]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/intel/ice/ice_common.c
ice: remove redundant variable and if condition
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / ice / ice_common.c
CommitLineData
7ec59eea
AV
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
9c20346b 5#include "ice_sched.h"
7ec59eea
AV
6#include "ice_adminq_cmd.h"
7
f31e4b6f
AV
8#define ICE_PF_RESET_WAIT_COUNT 200
9
22ef683b
AV
10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
cdedef59
AV
12 ((ICE_RX_OPC_MDID << \
13 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17
22ef683b
AV
18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
cdedef59
AV
20 (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28
f31e4b6f
AV
29/**
30 * ice_set_mac_type - Sets MAC type
31 * @hw: pointer to the HW structure
32 *
33 * This function sets the MAC type of the adapter based on the
34 * vendor ID and device ID stored in the hw structure.
35 */
36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37{
38 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 return ICE_ERR_DEVICE_NOT_SUPPORTED;
40
41 hw->mac_type = ICE_MAC_GENERIC;
42 return 0;
43}
44
f203dca3
AV
45/**
46 * ice_dev_onetime_setup - Temporary HW/FW workarounds
47 * @hw: pointer to the HW structure
48 *
49 * This function provides temporary workarounds for certain issues
50 * that are expected to be fixed in the HW/FW.
51 */
52void ice_dev_onetime_setup(struct ice_hw *hw)
53{
54 /* configure Rx - set non pxe mode */
55 wr32(hw, GLLAN_RCTL_0, 0x1);
56
57#define MBX_PF_VT_PFALLOC 0x00231E80
58 /* set VFs per PF */
59 wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
60}
61
f31e4b6f
AV
62/**
63 * ice_clear_pf_cfg - Clear PF configuration
64 * @hw: pointer to the hardware structure
3968540b
AV
65 *
66 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
67 * configuration, flow director filters, etc.).
f31e4b6f
AV
68 */
69enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
70{
71 struct ice_aq_desc desc;
72
73 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
74
75 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
76}
77
dc49c772
AV
78/**
79 * ice_aq_manage_mac_read - manage MAC address read command
80 * @hw: pointer to the hw struct
81 * @buf: a virtual buffer to hold the manage MAC read response
82 * @buf_size: Size of the virtual buffer
83 * @cd: pointer to command details structure or NULL
84 *
85 * This function is used to return per PF station MAC address (0x0107).
86 * NOTE: Upon successful completion of this command, MAC address information
87 * is returned in user specified buffer. Please interpret user specified
88 * buffer as "manage_mac_read" response.
89 * Response such as various MAC addresses are stored in HW struct (port.mac)
90 * ice_aq_discover_caps is expected to be called before this function is called.
91 */
92static enum ice_status
93ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
94 struct ice_sq_cd *cd)
95{
96 struct ice_aqc_manage_mac_read_resp *resp;
97 struct ice_aqc_manage_mac_read *cmd;
98 struct ice_aq_desc desc;
99 enum ice_status status;
100 u16 flags;
d6fef10c 101 u8 i;
dc49c772
AV
102
103 cmd = &desc.params.mac_read;
104
105 if (buf_size < sizeof(*resp))
106 return ICE_ERR_BUF_TOO_SHORT;
107
108 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
109
110 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
111 if (status)
112 return status;
113
114 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
115 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
116
117 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
118 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
119 return ICE_ERR_CFG;
120 }
121
d6fef10c
MFIP
122 /* A single port can report up to two (LAN and WoL) addresses */
123 for (i = 0; i < cmd->num_addr; i++)
124 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
125 ether_addr_copy(hw->port_info->mac.lan_addr,
126 resp[i].mac_addr);
127 ether_addr_copy(hw->port_info->mac.perm_addr,
128 resp[i].mac_addr);
129 break;
130 }
131
dc49c772
AV
132 return 0;
133}
134
135/**
136 * ice_aq_get_phy_caps - returns PHY capabilities
137 * @pi: port information structure
138 * @qual_mods: report qualified modules
139 * @report_mode: report mode capabilities
140 * @pcaps: structure for PHY capabilities to be filled
141 * @cd: pointer to command details structure or NULL
142 *
143 * Returns the various PHY capabilities supported on the Port (0x0600)
144 */
48cb27f2 145enum ice_status
dc49c772
AV
146ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
147 struct ice_aqc_get_phy_caps_data *pcaps,
148 struct ice_sq_cd *cd)
149{
150 struct ice_aqc_get_phy_caps *cmd;
151 u16 pcaps_size = sizeof(*pcaps);
152 struct ice_aq_desc desc;
153 enum ice_status status;
154
155 cmd = &desc.params.get_phy;
156
157 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 return ICE_ERR_PARAM;
159
160 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
161
162 if (qual_mods)
163 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
164
165 cmd->param0 |= cpu_to_le16(report_mode);
166 status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
167
aef74145 168 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
dc49c772 169 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
aef74145
AV
170 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
171 }
dc49c772
AV
172
173 return status;
174}
175
176/**
177 * ice_get_media_type - Gets media type
178 * @pi: port information structure
179 */
180static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
181{
182 struct ice_link_status *hw_link_info;
183
184 if (!pi)
185 return ICE_MEDIA_UNKNOWN;
186
187 hw_link_info = &pi->phy.link_info;
aef74145
AV
188 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
189 /* If more than one media type is selected, report unknown */
190 return ICE_MEDIA_UNKNOWN;
dc49c772
AV
191
192 if (hw_link_info->phy_type_low) {
193 switch (hw_link_info->phy_type_low) {
194 case ICE_PHY_TYPE_LOW_1000BASE_SX:
195 case ICE_PHY_TYPE_LOW_1000BASE_LX:
196 case ICE_PHY_TYPE_LOW_10GBASE_SR:
197 case ICE_PHY_TYPE_LOW_10GBASE_LR:
198 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
199 case ICE_PHY_TYPE_LOW_25GBASE_SR:
200 case ICE_PHY_TYPE_LOW_25GBASE_LR:
201 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
202 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
203 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
aef74145
AV
204 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
205 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
206 case ICE_PHY_TYPE_LOW_50GBASE_SR:
207 case ICE_PHY_TYPE_LOW_50GBASE_FR:
208 case ICE_PHY_TYPE_LOW_50GBASE_LR:
209 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
210 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
211 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
212 case ICE_PHY_TYPE_LOW_100GBASE_DR:
dc49c772
AV
213 return ICE_MEDIA_FIBER;
214 case ICE_PHY_TYPE_LOW_100BASE_TX:
215 case ICE_PHY_TYPE_LOW_1000BASE_T:
216 case ICE_PHY_TYPE_LOW_2500BASE_T:
217 case ICE_PHY_TYPE_LOW_5GBASE_T:
218 case ICE_PHY_TYPE_LOW_10GBASE_T:
219 case ICE_PHY_TYPE_LOW_25GBASE_T:
220 return ICE_MEDIA_BASET;
221 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
222 case ICE_PHY_TYPE_LOW_25GBASE_CR:
223 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
224 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
225 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
aef74145
AV
226 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
227 case ICE_PHY_TYPE_LOW_50GBASE_CP:
228 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
229 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
230 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
dc49c772
AV
231 return ICE_MEDIA_DA;
232 case ICE_PHY_TYPE_LOW_1000BASE_KX:
233 case ICE_PHY_TYPE_LOW_2500BASE_KX:
234 case ICE_PHY_TYPE_LOW_2500BASE_X:
235 case ICE_PHY_TYPE_LOW_5GBASE_KR:
236 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
237 case ICE_PHY_TYPE_LOW_25GBASE_KR:
238 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
239 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
240 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
aef74145
AV
241 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
242 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
243 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
244 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
245 return ICE_MEDIA_BACKPLANE;
246 }
247 } else {
248 switch (hw_link_info->phy_type_high) {
249 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
dc49c772
AV
250 return ICE_MEDIA_BACKPLANE;
251 }
252 }
dc49c772
AV
253 return ICE_MEDIA_UNKNOWN;
254}
255
256/**
257 * ice_aq_get_link_info
258 * @pi: port information structure
259 * @ena_lse: enable/disable LinkStatusEvent reporting
260 * @link: pointer to link status structure - optional
261 * @cd: pointer to command details structure or NULL
262 *
263 * Get Link Status (0x607). Returns the link status of the adapter.
264 */
4f4be03b 265static enum ice_status
dc49c772
AV
266ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
267 struct ice_link_status *link, struct ice_sq_cd *cd)
268{
269 struct ice_link_status *hw_link_info_old, *hw_link_info;
270 struct ice_aqc_get_link_status_data link_data = { 0 };
271 struct ice_aqc_get_link_status *resp;
272 enum ice_media_type *hw_media_type;
273 struct ice_fc_info *hw_fc_info;
274 bool tx_pause, rx_pause;
275 struct ice_aq_desc desc;
276 enum ice_status status;
277 u16 cmd_flags;
278
279 if (!pi)
280 return ICE_ERR_PARAM;
281 hw_link_info_old = &pi->phy.link_info_old;
282 hw_media_type = &pi->phy.media_type;
283 hw_link_info = &pi->phy.link_info;
284 hw_fc_info = &pi->fc;
285
286 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
287 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
288 resp = &desc.params.get_link_status;
289 resp->cmd_flags = cpu_to_le16(cmd_flags);
290 resp->lport_num = pi->lport;
291
292 status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
293 cd);
294
295 if (status)
296 return status;
297
298 /* save off old link status information */
299 *hw_link_info_old = *hw_link_info;
300
301 /* update current link status information */
302 hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
303 hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
aef74145 304 hw_link_info->phy_type_high = le64_to_cpu(link_data.phy_type_high);
dc49c772
AV
305 *hw_media_type = ice_get_media_type(pi);
306 hw_link_info->link_info = link_data.link_info;
307 hw_link_info->an_info = link_data.an_info;
308 hw_link_info->ext_info = link_data.ext_info;
309 hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
310 hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
311
312 /* update fc info */
313 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
314 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
315 if (tx_pause && rx_pause)
316 hw_fc_info->current_mode = ICE_FC_FULL;
317 else if (tx_pause)
318 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
319 else if (rx_pause)
320 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
321 else
322 hw_fc_info->current_mode = ICE_FC_NONE;
323
324 hw_link_info->lse_ena =
325 !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
326
327 /* save link status information */
328 if (link)
329 *link = *hw_link_info;
330
331 /* flag cleared so calling functions don't call AQ again */
332 pi->phy.get_link_info = false;
333
334 return status;
335}
336
cdedef59 337/**
22ef683b 338 * ice_init_flex_flags
cdedef59 339 * @hw: pointer to the hardware structure
22ef683b 340 * @prof_id: Rx Descriptor Builder profile ID
cdedef59 341 *
22ef683b 342 * Function to initialize Rx flex flags
cdedef59 343 */
22ef683b 344static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
cdedef59
AV
345{
346 u8 idx = 0;
347
22ef683b
AV
348 /* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
349 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
350 * flexiflags1[3:0] - Not used for flag programming
351 * flexiflags2[7:0] - Tunnel and VLAN types
352 * 2 invalid fields in last index
353 */
354 switch (prof_id) {
355 /* Rx flex flags are currently programmed for the NIC profiles only.
356 * Different flag bit programming configurations can be added per
357 * profile as needed.
358 */
359 case ICE_RXDID_FLEX_NIC:
360 case ICE_RXDID_FLEX_NIC_2:
361 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG,
362 ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI,
363 ICE_RXFLG_FIN, idx++);
364 /* flex flag 1 is not used for flexi-flag programming, skipping
365 * these four FLG64 bits.
366 */
367 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST,
368 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
369 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI,
370 ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100,
371 ICE_RXFLG_EVLAN_x9100, idx++);
372 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100,
373 ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC,
374 ICE_RXFLG_TNL0, idx++);
375 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
376 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
377 break;
378
379 default:
380 ice_debug(hw, ICE_DBG_INIT,
381 "Flag programming for profile ID %d not supported\n",
382 prof_id);
383 }
384}
385
386/**
387 * ice_init_flex_flds
388 * @hw: pointer to the hardware structure
389 * @prof_id: Rx Descriptor Builder profile ID
390 *
391 * Function to initialize flex descriptors
392 */
393static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
394{
395 enum ice_flex_rx_mdid mdid;
396
397 switch (prof_id) {
398 case ICE_RXDID_FLEX_NIC:
399 case ICE_RXDID_FLEX_NIC_2:
400 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
401 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
402 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
403
404 mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
405 ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
406
407 ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
408
409 ice_init_flex_flags(hw, prof_id);
410 break;
411
412 default:
413 ice_debug(hw, ICE_DBG_INIT,
414 "Field init for profile ID %d not supported\n",
415 prof_id);
416 }
cdedef59
AV
417}
418
9daf8208
AV
419/**
420 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
421 * @hw: pointer to the hw struct
422 */
423static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
424{
425 struct ice_switch_info *sw;
426
427 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
428 sizeof(*hw->switch_info), GFP_KERNEL);
429 sw = hw->switch_info;
430
431 if (!sw)
432 return ICE_ERR_NO_MEMORY;
433
434 INIT_LIST_HEAD(&sw->vsi_list_map_head);
435
5fb597d7 436 return ice_init_def_sw_recp(hw);
9daf8208
AV
437}
438
439/**
440 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
441 * @hw: pointer to the hw struct
442 */
443static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
444{
445 struct ice_switch_info *sw = hw->switch_info;
446 struct ice_vsi_list_map_info *v_pos_map;
447 struct ice_vsi_list_map_info *v_tmp_map;
80d144c9
AV
448 struct ice_sw_recipe *recps;
449 u8 i;
9daf8208
AV
450
451 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
452 list_entry) {
453 list_del(&v_pos_map->list_entry);
454 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
455 }
80d144c9
AV
456 recps = hw->switch_info->recp_list;
457 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
458 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
459
460 recps[i].root_rid = i;
461 mutex_destroy(&recps[i].filt_rule_lock);
462 list_for_each_entry_safe(lst_itr, tmp_entry,
463 &recps[i].filt_rules, list_entry) {
464 list_del(&lst_itr->list_entry);
465 devm_kfree(ice_hw_to_dev(hw), lst_itr);
466 }
467 }
334cb062 468 ice_rm_all_sw_replay_rule_info(hw);
80d144c9 469 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
9daf8208
AV
470 devm_kfree(ice_hw_to_dev(hw), sw);
471}
472
8b97ceb1
HT
473#define ICE_FW_LOG_DESC_SIZE(n) (sizeof(struct ice_aqc_fw_logging_data) + \
474 (((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
475#define ICE_FW_LOG_DESC_SIZE_MAX \
476 ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
477
478/**
479 * ice_cfg_fw_log - configure FW logging
480 * @hw: pointer to the hw struct
481 * @enable: enable certain FW logging events if true, disable all if false
482 *
483 * This function enables/disables the FW logging via Rx CQ events and a UART
484 * port based on predetermined configurations. FW logging via the Rx CQ can be
485 * enabled/disabled for individual PF's. However, FW logging via the UART can
486 * only be enabled/disabled for all PFs on the same device.
487 *
488 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
489 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
490 * before initializing the device.
491 *
492 * When re/configuring FW logging, callers need to update the "cfg" elements of
493 * the hw->fw_log.evnts array with the desired logging event configurations for
494 * modules of interest. When disabling FW logging completely, the callers can
495 * just pass false in the "enable" parameter. On completion, the function will
496 * update the "cur" element of the hw->fw_log.evnts array with the resulting
497 * logging event configurations of the modules that are being re/configured. FW
498 * logging modules that are not part of a reconfiguration operation retain their
499 * previous states.
500 *
501 * Before resetting the device, it is recommended that the driver disables FW
502 * logging before shutting down the control queue. When disabling FW logging
503 * ("enable" = false), the latest configurations of FW logging events stored in
504 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
505 * a device reset.
506 *
507 * When enabling FW logging to emit log messages via the Rx CQ during the
508 * device's initialization phase, a mechanism alternative to interrupt handlers
509 * needs to be used to extract FW log messages from the Rx CQ periodically and
510 * to prevent the Rx CQ from being full and stalling other types of control
511 * messages from FW to SW. Interrupts are typically disabled during the device's
512 * initialization phase.
513 */
514static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
515{
516 struct ice_aqc_fw_logging_data *data = NULL;
517 struct ice_aqc_fw_logging *cmd;
518 enum ice_status status = 0;
519 u16 i, chgs = 0, len = 0;
520 struct ice_aq_desc desc;
521 u8 actv_evnts = 0;
522 void *buf = NULL;
523
524 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
525 return 0;
526
527 /* Disable FW logging only when the control queue is still responsive */
528 if (!enable &&
529 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
530 return 0;
531
532 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
533 cmd = &desc.params.fw_logging;
534
535 /* Indicate which controls are valid */
536 if (hw->fw_log.cq_en)
537 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
538
539 if (hw->fw_log.uart_en)
540 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
541
542 if (enable) {
543 /* Fill in an array of entries with FW logging modules and
544 * logging events being reconfigured.
545 */
546 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
547 u16 val;
548
549 /* Keep track of enabled event types */
550 actv_evnts |= hw->fw_log.evnts[i].cfg;
551
552 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
553 continue;
554
555 if (!data) {
556 data = devm_kzalloc(ice_hw_to_dev(hw),
557 ICE_FW_LOG_DESC_SIZE_MAX,
558 GFP_KERNEL);
559 if (!data)
560 return ICE_ERR_NO_MEMORY;
561 }
562
563 val = i << ICE_AQC_FW_LOG_ID_S;
564 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
565 data->entry[chgs++] = cpu_to_le16(val);
566 }
567
568 /* Only enable FW logging if at least one module is specified.
569 * If FW logging is currently enabled but all modules are not
570 * enabled to emit log messages, disable FW logging altogether.
571 */
572 if (actv_evnts) {
573 /* Leave if there is effectively no change */
574 if (!chgs)
575 goto out;
576
577 if (hw->fw_log.cq_en)
578 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
579
580 if (hw->fw_log.uart_en)
581 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
582
583 buf = data;
584 len = ICE_FW_LOG_DESC_SIZE(chgs);
585 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
586 }
587 }
588
589 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
590 if (!status) {
591 /* Update the current configuration to reflect events enabled.
592 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
593 * logging mode is enabled for the device. They do not reflect
594 * actual modules being enabled to emit log messages. So, their
595 * values remain unchanged even when all modules are disabled.
596 */
597 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
598
599 hw->fw_log.actv_evnts = actv_evnts;
600 for (i = 0; i < cnt; i++) {
601 u16 v, m;
602
603 if (!enable) {
604 /* When disabling all FW logging events as part
605 * of device's de-initialization, the original
606 * configurations are retained, and can be used
607 * to reconfigure FW logging later if the device
608 * is re-initialized.
609 */
610 hw->fw_log.evnts[i].cur = 0;
611 continue;
612 }
613
614 v = le16_to_cpu(data->entry[i]);
615 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
616 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
617 }
618 }
619
620out:
621 if (data)
622 devm_kfree(ice_hw_to_dev(hw), data);
623
624 return status;
625}
626
627/**
628 * ice_output_fw_log
629 * @hw: pointer to the hw struct
630 * @desc: pointer to the AQ message descriptor
631 * @buf: pointer to the buffer accompanying the AQ message
632 *
633 * Formats a FW Log message and outputs it via the standard driver logs.
634 */
635void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
636{
637 ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n");
638 ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf,
639 le16_to_cpu(desc->datalen));
640 ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n");
641}
642
9e4ab4c2
BC
643/**
644 * ice_get_itr_intrl_gran - determine int/intrl granularity
645 * @hw: pointer to the hw struct
646 *
647 * Determines the itr/intrl granularities based on the maximum aggregate
648 * bandwidth according to the device's configuration during power-on.
649 */
650static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw)
651{
652 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
653 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
654 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
655
656 switch (max_agg_bw) {
657 case ICE_MAX_AGG_BW_200G:
658 case ICE_MAX_AGG_BW_100G:
659 case ICE_MAX_AGG_BW_50G:
660 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
661 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
662 break;
663 case ICE_MAX_AGG_BW_25G:
664 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
665 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
666 break;
667 default:
668 ice_debug(hw, ICE_DBG_INIT,
669 "Failed to determine itr/intrl granularity\n");
670 return ICE_ERR_CFG;
671 }
672
673 return 0;
674}
675
f31e4b6f
AV
676/**
677 * ice_init_hw - main hardware initialization routine
678 * @hw: pointer to the hardware structure
679 */
680enum ice_status ice_init_hw(struct ice_hw *hw)
681{
dc49c772 682 struct ice_aqc_get_phy_caps_data *pcaps;
f31e4b6f 683 enum ice_status status;
dc49c772
AV
684 u16 mac_buf_len;
685 void *mac_buf;
f31e4b6f
AV
686
687 /* Set MAC type based on DeviceID */
688 status = ice_set_mac_type(hw);
689 if (status)
690 return status;
691
692 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
693 PF_FUNC_RID_FUNC_NUM_M) >>
694 PF_FUNC_RID_FUNC_NUM_S;
695
696 status = ice_reset(hw, ICE_RESET_PFR);
697 if (status)
698 return status;
699
9e4ab4c2
BC
700 status = ice_get_itr_intrl_gran(hw);
701 if (status)
702 return status;
940b61af 703
f31e4b6f
AV
704 status = ice_init_all_ctrlq(hw);
705 if (status)
706 goto err_unroll_cqinit;
707
8b97ceb1
HT
708 /* Enable FW logging. Not fatal if this fails. */
709 status = ice_cfg_fw_log(hw, true);
710 if (status)
711 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
712
f31e4b6f
AV
713 status = ice_clear_pf_cfg(hw);
714 if (status)
715 goto err_unroll_cqinit;
716
717 ice_clear_pxe_mode(hw);
718
719 status = ice_init_nvm(hw);
720 if (status)
721 goto err_unroll_cqinit;
722
9c20346b
AV
723 status = ice_get_caps(hw);
724 if (status)
725 goto err_unroll_cqinit;
726
727 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
728 sizeof(*hw->port_info), GFP_KERNEL);
729 if (!hw->port_info) {
730 status = ICE_ERR_NO_MEMORY;
731 goto err_unroll_cqinit;
732 }
733
734 /* set the back pointer to hw */
735 hw->port_info->hw = hw;
736
737 /* Initialize port_info struct with switch configuration data */
738 status = ice_get_initial_sw_cfg(hw);
739 if (status)
740 goto err_unroll_alloc;
741
9daf8208
AV
742 hw->evb_veb = true;
743
d337f2af 744 /* Query the allocated resources for Tx scheduler */
9c20346b
AV
745 status = ice_sched_query_res_alloc(hw);
746 if (status) {
747 ice_debug(hw, ICE_DBG_SCHED,
748 "Failed to get scheduler allocated resources\n");
749 goto err_unroll_alloc;
750 }
751
dc49c772
AV
752 /* Initialize port_info struct with scheduler data */
753 status = ice_sched_init_port(hw->port_info);
754 if (status)
755 goto err_unroll_sched;
756
757 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
758 if (!pcaps) {
759 status = ICE_ERR_NO_MEMORY;
760 goto err_unroll_sched;
761 }
762
763 /* Initialize port_info struct with PHY capabilities */
764 status = ice_aq_get_phy_caps(hw->port_info, false,
765 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
766 devm_kfree(ice_hw_to_dev(hw), pcaps);
767 if (status)
768 goto err_unroll_sched;
769
770 /* Initialize port_info struct with link information */
771 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
772 if (status)
773 goto err_unroll_sched;
774
b36c598c
AV
775 /* need a valid SW entry point to build a Tx tree */
776 if (!hw->sw_entry_point_layer) {
777 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
778 status = ICE_ERR_CFG;
779 goto err_unroll_sched;
780 }
9be1d6f8 781 INIT_LIST_HEAD(&hw->agg_list);
b36c598c 782
9daf8208
AV
783 status = ice_init_fltr_mgmt_struct(hw);
784 if (status)
785 goto err_unroll_sched;
786
f203dca3
AV
787 ice_dev_onetime_setup(hw);
788
d6fef10c
MFIP
789 /* Get MAC information */
790 /* A single port can report up to two (LAN and WoL) addresses */
791 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
792 sizeof(struct ice_aqc_manage_mac_read_resp),
793 GFP_KERNEL);
794 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
dc49c772 795
63bb4e1e
WY
796 if (!mac_buf) {
797 status = ICE_ERR_NO_MEMORY;
9daf8208 798 goto err_unroll_fltr_mgmt_struct;
63bb4e1e 799 }
dc49c772
AV
800
801 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
802 devm_kfree(ice_hw_to_dev(hw), mac_buf);
803
804 if (status)
9daf8208 805 goto err_unroll_fltr_mgmt_struct;
dc49c772 806
22ef683b
AV
807 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
808 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
cdedef59 809
f31e4b6f
AV
810 return 0;
811
9daf8208
AV
812err_unroll_fltr_mgmt_struct:
813 ice_cleanup_fltr_mgmt_struct(hw);
dc49c772
AV
814err_unroll_sched:
815 ice_sched_cleanup_all(hw);
9c20346b
AV
816err_unroll_alloc:
817 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
f31e4b6f
AV
818err_unroll_cqinit:
819 ice_shutdown_all_ctrlq(hw);
820 return status;
821}
822
823/**
824 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
825 * @hw: pointer to the hardware structure
826 */
827void ice_deinit_hw(struct ice_hw *hw)
828{
8b97ceb1
HT
829 ice_cleanup_fltr_mgmt_struct(hw);
830
9c20346b 831 ice_sched_cleanup_all(hw);
9be1d6f8 832 ice_sched_clear_agg(hw);
dc49c772 833
9c20346b
AV
834 if (hw->port_info) {
835 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
836 hw->port_info = NULL;
837 }
9daf8208 838
8b97ceb1
HT
839 /* Attempt to disable FW logging before shutting down control queues */
840 ice_cfg_fw_log(hw, false);
841 ice_shutdown_all_ctrlq(hw);
33e055fc
VR
842
843 /* Clear VSI contexts if not already cleared */
844 ice_clear_all_vsi_ctx(hw);
f31e4b6f
AV
845}
846
847/**
848 * ice_check_reset - Check to see if a global reset is complete
849 * @hw: pointer to the hardware structure
850 */
851enum ice_status ice_check_reset(struct ice_hw *hw)
852{
853 u32 cnt, reg = 0, grst_delay;
854
855 /* Poll for Device Active state in case a recent CORER, GLOBR,
856 * or EMPR has occurred. The grst delay value is in 100ms units.
857 * Add 1sec for outstanding AQ commands that can take a long time.
858 */
859 grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
860 GLGEN_RSTCTL_GRSTDEL_S) + 10;
861
862 for (cnt = 0; cnt < grst_delay; cnt++) {
863 mdelay(100);
864 reg = rd32(hw, GLGEN_RSTAT);
865 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
866 break;
867 }
868
869 if (cnt == grst_delay) {
870 ice_debug(hw, ICE_DBG_INIT,
871 "Global reset polling failed to complete.\n");
872 return ICE_ERR_RESET_FAILED;
873 }
874
875#define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \
876 GLNVM_ULD_GLOBR_DONE_M)
877
878 /* Device is Active; check Global Reset processes are done */
879 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
880 reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
881 if (reg == ICE_RESET_DONE_MASK) {
882 ice_debug(hw, ICE_DBG_INIT,
883 "Global reset processes done. %d\n", cnt);
884 break;
885 }
886 mdelay(10);
887 }
888
889 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
890 ice_debug(hw, ICE_DBG_INIT,
891 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
892 reg);
893 return ICE_ERR_RESET_FAILED;
894 }
895
896 return 0;
897}
898
899/**
900 * ice_pf_reset - Reset the PF
901 * @hw: pointer to the hardware structure
902 *
903 * If a global reset has been triggered, this function checks
904 * for its completion and then issues the PF reset
905 */
906static enum ice_status ice_pf_reset(struct ice_hw *hw)
907{
908 u32 cnt, reg;
909
910 /* If at function entry a global reset was already in progress, i.e.
911 * state is not 'device active' or any of the reset done bits are not
912 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
913 * global reset is done.
914 */
915 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
916 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
917 /* poll on global reset currently in progress until done */
918 if (ice_check_reset(hw))
919 return ICE_ERR_RESET_FAILED;
920
921 return 0;
922 }
923
924 /* Reset the PF */
925 reg = rd32(hw, PFGEN_CTRL);
926
927 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
928
929 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
930 reg = rd32(hw, PFGEN_CTRL);
931 if (!(reg & PFGEN_CTRL_PFSWR_M))
932 break;
933
934 mdelay(1);
935 }
936
937 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
938 ice_debug(hw, ICE_DBG_INIT,
939 "PF reset polling failed to complete.\n");
940 return ICE_ERR_RESET_FAILED;
941 }
942
943 return 0;
944}
945
946/**
947 * ice_reset - Perform different types of reset
948 * @hw: pointer to the hardware structure
949 * @req: reset request
950 *
951 * This function triggers a reset as specified by the req parameter.
952 *
953 * Note:
954 * If anything other than a PF reset is triggered, PXE mode is restored.
955 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
956 * interface has been restored in the rebuild flow.
957 */
958enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
959{
960 u32 val = 0;
961
962 switch (req) {
963 case ICE_RESET_PFR:
964 return ice_pf_reset(hw);
965 case ICE_RESET_CORER:
966 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
967 val = GLGEN_RTRIG_CORER_M;
968 break;
969 case ICE_RESET_GLOBR:
970 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
971 val = GLGEN_RTRIG_GLOBR_M;
972 break;
0f9d5027
AV
973 default:
974 return ICE_ERR_PARAM;
f31e4b6f
AV
975 }
976
977 val |= rd32(hw, GLGEN_RTRIG);
978 wr32(hw, GLGEN_RTRIG, val);
979 ice_flush(hw);
980
981 /* wait for the FW to be ready */
982 return ice_check_reset(hw);
983}
984
cdedef59
AV
985/**
986 * ice_copy_rxq_ctx_to_hw
987 * @hw: pointer to the hardware structure
988 * @ice_rxq_ctx: pointer to the rxq context
d337f2af 989 * @rxq_index: the index of the Rx queue
cdedef59
AV
990 *
991 * Copies rxq context from dense structure to hw register space
992 */
993static enum ice_status
994ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
995{
996 u8 i;
997
998 if (!ice_rxq_ctx)
999 return ICE_ERR_BAD_PTR;
1000
1001 if (rxq_index > QRX_CTRL_MAX_INDEX)
1002 return ICE_ERR_PARAM;
1003
1004 /* Copy each dword separately to hw */
1005 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1006 wr32(hw, QRX_CONTEXT(i, rxq_index),
1007 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1008
1009 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1010 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1011 }
1012
1013 return 0;
1014}
1015
1016/* LAN Rx Queue Context */
1017static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1018 /* Field Width LSB */
1019 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1020 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1021 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1022 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1023 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1024 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1025 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1026 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1027 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1028 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1029 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1030 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1031 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1032 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1033 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1034 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1035 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1036 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1037 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1038 { 0 }
1039};
1040
1041/**
1042 * ice_write_rxq_ctx
1043 * @hw: pointer to the hardware structure
1044 * @rlan_ctx: pointer to the rxq context
d337f2af 1045 * @rxq_index: the index of the Rx queue
cdedef59
AV
1046 *
1047 * Converts rxq context from sparse to dense structure and then writes
1048 * it to hw register space
1049 */
1050enum ice_status
1051ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1052 u32 rxq_index)
1053{
1054 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1055
1056 ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1057 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1058}
1059
1060/* LAN Tx Queue Context */
1061const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1062 /* Field Width LSB */
1063 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1064 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1065 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1066 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1067 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1068 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1069 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1070 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1071 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1072 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1073 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1074 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1075 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1076 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1077 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1078 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1079 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1080 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1081 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1082 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1083 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1084 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1085 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1086 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1087 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1088 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1089 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171),
1090 { 0 }
1091};
1092
7ec59eea
AV
1093/**
1094 * ice_debug_cq
1095 * @hw: pointer to the hardware structure
1096 * @mask: debug mask
1097 * @desc: pointer to control queue descriptor
1098 * @buf: pointer to command buffer
1099 * @buf_len: max length of buf
1100 *
1101 * Dumps debug log about control command with descriptor contents.
1102 */
1103void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
1104 void *buf, u16 buf_len)
1105{
1106 struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1107 u16 len;
1108
1109#ifndef CONFIG_DYNAMIC_DEBUG
1110 if (!(mask & hw->debug_mask))
1111 return;
1112#endif
1113
1114 if (!desc)
1115 return;
1116
1117 len = le16_to_cpu(cq_desc->datalen);
1118
1119 ice_debug(hw, mask,
1120 "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1121 le16_to_cpu(cq_desc->opcode),
1122 le16_to_cpu(cq_desc->flags),
1123 le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1124 ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1125 le32_to_cpu(cq_desc->cookie_high),
1126 le32_to_cpu(cq_desc->cookie_low));
1127 ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
1128 le32_to_cpu(cq_desc->params.generic.param0),
1129 le32_to_cpu(cq_desc->params.generic.param1));
1130 ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
1131 le32_to_cpu(cq_desc->params.generic.addr_high),
1132 le32_to_cpu(cq_desc->params.generic.addr_low));
1133 if (buf && cq_desc->datalen != 0) {
1134 ice_debug(hw, mask, "Buffer:\n");
1135 if (buf_len < len)
1136 len = buf_len;
1137
1138 ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1139 }
1140}
1141
1142/* FW Admin Queue command wrappers */
1143
1144/**
1145 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1146 * @hw: pointer to the hw struct
1147 * @desc: descriptor describing the command
1148 * @buf: buffer to use for indirect commands (NULL for direct commands)
1149 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1150 * @cd: pointer to command details structure
1151 *
1152 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1153 */
1154enum ice_status
1155ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1156 u16 buf_size, struct ice_sq_cd *cd)
1157{
1158 return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1159}
1160
1161/**
1162 * ice_aq_get_fw_ver
1163 * @hw: pointer to the hw struct
1164 * @cd: pointer to command details structure or NULL
1165 *
1166 * Get the firmware version (0x0001) from the admin queue commands
1167 */
1168enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1169{
1170 struct ice_aqc_get_ver *resp;
1171 struct ice_aq_desc desc;
1172 enum ice_status status;
1173
1174 resp = &desc.params.get_ver;
1175
1176 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1177
1178 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1179
1180 if (!status) {
1181 hw->fw_branch = resp->fw_branch;
1182 hw->fw_maj_ver = resp->fw_major;
1183 hw->fw_min_ver = resp->fw_minor;
1184 hw->fw_patch = resp->fw_patch;
1185 hw->fw_build = le32_to_cpu(resp->fw_build);
1186 hw->api_branch = resp->api_branch;
1187 hw->api_maj_ver = resp->api_major;
1188 hw->api_min_ver = resp->api_minor;
1189 hw->api_patch = resp->api_patch;
1190 }
1191
1192 return status;
1193}
1194
1195/**
1196 * ice_aq_q_shutdown
1197 * @hw: pointer to the hw struct
1198 * @unloading: is the driver unloading itself
1199 *
1200 * Tell the Firmware that we're shutting down the AdminQ and whether
1201 * or not the driver is unloading as well (0x0003).
1202 */
1203enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1204{
1205 struct ice_aqc_q_shutdown *cmd;
1206 struct ice_aq_desc desc;
1207
1208 cmd = &desc.params.q_shutdown;
1209
1210 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1211
1212 if (unloading)
1213 cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
1214
1215 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1216}
f31e4b6f
AV
1217
1218/**
1219 * ice_aq_req_res
1220 * @hw: pointer to the hw struct
1221 * @res: resource id
1222 * @access: access type
1223 * @sdp_number: resource number
1224 * @timeout: the maximum time in ms that the driver may hold the resource
1225 * @cd: pointer to command details structure or NULL
1226 *
ff2b1321
DN
1227 * Requests common resource using the admin queue commands (0x0008).
1228 * When attempting to acquire the Global Config Lock, the driver can
1229 * learn of three states:
1230 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1231 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1232 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1233 * successfully downloaded the package; the driver does
1234 * not have to download the package and can continue
1235 * loading
1236 *
1237 * Note that if the caller is in an acquire lock, perform action, release lock
1238 * phase of operation, it is possible that the FW may detect a timeout and issue
1239 * a CORER. In this case, the driver will receive a CORER interrupt and will
1240 * have to determine its cause. The calling thread that is handling this flow
1241 * will likely get an error propagated back to it indicating the Download
1242 * Package, Update Package or the Release Resource AQ commands timed out.
f31e4b6f
AV
1243 */
1244static enum ice_status
1245ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1246 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1247 struct ice_sq_cd *cd)
1248{
1249 struct ice_aqc_req_res *cmd_resp;
1250 struct ice_aq_desc desc;
1251 enum ice_status status;
1252
1253 cmd_resp = &desc.params.res_owner;
1254
1255 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1256
1257 cmd_resp->res_id = cpu_to_le16(res);
1258 cmd_resp->access_type = cpu_to_le16(access);
1259 cmd_resp->res_number = cpu_to_le32(sdp_number);
ff2b1321
DN
1260 cmd_resp->timeout = cpu_to_le32(*timeout);
1261 *timeout = 0;
f31e4b6f
AV
1262
1263 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
ff2b1321 1264
f31e4b6f
AV
1265 /* The completion specifies the maximum time in ms that the driver
1266 * may hold the resource in the Timeout field.
ff2b1321
DN
1267 */
1268
1269 /* Global config lock response utilizes an additional status field.
1270 *
1271 * If the Global config lock resource is held by some other driver, the
1272 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1273 * and the timeout field indicates the maximum time the current owner
1274 * of the resource has to free it.
1275 */
1276 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1277 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1278 *timeout = le32_to_cpu(cmd_resp->timeout);
1279 return 0;
1280 } else if (le16_to_cpu(cmd_resp->status) ==
1281 ICE_AQ_RES_GLBL_IN_PROG) {
1282 *timeout = le32_to_cpu(cmd_resp->timeout);
1283 return ICE_ERR_AQ_ERROR;
1284 } else if (le16_to_cpu(cmd_resp->status) ==
1285 ICE_AQ_RES_GLBL_DONE) {
1286 return ICE_ERR_AQ_NO_WORK;
1287 }
1288
1289 /* invalid FW response, force a timeout immediately */
1290 *timeout = 0;
1291 return ICE_ERR_AQ_ERROR;
1292 }
1293
1294 /* If the resource is held by some other driver, the command completes
1295 * with a busy return value and the timeout field indicates the maximum
1296 * time the current owner of the resource has to free it.
f31e4b6f
AV
1297 */
1298 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1299 *timeout = le32_to_cpu(cmd_resp->timeout);
1300
1301 return status;
1302}
1303
1304/**
1305 * ice_aq_release_res
1306 * @hw: pointer to the hw struct
1307 * @res: resource id
1308 * @sdp_number: resource number
1309 * @cd: pointer to command details structure or NULL
1310 *
1311 * release common resource using the admin queue commands (0x0009)
1312 */
1313static enum ice_status
1314ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1315 struct ice_sq_cd *cd)
1316{
1317 struct ice_aqc_req_res *cmd;
1318 struct ice_aq_desc desc;
1319
1320 cmd = &desc.params.res_owner;
1321
1322 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1323
1324 cmd->res_id = cpu_to_le16(res);
1325 cmd->res_number = cpu_to_le32(sdp_number);
1326
1327 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1328}
1329
1330/**
1331 * ice_acquire_res
1332 * @hw: pointer to the HW structure
1333 * @res: resource id
1334 * @access: access type (read or write)
ff2b1321 1335 * @timeout: timeout in milliseconds
f31e4b6f
AV
1336 *
1337 * This function will attempt to acquire the ownership of a resource.
1338 */
1339enum ice_status
1340ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
ff2b1321 1341 enum ice_aq_res_access_type access, u32 timeout)
f31e4b6f
AV
1342{
1343#define ICE_RES_POLLING_DELAY_MS 10
1344 u32 delay = ICE_RES_POLLING_DELAY_MS;
ff2b1321 1345 u32 time_left = timeout;
f31e4b6f 1346 enum ice_status status;
f31e4b6f
AV
1347
1348 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1349
ff2b1321
DN
1350 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1351 * previously acquired the resource and performed any necessary updates;
1352 * in this case the caller does not obtain the resource and has no
1353 * further work to do.
f31e4b6f 1354 */
ff2b1321 1355 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1356 goto ice_acquire_res_exit;
f31e4b6f
AV
1357
1358 if (status)
1359 ice_debug(hw, ICE_DBG_RES,
1360 "resource %d acquire type %d failed.\n", res, access);
1361
1362 /* If necessary, poll until the current lock owner timeouts */
1363 timeout = time_left;
1364 while (status && timeout && time_left) {
1365 mdelay(delay);
1366 timeout = (timeout > delay) ? timeout - delay : 0;
1367 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1368
ff2b1321 1369 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1370 /* lock free, but no work to do */
f31e4b6f 1371 break;
f31e4b6f
AV
1372
1373 if (!status)
1374 /* lock acquired */
1375 break;
1376 }
1377 if (status && status != ICE_ERR_AQ_NO_WORK)
1378 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1379
1380ice_acquire_res_exit:
1381 if (status == ICE_ERR_AQ_NO_WORK) {
1382 if (access == ICE_RES_WRITE)
1383 ice_debug(hw, ICE_DBG_RES,
1384 "resource indicates no work to do.\n");
1385 else
1386 ice_debug(hw, ICE_DBG_RES,
1387 "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1388 }
1389 return status;
1390}
1391
1392/**
1393 * ice_release_res
1394 * @hw: pointer to the HW structure
1395 * @res: resource id
1396 *
1397 * This function will release a resource using the proper Admin Command.
1398 */
1399void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1400{
1401 enum ice_status status;
1402 u32 total_delay = 0;
1403
1404 status = ice_aq_release_res(hw, res, 0, NULL);
1405
1406 /* there are some rare cases when trying to release the resource
1407 * results in an admin Q timeout, so handle them correctly
1408 */
1409 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1410 (total_delay < hw->adminq.sq_cmd_timeout)) {
1411 mdelay(1);
1412 status = ice_aq_release_res(hw, res, 0, NULL);
1413 total_delay++;
1414 }
1415}
1416
995c90f2
AV
1417/**
1418 * ice_get_guar_num_vsi - determine number of guar VSI for a PF
1419 * @hw: pointer to the hw structure
1420 *
1421 * Determine the number of valid functions by going through the bitmap returned
1422 * from parsing capabilities and use this to calculate the number of VSI per PF.
1423 */
1424static u32 ice_get_guar_num_vsi(struct ice_hw *hw)
1425{
1426 u8 funcs;
1427
1428#define ICE_CAPS_VALID_FUNCS_M 0xFF
1429 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1430 ICE_CAPS_VALID_FUNCS_M);
1431
1432 if (!funcs)
1433 return 0;
1434
1435 return ICE_MAX_VSI / funcs;
1436}
1437
9c20346b
AV
1438/**
1439 * ice_parse_caps - parse function/device capabilities
1440 * @hw: pointer to the hw struct
1441 * @buf: pointer to a buffer containing function/device capability records
1442 * @cap_count: number of capability records in the list
1443 * @opc: type of capabilities list to parse
1444 *
1445 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1446 */
1447static void
1448ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1449 enum ice_adminq_opc opc)
1450{
1451 struct ice_aqc_list_caps_elem *cap_resp;
1452 struct ice_hw_func_caps *func_p = NULL;
1453 struct ice_hw_dev_caps *dev_p = NULL;
1454 struct ice_hw_common_caps *caps;
1455 u32 i;
1456
1457 if (!buf)
1458 return;
1459
1460 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1461
1462 if (opc == ice_aqc_opc_list_dev_caps) {
1463 dev_p = &hw->dev_caps;
1464 caps = &dev_p->common_cap;
1465 } else if (opc == ice_aqc_opc_list_func_caps) {
1466 func_p = &hw->func_caps;
1467 caps = &func_p->common_cap;
1468 } else {
1469 ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1470 return;
1471 }
1472
1473 for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1474 u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1475 u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1476 u32 number = le32_to_cpu(cap_resp->number);
1477 u16 cap = le16_to_cpu(cap_resp->cap);
1478
1479 switch (cap) {
995c90f2
AV
1480 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1481 caps->valid_functions = number;
1482 ice_debug(hw, ICE_DBG_INIT,
1483 "HW caps: Valid Functions = %d\n",
1484 caps->valid_functions);
1485 break;
75d2b253
AV
1486 case ICE_AQC_CAPS_SRIOV:
1487 caps->sr_iov_1_1 = (number == 1);
1488 ice_debug(hw, ICE_DBG_INIT,
1489 "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1);
1490 break;
1491 case ICE_AQC_CAPS_VF:
1492 if (dev_p) {
1493 dev_p->num_vfs_exposed = number;
1494 ice_debug(hw, ICE_DBG_INIT,
1495 "HW caps: VFs exposed = %d\n",
1496 dev_p->num_vfs_exposed);
1497 } else if (func_p) {
1498 func_p->num_allocd_vfs = number;
1499 func_p->vf_base_id = logical_id;
1500 ice_debug(hw, ICE_DBG_INIT,
1501 "HW caps: VFs allocated = %d\n",
1502 func_p->num_allocd_vfs);
1503 ice_debug(hw, ICE_DBG_INIT,
1504 "HW caps: VF base_id = %d\n",
1505 func_p->vf_base_id);
1506 }
1507 break;
9c20346b
AV
1508 case ICE_AQC_CAPS_VSI:
1509 if (dev_p) {
1510 dev_p->num_vsi_allocd_to_host = number;
1511 ice_debug(hw, ICE_DBG_INIT,
1512 "HW caps: Dev.VSI cnt = %d\n",
1513 dev_p->num_vsi_allocd_to_host);
1514 } else if (func_p) {
995c90f2 1515 func_p->guar_num_vsi = ice_get_guar_num_vsi(hw);
9c20346b
AV
1516 ice_debug(hw, ICE_DBG_INIT,
1517 "HW caps: Func.VSI cnt = %d\n",
995c90f2 1518 number);
9c20346b
AV
1519 }
1520 break;
1521 case ICE_AQC_CAPS_RSS:
1522 caps->rss_table_size = number;
1523 caps->rss_table_entry_width = logical_id;
1524 ice_debug(hw, ICE_DBG_INIT,
1525 "HW caps: RSS table size = %d\n",
1526 caps->rss_table_size);
1527 ice_debug(hw, ICE_DBG_INIT,
1528 "HW caps: RSS table width = %d\n",
1529 caps->rss_table_entry_width);
1530 break;
1531 case ICE_AQC_CAPS_RXQS:
1532 caps->num_rxq = number;
1533 caps->rxq_first_id = phys_id;
1534 ice_debug(hw, ICE_DBG_INIT,
1535 "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1536 ice_debug(hw, ICE_DBG_INIT,
1537 "HW caps: Rx first queue ID = %d\n",
1538 caps->rxq_first_id);
1539 break;
1540 case ICE_AQC_CAPS_TXQS:
1541 caps->num_txq = number;
1542 caps->txq_first_id = phys_id;
1543 ice_debug(hw, ICE_DBG_INIT,
1544 "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1545 ice_debug(hw, ICE_DBG_INIT,
1546 "HW caps: Tx first queue ID = %d\n",
1547 caps->txq_first_id);
1548 break;
1549 case ICE_AQC_CAPS_MSIX:
1550 caps->num_msix_vectors = number;
1551 caps->msix_vector_first_id = phys_id;
1552 ice_debug(hw, ICE_DBG_INIT,
1553 "HW caps: MSIX vector count = %d\n",
1554 caps->num_msix_vectors);
1555 ice_debug(hw, ICE_DBG_INIT,
1556 "HW caps: MSIX first vector index = %d\n",
1557 caps->msix_vector_first_id);
1558 break;
1559 case ICE_AQC_CAPS_MAX_MTU:
1560 caps->max_mtu = number;
1561 if (dev_p)
1562 ice_debug(hw, ICE_DBG_INIT,
1563 "HW caps: Dev.MaxMTU = %d\n",
1564 caps->max_mtu);
1565 else if (func_p)
1566 ice_debug(hw, ICE_DBG_INIT,
1567 "HW caps: func.MaxMTU = %d\n",
1568 caps->max_mtu);
1569 break;
1570 default:
1571 ice_debug(hw, ICE_DBG_INIT,
1572 "HW caps: Unknown capability[%d]: 0x%x\n", i,
1573 cap);
1574 break;
1575 }
1576 }
1577}
1578
1579/**
1580 * ice_aq_discover_caps - query function/device capabilities
1581 * @hw: pointer to the hw struct
1582 * @buf: a virtual buffer to hold the capabilities
1583 * @buf_size: Size of the virtual buffer
7d86cf38 1584 * @cap_count: cap count needed if AQ err==ENOMEM
9c20346b
AV
1585 * @opc: capabilities type to discover - pass in the command opcode
1586 * @cd: pointer to command details structure or NULL
1587 *
1588 * Get the function(0x000a)/device(0x000b) capabilities description from
1589 * the firmware.
1590 */
1591static enum ice_status
7d86cf38 1592ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
9c20346b
AV
1593 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1594{
1595 struct ice_aqc_list_caps *cmd;
1596 struct ice_aq_desc desc;
1597 enum ice_status status;
1598
1599 cmd = &desc.params.get_cap;
1600
1601 if (opc != ice_aqc_opc_list_func_caps &&
1602 opc != ice_aqc_opc_list_dev_caps)
1603 return ICE_ERR_PARAM;
1604
1605 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1606
1607 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1608 if (!status)
1609 ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
7d86cf38 1610 else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
99189e8b 1611 *cap_count = le32_to_cpu(cmd->count);
9c20346b
AV
1612 return status;
1613}
1614
1615/**
7d86cf38 1616 * ice_discover_caps - get info about the HW
9c20346b 1617 * @hw: pointer to the hardware structure
7d86cf38 1618 * @opc: capabilities type to discover - pass in the command opcode
9c20346b 1619 */
7d86cf38
AV
1620static enum ice_status ice_discover_caps(struct ice_hw *hw,
1621 enum ice_adminq_opc opc)
9c20346b
AV
1622{
1623 enum ice_status status;
7d86cf38 1624 u32 cap_count;
9c20346b
AV
1625 u16 cbuf_len;
1626 u8 retries;
1627
1628 /* The driver doesn't know how many capabilities the device will return
1629 * so the buffer size required isn't known ahead of time. The driver
1630 * starts with cbuf_len and if this turns out to be insufficient, the
7d86cf38
AV
1631 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1632 * The driver then allocates the buffer based on the count and retries
1633 * the operation. So it follows that the retry count is 2.
9c20346b
AV
1634 */
1635#define ICE_GET_CAP_BUF_COUNT 40
1636#define ICE_GET_CAP_RETRY_COUNT 2
1637
7d86cf38 1638 cap_count = ICE_GET_CAP_BUF_COUNT;
9c20346b
AV
1639 retries = ICE_GET_CAP_RETRY_COUNT;
1640
1641 do {
1642 void *cbuf;
1643
7d86cf38
AV
1644 cbuf_len = (u16)(cap_count *
1645 sizeof(struct ice_aqc_list_caps_elem));
9c20346b
AV
1646 cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1647 if (!cbuf)
1648 return ICE_ERR_NO_MEMORY;
1649
7d86cf38
AV
1650 status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1651 opc, NULL);
9c20346b
AV
1652 devm_kfree(ice_hw_to_dev(hw), cbuf);
1653
1654 if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1655 break;
1656
1657 /* If ENOMEM is returned, try again with bigger buffer */
9c20346b
AV
1658 } while (--retries);
1659
1660 return status;
1661}
1662
7d86cf38
AV
1663/**
1664 * ice_get_caps - get info about the HW
1665 * @hw: pointer to the hardware structure
1666 */
1667enum ice_status ice_get_caps(struct ice_hw *hw)
1668{
1669 enum ice_status status;
1670
1671 status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1672 if (!status)
1673 status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1674
1675 return status;
1676}
1677
e94d4478
AV
1678/**
1679 * ice_aq_manage_mac_write - manage MAC address write command
1680 * @hw: pointer to the hw struct
1681 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1682 * @flags: flags to control write behavior
1683 * @cd: pointer to command details structure or NULL
1684 *
1685 * This function is used to write MAC address to the NVM (0x0108).
1686 */
1687enum ice_status
d671e3e0 1688ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
e94d4478
AV
1689 struct ice_sq_cd *cd)
1690{
1691 struct ice_aqc_manage_mac_write *cmd;
1692 struct ice_aq_desc desc;
1693
1694 cmd = &desc.params.mac_write;
1695 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1696
1697 cmd->flags = flags;
1698
1699 /* Prep values for flags, sah, sal */
d671e3e0
JK
1700 cmd->sah = htons(*((const u16 *)mac_addr));
1701 cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
e94d4478
AV
1702
1703 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1704}
1705
f31e4b6f
AV
1706/**
1707 * ice_aq_clear_pxe_mode
1708 * @hw: pointer to the hw struct
1709 *
1710 * Tell the firmware that the driver is taking over from PXE (0x0110).
1711 */
1712static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1713{
1714 struct ice_aq_desc desc;
1715
1716 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1717 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1718
1719 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1720}
1721
1722/**
1723 * ice_clear_pxe_mode - clear pxe operations mode
1724 * @hw: pointer to the hw struct
1725 *
1726 * Make sure all PXE mode settings are cleared, including things
1727 * like descriptor fetch/write-back mode.
1728 */
1729void ice_clear_pxe_mode(struct ice_hw *hw)
1730{
1731 if (ice_check_sq_alive(hw, &hw->adminq))
1732 ice_aq_clear_pxe_mode(hw);
1733}
cdedef59 1734
48cb27f2
CC
1735/**
1736 * ice_get_link_speed_based_on_phy_type - returns link speed
1737 * @phy_type_low: lower part of phy_type
aef74145 1738 * @phy_type_high: higher part of phy_type
48cb27f2 1739 *
aef74145
AV
1740 * This helper function will convert an entry in phy type structure
1741 * [phy_type_low, phy_type_high] to its corresponding link speed.
1742 * Note: In the structure of [phy_type_low, phy_type_high], there should
1743 * be one bit set, as this function will convert one phy type to its
48cb27f2 1744 * speed.
48cb27f2
CC
1745 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1746 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1747 */
aef74145
AV
1748static u16
1749ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
48cb27f2 1750{
aef74145 1751 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
48cb27f2
CC
1752 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1753
1754 switch (phy_type_low) {
1755 case ICE_PHY_TYPE_LOW_100BASE_TX:
1756 case ICE_PHY_TYPE_LOW_100M_SGMII:
1757 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
1758 break;
1759 case ICE_PHY_TYPE_LOW_1000BASE_T:
1760 case ICE_PHY_TYPE_LOW_1000BASE_SX:
1761 case ICE_PHY_TYPE_LOW_1000BASE_LX:
1762 case ICE_PHY_TYPE_LOW_1000BASE_KX:
1763 case ICE_PHY_TYPE_LOW_1G_SGMII:
1764 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
1765 break;
1766 case ICE_PHY_TYPE_LOW_2500BASE_T:
1767 case ICE_PHY_TYPE_LOW_2500BASE_X:
1768 case ICE_PHY_TYPE_LOW_2500BASE_KX:
1769 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
1770 break;
1771 case ICE_PHY_TYPE_LOW_5GBASE_T:
1772 case ICE_PHY_TYPE_LOW_5GBASE_KR:
1773 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
1774 break;
1775 case ICE_PHY_TYPE_LOW_10GBASE_T:
1776 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1777 case ICE_PHY_TYPE_LOW_10GBASE_SR:
1778 case ICE_PHY_TYPE_LOW_10GBASE_LR:
1779 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1780 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1781 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1782 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
1783 break;
1784 case ICE_PHY_TYPE_LOW_25GBASE_T:
1785 case ICE_PHY_TYPE_LOW_25GBASE_CR:
1786 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1787 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1788 case ICE_PHY_TYPE_LOW_25GBASE_SR:
1789 case ICE_PHY_TYPE_LOW_25GBASE_LR:
1790 case ICE_PHY_TYPE_LOW_25GBASE_KR:
1791 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1792 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1793 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1794 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1795 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
1796 break;
1797 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1798 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1799 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1800 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1801 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1802 case ICE_PHY_TYPE_LOW_40G_XLAUI:
1803 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
1804 break;
aef74145
AV
1805 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
1806 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
1807 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
1808 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
1809 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
1810 case ICE_PHY_TYPE_LOW_50G_LAUI2:
1811 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
1812 case ICE_PHY_TYPE_LOW_50G_AUI2:
1813 case ICE_PHY_TYPE_LOW_50GBASE_CP:
1814 case ICE_PHY_TYPE_LOW_50GBASE_SR:
1815 case ICE_PHY_TYPE_LOW_50GBASE_FR:
1816 case ICE_PHY_TYPE_LOW_50GBASE_LR:
1817 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1818 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1819 case ICE_PHY_TYPE_LOW_50G_AUI1:
1820 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
1821 break;
1822 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
1823 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
1824 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
1825 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
1826 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
1827 case ICE_PHY_TYPE_LOW_100G_CAUI4:
1828 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
1829 case ICE_PHY_TYPE_LOW_100G_AUI4:
1830 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
1831 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
1832 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
1833 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
1834 case ICE_PHY_TYPE_LOW_100GBASE_DR:
1835 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
1836 break;
48cb27f2
CC
1837 default:
1838 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1839 break;
1840 }
1841
aef74145
AV
1842 switch (phy_type_high) {
1843 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
1844 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
1845 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
1846 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
1847 case ICE_PHY_TYPE_HIGH_100G_AUI2:
1848 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
1849 break;
1850 default:
1851 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
1852 break;
1853 }
1854
1855 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
1856 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1857 return ICE_AQ_LINK_SPEED_UNKNOWN;
1858 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1859 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
1860 return ICE_AQ_LINK_SPEED_UNKNOWN;
1861 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1862 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1863 return speed_phy_type_low;
1864 else
1865 return speed_phy_type_high;
48cb27f2
CC
1866}
1867
1868/**
1869 * ice_update_phy_type
1870 * @phy_type_low: pointer to the lower part of phy_type
aef74145 1871 * @phy_type_high: pointer to the higher part of phy_type
48cb27f2
CC
1872 * @link_speeds_bitmap: targeted link speeds bitmap
1873 *
1874 * Note: For the link_speeds_bitmap structure, you can check it at
1875 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
1876 * link_speeds_bitmap include multiple speeds.
1877 *
aef74145
AV
1878 * Each entry in this [phy_type_low, phy_type_high] structure will
1879 * present a certain link speed. This helper function will turn on bits
1880 * in [phy_type_low, phy_type_high] structure based on the value of
48cb27f2
CC
1881 * link_speeds_bitmap input parameter.
1882 */
aef74145
AV
1883void
1884ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
1885 u16 link_speeds_bitmap)
48cb27f2
CC
1886{
1887 u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN;
aef74145 1888 u64 pt_high;
48cb27f2
CC
1889 u64 pt_low;
1890 int index;
1891
1892 /* We first check with low part of phy_type */
1893 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
1894 pt_low = BIT_ULL(index);
aef74145 1895 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
48cb27f2
CC
1896
1897 if (link_speeds_bitmap & speed)
1898 *phy_type_low |= BIT_ULL(index);
1899 }
aef74145
AV
1900
1901 /* We then check with high part of phy_type */
1902 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
1903 pt_high = BIT_ULL(index);
1904 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
1905
1906 if (link_speeds_bitmap & speed)
1907 *phy_type_high |= BIT_ULL(index);
1908 }
48cb27f2
CC
1909}
1910
fcea6f3d
AV
1911/**
1912 * ice_aq_set_phy_cfg
1913 * @hw: pointer to the hw struct
1914 * @lport: logical port number
1915 * @cfg: structure with PHY configuration data to be set
1916 * @cd: pointer to command details structure or NULL
1917 *
1918 * Set the various PHY configuration parameters supported on the Port.
1919 * One or more of the Set PHY config parameters may be ignored in an MFP
1920 * mode as the PF may not have the privilege to set some of the PHY Config
1921 * parameters. This status will be indicated by the command response (0x0601).
1922 */
48cb27f2 1923enum ice_status
fcea6f3d
AV
1924ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1925 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1926{
fcea6f3d
AV
1927 struct ice_aq_desc desc;
1928
1929 if (!cfg)
1930 return ICE_ERR_PARAM;
1931
fcea6f3d 1932 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
48cb27f2
CC
1933 desc.params.set_phy.lport_num = lport;
1934 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
fcea6f3d
AV
1935
1936 return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1937}
1938
1939/**
1940 * ice_update_link_info - update status of the HW network link
1941 * @pi: port info structure of the interested logical port
1942 */
5755143d 1943enum ice_status ice_update_link_info(struct ice_port_info *pi)
fcea6f3d
AV
1944{
1945 struct ice_aqc_get_phy_caps_data *pcaps;
1946 struct ice_phy_info *phy_info;
1947 enum ice_status status;
1948 struct ice_hw *hw;
1949
1950 if (!pi)
1951 return ICE_ERR_PARAM;
1952
1953 hw = pi->hw;
1954
1955 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1956 if (!pcaps)
1957 return ICE_ERR_NO_MEMORY;
1958
1959 phy_info = &pi->phy;
1960 status = ice_aq_get_link_info(pi, true, NULL, NULL);
1961 if (status)
1962 goto out;
1963
1964 if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1965 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1966 pcaps, NULL);
1967 if (status)
1968 goto out;
1969
1970 memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1971 sizeof(phy_info->link_info.module_type));
1972 }
1973out:
1974 devm_kfree(ice_hw_to_dev(hw), pcaps);
1975 return status;
1976}
1977
1978/**
1979 * ice_set_fc
1980 * @pi: port information structure
1981 * @aq_failures: pointer to status code, specific to ice_set_fc routine
48cb27f2 1982 * @ena_auto_link_update: enable automatic link update
fcea6f3d
AV
1983 *
1984 * Set the requested flow control mode.
1985 */
1986enum ice_status
48cb27f2 1987ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
fcea6f3d
AV
1988{
1989 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1990 struct ice_aqc_get_phy_caps_data *pcaps;
1991 enum ice_status status;
1992 u8 pause_mask = 0x0;
1993 struct ice_hw *hw;
1994
1995 if (!pi)
1996 return ICE_ERR_PARAM;
1997 hw = pi->hw;
1998 *aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1999
2000 switch (pi->fc.req_mode) {
2001 case ICE_FC_FULL:
2002 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2003 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2004 break;
2005 case ICE_FC_RX_PAUSE:
2006 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2007 break;
2008 case ICE_FC_TX_PAUSE:
2009 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2010 break;
2011 default:
2012 break;
2013 }
2014
2015 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2016 if (!pcaps)
2017 return ICE_ERR_NO_MEMORY;
2018
2019 /* Get the current phy config */
2020 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2021 NULL);
2022 if (status) {
2023 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2024 goto out;
2025 }
2026
2027 /* clear the old pause settings */
2028 cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2029 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2030 /* set the new capabilities */
2031 cfg.caps |= pause_mask;
2032 /* If the capabilities have changed, then set the new config */
2033 if (cfg.caps != pcaps->caps) {
2034 int retry_count, retry_max = 10;
2035
2036 /* Auto restart link so settings take effect */
48cb27f2
CC
2037 if (ena_auto_link_update)
2038 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
fcea6f3d 2039 /* Copy over all the old settings */
aef74145 2040 cfg.phy_type_high = pcaps->phy_type_high;
fcea6f3d
AV
2041 cfg.phy_type_low = pcaps->phy_type_low;
2042 cfg.low_power_ctrl = pcaps->low_power_ctrl;
2043 cfg.eee_cap = pcaps->eee_cap;
2044 cfg.eeer_value = pcaps->eeer_value;
2045 cfg.link_fec_opt = pcaps->link_fec_options;
2046
2047 status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2048 if (status) {
2049 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2050 goto out;
2051 }
2052
2053 /* Update the link info
2054 * It sometimes takes a really long time for link to
2055 * come back from the atomic reset. Thus, we wait a
2056 * little bit.
2057 */
2058 for (retry_count = 0; retry_count < retry_max; retry_count++) {
2059 status = ice_update_link_info(pi);
2060
2061 if (!status)
2062 break;
2063
2064 mdelay(100);
2065 }
2066
2067 if (status)
2068 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2069 }
2070
2071out:
2072 devm_kfree(ice_hw_to_dev(hw), pcaps);
2073 return status;
2074}
2075
0b28b702
AV
2076/**
2077 * ice_get_link_status - get status of the HW network link
2078 * @pi: port information structure
2079 * @link_up: pointer to bool (true/false = linkup/linkdown)
2080 *
2081 * Variable link_up is true if link is up, false if link is down.
2082 * The variable link_up is invalid if status is non zero. As a
2083 * result of this call, link status reporting becomes enabled
2084 */
2085enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2086{
2087 struct ice_phy_info *phy_info;
2088 enum ice_status status = 0;
2089
c7f2c42b 2090 if (!pi || !link_up)
0b28b702
AV
2091 return ICE_ERR_PARAM;
2092
2093 phy_info = &pi->phy;
2094
2095 if (phy_info->get_link_info) {
2096 status = ice_update_link_info(pi);
2097
2098 if (status)
2099 ice_debug(pi->hw, ICE_DBG_LINK,
2100 "get link status error, status = %d\n",
2101 status);
2102 }
2103
2104 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2105
2106 return status;
2107}
2108
fcea6f3d
AV
2109/**
2110 * ice_aq_set_link_restart_an
2111 * @pi: pointer to the port information structure
2112 * @ena_link: if true: enable link, if false: disable link
2113 * @cd: pointer to command details structure or NULL
2114 *
2115 * Sets up the link and restarts the Auto-Negotiation over the link.
2116 */
2117enum ice_status
2118ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2119 struct ice_sq_cd *cd)
2120{
2121 struct ice_aqc_restart_an *cmd;
2122 struct ice_aq_desc desc;
2123
2124 cmd = &desc.params.restart_an;
2125
2126 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2127
2128 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2129 cmd->lport_num = pi->lport;
2130 if (ena_link)
2131 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2132 else
2133 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2134
2135 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2136}
2137
8e151d50
AV
2138/**
2139 * ice_aq_set_port_id_led
2140 * @pi: pointer to the port information
2141 * @is_orig_mode: is this LED set to original mode (by the net-list)
2142 * @cd: pointer to command details structure or NULL
2143 *
2144 * Set LED value for the given port (0x06e9)
2145 */
2146enum ice_status
2147ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2148 struct ice_sq_cd *cd)
2149{
2150 struct ice_aqc_set_port_id_led *cmd;
2151 struct ice_hw *hw = pi->hw;
2152 struct ice_aq_desc desc;
2153
2154 cmd = &desc.params.set_port_id_led;
2155
2156 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2157
2158 if (is_orig_mode)
2159 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2160 else
2161 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2162
2163 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2164}
2165
d76a60ba
AV
2166/**
2167 * __ice_aq_get_set_rss_lut
2168 * @hw: pointer to the hardware structure
2169 * @vsi_id: VSI FW index
2170 * @lut_type: LUT table type
2171 * @lut: pointer to the LUT buffer provided by the caller
2172 * @lut_size: size of the LUT buffer
2173 * @glob_lut_idx: global LUT index
2174 * @set: set true to set the table, false to get the table
2175 *
2176 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2177 */
2178static enum ice_status
2179__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2180 u16 lut_size, u8 glob_lut_idx, bool set)
2181{
2182 struct ice_aqc_get_set_rss_lut *cmd_resp;
2183 struct ice_aq_desc desc;
2184 enum ice_status status;
2185 u16 flags = 0;
2186
2187 cmd_resp = &desc.params.get_set_rss_lut;
2188
2189 if (set) {
2190 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2191 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2192 } else {
2193 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2194 }
2195
2196 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2197 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2198 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2199 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2200
2201 switch (lut_type) {
2202 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2203 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2204 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2205 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2206 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2207 break;
2208 default:
2209 status = ICE_ERR_PARAM;
2210 goto ice_aq_get_set_rss_lut_exit;
2211 }
2212
2213 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2214 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2215 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2216
2217 if (!set)
2218 goto ice_aq_get_set_rss_lut_send;
2219 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2220 if (!set)
2221 goto ice_aq_get_set_rss_lut_send;
2222 } else {
2223 goto ice_aq_get_set_rss_lut_send;
2224 }
2225
2226 /* LUT size is only valid for Global and PF table types */
4381147d
AV
2227 switch (lut_size) {
2228 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2229 break;
2230 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
d76a60ba
AV
2231 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2232 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2233 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
4381147d
AV
2234 break;
2235 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2236 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2237 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2238 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2239 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2240 break;
2241 }
2242 /* fall-through */
2243 default:
d76a60ba
AV
2244 status = ICE_ERR_PARAM;
2245 goto ice_aq_get_set_rss_lut_exit;
2246 }
2247
2248ice_aq_get_set_rss_lut_send:
2249 cmd_resp->flags = cpu_to_le16(flags);
2250 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2251
2252ice_aq_get_set_rss_lut_exit:
2253 return status;
2254}
2255
2256/**
2257 * ice_aq_get_rss_lut
2258 * @hw: pointer to the hardware structure
4fb33f31 2259 * @vsi_handle: software VSI handle
d76a60ba
AV
2260 * @lut_type: LUT table type
2261 * @lut: pointer to the LUT buffer provided by the caller
2262 * @lut_size: size of the LUT buffer
2263 *
2264 * get the RSS lookup table, PF or VSI type
2265 */
2266enum ice_status
4fb33f31
AV
2267ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2268 u8 *lut, u16 lut_size)
d76a60ba 2269{
4fb33f31
AV
2270 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2271 return ICE_ERR_PARAM;
2272
2273 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2274 lut_type, lut, lut_size, 0, false);
d76a60ba
AV
2275}
2276
2277/**
2278 * ice_aq_set_rss_lut
2279 * @hw: pointer to the hardware structure
4fb33f31 2280 * @vsi_handle: software VSI handle
d76a60ba
AV
2281 * @lut_type: LUT table type
2282 * @lut: pointer to the LUT buffer provided by the caller
2283 * @lut_size: size of the LUT buffer
2284 *
2285 * set the RSS lookup table, PF or VSI type
2286 */
2287enum ice_status
4fb33f31
AV
2288ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2289 u8 *lut, u16 lut_size)
d76a60ba 2290{
4fb33f31
AV
2291 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2292 return ICE_ERR_PARAM;
2293
2294 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2295 lut_type, lut, lut_size, 0, true);
d76a60ba
AV
2296}
2297
2298/**
2299 * __ice_aq_get_set_rss_key
2300 * @hw: pointer to the hw struct
2301 * @vsi_id: VSI FW index
2302 * @key: pointer to key info struct
2303 * @set: set true to set the key, false to get the key
2304 *
2305 * get (0x0B04) or set (0x0B02) the RSS key per VSI
2306 */
2307static enum
2308ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2309 struct ice_aqc_get_set_rss_keys *key,
2310 bool set)
2311{
2312 struct ice_aqc_get_set_rss_key *cmd_resp;
2313 u16 key_size = sizeof(*key);
2314 struct ice_aq_desc desc;
2315
2316 cmd_resp = &desc.params.get_set_rss_key;
2317
2318 if (set) {
2319 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2320 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2321 } else {
2322 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2323 }
2324
2325 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2326 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2327 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2328 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2329
2330 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2331}
2332
2333/**
2334 * ice_aq_get_rss_key
2335 * @hw: pointer to the hw struct
4fb33f31 2336 * @vsi_handle: software VSI handle
d76a60ba
AV
2337 * @key: pointer to key info struct
2338 *
2339 * get the RSS key per VSI
2340 */
2341enum ice_status
4fb33f31 2342ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
d76a60ba
AV
2343 struct ice_aqc_get_set_rss_keys *key)
2344{
4fb33f31
AV
2345 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2346 return ICE_ERR_PARAM;
2347
2348 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2349 key, false);
d76a60ba
AV
2350}
2351
2352/**
2353 * ice_aq_set_rss_key
2354 * @hw: pointer to the hw struct
4fb33f31 2355 * @vsi_handle: software VSI handle
d76a60ba
AV
2356 * @keys: pointer to key info struct
2357 *
2358 * set the RSS key per VSI
2359 */
2360enum ice_status
4fb33f31 2361ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
d76a60ba
AV
2362 struct ice_aqc_get_set_rss_keys *keys)
2363{
4fb33f31
AV
2364 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2365 return ICE_ERR_PARAM;
2366
2367 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2368 keys, true);
d76a60ba
AV
2369}
2370
cdedef59
AV
2371/**
2372 * ice_aq_add_lan_txq
2373 * @hw: pointer to the hardware structure
2374 * @num_qgrps: Number of added queue groups
2375 * @qg_list: list of queue groups to be added
2376 * @buf_size: size of buffer for indirect command
2377 * @cd: pointer to command details structure or NULL
2378 *
2379 * Add Tx LAN queue (0x0C30)
2380 *
2381 * NOTE:
2382 * Prior to calling add Tx LAN queue:
2383 * Initialize the following as part of the Tx queue context:
2384 * Completion queue ID if the queue uses Completion queue, Quanta profile,
2385 * Cache profile and Packet shaper profile.
2386 *
2387 * After add Tx LAN queue AQ command is completed:
2388 * Interrupts should be associated with specific queues,
2389 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2390 * flow.
2391 */
2392static enum ice_status
2393ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2394 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2395 struct ice_sq_cd *cd)
2396{
2397 u16 i, sum_header_size, sum_q_size = 0;
2398 struct ice_aqc_add_tx_qgrp *list;
2399 struct ice_aqc_add_txqs *cmd;
2400 struct ice_aq_desc desc;
2401
2402 cmd = &desc.params.add_txqs;
2403
2404 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2405
2406 if (!qg_list)
2407 return ICE_ERR_PARAM;
2408
2409 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2410 return ICE_ERR_PARAM;
2411
2412 sum_header_size = num_qgrps *
2413 (sizeof(*qg_list) - sizeof(*qg_list->txqs));
2414
2415 list = qg_list;
2416 for (i = 0; i < num_qgrps; i++) {
2417 struct ice_aqc_add_txqs_perq *q = list->txqs;
2418
2419 sum_q_size += list->num_txqs * sizeof(*q);
2420 list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2421 }
2422
2423 if (buf_size != (sum_header_size + sum_q_size))
2424 return ICE_ERR_PARAM;
2425
2426 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2427
2428 cmd->num_qgrps = num_qgrps;
2429
2430 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2431}
2432
2433/**
2434 * ice_aq_dis_lan_txq
2435 * @hw: pointer to the hardware structure
2436 * @num_qgrps: number of groups in the list
2437 * @qg_list: the list of groups to disable
2438 * @buf_size: the total size of the qg_list buffer in bytes
ddf30f7f
AV
2439 * @rst_src: if called due to reset, specifies the RST source
2440 * @vmvf_num: the relative VM or VF number that is undergoing the reset
cdedef59
AV
2441 * @cd: pointer to command details structure or NULL
2442 *
2443 * Disable LAN Tx queue (0x0C31)
2444 */
2445static enum ice_status
2446ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2447 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
ddf30f7f 2448 enum ice_disq_rst_src rst_src, u16 vmvf_num,
cdedef59
AV
2449 struct ice_sq_cd *cd)
2450{
2451 struct ice_aqc_dis_txqs *cmd;
2452 struct ice_aq_desc desc;
6e9650d5 2453 enum ice_status status;
cdedef59
AV
2454 u16 i, sz = 0;
2455
2456 cmd = &desc.params.dis_txqs;
2457 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2458
ddf30f7f
AV
2459 /* qg_list can be NULL only in VM/VF reset flow */
2460 if (!qg_list && !rst_src)
cdedef59
AV
2461 return ICE_ERR_PARAM;
2462
2463 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2464 return ICE_ERR_PARAM;
ddf30f7f 2465
cdedef59
AV
2466 cmd->num_entries = num_qgrps;
2467
ddf30f7f
AV
2468 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2469 ICE_AQC_Q_DIS_TIMEOUT_M);
2470
2471 switch (rst_src) {
2472 case ICE_VM_RESET:
2473 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2474 cmd->vmvf_and_timeout |=
2475 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2476 break;
2477 case ICE_VF_RESET:
2478 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2479 /* In this case, FW expects vmvf_num to be absolute VF id */
2480 cmd->vmvf_and_timeout |=
2481 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2482 ICE_AQC_Q_DIS_VMVF_NUM_M);
2483 break;
2484 case ICE_NO_RESET:
2485 default:
2486 break;
2487 }
2488
6e9650d5
VR
2489 /* flush pipe on time out */
2490 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
ddf30f7f
AV
2491 /* If no queue group info, we are in a reset flow. Issue the AQ */
2492 if (!qg_list)
2493 goto do_aq;
2494
2495 /* set RD bit to indicate that command buffer is provided by the driver
2496 * and it needs to be read by the firmware
2497 */
2498 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2499
cdedef59
AV
2500 for (i = 0; i < num_qgrps; ++i) {
2501 /* Calculate the size taken up by the queue IDs in this group */
2502 sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2503
2504 /* Add the size of the group header */
2505 sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2506
2507 /* If the num of queues is even, add 2 bytes of padding */
2508 if ((qg_list[i].num_qs % 2) == 0)
2509 sz += 2;
2510 }
2511
2512 if (buf_size != sz)
2513 return ICE_ERR_PARAM;
2514
ddf30f7f 2515do_aq:
6e9650d5
VR
2516 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2517 if (status) {
2518 if (!qg_list)
2519 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2520 vmvf_num, hw->adminq.sq_last_status);
2521 else
2522 ice_debug(hw, ICE_DBG_SCHED, "disable Q %d failed %d\n",
2523 le16_to_cpu(qg_list[0].q_id[0]),
2524 hw->adminq.sq_last_status);
2525 }
2526 return status;
cdedef59
AV
2527}
2528
2529/* End of FW Admin Queue command wrappers */
2530
2531/**
2532 * ice_write_byte - write a byte to a packed context structure
2533 * @src_ctx: the context structure to read from
2534 * @dest_ctx: the context to be written to
2535 * @ce_info: a description of the struct to be filled
2536 */
2537static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
2538 const struct ice_ctx_ele *ce_info)
2539{
2540 u8 src_byte, dest_byte, mask;
2541 u8 *from, *dest;
2542 u16 shift_width;
2543
2544 /* copy from the next struct field */
2545 from = src_ctx + ce_info->offset;
2546
2547 /* prepare the bits and mask */
2548 shift_width = ce_info->lsb % 8;
2549 mask = (u8)(BIT(ce_info->width) - 1);
2550
2551 src_byte = *from;
2552 src_byte &= mask;
2553
2554 /* shift to correct alignment */
2555 mask <<= shift_width;
2556 src_byte <<= shift_width;
2557
2558 /* get the current bits from the target bit string */
2559 dest = dest_ctx + (ce_info->lsb / 8);
2560
2561 memcpy(&dest_byte, dest, sizeof(dest_byte));
2562
2563 dest_byte &= ~mask; /* get the bits not changing */
2564 dest_byte |= src_byte; /* add in the new bits */
2565
2566 /* put it all back */
2567 memcpy(dest, &dest_byte, sizeof(dest_byte));
2568}
2569
2570/**
2571 * ice_write_word - write a word to a packed context structure
2572 * @src_ctx: the context structure to read from
2573 * @dest_ctx: the context to be written to
2574 * @ce_info: a description of the struct to be filled
2575 */
2576static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
2577 const struct ice_ctx_ele *ce_info)
2578{
2579 u16 src_word, mask;
2580 __le16 dest_word;
2581 u8 *from, *dest;
2582 u16 shift_width;
2583
2584 /* copy from the next struct field */
2585 from = src_ctx + ce_info->offset;
2586
2587 /* prepare the bits and mask */
2588 shift_width = ce_info->lsb % 8;
2589 mask = BIT(ce_info->width) - 1;
2590
2591 /* don't swizzle the bits until after the mask because the mask bits
2592 * will be in a different bit position on big endian machines
2593 */
2594 src_word = *(u16 *)from;
2595 src_word &= mask;
2596
2597 /* shift to correct alignment */
2598 mask <<= shift_width;
2599 src_word <<= shift_width;
2600
2601 /* get the current bits from the target bit string */
2602 dest = dest_ctx + (ce_info->lsb / 8);
2603
2604 memcpy(&dest_word, dest, sizeof(dest_word));
2605
2606 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
2607 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
2608
2609 /* put it all back */
2610 memcpy(dest, &dest_word, sizeof(dest_word));
2611}
2612
2613/**
2614 * ice_write_dword - write a dword to a packed context structure
2615 * @src_ctx: the context structure to read from
2616 * @dest_ctx: the context to be written to
2617 * @ce_info: a description of the struct to be filled
2618 */
2619static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
2620 const struct ice_ctx_ele *ce_info)
2621{
2622 u32 src_dword, mask;
2623 __le32 dest_dword;
2624 u8 *from, *dest;
2625 u16 shift_width;
2626
2627 /* copy from the next struct field */
2628 from = src_ctx + ce_info->offset;
2629
2630 /* prepare the bits and mask */
2631 shift_width = ce_info->lsb % 8;
2632
2633 /* if the field width is exactly 32 on an x86 machine, then the shift
2634 * operation will not work because the SHL instructions count is masked
2635 * to 5 bits so the shift will do nothing
2636 */
2637 if (ce_info->width < 32)
2638 mask = BIT(ce_info->width) - 1;
2639 else
2640 mask = (u32)~0;
2641
2642 /* don't swizzle the bits until after the mask because the mask bits
2643 * will be in a different bit position on big endian machines
2644 */
2645 src_dword = *(u32 *)from;
2646 src_dword &= mask;
2647
2648 /* shift to correct alignment */
2649 mask <<= shift_width;
2650 src_dword <<= shift_width;
2651
2652 /* get the current bits from the target bit string */
2653 dest = dest_ctx + (ce_info->lsb / 8);
2654
2655 memcpy(&dest_dword, dest, sizeof(dest_dword));
2656
2657 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
2658 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
2659
2660 /* put it all back */
2661 memcpy(dest, &dest_dword, sizeof(dest_dword));
2662}
2663
2664/**
2665 * ice_write_qword - write a qword to a packed context structure
2666 * @src_ctx: the context structure to read from
2667 * @dest_ctx: the context to be written to
2668 * @ce_info: a description of the struct to be filled
2669 */
2670static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2671 const struct ice_ctx_ele *ce_info)
2672{
2673 u64 src_qword, mask;
2674 __le64 dest_qword;
2675 u8 *from, *dest;
2676 u16 shift_width;
2677
2678 /* copy from the next struct field */
2679 from = src_ctx + ce_info->offset;
2680
2681 /* prepare the bits and mask */
2682 shift_width = ce_info->lsb % 8;
2683
2684 /* if the field width is exactly 64 on an x86 machine, then the shift
2685 * operation will not work because the SHL instructions count is masked
2686 * to 6 bits so the shift will do nothing
2687 */
2688 if (ce_info->width < 64)
2689 mask = BIT_ULL(ce_info->width) - 1;
2690 else
2691 mask = (u64)~0;
2692
2693 /* don't swizzle the bits until after the mask because the mask bits
2694 * will be in a different bit position on big endian machines
2695 */
2696 src_qword = *(u64 *)from;
2697 src_qword &= mask;
2698
2699 /* shift to correct alignment */
2700 mask <<= shift_width;
2701 src_qword <<= shift_width;
2702
2703 /* get the current bits from the target bit string */
2704 dest = dest_ctx + (ce_info->lsb / 8);
2705
2706 memcpy(&dest_qword, dest, sizeof(dest_qword));
2707
2708 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
2709 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
2710
2711 /* put it all back */
2712 memcpy(dest, &dest_qword, sizeof(dest_qword));
2713}
2714
2715/**
2716 * ice_set_ctx - set context bits in packed structure
2717 * @src_ctx: pointer to a generic non-packed context structure
2718 * @dest_ctx: pointer to memory for the packed structure
2719 * @ce_info: a description of the structure to be transformed
2720 */
2721enum ice_status
2722ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2723{
2724 int f;
2725
2726 for (f = 0; ce_info[f].width; f++) {
2727 /* We have to deal with each element of the FW response
2728 * using the correct size so that we are correct regardless
2729 * of the endianness of the machine.
2730 */
2731 switch (ce_info[f].size_of) {
2732 case sizeof(u8):
2733 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2734 break;
2735 case sizeof(u16):
2736 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2737 break;
2738 case sizeof(u32):
2739 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2740 break;
2741 case sizeof(u64):
2742 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2743 break;
2744 default:
2745 return ICE_ERR_INVAL_SIZE;
2746 }
2747 }
2748
2749 return 0;
2750}
2751
2752/**
2753 * ice_ena_vsi_txq
2754 * @pi: port information structure
4fb33f31 2755 * @vsi_handle: software VSI handle
cdedef59
AV
2756 * @tc: tc number
2757 * @num_qgrps: Number of added queue groups
2758 * @buf: list of queue groups to be added
2759 * @buf_size: size of buffer for indirect command
2760 * @cd: pointer to command details structure or NULL
2761 *
2762 * This function adds one lan q
2763 */
2764enum ice_status
4fb33f31 2765ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
cdedef59
AV
2766 struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2767 struct ice_sq_cd *cd)
2768{
2769 struct ice_aqc_txsched_elem_data node = { 0 };
2770 struct ice_sched_node *parent;
2771 enum ice_status status;
2772 struct ice_hw *hw;
2773
2774 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2775 return ICE_ERR_CFG;
2776
2777 if (num_qgrps > 1 || buf->num_txqs > 1)
2778 return ICE_ERR_MAX_LIMIT;
2779
2780 hw = pi->hw;
2781
4fb33f31
AV
2782 if (!ice_is_vsi_valid(hw, vsi_handle))
2783 return ICE_ERR_PARAM;
2784
cdedef59
AV
2785 mutex_lock(&pi->sched_lock);
2786
2787 /* find a parent node */
4fb33f31 2788 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
cdedef59
AV
2789 ICE_SCHED_NODE_OWNER_LAN);
2790 if (!parent) {
2791 status = ICE_ERR_PARAM;
2792 goto ena_txq_exit;
2793 }
4fb33f31 2794
cdedef59
AV
2795 buf->parent_teid = parent->info.node_teid;
2796 node.parent_teid = parent->info.node_teid;
2797 /* Mark that the values in the "generic" section as valid. The default
2798 * value in the "generic" section is zero. This means that :
2799 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2800 * - 0 priority among siblings, indicated by Bit 1-3.
2801 * - WFQ, indicated by Bit 4.
2802 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2803 * Bit 5-6.
2804 * - Bit 7 is reserved.
2805 * Without setting the generic section as valid in valid_sections, the
2806 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2807 */
2808 buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2809
2810 /* add the lan q */
2811 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
6e9650d5
VR
2812 if (status) {
2813 ice_debug(hw, ICE_DBG_SCHED, "enable Q %d failed %d\n",
2814 le16_to_cpu(buf->txqs[0].txq_id),
2815 hw->adminq.sq_last_status);
cdedef59 2816 goto ena_txq_exit;
6e9650d5 2817 }
cdedef59
AV
2818
2819 node.node_teid = buf->txqs[0].q_teid;
2820 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2821
2822 /* add a leaf node into schduler tree q layer */
2823 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2824
2825ena_txq_exit:
2826 mutex_unlock(&pi->sched_lock);
2827 return status;
2828}
2829
2830/**
2831 * ice_dis_vsi_txq
2832 * @pi: port information structure
2833 * @num_queues: number of queues
2834 * @q_ids: pointer to the q_id array
2835 * @q_teids: pointer to queue node teids
ddf30f7f
AV
2836 * @rst_src: if called due to reset, specifies the RST source
2837 * @vmvf_num: the relative VM or VF number that is undergoing the reset
cdedef59
AV
2838 * @cd: pointer to command details structure or NULL
2839 *
2840 * This function removes queues and their corresponding nodes in SW DB
2841 */
2842enum ice_status
2843ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
ddf30f7f
AV
2844 u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
2845 struct ice_sq_cd *cd)
cdedef59
AV
2846{
2847 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2848 struct ice_aqc_dis_txq_item qg_list;
2849 u16 i;
2850
2851 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2852 return ICE_ERR_CFG;
2853
ddf30f7f
AV
2854 /* if queue is disabled already yet the disable queue command has to be
2855 * sent to complete the VF reset, then call ice_aq_dis_lan_txq without
2856 * any queue information
2857 */
2858
2859 if (!num_queues && rst_src)
2860 return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num,
2861 NULL);
2862
cdedef59
AV
2863 mutex_lock(&pi->sched_lock);
2864
2865 for (i = 0; i < num_queues; i++) {
2866 struct ice_sched_node *node;
2867
2868 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2869 if (!node)
2870 continue;
2871 qg_list.parent_teid = node->info.parent_teid;
2872 qg_list.num_qs = 1;
2873 qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2874 status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
ddf30f7f
AV
2875 sizeof(qg_list), rst_src, vmvf_num,
2876 cd);
cdedef59
AV
2877
2878 if (status)
2879 break;
2880 ice_free_sched_node(pi, node);
2881 }
2882 mutex_unlock(&pi->sched_lock);
2883 return status;
2884}
5513b920
AV
2885
2886/**
2887 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2888 * @pi: port information structure
4fb33f31 2889 * @vsi_handle: software VSI handle
5513b920
AV
2890 * @tc_bitmap: TC bitmap
2891 * @maxqs: max queues array per TC
2892 * @owner: lan or rdma
2893 *
2894 * This function adds/updates the VSI queues per TC.
2895 */
2896static enum ice_status
4fb33f31 2897ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5513b920
AV
2898 u16 *maxqs, u8 owner)
2899{
2900 enum ice_status status = 0;
2901 u8 i;
2902
2903 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2904 return ICE_ERR_CFG;
2905
4fb33f31
AV
2906 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2907 return ICE_ERR_PARAM;
2908
5513b920
AV
2909 mutex_lock(&pi->sched_lock);
2910
2911 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2912 /* configuration is possible only if TC node is present */
2913 if (!ice_sched_get_tc_node(pi, i))
2914 continue;
2915
4fb33f31 2916 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5513b920
AV
2917 ice_is_tc_ena(tc_bitmap, i));
2918 if (status)
2919 break;
2920 }
2921
2922 mutex_unlock(&pi->sched_lock);
2923 return status;
2924}
2925
2926/**
2927 * ice_cfg_vsi_lan - configure VSI lan queues
2928 * @pi: port information structure
4fb33f31 2929 * @vsi_handle: software VSI handle
5513b920
AV
2930 * @tc_bitmap: TC bitmap
2931 * @max_lanqs: max lan queues array per TC
2932 *
2933 * This function adds/updates the VSI lan queues per TC.
2934 */
2935enum ice_status
4fb33f31 2936ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5513b920
AV
2937 u16 *max_lanqs)
2938{
4fb33f31 2939 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5513b920
AV
2940 ICE_SCHED_NODE_OWNER_LAN);
2941}
45d3d428 2942
334cb062
AV
2943/**
2944 * ice_replay_pre_init - replay pre initialization
2945 * @hw: pointer to the hw struct
2946 *
2947 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
2948 */
2949static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
2950{
2951 struct ice_switch_info *sw = hw->switch_info;
2952 u8 i;
2953
2954 /* Delete old entries from replay filter list head if there is any */
2955 ice_rm_all_sw_replay_rule_info(hw);
2956 /* In start of replay, move entries into replay_rules list, it
2957 * will allow adding rules entries back to filt_rules list,
2958 * which is operational list.
2959 */
2960 for (i = 0; i < ICE_SW_LKUP_LAST; i++)
2961 list_replace_init(&sw->recp_list[i].filt_rules,
2962 &sw->recp_list[i].filt_replay_rules);
2963
2964 return 0;
2965}
2966
2967/**
2968 * ice_replay_vsi - replay VSI configuration
2969 * @hw: pointer to the hw struct
2970 * @vsi_handle: driver VSI handle
2971 *
2972 * Restore all VSI configuration after reset. It is required to call this
2973 * function with main VSI first.
2974 */
2975enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
2976{
2977 enum ice_status status;
2978
2979 if (!ice_is_vsi_valid(hw, vsi_handle))
2980 return ICE_ERR_PARAM;
2981
2982 /* Replay pre-initialization if there is any */
2983 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
2984 status = ice_replay_pre_init(hw);
2985 if (status)
2986 return status;
2987 }
2988
2989 /* Replay per VSI all filters */
2990 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
2991 return status;
2992}
2993
2994/**
2995 * ice_replay_post - post replay configuration cleanup
2996 * @hw: pointer to the hw struct
2997 *
2998 * Post replay cleanup.
2999 */
3000void ice_replay_post(struct ice_hw *hw)
3001{
3002 /* Delete old entries from replay filter list head */
3003 ice_rm_all_sw_replay_rule_info(hw);
3004}
3005
45d3d428
AV
3006/**
3007 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3008 * @hw: ptr to the hardware info
3009 * @hireg: high 32 bit HW register to read from
3010 * @loreg: low 32 bit HW register to read from
3011 * @prev_stat_loaded: bool to specify if previous stats are loaded
3012 * @prev_stat: ptr to previous loaded stat value
3013 * @cur_stat: ptr to current stat value
3014 */
3015void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
3016 bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
3017{
3018 u64 new_data;
3019
3020 new_data = rd32(hw, loreg);
3021 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
3022
3023 /* device stats are not reset at PFR, they likely will not be zeroed
3024 * when the driver starts. So save the first values read and use them as
3025 * offsets to be subtracted from the raw values in order to report stats
3026 * that count from zero.
3027 */
3028 if (!prev_stat_loaded)
3029 *prev_stat = new_data;
3030 if (new_data >= *prev_stat)
3031 *cur_stat = new_data - *prev_stat;
3032 else
3033 /* to manage the potential roll-over */
3034 *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
3035 *cur_stat &= 0xFFFFFFFFFFULL;
3036}
3037
3038/**
3039 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3040 * @hw: ptr to the hardware info
3041 * @reg: HW register to read from
3042 * @prev_stat_loaded: bool to specify if previous stats are loaded
3043 * @prev_stat: ptr to previous loaded stat value
3044 * @cur_stat: ptr to current stat value
3045 */
3046void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3047 u64 *prev_stat, u64 *cur_stat)
3048{
3049 u32 new_data;
3050
3051 new_data = rd32(hw, reg);
3052
3053 /* device stats are not reset at PFR, they likely will not be zeroed
3054 * when the driver starts. So save the first values read and use them as
3055 * offsets to be subtracted from the raw values in order to report stats
3056 * that count from zero.
3057 */
3058 if (!prev_stat_loaded)
3059 *prev_stat = new_data;
3060 if (new_data >= *prev_stat)
3061 *cur_stat = new_data - *prev_stat;
3062 else
3063 /* to manage the potential roll-over */
3064 *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
3065}