]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - drivers/net/ethernet/intel/ice/ice_ptp.c
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
[mirror_ubuntu-kernels.git] / drivers / net / ethernet / intel / ice / ice_ptp.c
CommitLineData
06c16d89
JK
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2021, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_lib.h"
6
172db5f9
MM
7#define E810_OUT_PROP_DELAY_NS 1
8
ea9b847c
JK
9/**
10 * ice_set_tx_tstamp - Enable or disable Tx timestamping
11 * @pf: The PF pointer to search in
12 * @on: bool value for whether timestamps are enabled or disabled
13 */
14static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
15{
16 struct ice_vsi *vsi;
17 u32 val;
18 u16 i;
19
20 vsi = ice_get_main_vsi(pf);
21 if (!vsi)
22 return;
23
24 /* Set the timestamp enable flag for all the Tx rings */
84c5fb8c 25 ice_for_each_txq(vsi, i) {
ea9b847c
JK
26 if (!vsi->tx_rings[i])
27 continue;
28 vsi->tx_rings[i]->ptp_tx = on;
29 }
30
31 /* Configure the Tx timestamp interrupt */
32 val = rd32(&pf->hw, PFINT_OICR_ENA);
33 if (on)
34 val |= PFINT_OICR_TSYN_TX_M;
35 else
36 val &= ~PFINT_OICR_TSYN_TX_M;
37 wr32(&pf->hw, PFINT_OICR_ENA, val);
38}
39
77a78115
JK
40/**
41 * ice_set_rx_tstamp - Enable or disable Rx timestamping
42 * @pf: The PF pointer to search in
43 * @on: bool value for whether timestamps are enabled or disabled
44 */
45static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
46{
47 struct ice_vsi *vsi;
48 u16 i;
49
50 vsi = ice_get_main_vsi(pf);
51 if (!vsi)
52 return;
53
54 /* Set the timestamp flag for all the Rx rings */
55 ice_for_each_rxq(vsi, i) {
56 if (!vsi->rx_rings[i])
57 continue;
58 vsi->rx_rings[i]->ptp_rx = on;
59 }
60}
61
62/**
63 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
64 * @pf: Board private structure
65 * @ena: bool value to enable or disable time stamp
66 *
67 * This function will configure timestamping during PTP initialization
68 * and deinitialization
69 */
70static void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
71{
ea9b847c 72 ice_set_tx_tstamp(pf, ena);
77a78115
JK
73 ice_set_rx_tstamp(pf, ena);
74
ea9b847c 75 if (ena) {
77a78115 76 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
ea9b847c
JK
77 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
78 } else {
77a78115 79 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
ea9b847c
JK
80 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
81 }
77a78115
JK
82}
83
67569a7f
JK
84/**
85 * ice_get_ptp_clock_index - Get the PTP clock index
86 * @pf: the PF pointer
87 *
88 * Determine the clock index of the PTP clock associated with this device. If
89 * this is the PF controlling the clock, just use the local access to the
90 * clock device pointer.
91 *
92 * Otherwise, read from the driver shared parameters to determine the clock
93 * index value.
94 *
95 * Returns: the index of the PTP clock associated with this device, or -1 if
96 * there is no associated clock.
97 */
98int ice_get_ptp_clock_index(struct ice_pf *pf)
99{
100 struct device *dev = ice_pf_to_dev(pf);
101 enum ice_aqc_driver_params param_idx;
102 struct ice_hw *hw = &pf->hw;
103 u8 tmr_idx;
104 u32 value;
105 int err;
106
107 /* Use the ptp_clock structure if we're the main PF */
108 if (pf->ptp.clock)
109 return ptp_clock_index(pf->ptp.clock);
110
111 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
112 if (!tmr_idx)
113 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
114 else
115 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
116
117 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
118 if (err) {
119 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
120 err, ice_aq_str(hw->adminq.sq_last_status));
121 return -1;
122 }
123
124 /* The PTP clock index is an integer, and will be between 0 and
125 * INT_MAX. The highest bit of the driver shared parameter is used to
126 * indicate whether or not the currently stored clock index is valid.
127 */
128 if (!(value & PTP_SHARED_CLK_IDX_VALID))
129 return -1;
130
131 return value & ~PTP_SHARED_CLK_IDX_VALID;
132}
133
134/**
135 * ice_set_ptp_clock_index - Set the PTP clock index
136 * @pf: the PF pointer
137 *
138 * Set the PTP clock index for this device into the shared driver parameters,
139 * so that other PFs associated with this device can read it.
140 *
141 * If the PF is unable to store the clock index, it will log an error, but
142 * will continue operating PTP.
143 */
144static void ice_set_ptp_clock_index(struct ice_pf *pf)
145{
146 struct device *dev = ice_pf_to_dev(pf);
147 enum ice_aqc_driver_params param_idx;
148 struct ice_hw *hw = &pf->hw;
149 u8 tmr_idx;
150 u32 value;
151 int err;
152
153 if (!pf->ptp.clock)
154 return;
155
156 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
157 if (!tmr_idx)
158 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
159 else
160 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
161
162 value = (u32)ptp_clock_index(pf->ptp.clock);
163 if (value > INT_MAX) {
164 dev_err(dev, "PTP Clock index is too large to store\n");
165 return;
166 }
167 value |= PTP_SHARED_CLK_IDX_VALID;
168
169 err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
170 if (err) {
171 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
172 err, ice_aq_str(hw->adminq.sq_last_status));
173 }
174}
175
176/**
177 * ice_clear_ptp_clock_index - Clear the PTP clock index
178 * @pf: the PF pointer
179 *
180 * Clear the PTP clock index for this device. Must be called when
181 * unregistering the PTP clock, in order to ensure other PFs stop reporting
182 * a clock object that no longer exists.
183 */
184static void ice_clear_ptp_clock_index(struct ice_pf *pf)
185{
186 struct device *dev = ice_pf_to_dev(pf);
187 enum ice_aqc_driver_params param_idx;
188 struct ice_hw *hw = &pf->hw;
189 u8 tmr_idx;
190 int err;
191
192 /* Do not clear the index if we don't own the timer */
193 if (!hw->func_caps.ts_func_info.src_tmr_owned)
194 return;
195
196 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
197 if (!tmr_idx)
198 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
199 else
200 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
201
202 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
203 if (err) {
204 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
205 err, ice_aq_str(hw->adminq.sq_last_status));
206 }
207}
208
06c16d89
JK
209/**
210 * ice_ptp_read_src_clk_reg - Read the source clock register
211 * @pf: Board private structure
212 * @sts: Optional parameter for holding a pair of system timestamps from
213 * the system clock. Will be ignored if NULL is given.
214 */
215static u64
216ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
217{
218 struct ice_hw *hw = &pf->hw;
219 u32 hi, lo, lo2;
220 u8 tmr_idx;
221
222 tmr_idx = ice_get_ptp_src_clock_index(hw);
223 /* Read the system timestamp pre PHC read */
1e001134 224 ptp_read_system_prets(sts);
06c16d89
JK
225
226 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
227
228 /* Read the system timestamp post PHC read */
1e001134 229 ptp_read_system_postts(sts);
06c16d89
JK
230
231 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
232 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
233
234 if (lo2 < lo) {
235 /* if TIME_L rolled over read TIME_L again and update
236 * system timestamps
237 */
1e001134 238 ptp_read_system_prets(sts);
06c16d89 239 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
1e001134 240 ptp_read_system_postts(sts);
06c16d89
JK
241 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
242 }
243
244 return ((u64)hi << 32) | lo;
245}
246
77a78115
JK
247/**
248 * ice_ptp_update_cached_phctime - Update the cached PHC time values
249 * @pf: Board specific private structure
250 *
251 * This function updates the system time values which are cached in the PF
252 * structure and the Rx rings.
253 *
254 * This function must be called periodically to ensure that the cached value
255 * is never more than 2 seconds old. It must also be called whenever the PHC
256 * time has been changed.
257 */
258static void ice_ptp_update_cached_phctime(struct ice_pf *pf)
259{
260 u64 systime;
261 int i;
262
263 /* Read the current PHC time */
264 systime = ice_ptp_read_src_clk_reg(pf, NULL);
265
266 /* Update the cached PHC time stored in the PF structure */
267 WRITE_ONCE(pf->ptp.cached_phc_time, systime);
268
269 ice_for_each_vsi(pf, i) {
270 struct ice_vsi *vsi = pf->vsi[i];
271 int j;
272
273 if (!vsi)
274 continue;
275
276 if (vsi->type != ICE_VSI_PF)
277 continue;
278
279 ice_for_each_rxq(vsi, j) {
280 if (!vsi->rx_rings[j])
281 continue;
282 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
283 }
284 }
285}
286
287/**
288 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
289 * @cached_phc_time: recently cached copy of PHC time
290 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
291 *
292 * Hardware captures timestamps which contain only 32 bits of nominal
293 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
294 * Note that the captured timestamp values may be 40 bits, but the lower
295 * 8 bits are sub-nanoseconds and generally discarded.
296 *
297 * Extend the 32bit nanosecond timestamp using the following algorithm and
298 * assumptions:
299 *
300 * 1) have a recently cached copy of the PHC time
301 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
302 * seconds) before or after the PHC time was captured.
303 * 3) calculate the delta between the cached time and the timestamp
304 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
305 * captured after the PHC time. In this case, the full timestamp is just
306 * the cached PHC time plus the delta.
307 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
308 * timestamp was captured *before* the PHC time, i.e. because the PHC
309 * cache was updated after the timestamp was captured by hardware. In this
310 * case, the full timestamp is the cached time minus the inverse delta.
311 *
312 * This algorithm works even if the PHC time was updated after a Tx timestamp
313 * was requested, but before the Tx timestamp event was reported from
314 * hardware.
315 *
316 * This calculation primarily relies on keeping the cached PHC time up to
317 * date. If the timestamp was captured more than 2^31 nanoseconds after the
318 * PHC time, it is possible that the lower 32bits of PHC time have
319 * overflowed more than once, and we might generate an incorrect timestamp.
320 *
321 * This is prevented by (a) periodically updating the cached PHC time once
322 * a second, and (b) discarding any Tx timestamp packet if it has waited for
323 * a timestamp for more than one second.
324 */
325static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
326{
327 u32 delta, phc_time_lo;
328 u64 ns;
329
330 /* Extract the lower 32 bits of the PHC time */
331 phc_time_lo = (u32)cached_phc_time;
332
333 /* Calculate the delta between the lower 32bits of the cached PHC
334 * time and the in_tstamp value
335 */
336 delta = (in_tstamp - phc_time_lo);
337
338 /* Do not assume that the in_tstamp is always more recent than the
339 * cached PHC time. If the delta is large, it indicates that the
340 * in_tstamp was taken in the past, and should be converted
341 * forward.
342 */
343 if (delta > (U32_MAX / 2)) {
344 /* reverse the delta calculation here */
345 delta = (phc_time_lo - in_tstamp);
346 ns = cached_phc_time - delta;
347 } else {
348 ns = cached_phc_time + delta;
349 }
350
351 return ns;
352}
353
ea9b847c
JK
354/**
355 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
356 * @pf: Board private structure
357 * @in_tstamp: Ingress/egress 40b timestamp value
358 *
359 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
360 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
361 *
362 * *--------------------------------------------------------------*
363 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
364 * *--------------------------------------------------------------*
365 *
366 * The low bit is an indicator of whether the timestamp is valid. The next
367 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
368 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
369 *
370 * It is assumed that the caller verifies the timestamp is valid prior to
371 * calling this function.
372 *
373 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
374 * time stored in the device private PTP structure as the basis for timestamp
375 * extension.
376 *
377 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
378 * algorithm.
379 */
380static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
381{
382 const u64 mask = GENMASK_ULL(31, 0);
383
384 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
385 (in_tstamp >> 8) & mask);
386}
387
06c16d89
JK
388/**
389 * ice_ptp_read_time - Read the time from the device
390 * @pf: Board private structure
391 * @ts: timespec structure to hold the current time value
392 * @sts: Optional parameter for holding a pair of system timestamps from
393 * the system clock. Will be ignored if NULL is given.
394 *
395 * This function reads the source clock registers and stores them in a timespec.
396 * However, since the registers are 64 bits of nanoseconds, we must convert the
397 * result to a timespec before we can return.
398 */
399static void
400ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
401 struct ptp_system_timestamp *sts)
402{
403 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
404
405 *ts = ns_to_timespec64(time_ns);
406}
407
408/**
409 * ice_ptp_write_init - Set PHC time to provided value
410 * @pf: Board private structure
411 * @ts: timespec structure that holds the new time value
412 *
413 * Set the PHC time to the specified time provided in the timespec.
414 */
415static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
416{
417 u64 ns = timespec64_to_ns(ts);
418 struct ice_hw *hw = &pf->hw;
419
420 return ice_ptp_init_time(hw, ns);
421}
422
423/**
424 * ice_ptp_write_adj - Adjust PHC clock time atomically
425 * @pf: Board private structure
426 * @adj: Adjustment in nanoseconds
427 *
428 * Perform an atomic adjustment of the PHC time by the specified number of
429 * nanoseconds.
430 */
431static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
432{
433 struct ice_hw *hw = &pf->hw;
434
435 return ice_ptp_adj_clock(hw, adj);
436}
437
438/**
439 * ice_ptp_adjfine - Adjust clock increment rate
440 * @info: the driver's PTP info structure
441 * @scaled_ppm: Parts per million with 16-bit fractional field
442 *
443 * Adjust the frequency of the clock by the indicated scaled ppm from the
444 * base frequency.
445 */
446static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
447{
448 struct ice_pf *pf = ptp_info_to_pf(info);
449 u64 freq, divisor = 1000000ULL;
450 struct ice_hw *hw = &pf->hw;
451 s64 incval, diff;
452 int neg_adj = 0;
453 int err;
454
455 incval = ICE_PTP_NOMINAL_INCVAL_E810;
456
457 if (scaled_ppm < 0) {
458 neg_adj = 1;
459 scaled_ppm = -scaled_ppm;
460 }
461
462 while ((u64)scaled_ppm > div_u64(U64_MAX, incval)) {
463 /* handle overflow by scaling down the scaled_ppm and
464 * the divisor, losing some precision
465 */
466 scaled_ppm >>= 2;
467 divisor >>= 2;
468 }
469
470 freq = (incval * (u64)scaled_ppm) >> 16;
471 diff = div_u64(freq, divisor);
472
473 if (neg_adj)
474 incval -= diff;
475 else
476 incval += diff;
477
478 err = ice_ptp_write_incval_locked(hw, incval);
479 if (err) {
480 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
481 err);
482 return -EIO;
483 }
484
485 return 0;
486}
487
172db5f9
MM
488/**
489 * ice_ptp_extts_work - Workqueue task function
490 * @work: external timestamp work structure
491 *
492 * Service for PTP external clock event
493 */
494static void ice_ptp_extts_work(struct kthread_work *work)
495{
496 struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
497 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
498 struct ptp_clock_event event;
499 struct ice_hw *hw = &pf->hw;
500 u8 chan, tmr_idx;
501 u32 hi, lo;
502
503 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
504 /* Event time is captured by one of the two matched registers
505 * GLTSYN_EVNT_L: 32 LSB of sampled time event
506 * GLTSYN_EVNT_H: 32 MSB of sampled time event
507 * Event is defined in GLTSYN_EVNT_0 register
508 */
509 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
510 /* Check if channel is enabled */
511 if (pf->ptp.ext_ts_irq & (1 << chan)) {
512 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
513 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
514 event.timestamp = (((u64)hi) << 32) | lo;
515 event.type = PTP_CLOCK_EXTTS;
516 event.index = chan;
517
518 /* Fire event */
519 ptp_clock_event(pf->ptp.clock, &event);
520 pf->ptp.ext_ts_irq &= ~(1 << chan);
521 }
522 }
523}
524
525/**
526 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
527 * @pf: Board private structure
528 * @ena: true to enable; false to disable
529 * @chan: GPIO channel (0-3)
530 * @gpio_pin: GPIO pin
531 * @extts_flags: request flags from the ptp_extts_request.flags
532 */
533static int
534ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
535 unsigned int extts_flags)
536{
537 u32 func, aux_reg, gpio_reg, irq_reg;
538 struct ice_hw *hw = &pf->hw;
539 u8 tmr_idx;
540
541 if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
542 return -EINVAL;
543
544 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
545
546 irq_reg = rd32(hw, PFINT_OICR_ENA);
547
548 if (ena) {
549 /* Enable the interrupt */
550 irq_reg |= PFINT_OICR_TSYN_EVNT_M;
551 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
552
553#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
554#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
555
556 /* set event level to requested edge */
557 if (extts_flags & PTP_FALLING_EDGE)
558 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
559 if (extts_flags & PTP_RISING_EDGE)
560 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
561
562 /* Write GPIO CTL reg.
563 * 0x1 is input sampled by EVENT register(channel)
564 * + num_in_channels * tmr_idx
565 */
566 func = 1 + chan + (tmr_idx * 3);
567 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
568 GLGEN_GPIO_CTL_PIN_FUNC_M);
569 pf->ptp.ext_ts_chan |= (1 << chan);
570 } else {
571 /* clear the values we set to reset defaults */
572 aux_reg = 0;
573 gpio_reg = 0;
574 pf->ptp.ext_ts_chan &= ~(1 << chan);
575 if (!pf->ptp.ext_ts_chan)
576 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
577 }
578
579 wr32(hw, PFINT_OICR_ENA, irq_reg);
580 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
581 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
582
583 return 0;
584}
585
586/**
587 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
588 * @pf: Board private structure
589 * @chan: GPIO channel (0-3)
590 * @config: desired periodic clk configuration. NULL will disable channel
591 * @store: If set to true the values will be stored
592 *
593 * Configure the internal clock generator modules to generate the clock wave of
594 * specified period.
595 */
596static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
597 struct ice_perout_channel *config, bool store)
598{
599 u64 current_time, period, start_time, phase;
600 struct ice_hw *hw = &pf->hw;
601 u32 func, val, gpio_pin;
602 u8 tmr_idx;
603
604 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
605
606 /* 0. Reset mode & out_en in AUX_OUT */
607 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
608
609 /* If we're disabling the output, clear out CLKO and TGT and keep
610 * output level low
611 */
612 if (!config || !config->ena) {
613 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
614 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
615 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
616
617 val = GLGEN_GPIO_CTL_PIN_DIR_M;
618 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
619 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
620
621 /* Store the value if requested */
622 if (store)
623 memset(&pf->ptp.perout_channels[chan], 0,
624 sizeof(struct ice_perout_channel));
625
626 return 0;
627 }
628 period = config->period;
629 start_time = config->start_time;
630 div64_u64_rem(start_time, period, &phase);
631 gpio_pin = config->gpio_pin;
632
633 /* 1. Write clkout with half of required period value */
634 if (period & 0x1) {
635 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
636 goto err;
637 }
638
639 period >>= 1;
640
641 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick
642 */
643#define MIN_PULSE 3
644 if (period <= MIN_PULSE || period > U32_MAX) {
645 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
646 MIN_PULSE * 2);
647 goto err;
648 }
649
650 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
651
652 /* Allow time for programming before start_time is hit */
653 current_time = ice_ptp_read_src_clk_reg(pf, NULL);
654
655 /* if start time is in the past start the timer at the nearest second
656 * maintaining phase
657 */
658 if (start_time < current_time)
5f773519 659 start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
172db5f9
MM
660 NSEC_PER_SEC) * NSEC_PER_SEC + phase;
661
662 start_time -= E810_OUT_PROP_DELAY_NS;
663
664 /* 2. Write TARGET time */
665 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
666 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
667
668 /* 3. Write AUX_OUT register */
669 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
670 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
671
672 /* 4. write GPIO CTL reg */
673 func = 8 + chan + (tmr_idx * 4);
674 val = GLGEN_GPIO_CTL_PIN_DIR_M |
675 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
676 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
677
678 /* Store the value if requested */
679 if (store) {
680 memcpy(&pf->ptp.perout_channels[chan], config,
681 sizeof(struct ice_perout_channel));
682 pf->ptp.perout_channels[chan].start_time = phase;
683 }
684
685 return 0;
686err:
687 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
688 return -EFAULT;
689}
690
9ee31343
JK
691/**
692 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
693 * @pf: pointer to the PF structure
694 *
695 * Disable all currently configured clock outputs. This is necessary before
696 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
697 * re-enable the clocks again.
698 */
699static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
700{
701 uint i;
702
703 for (i = 0; i < pf->ptp.info.n_per_out; i++)
704 if (pf->ptp.perout_channels[i].ena)
705 ice_ptp_cfg_clkout(pf, i, NULL, false);
706}
707
708/**
709 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
710 * @pf: pointer to the PF structure
711 *
712 * Enable all currently configured clock outputs. Use this after
713 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
714 * their configuration.
715 */
716static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
717{
718 uint i;
719
720 for (i = 0; i < pf->ptp.info.n_per_out; i++)
721 if (pf->ptp.perout_channels[i].ena)
722 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
723 false);
724}
725
172db5f9
MM
726/**
727 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
728 * @info: the driver's PTP info structure
729 * @rq: The requested feature to change
730 * @on: Enable/disable flag
731 */
732static int
733ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
734 struct ptp_clock_request *rq, int on)
735{
736 struct ice_pf *pf = ptp_info_to_pf(info);
737 struct ice_perout_channel clk_cfg = {0};
738 unsigned int chan;
739 u32 gpio_pin;
740 int err;
741
742 switch (rq->type) {
743 case PTP_CLK_REQ_PEROUT:
744 chan = rq->perout.index;
745 if (chan == PPS_CLK_GEN_CHAN)
746 clk_cfg.gpio_pin = PPS_PIN_INDEX;
747 else
748 clk_cfg.gpio_pin = chan;
749
750 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
751 rq->perout.period.nsec);
752 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
753 rq->perout.start.nsec);
754 clk_cfg.ena = !!on;
755
756 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
757 break;
758 case PTP_CLK_REQ_EXTTS:
759 chan = rq->extts.index;
760 gpio_pin = chan;
761
762 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
763 rq->extts.flags);
764 break;
765 default:
766 return -EOPNOTSUPP;
767 }
768
769 return err;
770}
771
06c16d89
JK
772/**
773 * ice_ptp_gettimex64 - Get the time of the clock
774 * @info: the driver's PTP info structure
775 * @ts: timespec64 structure to hold the current time value
776 * @sts: Optional parameter for holding a pair of system timestamps from
777 * the system clock. Will be ignored if NULL is given.
778 *
779 * Read the device clock and return the correct value on ns, after converting it
780 * into a timespec struct.
781 */
782static int
783ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
784 struct ptp_system_timestamp *sts)
785{
786 struct ice_pf *pf = ptp_info_to_pf(info);
787 struct ice_hw *hw = &pf->hw;
788
789 if (!ice_ptp_lock(hw)) {
790 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
791 return -EBUSY;
792 }
793
794 ice_ptp_read_time(pf, ts, sts);
795 ice_ptp_unlock(hw);
796
797 return 0;
798}
799
800/**
801 * ice_ptp_settime64 - Set the time of the clock
802 * @info: the driver's PTP info structure
803 * @ts: timespec64 structure that holds the new time value
804 *
805 * Set the device clock to the user input value. The conversion from timespec
806 * to ns happens in the write function.
807 */
808static int
809ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
810{
811 struct ice_pf *pf = ptp_info_to_pf(info);
812 struct timespec64 ts64 = *ts;
813 struct ice_hw *hw = &pf->hw;
814 int err;
815
816 if (!ice_ptp_lock(hw)) {
817 err = -EBUSY;
818 goto exit;
819 }
820
9ee31343
JK
821 /* Disable periodic outputs */
822 ice_ptp_disable_all_clkout(pf);
823
06c16d89
JK
824 err = ice_ptp_write_init(pf, &ts64);
825 ice_ptp_unlock(hw);
826
77a78115
JK
827 if (!err)
828 ice_ptp_update_cached_phctime(pf);
829
9ee31343
JK
830 /* Reenable periodic outputs */
831 ice_ptp_enable_all_clkout(pf);
06c16d89
JK
832exit:
833 if (err) {
834 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
835 return err;
836 }
837
838 return 0;
839}
840
841/**
842 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
843 * @info: the driver's PTP info structure
844 * @delta: Offset in nanoseconds to adjust the time by
845 */
846static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
847{
848 struct timespec64 now, then;
849
850 then = ns_to_timespec64(delta);
851 ice_ptp_gettimex64(info, &now, NULL);
852 now = timespec64_add(now, then);
853
854 return ice_ptp_settime64(info, (const struct timespec64 *)&now);
855}
856
857/**
858 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
859 * @info: the driver's PTP info structure
860 * @delta: Offset in nanoseconds to adjust the time by
861 */
862static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
863{
864 struct ice_pf *pf = ptp_info_to_pf(info);
865 struct ice_hw *hw = &pf->hw;
866 struct device *dev;
867 int err;
868
869 dev = ice_pf_to_dev(pf);
870
871 /* Hardware only supports atomic adjustments using signed 32-bit
872 * integers. For any adjustment outside this range, perform
873 * a non-atomic get->adjust->set flow.
874 */
875 if (delta > S32_MAX || delta < S32_MIN) {
876 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
877 return ice_ptp_adjtime_nonatomic(info, delta);
878 }
879
880 if (!ice_ptp_lock(hw)) {
881 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
882 return -EBUSY;
883 }
884
9ee31343
JK
885 /* Disable periodic outputs */
886 ice_ptp_disable_all_clkout(pf);
887
06c16d89
JK
888 err = ice_ptp_write_adj(pf, delta);
889
9ee31343
JK
890 /* Reenable periodic outputs */
891 ice_ptp_enable_all_clkout(pf);
892
06c16d89
JK
893 ice_ptp_unlock(hw);
894
895 if (err) {
896 dev_err(dev, "PTP failed to adjust time, err %d\n", err);
897 return err;
898 }
899
77a78115
JK
900 ice_ptp_update_cached_phctime(pf);
901
902 return 0;
903}
904
905/**
906 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
907 * @pf: Board private structure
908 * @ifr: ioctl data
909 *
910 * Copy the timestamping config to user buffer
911 */
912int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
913{
914 struct hwtstamp_config *config;
915
916 if (!test_bit(ICE_FLAG_PTP, pf->flags))
917 return -EIO;
918
919 config = &pf->ptp.tstamp_config;
920
921 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
922 -EFAULT : 0;
923}
924
925/**
926 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
927 * @pf: Board private structure
928 * @config: hwtstamp settings requested or saved
929 */
930static int
931ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
932{
933 /* Reserved for future extensions. */
934 if (config->flags)
935 return -EINVAL;
936
937 switch (config->tx_type) {
938 case HWTSTAMP_TX_OFF:
ea9b847c
JK
939 ice_set_tx_tstamp(pf, false);
940 break;
941 case HWTSTAMP_TX_ON:
942 ice_set_tx_tstamp(pf, true);
77a78115
JK
943 break;
944 default:
945 return -ERANGE;
946 }
947
948 switch (config->rx_filter) {
949 case HWTSTAMP_FILTER_NONE:
950 ice_set_rx_tstamp(pf, false);
951 break;
952 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
953 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
954 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
955 case HWTSTAMP_FILTER_PTP_V2_EVENT:
956 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
957 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
958 case HWTSTAMP_FILTER_PTP_V2_SYNC:
959 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
960 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
961 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
962 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
963 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
964 case HWTSTAMP_FILTER_NTP_ALL:
965 case HWTSTAMP_FILTER_ALL:
966 config->rx_filter = HWTSTAMP_FILTER_ALL;
967 ice_set_rx_tstamp(pf, true);
968 break;
969 default:
970 return -ERANGE;
971 }
972
06c16d89
JK
973 return 0;
974}
975
77a78115
JK
976/**
977 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
978 * @pf: Board private structure
979 * @ifr: ioctl data
980 *
981 * Get the user config and store it
982 */
983int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
984{
985 struct hwtstamp_config config;
986 int err;
987
988 if (!test_bit(ICE_FLAG_PTP, pf->flags))
989 return -EAGAIN;
990
991 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
992 return -EFAULT;
993
994 err = ice_ptp_set_timestamp_mode(pf, &config);
995 if (err)
996 return err;
997
998 /* Save these settings for future reference */
999 pf->ptp.tstamp_config = config;
1000
1001 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1002 -EFAULT : 0;
1003}
1004
1005/**
1006 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
1007 * @rx_ring: Ring to get the VSI info
1008 * @rx_desc: Receive descriptor
1009 * @skb: Particular skb to send timestamp with
1010 *
1011 * The driver receives a notification in the receive descriptor with timestamp.
1012 * The timestamp is in ns, so we must convert the result first.
1013 */
1014void
1015ice_ptp_rx_hwtstamp(struct ice_ring *rx_ring,
1016 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
1017{
1018 u32 ts_high;
1019 u64 ts_ns;
1020
1021 /* Populate timesync data into skb */
1022 if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
1023 struct skb_shared_hwtstamps *hwtstamps;
1024
1025 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific
1026 * cached PHC value, rather than accessing the PF. This also
1027 * allows us to simply pass the upper 32bits of nanoseconds
1028 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
1029 * it would just discard these bits itself.
1030 */
1031 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
1032 ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
1033
1034 hwtstamps = skb_hwtstamps(skb);
1035 memset(hwtstamps, 0, sizeof(*hwtstamps));
1036 hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
1037 }
1038}
1039
172db5f9
MM
1040/**
1041 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
1042 * @info: PTP clock capabilities
1043 */
1044static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info)
1045{
1046 info->n_per_out = E810_N_PER_OUT;
1047 info->n_ext_ts = E810_N_EXT_TS;
1048}
1049
1050/**
1051 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
1052 * @pf: Board private structure
1053 * @info: PTP info to fill
1054 *
1055 * Assign functions to the PTP capabiltiies structure for E810 devices.
1056 * Functions which operate across all device families should be set directly
1057 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
1058 * devices.
1059 */
1060static void
1061ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
1062{
1063 info->enable = ice_ptp_gpio_enable_e810;
1064
1065 ice_ptp_setup_pins_e810(info);
1066}
1067
06c16d89
JK
1068/**
1069 * ice_ptp_set_caps - Set PTP capabilities
1070 * @pf: Board private structure
1071 */
1072static void ice_ptp_set_caps(struct ice_pf *pf)
1073{
1074 struct ptp_clock_info *info = &pf->ptp.info;
1075 struct device *dev = ice_pf_to_dev(pf);
1076
1077 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
1078 dev_driver_string(dev), dev_name(dev));
1079 info->owner = THIS_MODULE;
1080 info->max_adj = 999999999;
1081 info->adjtime = ice_ptp_adjtime;
1082 info->adjfine = ice_ptp_adjfine;
1083 info->gettimex64 = ice_ptp_gettimex64;
1084 info->settime64 = ice_ptp_settime64;
172db5f9
MM
1085
1086 ice_ptp_set_funcs_e810(pf, info);
06c16d89
JK
1087}
1088
1089/**
1090 * ice_ptp_create_clock - Create PTP clock device for userspace
1091 * @pf: Board private structure
1092 *
1093 * This function creates a new PTP clock device. It only creates one if we
1094 * don't already have one. Will return error if it can't create one, but success
1095 * if we already have a device. Should be used by ice_ptp_init to create clock
1096 * initially, and prevent global resets from creating new clock devices.
1097 */
1098static long ice_ptp_create_clock(struct ice_pf *pf)
1099{
1100 struct ptp_clock_info *info;
1101 struct ptp_clock *clock;
1102 struct device *dev;
1103
1104 /* No need to create a clock device if we already have one */
1105 if (pf->ptp.clock)
1106 return 0;
1107
1108 ice_ptp_set_caps(pf);
1109
1110 info = &pf->ptp.info;
1111 dev = ice_pf_to_dev(pf);
1112
1113 /* Attempt to register the clock before enabling the hardware. */
1114 clock = ptp_clock_register(info, dev);
1115 if (IS_ERR(clock))
1116 return PTR_ERR(clock);
1117
1118 pf->ptp.clock = clock;
1119
1120 return 0;
1121}
1122
ea9b847c
JK
1123/**
1124 * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
1125 * @work: pointer to the kthread_work struct
1126 *
1127 * Process timestamps captured by the PHY associated with this port. To do
1128 * this, loop over each index with a waiting skb.
1129 *
1130 * If a given index has a valid timestamp, perform the following steps:
1131 *
1132 * 1) copy the timestamp out of the PHY register
1133 * 4) clear the timestamp valid bit in the PHY register
1134 * 5) unlock the index by clearing the associated in_use bit.
1135 * 2) extend the 40b timestamp value to get a 64bit timestamp
1136 * 3) send that timestamp to the stack
1137 *
1138 * After looping, if we still have waiting SKBs, then re-queue the work. This
1139 * may cause us effectively poll even when not strictly necessary. We do this
1140 * because it's possible a new timestamp was requested around the same time as
1141 * the interrupt. In some cases hardware might not interrupt us again when the
1142 * timestamp is captured.
1143 *
1144 * Note that we only take the tracking lock when clearing the bit and when
1145 * checking if we need to re-queue this task. The only place where bits can be
1146 * set is the hard xmit routine where an SKB has a request flag set. The only
1147 * places where we clear bits are this work function, or the periodic cleanup
1148 * thread. If the cleanup thread clears a bit we're processing we catch it
1149 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
1150 * starts a new timestamp, we might not begin processing it right away but we
1151 * will notice it at the end when we re-queue the work item. If a Tx thread
1152 * starts a new timestamp just after this function exits without re-queuing,
1153 * the interrupt when the timestamp finishes should trigger. Avoiding holding
1154 * the lock for the entire function is important in order to ensure that Tx
1155 * threads do not get blocked while waiting for the lock.
1156 */
1157static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
1158{
1159 struct ice_ptp_port *ptp_port;
1160 struct ice_ptp_tx *tx;
1161 struct ice_pf *pf;
1162 struct ice_hw *hw;
1163 u8 idx;
1164
1165 tx = container_of(work, struct ice_ptp_tx, work);
1166 if (!tx->init)
1167 return;
1168
1169 ptp_port = container_of(tx, struct ice_ptp_port, tx);
1170 pf = ptp_port_to_pf(ptp_port);
1171 hw = &pf->hw;
1172
1173 for_each_set_bit(idx, tx->in_use, tx->len) {
1174 struct skb_shared_hwtstamps shhwtstamps = {};
1175 u8 phy_idx = idx + tx->quad_offset;
1176 u64 raw_tstamp, tstamp;
1177 struct sk_buff *skb;
1178 int err;
1179
1180 err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
1181 &raw_tstamp);
1182 if (err)
1183 continue;
1184
1185 /* Check if the timestamp is valid */
1186 if (!(raw_tstamp & ICE_PTP_TS_VALID))
1187 continue;
1188
1189 /* clear the timestamp register, so that it won't show valid
1190 * again when re-used.
1191 */
1192 ice_clear_phy_tstamp(hw, tx->quad, phy_idx);
1193
1194 /* The timestamp is valid, so we'll go ahead and clear this
1195 * index and then send the timestamp up to the stack.
1196 */
1197 spin_lock(&tx->lock);
1198 clear_bit(idx, tx->in_use);
1199 skb = tx->tstamps[idx].skb;
1200 tx->tstamps[idx].skb = NULL;
1201 spin_unlock(&tx->lock);
1202
1203 /* it's (unlikely but) possible we raced with the cleanup
1204 * thread for discarding old timestamp requests.
1205 */
1206 if (!skb)
1207 continue;
1208
1209 /* Extend the timestamp using cached PHC time */
1210 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
1211 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
1212
1213 skb_tstamp_tx(skb, &shhwtstamps);
1214 dev_kfree_skb_any(skb);
1215 }
1216
1217 /* Check if we still have work to do. If so, re-queue this task to
1218 * poll for remaining timestamps.
1219 */
1220 spin_lock(&tx->lock);
1221 if (!bitmap_empty(tx->in_use, tx->len))
1222 kthread_queue_work(pf->ptp.kworker, &tx->work);
1223 spin_unlock(&tx->lock);
1224}
1225
1226/**
1227 * ice_ptp_request_ts - Request an available Tx timestamp index
1228 * @tx: the PTP Tx timestamp tracker to request from
1229 * @skb: the SKB to associate with this timestamp request
1230 */
1231s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
1232{
1233 u8 idx;
1234
1235 /* Check if this tracker is initialized */
1236 if (!tx->init)
1237 return -1;
1238
1239 spin_lock(&tx->lock);
1240 /* Find and set the first available index */
1241 idx = find_first_zero_bit(tx->in_use, tx->len);
1242 if (idx < tx->len) {
1243 /* We got a valid index that no other thread could have set. Store
1244 * a reference to the skb and the start time to allow discarding old
1245 * requests.
1246 */
1247 set_bit(idx, tx->in_use);
1248 tx->tstamps[idx].start = jiffies;
1249 tx->tstamps[idx].skb = skb_get(skb);
1250 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1251 }
1252
1253 spin_unlock(&tx->lock);
1254
1255 /* return the appropriate PHY timestamp register index, -1 if no
1256 * indexes were available.
1257 */
1258 if (idx >= tx->len)
1259 return -1;
1260 else
1261 return idx + tx->quad_offset;
1262}
1263
1264/**
1265 * ice_ptp_process_ts - Spawn kthread work to handle timestamps
1266 * @pf: Board private structure
1267 *
1268 * Queue work required to process the PTP Tx timestamps outside of interrupt
1269 * context.
1270 */
1271void ice_ptp_process_ts(struct ice_pf *pf)
1272{
1273 if (pf->ptp.port.tx.init)
1274 kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
1275}
1276
1277/**
1278 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
1279 * @tx: Tx tracking structure to initialize
1280 *
1281 * Assumes that the length has already been initialized. Do not call directly,
1282 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
1283 */
1284static int
1285ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
1286{
1287 tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
1288 if (!tx->tstamps)
1289 return -ENOMEM;
1290
1291 tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
1292 if (!tx->in_use) {
1293 kfree(tx->tstamps);
1294 tx->tstamps = NULL;
1295 return -ENOMEM;
1296 }
1297
1298 spin_lock_init(&tx->lock);
1299 kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
1300
1301 tx->init = 1;
1302
1303 return 0;
1304}
1305
1306/**
1307 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
1308 * @pf: Board private structure
1309 * @tx: the tracker to flush
1310 */
1311static void
1312ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1313{
1314 u8 idx;
1315
1316 for (idx = 0; idx < tx->len; idx++) {
1317 u8 phy_idx = idx + tx->quad_offset;
1318
4d4a223a 1319 spin_lock(&tx->lock);
ea9b847c
JK
1320 if (tx->tstamps[idx].skb) {
1321 dev_kfree_skb_any(tx->tstamps[idx].skb);
1322 tx->tstamps[idx].skb = NULL;
1323 }
4d4a223a
JK
1324 clear_bit(idx, tx->in_use);
1325 spin_unlock(&tx->lock);
4dd0d5c3 1326
4d4a223a
JK
1327 /* Clear any potential residual timestamp in the PHY block */
1328 if (!pf->hw.reset_ongoing)
1329 ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
1330 }
ea9b847c
JK
1331}
1332
1333/**
1334 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
1335 * @pf: Board private structure
1336 * @tx: Tx tracking structure to release
1337 *
1338 * Free memory associated with the Tx timestamp tracker.
1339 */
1340static void
1341ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1342{
1343 tx->init = 0;
1344
1345 kthread_cancel_work_sync(&tx->work);
1346
1347 ice_ptp_flush_tx_tracker(pf, tx);
1348
1349 kfree(tx->tstamps);
1350 tx->tstamps = NULL;
1351
1352 kfree(tx->in_use);
1353 tx->in_use = NULL;
1354
1355 tx->len = 0;
1356}
1357
1358/**
1359 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1360 * @pf: Board private structure
1361 * @tx: the Tx tracking structure to initialize
1362 *
1363 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1364 * port has its own block of timestamps, independent of the other ports.
1365 */
1366static int
1367ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1368{
1369 tx->quad = pf->hw.port_info->lport;
1370 tx->quad_offset = 0;
1371 tx->len = INDEX_PER_QUAD;
1372
1373 return ice_ptp_alloc_tx_tracker(tx);
1374}
1375
1376/**
1377 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
1378 * @tx: PTP Tx tracker to clean up
1379 *
1380 * Loop through the Tx timestamp requests and see if any of them have been
1381 * waiting for a long time. Discard any SKBs that have been waiting for more
1382 * than 2 seconds. This is long enough to be reasonably sure that the
1383 * timestamp will never be captured. This might happen if the packet gets
1384 * discarded before it reaches the PHY timestamping block.
1385 */
1386static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx)
1387{
1388 u8 idx;
1389
1390 if (!tx->init)
1391 return;
1392
1393 for_each_set_bit(idx, tx->in_use, tx->len) {
1394 struct sk_buff *skb;
1395
1396 /* Check if this SKB has been waiting for too long */
1397 if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
1398 continue;
1399
1400 spin_lock(&tx->lock);
1401 skb = tx->tstamps[idx].skb;
1402 tx->tstamps[idx].skb = NULL;
1403 clear_bit(idx, tx->in_use);
1404 spin_unlock(&tx->lock);
1405
1406 /* Free the SKB after we've cleared the bit */
1407 dev_kfree_skb_any(skb);
1408 }
1409}
1410
77a78115
JK
1411static void ice_ptp_periodic_work(struct kthread_work *work)
1412{
1413 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
1414 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1415
1416 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1417 return;
1418
1419 ice_ptp_update_cached_phctime(pf);
1420
ea9b847c
JK
1421 ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx);
1422
77a78115
JK
1423 /* Run twice a second */
1424 kthread_queue_delayed_work(ptp->kworker, &ptp->work,
1425 msecs_to_jiffies(500));
1426}
1427
06c16d89
JK
1428/**
1429 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
1430 * @pf: Board private structure
1431 *
1432 * Setup and initialize a PTP clock device that represents the device hardware
1433 * clock. Save the clock index for other functions connected to the same
1434 * hardware resource.
1435 */
1436static int ice_ptp_init_owner(struct ice_pf *pf)
1437{
1438 struct device *dev = ice_pf_to_dev(pf);
1439 struct ice_hw *hw = &pf->hw;
1440 struct timespec64 ts;
1441 u8 src_idx;
1442 int err;
1443
1444 wr32(hw, GLTSYN_SYNC_DLAY, 0);
1445
1446 /* Clear some HW residue and enable source clock */
1447 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1448
1449 /* Enable source clocks */
1450 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
1451
1452 /* Enable PHY time sync */
1453 err = ice_ptp_init_phy_e810(hw);
1454 if (err)
1455 goto err_exit;
1456
1457 /* Clear event status indications for auxiliary pins */
1458 (void)rd32(hw, GLTSYN_STAT(src_idx));
1459
1460 /* Acquire the global hardware lock */
1461 if (!ice_ptp_lock(hw)) {
1462 err = -EBUSY;
1463 goto err_exit;
1464 }
1465
1466 /* Write the increment time value to PHY and LAN */
1467 err = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810);
1468 if (err) {
1469 ice_ptp_unlock(hw);
1470 goto err_exit;
1471 }
1472
1473 ts = ktime_to_timespec64(ktime_get_real());
1474 /* Write the initial Time value to PHY and LAN */
1475 err = ice_ptp_write_init(pf, &ts);
1476 if (err) {
1477 ice_ptp_unlock(hw);
1478 goto err_exit;
1479 }
1480
1481 /* Release the global hardware lock */
1482 ice_ptp_unlock(hw);
1483
1484 /* Ensure we have a clock device */
1485 err = ice_ptp_create_clock(pf);
1486 if (err)
1487 goto err_clk;
1488
67569a7f
JK
1489 /* Store the PTP clock index for other PFs */
1490 ice_set_ptp_clock_index(pf);
1491
06c16d89
JK
1492 return 0;
1493
1494err_clk:
1495 pf->ptp.clock = NULL;
1496err_exit:
1497 dev_err(dev, "PTP failed to register clock, err %d\n", err);
1498
1499 return err;
1500}
1501
1502/**
1503 * ice_ptp_init - Initialize the PTP support after device probe or reset
1504 * @pf: Board private structure
1505 *
1506 * This function sets device up for PTP support. The first time it is run, it
1507 * will create a clock device. It does not create a clock device if one
1508 * already exists. It also reconfigures the device after a reset.
1509 */
1510void ice_ptp_init(struct ice_pf *pf)
1511{
1512 struct device *dev = ice_pf_to_dev(pf);
77a78115 1513 struct kthread_worker *kworker;
06c16d89
JK
1514 struct ice_hw *hw = &pf->hw;
1515 int err;
1516
1517 /* PTP is currently only supported on E810 devices */
1518 if (!ice_is_e810(hw))
1519 return;
1520
1521 /* Check if this PF owns the source timer */
1522 if (hw->func_caps.ts_func_info.src_tmr_owned) {
1523 err = ice_ptp_init_owner(pf);
1524 if (err)
1525 return;
1526 }
1527
77a78115
JK
1528 /* Disable timestamping for both Tx and Rx */
1529 ice_ptp_cfg_timestamp(pf, false);
1530
ea9b847c
JK
1531 /* Initialize the PTP port Tx timestamp tracker */
1532 ice_ptp_init_tx_e810(pf, &pf->ptp.port.tx);
1533
77a78115
JK
1534 /* Initialize work functions */
1535 kthread_init_delayed_work(&pf->ptp.work, ice_ptp_periodic_work);
172db5f9 1536 kthread_init_work(&pf->ptp.extts_work, ice_ptp_extts_work);
77a78115
JK
1537
1538 /* Allocate a kworker for handling work required for the ports
1539 * connected to the PTP hardware clock.
1540 */
1541 kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(dev));
1542 if (IS_ERR(kworker)) {
1543 err = PTR_ERR(kworker);
1544 goto err_kworker;
1545 }
1546 pf->ptp.kworker = kworker;
1547
06c16d89
JK
1548 set_bit(ICE_FLAG_PTP, pf->flags);
1549
77a78115
JK
1550 /* Start periodic work going */
1551 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 0);
1552
06c16d89 1553 dev_info(dev, "PTP init successful\n");
77a78115
JK
1554 return;
1555
1556err_kworker:
1557 /* If we registered a PTP clock, release it */
1558 if (pf->ptp.clock) {
1559 ptp_clock_unregister(pf->ptp.clock);
1560 pf->ptp.clock = NULL;
1561 }
1562 dev_err(dev, "PTP failed %d\n", err);
06c16d89
JK
1563}
1564
1565/**
1566 * ice_ptp_release - Disable the driver/HW support and unregister the clock
1567 * @pf: Board private structure
1568 *
1569 * This function handles the cleanup work required from the initialization by
1570 * clearing out the important information and unregistering the clock
1571 */
1572void ice_ptp_release(struct ice_pf *pf)
1573{
fd1b5beb
YL
1574 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1575 return;
1576
77a78115
JK
1577 /* Disable timestamping for both Tx and Rx */
1578 ice_ptp_cfg_timestamp(pf, false);
1579
ea9b847c
JK
1580 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
1581
06c16d89
JK
1582 clear_bit(ICE_FLAG_PTP, pf->flags);
1583
77a78115
JK
1584 kthread_cancel_delayed_work_sync(&pf->ptp.work);
1585
1586 if (pf->ptp.kworker) {
1587 kthread_destroy_worker(pf->ptp.kworker);
1588 pf->ptp.kworker = NULL;
1589 }
1590
06c16d89
JK
1591 if (!pf->ptp.clock)
1592 return;
1593
9ee31343
JK
1594 /* Disable periodic outputs */
1595 ice_ptp_disable_all_clkout(pf);
1596
67569a7f 1597 ice_clear_ptp_clock_index(pf);
06c16d89
JK
1598 ptp_clock_unregister(pf->ptp.clock);
1599 pf->ptp.clock = NULL;
1600
1601 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
1602}