 return true;
434 }
8f5e39ce 435 return false;
7f12ad74
GR
436}
437
4eeb1fff 438/**
7f12ad74
GR
439 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
440 * @tx_ring: the tx ring to set up
441 *
442 * Return 0 on success, negative on error
443 **/
444int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
445{
446 struct device *dev = tx_ring->dev;
447 int bi_size;
448
449 if (!dev)
450 return -ENOMEM;
451
67c818a1
MW
452 /* warn if we are about to overwrite the pointer */
453 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
454 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
455 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
456 if (!tx_ring->tx_bi)
457 goto err;
458
459 /* round up to nearest 4K */
460 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
461 tx_ring->size = ALIGN(tx_ring->size, 4096);
462 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
463 &tx_ring->dma, GFP_KERNEL);
464 if (!tx_ring->desc) {
465 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
466 tx_ring->size);
467 goto err;
468 }
469
470 tx_ring->next_to_use = 0;
471 tx_ring->next_to_clean = 0;
472 return 0;
473
474err:
475 kfree(tx_ring->tx_bi);
476 tx_ring->tx_bi = NULL;
477 return -ENOMEM;
478}
479
480/**
481 * i40evf_clean_rx_ring - Free Rx buffers
482 * @rx_ring: ring to be cleaned
483 **/
484void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
485{
7f12ad74
GR
486 unsigned long bi_size;
487 u16 i;
488
489 /* ring already cleared, nothing to do */
490 if (!rx_ring->rx_bi)
491 return;
492
e72e5659
SP
493 if (rx_ring->skb) {
494 dev_kfree_skb(rx_ring->skb);
495 rx_ring->skb = NULL;
496 }
497
7f12ad74
GR
498 /* Free all the Rx ring sk_buffs */
499 for (i = 0; i < rx_ring->count; i++) {
ab9ad98e
JB
500 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
501
ab9ad98e
JB
502 if (!rx_bi->page)
503 continue;
504
59605bc0
AD
505 /* Invalidate cache lines that may have been written to by
506 * device so that we avoid corrupting memory.
507 */
508 dma_sync_single_range_for_cpu(rx_ring->dev,
509 rx_bi->dma,
510 rx_bi->page_offset,
98efd694 511 rx_ring->rx_buf_len,
59605bc0
AD
512 DMA_FROM_DEVICE);
513
514 /* free resources associated with mapping */
515 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
98efd694 516 i40e_rx_pg_size(rx_ring),
59605bc0
AD
517 DMA_FROM_DEVICE,
518 I40E_RX_DMA_ATTR);
98efd694 519
1793668c 520 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
ab9ad98e
JB
521
522 rx_bi->page = NULL;
523 rx_bi->page_offset = 0;
7f12ad74
GR
524 }
525
526 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
527 memset(rx_ring->rx_bi, 0, bi_size);
528
529 /* Zero out the descriptor ring */
530 memset(rx_ring->desc, 0, rx_ring->size);
531
ab9ad98e 532 rx_ring->next_to_alloc = 0;
7f12ad74
GR
533 rx_ring->next_to_clean = 0;
534 rx_ring->next_to_use = 0;
535}
536
537/**
538 * i40evf_free_rx_resources - Free Rx resources
539 * @rx_ring: ring to clean the resources from
540 *
541 * Free all receive software resources
542 **/
543void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
544{
545 i40evf_clean_rx_ring(rx_ring);
546 kfree(rx_ring->rx_bi);
547 rx_ring->rx_bi = NULL;
548
549 if (rx_ring->desc) {
550 dma_free_coherent(rx_ring->dev, rx_ring->size,
551 rx_ring->desc, rx_ring->dma);
552 rx_ring->desc = NULL;
553 }
554}
555
556/**
557 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
558 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
559 *
560 * Returns 0 on success, negative on failure
561 **/
562int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
563{
564 struct device *dev = rx_ring->dev;
565 int bi_size;
566
67c818a1
MW
567 /* warn if we are about to overwrite the pointer */
568 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
569 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
570 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
571 if (!rx_ring->rx_bi)
572 goto err;
573
f217d6ca 574 u64_stats_init(&rx_ring->syncp);
638702bd 575
7f12ad74 576 /* Round up to nearest 4K */
ab9ad98e 577 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
7f12ad74
GR
578 rx_ring->size = ALIGN(rx_ring->size, 4096);
579 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
580 &rx_ring->dma, GFP_KERNEL);
581
582 if (!rx_ring->desc) {
583 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
584 rx_ring->size);
585 goto err;
586 }
587
ab9ad98e 588 rx_ring->next_to_alloc = 0;
7f12ad74
GR
589 rx_ring->next_to_clean = 0;
590 rx_ring->next_to_use = 0;
591
592 return 0;
593err:
594 kfree(rx_ring->rx_bi);
595 rx_ring->rx_bi = NULL;
596 return -ENOMEM;
597}
598
599/**
600 * i40e_release_rx_desc - Store the new tail and head values
601 * @rx_ring: ring to bump
602 * @val: new head index
603 **/
604static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
605{
606 rx_ring->next_to_use = val;
ab9ad98e
JB
607
608 /* update next to alloc since we have filled the ring */
609 rx_ring->next_to_alloc = val;
610
7f12ad74
GR
611 /* Force memory writes to complete before letting h/w
612 * know there are new descriptors to fetch. (Only
613 * applicable for weak-ordered memory model archs,
614 * such as IA-64).
615 */
616 wmb();
617 writel(val, rx_ring->tail);
618}
619
ca9ec088
AD
620/**
621 * i40e_rx_offset - Return expected offset into page to access data
622 * @rx_ring: Ring we are requesting offset of
623 *
624 * Returns the offset value for ring into the data buffer.
625 */
626static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
627{
628 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
629}
630
7f12ad74 631/**
ab9ad98e
JB
632 * i40e_alloc_mapped_page - recycle or make a new page
633 * @rx_ring: ring to use
634 * @bi: rx_buffer struct to modify
c2e245ab 635 *
ab9ad98e
JB
636 * Returns true if the page was successfully allocated or
637 * reused.
a132af24 638 **/
ab9ad98e
JB
639static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
640 struct i40e_rx_buffer *bi)
a132af24 641{
ab9ad98e
JB
642 struct page *page = bi->page;
643 dma_addr_t dma;
a132af24 644
ab9ad98e
JB
645 /* since we are recycling buffers we should seldom need to alloc */
646 if (likely(page)) {
647 rx_ring->rx_stats.page_reuse_count++;
648 return true;
649 }
a132af24 650
ab9ad98e 651 /* alloc new page for storage */
98efd694 652 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
ab9ad98e
JB
653 if (unlikely(!page)) {
654 rx_ring->rx_stats.alloc_page_failed++;
655 return false;
656 }
a132af24 657
ab9ad98e 658 /* map page for use */
59605bc0 659 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
98efd694 660 i40e_rx_pg_size(rx_ring),
59605bc0
AD
661 DMA_FROM_DEVICE,
662 I40E_RX_DMA_ATTR);
f16704e5 663
ab9ad98e
JB
664 /* if mapping failed free memory back to system since
665 * there isn't much point in holding memory we can't use
f16704e5 666 */
ab9ad98e 667 if (dma_mapping_error(rx_ring->dev, dma)) {
98efd694 668 __free_pages(page, i40e_rx_pg_order(rx_ring));
ab9ad98e
JB
669 rx_ring->rx_stats.alloc_page_failed++;
670 return false;
a132af24
MW
671 }
672
ab9ad98e
JB
673 bi->dma = dma;
674 bi->page = page;
ca9ec088 675 bi->page_offset = i40e_rx_offset(rx_ring);
a0cfc313
AD
676
677 /* initialize pagecnt_bias to 1 representing we fully own page */
1793668c 678 bi->pagecnt_bias = 1;
c2e245ab 679
ab9ad98e
JB
680 return true;
681}
c2e245ab 682
ab9ad98e
JB
683/**
684 * i40e_receive_skb - Send a completed packet up the stack
685 * @rx_ring: rx ring in play
686 * @skb: packet to send up
687 * @vlan_tag: vlan tag for packet
688 **/
689static void i40e_receive_skb(struct i40e_ring *rx_ring,
690 struct sk_buff *skb, u16 vlan_tag)
691{
692 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 693
ab9ad98e
JB
694 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
695 (vlan_tag & VLAN_VID_MASK))
696 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
697
698 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
699}
700
701/**
ab9ad98e 702 * i40evf_alloc_rx_buffers - Replace used receive buffers
7f12ad74
GR
703 * @rx_ring: ring to place buffers on
704 * @cleaned_count: number of buffers to replace
c2e245ab 705 *
ab9ad98e 706 * Returns false if all allocations were successful, true if any fail
7f12ad74 707 **/
ab9ad98e 708bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74 709{
ab9ad98e 710 u16 ntu = rx_ring->next_to_use;
7f12ad74
GR
711 union i40e_rx_desc *rx_desc;
712 struct i40e_rx_buffer *bi;
7f12ad74
GR
713
714 /* do nothing if no valid netdev defined */
715 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 716 return false;
7f12ad74 717
ab9ad98e
JB
718 rx_desc = I40E_RX_DESC(rx_ring, ntu);
719 bi = &rx_ring->rx_bi[ntu];
7f12ad74 720
ab9ad98e
JB
721 do {
722 if (!i40e_alloc_mapped_page(rx_ring, bi))
723 goto no_buffers;
7f12ad74 724
59605bc0
AD
725 /* sync the buffer for use by the device */
726 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
727 bi->page_offset,
98efd694 728 rx_ring->rx_buf_len,
59605bc0
AD
729 DMA_FROM_DEVICE);
730
ab9ad98e
JB
731 /* Refresh the desc even if buffer_addrs didn't change
732 * because each write-back erases this info.
733 */
734 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7f12ad74 735
ab9ad98e
JB
736 rx_desc++;
737 bi++;
738 ntu++;
739 if (unlikely(ntu == rx_ring->count)) {
740 rx_desc = I40E_RX_DESC(rx_ring, 0);
741 bi = rx_ring->rx_bi;
742 ntu = 0;
743 }
744
745 /* clear the status bits for the next_to_use descriptor */
746 rx_desc->wb.qword1.status_error_len = 0;
747
748 cleaned_count--;
749 } while (cleaned_count);
750
751 if (rx_ring->next_to_use != ntu)
752 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
753
754 return false;
755
7f12ad74 756no_buffers:
ab9ad98e
JB
757 if (rx_ring->next_to_use != ntu)
758 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
759
760 /* make sure to come back via polling to try again after
761 * allocation failure
762 */
763 return true;
7f12ad74
GR
764}
765
7f12ad74
GR
766/**
767 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
768 * @vsi: the VSI we care about
769 * @skb: skb currently being received and modified
ab9ad98e 770 * @rx_desc: the receive descriptor
7f12ad74
GR
771 **/
772static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
773 struct sk_buff *skb,
ab9ad98e 774 union i40e_rx_desc *rx_desc)
7f12ad74 775{
ab9ad98e 776 struct i40e_rx_ptype_decoded decoded;
ab9ad98e 777 u32 rx_error, rx_status;
858296c8 778 bool ipv4, ipv6;
ab9ad98e
JB
779 u8 ptype;
780 u64 qword;
781
782 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
783 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
784 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
785 I40E_RXD_QW1_ERROR_SHIFT;
786 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
787 I40E_RXD_QW1_STATUS_SHIFT;
788 decoded = decode_rx_desc_ptype(ptype);
7f12ad74 789
7f12ad74
GR
790 skb->ip_summed = CHECKSUM_NONE;
791
ab9ad98e
JB
792 skb_checksum_none_assert(skb);
793
7f12ad74 794 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
795 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
796 return;
797
798 /* did the hardware decode the packet and checksum? */
41a1d04b 799 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
800 return;
801
802 /* both known and outer_ip must be set for the below code to work */
803 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
804 return;
805
fad57330
AD
806 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
807 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
808 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
809 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
810
811 if (ipv4 &&
41a1d04b
JB
812 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
813 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
814 goto checksum_fail;
815
ddf1d0d7 816 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 817 if (ipv6 &&
41a1d04b 818 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 819 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
820 return;
821
8a3c91cc 822 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 823 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
824 goto checksum_fail;
825
826 /* handle packets that were not able to be checksummed due
827 * to arrival speed, in this case the stack can compute
828 * the csum.
829 */
41a1d04b 830 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 831 return;
7f12ad74 832
858296c8
AD
833 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
834 switch (decoded.inner_prot) {
835 case I40E_RX_PTYPE_INNER_PROT_TCP:
836 case I40E_RX_PTYPE_INNER_PROT_UDP:
837 case I40E_RX_PTYPE_INNER_PROT_SCTP:
838 skb->ip_summed = CHECKSUM_UNNECESSARY;
839 /* fall though */
840 default:
841 break;
842 }
8a3c91cc
JB
843
844 return;
845
846checksum_fail:
847 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
848}
849
850/**
857942fd 851 * i40e_ptype_to_htype - get a hash type
206812b5
JB
852 * @ptype: the ptype value from the descriptor
853 *
854 * Returns a hash type to be used by skb_set_hash
855 **/
ab9ad98e 856static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
857{
858 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
859
860 if (!decoded.known)
861 return PKT_HASH_TYPE_NONE;
862
863 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
864 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
865 return PKT_HASH_TYPE_L4;
866 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
867 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
868 return PKT_HASH_TYPE_L3;
869 else
870 return PKT_HASH_TYPE_L2;
871}
872
857942fd
ASJ
873/**
874 * i40e_rx_hash - set the hash value in the skb
875 * @ring: descriptor ring
876 * @rx_desc: specific descriptor
877 **/
878static inline void i40e_rx_hash(struct i40e_ring *ring,
879 union i40e_rx_desc *rx_desc,
880 struct sk_buff *skb,
881 u8 rx_ptype)
882{
883 u32 hash;
ab9ad98e 884 const __le64 rss_mask =
857942fd
ASJ
885 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
886 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
887
888 if (ring->netdev->features & NETIF_F_RXHASH)
889 return;
890
891 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
892 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
893 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
894 }
895}
896
7f12ad74 897/**
ab9ad98e
JB
898 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
899 * @rx_ring: rx descriptor ring packet is being transacted on
900 * @rx_desc: pointer to the EOP Rx descriptor
901 * @skb: pointer to current skb being populated
902 * @rx_ptype: the packet type decoded by hardware
7f12ad74 903 *
ab9ad98e
JB
904 * This function checks the ring, descriptor, and packet information in
905 * order to populate the hash, checksum, VLAN, protocol, and
906 * other fields within the skb.
7f12ad74 907 **/
ab9ad98e
JB
908static inline
909void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
910 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
911 u8 rx_ptype)
7f12ad74 912{
ab9ad98e 913 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
7f12ad74 914
ab9ad98e 915 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
a132af24 916
ab9ad98e 917 skb_record_rx_queue(skb, rx_ring->queue_index);
a5b268e4
AD
918
919 /* modifies the skb - consumes the enet header */
920 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
ab9ad98e 921}
a132af24 922
ab9ad98e
JB
923/**
924 * i40e_cleanup_headers - Correct empty headers
925 * @rx_ring: rx descriptor ring packet is being transacted on
926 * @skb: pointer to current skb being fixed
927 *
928 * Also address the case where we are pulling data in on pages only
929 * and as such no data is present in the skb header.
930 *
931 * In addition if skb is not at least 60 bytes we need to pad it so that
932 * it is large enough to qualify as a valid Ethernet frame.
933 *
934 * Returns true if an error was encountered and skb was freed.
935 **/
936static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
937{
ab9ad98e
JB
938 /* if eth_skb_pad returns an error the skb was freed */
939 if (eth_skb_pad(skb))
940 return true;
7f12ad74 941
ab9ad98e
JB
942 return false;
943}
857942fd 944
ab9ad98e
JB
945/**
946 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
947 * @rx_ring: rx descriptor ring to store buffers on
948 * @old_buff: donor buffer to have page reused
949 *
950 * Synchronizes page for reuse by the adapter
951 **/
952static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
953 struct i40e_rx_buffer *old_buff)
954{
955 struct i40e_rx_buffer *new_buff;
956 u16 nta = rx_ring->next_to_alloc;
7f12ad74 957
ab9ad98e 958 new_buff = &rx_ring->rx_bi[nta];
7f12ad74 959
ab9ad98e
JB
960 /* update, and store next to alloc */
961 nta++;
962 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7f12ad74 963
ab9ad98e 964 /* transfer page from old buffer to new buffer */
1793668c
AD
965 new_buff->dma = old_buff->dma;
966 new_buff->page = old_buff->page;
967 new_buff->page_offset = old_buff->page_offset;
968 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
ab9ad98e
JB
969}
970
971/**
9b37c937 972 * i40e_page_is_reusable - check if any reuse is possible
ab9ad98e 973 * @page: page struct to check
9b37c937
SP
974 *
975 * A page is not reusable if it was allocated under low memory
976 * conditions, or it's not in the same NUMA node as this CPU.
ab9ad98e 977 */
9b37c937 978static inline bool i40e_page_is_reusable(struct page *page)
ab9ad98e 979{
9b37c937
SP
980 return (page_to_nid(page) == numa_mem_id()) &&
981 !page_is_pfmemalloc(page);
982}
983
984/**
985 * i40e_can_reuse_rx_page - Determine if this page can be reused by
986 * the adapter for another receive
987 *
988 * @rx_buffer: buffer containing the page
9b37c937
SP
989 *
990 * If page is reusable, rx_buffer->page_offset is adjusted to point to
991 * an unused region in the page.
992 *
993 * For small pages, @truesize will be a constant value, half the size
994 * of the memory at page. We'll attempt to alternate between high and
995 * low halves of the page, with one half ready for use by the hardware
996 * and the other half being consumed by the stack. We use the page
997 * ref count to determine whether the stack has finished consuming the
998 * portion of this page that was passed up with a previous packet. If
999 * the page ref count is >1, we'll assume the "other" half page is
1000 * still busy, and this page cannot be reused.
1001 *
1002 * For larger pages, @truesize will be the actual space used by the
1003 * received packet (adjusted upward to an even multiple of the cache
1004 * line size). This will advance through the page by the amount
1005 * actually consumed by the received packets while there is still
1006 * space for a buffer. Each region of larger pages will be used at
1007 * most once, after which the page will not be reused.
1008 *
1009 * In either case, if the page is reusable its refcount is increased.
1010 **/
a0cfc313 1011static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
9b37c937 1012{
a0cfc313
AD
1013 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1014 struct page *page = rx_buffer->page;
9b37c937
SP
1015
1016 /* Is any reuse possible? */
1017 if (unlikely(!i40e_page_is_reusable(page)))
1018 return false;
1019
1020#if (PAGE_SIZE < 8192)
1021 /* if we are only owner of page we can reuse it */
a0cfc313 1022 if (unlikely((page_count(page) - pagecnt_bias) > 1))
9b37c937 1023 return false;
9b37c937 1024#else
98efd694
AD
1025#define I40E_LAST_OFFSET \
1026 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1027 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
9b37c937
SP
1028 return false;
1029#endif
1030
1793668c
AD
1031 /* If we have drained the page fragment pool we need to update
1032 * the pagecnt_bias and page count so that we fully restock the
1033 * number of references the driver holds.
1034 */
a0cfc313 1035 if (unlikely(!pagecnt_bias)) {
1793668c
AD
1036 page_ref_add(page, USHRT_MAX);
1037 rx_buffer->pagecnt_bias = USHRT_MAX;
1038 }
9b37c937
SP
1039
1040 return true;
ab9ad98e
JB
1041}
1042
1043/**
1044 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1045 * @rx_ring: rx descriptor ring to transact packets on
1046 * @rx_buffer: buffer containing page to add
ab9ad98e 1047 * @skb: sk_buff to place the data into
a0cfc313 1048 * @size: packet length from rx_desc
ab9ad98e
JB
1049 *
1050 * This function will add the data contained in rx_buffer->page to the skb.
fa2343e9 1051 * It will just attach the page as a frag to the skb.
ab9ad98e 1052 *
fa2343e9 1053 * The function will then update the page offset.
ab9ad98e 1054 **/
a0cfc313 1055static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
ab9ad98e 1056 struct i40e_rx_buffer *rx_buffer,
a0cfc313
AD
1057 struct sk_buff *skb,
1058 unsigned int size)
ab9ad98e 1059{
ab9ad98e 1060#if (PAGE_SIZE < 8192)
98efd694 1061 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
ab9ad98e 1062#else
ca9ec088 1063 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
a132af24 1064#endif
ab9ad98e 1065
fa2343e9
AD
1066 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1067 rx_buffer->page_offset, size, truesize);
ab9ad98e 1068
a0cfc313
AD
1069 /* page is being used so we must update the page offset */
1070#if (PAGE_SIZE < 8192)
1071 rx_buffer->page_offset ^= truesize;
1072#else
1073 rx_buffer->page_offset += truesize;
1074#endif
ab9ad98e
JB
1075}
1076
9a064128
AD
1077/**
1078 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1079 * @rx_ring: rx descriptor ring to transact packets on
1080 * @size: size of buffer to add to skb
1081 *
1082 * This function will pull an Rx buffer from the ring and synchronize it
1083 * for use by the CPU.
1084 */
1085static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1086 const unsigned int size)
1087{
1088 struct i40e_rx_buffer *rx_buffer;
1089
1090 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1091 prefetchw(rx_buffer->page);
1092
1093 /* we are reusing so sync this buffer for CPU use */
1094 dma_sync_single_range_for_cpu(rx_ring->dev,
1095 rx_buffer->dma,
1096 rx_buffer->page_offset,
1097 size,
1098 DMA_FROM_DEVICE);
1099
a0cfc313
AD
1100 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1101 rx_buffer->pagecnt_bias--;
1102
9a064128
AD
1103 return rx_buffer;
1104}
1105
ab9ad98e 1106/**
fa2343e9 1107 * i40e_construct_skb - Allocate skb and populate it
ab9ad98e 1108 * @rx_ring: rx descriptor ring to transact packets on
9a064128 1109 * @rx_buffer: rx buffer to pull data from
d57c0e08 1110 * @size: size of buffer to add to skb
ab9ad98e 1111 *
fa2343e9
AD
1112 * This function allocates an skb. It then populates it with the page
1113 * data from the current receive descriptor, taking care to set up the
1114 * skb correctly.
ab9ad98e 1115 */
fa2343e9
AD
1116static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1117 struct i40e_rx_buffer *rx_buffer,
1118 unsigned int size)
ab9ad98e 1119{
fa2343e9
AD
1120 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1121#if (PAGE_SIZE < 8192)
98efd694 1122 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
fa2343e9
AD
1123#else
1124 unsigned int truesize = SKB_DATA_ALIGN(size);
1125#endif
1126 unsigned int headlen;
1127 struct sk_buff *skb;
ab9ad98e 1128
fa2343e9
AD
1129 /* prefetch first cache line of first page */
1130 prefetch(va);
ab9ad98e 1131#if L1_CACHE_BYTES < 128
fa2343e9 1132 prefetch(va + L1_CACHE_BYTES);
ab9ad98e
JB
1133#endif
1134
fa2343e9
AD
1135 /* allocate a skb to store the frags */
1136 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1137 I40E_RX_HDR_SIZE,
1138 GFP_ATOMIC | __GFP_NOWARN);
1139 if (unlikely(!skb))
1140 return NULL;
1141
1142 /* Determine available headroom for copy */
1143 headlen = size;
1144 if (headlen > I40E_RX_HDR_SIZE)
1145 headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
ab9ad98e 1146
fa2343e9
AD
1147 /* align pull length to size of long to optimize memcpy performance */
1148 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1149
1150 /* update all of the pointers */
1151 size -= headlen;
1152 if (size) {
1153 skb_add_rx_frag(skb, 0, rx_buffer->page,
1154 rx_buffer->page_offset + headlen,
1155 size, truesize);
1156
1157 /* buffer is used by skb, update page_offset */
1158#if (PAGE_SIZE < 8192)
1159 rx_buffer->page_offset ^= truesize;
1160#else
1161 rx_buffer->page_offset += truesize;
1162#endif
1163 } else {
1164 /* buffer is unused, reset bias back to rx_buffer */
1165 rx_buffer->pagecnt_bias++;
1166 }
a0cfc313
AD
1167
1168 return skb;
1169}
1170
f8b45b74
AD
1171/**
1172 * i40e_build_skb - Build skb around an existing buffer
1173 * @rx_ring: Rx descriptor ring to transact packets on
1174 * @rx_buffer: Rx buffer to pull data from
1175 * @size: size of buffer to add to skb
1176 *
1177 * This function builds an skb around an existing Rx buffer, taking care
1178 * to set up the skb correctly and avoid any memcpy overhead.
1179 */
1180static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1181 struct i40e_rx_buffer *rx_buffer,
1182 unsigned int size)
1183{
1184 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1185#if (PAGE_SIZE < 8192)
1186 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1187#else
2aae918c
BT
1188 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1189 SKB_DATA_ALIGN(I40E_SKB_PAD + size);
f8b45b74
AD
1190#endif
1191 struct sk_buff *skb;
1192
1193 /* prefetch first cache line of first page */
1194 prefetch(va);
1195#if L1_CACHE_BYTES < 128
1196 prefetch(va + L1_CACHE_BYTES);
1197#endif
1198 /* build an skb around the page buffer */
1199 skb = build_skb(va - I40E_SKB_PAD, truesize);
1200 if (unlikely(!skb))
1201 return NULL;
1202
1203 /* update pointers within the skb to store the data */
1204 skb_reserve(skb, I40E_SKB_PAD);
1205 __skb_put(skb, size);
1206
1207 /* buffer is used by skb, update page_offset */
1208#if (PAGE_SIZE < 8192)
1209 rx_buffer->page_offset ^= truesize;
1210#else
1211 rx_buffer->page_offset += truesize;
1212#endif
1213
1214 return skb;
1215}
1216
a0cfc313
AD
1217/**
1218 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1219 * @rx_ring: rx descriptor ring to transact packets on
1220 * @rx_buffer: rx buffer to pull data from
1221 *
1222 * This function will clean up the contents of the rx_buffer. It will
1223 * either recycle the bufer or unmap it and free the associated resources.
1224 */
1225static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1226 struct i40e_rx_buffer *rx_buffer)
1227{
1228 if (i40e_can_reuse_rx_page(rx_buffer)) {
ab9ad98e
JB
1229 /* hand second half of page back to the ring */
1230 i40e_reuse_rx_page(rx_ring, rx_buffer);
1231 rx_ring->rx_stats.page_reuse_count++;
1232 } else {
1233 /* we are not reusing the buffer so unmap it */
98efd694
AD
1234 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1235 i40e_rx_pg_size(rx_ring),
59605bc0 1236 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1793668c
AD
1237 __page_frag_cache_drain(rx_buffer->page,
1238 rx_buffer->pagecnt_bias);
ab9ad98e
JB
1239 }
1240
1241 /* clear contents of buffer_info */
1242 rx_buffer->page = NULL;
ab9ad98e
JB
1243}
1244
1245/**
1246 * i40e_is_non_eop - process handling of non-EOP buffers
1247 * @rx_ring: Rx ring being processed
1248 * @rx_desc: Rx descriptor for current buffer
1249 * @skb: Current socket buffer containing buffer in progress
1250 *
1251 * This function updates next to clean. If the buffer is an EOP buffer
1252 * this function exits returning false, otherwise it will place the
1253 * sk_buff in the next buffer to be chained and return true indicating
1254 * that this is in fact a non-EOP buffer.
1255 **/
1256static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1257 union i40e_rx_desc *rx_desc,
1258 struct sk_buff *skb)
1259{
1260 u32 ntc = rx_ring->next_to_clean + 1;
1261
1262 /* fetch, update, and store next to clean */
1263 ntc = (ntc < rx_ring->count) ? ntc : 0;
1264 rx_ring->next_to_clean = ntc;
1265
1266 prefetch(I40E_RX_DESC(rx_ring, ntc));
1267
1268 /* if we are the last buffer then there is nothing else to do */
1269#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1270 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1271 return false;
1272
ab9ad98e
JB
1273 rx_ring->rx_stats.non_eop_descs++;
1274
1275 return true;
a132af24
MW
1276}
1277
1278/**
ab9ad98e
JB
1279 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1280 * @rx_ring: rx descriptor ring to transact packets on
1281 * @budget: Total limit on number of packets to process
1282 *
1283 * This function provides a "bounce buffer" approach to Rx interrupt
1284 * processing. The advantage to this is that on systems that have
1285 * expensive overhead for IOMMU access this provides a means of avoiding
1286 * it by maintaining the mapping of the page to the system.
a132af24 1287 *
ab9ad98e 1288 * Returns amount of work completed
a132af24 1289 **/
ab9ad98e 1290static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1291{
1292 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
e72e5659 1293 struct sk_buff *skb = rx_ring->skb;
a132af24 1294 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1295 bool failure = false;
a132af24 1296
b85c94b6 1297 while (likely(total_rx_packets < (unsigned int)budget)) {
9a064128 1298 struct i40e_rx_buffer *rx_buffer;
ab9ad98e 1299 union i40e_rx_desc *rx_desc;
d57c0e08 1300 unsigned int size;
a132af24 1301 u16 vlan_tag;
ab9ad98e
JB
1302 u8 rx_ptype;
1303 u64 qword;
1304
7f12ad74
GR
1305 /* return some buffers to hardware, one at a time is too slow */
1306 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1307 failure = failure ||
ab9ad98e 1308 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
7f12ad74
GR
1309 cleaned_count = 0;
1310 }
1311
ab9ad98e
JB
1312 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1313
ab9ad98e
JB
1314 /* status_error_len will always be zero for unused descriptors
1315 * because it's cleared in cleanup, and overlaps with hdr_addr
1316 * which is always zero because packet split isn't used, if the
d57c0e08 1317 * hardware wrote DD then the length will be non-zero
ab9ad98e 1318 */
d57c0e08 1319 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
ab9ad98e 1320
a132af24 1321 /* This memory barrier is needed to keep us from reading
d57c0e08
AD
1322 * any other fields out of the rx_desc until we have
1323 * verified the descriptor has been written back.
a132af24 1324 */
67317166 1325 dma_rmb();
a132af24 1326
0e626ff7
AD
1327 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1328 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1329 if (!size)
1330 break;
1331
ed0980c4 1332 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
9a064128
AD
1333 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1334
fa2343e9
AD
1335 /* retrieve a buffer from the ring */
1336 if (skb)
1337 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
f8b45b74
AD
1338 else if (ring_uses_build_skb(rx_ring))
1339 skb = i40e_build_skb(rx_ring, rx_buffer, size);
fa2343e9
AD
1340 else
1341 skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1342
1343 /* exit if we failed to retrieve a buffer */
1344 if (!skb) {
1345 rx_ring->rx_stats.alloc_buff_failed++;
1346 rx_buffer->pagecnt_bias++;
ab9ad98e 1347 break;
fa2343e9 1348 }
a132af24 1349
a0cfc313 1350 i40e_put_rx_buffer(rx_ring, rx_buffer);
a132af24
MW
1351 cleaned_count++;
1352
ab9ad98e 1353 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1354 continue;
a132af24 1355
ab9ad98e
JB
1356 /* ERR_MASK will only have valid bits if EOP set, and
1357 * what we are doing here is actually checking
1358 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1359 * the error field
1360 */
1361 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1362 dev_kfree_skb_any(skb);
741b8b83 1363 skb = NULL;
a132af24
MW
1364 continue;
1365 }
1366
e72e5659
SP
1367 if (i40e_cleanup_headers(rx_ring, skb)) {
1368 skb = NULL;
ab9ad98e 1369 continue;
e72e5659 1370 }
ab9ad98e 1371
a132af24
MW
1372 /* probably a little skewed due to removing CRC */
1373 total_rx_bytes += skb->len;
a132af24 1374
99dad8b3
AD
1375 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1376 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1377 I40E_RXD_QW1_PTYPE_SHIFT;
1378
ab9ad98e
JB
1379 /* populate checksum, VLAN, and protocol */
1380 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1381
a132af24 1382
ab9ad98e
JB
1383 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1384 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1385
ed0980c4 1386 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
a132af24 1387 i40e_receive_skb(rx_ring, skb, vlan_tag);
e72e5659 1388 skb = NULL;
a132af24 1389
ab9ad98e
JB
1390 /* update budget accounting */
1391 total_rx_packets++;
1392 }
7f12ad74 1393
e72e5659
SP
1394 rx_ring->skb = skb;
1395
7f12ad74
GR
1396 u64_stats_update_begin(&rx_ring->syncp);
1397 rx_ring->stats.packets += total_rx_packets;
1398 rx_ring->stats.bytes += total_rx_bytes;
1399 u64_stats_update_end(&rx_ring->syncp);
1400 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1401 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1402
ab9ad98e 1403 /* guarantee a trip back through this routine if there was a failure */
b85c94b6 1404 return failure ? budget : (int)total_rx_packets;
7f12ad74
GR
1405}
1406
8f5e39ce
JB
1407static u32 i40e_buildreg_itr(const int type, const u16 itr)
1408{
1409 u32 val;
1410
1411 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
dbadbbe2 1412 I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
8f5e39ce
JB
1413 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1414 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1415
1416 return val;
1417}
1418
1419/* a small macro to shorten up some long lines */
1420#define INTREG I40E_VFINT_DYN_CTLN1
3c234c47 1421static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
65e87c03
JK
1422{
1423 struct i40evf_adapter *adapter = vsi->back;
1424
3c234c47 1425 return adapter->rx_rings[idx].rx_itr_setting;
65e87c03
JK
1426}
1427
3c234c47 1428static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
65e87c03
JK
1429{
1430 struct i40evf_adapter *adapter = vsi->back;
1431
3c234c47 1432 return adapter->tx_rings[idx].tx_itr_setting;
65e87c03 1433}
8f5e39ce 1434
de32e3ef
CW
1435/**
1436 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1437 * @vsi: the VSI we care about
1438 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1439 *
1440 **/
1441static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1442 struct i40e_q_vector *q_vector)
1443{
1444 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1445 bool rx = false, tx = false;
1446 u32 rxval, txval;
de32e3ef 1447 int vector;
65e87c03
JK
1448 int idx = q_vector->v_idx;
1449 int rx_itr_setting, tx_itr_setting;
de32e3ef
CW
1450
1451 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1452
1453 /* avoid dynamic calculation if in countdown mode OR if
1454 * all dynamic is disabled
1455 */
8f5e39ce
JB
1456 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1457
3c234c47
CW
1458 rx_itr_setting = get_rx_itr(vsi, idx);
1459 tx_itr_setting = get_tx_itr(vsi, idx);
65e87c03 1460
ee2319cf 1461 if (q_vector->itr_countdown > 0 ||
65e87c03
JK
1462 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1463 !ITR_IS_DYNAMIC(tx_itr_setting))) {
ee2319cf
JB
1464 goto enable_int;
1465 }
1466
65e87c03 1467 if (ITR_IS_DYNAMIC(rx_itr_setting)) {
8f5e39ce
JB
1468 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1469 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1470 }
4eeb1fff 1471
65e87c03 1472 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
1473 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1474 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1475 }
4eeb1fff 1476
8f5e39ce
JB
1477 if (rx || tx) {
1478 /* get the higher of the two ITR adjustments and
1479 * use the same value for both ITR registers
1480 * when in adaptive mode (Rx and/or Tx)
1481 */
1482 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1483
1484 q_vector->tx.itr = q_vector->rx.itr = itr;
1485 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1486 tx = true;
1487 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1488 rx = true;
de32e3ef 1489 }
8f5e39ce
JB
1490
1491 /* only need to enable the interrupt once, but need
1492 * to possibly update both ITR values
1493 */
1494 if (rx) {
1495 /* set the INTENA_MSK_MASK so that this first write
1496 * won't actually enable the interrupt, instead just
1497 * updating the ITR (it's bit 31 PF and VF)
1498 */
1499 rxval |= BIT(31);
1500 /* don't check _DOWN because interrupt isn't being enabled */
1501 wr32(hw, INTREG(vector - 1), rxval);
1502 }
1503
ee2319cf 1504enable_int:
0da36b97 1505 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
8f5e39ce 1506 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1507
1508 if (q_vector->itr_countdown)
1509 q_vector->itr_countdown--;
1510 else
1511 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1512}
1513
7f12ad74
GR
1514/**
1515 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1516 * @napi: napi struct with our devices info in it
1517 * @budget: amount of work driver is allowed to do this pass, in packets
1518 *
1519 * This function will clean all queues associated with a q_vector.
1520 *
1521 * Returns the amount of work done
1522 **/
1523int i40evf_napi_poll(struct napi_struct *napi, int budget)
1524{
1525 struct i40e_q_vector *q_vector =
1526 container_of(napi, struct i40e_q_vector, napi);
1527 struct i40e_vsi *vsi = q_vector->vsi;
1528 struct i40e_ring *ring;
1529 bool clean_complete = true;
c29af37f 1530 bool arm_wb = false;
7f12ad74 1531 int budget_per_ring;
32b3e08f 1532 int work_done = 0;
7f12ad74 1533
0da36b97 1534 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
7f12ad74
GR
1535 napi_complete(napi);
1536 return 0;
1537 }
1538
1539 /* Since the actual Tx work is minimal, we can give the Tx a larger
1540 * budget and be more aggressive about cleaning up the Tx descriptors.
1541 */
c29af37f 1542 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 1543 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
1544 clean_complete = false;
1545 continue;
1546 }
1547 arm_wb |= ring->arm_wb;
0deda868 1548 ring->arm_wb = false;
c29af37f 1549 }
7f12ad74 1550
c67caceb
AD
1551 /* Handle case where we are called by netpoll with a budget of 0 */
1552 if (budget <= 0)
1553 goto tx_only;
1554
7f12ad74
GR
1555 /* We attempt to distribute budget to each Rx queue fairly, but don't
1556 * allow the budget to go below 1 because that would exit polling early.
1557 */
1558 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1559
a132af24 1560 i40e_for_each_ring(ring, q_vector->rx) {
ab9ad98e 1561 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
1562
1563 work_done += cleaned;
f2edaaaa
AD
1564 /* if we clean as many as budgeted, we must not be done */
1565 if (cleaned >= budget_per_ring)
1566 clean_complete = false;
a132af24 1567 }
7f12ad74
GR
1568
1569 /* If work not completed, return budget and polling will return */
c29af37f 1570 if (!clean_complete) {
96db776a
AB
1571 int cpu_id = smp_processor_id();
1572
1573 /* It is possible that the interrupt affinity has changed but,
1574 * if the cpu is pegged at 100%, polling will never exit while
1575 * traffic continues and the interrupt will be stuck on this
1576 * cpu. We check to make sure affinity is correct before we
1577 * continue to poll, otherwise we must stop polling so the
1578 * interrupt can move to the correct cpu.
1579 */
6d977729
JK
1580 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1581 /* Tell napi that we are done polling */
1582 napi_complete_done(napi, work_done);
1583
1584 /* Force an interrupt */
1585 i40evf_force_wb(vsi, q_vector);
1586
1587 /* Return budget-1 so that polling stops */
1588 return budget - 1;
1589 }
c67caceb 1590tx_only:
6d977729
JK
1591 if (arm_wb) {
1592 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1593 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 1594 }
6d977729 1595 return budget;
c29af37f 1596 }
7f12ad74 1597
8e0764b4
ASJ
1598 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1599 q_vector->arm_wb_state = false;
1600
7f12ad74 1601 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1602 napi_complete_done(napi, work_done);
96db776a 1603
6d977729 1604 i40e_update_enable_itr(vsi, q_vector);
96db776a 1605
6beb84a7 1606 return min(work_done, budget - 1);
7f12ad74
GR
1607}
1608
1609/**
3e587cf3 1610 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1611 * @skb: send buffer
1612 * @tx_ring: ring to send buffer on
1613 * @flags: the tx flags to be set
1614 *
1615 * Checks the skb and set up correspondingly several generic transmit flags
1616 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1617 *
1618 * Returns error code indicate the frame should be dropped upon error and the
1619 * otherwise returns 0 to indicate the flags has been set properly.
1620 **/
3e587cf3
JB
1621static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1622 struct i40e_ring *tx_ring,
1623 u32 *flags)
7f12ad74
GR
1624{
1625 __be16 protocol = skb->protocol;
1626 u32 tx_flags = 0;
1627
31eaaccf
GR
1628 if (protocol == htons(ETH_P_8021Q) &&
1629 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1630 /* When HW VLAN acceleration is turned off by the user the
1631 * stack sets the protocol to 8021q so that the driver
1632 * can take any steps required to support the SW only
1633 * VLAN handling. In our case the driver doesn't need
1634 * to take any further steps so just set the protocol
1635 * to the encapsulated ethertype.
1636 */
1637 skb->protocol = vlan_get_protocol(skb);
1638 goto out;
1639 }
1640
7f12ad74 1641 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1642 if (skb_vlan_tag_present(skb)) {
1643 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1644 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1645 /* else if it is a SW VLAN, check the next protocol and store the tag */
1646 } else if (protocol == htons(ETH_P_8021Q)) {
1647 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1648
7f12ad74
GR
1649 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1650 if (!vhdr)
1651 return -EINVAL;
1652
1653 protocol = vhdr->h_vlan_encapsulated_proto;
1654 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1655 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1656 }
1657
31eaaccf 1658out:
7f12ad74
GR
1659 *flags = tx_flags;
1660 return 0;
1661}
1662
1663/**
1664 * i40e_tso - set up the tso context descriptor
52ea3e80 1665 * @first: pointer to first Tx buffer for xmit
7f12ad74 1666 * @hdr_len: ptr to the size of the packet header
9c883bd3 1667 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1668 *
1669 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1670 **/
52ea3e80
AD
1671static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1672 u64 *cd_type_cmd_tso_mss)
7f12ad74 1673{
52ea3e80 1674 struct sk_buff *skb = first->skb;
03f9d6a5 1675 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
1676 union {
1677 struct iphdr *v4;
1678 struct ipv6hdr *v6;
1679 unsigned char *hdr;
1680 } ip;
c49a7bc3
AD
1681 union {
1682 struct tcphdr *tcp;
5453205c 1683 struct udphdr *udp;
c49a7bc3
AD
1684 unsigned char *hdr;
1685 } l4;
1686 u32 paylen, l4_offset;
52ea3e80 1687 u16 gso_segs, gso_size;
7f12ad74 1688 int err;
7f12ad74 1689
e9f6563d
SN
1690 if (skb->ip_summed != CHECKSUM_PARTIAL)
1691 return 0;
1692
7f12ad74
GR
1693 if (!skb_is_gso(skb))
1694 return 0;
1695
fe6d4aa4
FR
1696 err = skb_cow_head(skb, 0);
1697 if (err < 0)
1698 return err;
7f12ad74 1699
c777019a
AD
1700 ip.hdr = skb_network_header(skb);
1701 l4.hdr = skb_transport_header(skb);
85e76d03 1702
c777019a
AD
1703 /* initialize outer IP header fields */
1704 if (ip.v4->version == 4) {
1705 ip.v4->tot_len = 0;
1706 ip.v4->check = 0;
c49a7bc3 1707 } else {
c777019a
AD
1708 ip.v6->payload_len = 0;
1709 }
1710
577389a5 1711 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 1712 SKB_GSO_GRE_CSUM |
7e13318d 1713 SKB_GSO_IPXIP4 |
bf2d1df3 1714 SKB_GSO_IPXIP6 |
577389a5 1715 SKB_GSO_UDP_TUNNEL |
5453205c 1716 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
1717 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1718 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1719 l4.udp->len = 0;
1720
5453205c
AD
1721 /* determine offset of outer transport header */
1722 l4_offset = l4.hdr - skb->data;
1723
1724 /* remove payload length from outer checksum */
24d41e5e 1725 paylen = skb->len - l4_offset;
b9c015d4
JK
1726 csum_replace_by_diff(&l4.udp->check,
1727 (__force __wsum)htonl(paylen));
5453205c
AD
1728 }
1729
c777019a
AD
1730 /* reset pointers to inner headers */
1731 ip.hdr = skb_inner_network_header(skb);
1732 l4.hdr = skb_inner_transport_header(skb);
1733
1734 /* initialize inner IP header fields */
1735 if (ip.v4->version == 4) {
1736 ip.v4->tot_len = 0;
1737 ip.v4->check = 0;
1738 } else {
1739 ip.v6->payload_len = 0;
1740 }
7f12ad74
GR
1741 }
1742
c49a7bc3
AD
1743 /* determine offset of inner transport header */
1744 l4_offset = l4.hdr - skb->data;
1745
1746 /* remove payload length from inner checksum */
24d41e5e 1747 paylen = skb->len - l4_offset;
b9c015d4 1748 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
c49a7bc3
AD
1749
1750 /* compute length of segmentation header */
1751 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
7f12ad74 1752
52ea3e80
AD
1753 /* pull values out of skb_shinfo */
1754 gso_size = skb_shinfo(skb)->gso_size;
1755 gso_segs = skb_shinfo(skb)->gso_segs;
1756
1757 /* update GSO size and bytecount with header size */
1758 first->gso_segs = gso_segs;
1759 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1760
7f12ad74
GR
1761 /* find the field values */
1762 cd_cmd = I40E_TX_CTX_DESC_TSO;
1763 cd_tso_len = skb->len - *hdr_len;
52ea3e80 1764 cd_mss = gso_size;
03f9d6a5
AD
1765 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1766 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1767 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
7f12ad74
GR
1768 return 1;
1769}
1770
1771/**
1772 * i40e_tx_enable_csum - Enable Tx checksum offloads
1773 * @skb: send buffer
89232c3b 1774 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1775 * @td_cmd: Tx descriptor command bits to set
1776 * @td_offset: Tx descriptor header offsets to set
529f1f65 1777 * @tx_ring: Tx descriptor ring
7f12ad74
GR
1778 * @cd_tunneling: ptr to context desc bits
1779 **/
529f1f65
AD
1780static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1781 u32 *td_cmd, u32 *td_offset,
1782 struct i40e_ring *tx_ring,
1783 u32 *cd_tunneling)
7f12ad74 1784{
b96b78f2
AD
1785 union {
1786 struct iphdr *v4;
1787 struct ipv6hdr *v6;
1788 unsigned char *hdr;
1789 } ip;
1790 union {
1791 struct tcphdr *tcp;
1792 struct udphdr *udp;
1793 unsigned char *hdr;
1794 } l4;
a3fd9d88 1795 unsigned char *exthdr;
d1bd743b 1796 u32 offset, cmd = 0;
a3fd9d88 1797 __be16 frag_off;
b96b78f2
AD
1798 u8 l4_proto = 0;
1799
529f1f65
AD
1800 if (skb->ip_summed != CHECKSUM_PARTIAL)
1801 return 0;
1802
b96b78f2
AD
1803 ip.hdr = skb_network_header(skb);
1804 l4.hdr = skb_transport_header(skb);
7f12ad74 1805
475b4205
AD
1806 /* compute outer L2 header size */
1807 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1808
7f12ad74 1809 if (skb->encapsulation) {
d1bd743b 1810 u32 tunnel = 0;
a0064728
AD
1811 /* define outer network header type */
1812 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
1813 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1814 I40E_TX_CTX_EXT_IP_IPV4 :
1815 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1816
a0064728
AD
1817 l4_proto = ip.v4->protocol;
1818 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1819 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
1820
1821 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 1822 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
1823 if (l4.hdr != exthdr)
1824 ipv6_skip_exthdr(skb, exthdr - skb->data,
1825 &l4_proto, &frag_off);
a0064728
AD
1826 }
1827
1828 /* define outer transport */
1829 switch (l4_proto) {
45991204 1830 case IPPROTO_UDP:
475b4205 1831 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1832 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204 1833 break;
a0064728 1834 case IPPROTO_GRE:
475b4205 1835 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728
AD
1836 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1837 break;
577389a5
AD
1838 case IPPROTO_IPIP:
1839 case IPPROTO_IPV6:
1840 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1841 l4.hdr = skb_inner_network_header(skb);
1842 break;
45991204 1843 default:
529f1f65
AD
1844 if (*tx_flags & I40E_TX_FLAGS_TSO)
1845 return -1;
1846
1847 skb_checksum_help(skb);
1848 return 0;
45991204 1849 }
b96b78f2 1850
577389a5
AD
1851 /* compute outer L3 header size */
1852 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1853 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1854
1855 /* switch IP header pointer from outer to inner header */
1856 ip.hdr = skb_inner_network_header(skb);
1857
475b4205
AD
1858 /* compute tunnel header size */
1859 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1860 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1861
5453205c
AD
1862 /* indicate if we need to offload outer UDP header */
1863 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 1864 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
1865 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1866 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1867
475b4205
AD
1868 /* record tunnel offload values */
1869 *cd_tunneling |= tunnel;
1870
b96b78f2 1871 /* switch L4 header pointer from outer to inner */
b96b78f2 1872 l4.hdr = skb_inner_transport_header(skb);
a0064728 1873 l4_proto = 0;
7f12ad74 1874
a0064728
AD
1875 /* reset type as we transition from outer to inner headers */
1876 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1877 if (ip.v4->version == 4)
1878 *tx_flags |= I40E_TX_FLAGS_IPV4;
1879 if (ip.v6->version == 6)
89232c3b 1880 *tx_flags |= I40E_TX_FLAGS_IPV6;
7f12ad74
GR
1881 }
1882
1883 /* Enable IP checksum offloads */
89232c3b 1884 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 1885 l4_proto = ip.v4->protocol;
7f12ad74
GR
1886 /* the stack computes the IP header already, the only time we
1887 * need the hardware to recompute it is in the case of TSO.
1888 */
475b4205
AD
1889 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1890 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1891 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 1892 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1893 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
1894
1895 exthdr = ip.hdr + sizeof(*ip.v6);
1896 l4_proto = ip.v6->nexthdr;
1897 if (l4.hdr != exthdr)
1898 ipv6_skip_exthdr(skb, exthdr - skb->data,
1899 &l4_proto, &frag_off);
7f12ad74 1900 }
b96b78f2 1901
475b4205
AD
1902 /* compute inner L3 header size */
1903 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
7f12ad74
GR
1904
1905 /* Enable L4 checksum offloads */
b96b78f2 1906 switch (l4_proto) {
7f12ad74
GR
1907 case IPPROTO_TCP:
1908 /* enable checksum offloads */
475b4205
AD
1909 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1910 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1911 break;
1912 case IPPROTO_SCTP:
1913 /* enable SCTP checksum offload */
475b4205
AD
1914 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1915 offset |= (sizeof(struct sctphdr) >> 2) <<
1916 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1917 break;
1918 case IPPROTO_UDP:
1919 /* enable UDP checksum offload */
475b4205
AD
1920 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1921 offset |= (sizeof(struct udphdr) >> 2) <<
1922 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1923 break;
1924 default:
529f1f65
AD
1925 if (*tx_flags & I40E_TX_FLAGS_TSO)
1926 return -1;
1927 skb_checksum_help(skb);
1928 return 0;
7f12ad74 1929 }
475b4205
AD
1930
1931 *td_cmd |= cmd;
1932 *td_offset |= offset;
529f1f65
AD
1933
1934 return 1;
7f12ad74
GR
1935}
1936
1937/**
1938 * i40e_create_tx_ctx Build the Tx context descriptor
1939 * @tx_ring: ring to create the descriptor on
1940 * @cd_type_cmd_tso_mss: Quad Word 1
1941 * @cd_tunneling: Quad Word 0 - bits 0-31
1942 * @cd_l2tag2: Quad Word 0 - bits 32-63
1943 **/
1944static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1945 const u64 cd_type_cmd_tso_mss,
1946 const u32 cd_tunneling, const u32 cd_l2tag2)
1947{
1948 struct i40e_tx_context_desc *context_desc;
1949 int i = tx_ring->next_to_use;
1950
ff40dd5d
JB
1951 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1952 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1953 return;
1954
1955 /* grab the next descriptor */
1956 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1957
1958 i++;
1959 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1960
1961 /* cpu_to_le32 and assign to struct fields */
1962 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1963 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1964 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1965 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1966}
1967
4eeb1fff 1968/**
3f3f7cb8 1969 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 1970 * @skb: send buffer
71da6197 1971 *
3f3f7cb8
AD
1972 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1973 * and so we need to figure out the cases where we need to linearize the skb.
1974 *
1975 * For TSO we need to count the TSO header and segment payload separately.
1976 * As such we need to check cases where we have 7 fragments or more as we
1977 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1978 * the segment payload in the first descriptor, and another 7 for the
1979 * fragments.
71da6197 1980 **/
2d37490b 1981bool __i40evf_chk_linearize(struct sk_buff *skb)
71da6197 1982{
2d37490b 1983 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 1984 int nr_frags, sum;
71da6197 1985
3f3f7cb8 1986 /* no need to check if number of frags is less than 7 */
2d37490b 1987 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 1988 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 1989 return false;
71da6197 1990
2d37490b 1991 /* We need to walk through the list and validate that each group
841493a3 1992 * of 6 fragments totals at least gso_size.
2d37490b 1993 */
3f3f7cb8 1994 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
1995 frag = &skb_shinfo(skb)->frags[0];
1996
1997 /* Initialize size to the negative value of gso_size minus 1. We
1998 * use this as the worst case scenerio in which the frag ahead
1999 * of us only provides one byte which is why we are limited to 6
2000 * descriptors for a single transmit as the header and previous
2001 * fragment are already consuming 2 descriptors.
2002 */
3f3f7cb8 2003 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 2004
3f3f7cb8
AD
2005 /* Add size of frags 0 through 4 to create our initial sum */
2006 sum += skb_frag_size(frag++);
2007 sum += skb_frag_size(frag++);
2008 sum += skb_frag_size(frag++);
2009 sum += skb_frag_size(frag++);
2010 sum += skb_frag_size(frag++);
2d37490b
AD
2011
2012 /* Walk through fragments adding latest fragment, testing it, and
2013 * then removing stale fragments from the sum.
2014 */
2015 stale = &skb_shinfo(skb)->frags[0];
2016 for (;;) {
3f3f7cb8 2017 sum += skb_frag_size(frag++);
2d37490b
AD
2018
2019 /* if sum is negative we failed to make sufficient progress */
2020 if (sum < 0)
2021 return true;
2022
841493a3 2023 if (!nr_frags--)
2d37490b
AD
2024 break;
2025
3f3f7cb8 2026 sum -= skb_frag_size(stale++);
71da6197
AS
2027 }
2028
2d37490b 2029 return false;
71da6197
AS
2030}
2031
8f6a2b05
JB
2032/**
2033 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
2034 * @tx_ring: the ring to be checked
2035 * @size: the size buffer we want to assure is available
2036 *
2037 * Returns -EBUSY if a stop is needed, else 0
2038 **/
4ec441df 2039int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
2040{
2041 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2042 /* Memory barrier before checking head and tail */
2043 smp_mb();
2044
2045 /* Check again in a case another CPU has just made room available. */
2046 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2047 return -EBUSY;
2048
2049 /* A reprieve! - use start_queue because it doesn't call schedule */
2050 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2051 ++tx_ring->tx_stats.restart_queue;
2052 return 0;
2053}
2054
7f12ad74 2055/**
3e587cf3 2056 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
2057 * @tx_ring: ring to send buffer on
2058 * @skb: send buffer
2059 * @first: first buffer info buffer to use
2060 * @tx_flags: collected send information
2061 * @hdr_len: size of the packet header
2062 * @td_cmd: the command field in the descriptor
2063 * @td_offset: offset for checksum or crc
2064 **/
3e587cf3
JB
2065static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2066 struct i40e_tx_buffer *first, u32 tx_flags,
2067 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
2068{
2069 unsigned int data_len = skb->data_len;
2070 unsigned int size = skb_headlen(skb);
2071 struct skb_frag_struct *frag;
2072 struct i40e_tx_buffer *tx_bi;
2073 struct i40e_tx_desc *tx_desc;
2074 u16 i = tx_ring->next_to_use;
2075 u32 td_tag = 0;
2076 dma_addr_t dma;
7f12ad74
GR
2077
2078 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2079 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2080 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2081 I40E_TX_FLAGS_VLAN_SHIFT;
2082 }
2083
7f12ad74
GR
2084 first->tx_flags = tx_flags;
2085
2086 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2087
2088 tx_desc = I40E_TX_DESC(tx_ring, i);
2089 tx_bi = first;
2090
2091 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
2092 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2093
7f12ad74
GR
2094 if (dma_mapping_error(tx_ring->dev, dma))
2095 goto dma_error;
2096
2097 /* record length, and DMA address */
2098 dma_unmap_len_set(tx_bi, len, size);
2099 dma_unmap_addr_set(tx_bi, dma, dma);
2100
5c4654da
AD
2101 /* align size to end of page */
2102 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
7f12ad74
GR
2103 tx_desc->buffer_addr = cpu_to_le64(dma);
2104
2105 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2106 tx_desc->cmd_type_offset_bsz =
2107 build_ctob(td_cmd, td_offset,
5c4654da 2108 max_data, td_tag);
7f12ad74
GR
2109
2110 tx_desc++;
2111 i++;
6a7fded7 2112
7f12ad74
GR
2113 if (i == tx_ring->count) {
2114 tx_desc = I40E_TX_DESC(tx_ring, 0);
2115 i = 0;
2116 }
2117
5c4654da
AD
2118 dma += max_data;
2119 size -= max_data;
7f12ad74 2120
5c4654da 2121 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
7f12ad74
GR
2122 tx_desc->buffer_addr = cpu_to_le64(dma);
2123 }
2124
2125 if (likely(!data_len))
2126 break;
2127
2128 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2129 size, td_tag);
2130
2131 tx_desc++;
2132 i++;
6a7fded7 2133
7f12ad74
GR
2134 if (i == tx_ring->count) {
2135 tx_desc = I40E_TX_DESC(tx_ring, 0);
2136 i = 0;
2137 }
2138
2139 size = skb_frag_size(frag);
2140 data_len -= size;
2141
2142 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2143 DMA_TO_DEVICE);
2144
2145 tx_bi = &tx_ring->tx_bi[i];
2146 }
2147
1dc8b538 2148 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
7f12ad74
GR
2149
2150 i++;
2151 if (i == tx_ring->count)
2152 i = 0;
2153
2154 tx_ring->next_to_use = i;
2155
4ec441df 2156 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7 2157
b1cb07db
PB
2158 /* write last descriptor with RS and EOP bits */
2159 td_cmd |= I40E_TXD_CMD;
6a7fded7 2160 tx_desc->cmd_type_offset_bsz =
1dc8b538
AD
2161 build_ctob(td_cmd, td_offset, size, td_tag);
2162
2163 /* Force memory writes to complete before letting h/w know there
2164 * are new descriptors to fetch.
2165 *
2166 * We also use this memory barrier to make certain all of the
2167 * status bits have been updated before next_to_watch is written.
2168 */
2169 wmb();
2170
2171 /* set next_to_watch value indicating a packet is present */
2172 first->next_to_watch = tx_desc;
6a7fded7 2173
7f12ad74 2174 /* notify HW of packet */
b1cb07db 2175 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6a7fded7 2176 writel(i, tx_ring->tail);
1dc8b538
AD
2177
2178 /* we need this if more than one processor can write to our tail
2179 * at a time, it synchronizes IO on IA64/Altix systems
2180 */
2181 mmiowb();
6a7fded7 2182 }
1dc8b538 2183
7f12ad74
GR
2184 return;
2185
2186dma_error:
2187 dev_info(tx_ring->dev, "TX DMA map failed\n");
2188
2189 /* clear dma mappings for failed tx_bi map */
2190 for (;;) {
2191 tx_bi = &tx_ring->tx_bi[i];
2192 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2193 if (tx_bi == first)
2194 break;
2195 if (i == 0)
2196 i = tx_ring->count;
2197 i--;
2198 }
2199
2200 tx_ring->next_to_use = i;
2201}
2202
7f12ad74
GR
2203/**
2204 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2205 * @skb: send buffer
2206 * @tx_ring: ring to send buffer on
2207 *
2208 * Returns NETDEV_TX_OK if sent, else an error code
2209 **/
2210static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2211 struct i40e_ring *tx_ring)
2212{
2213 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2214 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2215 struct i40e_tx_buffer *first;
2216 u32 td_offset = 0;
2217 u32 tx_flags = 0;
2218 __be16 protocol;
2219 u32 td_cmd = 0;
2220 u8 hdr_len = 0;
4ec441df 2221 int tso, count;
6995b36c 2222
b74118f0
JB
2223 /* prefetch the data, we'll need it later */
2224 prefetch(skb->data);
2225
ed0980c4
SP
2226 i40e_trace(xmit_frame_ring, skb, tx_ring);
2227
4ec441df 2228 count = i40e_xmit_descriptor_count(skb);
2d37490b 2229 if (i40e_chk_linearize(skb, count)) {
52ea3e80
AD
2230 if (__skb_linearize(skb)) {
2231 dev_kfree_skb_any(skb);
2232 return NETDEV_TX_OK;
2233 }
5c4654da 2234 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2235 tx_ring->tx_stats.tx_linearize++;
2236 }
4ec441df
AD
2237
2238 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2239 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2240 * + 4 desc gap to avoid the cache line where head is,
2241 * + 1 desc for context descriptor,
2242 * otherwise try next time
2243 */
2244 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2245 tx_ring->tx_stats.tx_busy++;
7f12ad74 2246 return NETDEV_TX_BUSY;
4ec441df 2247 }
7f12ad74 2248
52ea3e80
AD
2249 /* record the location of the first descriptor for this packet */
2250 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2251 first->skb = skb;
2252 first->bytecount = skb->len;
2253 first->gso_segs = 1;
2254
7f12ad74 2255 /* prepare the xmit flags */
3e587cf3 2256 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2257 goto out_drop;
2258
2259 /* obtain protocol of skb */
a12c4158 2260 protocol = vlan_get_protocol(skb);
7f12ad74 2261
7f12ad74
GR
2262 /* setup IPv4/IPv6 offloads */
2263 if (protocol == htons(ETH_P_IP))
2264 tx_flags |= I40E_TX_FLAGS_IPV4;
2265 else if (protocol == htons(ETH_P_IPV6))
2266 tx_flags |= I40E_TX_FLAGS_IPV6;
2267
52ea3e80 2268 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2269
2270 if (tso < 0)
2271 goto out_drop;
2272 else if (tso)
2273 tx_flags |= I40E_TX_FLAGS_TSO;
2274
7f12ad74 2275 /* Always offload the checksum, since it's in the data descriptor */
529f1f65
AD
2276 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2277 tx_ring, &cd_tunneling);
2278 if (tso < 0)
2279 goto out_drop;
7f12ad74 2280
3bc67973
AD
2281 skb_tx_timestamp(skb);
2282
2283 /* always enable CRC insertion offload */
2284 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2285
7f12ad74
GR
2286 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2287 cd_tunneling, cd_l2tag2);
2288
3e587cf3
JB
2289 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2290 td_cmd, td_offset);
7f12ad74 2291
7f12ad74
GR
2292 return NETDEV_TX_OK;
2293
2294out_drop:
ed0980c4 2295 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
52ea3e80
AD
2296 dev_kfree_skb_any(first->skb);
2297 first->skb = NULL;
7f12ad74
GR
2298 return NETDEV_TX_OK;
2299}
2300
2301/**
2302 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2303 * @skb: send buffer
2304 * @netdev: network interface device structure
2305 *
2306 * Returns NETDEV_TX_OK if sent, else an error code
2307 **/
2308netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2309{
2310 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2311 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2312
2313 /* hardware can't handle really short frames, hardware padding works
2314 * beyond this point
2315 */
2316 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2317 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2318 return NETDEV_TX_OK;
2319 skb->len = I40E_MIN_TX_LEN;
2320 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2321 }
2322
2323 return i40e_xmit_frame_ring(skb, tx_ring);
2324}