]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/intel/ice/ice_common.c
ice: Recognize higher speeds
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / ice / ice_common.c
CommitLineData
7ec59eea
AV
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
9c20346b 5#include "ice_sched.h"
7ec59eea
AV
6#include "ice_adminq_cmd.h"
7
f31e4b6f
AV
8#define ICE_PF_RESET_WAIT_COUNT 200
9
22ef683b
AV
10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
cdedef59
AV
12 ((ICE_RX_OPC_MDID << \
13 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17
22ef683b
AV
18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
cdedef59
AV
20 (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28
f31e4b6f
AV
29/**
30 * ice_set_mac_type - Sets MAC type
31 * @hw: pointer to the HW structure
32 *
33 * This function sets the MAC type of the adapter based on the
f9867df6 34 * vendor ID and device ID stored in the HW structure.
f31e4b6f
AV
35 */
36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37{
38 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 return ICE_ERR_DEVICE_NOT_SUPPORTED;
40
41 hw->mac_type = ICE_MAC_GENERIC;
42 return 0;
43}
44
f203dca3
AV
45/**
46 * ice_dev_onetime_setup - Temporary HW/FW workarounds
47 * @hw: pointer to the HW structure
48 *
49 * This function provides temporary workarounds for certain issues
50 * that are expected to be fixed in the HW/FW.
51 */
52void ice_dev_onetime_setup(struct ice_hw *hw)
53{
f203dca3
AV
54#define MBX_PF_VT_PFALLOC 0x00231E80
55 /* set VFs per PF */
56 wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
57}
58
f31e4b6f
AV
59/**
60 * ice_clear_pf_cfg - Clear PF configuration
61 * @hw: pointer to the hardware structure
3968540b
AV
62 *
63 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
64 * configuration, flow director filters, etc.).
f31e4b6f
AV
65 */
66enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
67{
68 struct ice_aq_desc desc;
69
70 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
71
72 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
73}
74
dc49c772
AV
75/**
76 * ice_aq_manage_mac_read - manage MAC address read command
f9867df6 77 * @hw: pointer to the HW struct
dc49c772
AV
78 * @buf: a virtual buffer to hold the manage MAC read response
79 * @buf_size: Size of the virtual buffer
80 * @cd: pointer to command details structure or NULL
81 *
82 * This function is used to return per PF station MAC address (0x0107).
83 * NOTE: Upon successful completion of this command, MAC address information
84 * is returned in user specified buffer. Please interpret user specified
85 * buffer as "manage_mac_read" response.
86 * Response such as various MAC addresses are stored in HW struct (port.mac)
87 * ice_aq_discover_caps is expected to be called before this function is called.
88 */
89static enum ice_status
90ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
91 struct ice_sq_cd *cd)
92{
93 struct ice_aqc_manage_mac_read_resp *resp;
94 struct ice_aqc_manage_mac_read *cmd;
95 struct ice_aq_desc desc;
96 enum ice_status status;
97 u16 flags;
d6fef10c 98 u8 i;
dc49c772
AV
99
100 cmd = &desc.params.mac_read;
101
102 if (buf_size < sizeof(*resp))
103 return ICE_ERR_BUF_TOO_SHORT;
104
105 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
106
107 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
108 if (status)
109 return status;
110
111 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
112 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
113
114 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
115 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
116 return ICE_ERR_CFG;
117 }
118
d6fef10c
MFIP
119 /* A single port can report up to two (LAN and WoL) addresses */
120 for (i = 0; i < cmd->num_addr; i++)
121 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
122 ether_addr_copy(hw->port_info->mac.lan_addr,
123 resp[i].mac_addr);
124 ether_addr_copy(hw->port_info->mac.perm_addr,
125 resp[i].mac_addr);
126 break;
127 }
128
dc49c772
AV
129 return 0;
130}
131
132/**
133 * ice_aq_get_phy_caps - returns PHY capabilities
134 * @pi: port information structure
135 * @qual_mods: report qualified modules
136 * @report_mode: report mode capabilities
137 * @pcaps: structure for PHY capabilities to be filled
138 * @cd: pointer to command details structure or NULL
139 *
140 * Returns the various PHY capabilities supported on the Port (0x0600)
141 */
48cb27f2 142enum ice_status
dc49c772
AV
143ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
144 struct ice_aqc_get_phy_caps_data *pcaps,
145 struct ice_sq_cd *cd)
146{
147 struct ice_aqc_get_phy_caps *cmd;
148 u16 pcaps_size = sizeof(*pcaps);
149 struct ice_aq_desc desc;
150 enum ice_status status;
151
152 cmd = &desc.params.get_phy;
153
154 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
155 return ICE_ERR_PARAM;
156
157 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
158
159 if (qual_mods)
160 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
161
162 cmd->param0 |= cpu_to_le16(report_mode);
163 status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
164
aef74145 165 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
dc49c772 166 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
aef74145
AV
167 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
168 }
dc49c772
AV
169
170 return status;
171}
172
173/**
174 * ice_get_media_type - Gets media type
175 * @pi: port information structure
176 */
177static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
178{
179 struct ice_link_status *hw_link_info;
180
181 if (!pi)
182 return ICE_MEDIA_UNKNOWN;
183
184 hw_link_info = &pi->phy.link_info;
aef74145
AV
185 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
186 /* If more than one media type is selected, report unknown */
187 return ICE_MEDIA_UNKNOWN;
dc49c772
AV
188
189 if (hw_link_info->phy_type_low) {
190 switch (hw_link_info->phy_type_low) {
191 case ICE_PHY_TYPE_LOW_1000BASE_SX:
192 case ICE_PHY_TYPE_LOW_1000BASE_LX:
193 case ICE_PHY_TYPE_LOW_10GBASE_SR:
194 case ICE_PHY_TYPE_LOW_10GBASE_LR:
195 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
196 case ICE_PHY_TYPE_LOW_25GBASE_SR:
197 case ICE_PHY_TYPE_LOW_25GBASE_LR:
198 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
199 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
200 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
aef74145
AV
201 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
202 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
203 case ICE_PHY_TYPE_LOW_50GBASE_SR:
204 case ICE_PHY_TYPE_LOW_50GBASE_FR:
205 case ICE_PHY_TYPE_LOW_50GBASE_LR:
206 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
207 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
208 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
209 case ICE_PHY_TYPE_LOW_100GBASE_DR:
dc49c772
AV
210 return ICE_MEDIA_FIBER;
211 case ICE_PHY_TYPE_LOW_100BASE_TX:
212 case ICE_PHY_TYPE_LOW_1000BASE_T:
213 case ICE_PHY_TYPE_LOW_2500BASE_T:
214 case ICE_PHY_TYPE_LOW_5GBASE_T:
215 case ICE_PHY_TYPE_LOW_10GBASE_T:
216 case ICE_PHY_TYPE_LOW_25GBASE_T:
217 return ICE_MEDIA_BASET;
218 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
219 case ICE_PHY_TYPE_LOW_25GBASE_CR:
220 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
221 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
222 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
aef74145
AV
223 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
224 case ICE_PHY_TYPE_LOW_50GBASE_CP:
225 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
226 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
227 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
dc49c772
AV
228 return ICE_MEDIA_DA;
229 case ICE_PHY_TYPE_LOW_1000BASE_KX:
230 case ICE_PHY_TYPE_LOW_2500BASE_KX:
231 case ICE_PHY_TYPE_LOW_2500BASE_X:
232 case ICE_PHY_TYPE_LOW_5GBASE_KR:
233 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
234 case ICE_PHY_TYPE_LOW_25GBASE_KR:
235 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
236 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
237 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
aef74145
AV
238 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
239 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
240 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
241 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
242 return ICE_MEDIA_BACKPLANE;
243 }
244 } else {
245 switch (hw_link_info->phy_type_high) {
246 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
dc49c772
AV
247 return ICE_MEDIA_BACKPLANE;
248 }
249 }
dc49c772
AV
250 return ICE_MEDIA_UNKNOWN;
251}
252
253/**
254 * ice_aq_get_link_info
255 * @pi: port information structure
256 * @ena_lse: enable/disable LinkStatusEvent reporting
257 * @link: pointer to link status structure - optional
258 * @cd: pointer to command details structure or NULL
259 *
260 * Get Link Status (0x607). Returns the link status of the adapter.
261 */
250c3b3e 262enum ice_status
dc49c772
AV
263ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
264 struct ice_link_status *link, struct ice_sq_cd *cd)
265{
266 struct ice_link_status *hw_link_info_old, *hw_link_info;
267 struct ice_aqc_get_link_status_data link_data = { 0 };
268 struct ice_aqc_get_link_status *resp;
269 enum ice_media_type *hw_media_type;
270 struct ice_fc_info *hw_fc_info;
271 bool tx_pause, rx_pause;
272 struct ice_aq_desc desc;
273 enum ice_status status;
274 u16 cmd_flags;
275
276 if (!pi)
277 return ICE_ERR_PARAM;
278 hw_link_info_old = &pi->phy.link_info_old;
279 hw_media_type = &pi->phy.media_type;
280 hw_link_info = &pi->phy.link_info;
281 hw_fc_info = &pi->fc;
282
283 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
284 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
285 resp = &desc.params.get_link_status;
286 resp->cmd_flags = cpu_to_le16(cmd_flags);
287 resp->lport_num = pi->lport;
288
289 status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
290 cd);
291
292 if (status)
293 return status;
294
295 /* save off old link status information */
296 *hw_link_info_old = *hw_link_info;
297
298 /* update current link status information */
299 hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
300 hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
aef74145 301 hw_link_info->phy_type_high = le64_to_cpu(link_data.phy_type_high);
dc49c772
AV
302 *hw_media_type = ice_get_media_type(pi);
303 hw_link_info->link_info = link_data.link_info;
304 hw_link_info->an_info = link_data.an_info;
305 hw_link_info->ext_info = link_data.ext_info;
306 hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
f776b3ac
PG
307 hw_link_info->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
308 hw_link_info->topo_media_conflict = link_data.topo_media_conflict;
dc49c772
AV
309 hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
310
311 /* update fc info */
312 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
313 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
314 if (tx_pause && rx_pause)
315 hw_fc_info->current_mode = ICE_FC_FULL;
316 else if (tx_pause)
317 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
318 else if (rx_pause)
319 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
320 else
321 hw_fc_info->current_mode = ICE_FC_NONE;
322
323 hw_link_info->lse_ena =
324 !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
325
326 /* save link status information */
327 if (link)
328 *link = *hw_link_info;
329
330 /* flag cleared so calling functions don't call AQ again */
331 pi->phy.get_link_info = false;
332
1b5c19c7 333 return 0;
dc49c772
AV
334}
335
cdedef59 336/**
22ef683b 337 * ice_init_flex_flags
cdedef59 338 * @hw: pointer to the hardware structure
22ef683b 339 * @prof_id: Rx Descriptor Builder profile ID
cdedef59 340 *
22ef683b 341 * Function to initialize Rx flex flags
cdedef59 342 */
22ef683b 343static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
cdedef59
AV
344{
345 u8 idx = 0;
346
22ef683b
AV
347 /* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
348 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
349 * flexiflags1[3:0] - Not used for flag programming
350 * flexiflags2[7:0] - Tunnel and VLAN types
351 * 2 invalid fields in last index
352 */
353 switch (prof_id) {
354 /* Rx flex flags are currently programmed for the NIC profiles only.
355 * Different flag bit programming configurations can be added per
356 * profile as needed.
357 */
358 case ICE_RXDID_FLEX_NIC:
359 case ICE_RXDID_FLEX_NIC_2:
86e81794
CC
360 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
361 ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
362 ICE_FLG_FIN, idx++);
22ef683b
AV
363 /* flex flag 1 is not used for flexi-flag programming, skipping
364 * these four FLG64 bits.
365 */
86e81794
CC
366 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
367 ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
368 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
369 ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
370 ICE_FLG_EVLAN_x9100, idx++);
371 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
372 ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
373 ICE_FLG_TNL0, idx++);
374 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
375 ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
22ef683b
AV
376 break;
377
378 default:
379 ice_debug(hw, ICE_DBG_INIT,
380 "Flag programming for profile ID %d not supported\n",
381 prof_id);
382 }
383}
384
385/**
386 * ice_init_flex_flds
387 * @hw: pointer to the hardware structure
388 * @prof_id: Rx Descriptor Builder profile ID
389 *
390 * Function to initialize flex descriptors
391 */
392static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
393{
394 enum ice_flex_rx_mdid mdid;
395
396 switch (prof_id) {
397 case ICE_RXDID_FLEX_NIC:
398 case ICE_RXDID_FLEX_NIC_2:
399 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
400 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
401 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
402
403 mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
404 ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
405
406 ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
407
408 ice_init_flex_flags(hw, prof_id);
409 break;
410
411 default:
412 ice_debug(hw, ICE_DBG_INIT,
413 "Field init for profile ID %d not supported\n",
414 prof_id);
415 }
cdedef59
AV
416}
417
9daf8208
AV
418/**
419 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
f9867df6 420 * @hw: pointer to the HW struct
9daf8208
AV
421 */
422static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
423{
424 struct ice_switch_info *sw;
425
426 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
427 sizeof(*hw->switch_info), GFP_KERNEL);
428 sw = hw->switch_info;
429
430 if (!sw)
431 return ICE_ERR_NO_MEMORY;
432
433 INIT_LIST_HEAD(&sw->vsi_list_map_head);
434
5fb597d7 435 return ice_init_def_sw_recp(hw);
9daf8208
AV
436}
437
438/**
439 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
f9867df6 440 * @hw: pointer to the HW struct
9daf8208
AV
441 */
442static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
443{
444 struct ice_switch_info *sw = hw->switch_info;
445 struct ice_vsi_list_map_info *v_pos_map;
446 struct ice_vsi_list_map_info *v_tmp_map;
80d144c9
AV
447 struct ice_sw_recipe *recps;
448 u8 i;
9daf8208
AV
449
450 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
451 list_entry) {
452 list_del(&v_pos_map->list_entry);
453 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
454 }
80d144c9
AV
455 recps = hw->switch_info->recp_list;
456 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
457 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
458
459 recps[i].root_rid = i;
460 mutex_destroy(&recps[i].filt_rule_lock);
461 list_for_each_entry_safe(lst_itr, tmp_entry,
462 &recps[i].filt_rules, list_entry) {
463 list_del(&lst_itr->list_entry);
464 devm_kfree(ice_hw_to_dev(hw), lst_itr);
465 }
466 }
334cb062 467 ice_rm_all_sw_replay_rule_info(hw);
80d144c9 468 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
9daf8208
AV
469 devm_kfree(ice_hw_to_dev(hw), sw);
470}
471
8b97ceb1
HT
472#define ICE_FW_LOG_DESC_SIZE(n) (sizeof(struct ice_aqc_fw_logging_data) + \
473 (((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
474#define ICE_FW_LOG_DESC_SIZE_MAX \
475 ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
476
11fe1b3a
DN
477/**
478 * ice_get_fw_log_cfg - get FW logging configuration
479 * @hw: pointer to the HW struct
480 */
481static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
482{
483 struct ice_aqc_fw_logging_data *config;
484 struct ice_aq_desc desc;
485 enum ice_status status;
486 u16 size;
487
488 size = ICE_FW_LOG_DESC_SIZE_MAX;
489 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
490 if (!config)
491 return ICE_ERR_NO_MEMORY;
492
493 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
494
495 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
496 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
497
498 status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
499 if (!status) {
500 u16 i;
501
502 /* Save fw logging information into the hw structure */
503 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
504 u16 v, m, flgs;
505
506 v = le16_to_cpu(config->entry[i]);
507 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
508 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
509
510 if (m < ICE_AQC_FW_LOG_ID_MAX)
511 hw->fw_log.evnts[m].cur = flgs;
512 }
513 }
514
515 devm_kfree(ice_hw_to_dev(hw), config);
516
517 return status;
518}
519
8b97ceb1
HT
520/**
521 * ice_cfg_fw_log - configure FW logging
f9867df6 522 * @hw: pointer to the HW struct
8b97ceb1
HT
523 * @enable: enable certain FW logging events if true, disable all if false
524 *
525 * This function enables/disables the FW logging via Rx CQ events and a UART
526 * port based on predetermined configurations. FW logging via the Rx CQ can be
527 * enabled/disabled for individual PF's. However, FW logging via the UART can
528 * only be enabled/disabled for all PFs on the same device.
529 *
530 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
531 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
532 * before initializing the device.
533 *
534 * When re/configuring FW logging, callers need to update the "cfg" elements of
535 * the hw->fw_log.evnts array with the desired logging event configurations for
536 * modules of interest. When disabling FW logging completely, the callers can
537 * just pass false in the "enable" parameter. On completion, the function will
538 * update the "cur" element of the hw->fw_log.evnts array with the resulting
539 * logging event configurations of the modules that are being re/configured. FW
540 * logging modules that are not part of a reconfiguration operation retain their
541 * previous states.
542 *
543 * Before resetting the device, it is recommended that the driver disables FW
544 * logging before shutting down the control queue. When disabling FW logging
545 * ("enable" = false), the latest configurations of FW logging events stored in
546 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
547 * a device reset.
548 *
549 * When enabling FW logging to emit log messages via the Rx CQ during the
550 * device's initialization phase, a mechanism alternative to interrupt handlers
551 * needs to be used to extract FW log messages from the Rx CQ periodically and
552 * to prevent the Rx CQ from being full and stalling other types of control
553 * messages from FW to SW. Interrupts are typically disabled during the device's
554 * initialization phase.
555 */
556static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
557{
558 struct ice_aqc_fw_logging_data *data = NULL;
559 struct ice_aqc_fw_logging *cmd;
560 enum ice_status status = 0;
561 u16 i, chgs = 0, len = 0;
562 struct ice_aq_desc desc;
563 u8 actv_evnts = 0;
564 void *buf = NULL;
565
566 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
567 return 0;
568
569 /* Disable FW logging only when the control queue is still responsive */
570 if (!enable &&
571 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
572 return 0;
573
11fe1b3a
DN
574 /* Get current FW log settings */
575 status = ice_get_fw_log_cfg(hw);
576 if (status)
577 return status;
578
8b97ceb1
HT
579 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
580 cmd = &desc.params.fw_logging;
581
582 /* Indicate which controls are valid */
583 if (hw->fw_log.cq_en)
584 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
585
586 if (hw->fw_log.uart_en)
587 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
588
589 if (enable) {
590 /* Fill in an array of entries with FW logging modules and
591 * logging events being reconfigured.
592 */
593 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
594 u16 val;
595
596 /* Keep track of enabled event types */
597 actv_evnts |= hw->fw_log.evnts[i].cfg;
598
599 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
600 continue;
601
602 if (!data) {
603 data = devm_kzalloc(ice_hw_to_dev(hw),
604 ICE_FW_LOG_DESC_SIZE_MAX,
605 GFP_KERNEL);
606 if (!data)
607 return ICE_ERR_NO_MEMORY;
608 }
609
610 val = i << ICE_AQC_FW_LOG_ID_S;
611 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
612 data->entry[chgs++] = cpu_to_le16(val);
613 }
614
615 /* Only enable FW logging if at least one module is specified.
616 * If FW logging is currently enabled but all modules are not
617 * enabled to emit log messages, disable FW logging altogether.
618 */
619 if (actv_evnts) {
620 /* Leave if there is effectively no change */
621 if (!chgs)
622 goto out;
623
624 if (hw->fw_log.cq_en)
625 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
626
627 if (hw->fw_log.uart_en)
628 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
629
630 buf = data;
631 len = ICE_FW_LOG_DESC_SIZE(chgs);
632 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
633 }
634 }
635
636 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
637 if (!status) {
638 /* Update the current configuration to reflect events enabled.
639 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
640 * logging mode is enabled for the device. They do not reflect
641 * actual modules being enabled to emit log messages. So, their
642 * values remain unchanged even when all modules are disabled.
643 */
644 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
645
646 hw->fw_log.actv_evnts = actv_evnts;
647 for (i = 0; i < cnt; i++) {
648 u16 v, m;
649
650 if (!enable) {
651 /* When disabling all FW logging events as part
652 * of device's de-initialization, the original
653 * configurations are retained, and can be used
654 * to reconfigure FW logging later if the device
655 * is re-initialized.
656 */
657 hw->fw_log.evnts[i].cur = 0;
658 continue;
659 }
660
661 v = le16_to_cpu(data->entry[i]);
662 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
663 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
664 }
665 }
666
667out:
668 if (data)
669 devm_kfree(ice_hw_to_dev(hw), data);
670
671 return status;
672}
673
674/**
675 * ice_output_fw_log
f9867df6 676 * @hw: pointer to the HW struct
8b97ceb1
HT
677 * @desc: pointer to the AQ message descriptor
678 * @buf: pointer to the buffer accompanying the AQ message
679 *
680 * Formats a FW Log message and outputs it via the standard driver logs.
681 */
682void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
683{
4f70daa0
JK
684 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
685 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
8b97ceb1 686 le16_to_cpu(desc->datalen));
4f70daa0 687 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
8b97ceb1
HT
688}
689
9e4ab4c2
BC
690/**
691 * ice_get_itr_intrl_gran - determine int/intrl granularity
f9867df6 692 * @hw: pointer to the HW struct
9e4ab4c2
BC
693 *
694 * Determines the itr/intrl granularities based on the maximum aggregate
695 * bandwidth according to the device's configuration during power-on.
696 */
fe7219fa 697static void ice_get_itr_intrl_gran(struct ice_hw *hw)
9e4ab4c2
BC
698{
699 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
700 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
701 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
702
703 switch (max_agg_bw) {
704 case ICE_MAX_AGG_BW_200G:
705 case ICE_MAX_AGG_BW_100G:
706 case ICE_MAX_AGG_BW_50G:
707 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
708 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
709 break;
710 case ICE_MAX_AGG_BW_25G:
711 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
712 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
713 break;
9e4ab4c2 714 }
9e4ab4c2
BC
715}
716
f31e4b6f
AV
717/**
718 * ice_init_hw - main hardware initialization routine
719 * @hw: pointer to the hardware structure
720 */
721enum ice_status ice_init_hw(struct ice_hw *hw)
722{
dc49c772 723 struct ice_aqc_get_phy_caps_data *pcaps;
f31e4b6f 724 enum ice_status status;
dc49c772
AV
725 u16 mac_buf_len;
726 void *mac_buf;
f31e4b6f
AV
727
728 /* Set MAC type based on DeviceID */
729 status = ice_set_mac_type(hw);
730 if (status)
731 return status;
732
733 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
734 PF_FUNC_RID_FUNC_NUM_M) >>
735 PF_FUNC_RID_FUNC_NUM_S;
736
737 status = ice_reset(hw, ICE_RESET_PFR);
738 if (status)
739 return status;
740
fe7219fa 741 ice_get_itr_intrl_gran(hw);
940b61af 742
f31e4b6f
AV
743 status = ice_init_all_ctrlq(hw);
744 if (status)
745 goto err_unroll_cqinit;
746
8b97ceb1
HT
747 /* Enable FW logging. Not fatal if this fails. */
748 status = ice_cfg_fw_log(hw, true);
749 if (status)
750 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
751
f31e4b6f
AV
752 status = ice_clear_pf_cfg(hw);
753 if (status)
754 goto err_unroll_cqinit;
755
756 ice_clear_pxe_mode(hw);
757
758 status = ice_init_nvm(hw);
759 if (status)
760 goto err_unroll_cqinit;
761
9c20346b
AV
762 status = ice_get_caps(hw);
763 if (status)
764 goto err_unroll_cqinit;
765
766 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
767 sizeof(*hw->port_info), GFP_KERNEL);
768 if (!hw->port_info) {
769 status = ICE_ERR_NO_MEMORY;
770 goto err_unroll_cqinit;
771 }
772
f9867df6 773 /* set the back pointer to HW */
9c20346b
AV
774 hw->port_info->hw = hw;
775
776 /* Initialize port_info struct with switch configuration data */
777 status = ice_get_initial_sw_cfg(hw);
778 if (status)
779 goto err_unroll_alloc;
780
9daf8208
AV
781 hw->evb_veb = true;
782
d337f2af 783 /* Query the allocated resources for Tx scheduler */
9c20346b
AV
784 status = ice_sched_query_res_alloc(hw);
785 if (status) {
786 ice_debug(hw, ICE_DBG_SCHED,
787 "Failed to get scheduler allocated resources\n");
788 goto err_unroll_alloc;
789 }
790
dc49c772
AV
791 /* Initialize port_info struct with scheduler data */
792 status = ice_sched_init_port(hw->port_info);
793 if (status)
794 goto err_unroll_sched;
795
796 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
797 if (!pcaps) {
798 status = ICE_ERR_NO_MEMORY;
799 goto err_unroll_sched;
800 }
801
802 /* Initialize port_info struct with PHY capabilities */
803 status = ice_aq_get_phy_caps(hw->port_info, false,
804 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
805 devm_kfree(ice_hw_to_dev(hw), pcaps);
806 if (status)
807 goto err_unroll_sched;
808
809 /* Initialize port_info struct with link information */
810 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
811 if (status)
812 goto err_unroll_sched;
813
b36c598c
AV
814 /* need a valid SW entry point to build a Tx tree */
815 if (!hw->sw_entry_point_layer) {
816 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
817 status = ICE_ERR_CFG;
818 goto err_unroll_sched;
819 }
9be1d6f8 820 INIT_LIST_HEAD(&hw->agg_list);
b36c598c 821
9daf8208
AV
822 status = ice_init_fltr_mgmt_struct(hw);
823 if (status)
824 goto err_unroll_sched;
825
f203dca3
AV
826 ice_dev_onetime_setup(hw);
827
d6fef10c
MFIP
828 /* Get MAC information */
829 /* A single port can report up to two (LAN and WoL) addresses */
830 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
831 sizeof(struct ice_aqc_manage_mac_read_resp),
832 GFP_KERNEL);
833 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
dc49c772 834
63bb4e1e
WY
835 if (!mac_buf) {
836 status = ICE_ERR_NO_MEMORY;
9daf8208 837 goto err_unroll_fltr_mgmt_struct;
63bb4e1e 838 }
dc49c772
AV
839
840 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
841 devm_kfree(ice_hw_to_dev(hw), mac_buf);
842
843 if (status)
9daf8208 844 goto err_unroll_fltr_mgmt_struct;
dc49c772 845
22ef683b
AV
846 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
847 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
cdedef59 848
f31e4b6f
AV
849 return 0;
850
9daf8208
AV
851err_unroll_fltr_mgmt_struct:
852 ice_cleanup_fltr_mgmt_struct(hw);
dc49c772
AV
853err_unroll_sched:
854 ice_sched_cleanup_all(hw);
9c20346b
AV
855err_unroll_alloc:
856 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
f31e4b6f
AV
857err_unroll_cqinit:
858 ice_shutdown_all_ctrlq(hw);
859 return status;
860}
861
862/**
863 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
864 * @hw: pointer to the hardware structure
ed14245a
AV
865 *
866 * This should be called only during nominal operation, not as a result of
867 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
868 * applicable initializations if it fails for any reason.
f31e4b6f
AV
869 */
870void ice_deinit_hw(struct ice_hw *hw)
871{
8b97ceb1
HT
872 ice_cleanup_fltr_mgmt_struct(hw);
873
9c20346b 874 ice_sched_cleanup_all(hw);
9be1d6f8 875 ice_sched_clear_agg(hw);
dc49c772 876
9c20346b
AV
877 if (hw->port_info) {
878 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
879 hw->port_info = NULL;
880 }
9daf8208 881
8b97ceb1
HT
882 /* Attempt to disable FW logging before shutting down control queues */
883 ice_cfg_fw_log(hw, false);
884 ice_shutdown_all_ctrlq(hw);
33e055fc
VR
885
886 /* Clear VSI contexts if not already cleared */
887 ice_clear_all_vsi_ctx(hw);
f31e4b6f
AV
888}
889
890/**
891 * ice_check_reset - Check to see if a global reset is complete
892 * @hw: pointer to the hardware structure
893 */
894enum ice_status ice_check_reset(struct ice_hw *hw)
895{
896 u32 cnt, reg = 0, grst_delay;
897
898 /* Poll for Device Active state in case a recent CORER, GLOBR,
899 * or EMPR has occurred. The grst delay value is in 100ms units.
900 * Add 1sec for outstanding AQ commands that can take a long time.
901 */
902 grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
903 GLGEN_RSTCTL_GRSTDEL_S) + 10;
904
905 for (cnt = 0; cnt < grst_delay; cnt++) {
906 mdelay(100);
907 reg = rd32(hw, GLGEN_RSTAT);
908 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
909 break;
910 }
911
912 if (cnt == grst_delay) {
913 ice_debug(hw, ICE_DBG_INIT,
914 "Global reset polling failed to complete.\n");
915 return ICE_ERR_RESET_FAILED;
916 }
917
918#define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \
919 GLNVM_ULD_GLOBR_DONE_M)
920
921 /* Device is Active; check Global Reset processes are done */
922 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
923 reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
924 if (reg == ICE_RESET_DONE_MASK) {
925 ice_debug(hw, ICE_DBG_INIT,
926 "Global reset processes done. %d\n", cnt);
927 break;
928 }
929 mdelay(10);
930 }
931
932 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
933 ice_debug(hw, ICE_DBG_INIT,
934 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
935 reg);
936 return ICE_ERR_RESET_FAILED;
937 }
938
939 return 0;
940}
941
942/**
943 * ice_pf_reset - Reset the PF
944 * @hw: pointer to the hardware structure
945 *
946 * If a global reset has been triggered, this function checks
947 * for its completion and then issues the PF reset
948 */
949static enum ice_status ice_pf_reset(struct ice_hw *hw)
950{
951 u32 cnt, reg;
952
953 /* If at function entry a global reset was already in progress, i.e.
954 * state is not 'device active' or any of the reset done bits are not
955 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
956 * global reset is done.
957 */
958 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
959 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
960 /* poll on global reset currently in progress until done */
961 if (ice_check_reset(hw))
962 return ICE_ERR_RESET_FAILED;
963
964 return 0;
965 }
966
967 /* Reset the PF */
968 reg = rd32(hw, PFGEN_CTRL);
969
970 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
971
972 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
973 reg = rd32(hw, PFGEN_CTRL);
974 if (!(reg & PFGEN_CTRL_PFSWR_M))
975 break;
976
977 mdelay(1);
978 }
979
980 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
981 ice_debug(hw, ICE_DBG_INIT,
982 "PF reset polling failed to complete.\n");
983 return ICE_ERR_RESET_FAILED;
984 }
985
986 return 0;
987}
988
989/**
990 * ice_reset - Perform different types of reset
991 * @hw: pointer to the hardware structure
992 * @req: reset request
993 *
994 * This function triggers a reset as specified by the req parameter.
995 *
996 * Note:
997 * If anything other than a PF reset is triggered, PXE mode is restored.
998 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
999 * interface has been restored in the rebuild flow.
1000 */
1001enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1002{
1003 u32 val = 0;
1004
1005 switch (req) {
1006 case ICE_RESET_PFR:
1007 return ice_pf_reset(hw);
1008 case ICE_RESET_CORER:
1009 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1010 val = GLGEN_RTRIG_CORER_M;
1011 break;
1012 case ICE_RESET_GLOBR:
1013 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1014 val = GLGEN_RTRIG_GLOBR_M;
1015 break;
0f9d5027
AV
1016 default:
1017 return ICE_ERR_PARAM;
f31e4b6f
AV
1018 }
1019
1020 val |= rd32(hw, GLGEN_RTRIG);
1021 wr32(hw, GLGEN_RTRIG, val);
1022 ice_flush(hw);
1023
1024 /* wait for the FW to be ready */
1025 return ice_check_reset(hw);
1026}
1027
cdedef59
AV
1028/**
1029 * ice_copy_rxq_ctx_to_hw
1030 * @hw: pointer to the hardware structure
1031 * @ice_rxq_ctx: pointer to the rxq context
d337f2af 1032 * @rxq_index: the index of the Rx queue
cdedef59 1033 *
f9867df6 1034 * Copies rxq context from dense structure to HW register space
cdedef59
AV
1035 */
1036static enum ice_status
1037ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1038{
1039 u8 i;
1040
1041 if (!ice_rxq_ctx)
1042 return ICE_ERR_BAD_PTR;
1043
1044 if (rxq_index > QRX_CTRL_MAX_INDEX)
1045 return ICE_ERR_PARAM;
1046
f9867df6 1047 /* Copy each dword separately to HW */
cdedef59
AV
1048 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1049 wr32(hw, QRX_CONTEXT(i, rxq_index),
1050 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1051
1052 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1053 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1054 }
1055
1056 return 0;
1057}
1058
1059/* LAN Rx Queue Context */
1060static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1061 /* Field Width LSB */
1062 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1063 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1064 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1065 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1066 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1067 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1068 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1069 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1070 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1071 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1072 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1073 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1074 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1075 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1076 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1077 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1078 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1079 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1080 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1081 { 0 }
1082};
1083
1084/**
1085 * ice_write_rxq_ctx
1086 * @hw: pointer to the hardware structure
1087 * @rlan_ctx: pointer to the rxq context
d337f2af 1088 * @rxq_index: the index of the Rx queue
cdedef59
AV
1089 *
1090 * Converts rxq context from sparse to dense structure and then writes
f9867df6 1091 * it to HW register space
cdedef59
AV
1092 */
1093enum ice_status
1094ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1095 u32 rxq_index)
1096{
1097 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1098
1099 ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1100 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1101}
1102
1103/* LAN Tx Queue Context */
1104const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1105 /* Field Width LSB */
1106 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1107 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1108 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1109 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1110 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1111 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1112 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1113 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1114 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1115 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1116 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1117 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1118 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1119 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1120 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1121 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1122 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1123 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1124 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1125 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1126 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1127 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1128 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1129 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1130 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1131 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1132 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171),
1133 { 0 }
1134};
1135
7ec59eea
AV
1136/**
1137 * ice_debug_cq
1138 * @hw: pointer to the hardware structure
1139 * @mask: debug mask
1140 * @desc: pointer to control queue descriptor
1141 * @buf: pointer to command buffer
1142 * @buf_len: max length of buf
1143 *
1144 * Dumps debug log about control command with descriptor contents.
1145 */
c8b7abdd
BA
1146void
1147ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf,
1148 u16 buf_len)
7ec59eea
AV
1149{
1150 struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1151 u16 len;
1152
1153#ifndef CONFIG_DYNAMIC_DEBUG
1154 if (!(mask & hw->debug_mask))
1155 return;
1156#endif
1157
1158 if (!desc)
1159 return;
1160
1161 len = le16_to_cpu(cq_desc->datalen);
1162
1163 ice_debug(hw, mask,
1164 "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1165 le16_to_cpu(cq_desc->opcode),
1166 le16_to_cpu(cq_desc->flags),
1167 le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1168 ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1169 le32_to_cpu(cq_desc->cookie_high),
1170 le32_to_cpu(cq_desc->cookie_low));
1171 ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
1172 le32_to_cpu(cq_desc->params.generic.param0),
1173 le32_to_cpu(cq_desc->params.generic.param1));
1174 ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
1175 le32_to_cpu(cq_desc->params.generic.addr_high),
1176 le32_to_cpu(cq_desc->params.generic.addr_low));
1177 if (buf && cq_desc->datalen != 0) {
1178 ice_debug(hw, mask, "Buffer:\n");
1179 if (buf_len < len)
1180 len = buf_len;
1181
1182 ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1183 }
1184}
1185
1186/* FW Admin Queue command wrappers */
1187
1188/**
1189 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
f9867df6 1190 * @hw: pointer to the HW struct
7ec59eea
AV
1191 * @desc: descriptor describing the command
1192 * @buf: buffer to use for indirect commands (NULL for direct commands)
1193 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1194 * @cd: pointer to command details structure
1195 *
1196 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1197 */
1198enum ice_status
1199ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1200 u16 buf_size, struct ice_sq_cd *cd)
1201{
1202 return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1203}
1204
1205/**
1206 * ice_aq_get_fw_ver
f9867df6 1207 * @hw: pointer to the HW struct
7ec59eea
AV
1208 * @cd: pointer to command details structure or NULL
1209 *
1210 * Get the firmware version (0x0001) from the admin queue commands
1211 */
1212enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1213{
1214 struct ice_aqc_get_ver *resp;
1215 struct ice_aq_desc desc;
1216 enum ice_status status;
1217
1218 resp = &desc.params.get_ver;
1219
1220 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1221
1222 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1223
1224 if (!status) {
1225 hw->fw_branch = resp->fw_branch;
1226 hw->fw_maj_ver = resp->fw_major;
1227 hw->fw_min_ver = resp->fw_minor;
1228 hw->fw_patch = resp->fw_patch;
1229 hw->fw_build = le32_to_cpu(resp->fw_build);
1230 hw->api_branch = resp->api_branch;
1231 hw->api_maj_ver = resp->api_major;
1232 hw->api_min_ver = resp->api_minor;
1233 hw->api_patch = resp->api_patch;
1234 }
1235
1236 return status;
1237}
1238
1239/**
1240 * ice_aq_q_shutdown
f9867df6 1241 * @hw: pointer to the HW struct
7ec59eea
AV
1242 * @unloading: is the driver unloading itself
1243 *
1244 * Tell the Firmware that we're shutting down the AdminQ and whether
1245 * or not the driver is unloading as well (0x0003).
1246 */
1247enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1248{
1249 struct ice_aqc_q_shutdown *cmd;
1250 struct ice_aq_desc desc;
1251
1252 cmd = &desc.params.q_shutdown;
1253
1254 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1255
1256 if (unloading)
1257 cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
1258
1259 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1260}
f31e4b6f
AV
1261
1262/**
1263 * ice_aq_req_res
f9867df6
AV
1264 * @hw: pointer to the HW struct
1265 * @res: resource ID
f31e4b6f
AV
1266 * @access: access type
1267 * @sdp_number: resource number
1268 * @timeout: the maximum time in ms that the driver may hold the resource
1269 * @cd: pointer to command details structure or NULL
1270 *
ff2b1321
DN
1271 * Requests common resource using the admin queue commands (0x0008).
1272 * When attempting to acquire the Global Config Lock, the driver can
1273 * learn of three states:
1274 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1275 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1276 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1277 * successfully downloaded the package; the driver does
1278 * not have to download the package and can continue
1279 * loading
1280 *
1281 * Note that if the caller is in an acquire lock, perform action, release lock
1282 * phase of operation, it is possible that the FW may detect a timeout and issue
1283 * a CORER. In this case, the driver will receive a CORER interrupt and will
1284 * have to determine its cause. The calling thread that is handling this flow
1285 * will likely get an error propagated back to it indicating the Download
1286 * Package, Update Package or the Release Resource AQ commands timed out.
f31e4b6f
AV
1287 */
1288static enum ice_status
1289ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1290 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1291 struct ice_sq_cd *cd)
1292{
1293 struct ice_aqc_req_res *cmd_resp;
1294 struct ice_aq_desc desc;
1295 enum ice_status status;
1296
1297 cmd_resp = &desc.params.res_owner;
1298
1299 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1300
1301 cmd_resp->res_id = cpu_to_le16(res);
1302 cmd_resp->access_type = cpu_to_le16(access);
1303 cmd_resp->res_number = cpu_to_le32(sdp_number);
ff2b1321
DN
1304 cmd_resp->timeout = cpu_to_le32(*timeout);
1305 *timeout = 0;
f31e4b6f
AV
1306
1307 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
ff2b1321 1308
f31e4b6f
AV
1309 /* The completion specifies the maximum time in ms that the driver
1310 * may hold the resource in the Timeout field.
ff2b1321
DN
1311 */
1312
1313 /* Global config lock response utilizes an additional status field.
1314 *
1315 * If the Global config lock resource is held by some other driver, the
1316 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1317 * and the timeout field indicates the maximum time the current owner
1318 * of the resource has to free it.
1319 */
1320 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1321 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1322 *timeout = le32_to_cpu(cmd_resp->timeout);
1323 return 0;
1324 } else if (le16_to_cpu(cmd_resp->status) ==
1325 ICE_AQ_RES_GLBL_IN_PROG) {
1326 *timeout = le32_to_cpu(cmd_resp->timeout);
1327 return ICE_ERR_AQ_ERROR;
1328 } else if (le16_to_cpu(cmd_resp->status) ==
1329 ICE_AQ_RES_GLBL_DONE) {
1330 return ICE_ERR_AQ_NO_WORK;
1331 }
1332
1333 /* invalid FW response, force a timeout immediately */
1334 *timeout = 0;
1335 return ICE_ERR_AQ_ERROR;
1336 }
1337
1338 /* If the resource is held by some other driver, the command completes
1339 * with a busy return value and the timeout field indicates the maximum
1340 * time the current owner of the resource has to free it.
f31e4b6f
AV
1341 */
1342 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1343 *timeout = le32_to_cpu(cmd_resp->timeout);
1344
1345 return status;
1346}
1347
1348/**
1349 * ice_aq_release_res
f9867df6
AV
1350 * @hw: pointer to the HW struct
1351 * @res: resource ID
f31e4b6f
AV
1352 * @sdp_number: resource number
1353 * @cd: pointer to command details structure or NULL
1354 *
1355 * release common resource using the admin queue commands (0x0009)
1356 */
1357static enum ice_status
1358ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1359 struct ice_sq_cd *cd)
1360{
1361 struct ice_aqc_req_res *cmd;
1362 struct ice_aq_desc desc;
1363
1364 cmd = &desc.params.res_owner;
1365
1366 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1367
1368 cmd->res_id = cpu_to_le16(res);
1369 cmd->res_number = cpu_to_le32(sdp_number);
1370
1371 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1372}
1373
1374/**
1375 * ice_acquire_res
1376 * @hw: pointer to the HW structure
f9867df6 1377 * @res: resource ID
f31e4b6f 1378 * @access: access type (read or write)
ff2b1321 1379 * @timeout: timeout in milliseconds
f31e4b6f
AV
1380 *
1381 * This function will attempt to acquire the ownership of a resource.
1382 */
1383enum ice_status
1384ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
ff2b1321 1385 enum ice_aq_res_access_type access, u32 timeout)
f31e4b6f
AV
1386{
1387#define ICE_RES_POLLING_DELAY_MS 10
1388 u32 delay = ICE_RES_POLLING_DELAY_MS;
ff2b1321 1389 u32 time_left = timeout;
f31e4b6f 1390 enum ice_status status;
f31e4b6f
AV
1391
1392 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1393
ff2b1321
DN
1394 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1395 * previously acquired the resource and performed any necessary updates;
1396 * in this case the caller does not obtain the resource and has no
1397 * further work to do.
f31e4b6f 1398 */
ff2b1321 1399 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1400 goto ice_acquire_res_exit;
f31e4b6f
AV
1401
1402 if (status)
1403 ice_debug(hw, ICE_DBG_RES,
1404 "resource %d acquire type %d failed.\n", res, access);
1405
1406 /* If necessary, poll until the current lock owner timeouts */
1407 timeout = time_left;
1408 while (status && timeout && time_left) {
1409 mdelay(delay);
1410 timeout = (timeout > delay) ? timeout - delay : 0;
1411 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1412
ff2b1321 1413 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1414 /* lock free, but no work to do */
f31e4b6f 1415 break;
f31e4b6f
AV
1416
1417 if (!status)
1418 /* lock acquired */
1419 break;
1420 }
1421 if (status && status != ICE_ERR_AQ_NO_WORK)
1422 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1423
1424ice_acquire_res_exit:
1425 if (status == ICE_ERR_AQ_NO_WORK) {
1426 if (access == ICE_RES_WRITE)
1427 ice_debug(hw, ICE_DBG_RES,
1428 "resource indicates no work to do.\n");
1429 else
1430 ice_debug(hw, ICE_DBG_RES,
1431 "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1432 }
1433 return status;
1434}
1435
1436/**
1437 * ice_release_res
1438 * @hw: pointer to the HW structure
f9867df6 1439 * @res: resource ID
f31e4b6f
AV
1440 *
1441 * This function will release a resource using the proper Admin Command.
1442 */
1443void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1444{
1445 enum ice_status status;
1446 u32 total_delay = 0;
1447
1448 status = ice_aq_release_res(hw, res, 0, NULL);
1449
1450 /* there are some rare cases when trying to release the resource
f9867df6 1451 * results in an admin queue timeout, so handle them correctly
f31e4b6f
AV
1452 */
1453 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1454 (total_delay < hw->adminq.sq_cmd_timeout)) {
1455 mdelay(1);
1456 status = ice_aq_release_res(hw, res, 0, NULL);
1457 total_delay++;
1458 }
1459}
1460
995c90f2 1461/**
7a1f7111 1462 * ice_get_num_per_func - determine number of resources per PF
f9867df6 1463 * @hw: pointer to the HW structure
7a1f7111 1464 * @max: value to be evenly split between each PF
995c90f2
AV
1465 *
1466 * Determine the number of valid functions by going through the bitmap returned
7a1f7111
BC
1467 * from parsing capabilities and use this to calculate the number of resources
1468 * per PF based on the max value passed in.
995c90f2 1469 */
7a1f7111 1470static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
995c90f2
AV
1471{
1472 u8 funcs;
1473
1474#define ICE_CAPS_VALID_FUNCS_M 0xFF
1475 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1476 ICE_CAPS_VALID_FUNCS_M);
1477
1478 if (!funcs)
1479 return 0;
1480
7a1f7111 1481 return max / funcs;
995c90f2
AV
1482}
1483
9c20346b
AV
1484/**
1485 * ice_parse_caps - parse function/device capabilities
f9867df6 1486 * @hw: pointer to the HW struct
9c20346b
AV
1487 * @buf: pointer to a buffer containing function/device capability records
1488 * @cap_count: number of capability records in the list
1489 * @opc: type of capabilities list to parse
1490 *
1491 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1492 */
1493static void
1494ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1495 enum ice_adminq_opc opc)
1496{
1497 struct ice_aqc_list_caps_elem *cap_resp;
1498 struct ice_hw_func_caps *func_p = NULL;
1499 struct ice_hw_dev_caps *dev_p = NULL;
1500 struct ice_hw_common_caps *caps;
a84db525 1501 char const *prefix;
9c20346b
AV
1502 u32 i;
1503
1504 if (!buf)
1505 return;
1506
1507 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1508
1509 if (opc == ice_aqc_opc_list_dev_caps) {
1510 dev_p = &hw->dev_caps;
1511 caps = &dev_p->common_cap;
a84db525 1512 prefix = "dev cap";
9c20346b
AV
1513 } else if (opc == ice_aqc_opc_list_func_caps) {
1514 func_p = &hw->func_caps;
1515 caps = &func_p->common_cap;
a84db525 1516 prefix = "func cap";
9c20346b
AV
1517 } else {
1518 ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1519 return;
1520 }
1521
1522 for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1523 u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1524 u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1525 u32 number = le32_to_cpu(cap_resp->number);
1526 u16 cap = le16_to_cpu(cap_resp->cap);
1527
1528 switch (cap) {
995c90f2
AV
1529 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1530 caps->valid_functions = number;
1531 ice_debug(hw, ICE_DBG_INIT,
a84db525 1532 "%s: valid functions = %d\n", prefix,
995c90f2
AV
1533 caps->valid_functions);
1534 break;
75d2b253
AV
1535 case ICE_AQC_CAPS_SRIOV:
1536 caps->sr_iov_1_1 = (number == 1);
1537 ice_debug(hw, ICE_DBG_INIT,
a84db525
AV
1538 "%s: SR-IOV = %d\n", prefix,
1539 caps->sr_iov_1_1);
75d2b253
AV
1540 break;
1541 case ICE_AQC_CAPS_VF:
1542 if (dev_p) {
1543 dev_p->num_vfs_exposed = number;
1544 ice_debug(hw, ICE_DBG_INIT,
a84db525 1545 "%s: VFs exposed = %d\n", prefix,
75d2b253
AV
1546 dev_p->num_vfs_exposed);
1547 } else if (func_p) {
1548 func_p->num_allocd_vfs = number;
1549 func_p->vf_base_id = logical_id;
1550 ice_debug(hw, ICE_DBG_INIT,
a84db525 1551 "%s: VFs allocated = %d\n", prefix,
75d2b253
AV
1552 func_p->num_allocd_vfs);
1553 ice_debug(hw, ICE_DBG_INIT,
a84db525 1554 "%s: VF base_id = %d\n", prefix,
75d2b253
AV
1555 func_p->vf_base_id);
1556 }
1557 break;
9c20346b
AV
1558 case ICE_AQC_CAPS_VSI:
1559 if (dev_p) {
1560 dev_p->num_vsi_allocd_to_host = number;
1561 ice_debug(hw, ICE_DBG_INIT,
a84db525
AV
1562 "%s: num VSI alloc to host = %d\n",
1563 prefix,
9c20346b
AV
1564 dev_p->num_vsi_allocd_to_host);
1565 } else if (func_p) {
7a1f7111
BC
1566 func_p->guar_num_vsi =
1567 ice_get_num_per_func(hw, ICE_MAX_VSI);
9c20346b 1568 ice_debug(hw, ICE_DBG_INIT,
a84db525
AV
1569 "%s: num guaranteed VSI (fw) = %d\n",
1570 prefix, number);
1571 ice_debug(hw, ICE_DBG_INIT,
1572 "%s: num guaranteed VSI = %d\n",
1573 prefix, func_p->guar_num_vsi);
9c20346b
AV
1574 }
1575 break;
1576 case ICE_AQC_CAPS_RSS:
1577 caps->rss_table_size = number;
1578 caps->rss_table_entry_width = logical_id;
1579 ice_debug(hw, ICE_DBG_INIT,
a84db525 1580 "%s: RSS table size = %d\n", prefix,
9c20346b
AV
1581 caps->rss_table_size);
1582 ice_debug(hw, ICE_DBG_INIT,
a84db525 1583 "%s: RSS table width = %d\n", prefix,
9c20346b
AV
1584 caps->rss_table_entry_width);
1585 break;
1586 case ICE_AQC_CAPS_RXQS:
1587 caps->num_rxq = number;
1588 caps->rxq_first_id = phys_id;
1589 ice_debug(hw, ICE_DBG_INIT,
a84db525
AV
1590 "%s: num Rx queues = %d\n", prefix,
1591 caps->num_rxq);
9c20346b 1592 ice_debug(hw, ICE_DBG_INIT,
a84db525 1593 "%s: Rx first queue ID = %d\n", prefix,
9c20346b
AV
1594 caps->rxq_first_id);
1595 break;
1596 case ICE_AQC_CAPS_TXQS:
1597 caps->num_txq = number;
1598 caps->txq_first_id = phys_id;
1599 ice_debug(hw, ICE_DBG_INIT,
a84db525
AV
1600 "%s: num Tx queues = %d\n", prefix,
1601 caps->num_txq);
9c20346b 1602 ice_debug(hw, ICE_DBG_INIT,
a84db525 1603 "%s: Tx first queue ID = %d\n", prefix,
9c20346b
AV
1604 caps->txq_first_id);
1605 break;
1606 case ICE_AQC_CAPS_MSIX:
1607 caps->num_msix_vectors = number;
1608 caps->msix_vector_first_id = phys_id;
1609 ice_debug(hw, ICE_DBG_INIT,
a84db525 1610 "%s: MSIX vector count = %d\n", prefix,
9c20346b
AV
1611 caps->num_msix_vectors);
1612 ice_debug(hw, ICE_DBG_INIT,
a84db525 1613 "%s: MSIX first vector index = %d\n", prefix,
9c20346b
AV
1614 caps->msix_vector_first_id);
1615 break;
1616 case ICE_AQC_CAPS_MAX_MTU:
1617 caps->max_mtu = number;
a84db525
AV
1618 ice_debug(hw, ICE_DBG_INIT, "%s: max MTU = %d\n",
1619 prefix, caps->max_mtu);
9c20346b
AV
1620 break;
1621 default:
1622 ice_debug(hw, ICE_DBG_INIT,
a84db525
AV
1623 "%s: unknown capability[%d]: 0x%x\n", prefix,
1624 i, cap);
9c20346b
AV
1625 break;
1626 }
1627 }
1628}
1629
1630/**
1631 * ice_aq_discover_caps - query function/device capabilities
f9867df6 1632 * @hw: pointer to the HW struct
9c20346b
AV
1633 * @buf: a virtual buffer to hold the capabilities
1634 * @buf_size: Size of the virtual buffer
7d86cf38 1635 * @cap_count: cap count needed if AQ err==ENOMEM
9c20346b
AV
1636 * @opc: capabilities type to discover - pass in the command opcode
1637 * @cd: pointer to command details structure or NULL
1638 *
1639 * Get the function(0x000a)/device(0x000b) capabilities description from
1640 * the firmware.
1641 */
1642static enum ice_status
7d86cf38 1643ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
9c20346b
AV
1644 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1645{
1646 struct ice_aqc_list_caps *cmd;
1647 struct ice_aq_desc desc;
1648 enum ice_status status;
1649
1650 cmd = &desc.params.get_cap;
1651
1652 if (opc != ice_aqc_opc_list_func_caps &&
1653 opc != ice_aqc_opc_list_dev_caps)
1654 return ICE_ERR_PARAM;
1655
1656 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1657
1658 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1659 if (!status)
1660 ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
7d86cf38 1661 else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
99189e8b 1662 *cap_count = le32_to_cpu(cmd->count);
9c20346b
AV
1663 return status;
1664}
1665
1666/**
7d86cf38 1667 * ice_discover_caps - get info about the HW
9c20346b 1668 * @hw: pointer to the hardware structure
7d86cf38 1669 * @opc: capabilities type to discover - pass in the command opcode
9c20346b 1670 */
c8b7abdd
BA
1671static enum ice_status
1672ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
9c20346b
AV
1673{
1674 enum ice_status status;
7d86cf38 1675 u32 cap_count;
9c20346b
AV
1676 u16 cbuf_len;
1677 u8 retries;
1678
1679 /* The driver doesn't know how many capabilities the device will return
1680 * so the buffer size required isn't known ahead of time. The driver
1681 * starts with cbuf_len and if this turns out to be insufficient, the
7d86cf38
AV
1682 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1683 * The driver then allocates the buffer based on the count and retries
1684 * the operation. So it follows that the retry count is 2.
9c20346b
AV
1685 */
1686#define ICE_GET_CAP_BUF_COUNT 40
1687#define ICE_GET_CAP_RETRY_COUNT 2
1688
7d86cf38 1689 cap_count = ICE_GET_CAP_BUF_COUNT;
9c20346b
AV
1690 retries = ICE_GET_CAP_RETRY_COUNT;
1691
1692 do {
1693 void *cbuf;
1694
7d86cf38
AV
1695 cbuf_len = (u16)(cap_count *
1696 sizeof(struct ice_aqc_list_caps_elem));
9c20346b
AV
1697 cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1698 if (!cbuf)
1699 return ICE_ERR_NO_MEMORY;
1700
7d86cf38
AV
1701 status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1702 opc, NULL);
9c20346b
AV
1703 devm_kfree(ice_hw_to_dev(hw), cbuf);
1704
1705 if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1706 break;
1707
1708 /* If ENOMEM is returned, try again with bigger buffer */
9c20346b
AV
1709 } while (--retries);
1710
1711 return status;
1712}
1713
7d86cf38
AV
1714/**
1715 * ice_get_caps - get info about the HW
1716 * @hw: pointer to the hardware structure
1717 */
1718enum ice_status ice_get_caps(struct ice_hw *hw)
1719{
1720 enum ice_status status;
1721
1722 status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1723 if (!status)
1724 status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1725
1726 return status;
1727}
1728
e94d4478
AV
1729/**
1730 * ice_aq_manage_mac_write - manage MAC address write command
f9867df6 1731 * @hw: pointer to the HW struct
e94d4478
AV
1732 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1733 * @flags: flags to control write behavior
1734 * @cd: pointer to command details structure or NULL
1735 *
1736 * This function is used to write MAC address to the NVM (0x0108).
1737 */
1738enum ice_status
d671e3e0 1739ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
e94d4478
AV
1740 struct ice_sq_cd *cd)
1741{
1742 struct ice_aqc_manage_mac_write *cmd;
1743 struct ice_aq_desc desc;
1744
1745 cmd = &desc.params.mac_write;
1746 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1747
1748 cmd->flags = flags;
1749
1750 /* Prep values for flags, sah, sal */
d671e3e0
JK
1751 cmd->sah = htons(*((const u16 *)mac_addr));
1752 cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
e94d4478
AV
1753
1754 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1755}
1756
f31e4b6f
AV
1757/**
1758 * ice_aq_clear_pxe_mode
f9867df6 1759 * @hw: pointer to the HW struct
f31e4b6f
AV
1760 *
1761 * Tell the firmware that the driver is taking over from PXE (0x0110).
1762 */
1763static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1764{
1765 struct ice_aq_desc desc;
1766
1767 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1768 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1769
1770 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1771}
1772
1773/**
1774 * ice_clear_pxe_mode - clear pxe operations mode
f9867df6 1775 * @hw: pointer to the HW struct
f31e4b6f
AV
1776 *
1777 * Make sure all PXE mode settings are cleared, including things
1778 * like descriptor fetch/write-back mode.
1779 */
1780void ice_clear_pxe_mode(struct ice_hw *hw)
1781{
1782 if (ice_check_sq_alive(hw, &hw->adminq))
1783 ice_aq_clear_pxe_mode(hw);
1784}
cdedef59 1785
48cb27f2
CC
1786/**
1787 * ice_get_link_speed_based_on_phy_type - returns link speed
1788 * @phy_type_low: lower part of phy_type
aef74145 1789 * @phy_type_high: higher part of phy_type
48cb27f2 1790 *
f9867df6 1791 * This helper function will convert an entry in PHY type structure
aef74145
AV
1792 * [phy_type_low, phy_type_high] to its corresponding link speed.
1793 * Note: In the structure of [phy_type_low, phy_type_high], there should
f9867df6 1794 * be one bit set, as this function will convert one PHY type to its
48cb27f2 1795 * speed.
48cb27f2
CC
1796 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1797 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1798 */
aef74145
AV
1799static u16
1800ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
48cb27f2 1801{
aef74145 1802 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
48cb27f2
CC
1803 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1804
1805 switch (phy_type_low) {
1806 case ICE_PHY_TYPE_LOW_100BASE_TX:
1807 case ICE_PHY_TYPE_LOW_100M_SGMII:
1808 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
1809 break;
1810 case ICE_PHY_TYPE_LOW_1000BASE_T:
1811 case ICE_PHY_TYPE_LOW_1000BASE_SX:
1812 case ICE_PHY_TYPE_LOW_1000BASE_LX:
1813 case ICE_PHY_TYPE_LOW_1000BASE_KX:
1814 case ICE_PHY_TYPE_LOW_1G_SGMII:
1815 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
1816 break;
1817 case ICE_PHY_TYPE_LOW_2500BASE_T:
1818 case ICE_PHY_TYPE_LOW_2500BASE_X:
1819 case ICE_PHY_TYPE_LOW_2500BASE_KX:
1820 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
1821 break;
1822 case ICE_PHY_TYPE_LOW_5GBASE_T:
1823 case ICE_PHY_TYPE_LOW_5GBASE_KR:
1824 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
1825 break;
1826 case ICE_PHY_TYPE_LOW_10GBASE_T:
1827 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1828 case ICE_PHY_TYPE_LOW_10GBASE_SR:
1829 case ICE_PHY_TYPE_LOW_10GBASE_LR:
1830 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1831 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1832 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1833 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
1834 break;
1835 case ICE_PHY_TYPE_LOW_25GBASE_T:
1836 case ICE_PHY_TYPE_LOW_25GBASE_CR:
1837 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1838 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1839 case ICE_PHY_TYPE_LOW_25GBASE_SR:
1840 case ICE_PHY_TYPE_LOW_25GBASE_LR:
1841 case ICE_PHY_TYPE_LOW_25GBASE_KR:
1842 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1843 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1844 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1845 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1846 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
1847 break;
1848 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1849 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1850 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1851 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1852 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1853 case ICE_PHY_TYPE_LOW_40G_XLAUI:
1854 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
1855 break;
aef74145
AV
1856 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
1857 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
1858 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
1859 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
1860 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
1861 case ICE_PHY_TYPE_LOW_50G_LAUI2:
1862 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
1863 case ICE_PHY_TYPE_LOW_50G_AUI2:
1864 case ICE_PHY_TYPE_LOW_50GBASE_CP:
1865 case ICE_PHY_TYPE_LOW_50GBASE_SR:
1866 case ICE_PHY_TYPE_LOW_50GBASE_FR:
1867 case ICE_PHY_TYPE_LOW_50GBASE_LR:
1868 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1869 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1870 case ICE_PHY_TYPE_LOW_50G_AUI1:
1871 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
1872 break;
1873 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
1874 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
1875 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
1876 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
1877 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
1878 case ICE_PHY_TYPE_LOW_100G_CAUI4:
1879 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
1880 case ICE_PHY_TYPE_LOW_100G_AUI4:
1881 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
1882 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
1883 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
1884 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
1885 case ICE_PHY_TYPE_LOW_100GBASE_DR:
1886 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
1887 break;
48cb27f2
CC
1888 default:
1889 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1890 break;
1891 }
1892
aef74145
AV
1893 switch (phy_type_high) {
1894 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
1895 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
1896 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
1897 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
1898 case ICE_PHY_TYPE_HIGH_100G_AUI2:
1899 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
1900 break;
1901 default:
1902 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
1903 break;
1904 }
1905
1906 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
1907 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1908 return ICE_AQ_LINK_SPEED_UNKNOWN;
1909 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1910 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
1911 return ICE_AQ_LINK_SPEED_UNKNOWN;
1912 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1913 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1914 return speed_phy_type_low;
1915 else
1916 return speed_phy_type_high;
48cb27f2
CC
1917}
1918
1919/**
1920 * ice_update_phy_type
1921 * @phy_type_low: pointer to the lower part of phy_type
aef74145 1922 * @phy_type_high: pointer to the higher part of phy_type
48cb27f2
CC
1923 * @link_speeds_bitmap: targeted link speeds bitmap
1924 *
1925 * Note: For the link_speeds_bitmap structure, you can check it at
1926 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
1927 * link_speeds_bitmap include multiple speeds.
1928 *
aef74145
AV
1929 * Each entry in this [phy_type_low, phy_type_high] structure will
1930 * present a certain link speed. This helper function will turn on bits
1931 * in [phy_type_low, phy_type_high] structure based on the value of
48cb27f2
CC
1932 * link_speeds_bitmap input parameter.
1933 */
aef74145
AV
1934void
1935ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
1936 u16 link_speeds_bitmap)
48cb27f2 1937{
aef74145 1938 u64 pt_high;
48cb27f2
CC
1939 u64 pt_low;
1940 int index;
207e3721 1941 u16 speed;
48cb27f2
CC
1942
1943 /* We first check with low part of phy_type */
1944 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
1945 pt_low = BIT_ULL(index);
aef74145 1946 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
48cb27f2
CC
1947
1948 if (link_speeds_bitmap & speed)
1949 *phy_type_low |= BIT_ULL(index);
1950 }
aef74145
AV
1951
1952 /* We then check with high part of phy_type */
1953 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
1954 pt_high = BIT_ULL(index);
1955 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
1956
1957 if (link_speeds_bitmap & speed)
1958 *phy_type_high |= BIT_ULL(index);
1959 }
48cb27f2
CC
1960}
1961
fcea6f3d
AV
1962/**
1963 * ice_aq_set_phy_cfg
f9867df6 1964 * @hw: pointer to the HW struct
fcea6f3d
AV
1965 * @lport: logical port number
1966 * @cfg: structure with PHY configuration data to be set
1967 * @cd: pointer to command details structure or NULL
1968 *
1969 * Set the various PHY configuration parameters supported on the Port.
1970 * One or more of the Set PHY config parameters may be ignored in an MFP
1971 * mode as the PF may not have the privilege to set some of the PHY Config
1972 * parameters. This status will be indicated by the command response (0x0601).
1973 */
48cb27f2 1974enum ice_status
fcea6f3d
AV
1975ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1976 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1977{
fcea6f3d
AV
1978 struct ice_aq_desc desc;
1979
1980 if (!cfg)
1981 return ICE_ERR_PARAM;
1982
d8df260a
CC
1983 /* Ensure that only valid bits of cfg->caps can be turned on. */
1984 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
1985 ice_debug(hw, ICE_DBG_PHY,
1986 "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
1987 cfg->caps);
1988
1989 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
1990 }
1991
fcea6f3d 1992 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
48cb27f2
CC
1993 desc.params.set_phy.lport_num = lport;
1994 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
fcea6f3d
AV
1995
1996 return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1997}
1998
1999/**
2000 * ice_update_link_info - update status of the HW network link
2001 * @pi: port info structure of the interested logical port
2002 */
5755143d 2003enum ice_status ice_update_link_info(struct ice_port_info *pi)
fcea6f3d 2004{
092a33d4 2005 struct ice_link_status *li;
fcea6f3d 2006 enum ice_status status;
fcea6f3d
AV
2007
2008 if (!pi)
2009 return ICE_ERR_PARAM;
2010
092a33d4 2011 li = &pi->phy.link_info;
fcea6f3d 2012
fcea6f3d
AV
2013 status = ice_aq_get_link_info(pi, true, NULL, NULL);
2014 if (status)
092a33d4
BA
2015 return status;
2016
2017 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2018 struct ice_aqc_get_phy_caps_data *pcaps;
2019 struct ice_hw *hw;
2020
2021 hw = pi->hw;
2022 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2023 GFP_KERNEL);
2024 if (!pcaps)
2025 return ICE_ERR_NO_MEMORY;
fcea6f3d 2026
fcea6f3d
AV
2027 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
2028 pcaps, NULL);
092a33d4
BA
2029 if (!status)
2030 memcpy(li->module_type, &pcaps->module_type,
2031 sizeof(li->module_type));
fcea6f3d 2032
092a33d4 2033 devm_kfree(ice_hw_to_dev(hw), pcaps);
fcea6f3d 2034 }
092a33d4 2035
fcea6f3d
AV
2036 return status;
2037}
2038
2039/**
2040 * ice_set_fc
2041 * @pi: port information structure
2042 * @aq_failures: pointer to status code, specific to ice_set_fc routine
48cb27f2 2043 * @ena_auto_link_update: enable automatic link update
fcea6f3d
AV
2044 *
2045 * Set the requested flow control mode.
2046 */
2047enum ice_status
48cb27f2 2048ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
fcea6f3d
AV
2049{
2050 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2051 struct ice_aqc_get_phy_caps_data *pcaps;
2052 enum ice_status status;
2053 u8 pause_mask = 0x0;
2054 struct ice_hw *hw;
2055
2056 if (!pi)
2057 return ICE_ERR_PARAM;
2058 hw = pi->hw;
2059 *aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2060
2061 switch (pi->fc.req_mode) {
2062 case ICE_FC_FULL:
2063 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2064 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2065 break;
2066 case ICE_FC_RX_PAUSE:
2067 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2068 break;
2069 case ICE_FC_TX_PAUSE:
2070 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2071 break;
2072 default:
2073 break;
2074 }
2075
2076 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2077 if (!pcaps)
2078 return ICE_ERR_NO_MEMORY;
2079
f9867df6 2080 /* Get the current PHY config */
fcea6f3d
AV
2081 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2082 NULL);
2083 if (status) {
2084 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2085 goto out;
2086 }
2087
2088 /* clear the old pause settings */
2089 cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2090 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
d8df260a 2091
fcea6f3d
AV
2092 /* set the new capabilities */
2093 cfg.caps |= pause_mask;
d8df260a 2094
fcea6f3d
AV
2095 /* If the capabilities have changed, then set the new config */
2096 if (cfg.caps != pcaps->caps) {
2097 int retry_count, retry_max = 10;
2098
2099 /* Auto restart link so settings take effect */
48cb27f2
CC
2100 if (ena_auto_link_update)
2101 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
fcea6f3d 2102 /* Copy over all the old settings */
aef74145 2103 cfg.phy_type_high = pcaps->phy_type_high;
fcea6f3d
AV
2104 cfg.phy_type_low = pcaps->phy_type_low;
2105 cfg.low_power_ctrl = pcaps->low_power_ctrl;
2106 cfg.eee_cap = pcaps->eee_cap;
2107 cfg.eeer_value = pcaps->eeer_value;
2108 cfg.link_fec_opt = pcaps->link_fec_options;
2109
2110 status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2111 if (status) {
2112 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2113 goto out;
2114 }
2115
2116 /* Update the link info
2117 * It sometimes takes a really long time for link to
2118 * come back from the atomic reset. Thus, we wait a
2119 * little bit.
2120 */
2121 for (retry_count = 0; retry_count < retry_max; retry_count++) {
2122 status = ice_update_link_info(pi);
2123
2124 if (!status)
2125 break;
2126
2127 mdelay(100);
2128 }
2129
2130 if (status)
2131 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2132 }
2133
2134out:
2135 devm_kfree(ice_hw_to_dev(hw), pcaps);
2136 return status;
2137}
2138
f776b3ac
PG
2139/**
2140 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2141 * @caps: PHY ability structure to copy date from
2142 * @cfg: PHY configuration structure to copy data to
2143 *
2144 * Helper function to copy AQC PHY get ability data to PHY set configuration
2145 * data structure
2146 */
2147void
2148ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
2149 struct ice_aqc_set_phy_cfg_data *cfg)
2150{
2151 if (!caps || !cfg)
2152 return;
2153
2154 cfg->phy_type_low = caps->phy_type_low;
2155 cfg->phy_type_high = caps->phy_type_high;
2156 cfg->caps = caps->caps;
2157 cfg->low_power_ctrl = caps->low_power_ctrl;
2158 cfg->eee_cap = caps->eee_cap;
2159 cfg->eeer_value = caps->eeer_value;
2160 cfg->link_fec_opt = caps->link_fec_options;
2161}
2162
2163/**
2164 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2165 * @cfg: PHY configuration data to set FEC mode
2166 * @fec: FEC mode to configure
2167 *
2168 * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
2169 * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
2170 * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
2171 */
2172void
2173ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
2174{
2175 switch (fec) {
2176 case ICE_FEC_BASER:
2177 /* Clear auto FEC and RS bits, and AND BASE-R ability
2178 * bits and OR request bits.
2179 */
2180 cfg->caps &= ~ICE_AQC_PHY_EN_AUTO_FEC;
2181 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2182 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2183 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2184 ICE_AQC_PHY_FEC_25G_KR_REQ;
2185 break;
2186 case ICE_FEC_RS:
2187 /* Clear auto FEC and BASE-R bits, and AND RS ability
2188 * bits and OR request bits.
2189 */
2190 cfg->caps &= ~ICE_AQC_PHY_EN_AUTO_FEC;
2191 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2192 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2193 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2194 break;
2195 case ICE_FEC_NONE:
2196 /* Clear auto FEC and all FEC option bits. */
2197 cfg->caps &= ~ICE_AQC_PHY_EN_AUTO_FEC;
2198 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2199 break;
2200 case ICE_FEC_AUTO:
2201 /* AND auto FEC bit, and all caps bits. */
2202 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
2203 break;
2204 }
2205}
2206
0b28b702
AV
2207/**
2208 * ice_get_link_status - get status of the HW network link
2209 * @pi: port information structure
2210 * @link_up: pointer to bool (true/false = linkup/linkdown)
2211 *
2212 * Variable link_up is true if link is up, false if link is down.
2213 * The variable link_up is invalid if status is non zero. As a
2214 * result of this call, link status reporting becomes enabled
2215 */
2216enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2217{
2218 struct ice_phy_info *phy_info;
2219 enum ice_status status = 0;
2220
c7f2c42b 2221 if (!pi || !link_up)
0b28b702
AV
2222 return ICE_ERR_PARAM;
2223
2224 phy_info = &pi->phy;
2225
2226 if (phy_info->get_link_info) {
2227 status = ice_update_link_info(pi);
2228
2229 if (status)
2230 ice_debug(pi->hw, ICE_DBG_LINK,
2231 "get link status error, status = %d\n",
2232 status);
2233 }
2234
2235 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2236
2237 return status;
2238}
2239
fcea6f3d
AV
2240/**
2241 * ice_aq_set_link_restart_an
2242 * @pi: pointer to the port information structure
2243 * @ena_link: if true: enable link, if false: disable link
2244 * @cd: pointer to command details structure or NULL
2245 *
2246 * Sets up the link and restarts the Auto-Negotiation over the link.
2247 */
2248enum ice_status
2249ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2250 struct ice_sq_cd *cd)
2251{
2252 struct ice_aqc_restart_an *cmd;
2253 struct ice_aq_desc desc;
2254
2255 cmd = &desc.params.restart_an;
2256
2257 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2258
2259 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2260 cmd->lport_num = pi->lport;
2261 if (ena_link)
2262 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2263 else
2264 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2265
2266 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2267}
2268
250c3b3e
BC
2269/**
2270 * ice_aq_set_event_mask
2271 * @hw: pointer to the HW struct
2272 * @port_num: port number of the physical function
2273 * @mask: event mask to be set
2274 * @cd: pointer to command details structure or NULL
2275 *
2276 * Set event mask (0x0613)
2277 */
2278enum ice_status
2279ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2280 struct ice_sq_cd *cd)
2281{
2282 struct ice_aqc_set_event_mask *cmd;
2283 struct ice_aq_desc desc;
2284
2285 cmd = &desc.params.set_event_mask;
2286
2287 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2288
2289 cmd->lport_num = port_num;
2290
2291 cmd->event_mask = cpu_to_le16(mask);
2292 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2293}
2294
0e674aeb
AV
2295/**
2296 * ice_aq_set_mac_loopback
2297 * @hw: pointer to the HW struct
2298 * @ena_lpbk: Enable or Disable loopback
2299 * @cd: pointer to command details structure or NULL
2300 *
2301 * Enable/disable loopback on a given port
2302 */
2303enum ice_status
2304ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
2305{
2306 struct ice_aqc_set_mac_lb *cmd;
2307 struct ice_aq_desc desc;
2308
2309 cmd = &desc.params.set_mac_lb;
2310
2311 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
2312 if (ena_lpbk)
2313 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
2314
2315 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2316}
2317
8e151d50
AV
2318/**
2319 * ice_aq_set_port_id_led
2320 * @pi: pointer to the port information
2321 * @is_orig_mode: is this LED set to original mode (by the net-list)
2322 * @cd: pointer to command details structure or NULL
2323 *
2324 * Set LED value for the given port (0x06e9)
2325 */
2326enum ice_status
2327ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2328 struct ice_sq_cd *cd)
2329{
2330 struct ice_aqc_set_port_id_led *cmd;
2331 struct ice_hw *hw = pi->hw;
2332 struct ice_aq_desc desc;
2333
2334 cmd = &desc.params.set_port_id_led;
2335
2336 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2337
2338 if (is_orig_mode)
2339 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2340 else
2341 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2342
2343 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2344}
2345
d76a60ba
AV
2346/**
2347 * __ice_aq_get_set_rss_lut
2348 * @hw: pointer to the hardware structure
2349 * @vsi_id: VSI FW index
2350 * @lut_type: LUT table type
2351 * @lut: pointer to the LUT buffer provided by the caller
2352 * @lut_size: size of the LUT buffer
2353 * @glob_lut_idx: global LUT index
2354 * @set: set true to set the table, false to get the table
2355 *
2356 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2357 */
2358static enum ice_status
2359__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2360 u16 lut_size, u8 glob_lut_idx, bool set)
2361{
2362 struct ice_aqc_get_set_rss_lut *cmd_resp;
2363 struct ice_aq_desc desc;
2364 enum ice_status status;
2365 u16 flags = 0;
2366
2367 cmd_resp = &desc.params.get_set_rss_lut;
2368
2369 if (set) {
2370 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2371 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2372 } else {
2373 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2374 }
2375
2376 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2377 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2378 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2379 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2380
2381 switch (lut_type) {
2382 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2383 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2384 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2385 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2386 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2387 break;
2388 default:
2389 status = ICE_ERR_PARAM;
2390 goto ice_aq_get_set_rss_lut_exit;
2391 }
2392
2393 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2394 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2395 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2396
2397 if (!set)
2398 goto ice_aq_get_set_rss_lut_send;
2399 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2400 if (!set)
2401 goto ice_aq_get_set_rss_lut_send;
2402 } else {
2403 goto ice_aq_get_set_rss_lut_send;
2404 }
2405
2406 /* LUT size is only valid for Global and PF table types */
4381147d
AV
2407 switch (lut_size) {
2408 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2409 break;
2410 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
d76a60ba
AV
2411 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2412 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2413 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
4381147d
AV
2414 break;
2415 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2416 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2417 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2418 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2419 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2420 break;
2421 }
2422 /* fall-through */
2423 default:
d76a60ba
AV
2424 status = ICE_ERR_PARAM;
2425 goto ice_aq_get_set_rss_lut_exit;
2426 }
2427
2428ice_aq_get_set_rss_lut_send:
2429 cmd_resp->flags = cpu_to_le16(flags);
2430 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2431
2432ice_aq_get_set_rss_lut_exit:
2433 return status;
2434}
2435
2436/**
2437 * ice_aq_get_rss_lut
2438 * @hw: pointer to the hardware structure
4fb33f31 2439 * @vsi_handle: software VSI handle
d76a60ba
AV
2440 * @lut_type: LUT table type
2441 * @lut: pointer to the LUT buffer provided by the caller
2442 * @lut_size: size of the LUT buffer
2443 *
2444 * get the RSS lookup table, PF or VSI type
2445 */
2446enum ice_status
4fb33f31
AV
2447ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2448 u8 *lut, u16 lut_size)
d76a60ba 2449{
4fb33f31
AV
2450 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2451 return ICE_ERR_PARAM;
2452
2453 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2454 lut_type, lut, lut_size, 0, false);
d76a60ba
AV
2455}
2456
2457/**
2458 * ice_aq_set_rss_lut
2459 * @hw: pointer to the hardware structure
4fb33f31 2460 * @vsi_handle: software VSI handle
d76a60ba
AV
2461 * @lut_type: LUT table type
2462 * @lut: pointer to the LUT buffer provided by the caller
2463 * @lut_size: size of the LUT buffer
2464 *
2465 * set the RSS lookup table, PF or VSI type
2466 */
2467enum ice_status
4fb33f31
AV
2468ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2469 u8 *lut, u16 lut_size)
d76a60ba 2470{
4fb33f31
AV
2471 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2472 return ICE_ERR_PARAM;
2473
2474 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2475 lut_type, lut, lut_size, 0, true);
d76a60ba
AV
2476}
2477
2478/**
2479 * __ice_aq_get_set_rss_key
f9867df6 2480 * @hw: pointer to the HW struct
d76a60ba
AV
2481 * @vsi_id: VSI FW index
2482 * @key: pointer to key info struct
2483 * @set: set true to set the key, false to get the key
2484 *
2485 * get (0x0B04) or set (0x0B02) the RSS key per VSI
2486 */
2487static enum
2488ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2489 struct ice_aqc_get_set_rss_keys *key,
2490 bool set)
2491{
2492 struct ice_aqc_get_set_rss_key *cmd_resp;
2493 u16 key_size = sizeof(*key);
2494 struct ice_aq_desc desc;
2495
2496 cmd_resp = &desc.params.get_set_rss_key;
2497
2498 if (set) {
2499 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2500 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2501 } else {
2502 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2503 }
2504
2505 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2506 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2507 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2508 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2509
2510 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2511}
2512
2513/**
2514 * ice_aq_get_rss_key
f9867df6 2515 * @hw: pointer to the HW struct
4fb33f31 2516 * @vsi_handle: software VSI handle
d76a60ba
AV
2517 * @key: pointer to key info struct
2518 *
2519 * get the RSS key per VSI
2520 */
2521enum ice_status
4fb33f31 2522ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
d76a60ba
AV
2523 struct ice_aqc_get_set_rss_keys *key)
2524{
4fb33f31
AV
2525 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2526 return ICE_ERR_PARAM;
2527
2528 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2529 key, false);
d76a60ba
AV
2530}
2531
2532/**
2533 * ice_aq_set_rss_key
f9867df6 2534 * @hw: pointer to the HW struct
4fb33f31 2535 * @vsi_handle: software VSI handle
d76a60ba
AV
2536 * @keys: pointer to key info struct
2537 *
2538 * set the RSS key per VSI
2539 */
2540enum ice_status
4fb33f31 2541ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
d76a60ba
AV
2542 struct ice_aqc_get_set_rss_keys *keys)
2543{
4fb33f31
AV
2544 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2545 return ICE_ERR_PARAM;
2546
2547 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2548 keys, true);
d76a60ba
AV
2549}
2550
cdedef59
AV
2551/**
2552 * ice_aq_add_lan_txq
2553 * @hw: pointer to the hardware structure
2554 * @num_qgrps: Number of added queue groups
2555 * @qg_list: list of queue groups to be added
2556 * @buf_size: size of buffer for indirect command
2557 * @cd: pointer to command details structure or NULL
2558 *
2559 * Add Tx LAN queue (0x0C30)
2560 *
2561 * NOTE:
2562 * Prior to calling add Tx LAN queue:
2563 * Initialize the following as part of the Tx queue context:
2564 * Completion queue ID if the queue uses Completion queue, Quanta profile,
2565 * Cache profile and Packet shaper profile.
2566 *
2567 * After add Tx LAN queue AQ command is completed:
2568 * Interrupts should be associated with specific queues,
2569 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2570 * flow.
2571 */
2572static enum ice_status
2573ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2574 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2575 struct ice_sq_cd *cd)
2576{
2577 u16 i, sum_header_size, sum_q_size = 0;
2578 struct ice_aqc_add_tx_qgrp *list;
2579 struct ice_aqc_add_txqs *cmd;
2580 struct ice_aq_desc desc;
2581
2582 cmd = &desc.params.add_txqs;
2583
2584 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2585
2586 if (!qg_list)
2587 return ICE_ERR_PARAM;
2588
2589 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2590 return ICE_ERR_PARAM;
2591
2592 sum_header_size = num_qgrps *
2593 (sizeof(*qg_list) - sizeof(*qg_list->txqs));
2594
2595 list = qg_list;
2596 for (i = 0; i < num_qgrps; i++) {
2597 struct ice_aqc_add_txqs_perq *q = list->txqs;
2598
2599 sum_q_size += list->num_txqs * sizeof(*q);
2600 list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2601 }
2602
2603 if (buf_size != (sum_header_size + sum_q_size))
2604 return ICE_ERR_PARAM;
2605
2606 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2607
2608 cmd->num_qgrps = num_qgrps;
2609
2610 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2611}
2612
2613/**
2614 * ice_aq_dis_lan_txq
2615 * @hw: pointer to the hardware structure
2616 * @num_qgrps: number of groups in the list
2617 * @qg_list: the list of groups to disable
2618 * @buf_size: the total size of the qg_list buffer in bytes
94c4441b 2619 * @rst_src: if called due to reset, specifies the reset source
ddf30f7f 2620 * @vmvf_num: the relative VM or VF number that is undergoing the reset
cdedef59
AV
2621 * @cd: pointer to command details structure or NULL
2622 *
2623 * Disable LAN Tx queue (0x0C31)
2624 */
2625static enum ice_status
2626ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2627 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
ddf30f7f 2628 enum ice_disq_rst_src rst_src, u16 vmvf_num,
cdedef59
AV
2629 struct ice_sq_cd *cd)
2630{
2631 struct ice_aqc_dis_txqs *cmd;
2632 struct ice_aq_desc desc;
6e9650d5 2633 enum ice_status status;
cdedef59
AV
2634 u16 i, sz = 0;
2635
2636 cmd = &desc.params.dis_txqs;
2637 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2638
ddf30f7f
AV
2639 /* qg_list can be NULL only in VM/VF reset flow */
2640 if (!qg_list && !rst_src)
cdedef59
AV
2641 return ICE_ERR_PARAM;
2642
2643 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2644 return ICE_ERR_PARAM;
ddf30f7f 2645
cdedef59
AV
2646 cmd->num_entries = num_qgrps;
2647
ddf30f7f
AV
2648 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2649 ICE_AQC_Q_DIS_TIMEOUT_M);
2650
2651 switch (rst_src) {
2652 case ICE_VM_RESET:
2653 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2654 cmd->vmvf_and_timeout |=
2655 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2656 break;
2657 case ICE_VF_RESET:
2658 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
f9867df6 2659 /* In this case, FW expects vmvf_num to be absolute VF ID */
ddf30f7f
AV
2660 cmd->vmvf_and_timeout |=
2661 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2662 ICE_AQC_Q_DIS_VMVF_NUM_M);
2663 break;
2664 case ICE_NO_RESET:
2665 default:
2666 break;
2667 }
2668
6e9650d5
VR
2669 /* flush pipe on time out */
2670 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
ddf30f7f
AV
2671 /* If no queue group info, we are in a reset flow. Issue the AQ */
2672 if (!qg_list)
2673 goto do_aq;
2674
2675 /* set RD bit to indicate that command buffer is provided by the driver
2676 * and it needs to be read by the firmware
2677 */
2678 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2679
cdedef59
AV
2680 for (i = 0; i < num_qgrps; ++i) {
2681 /* Calculate the size taken up by the queue IDs in this group */
2682 sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2683
2684 /* Add the size of the group header */
2685 sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2686
2687 /* If the num of queues is even, add 2 bytes of padding */
2688 if ((qg_list[i].num_qs % 2) == 0)
2689 sz += 2;
2690 }
2691
2692 if (buf_size != sz)
2693 return ICE_ERR_PARAM;
2694
ddf30f7f 2695do_aq:
6e9650d5
VR
2696 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2697 if (status) {
2698 if (!qg_list)
2699 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2700 vmvf_num, hw->adminq.sq_last_status);
2701 else
2702 ice_debug(hw, ICE_DBG_SCHED, "disable Q %d failed %d\n",
2703 le16_to_cpu(qg_list[0].q_id[0]),
2704 hw->adminq.sq_last_status);
2705 }
2706 return status;
cdedef59
AV
2707}
2708
2709/* End of FW Admin Queue command wrappers */
2710
2711/**
2712 * ice_write_byte - write a byte to a packed context structure
2713 * @src_ctx: the context structure to read from
2714 * @dest_ctx: the context to be written to
2715 * @ce_info: a description of the struct to be filled
2716 */
c8b7abdd
BA
2717static void
2718ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
cdedef59
AV
2719{
2720 u8 src_byte, dest_byte, mask;
2721 u8 *from, *dest;
2722 u16 shift_width;
2723
2724 /* copy from the next struct field */
2725 from = src_ctx + ce_info->offset;
2726
2727 /* prepare the bits and mask */
2728 shift_width = ce_info->lsb % 8;
2729 mask = (u8)(BIT(ce_info->width) - 1);
2730
2731 src_byte = *from;
2732 src_byte &= mask;
2733
2734 /* shift to correct alignment */
2735 mask <<= shift_width;
2736 src_byte <<= shift_width;
2737
2738 /* get the current bits from the target bit string */
2739 dest = dest_ctx + (ce_info->lsb / 8);
2740
2741 memcpy(&dest_byte, dest, sizeof(dest_byte));
2742
2743 dest_byte &= ~mask; /* get the bits not changing */
2744 dest_byte |= src_byte; /* add in the new bits */
2745
2746 /* put it all back */
2747 memcpy(dest, &dest_byte, sizeof(dest_byte));
2748}
2749
2750/**
2751 * ice_write_word - write a word to a packed context structure
2752 * @src_ctx: the context structure to read from
2753 * @dest_ctx: the context to be written to
2754 * @ce_info: a description of the struct to be filled
2755 */
c8b7abdd
BA
2756static void
2757ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
cdedef59
AV
2758{
2759 u16 src_word, mask;
2760 __le16 dest_word;
2761 u8 *from, *dest;
2762 u16 shift_width;
2763
2764 /* copy from the next struct field */
2765 from = src_ctx + ce_info->offset;
2766
2767 /* prepare the bits and mask */
2768 shift_width = ce_info->lsb % 8;
2769 mask = BIT(ce_info->width) - 1;
2770
2771 /* don't swizzle the bits until after the mask because the mask bits
2772 * will be in a different bit position on big endian machines
2773 */
2774 src_word = *(u16 *)from;
2775 src_word &= mask;
2776
2777 /* shift to correct alignment */
2778 mask <<= shift_width;
2779 src_word <<= shift_width;
2780
2781 /* get the current bits from the target bit string */
2782 dest = dest_ctx + (ce_info->lsb / 8);
2783
2784 memcpy(&dest_word, dest, sizeof(dest_word));
2785
2786 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
2787 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
2788
2789 /* put it all back */
2790 memcpy(dest, &dest_word, sizeof(dest_word));
2791}
2792
2793/**
2794 * ice_write_dword - write a dword to a packed context structure
2795 * @src_ctx: the context structure to read from
2796 * @dest_ctx: the context to be written to
2797 * @ce_info: a description of the struct to be filled
2798 */
c8b7abdd
BA
2799static void
2800ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
cdedef59
AV
2801{
2802 u32 src_dword, mask;
2803 __le32 dest_dword;
2804 u8 *from, *dest;
2805 u16 shift_width;
2806
2807 /* copy from the next struct field */
2808 from = src_ctx + ce_info->offset;
2809
2810 /* prepare the bits and mask */
2811 shift_width = ce_info->lsb % 8;
2812
2813 /* if the field width is exactly 32 on an x86 machine, then the shift
2814 * operation will not work because the SHL instructions count is masked
2815 * to 5 bits so the shift will do nothing
2816 */
2817 if (ce_info->width < 32)
2818 mask = BIT(ce_info->width) - 1;
2819 else
2820 mask = (u32)~0;
2821
2822 /* don't swizzle the bits until after the mask because the mask bits
2823 * will be in a different bit position on big endian machines
2824 */
2825 src_dword = *(u32 *)from;
2826 src_dword &= mask;
2827
2828 /* shift to correct alignment */
2829 mask <<= shift_width;
2830 src_dword <<= shift_width;
2831
2832 /* get the current bits from the target bit string */
2833 dest = dest_ctx + (ce_info->lsb / 8);
2834
2835 memcpy(&dest_dword, dest, sizeof(dest_dword));
2836
2837 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
2838 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
2839
2840 /* put it all back */
2841 memcpy(dest, &dest_dword, sizeof(dest_dword));
2842}
2843
2844/**
2845 * ice_write_qword - write a qword to a packed context structure
2846 * @src_ctx: the context structure to read from
2847 * @dest_ctx: the context to be written to
2848 * @ce_info: a description of the struct to be filled
2849 */
c8b7abdd
BA
2850static void
2851ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
cdedef59
AV
2852{
2853 u64 src_qword, mask;
2854 __le64 dest_qword;
2855 u8 *from, *dest;
2856 u16 shift_width;
2857
2858 /* copy from the next struct field */
2859 from = src_ctx + ce_info->offset;
2860
2861 /* prepare the bits and mask */
2862 shift_width = ce_info->lsb % 8;
2863
2864 /* if the field width is exactly 64 on an x86 machine, then the shift
2865 * operation will not work because the SHL instructions count is masked
2866 * to 6 bits so the shift will do nothing
2867 */
2868 if (ce_info->width < 64)
2869 mask = BIT_ULL(ce_info->width) - 1;
2870 else
2871 mask = (u64)~0;
2872
2873 /* don't swizzle the bits until after the mask because the mask bits
2874 * will be in a different bit position on big endian machines
2875 */
2876 src_qword = *(u64 *)from;
2877 src_qword &= mask;
2878
2879 /* shift to correct alignment */
2880 mask <<= shift_width;
2881 src_qword <<= shift_width;
2882
2883 /* get the current bits from the target bit string */
2884 dest = dest_ctx + (ce_info->lsb / 8);
2885
2886 memcpy(&dest_qword, dest, sizeof(dest_qword));
2887
2888 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
2889 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
2890
2891 /* put it all back */
2892 memcpy(dest, &dest_qword, sizeof(dest_qword));
2893}
2894
2895/**
2896 * ice_set_ctx - set context bits in packed structure
2897 * @src_ctx: pointer to a generic non-packed context structure
2898 * @dest_ctx: pointer to memory for the packed structure
2899 * @ce_info: a description of the structure to be transformed
2900 */
2901enum ice_status
2902ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2903{
2904 int f;
2905
2906 for (f = 0; ce_info[f].width; f++) {
2907 /* We have to deal with each element of the FW response
2908 * using the correct size so that we are correct regardless
2909 * of the endianness of the machine.
2910 */
2911 switch (ce_info[f].size_of) {
2912 case sizeof(u8):
2913 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2914 break;
2915 case sizeof(u16):
2916 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2917 break;
2918 case sizeof(u32):
2919 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2920 break;
2921 case sizeof(u64):
2922 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2923 break;
2924 default:
2925 return ICE_ERR_INVAL_SIZE;
2926 }
2927 }
2928
2929 return 0;
2930}
2931
bb87ee0e
AV
2932/**
2933 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
2934 * @hw: pointer to the HW struct
2935 * @vsi_handle: software VSI handle
2936 * @tc: TC number
2937 * @q_handle: software queue handle
2938 */
2939static struct ice_q_ctx *
2940ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
2941{
2942 struct ice_vsi_ctx *vsi;
2943 struct ice_q_ctx *q_ctx;
2944
2945 vsi = ice_get_vsi_ctx(hw, vsi_handle);
2946 if (!vsi)
2947 return NULL;
2948 if (q_handle >= vsi->num_lan_q_entries[tc])
2949 return NULL;
2950 if (!vsi->lan_q_ctx[tc])
2951 return NULL;
2952 q_ctx = vsi->lan_q_ctx[tc];
2953 return &q_ctx[q_handle];
2954}
2955
cdedef59
AV
2956/**
2957 * ice_ena_vsi_txq
2958 * @pi: port information structure
4fb33f31 2959 * @vsi_handle: software VSI handle
f9867df6 2960 * @tc: TC number
bb87ee0e 2961 * @q_handle: software queue handle
cdedef59
AV
2962 * @num_qgrps: Number of added queue groups
2963 * @buf: list of queue groups to be added
2964 * @buf_size: size of buffer for indirect command
2965 * @cd: pointer to command details structure or NULL
2966 *
f9867df6 2967 * This function adds one LAN queue
cdedef59
AV
2968 */
2969enum ice_status
bb87ee0e
AV
2970ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
2971 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
cdedef59
AV
2972 struct ice_sq_cd *cd)
2973{
2974 struct ice_aqc_txsched_elem_data node = { 0 };
2975 struct ice_sched_node *parent;
bb87ee0e 2976 struct ice_q_ctx *q_ctx;
cdedef59
AV
2977 enum ice_status status;
2978 struct ice_hw *hw;
2979
2980 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2981 return ICE_ERR_CFG;
2982
2983 if (num_qgrps > 1 || buf->num_txqs > 1)
2984 return ICE_ERR_MAX_LIMIT;
2985
2986 hw = pi->hw;
2987
4fb33f31
AV
2988 if (!ice_is_vsi_valid(hw, vsi_handle))
2989 return ICE_ERR_PARAM;
2990
cdedef59
AV
2991 mutex_lock(&pi->sched_lock);
2992
bb87ee0e
AV
2993 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
2994 if (!q_ctx) {
2995 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
2996 q_handle);
2997 status = ICE_ERR_PARAM;
2998 goto ena_txq_exit;
2999 }
3000
cdedef59 3001 /* find a parent node */
4fb33f31 3002 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
cdedef59
AV
3003 ICE_SCHED_NODE_OWNER_LAN);
3004 if (!parent) {
3005 status = ICE_ERR_PARAM;
3006 goto ena_txq_exit;
3007 }
4fb33f31 3008
cdedef59
AV
3009 buf->parent_teid = parent->info.node_teid;
3010 node.parent_teid = parent->info.node_teid;
3011 /* Mark that the values in the "generic" section as valid. The default
3012 * value in the "generic" section is zero. This means that :
3013 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3014 * - 0 priority among siblings, indicated by Bit 1-3.
3015 * - WFQ, indicated by Bit 4.
3016 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3017 * Bit 5-6.
3018 * - Bit 7 is reserved.
3019 * Without setting the generic section as valid in valid_sections, the
f9867df6 3020 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
cdedef59
AV
3021 */
3022 buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
3023
f9867df6 3024 /* add the LAN queue */
cdedef59 3025 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
6e9650d5 3026 if (status) {
bb87ee0e 3027 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
6e9650d5
VR
3028 le16_to_cpu(buf->txqs[0].txq_id),
3029 hw->adminq.sq_last_status);
cdedef59 3030 goto ena_txq_exit;
6e9650d5 3031 }
cdedef59
AV
3032
3033 node.node_teid = buf->txqs[0].q_teid;
3034 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
bb87ee0e 3035 q_ctx->q_handle = q_handle;
cdedef59 3036
f9867df6 3037 /* add a leaf node into schduler tree queue layer */
cdedef59
AV
3038 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3039
3040ena_txq_exit:
3041 mutex_unlock(&pi->sched_lock);
3042 return status;
3043}
3044
3045/**
3046 * ice_dis_vsi_txq
3047 * @pi: port information structure
bb87ee0e
AV
3048 * @vsi_handle: software VSI handle
3049 * @tc: TC number
cdedef59 3050 * @num_queues: number of queues
bb87ee0e 3051 * @q_handles: pointer to software queue handle array
cdedef59
AV
3052 * @q_ids: pointer to the q_id array
3053 * @q_teids: pointer to queue node teids
94c4441b 3054 * @rst_src: if called due to reset, specifies the reset source
ddf30f7f 3055 * @vmvf_num: the relative VM or VF number that is undergoing the reset
cdedef59
AV
3056 * @cd: pointer to command details structure or NULL
3057 *
3058 * This function removes queues and their corresponding nodes in SW DB
3059 */
3060enum ice_status
bb87ee0e
AV
3061ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3062 u16 *q_handles, u16 *q_ids, u32 *q_teids,
3063 enum ice_disq_rst_src rst_src, u16 vmvf_num,
ddf30f7f 3064 struct ice_sq_cd *cd)
cdedef59
AV
3065{
3066 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3067 struct ice_aqc_dis_txq_item qg_list;
bb87ee0e 3068 struct ice_q_ctx *q_ctx;
cdedef59
AV
3069 u16 i;
3070
3071 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3072 return ICE_ERR_CFG;
3073
85796d6e
AA
3074 if (!num_queues) {
3075 /* if queue is disabled already yet the disable queue command
3076 * has to be sent to complete the VF reset, then call
3077 * ice_aq_dis_lan_txq without any queue information
3078 */
3079 if (rst_src)
3080 return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
3081 vmvf_num, NULL);
3082 return ICE_ERR_CFG;
3083 }
ddf30f7f 3084
cdedef59
AV
3085 mutex_lock(&pi->sched_lock);
3086
3087 for (i = 0; i < num_queues; i++) {
3088 struct ice_sched_node *node;
3089
3090 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3091 if (!node)
3092 continue;
bb87ee0e
AV
3093 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
3094 if (!q_ctx) {
3095 ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3096 q_handles[i]);
3097 continue;
3098 }
3099 if (q_ctx->q_handle != q_handles[i]) {
3100 ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3101 q_ctx->q_handle, q_handles[i]);
3102 continue;
3103 }
cdedef59
AV
3104 qg_list.parent_teid = node->info.parent_teid;
3105 qg_list.num_qs = 1;
3106 qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
3107 status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
ddf30f7f
AV
3108 sizeof(qg_list), rst_src, vmvf_num,
3109 cd);
cdedef59
AV
3110
3111 if (status)
3112 break;
3113 ice_free_sched_node(pi, node);
bb87ee0e 3114 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
cdedef59
AV
3115 }
3116 mutex_unlock(&pi->sched_lock);
3117 return status;
3118}
5513b920
AV
3119
3120/**
94c4441b 3121 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5513b920 3122 * @pi: port information structure
4fb33f31 3123 * @vsi_handle: software VSI handle
5513b920
AV
3124 * @tc_bitmap: TC bitmap
3125 * @maxqs: max queues array per TC
f9867df6 3126 * @owner: LAN or RDMA
5513b920
AV
3127 *
3128 * This function adds/updates the VSI queues per TC.
3129 */
3130static enum ice_status
4fb33f31 3131ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5513b920
AV
3132 u16 *maxqs, u8 owner)
3133{
3134 enum ice_status status = 0;
3135 u8 i;
3136
3137 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3138 return ICE_ERR_CFG;
3139
4fb33f31
AV
3140 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3141 return ICE_ERR_PARAM;
3142
5513b920
AV
3143 mutex_lock(&pi->sched_lock);
3144
2bdc97be 3145 ice_for_each_traffic_class(i) {
5513b920
AV
3146 /* configuration is possible only if TC node is present */
3147 if (!ice_sched_get_tc_node(pi, i))
3148 continue;
3149
4fb33f31 3150 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5513b920
AV
3151 ice_is_tc_ena(tc_bitmap, i));
3152 if (status)
3153 break;
3154 }
3155
3156 mutex_unlock(&pi->sched_lock);
3157 return status;
3158}
3159
3160/**
f9867df6 3161 * ice_cfg_vsi_lan - configure VSI LAN queues
5513b920 3162 * @pi: port information structure
4fb33f31 3163 * @vsi_handle: software VSI handle
5513b920 3164 * @tc_bitmap: TC bitmap
f9867df6 3165 * @max_lanqs: max LAN queues array per TC
5513b920 3166 *
f9867df6 3167 * This function adds/updates the VSI LAN queues per TC.
5513b920
AV
3168 */
3169enum ice_status
4fb33f31 3170ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5513b920
AV
3171 u16 *max_lanqs)
3172{
4fb33f31 3173 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5513b920
AV
3174 ICE_SCHED_NODE_OWNER_LAN);
3175}
45d3d428 3176
334cb062
AV
3177/**
3178 * ice_replay_pre_init - replay pre initialization
f9867df6 3179 * @hw: pointer to the HW struct
334cb062
AV
3180 *
3181 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3182 */
3183static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3184{
3185 struct ice_switch_info *sw = hw->switch_info;
3186 u8 i;
3187
3188 /* Delete old entries from replay filter list head if there is any */
3189 ice_rm_all_sw_replay_rule_info(hw);
3190 /* In start of replay, move entries into replay_rules list, it
3191 * will allow adding rules entries back to filt_rules list,
3192 * which is operational list.
3193 */
3194 for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3195 list_replace_init(&sw->recp_list[i].filt_rules,
3196 &sw->recp_list[i].filt_replay_rules);
3197
3198 return 0;
3199}
3200
3201/**
3202 * ice_replay_vsi - replay VSI configuration
f9867df6 3203 * @hw: pointer to the HW struct
334cb062
AV
3204 * @vsi_handle: driver VSI handle
3205 *
3206 * Restore all VSI configuration after reset. It is required to call this
3207 * function with main VSI first.
3208 */
3209enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3210{
3211 enum ice_status status;
3212
3213 if (!ice_is_vsi_valid(hw, vsi_handle))
3214 return ICE_ERR_PARAM;
3215
3216 /* Replay pre-initialization if there is any */
3217 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3218 status = ice_replay_pre_init(hw);
3219 if (status)
3220 return status;
3221 }
3222
3223 /* Replay per VSI all filters */
3224 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
3225 return status;
3226}
3227
3228/**
3229 * ice_replay_post - post replay configuration cleanup
f9867df6 3230 * @hw: pointer to the HW struct
334cb062
AV
3231 *
3232 * Post replay cleanup.
3233 */
3234void ice_replay_post(struct ice_hw *hw)
3235{
3236 /* Delete old entries from replay filter list head */
3237 ice_rm_all_sw_replay_rule_info(hw);
3238}
3239
45d3d428
AV
3240/**
3241 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3242 * @hw: ptr to the hardware info
3243 * @hireg: high 32 bit HW register to read from
3244 * @loreg: low 32 bit HW register to read from
3245 * @prev_stat_loaded: bool to specify if previous stats are loaded
3246 * @prev_stat: ptr to previous loaded stat value
3247 * @cur_stat: ptr to current stat value
3248 */
c8b7abdd
BA
3249void
3250ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
3251 bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
45d3d428
AV
3252{
3253 u64 new_data;
3254
3255 new_data = rd32(hw, loreg);
3256 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
3257
3258 /* device stats are not reset at PFR, they likely will not be zeroed
3259 * when the driver starts. So save the first values read and use them as
3260 * offsets to be subtracted from the raw values in order to report stats
3261 * that count from zero.
3262 */
3263 if (!prev_stat_loaded)
3264 *prev_stat = new_data;
3265 if (new_data >= *prev_stat)
3266 *cur_stat = new_data - *prev_stat;
3267 else
3268 /* to manage the potential roll-over */
3269 *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
3270 *cur_stat &= 0xFFFFFFFFFFULL;
3271}
3272
3273/**
3274 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3275 * @hw: ptr to the hardware info
3276 * @reg: HW register to read from
3277 * @prev_stat_loaded: bool to specify if previous stats are loaded
3278 * @prev_stat: ptr to previous loaded stat value
3279 * @cur_stat: ptr to current stat value
3280 */
c8b7abdd
BA
3281void
3282ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3283 u64 *prev_stat, u64 *cur_stat)
45d3d428
AV
3284{
3285 u32 new_data;
3286
3287 new_data = rd32(hw, reg);
3288
3289 /* device stats are not reset at PFR, they likely will not be zeroed
3290 * when the driver starts. So save the first values read and use them as
3291 * offsets to be subtracted from the raw values in order to report stats
3292 * that count from zero.
3293 */
3294 if (!prev_stat_loaded)
3295 *prev_stat = new_data;
3296 if (new_data >= *prev_stat)
3297 *cur_stat = new_data - *prev_stat;
3298 else
3299 /* to manage the potential roll-over */
3300 *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
3301}
7b9ffc76
AV
3302
3303/**
3304 * ice_sched_query_elem - query element information from HW
3305 * @hw: pointer to the HW struct
3306 * @node_teid: node TEID to be queried
3307 * @buf: buffer to element information
3308 *
3309 * This function queries HW element information
3310 */
3311enum ice_status
3312ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3313 struct ice_aqc_get_elem *buf)
3314{
3315 u16 buf_size, num_elem_ret = 0;
3316 enum ice_status status;
3317
3318 buf_size = sizeof(*buf);
3319 memset(buf, 0, buf_size);
3320 buf->generic[0].node_teid = cpu_to_le32(node_teid);
3321 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3322 NULL);
3323 if (status || num_elem_ret != 1)
3324 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3325 return status;
3326}