]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/net/ethernet/intel/ice/ice_common.c
ice: Implement ice_bridge_getlink and ice_bridge_setlink
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / ice / ice_common.c
CommitLineData
7ec59eea
AV
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
9c20346b 5#include "ice_sched.h"
7ec59eea
AV
6#include "ice_adminq_cmd.h"
7
f31e4b6f
AV
8#define ICE_PF_RESET_WAIT_COUNT 200
9
22ef683b
AV
10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
cdedef59
AV
12 ((ICE_RX_OPC_MDID << \
13 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17
22ef683b
AV
18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
cdedef59
AV
20 (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28
f31e4b6f
AV
29/**
30 * ice_set_mac_type - Sets MAC type
31 * @hw: pointer to the HW structure
32 *
33 * This function sets the MAC type of the adapter based on the
34 * vendor ID and device ID stored in the hw structure.
35 */
36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37{
38 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 return ICE_ERR_DEVICE_NOT_SUPPORTED;
40
41 hw->mac_type = ICE_MAC_GENERIC;
42 return 0;
43}
44
45/**
46 * ice_clear_pf_cfg - Clear PF configuration
47 * @hw: pointer to the hardware structure
3968540b
AV
48 *
49 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
50 * configuration, flow director filters, etc.).
f31e4b6f
AV
51 */
52enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
53{
54 struct ice_aq_desc desc;
55
56 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
57
58 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
59}
60
dc49c772
AV
61/**
62 * ice_aq_manage_mac_read - manage MAC address read command
63 * @hw: pointer to the hw struct
64 * @buf: a virtual buffer to hold the manage MAC read response
65 * @buf_size: Size of the virtual buffer
66 * @cd: pointer to command details structure or NULL
67 *
68 * This function is used to return per PF station MAC address (0x0107).
69 * NOTE: Upon successful completion of this command, MAC address information
70 * is returned in user specified buffer. Please interpret user specified
71 * buffer as "manage_mac_read" response.
72 * Response such as various MAC addresses are stored in HW struct (port.mac)
73 * ice_aq_discover_caps is expected to be called before this function is called.
74 */
75static enum ice_status
76ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
77 struct ice_sq_cd *cd)
78{
79 struct ice_aqc_manage_mac_read_resp *resp;
80 struct ice_aqc_manage_mac_read *cmd;
81 struct ice_aq_desc desc;
82 enum ice_status status;
83 u16 flags;
d6fef10c 84 u8 i;
dc49c772
AV
85
86 cmd = &desc.params.mac_read;
87
88 if (buf_size < sizeof(*resp))
89 return ICE_ERR_BUF_TOO_SHORT;
90
91 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
92
93 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
94 if (status)
95 return status;
96
97 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
98 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
99
100 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
101 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
102 return ICE_ERR_CFG;
103 }
104
d6fef10c
MFIP
105 /* A single port can report up to two (LAN and WoL) addresses */
106 for (i = 0; i < cmd->num_addr; i++)
107 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
108 ether_addr_copy(hw->port_info->mac.lan_addr,
109 resp[i].mac_addr);
110 ether_addr_copy(hw->port_info->mac.perm_addr,
111 resp[i].mac_addr);
112 break;
113 }
114
dc49c772
AV
115 return 0;
116}
117
118/**
119 * ice_aq_get_phy_caps - returns PHY capabilities
120 * @pi: port information structure
121 * @qual_mods: report qualified modules
122 * @report_mode: report mode capabilities
123 * @pcaps: structure for PHY capabilities to be filled
124 * @cd: pointer to command details structure or NULL
125 *
126 * Returns the various PHY capabilities supported on the Port (0x0600)
127 */
48cb27f2 128enum ice_status
dc49c772
AV
129ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
130 struct ice_aqc_get_phy_caps_data *pcaps,
131 struct ice_sq_cd *cd)
132{
133 struct ice_aqc_get_phy_caps *cmd;
134 u16 pcaps_size = sizeof(*pcaps);
135 struct ice_aq_desc desc;
136 enum ice_status status;
137
138 cmd = &desc.params.get_phy;
139
140 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
141 return ICE_ERR_PARAM;
142
143 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
144
145 if (qual_mods)
146 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
147
148 cmd->param0 |= cpu_to_le16(report_mode);
149 status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
150
151 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP)
152 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
153
154 return status;
155}
156
157/**
158 * ice_get_media_type - Gets media type
159 * @pi: port information structure
160 */
161static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
162{
163 struct ice_link_status *hw_link_info;
164
165 if (!pi)
166 return ICE_MEDIA_UNKNOWN;
167
168 hw_link_info = &pi->phy.link_info;
169
170 if (hw_link_info->phy_type_low) {
171 switch (hw_link_info->phy_type_low) {
172 case ICE_PHY_TYPE_LOW_1000BASE_SX:
173 case ICE_PHY_TYPE_LOW_1000BASE_LX:
174 case ICE_PHY_TYPE_LOW_10GBASE_SR:
175 case ICE_PHY_TYPE_LOW_10GBASE_LR:
176 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
177 case ICE_PHY_TYPE_LOW_25GBASE_SR:
178 case ICE_PHY_TYPE_LOW_25GBASE_LR:
179 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
180 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
181 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
182 return ICE_MEDIA_FIBER;
183 case ICE_PHY_TYPE_LOW_100BASE_TX:
184 case ICE_PHY_TYPE_LOW_1000BASE_T:
185 case ICE_PHY_TYPE_LOW_2500BASE_T:
186 case ICE_PHY_TYPE_LOW_5GBASE_T:
187 case ICE_PHY_TYPE_LOW_10GBASE_T:
188 case ICE_PHY_TYPE_LOW_25GBASE_T:
189 return ICE_MEDIA_BASET;
190 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
191 case ICE_PHY_TYPE_LOW_25GBASE_CR:
192 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
193 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
194 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
195 return ICE_MEDIA_DA;
196 case ICE_PHY_TYPE_LOW_1000BASE_KX:
197 case ICE_PHY_TYPE_LOW_2500BASE_KX:
198 case ICE_PHY_TYPE_LOW_2500BASE_X:
199 case ICE_PHY_TYPE_LOW_5GBASE_KR:
200 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
201 case ICE_PHY_TYPE_LOW_25GBASE_KR:
202 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
203 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
204 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
205 return ICE_MEDIA_BACKPLANE;
206 }
207 }
208
209 return ICE_MEDIA_UNKNOWN;
210}
211
212/**
213 * ice_aq_get_link_info
214 * @pi: port information structure
215 * @ena_lse: enable/disable LinkStatusEvent reporting
216 * @link: pointer to link status structure - optional
217 * @cd: pointer to command details structure or NULL
218 *
219 * Get Link Status (0x607). Returns the link status of the adapter.
220 */
221enum ice_status
222ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
223 struct ice_link_status *link, struct ice_sq_cd *cd)
224{
225 struct ice_link_status *hw_link_info_old, *hw_link_info;
226 struct ice_aqc_get_link_status_data link_data = { 0 };
227 struct ice_aqc_get_link_status *resp;
228 enum ice_media_type *hw_media_type;
229 struct ice_fc_info *hw_fc_info;
230 bool tx_pause, rx_pause;
231 struct ice_aq_desc desc;
232 enum ice_status status;
233 u16 cmd_flags;
234
235 if (!pi)
236 return ICE_ERR_PARAM;
237 hw_link_info_old = &pi->phy.link_info_old;
238 hw_media_type = &pi->phy.media_type;
239 hw_link_info = &pi->phy.link_info;
240 hw_fc_info = &pi->fc;
241
242 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
243 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
244 resp = &desc.params.get_link_status;
245 resp->cmd_flags = cpu_to_le16(cmd_flags);
246 resp->lport_num = pi->lport;
247
248 status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
249 cd);
250
251 if (status)
252 return status;
253
254 /* save off old link status information */
255 *hw_link_info_old = *hw_link_info;
256
257 /* update current link status information */
258 hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
259 hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
260 *hw_media_type = ice_get_media_type(pi);
261 hw_link_info->link_info = link_data.link_info;
262 hw_link_info->an_info = link_data.an_info;
263 hw_link_info->ext_info = link_data.ext_info;
264 hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
265 hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
266
267 /* update fc info */
268 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
269 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
270 if (tx_pause && rx_pause)
271 hw_fc_info->current_mode = ICE_FC_FULL;
272 else if (tx_pause)
273 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
274 else if (rx_pause)
275 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
276 else
277 hw_fc_info->current_mode = ICE_FC_NONE;
278
279 hw_link_info->lse_ena =
280 !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
281
282 /* save link status information */
283 if (link)
284 *link = *hw_link_info;
285
286 /* flag cleared so calling functions don't call AQ again */
287 pi->phy.get_link_info = false;
288
289 return status;
290}
291
cdedef59 292/**
22ef683b 293 * ice_init_flex_flags
cdedef59 294 * @hw: pointer to the hardware structure
22ef683b 295 * @prof_id: Rx Descriptor Builder profile ID
cdedef59 296 *
22ef683b 297 * Function to initialize Rx flex flags
cdedef59 298 */
22ef683b 299static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
cdedef59
AV
300{
301 u8 idx = 0;
302
22ef683b
AV
303 /* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
304 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
305 * flexiflags1[3:0] - Not used for flag programming
306 * flexiflags2[7:0] - Tunnel and VLAN types
307 * 2 invalid fields in last index
308 */
309 switch (prof_id) {
310 /* Rx flex flags are currently programmed for the NIC profiles only.
311 * Different flag bit programming configurations can be added per
312 * profile as needed.
313 */
314 case ICE_RXDID_FLEX_NIC:
315 case ICE_RXDID_FLEX_NIC_2:
316 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG,
317 ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI,
318 ICE_RXFLG_FIN, idx++);
319 /* flex flag 1 is not used for flexi-flag programming, skipping
320 * these four FLG64 bits.
321 */
322 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST,
323 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
324 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI,
325 ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100,
326 ICE_RXFLG_EVLAN_x9100, idx++);
327 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100,
328 ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC,
329 ICE_RXFLG_TNL0, idx++);
330 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
331 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
332 break;
333
334 default:
335 ice_debug(hw, ICE_DBG_INIT,
336 "Flag programming for profile ID %d not supported\n",
337 prof_id);
338 }
339}
340
341/**
342 * ice_init_flex_flds
343 * @hw: pointer to the hardware structure
344 * @prof_id: Rx Descriptor Builder profile ID
345 *
346 * Function to initialize flex descriptors
347 */
348static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
349{
350 enum ice_flex_rx_mdid mdid;
351
352 switch (prof_id) {
353 case ICE_RXDID_FLEX_NIC:
354 case ICE_RXDID_FLEX_NIC_2:
355 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
356 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
357 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
358
359 mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
360 ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
361
362 ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
363
364 ice_init_flex_flags(hw, prof_id);
365 break;
366
367 default:
368 ice_debug(hw, ICE_DBG_INIT,
369 "Field init for profile ID %d not supported\n",
370 prof_id);
371 }
cdedef59
AV
372}
373
9daf8208
AV
374/**
375 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
376 * @hw: pointer to the hw struct
377 */
378static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
379{
380 struct ice_switch_info *sw;
381
382 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
383 sizeof(*hw->switch_info), GFP_KERNEL);
384 sw = hw->switch_info;
385
386 if (!sw)
387 return ICE_ERR_NO_MEMORY;
388
389 INIT_LIST_HEAD(&sw->vsi_list_map_head);
390
80d144c9 391 ice_init_def_sw_recp(hw);
9daf8208
AV
392
393 return 0;
394}
395
396/**
397 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
398 * @hw: pointer to the hw struct
399 */
400static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
401{
402 struct ice_switch_info *sw = hw->switch_info;
403 struct ice_vsi_list_map_info *v_pos_map;
404 struct ice_vsi_list_map_info *v_tmp_map;
80d144c9
AV
405 struct ice_sw_recipe *recps;
406 u8 i;
9daf8208
AV
407
408 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
409 list_entry) {
410 list_del(&v_pos_map->list_entry);
411 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
412 }
80d144c9
AV
413 recps = hw->switch_info->recp_list;
414 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
415 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
416
417 recps[i].root_rid = i;
418 mutex_destroy(&recps[i].filt_rule_lock);
419 list_for_each_entry_safe(lst_itr, tmp_entry,
420 &recps[i].filt_rules, list_entry) {
421 list_del(&lst_itr->list_entry);
422 devm_kfree(ice_hw_to_dev(hw), lst_itr);
423 }
424 }
9daf8208 425
80d144c9 426 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
9daf8208
AV
427 devm_kfree(ice_hw_to_dev(hw), sw);
428}
429
f31e4b6f
AV
430/**
431 * ice_init_hw - main hardware initialization routine
432 * @hw: pointer to the hardware structure
433 */
434enum ice_status ice_init_hw(struct ice_hw *hw)
435{
dc49c772 436 struct ice_aqc_get_phy_caps_data *pcaps;
f31e4b6f 437 enum ice_status status;
dc49c772
AV
438 u16 mac_buf_len;
439 void *mac_buf;
f31e4b6f
AV
440
441 /* Set MAC type based on DeviceID */
442 status = ice_set_mac_type(hw);
443 if (status)
444 return status;
445
446 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
447 PF_FUNC_RID_FUNC_NUM_M) >>
448 PF_FUNC_RID_FUNC_NUM_S;
449
450 status = ice_reset(hw, ICE_RESET_PFR);
451 if (status)
452 return status;
453
940b61af
AV
454 /* set these values to minimum allowed */
455 hw->itr_gran_200 = ICE_ITR_GRAN_MIN_200;
456 hw->itr_gran_100 = ICE_ITR_GRAN_MIN_100;
457 hw->itr_gran_50 = ICE_ITR_GRAN_MIN_50;
458 hw->itr_gran_25 = ICE_ITR_GRAN_MIN_25;
459
f31e4b6f
AV
460 status = ice_init_all_ctrlq(hw);
461 if (status)
462 goto err_unroll_cqinit;
463
464 status = ice_clear_pf_cfg(hw);
465 if (status)
466 goto err_unroll_cqinit;
467
468 ice_clear_pxe_mode(hw);
469
470 status = ice_init_nvm(hw);
471 if (status)
472 goto err_unroll_cqinit;
473
9c20346b
AV
474 status = ice_get_caps(hw);
475 if (status)
476 goto err_unroll_cqinit;
477
478 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
479 sizeof(*hw->port_info), GFP_KERNEL);
480 if (!hw->port_info) {
481 status = ICE_ERR_NO_MEMORY;
482 goto err_unroll_cqinit;
483 }
484
485 /* set the back pointer to hw */
486 hw->port_info->hw = hw;
487
488 /* Initialize port_info struct with switch configuration data */
489 status = ice_get_initial_sw_cfg(hw);
490 if (status)
491 goto err_unroll_alloc;
492
9daf8208
AV
493 hw->evb_veb = true;
494
9c20346b
AV
495 /* Query the allocated resources for tx scheduler */
496 status = ice_sched_query_res_alloc(hw);
497 if (status) {
498 ice_debug(hw, ICE_DBG_SCHED,
499 "Failed to get scheduler allocated resources\n");
500 goto err_unroll_alloc;
501 }
502
dc49c772
AV
503 /* Initialize port_info struct with scheduler data */
504 status = ice_sched_init_port(hw->port_info);
505 if (status)
506 goto err_unroll_sched;
507
508 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
509 if (!pcaps) {
510 status = ICE_ERR_NO_MEMORY;
511 goto err_unroll_sched;
512 }
513
514 /* Initialize port_info struct with PHY capabilities */
515 status = ice_aq_get_phy_caps(hw->port_info, false,
516 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
517 devm_kfree(ice_hw_to_dev(hw), pcaps);
518 if (status)
519 goto err_unroll_sched;
520
521 /* Initialize port_info struct with link information */
522 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
523 if (status)
524 goto err_unroll_sched;
525
b36c598c
AV
526 /* need a valid SW entry point to build a Tx tree */
527 if (!hw->sw_entry_point_layer) {
528 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
529 status = ICE_ERR_CFG;
530 goto err_unroll_sched;
531 }
532
9daf8208
AV
533 status = ice_init_fltr_mgmt_struct(hw);
534 if (status)
535 goto err_unroll_sched;
536
d6fef10c
MFIP
537 /* Get MAC information */
538 /* A single port can report up to two (LAN and WoL) addresses */
539 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
540 sizeof(struct ice_aqc_manage_mac_read_resp),
541 GFP_KERNEL);
542 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
dc49c772 543
63bb4e1e
WY
544 if (!mac_buf) {
545 status = ICE_ERR_NO_MEMORY;
9daf8208 546 goto err_unroll_fltr_mgmt_struct;
63bb4e1e 547 }
dc49c772
AV
548
549 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
550 devm_kfree(ice_hw_to_dev(hw), mac_buf);
551
552 if (status)
9daf8208 553 goto err_unroll_fltr_mgmt_struct;
dc49c772 554
22ef683b
AV
555 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
556 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
cdedef59 557
f31e4b6f
AV
558 return 0;
559
9daf8208
AV
560err_unroll_fltr_mgmt_struct:
561 ice_cleanup_fltr_mgmt_struct(hw);
dc49c772
AV
562err_unroll_sched:
563 ice_sched_cleanup_all(hw);
9c20346b
AV
564err_unroll_alloc:
565 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
f31e4b6f
AV
566err_unroll_cqinit:
567 ice_shutdown_all_ctrlq(hw);
568 return status;
569}
570
571/**
572 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
573 * @hw: pointer to the hardware structure
574 */
575void ice_deinit_hw(struct ice_hw *hw)
576{
9c20346b 577 ice_sched_cleanup_all(hw);
f31e4b6f 578 ice_shutdown_all_ctrlq(hw);
dc49c772 579
9c20346b
AV
580 if (hw->port_info) {
581 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
582 hw->port_info = NULL;
583 }
9daf8208
AV
584
585 ice_cleanup_fltr_mgmt_struct(hw);
f31e4b6f
AV
586}
587
588/**
589 * ice_check_reset - Check to see if a global reset is complete
590 * @hw: pointer to the hardware structure
591 */
592enum ice_status ice_check_reset(struct ice_hw *hw)
593{
594 u32 cnt, reg = 0, grst_delay;
595
596 /* Poll for Device Active state in case a recent CORER, GLOBR,
597 * or EMPR has occurred. The grst delay value is in 100ms units.
598 * Add 1sec for outstanding AQ commands that can take a long time.
599 */
600 grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
601 GLGEN_RSTCTL_GRSTDEL_S) + 10;
602
603 for (cnt = 0; cnt < grst_delay; cnt++) {
604 mdelay(100);
605 reg = rd32(hw, GLGEN_RSTAT);
606 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
607 break;
608 }
609
610 if (cnt == grst_delay) {
611 ice_debug(hw, ICE_DBG_INIT,
612 "Global reset polling failed to complete.\n");
613 return ICE_ERR_RESET_FAILED;
614 }
615
616#define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \
617 GLNVM_ULD_GLOBR_DONE_M)
618
619 /* Device is Active; check Global Reset processes are done */
620 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
621 reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
622 if (reg == ICE_RESET_DONE_MASK) {
623 ice_debug(hw, ICE_DBG_INIT,
624 "Global reset processes done. %d\n", cnt);
625 break;
626 }
627 mdelay(10);
628 }
629
630 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
631 ice_debug(hw, ICE_DBG_INIT,
632 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
633 reg);
634 return ICE_ERR_RESET_FAILED;
635 }
636
637 return 0;
638}
639
640/**
641 * ice_pf_reset - Reset the PF
642 * @hw: pointer to the hardware structure
643 *
644 * If a global reset has been triggered, this function checks
645 * for its completion and then issues the PF reset
646 */
647static enum ice_status ice_pf_reset(struct ice_hw *hw)
648{
649 u32 cnt, reg;
650
651 /* If at function entry a global reset was already in progress, i.e.
652 * state is not 'device active' or any of the reset done bits are not
653 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
654 * global reset is done.
655 */
656 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
657 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
658 /* poll on global reset currently in progress until done */
659 if (ice_check_reset(hw))
660 return ICE_ERR_RESET_FAILED;
661
662 return 0;
663 }
664
665 /* Reset the PF */
666 reg = rd32(hw, PFGEN_CTRL);
667
668 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
669
670 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
671 reg = rd32(hw, PFGEN_CTRL);
672 if (!(reg & PFGEN_CTRL_PFSWR_M))
673 break;
674
675 mdelay(1);
676 }
677
678 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
679 ice_debug(hw, ICE_DBG_INIT,
680 "PF reset polling failed to complete.\n");
681 return ICE_ERR_RESET_FAILED;
682 }
683
684 return 0;
685}
686
687/**
688 * ice_reset - Perform different types of reset
689 * @hw: pointer to the hardware structure
690 * @req: reset request
691 *
692 * This function triggers a reset as specified by the req parameter.
693 *
694 * Note:
695 * If anything other than a PF reset is triggered, PXE mode is restored.
696 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
697 * interface has been restored in the rebuild flow.
698 */
699enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
700{
701 u32 val = 0;
702
703 switch (req) {
704 case ICE_RESET_PFR:
705 return ice_pf_reset(hw);
706 case ICE_RESET_CORER:
707 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
708 val = GLGEN_RTRIG_CORER_M;
709 break;
710 case ICE_RESET_GLOBR:
711 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
712 val = GLGEN_RTRIG_GLOBR_M;
713 break;
0f9d5027
AV
714 default:
715 return ICE_ERR_PARAM;
f31e4b6f
AV
716 }
717
718 val |= rd32(hw, GLGEN_RTRIG);
719 wr32(hw, GLGEN_RTRIG, val);
720 ice_flush(hw);
721
722 /* wait for the FW to be ready */
723 return ice_check_reset(hw);
724}
725
cdedef59
AV
726/**
727 * ice_copy_rxq_ctx_to_hw
728 * @hw: pointer to the hardware structure
729 * @ice_rxq_ctx: pointer to the rxq context
730 * @rxq_index: the index of the rx queue
731 *
732 * Copies rxq context from dense structure to hw register space
733 */
734static enum ice_status
735ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
736{
737 u8 i;
738
739 if (!ice_rxq_ctx)
740 return ICE_ERR_BAD_PTR;
741
742 if (rxq_index > QRX_CTRL_MAX_INDEX)
743 return ICE_ERR_PARAM;
744
745 /* Copy each dword separately to hw */
746 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
747 wr32(hw, QRX_CONTEXT(i, rxq_index),
748 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
749
750 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
751 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
752 }
753
754 return 0;
755}
756
757/* LAN Rx Queue Context */
758static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
759 /* Field Width LSB */
760 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
761 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
762 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
763 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
764 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
765 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
766 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
767 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
768 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
769 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
770 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
771 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
772 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
773 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
774 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
775 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
776 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
777 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
778 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
779 { 0 }
780};
781
782/**
783 * ice_write_rxq_ctx
784 * @hw: pointer to the hardware structure
785 * @rlan_ctx: pointer to the rxq context
786 * @rxq_index: the index of the rx queue
787 *
788 * Converts rxq context from sparse to dense structure and then writes
789 * it to hw register space
790 */
791enum ice_status
792ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
793 u32 rxq_index)
794{
795 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
796
797 ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
798 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
799}
800
801/* LAN Tx Queue Context */
802const struct ice_ctx_ele ice_tlan_ctx_info[] = {
803 /* Field Width LSB */
804 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
805 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
806 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
807 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
808 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
809 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
810 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
811 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
812 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
813 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
814 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
815 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
816 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
817 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
818 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
819 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
820 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
821 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
822 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
823 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
824 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
825 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
826 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
827 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
828 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
829 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
830 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171),
831 { 0 }
832};
833
7ec59eea
AV
834/**
835 * ice_debug_cq
836 * @hw: pointer to the hardware structure
837 * @mask: debug mask
838 * @desc: pointer to control queue descriptor
839 * @buf: pointer to command buffer
840 * @buf_len: max length of buf
841 *
842 * Dumps debug log about control command with descriptor contents.
843 */
844void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
845 void *buf, u16 buf_len)
846{
847 struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
848 u16 len;
849
850#ifndef CONFIG_DYNAMIC_DEBUG
851 if (!(mask & hw->debug_mask))
852 return;
853#endif
854
855 if (!desc)
856 return;
857
858 len = le16_to_cpu(cq_desc->datalen);
859
860 ice_debug(hw, mask,
861 "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
862 le16_to_cpu(cq_desc->opcode),
863 le16_to_cpu(cq_desc->flags),
864 le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
865 ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
866 le32_to_cpu(cq_desc->cookie_high),
867 le32_to_cpu(cq_desc->cookie_low));
868 ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
869 le32_to_cpu(cq_desc->params.generic.param0),
870 le32_to_cpu(cq_desc->params.generic.param1));
871 ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
872 le32_to_cpu(cq_desc->params.generic.addr_high),
873 le32_to_cpu(cq_desc->params.generic.addr_low));
874 if (buf && cq_desc->datalen != 0) {
875 ice_debug(hw, mask, "Buffer:\n");
876 if (buf_len < len)
877 len = buf_len;
878
879 ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
880 }
881}
882
883/* FW Admin Queue command wrappers */
884
885/**
886 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
887 * @hw: pointer to the hw struct
888 * @desc: descriptor describing the command
889 * @buf: buffer to use for indirect commands (NULL for direct commands)
890 * @buf_size: size of buffer for indirect commands (0 for direct commands)
891 * @cd: pointer to command details structure
892 *
893 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
894 */
895enum ice_status
896ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
897 u16 buf_size, struct ice_sq_cd *cd)
898{
899 return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
900}
901
902/**
903 * ice_aq_get_fw_ver
904 * @hw: pointer to the hw struct
905 * @cd: pointer to command details structure or NULL
906 *
907 * Get the firmware version (0x0001) from the admin queue commands
908 */
909enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
910{
911 struct ice_aqc_get_ver *resp;
912 struct ice_aq_desc desc;
913 enum ice_status status;
914
915 resp = &desc.params.get_ver;
916
917 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
918
919 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
920
921 if (!status) {
922 hw->fw_branch = resp->fw_branch;
923 hw->fw_maj_ver = resp->fw_major;
924 hw->fw_min_ver = resp->fw_minor;
925 hw->fw_patch = resp->fw_patch;
926 hw->fw_build = le32_to_cpu(resp->fw_build);
927 hw->api_branch = resp->api_branch;
928 hw->api_maj_ver = resp->api_major;
929 hw->api_min_ver = resp->api_minor;
930 hw->api_patch = resp->api_patch;
931 }
932
933 return status;
934}
935
936/**
937 * ice_aq_q_shutdown
938 * @hw: pointer to the hw struct
939 * @unloading: is the driver unloading itself
940 *
941 * Tell the Firmware that we're shutting down the AdminQ and whether
942 * or not the driver is unloading as well (0x0003).
943 */
944enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
945{
946 struct ice_aqc_q_shutdown *cmd;
947 struct ice_aq_desc desc;
948
949 cmd = &desc.params.q_shutdown;
950
951 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
952
953 if (unloading)
954 cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
955
956 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
957}
f31e4b6f
AV
958
959/**
960 * ice_aq_req_res
961 * @hw: pointer to the hw struct
962 * @res: resource id
963 * @access: access type
964 * @sdp_number: resource number
965 * @timeout: the maximum time in ms that the driver may hold the resource
966 * @cd: pointer to command details structure or NULL
967 *
ff2b1321
DN
968 * Requests common resource using the admin queue commands (0x0008).
969 * When attempting to acquire the Global Config Lock, the driver can
970 * learn of three states:
971 * 1) ICE_SUCCESS - acquired lock, and can perform download package
972 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
973 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
974 * successfully downloaded the package; the driver does
975 * not have to download the package and can continue
976 * loading
977 *
978 * Note that if the caller is in an acquire lock, perform action, release lock
979 * phase of operation, it is possible that the FW may detect a timeout and issue
980 * a CORER. In this case, the driver will receive a CORER interrupt and will
981 * have to determine its cause. The calling thread that is handling this flow
982 * will likely get an error propagated back to it indicating the Download
983 * Package, Update Package or the Release Resource AQ commands timed out.
f31e4b6f
AV
984 */
985static enum ice_status
986ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
987 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
988 struct ice_sq_cd *cd)
989{
990 struct ice_aqc_req_res *cmd_resp;
991 struct ice_aq_desc desc;
992 enum ice_status status;
993
994 cmd_resp = &desc.params.res_owner;
995
996 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
997
998 cmd_resp->res_id = cpu_to_le16(res);
999 cmd_resp->access_type = cpu_to_le16(access);
1000 cmd_resp->res_number = cpu_to_le32(sdp_number);
ff2b1321
DN
1001 cmd_resp->timeout = cpu_to_le32(*timeout);
1002 *timeout = 0;
f31e4b6f
AV
1003
1004 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
ff2b1321 1005
f31e4b6f
AV
1006 /* The completion specifies the maximum time in ms that the driver
1007 * may hold the resource in the Timeout field.
ff2b1321
DN
1008 */
1009
1010 /* Global config lock response utilizes an additional status field.
1011 *
1012 * If the Global config lock resource is held by some other driver, the
1013 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1014 * and the timeout field indicates the maximum time the current owner
1015 * of the resource has to free it.
1016 */
1017 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1018 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1019 *timeout = le32_to_cpu(cmd_resp->timeout);
1020 return 0;
1021 } else if (le16_to_cpu(cmd_resp->status) ==
1022 ICE_AQ_RES_GLBL_IN_PROG) {
1023 *timeout = le32_to_cpu(cmd_resp->timeout);
1024 return ICE_ERR_AQ_ERROR;
1025 } else if (le16_to_cpu(cmd_resp->status) ==
1026 ICE_AQ_RES_GLBL_DONE) {
1027 return ICE_ERR_AQ_NO_WORK;
1028 }
1029
1030 /* invalid FW response, force a timeout immediately */
1031 *timeout = 0;
1032 return ICE_ERR_AQ_ERROR;
1033 }
1034
1035 /* If the resource is held by some other driver, the command completes
1036 * with a busy return value and the timeout field indicates the maximum
1037 * time the current owner of the resource has to free it.
f31e4b6f
AV
1038 */
1039 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1040 *timeout = le32_to_cpu(cmd_resp->timeout);
1041
1042 return status;
1043}
1044
1045/**
1046 * ice_aq_release_res
1047 * @hw: pointer to the hw struct
1048 * @res: resource id
1049 * @sdp_number: resource number
1050 * @cd: pointer to command details structure or NULL
1051 *
1052 * release common resource using the admin queue commands (0x0009)
1053 */
1054static enum ice_status
1055ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1056 struct ice_sq_cd *cd)
1057{
1058 struct ice_aqc_req_res *cmd;
1059 struct ice_aq_desc desc;
1060
1061 cmd = &desc.params.res_owner;
1062
1063 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1064
1065 cmd->res_id = cpu_to_le16(res);
1066 cmd->res_number = cpu_to_le32(sdp_number);
1067
1068 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1069}
1070
1071/**
1072 * ice_acquire_res
1073 * @hw: pointer to the HW structure
1074 * @res: resource id
1075 * @access: access type (read or write)
ff2b1321 1076 * @timeout: timeout in milliseconds
f31e4b6f
AV
1077 *
1078 * This function will attempt to acquire the ownership of a resource.
1079 */
1080enum ice_status
1081ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
ff2b1321 1082 enum ice_aq_res_access_type access, u32 timeout)
f31e4b6f
AV
1083{
1084#define ICE_RES_POLLING_DELAY_MS 10
1085 u32 delay = ICE_RES_POLLING_DELAY_MS;
ff2b1321 1086 u32 time_left = timeout;
f31e4b6f 1087 enum ice_status status;
f31e4b6f
AV
1088
1089 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1090
ff2b1321
DN
1091 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1092 * previously acquired the resource and performed any necessary updates;
1093 * in this case the caller does not obtain the resource and has no
1094 * further work to do.
f31e4b6f 1095 */
ff2b1321 1096 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1097 goto ice_acquire_res_exit;
f31e4b6f
AV
1098
1099 if (status)
1100 ice_debug(hw, ICE_DBG_RES,
1101 "resource %d acquire type %d failed.\n", res, access);
1102
1103 /* If necessary, poll until the current lock owner timeouts */
1104 timeout = time_left;
1105 while (status && timeout && time_left) {
1106 mdelay(delay);
1107 timeout = (timeout > delay) ? timeout - delay : 0;
1108 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1109
ff2b1321 1110 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1111 /* lock free, but no work to do */
f31e4b6f 1112 break;
f31e4b6f
AV
1113
1114 if (!status)
1115 /* lock acquired */
1116 break;
1117 }
1118 if (status && status != ICE_ERR_AQ_NO_WORK)
1119 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1120
1121ice_acquire_res_exit:
1122 if (status == ICE_ERR_AQ_NO_WORK) {
1123 if (access == ICE_RES_WRITE)
1124 ice_debug(hw, ICE_DBG_RES,
1125 "resource indicates no work to do.\n");
1126 else
1127 ice_debug(hw, ICE_DBG_RES,
1128 "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1129 }
1130 return status;
1131}
1132
1133/**
1134 * ice_release_res
1135 * @hw: pointer to the HW structure
1136 * @res: resource id
1137 *
1138 * This function will release a resource using the proper Admin Command.
1139 */
1140void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1141{
1142 enum ice_status status;
1143 u32 total_delay = 0;
1144
1145 status = ice_aq_release_res(hw, res, 0, NULL);
1146
1147 /* there are some rare cases when trying to release the resource
1148 * results in an admin Q timeout, so handle them correctly
1149 */
1150 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1151 (total_delay < hw->adminq.sq_cmd_timeout)) {
1152 mdelay(1);
1153 status = ice_aq_release_res(hw, res, 0, NULL);
1154 total_delay++;
1155 }
1156}
1157
9c20346b
AV
1158/**
1159 * ice_parse_caps - parse function/device capabilities
1160 * @hw: pointer to the hw struct
1161 * @buf: pointer to a buffer containing function/device capability records
1162 * @cap_count: number of capability records in the list
1163 * @opc: type of capabilities list to parse
1164 *
1165 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1166 */
1167static void
1168ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1169 enum ice_adminq_opc opc)
1170{
1171 struct ice_aqc_list_caps_elem *cap_resp;
1172 struct ice_hw_func_caps *func_p = NULL;
1173 struct ice_hw_dev_caps *dev_p = NULL;
1174 struct ice_hw_common_caps *caps;
1175 u32 i;
1176
1177 if (!buf)
1178 return;
1179
1180 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1181
1182 if (opc == ice_aqc_opc_list_dev_caps) {
1183 dev_p = &hw->dev_caps;
1184 caps = &dev_p->common_cap;
1185 } else if (opc == ice_aqc_opc_list_func_caps) {
1186 func_p = &hw->func_caps;
1187 caps = &func_p->common_cap;
1188 } else {
1189 ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1190 return;
1191 }
1192
1193 for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1194 u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1195 u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1196 u32 number = le32_to_cpu(cap_resp->number);
1197 u16 cap = le16_to_cpu(cap_resp->cap);
1198
1199 switch (cap) {
1200 case ICE_AQC_CAPS_VSI:
1201 if (dev_p) {
1202 dev_p->num_vsi_allocd_to_host = number;
1203 ice_debug(hw, ICE_DBG_INIT,
1204 "HW caps: Dev.VSI cnt = %d\n",
1205 dev_p->num_vsi_allocd_to_host);
1206 } else if (func_p) {
1207 func_p->guaranteed_num_vsi = number;
1208 ice_debug(hw, ICE_DBG_INIT,
1209 "HW caps: Func.VSI cnt = %d\n",
1210 func_p->guaranteed_num_vsi);
1211 }
1212 break;
1213 case ICE_AQC_CAPS_RSS:
1214 caps->rss_table_size = number;
1215 caps->rss_table_entry_width = logical_id;
1216 ice_debug(hw, ICE_DBG_INIT,
1217 "HW caps: RSS table size = %d\n",
1218 caps->rss_table_size);
1219 ice_debug(hw, ICE_DBG_INIT,
1220 "HW caps: RSS table width = %d\n",
1221 caps->rss_table_entry_width);
1222 break;
1223 case ICE_AQC_CAPS_RXQS:
1224 caps->num_rxq = number;
1225 caps->rxq_first_id = phys_id;
1226 ice_debug(hw, ICE_DBG_INIT,
1227 "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1228 ice_debug(hw, ICE_DBG_INIT,
1229 "HW caps: Rx first queue ID = %d\n",
1230 caps->rxq_first_id);
1231 break;
1232 case ICE_AQC_CAPS_TXQS:
1233 caps->num_txq = number;
1234 caps->txq_first_id = phys_id;
1235 ice_debug(hw, ICE_DBG_INIT,
1236 "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1237 ice_debug(hw, ICE_DBG_INIT,
1238 "HW caps: Tx first queue ID = %d\n",
1239 caps->txq_first_id);
1240 break;
1241 case ICE_AQC_CAPS_MSIX:
1242 caps->num_msix_vectors = number;
1243 caps->msix_vector_first_id = phys_id;
1244 ice_debug(hw, ICE_DBG_INIT,
1245 "HW caps: MSIX vector count = %d\n",
1246 caps->num_msix_vectors);
1247 ice_debug(hw, ICE_DBG_INIT,
1248 "HW caps: MSIX first vector index = %d\n",
1249 caps->msix_vector_first_id);
1250 break;
1251 case ICE_AQC_CAPS_MAX_MTU:
1252 caps->max_mtu = number;
1253 if (dev_p)
1254 ice_debug(hw, ICE_DBG_INIT,
1255 "HW caps: Dev.MaxMTU = %d\n",
1256 caps->max_mtu);
1257 else if (func_p)
1258 ice_debug(hw, ICE_DBG_INIT,
1259 "HW caps: func.MaxMTU = %d\n",
1260 caps->max_mtu);
1261 break;
1262 default:
1263 ice_debug(hw, ICE_DBG_INIT,
1264 "HW caps: Unknown capability[%d]: 0x%x\n", i,
1265 cap);
1266 break;
1267 }
1268 }
1269}
1270
1271/**
1272 * ice_aq_discover_caps - query function/device capabilities
1273 * @hw: pointer to the hw struct
1274 * @buf: a virtual buffer to hold the capabilities
1275 * @buf_size: Size of the virtual buffer
1276 * @data_size: Size of the returned data, or buf size needed if AQ err==ENOMEM
1277 * @opc: capabilities type to discover - pass in the command opcode
1278 * @cd: pointer to command details structure or NULL
1279 *
1280 * Get the function(0x000a)/device(0x000b) capabilities description from
1281 * the firmware.
1282 */
1283static enum ice_status
1284ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u16 *data_size,
1285 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1286{
1287 struct ice_aqc_list_caps *cmd;
1288 struct ice_aq_desc desc;
1289 enum ice_status status;
1290
1291 cmd = &desc.params.get_cap;
1292
1293 if (opc != ice_aqc_opc_list_func_caps &&
1294 opc != ice_aqc_opc_list_dev_caps)
1295 return ICE_ERR_PARAM;
1296
1297 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1298
1299 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1300 if (!status)
1301 ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1302 *data_size = le16_to_cpu(desc.datalen);
1303
1304 return status;
1305}
1306
1307/**
1308 * ice_get_caps - get info about the HW
1309 * @hw: pointer to the hardware structure
1310 */
1311enum ice_status ice_get_caps(struct ice_hw *hw)
1312{
1313 enum ice_status status;
1314 u16 data_size = 0;
1315 u16 cbuf_len;
1316 u8 retries;
1317
1318 /* The driver doesn't know how many capabilities the device will return
1319 * so the buffer size required isn't known ahead of time. The driver
1320 * starts with cbuf_len and if this turns out to be insufficient, the
1321 * device returns ICE_AQ_RC_ENOMEM and also the buffer size it needs.
1322 * The driver then allocates the buffer of this size and retries the
1323 * operation. So it follows that the retry count is 2.
1324 */
1325#define ICE_GET_CAP_BUF_COUNT 40
1326#define ICE_GET_CAP_RETRY_COUNT 2
1327
1328 cbuf_len = ICE_GET_CAP_BUF_COUNT *
1329 sizeof(struct ice_aqc_list_caps_elem);
1330
1331 retries = ICE_GET_CAP_RETRY_COUNT;
1332
1333 do {
1334 void *cbuf;
1335
1336 cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1337 if (!cbuf)
1338 return ICE_ERR_NO_MEMORY;
1339
1340 status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &data_size,
1341 ice_aqc_opc_list_func_caps, NULL);
1342 devm_kfree(ice_hw_to_dev(hw), cbuf);
1343
1344 if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1345 break;
1346
1347 /* If ENOMEM is returned, try again with bigger buffer */
1348 cbuf_len = data_size;
1349 } while (--retries);
1350
1351 return status;
1352}
1353
e94d4478
AV
1354/**
1355 * ice_aq_manage_mac_write - manage MAC address write command
1356 * @hw: pointer to the hw struct
1357 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1358 * @flags: flags to control write behavior
1359 * @cd: pointer to command details structure or NULL
1360 *
1361 * This function is used to write MAC address to the NVM (0x0108).
1362 */
1363enum ice_status
1364ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags,
1365 struct ice_sq_cd *cd)
1366{
1367 struct ice_aqc_manage_mac_write *cmd;
1368 struct ice_aq_desc desc;
1369
1370 cmd = &desc.params.mac_write;
1371 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1372
1373 cmd->flags = flags;
1374
1375 /* Prep values for flags, sah, sal */
1376 cmd->sah = htons(*((u16 *)mac_addr));
1377 cmd->sal = htonl(*((u32 *)(mac_addr + 2)));
1378
1379 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1380}
1381
f31e4b6f
AV
1382/**
1383 * ice_aq_clear_pxe_mode
1384 * @hw: pointer to the hw struct
1385 *
1386 * Tell the firmware that the driver is taking over from PXE (0x0110).
1387 */
1388static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1389{
1390 struct ice_aq_desc desc;
1391
1392 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1393 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1394
1395 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1396}
1397
1398/**
1399 * ice_clear_pxe_mode - clear pxe operations mode
1400 * @hw: pointer to the hw struct
1401 *
1402 * Make sure all PXE mode settings are cleared, including things
1403 * like descriptor fetch/write-back mode.
1404 */
1405void ice_clear_pxe_mode(struct ice_hw *hw)
1406{
1407 if (ice_check_sq_alive(hw, &hw->adminq))
1408 ice_aq_clear_pxe_mode(hw);
1409}
cdedef59 1410
48cb27f2
CC
1411/**
1412 * ice_get_link_speed_based_on_phy_type - returns link speed
1413 * @phy_type_low: lower part of phy_type
1414 *
1415 * This helper function will convert a phy_type_low to its corresponding link
1416 * speed.
1417 * Note: In the structure of phy_type_low, there should be one bit set, as
1418 * this function will convert one phy type to its speed.
1419 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1420 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1421 */
1422static u16
1423ice_get_link_speed_based_on_phy_type(u64 phy_type_low)
1424{
1425 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1426
1427 switch (phy_type_low) {
1428 case ICE_PHY_TYPE_LOW_100BASE_TX:
1429 case ICE_PHY_TYPE_LOW_100M_SGMII:
1430 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
1431 break;
1432 case ICE_PHY_TYPE_LOW_1000BASE_T:
1433 case ICE_PHY_TYPE_LOW_1000BASE_SX:
1434 case ICE_PHY_TYPE_LOW_1000BASE_LX:
1435 case ICE_PHY_TYPE_LOW_1000BASE_KX:
1436 case ICE_PHY_TYPE_LOW_1G_SGMII:
1437 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
1438 break;
1439 case ICE_PHY_TYPE_LOW_2500BASE_T:
1440 case ICE_PHY_TYPE_LOW_2500BASE_X:
1441 case ICE_PHY_TYPE_LOW_2500BASE_KX:
1442 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
1443 break;
1444 case ICE_PHY_TYPE_LOW_5GBASE_T:
1445 case ICE_PHY_TYPE_LOW_5GBASE_KR:
1446 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
1447 break;
1448 case ICE_PHY_TYPE_LOW_10GBASE_T:
1449 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1450 case ICE_PHY_TYPE_LOW_10GBASE_SR:
1451 case ICE_PHY_TYPE_LOW_10GBASE_LR:
1452 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1453 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1454 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1455 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
1456 break;
1457 case ICE_PHY_TYPE_LOW_25GBASE_T:
1458 case ICE_PHY_TYPE_LOW_25GBASE_CR:
1459 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1460 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1461 case ICE_PHY_TYPE_LOW_25GBASE_SR:
1462 case ICE_PHY_TYPE_LOW_25GBASE_LR:
1463 case ICE_PHY_TYPE_LOW_25GBASE_KR:
1464 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1465 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1466 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1467 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1468 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
1469 break;
1470 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1471 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1472 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1473 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1474 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1475 case ICE_PHY_TYPE_LOW_40G_XLAUI:
1476 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
1477 break;
1478 default:
1479 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1480 break;
1481 }
1482
1483 return speed_phy_type_low;
1484}
1485
1486/**
1487 * ice_update_phy_type
1488 * @phy_type_low: pointer to the lower part of phy_type
1489 * @link_speeds_bitmap: targeted link speeds bitmap
1490 *
1491 * Note: For the link_speeds_bitmap structure, you can check it at
1492 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
1493 * link_speeds_bitmap include multiple speeds.
1494 *
1495 * The value of phy_type_low will present a certain link speed. This helper
1496 * function will turn on bits in the phy_type_low based on the value of
1497 * link_speeds_bitmap input parameter.
1498 */
1499void ice_update_phy_type(u64 *phy_type_low, u16 link_speeds_bitmap)
1500{
1501 u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN;
1502 u64 pt_low;
1503 int index;
1504
1505 /* We first check with low part of phy_type */
1506 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
1507 pt_low = BIT_ULL(index);
1508 speed = ice_get_link_speed_based_on_phy_type(pt_low);
1509
1510 if (link_speeds_bitmap & speed)
1511 *phy_type_low |= BIT_ULL(index);
1512 }
1513}
1514
fcea6f3d
AV
1515/**
1516 * ice_aq_set_phy_cfg
1517 * @hw: pointer to the hw struct
1518 * @lport: logical port number
1519 * @cfg: structure with PHY configuration data to be set
1520 * @cd: pointer to command details structure or NULL
1521 *
1522 * Set the various PHY configuration parameters supported on the Port.
1523 * One or more of the Set PHY config parameters may be ignored in an MFP
1524 * mode as the PF may not have the privilege to set some of the PHY Config
1525 * parameters. This status will be indicated by the command response (0x0601).
1526 */
48cb27f2 1527enum ice_status
fcea6f3d
AV
1528ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1529 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1530{
fcea6f3d
AV
1531 struct ice_aq_desc desc;
1532
1533 if (!cfg)
1534 return ICE_ERR_PARAM;
1535
fcea6f3d 1536 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
48cb27f2
CC
1537 desc.params.set_phy.lport_num = lport;
1538 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
fcea6f3d
AV
1539
1540 return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1541}
1542
1543/**
1544 * ice_update_link_info - update status of the HW network link
1545 * @pi: port info structure of the interested logical port
1546 */
1547static enum ice_status
1548ice_update_link_info(struct ice_port_info *pi)
1549{
1550 struct ice_aqc_get_phy_caps_data *pcaps;
1551 struct ice_phy_info *phy_info;
1552 enum ice_status status;
1553 struct ice_hw *hw;
1554
1555 if (!pi)
1556 return ICE_ERR_PARAM;
1557
1558 hw = pi->hw;
1559
1560 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1561 if (!pcaps)
1562 return ICE_ERR_NO_MEMORY;
1563
1564 phy_info = &pi->phy;
1565 status = ice_aq_get_link_info(pi, true, NULL, NULL);
1566 if (status)
1567 goto out;
1568
1569 if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1570 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1571 pcaps, NULL);
1572 if (status)
1573 goto out;
1574
1575 memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1576 sizeof(phy_info->link_info.module_type));
1577 }
1578out:
1579 devm_kfree(ice_hw_to_dev(hw), pcaps);
1580 return status;
1581}
1582
1583/**
1584 * ice_set_fc
1585 * @pi: port information structure
1586 * @aq_failures: pointer to status code, specific to ice_set_fc routine
48cb27f2 1587 * @ena_auto_link_update: enable automatic link update
fcea6f3d
AV
1588 *
1589 * Set the requested flow control mode.
1590 */
1591enum ice_status
48cb27f2 1592ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
fcea6f3d
AV
1593{
1594 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1595 struct ice_aqc_get_phy_caps_data *pcaps;
1596 enum ice_status status;
1597 u8 pause_mask = 0x0;
1598 struct ice_hw *hw;
1599
1600 if (!pi)
1601 return ICE_ERR_PARAM;
1602 hw = pi->hw;
1603 *aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1604
1605 switch (pi->fc.req_mode) {
1606 case ICE_FC_FULL:
1607 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1608 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1609 break;
1610 case ICE_FC_RX_PAUSE:
1611 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1612 break;
1613 case ICE_FC_TX_PAUSE:
1614 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1615 break;
1616 default:
1617 break;
1618 }
1619
1620 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1621 if (!pcaps)
1622 return ICE_ERR_NO_MEMORY;
1623
1624 /* Get the current phy config */
1625 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1626 NULL);
1627 if (status) {
1628 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
1629 goto out;
1630 }
1631
1632 /* clear the old pause settings */
1633 cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
1634 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
1635 /* set the new capabilities */
1636 cfg.caps |= pause_mask;
1637 /* If the capabilities have changed, then set the new config */
1638 if (cfg.caps != pcaps->caps) {
1639 int retry_count, retry_max = 10;
1640
1641 /* Auto restart link so settings take effect */
48cb27f2
CC
1642 if (ena_auto_link_update)
1643 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
fcea6f3d
AV
1644 /* Copy over all the old settings */
1645 cfg.phy_type_low = pcaps->phy_type_low;
1646 cfg.low_power_ctrl = pcaps->low_power_ctrl;
1647 cfg.eee_cap = pcaps->eee_cap;
1648 cfg.eeer_value = pcaps->eeer_value;
1649 cfg.link_fec_opt = pcaps->link_fec_options;
1650
1651 status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
1652 if (status) {
1653 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
1654 goto out;
1655 }
1656
1657 /* Update the link info
1658 * It sometimes takes a really long time for link to
1659 * come back from the atomic reset. Thus, we wait a
1660 * little bit.
1661 */
1662 for (retry_count = 0; retry_count < retry_max; retry_count++) {
1663 status = ice_update_link_info(pi);
1664
1665 if (!status)
1666 break;
1667
1668 mdelay(100);
1669 }
1670
1671 if (status)
1672 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
1673 }
1674
1675out:
1676 devm_kfree(ice_hw_to_dev(hw), pcaps);
1677 return status;
1678}
1679
0b28b702
AV
1680/**
1681 * ice_get_link_status - get status of the HW network link
1682 * @pi: port information structure
1683 * @link_up: pointer to bool (true/false = linkup/linkdown)
1684 *
1685 * Variable link_up is true if link is up, false if link is down.
1686 * The variable link_up is invalid if status is non zero. As a
1687 * result of this call, link status reporting becomes enabled
1688 */
1689enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
1690{
1691 struct ice_phy_info *phy_info;
1692 enum ice_status status = 0;
1693
c7f2c42b 1694 if (!pi || !link_up)
0b28b702
AV
1695 return ICE_ERR_PARAM;
1696
1697 phy_info = &pi->phy;
1698
1699 if (phy_info->get_link_info) {
1700 status = ice_update_link_info(pi);
1701
1702 if (status)
1703 ice_debug(pi->hw, ICE_DBG_LINK,
1704 "get link status error, status = %d\n",
1705 status);
1706 }
1707
1708 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
1709
1710 return status;
1711}
1712
fcea6f3d
AV
1713/**
1714 * ice_aq_set_link_restart_an
1715 * @pi: pointer to the port information structure
1716 * @ena_link: if true: enable link, if false: disable link
1717 * @cd: pointer to command details structure or NULL
1718 *
1719 * Sets up the link and restarts the Auto-Negotiation over the link.
1720 */
1721enum ice_status
1722ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
1723 struct ice_sq_cd *cd)
1724{
1725 struct ice_aqc_restart_an *cmd;
1726 struct ice_aq_desc desc;
1727
1728 cmd = &desc.params.restart_an;
1729
1730 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
1731
1732 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
1733 cmd->lport_num = pi->lport;
1734 if (ena_link)
1735 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
1736 else
1737 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
1738
1739 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
1740}
1741
0b28b702
AV
1742/**
1743 * ice_aq_set_event_mask
1744 * @hw: pointer to the hw struct
1745 * @port_num: port number of the physical function
1746 * @mask: event mask to be set
1747 * @cd: pointer to command details structure or NULL
1748 *
1749 * Set event mask (0x0613)
1750 */
1751enum ice_status
1752ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
1753 struct ice_sq_cd *cd)
1754{
1755 struct ice_aqc_set_event_mask *cmd;
1756 struct ice_aq_desc desc;
1757
1758 cmd = &desc.params.set_event_mask;
1759
1760 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
1761
1762 cmd->lport_num = port_num;
1763
1764 cmd->event_mask = cpu_to_le16(mask);
1765
1766 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1767}
1768
d76a60ba
AV
1769/**
1770 * __ice_aq_get_set_rss_lut
1771 * @hw: pointer to the hardware structure
1772 * @vsi_id: VSI FW index
1773 * @lut_type: LUT table type
1774 * @lut: pointer to the LUT buffer provided by the caller
1775 * @lut_size: size of the LUT buffer
1776 * @glob_lut_idx: global LUT index
1777 * @set: set true to set the table, false to get the table
1778 *
1779 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
1780 */
1781static enum ice_status
1782__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1783 u16 lut_size, u8 glob_lut_idx, bool set)
1784{
1785 struct ice_aqc_get_set_rss_lut *cmd_resp;
1786 struct ice_aq_desc desc;
1787 enum ice_status status;
1788 u16 flags = 0;
1789
1790 cmd_resp = &desc.params.get_set_rss_lut;
1791
1792 if (set) {
1793 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
1794 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1795 } else {
1796 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
1797 }
1798
1799 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1800 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
1801 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
1802 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
1803
1804 switch (lut_type) {
1805 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
1806 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
1807 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
1808 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
1809 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
1810 break;
1811 default:
1812 status = ICE_ERR_PARAM;
1813 goto ice_aq_get_set_rss_lut_exit;
1814 }
1815
1816 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
1817 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
1818 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
1819
1820 if (!set)
1821 goto ice_aq_get_set_rss_lut_send;
1822 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
1823 if (!set)
1824 goto ice_aq_get_set_rss_lut_send;
1825 } else {
1826 goto ice_aq_get_set_rss_lut_send;
1827 }
1828
1829 /* LUT size is only valid for Global and PF table types */
4381147d
AV
1830 switch (lut_size) {
1831 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
1832 break;
1833 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
d76a60ba
AV
1834 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
1835 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1836 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
4381147d
AV
1837 break;
1838 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
1839 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
1840 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
1841 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1842 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1843 break;
1844 }
1845 /* fall-through */
1846 default:
d76a60ba
AV
1847 status = ICE_ERR_PARAM;
1848 goto ice_aq_get_set_rss_lut_exit;
1849 }
1850
1851ice_aq_get_set_rss_lut_send:
1852 cmd_resp->flags = cpu_to_le16(flags);
1853 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
1854
1855ice_aq_get_set_rss_lut_exit:
1856 return status;
1857}
1858
1859/**
1860 * ice_aq_get_rss_lut
1861 * @hw: pointer to the hardware structure
1862 * @vsi_id: VSI FW index
1863 * @lut_type: LUT table type
1864 * @lut: pointer to the LUT buffer provided by the caller
1865 * @lut_size: size of the LUT buffer
1866 *
1867 * get the RSS lookup table, PF or VSI type
1868 */
1869enum ice_status
1870ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1871 u16 lut_size)
1872{
1873 return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1874 false);
1875}
1876
1877/**
1878 * ice_aq_set_rss_lut
1879 * @hw: pointer to the hardware structure
1880 * @vsi_id: VSI FW index
1881 * @lut_type: LUT table type
1882 * @lut: pointer to the LUT buffer provided by the caller
1883 * @lut_size: size of the LUT buffer
1884 *
1885 * set the RSS lookup table, PF or VSI type
1886 */
1887enum ice_status
1888ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1889 u16 lut_size)
1890{
1891 return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1892 true);
1893}
1894
1895/**
1896 * __ice_aq_get_set_rss_key
1897 * @hw: pointer to the hw struct
1898 * @vsi_id: VSI FW index
1899 * @key: pointer to key info struct
1900 * @set: set true to set the key, false to get the key
1901 *
1902 * get (0x0B04) or set (0x0B02) the RSS key per VSI
1903 */
1904static enum
1905ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1906 struct ice_aqc_get_set_rss_keys *key,
1907 bool set)
1908{
1909 struct ice_aqc_get_set_rss_key *cmd_resp;
1910 u16 key_size = sizeof(*key);
1911 struct ice_aq_desc desc;
1912
1913 cmd_resp = &desc.params.get_set_rss_key;
1914
1915 if (set) {
1916 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
1917 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1918 } else {
1919 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
1920 }
1921
1922 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1923 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
1924 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
1925 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
1926
1927 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
1928}
1929
1930/**
1931 * ice_aq_get_rss_key
1932 * @hw: pointer to the hw struct
1933 * @vsi_id: VSI FW index
1934 * @key: pointer to key info struct
1935 *
1936 * get the RSS key per VSI
1937 */
1938enum ice_status
1939ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_id,
1940 struct ice_aqc_get_set_rss_keys *key)
1941{
1942 return __ice_aq_get_set_rss_key(hw, vsi_id, key, false);
1943}
1944
1945/**
1946 * ice_aq_set_rss_key
1947 * @hw: pointer to the hw struct
1948 * @vsi_id: VSI FW index
1949 * @keys: pointer to key info struct
1950 *
1951 * set the RSS key per VSI
1952 */
1953enum ice_status
1954ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1955 struct ice_aqc_get_set_rss_keys *keys)
1956{
1957 return __ice_aq_get_set_rss_key(hw, vsi_id, keys, true);
1958}
1959
cdedef59
AV
1960/**
1961 * ice_aq_add_lan_txq
1962 * @hw: pointer to the hardware structure
1963 * @num_qgrps: Number of added queue groups
1964 * @qg_list: list of queue groups to be added
1965 * @buf_size: size of buffer for indirect command
1966 * @cd: pointer to command details structure or NULL
1967 *
1968 * Add Tx LAN queue (0x0C30)
1969 *
1970 * NOTE:
1971 * Prior to calling add Tx LAN queue:
1972 * Initialize the following as part of the Tx queue context:
1973 * Completion queue ID if the queue uses Completion queue, Quanta profile,
1974 * Cache profile and Packet shaper profile.
1975 *
1976 * After add Tx LAN queue AQ command is completed:
1977 * Interrupts should be associated with specific queues,
1978 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
1979 * flow.
1980 */
1981static enum ice_status
1982ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
1983 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
1984 struct ice_sq_cd *cd)
1985{
1986 u16 i, sum_header_size, sum_q_size = 0;
1987 struct ice_aqc_add_tx_qgrp *list;
1988 struct ice_aqc_add_txqs *cmd;
1989 struct ice_aq_desc desc;
1990
1991 cmd = &desc.params.add_txqs;
1992
1993 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
1994
1995 if (!qg_list)
1996 return ICE_ERR_PARAM;
1997
1998 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
1999 return ICE_ERR_PARAM;
2000
2001 sum_header_size = num_qgrps *
2002 (sizeof(*qg_list) - sizeof(*qg_list->txqs));
2003
2004 list = qg_list;
2005 for (i = 0; i < num_qgrps; i++) {
2006 struct ice_aqc_add_txqs_perq *q = list->txqs;
2007
2008 sum_q_size += list->num_txqs * sizeof(*q);
2009 list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2010 }
2011
2012 if (buf_size != (sum_header_size + sum_q_size))
2013 return ICE_ERR_PARAM;
2014
2015 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2016
2017 cmd->num_qgrps = num_qgrps;
2018
2019 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2020}
2021
2022/**
2023 * ice_aq_dis_lan_txq
2024 * @hw: pointer to the hardware structure
2025 * @num_qgrps: number of groups in the list
2026 * @qg_list: the list of groups to disable
2027 * @buf_size: the total size of the qg_list buffer in bytes
2028 * @cd: pointer to command details structure or NULL
2029 *
2030 * Disable LAN Tx queue (0x0C31)
2031 */
2032static enum ice_status
2033ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2034 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2035 struct ice_sq_cd *cd)
2036{
2037 struct ice_aqc_dis_txqs *cmd;
2038 struct ice_aq_desc desc;
2039 u16 i, sz = 0;
2040
2041 cmd = &desc.params.dis_txqs;
2042 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2043
2044 if (!qg_list)
2045 return ICE_ERR_PARAM;
2046
2047 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2048 return ICE_ERR_PARAM;
2049 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2050 cmd->num_entries = num_qgrps;
2051
2052 for (i = 0; i < num_qgrps; ++i) {
2053 /* Calculate the size taken up by the queue IDs in this group */
2054 sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2055
2056 /* Add the size of the group header */
2057 sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2058
2059 /* If the num of queues is even, add 2 bytes of padding */
2060 if ((qg_list[i].num_qs % 2) == 0)
2061 sz += 2;
2062 }
2063
2064 if (buf_size != sz)
2065 return ICE_ERR_PARAM;
2066
2067 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2068}
2069
2070/* End of FW Admin Queue command wrappers */
2071
2072/**
2073 * ice_write_byte - write a byte to a packed context structure
2074 * @src_ctx: the context structure to read from
2075 * @dest_ctx: the context to be written to
2076 * @ce_info: a description of the struct to be filled
2077 */
2078static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
2079 const struct ice_ctx_ele *ce_info)
2080{
2081 u8 src_byte, dest_byte, mask;
2082 u8 *from, *dest;
2083 u16 shift_width;
2084
2085 /* copy from the next struct field */
2086 from = src_ctx + ce_info->offset;
2087
2088 /* prepare the bits and mask */
2089 shift_width = ce_info->lsb % 8;
2090 mask = (u8)(BIT(ce_info->width) - 1);
2091
2092 src_byte = *from;
2093 src_byte &= mask;
2094
2095 /* shift to correct alignment */
2096 mask <<= shift_width;
2097 src_byte <<= shift_width;
2098
2099 /* get the current bits from the target bit string */
2100 dest = dest_ctx + (ce_info->lsb / 8);
2101
2102 memcpy(&dest_byte, dest, sizeof(dest_byte));
2103
2104 dest_byte &= ~mask; /* get the bits not changing */
2105 dest_byte |= src_byte; /* add in the new bits */
2106
2107 /* put it all back */
2108 memcpy(dest, &dest_byte, sizeof(dest_byte));
2109}
2110
2111/**
2112 * ice_write_word - write a word to a packed context structure
2113 * @src_ctx: the context structure to read from
2114 * @dest_ctx: the context to be written to
2115 * @ce_info: a description of the struct to be filled
2116 */
2117static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
2118 const struct ice_ctx_ele *ce_info)
2119{
2120 u16 src_word, mask;
2121 __le16 dest_word;
2122 u8 *from, *dest;
2123 u16 shift_width;
2124
2125 /* copy from the next struct field */
2126 from = src_ctx + ce_info->offset;
2127
2128 /* prepare the bits and mask */
2129 shift_width = ce_info->lsb % 8;
2130 mask = BIT(ce_info->width) - 1;
2131
2132 /* don't swizzle the bits until after the mask because the mask bits
2133 * will be in a different bit position on big endian machines
2134 */
2135 src_word = *(u16 *)from;
2136 src_word &= mask;
2137
2138 /* shift to correct alignment */
2139 mask <<= shift_width;
2140 src_word <<= shift_width;
2141
2142 /* get the current bits from the target bit string */
2143 dest = dest_ctx + (ce_info->lsb / 8);
2144
2145 memcpy(&dest_word, dest, sizeof(dest_word));
2146
2147 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
2148 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
2149
2150 /* put it all back */
2151 memcpy(dest, &dest_word, sizeof(dest_word));
2152}
2153
2154/**
2155 * ice_write_dword - write a dword to a packed context structure
2156 * @src_ctx: the context structure to read from
2157 * @dest_ctx: the context to be written to
2158 * @ce_info: a description of the struct to be filled
2159 */
2160static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
2161 const struct ice_ctx_ele *ce_info)
2162{
2163 u32 src_dword, mask;
2164 __le32 dest_dword;
2165 u8 *from, *dest;
2166 u16 shift_width;
2167
2168 /* copy from the next struct field */
2169 from = src_ctx + ce_info->offset;
2170
2171 /* prepare the bits and mask */
2172 shift_width = ce_info->lsb % 8;
2173
2174 /* if the field width is exactly 32 on an x86 machine, then the shift
2175 * operation will not work because the SHL instructions count is masked
2176 * to 5 bits so the shift will do nothing
2177 */
2178 if (ce_info->width < 32)
2179 mask = BIT(ce_info->width) - 1;
2180 else
2181 mask = (u32)~0;
2182
2183 /* don't swizzle the bits until after the mask because the mask bits
2184 * will be in a different bit position on big endian machines
2185 */
2186 src_dword = *(u32 *)from;
2187 src_dword &= mask;
2188
2189 /* shift to correct alignment */
2190 mask <<= shift_width;
2191 src_dword <<= shift_width;
2192
2193 /* get the current bits from the target bit string */
2194 dest = dest_ctx + (ce_info->lsb / 8);
2195
2196 memcpy(&dest_dword, dest, sizeof(dest_dword));
2197
2198 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
2199 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
2200
2201 /* put it all back */
2202 memcpy(dest, &dest_dword, sizeof(dest_dword));
2203}
2204
2205/**
2206 * ice_write_qword - write a qword to a packed context structure
2207 * @src_ctx: the context structure to read from
2208 * @dest_ctx: the context to be written to
2209 * @ce_info: a description of the struct to be filled
2210 */
2211static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2212 const struct ice_ctx_ele *ce_info)
2213{
2214 u64 src_qword, mask;
2215 __le64 dest_qword;
2216 u8 *from, *dest;
2217 u16 shift_width;
2218
2219 /* copy from the next struct field */
2220 from = src_ctx + ce_info->offset;
2221
2222 /* prepare the bits and mask */
2223 shift_width = ce_info->lsb % 8;
2224
2225 /* if the field width is exactly 64 on an x86 machine, then the shift
2226 * operation will not work because the SHL instructions count is masked
2227 * to 6 bits so the shift will do nothing
2228 */
2229 if (ce_info->width < 64)
2230 mask = BIT_ULL(ce_info->width) - 1;
2231 else
2232 mask = (u64)~0;
2233
2234 /* don't swizzle the bits until after the mask because the mask bits
2235 * will be in a different bit position on big endian machines
2236 */
2237 src_qword = *(u64 *)from;
2238 src_qword &= mask;
2239
2240 /* shift to correct alignment */
2241 mask <<= shift_width;
2242 src_qword <<= shift_width;
2243
2244 /* get the current bits from the target bit string */
2245 dest = dest_ctx + (ce_info->lsb / 8);
2246
2247 memcpy(&dest_qword, dest, sizeof(dest_qword));
2248
2249 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
2250 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
2251
2252 /* put it all back */
2253 memcpy(dest, &dest_qword, sizeof(dest_qword));
2254}
2255
2256/**
2257 * ice_set_ctx - set context bits in packed structure
2258 * @src_ctx: pointer to a generic non-packed context structure
2259 * @dest_ctx: pointer to memory for the packed structure
2260 * @ce_info: a description of the structure to be transformed
2261 */
2262enum ice_status
2263ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2264{
2265 int f;
2266
2267 for (f = 0; ce_info[f].width; f++) {
2268 /* We have to deal with each element of the FW response
2269 * using the correct size so that we are correct regardless
2270 * of the endianness of the machine.
2271 */
2272 switch (ce_info[f].size_of) {
2273 case sizeof(u8):
2274 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2275 break;
2276 case sizeof(u16):
2277 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2278 break;
2279 case sizeof(u32):
2280 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2281 break;
2282 case sizeof(u64):
2283 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2284 break;
2285 default:
2286 return ICE_ERR_INVAL_SIZE;
2287 }
2288 }
2289
2290 return 0;
2291}
2292
2293/**
2294 * ice_ena_vsi_txq
2295 * @pi: port information structure
2296 * @vsi_id: VSI id
2297 * @tc: tc number
2298 * @num_qgrps: Number of added queue groups
2299 * @buf: list of queue groups to be added
2300 * @buf_size: size of buffer for indirect command
2301 * @cd: pointer to command details structure or NULL
2302 *
2303 * This function adds one lan q
2304 */
2305enum ice_status
2306ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_id, u8 tc, u8 num_qgrps,
2307 struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2308 struct ice_sq_cd *cd)
2309{
2310 struct ice_aqc_txsched_elem_data node = { 0 };
2311 struct ice_sched_node *parent;
2312 enum ice_status status;
2313 struct ice_hw *hw;
2314
2315 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2316 return ICE_ERR_CFG;
2317
2318 if (num_qgrps > 1 || buf->num_txqs > 1)
2319 return ICE_ERR_MAX_LIMIT;
2320
2321 hw = pi->hw;
2322
2323 mutex_lock(&pi->sched_lock);
2324
2325 /* find a parent node */
2326 parent = ice_sched_get_free_qparent(pi, vsi_id, tc,
2327 ICE_SCHED_NODE_OWNER_LAN);
2328 if (!parent) {
2329 status = ICE_ERR_PARAM;
2330 goto ena_txq_exit;
2331 }
2332 buf->parent_teid = parent->info.node_teid;
2333 node.parent_teid = parent->info.node_teid;
2334 /* Mark that the values in the "generic" section as valid. The default
2335 * value in the "generic" section is zero. This means that :
2336 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2337 * - 0 priority among siblings, indicated by Bit 1-3.
2338 * - WFQ, indicated by Bit 4.
2339 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2340 * Bit 5-6.
2341 * - Bit 7 is reserved.
2342 * Without setting the generic section as valid in valid_sections, the
2343 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2344 */
2345 buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2346
2347 /* add the lan q */
2348 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2349 if (status)
2350 goto ena_txq_exit;
2351
2352 node.node_teid = buf->txqs[0].q_teid;
2353 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2354
2355 /* add a leaf node into schduler tree q layer */
2356 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2357
2358ena_txq_exit:
2359 mutex_unlock(&pi->sched_lock);
2360 return status;
2361}
2362
2363/**
2364 * ice_dis_vsi_txq
2365 * @pi: port information structure
2366 * @num_queues: number of queues
2367 * @q_ids: pointer to the q_id array
2368 * @q_teids: pointer to queue node teids
2369 * @cd: pointer to command details structure or NULL
2370 *
2371 * This function removes queues and their corresponding nodes in SW DB
2372 */
2373enum ice_status
2374ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
2375 u32 *q_teids, struct ice_sq_cd *cd)
2376{
2377 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2378 struct ice_aqc_dis_txq_item qg_list;
2379 u16 i;
2380
2381 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2382 return ICE_ERR_CFG;
2383
2384 mutex_lock(&pi->sched_lock);
2385
2386 for (i = 0; i < num_queues; i++) {
2387 struct ice_sched_node *node;
2388
2389 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2390 if (!node)
2391 continue;
2392 qg_list.parent_teid = node->info.parent_teid;
2393 qg_list.num_qs = 1;
2394 qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2395 status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
2396 sizeof(qg_list), cd);
2397
2398 if (status)
2399 break;
2400 ice_free_sched_node(pi, node);
2401 }
2402 mutex_unlock(&pi->sched_lock);
2403 return status;
2404}
5513b920
AV
2405
2406/**
2407 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2408 * @pi: port information structure
2409 * @vsi_id: VSI Id
2410 * @tc_bitmap: TC bitmap
2411 * @maxqs: max queues array per TC
2412 * @owner: lan or rdma
2413 *
2414 * This function adds/updates the VSI queues per TC.
2415 */
2416static enum ice_status
2417ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2418 u16 *maxqs, u8 owner)
2419{
2420 enum ice_status status = 0;
2421 u8 i;
2422
2423 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2424 return ICE_ERR_CFG;
2425
2426 mutex_lock(&pi->sched_lock);
2427
2428 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2429 /* configuration is possible only if TC node is present */
2430 if (!ice_sched_get_tc_node(pi, i))
2431 continue;
2432
2433 status = ice_sched_cfg_vsi(pi, vsi_id, i, maxqs[i], owner,
2434 ice_is_tc_ena(tc_bitmap, i));
2435 if (status)
2436 break;
2437 }
2438
2439 mutex_unlock(&pi->sched_lock);
2440 return status;
2441}
2442
2443/**
2444 * ice_cfg_vsi_lan - configure VSI lan queues
2445 * @pi: port information structure
2446 * @vsi_id: VSI Id
2447 * @tc_bitmap: TC bitmap
2448 * @max_lanqs: max lan queues array per TC
2449 *
2450 * This function adds/updates the VSI lan queues per TC.
2451 */
2452enum ice_status
2453ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2454 u16 *max_lanqs)
2455{
2456 return ice_cfg_vsi_qs(pi, vsi_id, tc_bitmap, max_lanqs,
2457 ICE_SCHED_NODE_OWNER_LAN);
2458}