]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
ixgbe: Add mailbox API version negotiation support to ixgbe PF
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
6e861326 4 Copyright(c) 2007-2012 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
9d5c8243
AK
60#include "igb.h"
61
200e5fd5
CW
62#define MAJ 4
63#define MIN 0
64#define BUILD 1
0d1fe82d 65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 66__stringify(BUILD) "-k"
9d5c8243
AK
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
6e861326 71static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
9d5c8243 72
9d5c8243
AK
73static const struct e1000_info *igb_info_tbl[] = {
74 [board_82575] = &e1000_82575_info,
75};
76
a3aa1884 77static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
f96a8a0b
CW
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
d2ba2ed8
AD
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108 /* required last entry */
109 {0, }
110};
111
112MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114void igb_reset(struct igb_adapter *);
115static int igb_setup_all_tx_resources(struct igb_adapter *);
116static int igb_setup_all_rx_resources(struct igb_adapter *);
117static void igb_free_all_tx_resources(struct igb_adapter *);
118static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 119static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
120static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121static void __devexit igb_remove(struct pci_dev *pdev);
122static int igb_sw_init(struct igb_adapter *);
123static int igb_open(struct net_device *);
124static int igb_close(struct net_device *);
125static void igb_configure_tx(struct igb_adapter *);
126static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
127static void igb_clean_all_tx_rings(struct igb_adapter *);
128static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
129static void igb_clean_tx_ring(struct igb_ring *);
130static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 131static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
132static void igb_update_phy_info(unsigned long);
133static void igb_watchdog(unsigned long);
134static void igb_watchdog_task(struct work_struct *);
cd392f5c 135static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
136static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137 struct rtnl_link_stats64 *stats);
9d5c8243
AK
138static int igb_change_mtu(struct net_device *, int);
139static int igb_set_mac(struct net_device *, void *);
68d480c4 140static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
141static irqreturn_t igb_intr(int irq, void *);
142static irqreturn_t igb_intr_msi(int irq, void *);
143static irqreturn_t igb_msix_other(int irq, void *);
047e0030 144static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 145#ifdef CONFIG_IGB_DCA
047e0030 146static void igb_update_dca(struct igb_q_vector *);
fe4506b6 147static void igb_setup_dca(struct igb_adapter *);
421e02f0 148#endif /* CONFIG_IGB_DCA */
661086df 149static int igb_poll(struct napi_struct *, int);
13fde97a 150static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 151static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
152static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153static void igb_tx_timeout(struct net_device *);
154static void igb_reset_task(struct work_struct *);
c8f44aff 155static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
8e586137
JP
156static int igb_vlan_rx_add_vid(struct net_device *, u16);
157static int igb_vlan_rx_kill_vid(struct net_device *, u16);
9d5c8243 158static void igb_restore_vlan(struct igb_adapter *);
26ad9178 159static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
160static void igb_ping_all_vfs(struct igb_adapter *);
161static void igb_msg_task(struct igb_adapter *);
4ae196df 162static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 163static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 164static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
165static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167 int vf, u16 vlan, u8 qos);
168static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170 struct ifla_vf_info *ivi);
17dc566c 171static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
172
173#ifdef CONFIG_PCI_IOV
0224d663 174static int igb_vf_configure(struct igb_adapter *adapter, int vf);
f557147c 175static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
46a01698 176#endif
9d5c8243 177
9d5c8243 178#ifdef CONFIG_PM
d9dd966d 179#ifdef CONFIG_PM_SLEEP
749ab2cd 180static int igb_suspend(struct device *);
d9dd966d 181#endif
749ab2cd
YZ
182static int igb_resume(struct device *);
183#ifdef CONFIG_PM_RUNTIME
184static int igb_runtime_suspend(struct device *dev);
185static int igb_runtime_resume(struct device *dev);
186static int igb_runtime_idle(struct device *dev);
187#endif
188static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192};
9d5c8243
AK
193#endif
194static void igb_shutdown(struct pci_dev *);
421e02f0 195#ifdef CONFIG_IGB_DCA
fe4506b6
JC
196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201};
202#endif
9d5c8243
AK
203#ifdef CONFIG_NET_POLL_CONTROLLER
204/* for netdump / net console */
205static void igb_netpoll(struct net_device *);
206#endif
37680117 207#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
208static unsigned int max_vfs = 0;
209module_param(max_vfs, uint, 0);
210MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
211 "per physical function");
212#endif /* CONFIG_PCI_IOV */
213
9d5c8243
AK
214static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 pci_channel_state_t);
216static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217static void igb_io_resume(struct pci_dev *);
218
3646f0e5 219static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
220 .error_detected = igb_io_error_detected,
221 .slot_reset = igb_io_slot_reset,
222 .resume = igb_io_resume,
223};
224
b6e0c419 225static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
226
227static struct pci_driver igb_driver = {
228 .name = igb_driver_name,
229 .id_table = igb_pci_tbl,
230 .probe = igb_probe,
231 .remove = __devexit_p(igb_remove),
232#ifdef CONFIG_PM
749ab2cd 233 .driver.pm = &igb_pm_ops,
9d5c8243
AK
234#endif
235 .shutdown = igb_shutdown,
236 .err_handler = &igb_err_handler
237};
238
239MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
240MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241MODULE_LICENSE("GPL");
242MODULE_VERSION(DRV_VERSION);
243
b3f4d599 244#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245static int debug = -1;
246module_param(debug, int, 0);
247MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
c97ec42a
TI
249struct igb_reg_info {
250 u32 ofs;
251 char *name;
252};
253
254static const struct igb_reg_info igb_reg_info_tbl[] = {
255
256 /* General Registers */
257 {E1000_CTRL, "CTRL"},
258 {E1000_STATUS, "STATUS"},
259 {E1000_CTRL_EXT, "CTRL_EXT"},
260
261 /* Interrupt Registers */
262 {E1000_ICR, "ICR"},
263
264 /* RX Registers */
265 {E1000_RCTL, "RCTL"},
266 {E1000_RDLEN(0), "RDLEN"},
267 {E1000_RDH(0), "RDH"},
268 {E1000_RDT(0), "RDT"},
269 {E1000_RXDCTL(0), "RXDCTL"},
270 {E1000_RDBAL(0), "RDBAL"},
271 {E1000_RDBAH(0), "RDBAH"},
272
273 /* TX Registers */
274 {E1000_TCTL, "TCTL"},
275 {E1000_TDBAL(0), "TDBAL"},
276 {E1000_TDBAH(0), "TDBAH"},
277 {E1000_TDLEN(0), "TDLEN"},
278 {E1000_TDH(0), "TDH"},
279 {E1000_TDT(0), "TDT"},
280 {E1000_TXDCTL(0), "TXDCTL"},
281 {E1000_TDFH, "TDFH"},
282 {E1000_TDFT, "TDFT"},
283 {E1000_TDFHS, "TDFHS"},
284 {E1000_TDFPC, "TDFPC"},
285
286 /* List Terminator */
287 {}
288};
289
290/*
291 * igb_regdump - register printout routine
292 */
293static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
294{
295 int n = 0;
296 char rname[16];
297 u32 regs[8];
298
299 switch (reginfo->ofs) {
300 case E1000_RDLEN(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_RDLEN(n));
303 break;
304 case E1000_RDH(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_RDH(n));
307 break;
308 case E1000_RDT(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDT(n));
311 break;
312 case E1000_RXDCTL(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RXDCTL(n));
315 break;
316 case E1000_RDBAL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDBAL(n));
319 break;
320 case E1000_RDBAH(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RDBAH(n));
323 break;
324 case E1000_TDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_TDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_TDBAH(n));
331 break;
332 case E1000_TDLEN(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_TDLEN(n));
335 break;
336 case E1000_TDH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDH(n));
339 break;
340 case E1000_TDT(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDT(n));
343 break;
344 case E1000_TXDCTL(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TXDCTL(n));
347 break;
348 default:
876d2d6f 349 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
350 return;
351 }
352
353 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
354 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
355 regs[2], regs[3]);
c97ec42a
TI
356}
357
358/*
359 * igb_dump - Print registers, tx-rings and rx-rings
360 */
361static void igb_dump(struct igb_adapter *adapter)
362{
363 struct net_device *netdev = adapter->netdev;
364 struct e1000_hw *hw = &adapter->hw;
365 struct igb_reg_info *reginfo;
c97ec42a
TI
366 struct igb_ring *tx_ring;
367 union e1000_adv_tx_desc *tx_desc;
368 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
369 struct igb_ring *rx_ring;
370 union e1000_adv_rx_desc *rx_desc;
371 u32 staterr;
6ad4edfc 372 u16 i, n;
c97ec42a
TI
373
374 if (!netif_msg_hw(adapter))
375 return;
376
377 /* Print netdevice Info */
378 if (netdev) {
379 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
380 pr_info("Device Name state trans_start "
381 "last_rx\n");
382 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
384 }
385
386 /* Print Registers */
387 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 388 pr_info(" Register Name Value\n");
c97ec42a
TI
389 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390 reginfo->name; reginfo++) {
391 igb_regdump(hw, reginfo);
392 }
393
394 /* Print TX Ring Summary */
395 if (!netdev || !netif_running(netdev))
396 goto exit;
397
398 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 400 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 401 struct igb_tx_buffer *buffer_info;
c97ec42a 402 tx_ring = adapter->tx_ring[n];
06034649 403 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
406 (u64)dma_unmap_addr(buffer_info, dma),
407 dma_unmap_len(buffer_info, len),
876d2d6f
JK
408 buffer_info->next_to_watch,
409 (u64)buffer_info->time_stamp);
c97ec42a
TI
410 }
411
412 /* Print TX Rings */
413 if (!netif_msg_tx_done(adapter))
414 goto rx_ring_summary;
415
416 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418 /* Transmit Descriptor Formats
419 *
420 * Advanced Transmit Descriptor
421 * +--------------------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +--------------------------------------------------------------+
424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
425 * +--------------------------------------------------------------+
426 * 63 46 45 40 39 38 36 35 32 31 24 15 0
427 */
428
429 for (n = 0; n < adapter->num_tx_queues; n++) {
430 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
431 pr_info("------------------------------------\n");
432 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433 pr_info("------------------------------------\n");
434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
435 "[bi->dma ] leng ntw timestamp "
436 "bi->skb\n");
c97ec42a
TI
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 439 const char *next_desc;
06034649 440 struct igb_tx_buffer *buffer_info;
60136906 441 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 442 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 443 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
454 pr_info("T [0x%03X] %016llX %016llX %016llX"
455 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
456 le64_to_cpu(u0->a),
457 le64_to_cpu(u0->b),
c9f14bf3
AD
458 (u64)dma_unmap_addr(buffer_info, dma),
459 dma_unmap_len(buffer_info, len),
c97ec42a
TI
460 buffer_info->next_to_watch,
461 (u64)buffer_info->time_stamp,
876d2d6f 462 buffer_info->skb, next_desc);
c97ec42a 463
b669588a 464 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
465 print_hex_dump(KERN_INFO, "",
466 DUMP_PREFIX_ADDRESS,
b669588a 467 16, 1, buffer_info->skb->data,
c9f14bf3
AD
468 dma_unmap_len(buffer_info, len),
469 true);
c97ec42a
TI
470 }
471 }
472
473 /* Print RX Rings Summary */
474rx_ring_summary:
475 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 476 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
477 for (n = 0; n < adapter->num_rx_queues; n++) {
478 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
479 pr_info(" %5d %5X %5X\n",
480 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
481 }
482
483 /* Print RX Rings */
484 if (!netif_msg_rx_status(adapter))
485 goto exit;
486
487 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489 /* Advanced Receive Descriptor (Read) Format
490 * 63 1 0
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
496 *
497 *
498 * Advanced Receive Descriptor (Write-Back) Format
499 *
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
508 */
509
510 for (n = 0; n < adapter->num_rx_queues; n++) {
511 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
516 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
517 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
519
520 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 521 const char *next_desc;
06034649
AD
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 524 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
c97ec42a
TI
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
876d2d6f
JK
537 pr_info("%s[0x%03X] %016llX %016llX -------"
538 "--------- %p%s\n", "RWB", i,
c97ec42a
TI
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
876d2d6f 541 buffer_info->skb, next_desc);
c97ec42a 542 } else {
876d2d6f
JK
543 pr_info("%s[0x%03X] %016llX %016llX %016llX"
544 " %p%s\n", "R ", i,
c97ec42a
TI
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
876d2d6f 548 buffer_info->skb, next_desc);
c97ec42a 549
b669588a
ET
550 if (netif_msg_pktdata(adapter) &&
551 buffer_info->dma && buffer_info->skb) {
c97ec42a 552 print_hex_dump(KERN_INFO, "",
b669588a
ET
553 DUMP_PREFIX_ADDRESS,
554 16, 1, buffer_info->skb->data,
555 IGB_RX_HDR_LEN, true);
44390ca6
AD
556 print_hex_dump(KERN_INFO, "",
557 DUMP_PREFIX_ADDRESS,
558 16, 1,
b669588a
ET
559 page_address(buffer_info->page) +
560 buffer_info->page_offset,
44390ca6 561 PAGE_SIZE/2, true);
c97ec42a
TI
562 }
563 }
c97ec42a
TI
564 }
565 }
566
567exit:
568 return;
569}
570
9d5c8243 571/**
c041076a 572 * igb_get_hw_dev - return device
9d5c8243
AK
573 * used by hardware layer to print debugging information
574 **/
c041076a 575struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
576{
577 struct igb_adapter *adapter = hw->back;
c041076a 578 return adapter->netdev;
9d5c8243 579}
38c845c7 580
9d5c8243
AK
581/**
582 * igb_init_module - Driver Registration Routine
583 *
584 * igb_init_module is the first routine called when the driver is
585 * loaded. All it does is register with the PCI subsystem.
586 **/
587static int __init igb_init_module(void)
588{
589 int ret;
876d2d6f 590 pr_info("%s - version %s\n",
9d5c8243
AK
591 igb_driver_string, igb_driver_version);
592
876d2d6f 593 pr_info("%s\n", igb_copyright);
9d5c8243 594
421e02f0 595#ifdef CONFIG_IGB_DCA
fe4506b6
JC
596 dca_register_notify(&dca_notifier);
597#endif
bbd98fe4 598 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
599 return ret;
600}
601
602module_init(igb_init_module);
603
604/**
605 * igb_exit_module - Driver Exit Cleanup Routine
606 *
607 * igb_exit_module is called just before the driver is removed
608 * from memory.
609 **/
610static void __exit igb_exit_module(void)
611{
421e02f0 612#ifdef CONFIG_IGB_DCA
fe4506b6
JC
613 dca_unregister_notify(&dca_notifier);
614#endif
9d5c8243
AK
615 pci_unregister_driver(&igb_driver);
616}
617
618module_exit(igb_exit_module);
619
26bc19ec
AD
620#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
621/**
622 * igb_cache_ring_register - Descriptor ring to register mapping
623 * @adapter: board private structure to initialize
624 *
625 * Once we know the feature-set enabled for the device, we'll cache
626 * the register offset the descriptor ring is assigned to.
627 **/
628static void igb_cache_ring_register(struct igb_adapter *adapter)
629{
ee1b9f06 630 int i = 0, j = 0;
047e0030 631 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
632
633 switch (adapter->hw.mac.type) {
634 case e1000_82576:
635 /* The queues are allocated for virtualization such that VF 0
636 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
637 * In order to avoid collision we start at the first free queue
638 * and continue consuming queues in the same sequence
639 */
ee1b9f06 640 if (adapter->vfs_allocated_count) {
a99955fc 641 for (; i < adapter->rss_queues; i++)
3025a446
AD
642 adapter->rx_ring[i]->reg_idx = rbase_offset +
643 Q_IDX_82576(i);
ee1b9f06 644 }
26bc19ec 645 case e1000_82575:
55cac248 646 case e1000_82580:
d2ba2ed8 647 case e1000_i350:
f96a8a0b
CW
648 case e1000_i210:
649 case e1000_i211:
26bc19ec 650 default:
ee1b9f06 651 for (; i < adapter->num_rx_queues; i++)
3025a446 652 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 653 for (; j < adapter->num_tx_queues; j++)
3025a446 654 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
655 break;
656 }
657}
658
047e0030
AD
659static void igb_free_queues(struct igb_adapter *adapter)
660{
3025a446 661 int i;
047e0030 662
3025a446
AD
663 for (i = 0; i < adapter->num_tx_queues; i++) {
664 kfree(adapter->tx_ring[i]);
665 adapter->tx_ring[i] = NULL;
666 }
667 for (i = 0; i < adapter->num_rx_queues; i++) {
668 kfree(adapter->rx_ring[i]);
669 adapter->rx_ring[i] = NULL;
670 }
047e0030
AD
671 adapter->num_rx_queues = 0;
672 adapter->num_tx_queues = 0;
673}
674
9d5c8243
AK
675/**
676 * igb_alloc_queues - Allocate memory for all rings
677 * @adapter: board private structure to initialize
678 *
679 * We allocate one ring per queue at run-time since we don't know the
680 * number of queues at compile-time.
681 **/
682static int igb_alloc_queues(struct igb_adapter *adapter)
683{
3025a446 684 struct igb_ring *ring;
9d5c8243
AK
685 int i;
686
661086df 687 for (i = 0; i < adapter->num_tx_queues; i++) {
f33005a6 688 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
689 if (!ring)
690 goto err;
68fd9910 691 ring->count = adapter->tx_ring_count;
661086df 692 ring->queue_index = i;
59d71989 693 ring->dev = &adapter->pdev->dev;
e694e964 694 ring->netdev = adapter->netdev;
85ad76b2
AD
695 /* For 82575, context index must be unique per ring. */
696 if (adapter->hw.mac.type == e1000_82575)
866cff06 697 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
3025a446 698 adapter->tx_ring[i] = ring;
661086df 699 }
85ad76b2 700
9d5c8243 701 for (i = 0; i < adapter->num_rx_queues; i++) {
f33005a6 702 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
703 if (!ring)
704 goto err;
68fd9910 705 ring->count = adapter->rx_ring_count;
844290e5 706 ring->queue_index = i;
59d71989 707 ring->dev = &adapter->pdev->dev;
e694e964 708 ring->netdev = adapter->netdev;
85ad76b2
AD
709 /* set flag indicating ring supports SCTP checksum offload */
710 if (adapter->hw.mac.type >= e1000_82576)
866cff06 711 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
8be10e91 712
f96a8a0b
CW
713 /*
714 * On i350, i210, and i211, loopback VLAN packets
715 * have the tag byte-swapped.
716 * */
717 if (adapter->hw.mac.type >= e1000_i350)
8be10e91
AD
718 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
719
3025a446 720 adapter->rx_ring[i] = ring;
9d5c8243 721 }
26bc19ec
AD
722
723 igb_cache_ring_register(adapter);
9d5c8243 724
047e0030 725 return 0;
a88f10ec 726
047e0030
AD
727err:
728 igb_free_queues(adapter);
d1a8c9e1 729
047e0030 730 return -ENOMEM;
a88f10ec
AD
731}
732
4be000c8
AD
733/**
734 * igb_write_ivar - configure ivar for given MSI-X vector
735 * @hw: pointer to the HW structure
736 * @msix_vector: vector number we are allocating to a given ring
737 * @index: row index of IVAR register to write within IVAR table
738 * @offset: column offset of in IVAR, should be multiple of 8
739 *
740 * This function is intended to handle the writing of the IVAR register
741 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
742 * each containing an cause allocation for an Rx and Tx ring, and a
743 * variable number of rows depending on the number of queues supported.
744 **/
745static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
746 int index, int offset)
747{
748 u32 ivar = array_rd32(E1000_IVAR0, index);
749
750 /* clear any bits that are currently set */
751 ivar &= ~((u32)0xFF << offset);
752
753 /* write vector and valid bit */
754 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
755
756 array_wr32(E1000_IVAR0, index, ivar);
757}
758
9d5c8243 759#define IGB_N0_QUEUE -1
047e0030 760static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 761{
047e0030 762 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 763 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
764 int rx_queue = IGB_N0_QUEUE;
765 int tx_queue = IGB_N0_QUEUE;
4be000c8 766 u32 msixbm = 0;
047e0030 767
0ba82994
AD
768 if (q_vector->rx.ring)
769 rx_queue = q_vector->rx.ring->reg_idx;
770 if (q_vector->tx.ring)
771 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
772
773 switch (hw->mac.type) {
774 case e1000_82575:
9d5c8243
AK
775 /* The 82575 assigns vectors using a bitmask, which matches the
776 bitmask for the EICR/EIMS/EIMC registers. To assign one
777 or more queues to a vector, we write the appropriate bits
778 into the MSIXBM register for that vector. */
047e0030 779 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 780 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 781 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 782 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
783 if (!adapter->msix_entries && msix_vector == 0)
784 msixbm |= E1000_EIMS_OTHER;
9d5c8243 785 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 786 q_vector->eims_value = msixbm;
2d064c06
AD
787 break;
788 case e1000_82576:
4be000c8
AD
789 /*
790 * 82576 uses a table that essentially consists of 2 columns
791 * with 8 rows. The ordering is column-major so we use the
792 * lower 3 bits as the row index, and the 4th bit as the
793 * column offset.
794 */
795 if (rx_queue > IGB_N0_QUEUE)
796 igb_write_ivar(hw, msix_vector,
797 rx_queue & 0x7,
798 (rx_queue & 0x8) << 1);
799 if (tx_queue > IGB_N0_QUEUE)
800 igb_write_ivar(hw, msix_vector,
801 tx_queue & 0x7,
802 ((tx_queue & 0x8) << 1) + 8);
047e0030 803 q_vector->eims_value = 1 << msix_vector;
2d064c06 804 break;
55cac248 805 case e1000_82580:
d2ba2ed8 806 case e1000_i350:
f96a8a0b
CW
807 case e1000_i210:
808 case e1000_i211:
4be000c8
AD
809 /*
810 * On 82580 and newer adapters the scheme is similar to 82576
811 * however instead of ordering column-major we have things
812 * ordered row-major. So we traverse the table by using
813 * bit 0 as the column offset, and the remaining bits as the
814 * row index.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 igb_write_ivar(hw, msix_vector,
818 rx_queue >> 1,
819 (rx_queue & 0x1) << 4);
820 if (tx_queue > IGB_N0_QUEUE)
821 igb_write_ivar(hw, msix_vector,
822 tx_queue >> 1,
823 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
824 q_vector->eims_value = 1 << msix_vector;
825 break;
2d064c06
AD
826 default:
827 BUG();
828 break;
829 }
26b39276
AD
830
831 /* add q_vector eims value to global eims_enable_mask */
832 adapter->eims_enable_mask |= q_vector->eims_value;
833
834 /* configure q_vector to set itr on first interrupt */
835 q_vector->set_itr = 1;
9d5c8243
AK
836}
837
838/**
839 * igb_configure_msix - Configure MSI-X hardware
840 *
841 * igb_configure_msix sets up the hardware to properly
842 * generate MSI-X interrupts.
843 **/
844static void igb_configure_msix(struct igb_adapter *adapter)
845{
846 u32 tmp;
847 int i, vector = 0;
848 struct e1000_hw *hw = &adapter->hw;
849
850 adapter->eims_enable_mask = 0;
9d5c8243
AK
851
852 /* set vector for other causes, i.e. link changes */
2d064c06
AD
853 switch (hw->mac.type) {
854 case e1000_82575:
9d5c8243
AK
855 tmp = rd32(E1000_CTRL_EXT);
856 /* enable MSI-X PBA support*/
857 tmp |= E1000_CTRL_EXT_PBA_CLR;
858
859 /* Auto-Mask interrupts upon ICR read. */
860 tmp |= E1000_CTRL_EXT_EIAME;
861 tmp |= E1000_CTRL_EXT_IRCA;
862
863 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
864
865 /* enable msix_other interrupt */
866 array_wr32(E1000_MSIXBM(0), vector++,
867 E1000_EIMS_OTHER);
844290e5 868 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 869
2d064c06
AD
870 break;
871
872 case e1000_82576:
55cac248 873 case e1000_82580:
d2ba2ed8 874 case e1000_i350:
f96a8a0b
CW
875 case e1000_i210:
876 case e1000_i211:
047e0030
AD
877 /* Turn on MSI-X capability first, or our settings
878 * won't stick. And it will take days to debug. */
879 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 E1000_GPIE_NSICR);
882
883 /* enable msix_other interrupt */
884 adapter->eims_other = 1 << vector;
2d064c06 885 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 886
047e0030 887 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
888 break;
889 default:
890 /* do nothing, since nothing else supports MSI-X */
891 break;
892 } /* switch (hw->mac.type) */
047e0030
AD
893
894 adapter->eims_enable_mask |= adapter->eims_other;
895
26b39276
AD
896 for (i = 0; i < adapter->num_q_vectors; i++)
897 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 898
9d5c8243
AK
899 wrfl();
900}
901
902/**
903 * igb_request_msix - Initialize MSI-X interrupts
904 *
905 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
906 * kernel.
907 **/
908static int igb_request_msix(struct igb_adapter *adapter)
909{
910 struct net_device *netdev = adapter->netdev;
047e0030 911 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
912 int i, err = 0, vector = 0;
913
047e0030 914 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 915 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
916 if (err)
917 goto out;
918 vector++;
919
920 for (i = 0; i < adapter->num_q_vectors; i++) {
921 struct igb_q_vector *q_vector = adapter->q_vector[i];
922
923 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
924
0ba82994 925 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 926 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
927 q_vector->rx.ring->queue_index);
928 else if (q_vector->tx.ring)
047e0030 929 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
930 q_vector->tx.ring->queue_index);
931 else if (q_vector->rx.ring)
047e0030 932 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 933 q_vector->rx.ring->queue_index);
9d5c8243 934 else
047e0030
AD
935 sprintf(q_vector->name, "%s-unused", netdev->name);
936
9d5c8243 937 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 938 igb_msix_ring, 0, q_vector->name,
047e0030 939 q_vector);
9d5c8243
AK
940 if (err)
941 goto out;
9d5c8243
AK
942 vector++;
943 }
944
9d5c8243
AK
945 igb_configure_msix(adapter);
946 return 0;
947out:
948 return err;
949}
950
951static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
952{
953 if (adapter->msix_entries) {
954 pci_disable_msix(adapter->pdev);
955 kfree(adapter->msix_entries);
956 adapter->msix_entries = NULL;
047e0030 957 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 958 pci_disable_msi(adapter->pdev);
047e0030 959 }
9d5c8243
AK
960}
961
047e0030
AD
962/**
963 * igb_free_q_vectors - Free memory allocated for interrupt vectors
964 * @adapter: board private structure to initialize
965 *
966 * This function frees the memory allocated to the q_vectors. In addition if
967 * NAPI is enabled it will delete any references to the NAPI struct prior
968 * to freeing the q_vector.
969 **/
970static void igb_free_q_vectors(struct igb_adapter *adapter)
971{
972 int v_idx;
973
974 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
975 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
976 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
977 if (!q_vector)
978 continue;
047e0030
AD
979 netif_napi_del(&q_vector->napi);
980 kfree(q_vector);
981 }
982 adapter->num_q_vectors = 0;
983}
984
985/**
986 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
987 *
988 * This function resets the device so that it has 0 rx queues, tx queues, and
989 * MSI-X interrupts allocated.
990 */
991static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
992{
993 igb_free_queues(adapter);
994 igb_free_q_vectors(adapter);
995 igb_reset_interrupt_capability(adapter);
996}
9d5c8243
AK
997
998/**
999 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1000 *
1001 * Attempt to configure interrupts using the best available
1002 * capabilities of the hardware and kernel.
1003 **/
21adef3e 1004static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1005{
1006 int err;
1007 int numvecs, i;
1008
83b7180d 1009 /* Number of supported queues. */
a99955fc 1010 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1011 if (adapter->vfs_allocated_count)
1012 adapter->num_tx_queues = 1;
1013 else
1014 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1015
047e0030
AD
1016 /* start with one vector for every rx queue */
1017 numvecs = adapter->num_rx_queues;
1018
3ad2f3fb 1019 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1020 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1021 numvecs += adapter->num_tx_queues;
047e0030
AD
1022
1023 /* store the number of vectors reserved for queues */
1024 adapter->num_q_vectors = numvecs;
1025
1026 /* add 1 vector for link status interrupts */
1027 numvecs++;
9d5c8243
AK
1028 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1029 GFP_KERNEL);
f96a8a0b 1030
9d5c8243
AK
1031 if (!adapter->msix_entries)
1032 goto msi_only;
1033
1034 for (i = 0; i < numvecs; i++)
1035 adapter->msix_entries[i].entry = i;
1036
1037 err = pci_enable_msix(adapter->pdev,
1038 adapter->msix_entries,
1039 numvecs);
1040 if (err == 0)
34a20e89 1041 goto out;
9d5c8243
AK
1042
1043 igb_reset_interrupt_capability(adapter);
1044
1045 /* If we can't do MSI-X, try MSI */
1046msi_only:
2a3abf6d
AD
1047#ifdef CONFIG_PCI_IOV
1048 /* disable SR-IOV for non MSI-X configurations */
1049 if (adapter->vf_data) {
1050 struct e1000_hw *hw = &adapter->hw;
1051 /* disable iov and allow time for transactions to clear */
1052 pci_disable_sriov(adapter->pdev);
1053 msleep(500);
1054
1055 kfree(adapter->vf_data);
1056 adapter->vf_data = NULL;
1057 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1058 wrfl();
2a3abf6d
AD
1059 msleep(100);
1060 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1061 }
1062#endif
4fc82adf 1063 adapter->vfs_allocated_count = 0;
a99955fc 1064 adapter->rss_queues = 1;
4fc82adf 1065 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1066 adapter->num_rx_queues = 1;
661086df 1067 adapter->num_tx_queues = 1;
047e0030 1068 adapter->num_q_vectors = 1;
9d5c8243 1069 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1070 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1071out:
21adef3e 1072 /* Notify the stack of the (possibly) reduced queue counts. */
cfb8c3aa 1073 rtnl_lock();
21adef3e 1074 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
cfb8c3aa
BP
1075 err = netif_set_real_num_rx_queues(adapter->netdev,
1076 adapter->num_rx_queues);
1077 rtnl_unlock();
1078 return err;
9d5c8243
AK
1079}
1080
047e0030
AD
1081/**
1082 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1083 * @adapter: board private structure to initialize
1084 *
1085 * We allocate one q_vector per queue interrupt. If allocation fails we
1086 * return -ENOMEM.
1087 **/
1088static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1089{
1090 struct igb_q_vector *q_vector;
1091 struct e1000_hw *hw = &adapter->hw;
1092 int v_idx;
1093
1094 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
f33005a6
AD
1095 q_vector = kzalloc(sizeof(struct igb_q_vector),
1096 GFP_KERNEL);
047e0030
AD
1097 if (!q_vector)
1098 goto err_out;
1099 q_vector->adapter = adapter;
047e0030
AD
1100 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1101 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1102 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1103 adapter->q_vector[v_idx] = q_vector;
1104 }
81c2fc22 1105
047e0030
AD
1106 return 0;
1107
1108err_out:
fe0592b4 1109 igb_free_q_vectors(adapter);
047e0030
AD
1110 return -ENOMEM;
1111}
1112
1113static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1114 int ring_idx, int v_idx)
1115{
3025a446 1116 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1117
0ba82994
AD
1118 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1119 q_vector->rx.ring->q_vector = q_vector;
1120 q_vector->rx.count++;
4fc82adf
AD
1121 q_vector->itr_val = adapter->rx_itr_setting;
1122 if (q_vector->itr_val && q_vector->itr_val <= 3)
1123 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1124}
1125
1126static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1127 int ring_idx, int v_idx)
1128{
3025a446 1129 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1130
0ba82994
AD
1131 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1132 q_vector->tx.ring->q_vector = q_vector;
1133 q_vector->tx.count++;
4fc82adf 1134 q_vector->itr_val = adapter->tx_itr_setting;
0ba82994 1135 q_vector->tx.work_limit = adapter->tx_work_limit;
4fc82adf
AD
1136 if (q_vector->itr_val && q_vector->itr_val <= 3)
1137 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1138}
1139
1140/**
1141 * igb_map_ring_to_vector - maps allocated queues to vectors
1142 *
1143 * This function maps the recently allocated queues to vectors.
1144 **/
1145static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1146{
1147 int i;
1148 int v_idx = 0;
1149
1150 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1151 (adapter->num_q_vectors < adapter->num_tx_queues))
1152 return -ENOMEM;
1153
1154 if (adapter->num_q_vectors >=
1155 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1156 for (i = 0; i < adapter->num_rx_queues; i++)
1157 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1158 for (i = 0; i < adapter->num_tx_queues; i++)
1159 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1160 } else {
1161 for (i = 0; i < adapter->num_rx_queues; i++) {
1162 if (i < adapter->num_tx_queues)
1163 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1164 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1165 }
1166 for (; i < adapter->num_tx_queues; i++)
1167 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1168 }
1169 return 0;
1170}
1171
1172/**
1173 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1174 *
1175 * This function initializes the interrupts and allocates all of the queues.
1176 **/
1177static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1178{
1179 struct pci_dev *pdev = adapter->pdev;
1180 int err;
1181
21adef3e
BH
1182 err = igb_set_interrupt_capability(adapter);
1183 if (err)
1184 return err;
047e0030
AD
1185
1186 err = igb_alloc_q_vectors(adapter);
1187 if (err) {
1188 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1189 goto err_alloc_q_vectors;
1190 }
1191
1192 err = igb_alloc_queues(adapter);
1193 if (err) {
1194 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1195 goto err_alloc_queues;
1196 }
1197
1198 err = igb_map_ring_to_vector(adapter);
1199 if (err) {
1200 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1201 goto err_map_queues;
1202 }
1203
1204
1205 return 0;
1206err_map_queues:
1207 igb_free_queues(adapter);
1208err_alloc_queues:
1209 igb_free_q_vectors(adapter);
1210err_alloc_q_vectors:
1211 igb_reset_interrupt_capability(adapter);
1212 return err;
1213}
1214
9d5c8243
AK
1215/**
1216 * igb_request_irq - initialize interrupts
1217 *
1218 * Attempts to configure interrupts using the best available
1219 * capabilities of the hardware and kernel.
1220 **/
1221static int igb_request_irq(struct igb_adapter *adapter)
1222{
1223 struct net_device *netdev = adapter->netdev;
047e0030 1224 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1225 int err = 0;
1226
1227 if (adapter->msix_entries) {
1228 err = igb_request_msix(adapter);
844290e5 1229 if (!err)
9d5c8243 1230 goto request_done;
9d5c8243 1231 /* fall back to MSI */
047e0030 1232 igb_clear_interrupt_scheme(adapter);
c74d588e 1233 if (!pci_enable_msi(pdev))
7dfc16fa 1234 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1235 igb_free_all_tx_resources(adapter);
1236 igb_free_all_rx_resources(adapter);
047e0030 1237 adapter->num_tx_queues = 1;
9d5c8243 1238 adapter->num_rx_queues = 1;
047e0030
AD
1239 adapter->num_q_vectors = 1;
1240 err = igb_alloc_q_vectors(adapter);
1241 if (err) {
1242 dev_err(&pdev->dev,
1243 "Unable to allocate memory for vectors\n");
1244 goto request_done;
1245 }
1246 err = igb_alloc_queues(adapter);
1247 if (err) {
1248 dev_err(&pdev->dev,
1249 "Unable to allocate memory for queues\n");
1250 igb_free_q_vectors(adapter);
1251 goto request_done;
1252 }
1253 igb_setup_all_tx_resources(adapter);
1254 igb_setup_all_rx_resources(adapter);
9d5c8243 1255 }
844290e5 1256
c74d588e
AD
1257 igb_assign_vector(adapter->q_vector[0], 0);
1258
7dfc16fa 1259 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1260 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1261 netdev->name, adapter);
9d5c8243
AK
1262 if (!err)
1263 goto request_done;
047e0030 1264
9d5c8243
AK
1265 /* fall back to legacy interrupts */
1266 igb_reset_interrupt_capability(adapter);
7dfc16fa 1267 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1268 }
1269
c74d588e 1270 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1271 netdev->name, adapter);
9d5c8243 1272
6cb5e577 1273 if (err)
c74d588e 1274 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1275 err);
9d5c8243
AK
1276
1277request_done:
1278 return err;
1279}
1280
1281static void igb_free_irq(struct igb_adapter *adapter)
1282{
9d5c8243
AK
1283 if (adapter->msix_entries) {
1284 int vector = 0, i;
1285
047e0030 1286 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1287
0d1ae7f4 1288 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1289 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1290 adapter->q_vector[i]);
047e0030
AD
1291 } else {
1292 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1293 }
9d5c8243
AK
1294}
1295
1296/**
1297 * igb_irq_disable - Mask off interrupt generation on the NIC
1298 * @adapter: board private structure
1299 **/
1300static void igb_irq_disable(struct igb_adapter *adapter)
1301{
1302 struct e1000_hw *hw = &adapter->hw;
1303
25568a53
AD
1304 /*
1305 * we need to be careful when disabling interrupts. The VFs are also
1306 * mapped into these registers and so clearing the bits can cause
1307 * issues on the VF drivers so we only need to clear what we set
1308 */
9d5c8243 1309 if (adapter->msix_entries) {
2dfd1212
AD
1310 u32 regval = rd32(E1000_EIAM);
1311 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1312 wr32(E1000_EIMC, adapter->eims_enable_mask);
1313 regval = rd32(E1000_EIAC);
1314 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1315 }
844290e5
PW
1316
1317 wr32(E1000_IAM, 0);
9d5c8243
AK
1318 wr32(E1000_IMC, ~0);
1319 wrfl();
81a61859
ET
1320 if (adapter->msix_entries) {
1321 int i;
1322 for (i = 0; i < adapter->num_q_vectors; i++)
1323 synchronize_irq(adapter->msix_entries[i].vector);
1324 } else {
1325 synchronize_irq(adapter->pdev->irq);
1326 }
9d5c8243
AK
1327}
1328
1329/**
1330 * igb_irq_enable - Enable default interrupt generation settings
1331 * @adapter: board private structure
1332 **/
1333static void igb_irq_enable(struct igb_adapter *adapter)
1334{
1335 struct e1000_hw *hw = &adapter->hw;
1336
1337 if (adapter->msix_entries) {
06218a8d 1338 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1339 u32 regval = rd32(E1000_EIAC);
1340 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1341 regval = rd32(E1000_EIAM);
1342 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1343 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1344 if (adapter->vfs_allocated_count) {
4ae196df 1345 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1346 ims |= E1000_IMS_VMMB;
1347 }
1348 wr32(E1000_IMS, ims);
844290e5 1349 } else {
55cac248
AD
1350 wr32(E1000_IMS, IMS_ENABLE_MASK |
1351 E1000_IMS_DRSTA);
1352 wr32(E1000_IAM, IMS_ENABLE_MASK |
1353 E1000_IMS_DRSTA);
844290e5 1354 }
9d5c8243
AK
1355}
1356
1357static void igb_update_mng_vlan(struct igb_adapter *adapter)
1358{
51466239 1359 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1360 u16 vid = adapter->hw.mng_cookie.vlan_id;
1361 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1362
1363 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1364 /* add VID to filter table */
1365 igb_vfta_set(hw, vid, true);
1366 adapter->mng_vlan_id = vid;
1367 } else {
1368 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1369 }
1370
1371 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1372 (vid != old_vid) &&
b2cb09b1 1373 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1374 /* remove VID from filter table */
1375 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1376 }
1377}
1378
1379/**
1380 * igb_release_hw_control - release control of the h/w to f/w
1381 * @adapter: address of board private structure
1382 *
1383 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1384 * For ASF and Pass Through versions of f/w this means that the
1385 * driver is no longer loaded.
1386 *
1387 **/
1388static void igb_release_hw_control(struct igb_adapter *adapter)
1389{
1390 struct e1000_hw *hw = &adapter->hw;
1391 u32 ctrl_ext;
1392
1393 /* Let firmware take over control of h/w */
1394 ctrl_ext = rd32(E1000_CTRL_EXT);
1395 wr32(E1000_CTRL_EXT,
1396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1397}
1398
9d5c8243
AK
1399/**
1400 * igb_get_hw_control - get control of the h/w from f/w
1401 * @adapter: address of board private structure
1402 *
1403 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1404 * For ASF and Pass Through versions of f/w this means that
1405 * the driver is loaded.
1406 *
1407 **/
1408static void igb_get_hw_control(struct igb_adapter *adapter)
1409{
1410 struct e1000_hw *hw = &adapter->hw;
1411 u32 ctrl_ext;
1412
1413 /* Let firmware know the driver has taken over */
1414 ctrl_ext = rd32(E1000_CTRL_EXT);
1415 wr32(E1000_CTRL_EXT,
1416 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1417}
1418
9d5c8243
AK
1419/**
1420 * igb_configure - configure the hardware for RX and TX
1421 * @adapter: private board structure
1422 **/
1423static void igb_configure(struct igb_adapter *adapter)
1424{
1425 struct net_device *netdev = adapter->netdev;
1426 int i;
1427
1428 igb_get_hw_control(adapter);
ff41f8dc 1429 igb_set_rx_mode(netdev);
9d5c8243
AK
1430
1431 igb_restore_vlan(adapter);
9d5c8243 1432
85b430b4 1433 igb_setup_tctl(adapter);
06cf2666 1434 igb_setup_mrqc(adapter);
9d5c8243 1435 igb_setup_rctl(adapter);
85b430b4
AD
1436
1437 igb_configure_tx(adapter);
9d5c8243 1438 igb_configure_rx(adapter);
662d7205
AD
1439
1440 igb_rx_fifo_flush_82575(&adapter->hw);
1441
c493ea45 1442 /* call igb_desc_unused which always leaves
9d5c8243
AK
1443 * at least 1 descriptor unused to make sure
1444 * next_to_use != next_to_clean */
1445 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1446 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1447 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1448 }
9d5c8243
AK
1449}
1450
88a268c1
NN
1451/**
1452 * igb_power_up_link - Power up the phy/serdes link
1453 * @adapter: address of board private structure
1454 **/
1455void igb_power_up_link(struct igb_adapter *adapter)
1456{
76886596
AA
1457 igb_reset_phy(&adapter->hw);
1458
88a268c1
NN
1459 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1460 igb_power_up_phy_copper(&adapter->hw);
1461 else
1462 igb_power_up_serdes_link_82575(&adapter->hw);
1463}
1464
1465/**
1466 * igb_power_down_link - Power down the phy/serdes link
1467 * @adapter: address of board private structure
1468 */
1469static void igb_power_down_link(struct igb_adapter *adapter)
1470{
1471 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1472 igb_power_down_phy_copper_82575(&adapter->hw);
1473 else
1474 igb_shutdown_serdes_link_82575(&adapter->hw);
1475}
9d5c8243
AK
1476
1477/**
1478 * igb_up - Open the interface and prepare it to handle traffic
1479 * @adapter: board private structure
1480 **/
9d5c8243
AK
1481int igb_up(struct igb_adapter *adapter)
1482{
1483 struct e1000_hw *hw = &adapter->hw;
1484 int i;
1485
1486 /* hardware has been reset, we need to reload some things */
1487 igb_configure(adapter);
1488
1489 clear_bit(__IGB_DOWN, &adapter->state);
1490
0d1ae7f4
AD
1491 for (i = 0; i < adapter->num_q_vectors; i++)
1492 napi_enable(&(adapter->q_vector[i]->napi));
1493
844290e5 1494 if (adapter->msix_entries)
9d5c8243 1495 igb_configure_msix(adapter);
feeb2721
AD
1496 else
1497 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1498
1499 /* Clear any pending interrupts. */
1500 rd32(E1000_ICR);
1501 igb_irq_enable(adapter);
1502
d4960307
AD
1503 /* notify VFs that reset has been completed */
1504 if (adapter->vfs_allocated_count) {
1505 u32 reg_data = rd32(E1000_CTRL_EXT);
1506 reg_data |= E1000_CTRL_EXT_PFRSTD;
1507 wr32(E1000_CTRL_EXT, reg_data);
1508 }
1509
4cb9be7a
JB
1510 netif_tx_start_all_queues(adapter->netdev);
1511
25568a53
AD
1512 /* start the watchdog. */
1513 hw->mac.get_link_status = 1;
1514 schedule_work(&adapter->watchdog_task);
1515
9d5c8243
AK
1516 return 0;
1517}
1518
1519void igb_down(struct igb_adapter *adapter)
1520{
9d5c8243 1521 struct net_device *netdev = adapter->netdev;
330a6d6a 1522 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1523 u32 tctl, rctl;
1524 int i;
1525
1526 /* signal that we're down so the interrupt handler does not
1527 * reschedule our watchdog timer */
1528 set_bit(__IGB_DOWN, &adapter->state);
1529
1530 /* disable receives in the hardware */
1531 rctl = rd32(E1000_RCTL);
1532 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1533 /* flush and sleep below */
1534
fd2ea0a7 1535 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1536
1537 /* disable transmits in the hardware */
1538 tctl = rd32(E1000_TCTL);
1539 tctl &= ~E1000_TCTL_EN;
1540 wr32(E1000_TCTL, tctl);
1541 /* flush both disables and wait for them to finish */
1542 wrfl();
1543 msleep(10);
1544
0d1ae7f4
AD
1545 for (i = 0; i < adapter->num_q_vectors; i++)
1546 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1547
9d5c8243
AK
1548 igb_irq_disable(adapter);
1549
1550 del_timer_sync(&adapter->watchdog_timer);
1551 del_timer_sync(&adapter->phy_info_timer);
1552
9d5c8243 1553 netif_carrier_off(netdev);
04fe6358
AD
1554
1555 /* record the stats before reset*/
12dcd86b
ED
1556 spin_lock(&adapter->stats64_lock);
1557 igb_update_stats(adapter, &adapter->stats64);
1558 spin_unlock(&adapter->stats64_lock);
04fe6358 1559
9d5c8243
AK
1560 adapter->link_speed = 0;
1561 adapter->link_duplex = 0;
1562
3023682e
JK
1563 if (!pci_channel_offline(adapter->pdev))
1564 igb_reset(adapter);
9d5c8243
AK
1565 igb_clean_all_tx_rings(adapter);
1566 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1567#ifdef CONFIG_IGB_DCA
1568
1569 /* since we reset the hardware DCA settings were cleared */
1570 igb_setup_dca(adapter);
1571#endif
9d5c8243
AK
1572}
1573
1574void igb_reinit_locked(struct igb_adapter *adapter)
1575{
1576 WARN_ON(in_interrupt());
1577 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1578 msleep(1);
1579 igb_down(adapter);
1580 igb_up(adapter);
1581 clear_bit(__IGB_RESETTING, &adapter->state);
1582}
1583
1584void igb_reset(struct igb_adapter *adapter)
1585{
090b1795 1586 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1587 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1588 struct e1000_mac_info *mac = &hw->mac;
1589 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1590 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1591 u16 hwm;
1592
1593 /* Repartition Pba for greater than 9k mtu
1594 * To take effect CTRL.RST is required.
1595 */
fa4dfae0 1596 switch (mac->type) {
d2ba2ed8 1597 case e1000_i350:
55cac248
AD
1598 case e1000_82580:
1599 pba = rd32(E1000_RXPBS);
1600 pba = igb_rxpbs_adjust_82580(pba);
1601 break;
fa4dfae0 1602 case e1000_82576:
d249be54
AD
1603 pba = rd32(E1000_RXPBS);
1604 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1605 break;
1606 case e1000_82575:
f96a8a0b
CW
1607 case e1000_i210:
1608 case e1000_i211:
fa4dfae0
AD
1609 default:
1610 pba = E1000_PBA_34K;
1611 break;
2d064c06 1612 }
9d5c8243 1613
2d064c06
AD
1614 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1615 (mac->type < e1000_82576)) {
9d5c8243
AK
1616 /* adjust PBA for jumbo frames */
1617 wr32(E1000_PBA, pba);
1618
1619 /* To maintain wire speed transmits, the Tx FIFO should be
1620 * large enough to accommodate two full transmit packets,
1621 * rounded up to the next 1KB and expressed in KB. Likewise,
1622 * the Rx FIFO should be large enough to accommodate at least
1623 * one full receive packet and is similarly rounded up and
1624 * expressed in KB. */
1625 pba = rd32(E1000_PBA);
1626 /* upper 16 bits has Tx packet buffer allocation size in KB */
1627 tx_space = pba >> 16;
1628 /* lower 16 bits has Rx packet buffer allocation size in KB */
1629 pba &= 0xffff;
1630 /* the tx fifo also stores 16 bytes of information about the tx
1631 * but don't include ethernet FCS because hardware appends it */
1632 min_tx_space = (adapter->max_frame_size +
85e8d004 1633 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1634 ETH_FCS_LEN) * 2;
1635 min_tx_space = ALIGN(min_tx_space, 1024);
1636 min_tx_space >>= 10;
1637 /* software strips receive CRC, so leave room for it */
1638 min_rx_space = adapter->max_frame_size;
1639 min_rx_space = ALIGN(min_rx_space, 1024);
1640 min_rx_space >>= 10;
1641
1642 /* If current Tx allocation is less than the min Tx FIFO size,
1643 * and the min Tx FIFO size is less than the current Rx FIFO
1644 * allocation, take space away from current Rx allocation */
1645 if (tx_space < min_tx_space &&
1646 ((min_tx_space - tx_space) < pba)) {
1647 pba = pba - (min_tx_space - tx_space);
1648
1649 /* if short on rx space, rx wins and must trump tx
1650 * adjustment */
1651 if (pba < min_rx_space)
1652 pba = min_rx_space;
1653 }
2d064c06 1654 wr32(E1000_PBA, pba);
9d5c8243 1655 }
9d5c8243
AK
1656
1657 /* flow control settings */
1658 /* The high water mark must be low enough to fit one full frame
1659 * (or the size used for early receive) above it in the Rx FIFO.
1660 * Set it to the lower of:
1661 * - 90% of the Rx FIFO size, or
1662 * - the full Rx FIFO size minus one full frame */
1663 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1664 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1665
d405ea3e
AD
1666 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1667 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1668 fc->pause_time = 0xFFFF;
1669 fc->send_xon = 1;
0cce119a 1670 fc->current_mode = fc->requested_mode;
9d5c8243 1671
4ae196df
AD
1672 /* disable receive for all VFs and wait one second */
1673 if (adapter->vfs_allocated_count) {
1674 int i;
1675 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1676 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1677
1678 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1679 igb_ping_all_vfs(adapter);
4ae196df
AD
1680
1681 /* disable transmits and receives */
1682 wr32(E1000_VFRE, 0);
1683 wr32(E1000_VFTE, 0);
1684 }
1685
9d5c8243 1686 /* Allow time for pending master requests to run */
330a6d6a 1687 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1688 wr32(E1000_WUC, 0);
1689
330a6d6a 1690 if (hw->mac.ops.init_hw(hw))
090b1795 1691 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1692
a27416bb
MV
1693 /*
1694 * Flow control settings reset on hardware reset, so guarantee flow
1695 * control is off when forcing speed.
1696 */
1697 if (!hw->mac.autoneg)
1698 igb_force_mac_fc(hw);
1699
b6e0c419 1700 igb_init_dmac(adapter, pba);
88a268c1
NN
1701 if (!netif_running(adapter->netdev))
1702 igb_power_down_link(adapter);
1703
9d5c8243
AK
1704 igb_update_mng_vlan(adapter);
1705
1706 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1707 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1708
1f6e8178
MV
1709#ifdef CONFIG_IGB_PTP
1710 /* Re-enable PTP, where applicable. */
1711 igb_ptp_reset(adapter);
1712#endif /* CONFIG_IGB_PTP */
1713
330a6d6a 1714 igb_get_phy_info(hw);
9d5c8243
AK
1715}
1716
c8f44aff
MM
1717static netdev_features_t igb_fix_features(struct net_device *netdev,
1718 netdev_features_t features)
b2cb09b1
JP
1719{
1720 /*
1721 * Since there is no support for separate rx/tx vlan accel
1722 * enable/disable make sure tx flag is always in same state as rx.
1723 */
1724 if (features & NETIF_F_HW_VLAN_RX)
1725 features |= NETIF_F_HW_VLAN_TX;
1726 else
1727 features &= ~NETIF_F_HW_VLAN_TX;
1728
1729 return features;
1730}
1731
c8f44aff
MM
1732static int igb_set_features(struct net_device *netdev,
1733 netdev_features_t features)
ac52caa3 1734{
c8f44aff 1735 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1736 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1737
b2cb09b1
JP
1738 if (changed & NETIF_F_HW_VLAN_RX)
1739 igb_vlan_mode(netdev, features);
1740
89eaefb6
BG
1741 if (!(changed & NETIF_F_RXALL))
1742 return 0;
1743
1744 netdev->features = features;
1745
1746 if (netif_running(netdev))
1747 igb_reinit_locked(adapter);
1748 else
1749 igb_reset(adapter);
1750
ac52caa3
MM
1751 return 0;
1752}
1753
2e5c6922 1754static const struct net_device_ops igb_netdev_ops = {
559e9c49 1755 .ndo_open = igb_open,
2e5c6922 1756 .ndo_stop = igb_close,
cd392f5c 1757 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1758 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1759 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1760 .ndo_set_mac_address = igb_set_mac,
1761 .ndo_change_mtu = igb_change_mtu,
1762 .ndo_do_ioctl = igb_ioctl,
1763 .ndo_tx_timeout = igb_tx_timeout,
1764 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1765 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1766 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1767 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1768 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1769 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1770 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1771#ifdef CONFIG_NET_POLL_CONTROLLER
1772 .ndo_poll_controller = igb_netpoll,
1773#endif
b2cb09b1
JP
1774 .ndo_fix_features = igb_fix_features,
1775 .ndo_set_features = igb_set_features,
2e5c6922
SH
1776};
1777
d67974f0
CW
1778/**
1779 * igb_set_fw_version - Configure version string for ethtool
1780 * @adapter: adapter struct
1781 *
1782 **/
1783void igb_set_fw_version(struct igb_adapter *adapter)
1784{
1785 struct e1000_hw *hw = &adapter->hw;
1786 u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
1787 u16 major, build, patch, fw_version;
1788 u32 etrack_id;
1789
1790 hw->nvm.ops.read(hw, 5, 1, &fw_version);
1791 if (adapter->hw.mac.type != e1000_i211) {
1792 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1793 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1794 etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;
1795
1796 /* combo image version needs to be found */
1797 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1798 if ((comb_offset != 0x0) &&
1799 (comb_offset != IGB_NVM_VER_INVALID)) {
1800 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1801 + 1), 1, &comb_verh);
1802 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1803 1, &comb_verl);
1804
1805 /* Only display Option Rom if it exists and is valid */
1806 if ((comb_verh && comb_verl) &&
1807 ((comb_verh != IGB_NVM_VER_INVALID) &&
1808 (comb_verl != IGB_NVM_VER_INVALID))) {
1809 major = comb_verl >> IGB_COMB_VER_SHFT;
1810 build = (comb_verl << IGB_COMB_VER_SHFT) |
1811 (comb_verh >> IGB_COMB_VER_SHFT);
1812 patch = comb_verh & IGB_COMB_VER_MASK;
1813 snprintf(adapter->fw_version,
1814 sizeof(adapter->fw_version),
1815 "%d.%d%d, 0x%08x, %d.%d.%d",
1816 (fw_version & IGB_MAJOR_MASK) >>
1817 IGB_MAJOR_SHIFT,
1818 (fw_version & IGB_MINOR_MASK) >>
1819 IGB_MINOR_SHIFT,
1820 (fw_version & IGB_BUILD_MASK),
1821 etrack_id, major, build, patch);
1822 goto out;
1823 }
1824 }
1825 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1826 "%d.%d%d, 0x%08x",
1827 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1828 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1829 (fw_version & IGB_BUILD_MASK), etrack_id);
1830 } else {
1831 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1832 "%d.%d%d",
1833 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1834 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1835 (fw_version & IGB_BUILD_MASK));
1836 }
1837out:
1838 return;
1839}
1840
9d5c8243
AK
1841/**
1842 * igb_probe - Device Initialization Routine
1843 * @pdev: PCI device information struct
1844 * @ent: entry in igb_pci_tbl
1845 *
1846 * Returns 0 on success, negative on failure
1847 *
1848 * igb_probe initializes an adapter identified by a pci_dev structure.
1849 * The OS initialization, configuring of the adapter private structure,
1850 * and a hardware reset occur.
1851 **/
1852static int __devinit igb_probe(struct pci_dev *pdev,
1853 const struct pci_device_id *ent)
1854{
1855 struct net_device *netdev;
1856 struct igb_adapter *adapter;
1857 struct e1000_hw *hw;
4337e993 1858 u16 eeprom_data = 0;
9835fd73 1859 s32 ret_val;
4337e993 1860 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1861 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1862 unsigned long mmio_start, mmio_len;
2d6a5e95 1863 int err, pci_using_dac;
9d5c8243 1864 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1865 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1866
bded64a7
AG
1867 /* Catch broken hardware that put the wrong VF device ID in
1868 * the PCIe SR-IOV capability.
1869 */
1870 if (pdev->is_virtfn) {
1871 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 1872 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
1873 return -EINVAL;
1874 }
1875
aed5dec3 1876 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1877 if (err)
1878 return err;
1879
1880 pci_using_dac = 0;
59d71989 1881 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1882 if (!err) {
59d71989 1883 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1884 if (!err)
1885 pci_using_dac = 1;
1886 } else {
59d71989 1887 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1888 if (err) {
59d71989 1889 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1890 if (err) {
1891 dev_err(&pdev->dev, "No usable DMA "
1892 "configuration, aborting\n");
1893 goto err_dma;
1894 }
1895 }
1896 }
1897
aed5dec3
AD
1898 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1899 IORESOURCE_MEM),
1900 igb_driver_name);
9d5c8243
AK
1901 if (err)
1902 goto err_pci_reg;
1903
19d5afd4 1904 pci_enable_pcie_error_reporting(pdev);
40a914fa 1905
9d5c8243 1906 pci_set_master(pdev);
c682fc23 1907 pci_save_state(pdev);
9d5c8243
AK
1908
1909 err = -ENOMEM;
1bfaf07b 1910 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1911 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1912 if (!netdev)
1913 goto err_alloc_etherdev;
1914
1915 SET_NETDEV_DEV(netdev, &pdev->dev);
1916
1917 pci_set_drvdata(pdev, netdev);
1918 adapter = netdev_priv(netdev);
1919 adapter->netdev = netdev;
1920 adapter->pdev = pdev;
1921 hw = &adapter->hw;
1922 hw->back = adapter;
b3f4d599 1923 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243
AK
1924
1925 mmio_start = pci_resource_start(pdev, 0);
1926 mmio_len = pci_resource_len(pdev, 0);
1927
1928 err = -EIO;
28b0759c
AD
1929 hw->hw_addr = ioremap(mmio_start, mmio_len);
1930 if (!hw->hw_addr)
9d5c8243
AK
1931 goto err_ioremap;
1932
2e5c6922 1933 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1934 igb_set_ethtool_ops(netdev);
9d5c8243 1935 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1936
1937 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1938
1939 netdev->mem_start = mmio_start;
1940 netdev->mem_end = mmio_start + mmio_len;
1941
9d5c8243
AK
1942 /* PCI config space info */
1943 hw->vendor_id = pdev->vendor;
1944 hw->device_id = pdev->device;
1945 hw->revision_id = pdev->revision;
1946 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1947 hw->subsystem_device_id = pdev->subsystem_device;
1948
9d5c8243
AK
1949 /* Copy the default MAC, PHY and NVM function pointers */
1950 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1951 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1952 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1953 /* Initialize skew-specific constants */
1954 err = ei->get_invariants(hw);
1955 if (err)
450c87c8 1956 goto err_sw_init;
9d5c8243 1957
450c87c8 1958 /* setup the private structure */
9d5c8243
AK
1959 err = igb_sw_init(adapter);
1960 if (err)
1961 goto err_sw_init;
1962
1963 igb_get_bus_info_pcie(hw);
1964
1965 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1966
1967 /* Copper options */
1968 if (hw->phy.media_type == e1000_media_type_copper) {
1969 hw->phy.mdix = AUTO_ALL_MODES;
1970 hw->phy.disable_polarity_correction = false;
1971 hw->phy.ms_type = e1000_ms_hw_default;
1972 }
1973
1974 if (igb_check_reset_block(hw))
1975 dev_info(&pdev->dev,
1976 "PHY reset is blocked due to SOL/IDER session.\n");
1977
077887c3
AD
1978 /*
1979 * features is initialized to 0 in allocation, it might have bits
1980 * set by igb_sw_init so we should use an or instead of an
1981 * assignment.
1982 */
1983 netdev->features |= NETIF_F_SG |
1984 NETIF_F_IP_CSUM |
1985 NETIF_F_IPV6_CSUM |
1986 NETIF_F_TSO |
1987 NETIF_F_TSO6 |
1988 NETIF_F_RXHASH |
1989 NETIF_F_RXCSUM |
1990 NETIF_F_HW_VLAN_RX |
1991 NETIF_F_HW_VLAN_TX;
1992
1993 /* copy netdev features into list of user selectable features */
1994 netdev->hw_features |= netdev->features;
89eaefb6 1995 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
1996
1997 /* set this bit last since it cannot be part of hw_features */
1998 netdev->features |= NETIF_F_HW_VLAN_FILTER;
1999
2000 netdev->vlan_features |= NETIF_F_TSO |
2001 NETIF_F_TSO6 |
2002 NETIF_F_IP_CSUM |
2003 NETIF_F_IPV6_CSUM |
2004 NETIF_F_SG;
48f29ffc 2005
6b8f0922
BG
2006 netdev->priv_flags |= IFF_SUPP_NOFCS;
2007
7b872a55 2008 if (pci_using_dac) {
9d5c8243 2009 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2010 netdev->vlan_features |= NETIF_F_HIGHDMA;
2011 }
9d5c8243 2012
ac52caa3
MM
2013 if (hw->mac.type >= e1000_82576) {
2014 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2015 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2016 }
b9473560 2017
01789349
JP
2018 netdev->priv_flags |= IFF_UNICAST_FLT;
2019
330a6d6a 2020 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2021
2022 /* before reading the NVM, reset the controller to put the device in a
2023 * known good starting state */
2024 hw->mac.ops.reset_hw(hw);
2025
f96a8a0b
CW
2026 /*
2027 * make sure the NVM is good , i211 parts have special NVM that
2028 * doesn't contain a checksum
2029 */
2030 if (hw->mac.type != e1000_i211) {
2031 if (hw->nvm.ops.validate(hw) < 0) {
2032 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2033 err = -EIO;
2034 goto err_eeprom;
2035 }
9d5c8243
AK
2036 }
2037
2038 /* copy the MAC address out of the NVM */
2039 if (hw->mac.ops.read_mac_addr(hw))
2040 dev_err(&pdev->dev, "NVM Read Error\n");
2041
2042 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2043 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2044
2045 if (!is_valid_ether_addr(netdev->perm_addr)) {
2046 dev_err(&pdev->dev, "Invalid MAC Address\n");
2047 err = -EIO;
2048 goto err_eeprom;
2049 }
2050
d67974f0
CW
2051 /* get firmware version for ethtool -i */
2052 igb_set_fw_version(adapter);
2053
c061b18d 2054 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2055 (unsigned long) adapter);
c061b18d 2056 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2057 (unsigned long) adapter);
9d5c8243
AK
2058
2059 INIT_WORK(&adapter->reset_task, igb_reset_task);
2060 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2061
450c87c8 2062 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2063 adapter->fc_autoneg = true;
2064 hw->mac.autoneg = true;
2065 hw->phy.autoneg_advertised = 0x2f;
2066
0cce119a
AD
2067 hw->fc.requested_mode = e1000_fc_default;
2068 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2069
9d5c8243
AK
2070 igb_validate_mdi_setting(hw);
2071
9d5c8243
AK
2072 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2073 * enable the ACPI Magic Packet filter
2074 */
2075
a2cf8b6c 2076 if (hw->bus.func == 0)
312c75ae 2077 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2078 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2079 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2080 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2081 &eeprom_data);
a2cf8b6c
AD
2082 else if (hw->bus.func == 1)
2083 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2084
2085 if (eeprom_data & eeprom_apme_mask)
2086 adapter->eeprom_wol |= E1000_WUFC_MAG;
2087
2088 /* now that we have the eeprom settings, apply the special cases where
2089 * the eeprom may be wrong or the board simply won't support wake on
2090 * lan on a particular port */
2091 switch (pdev->device) {
2092 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2093 adapter->eeprom_wol = 0;
2094 break;
2095 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2096 case E1000_DEV_ID_82576_FIBER:
2097 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2098 /* Wake events only supported on port A for dual fiber
2099 * regardless of eeprom setting */
2100 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2101 adapter->eeprom_wol = 0;
2102 break;
c8ea5ea9 2103 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2104 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2105 /* if quad port adapter, disable WoL on all but port A */
2106 if (global_quad_port_a != 0)
2107 adapter->eeprom_wol = 0;
2108 else
2109 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2110 /* Reset for multiple quad port adapters */
2111 if (++global_quad_port_a == 4)
2112 global_quad_port_a = 0;
2113 break;
9d5c8243
AK
2114 }
2115
2116 /* initialize the wol settings based on the eeprom settings */
2117 adapter->wol = adapter->eeprom_wol;
e1b86d84 2118 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2119
2120 /* reset the hardware with the new settings */
2121 igb_reset(adapter);
2122
2123 /* let the f/w know that the h/w is now under the control of the
2124 * driver. */
2125 igb_get_hw_control(adapter);
2126
9d5c8243
AK
2127 strcpy(netdev->name, "eth%d");
2128 err = register_netdev(netdev);
2129 if (err)
2130 goto err_register;
2131
b168dfc5
JB
2132 /* carrier off reporting is important to ethtool even BEFORE open */
2133 netif_carrier_off(netdev);
2134
421e02f0 2135#ifdef CONFIG_IGB_DCA
bbd98fe4 2136 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2137 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2138 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2139 igb_setup_dca(adapter);
2140 }
fe4506b6 2141
38c845c7 2142#endif
3c89f6d0 2143
7ebae817 2144#ifdef CONFIG_IGB_PTP
673b8b70 2145 /* do hw tstamp init after resetting */
7ebae817 2146 igb_ptp_init(adapter);
3c89f6d0 2147#endif /* CONFIG_IGB_PTP */
673b8b70 2148
9d5c8243
AK
2149 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2150 /* print bus type/speed/width info */
7c510e4b 2151 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2152 netdev->name,
559e9c49 2153 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2154 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2155 "unknown"),
59c3de89
AD
2156 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2157 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2158 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2159 "unknown"),
7c510e4b 2160 netdev->dev_addr);
9d5c8243 2161
9835fd73
CW
2162 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2163 if (ret_val)
2164 strcpy(part_str, "Unknown");
2165 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2166 dev_info(&pdev->dev,
2167 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2168 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2169 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2170 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2171 switch (hw->mac.type) {
2172 case e1000_i350:
f96a8a0b
CW
2173 case e1000_i210:
2174 case e1000_i211:
09b068d4
CW
2175 igb_set_eee_i350(hw);
2176 break;
2177 default:
2178 break;
2179 }
749ab2cd
YZ
2180
2181 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2182 return 0;
2183
2184err_register:
2185 igb_release_hw_control(adapter);
2186err_eeprom:
2187 if (!igb_check_reset_block(hw))
f5f4cf08 2188 igb_reset_phy(hw);
9d5c8243
AK
2189
2190 if (hw->flash_address)
2191 iounmap(hw->flash_address);
9d5c8243 2192err_sw_init:
047e0030 2193 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2194 iounmap(hw->hw_addr);
2195err_ioremap:
2196 free_netdev(netdev);
2197err_alloc_etherdev:
559e9c49
AD
2198 pci_release_selected_regions(pdev,
2199 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2200err_pci_reg:
2201err_dma:
2202 pci_disable_device(pdev);
2203 return err;
2204}
2205
2206/**
2207 * igb_remove - Device Removal Routine
2208 * @pdev: PCI device information struct
2209 *
2210 * igb_remove is called by the PCI subsystem to alert the driver
2211 * that it should release a PCI device. The could be caused by a
2212 * Hot-Plug event, or because the driver is going to be removed from
2213 * memory.
2214 **/
2215static void __devexit igb_remove(struct pci_dev *pdev)
2216{
2217 struct net_device *netdev = pci_get_drvdata(pdev);
2218 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2219 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2220
749ab2cd 2221 pm_runtime_get_noresume(&pdev->dev);
7ebae817 2222#ifdef CONFIG_IGB_PTP
a79f4f88 2223 igb_ptp_stop(adapter);
3c89f6d0 2224#endif /* CONFIG_IGB_PTP */
749ab2cd 2225
760141a5
TH
2226 /*
2227 * The watchdog timer may be rescheduled, so explicitly
2228 * disable watchdog from being rescheduled.
2229 */
9d5c8243
AK
2230 set_bit(__IGB_DOWN, &adapter->state);
2231 del_timer_sync(&adapter->watchdog_timer);
2232 del_timer_sync(&adapter->phy_info_timer);
2233
760141a5
TH
2234 cancel_work_sync(&adapter->reset_task);
2235 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2236
421e02f0 2237#ifdef CONFIG_IGB_DCA
7dfc16fa 2238 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2239 dev_info(&pdev->dev, "DCA disabled\n");
2240 dca_remove_requester(&pdev->dev);
7dfc16fa 2241 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2242 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2243 }
2244#endif
2245
9d5c8243
AK
2246 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2247 * would have already happened in close and is redundant. */
2248 igb_release_hw_control(adapter);
2249
2250 unregister_netdev(netdev);
2251
047e0030 2252 igb_clear_interrupt_scheme(adapter);
9d5c8243 2253
37680117
AD
2254#ifdef CONFIG_PCI_IOV
2255 /* reclaim resources allocated to VFs */
2256 if (adapter->vf_data) {
2257 /* disable iov and allow time for transactions to clear */
f557147c
SA
2258 if (igb_vfs_are_assigned(adapter)) {
2259 dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2260 } else {
0224d663
GR
2261 pci_disable_sriov(pdev);
2262 msleep(500);
0224d663 2263 }
37680117
AD
2264
2265 kfree(adapter->vf_data);
2266 adapter->vf_data = NULL;
2267 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2268 wrfl();
37680117
AD
2269 msleep(100);
2270 dev_info(&pdev->dev, "IOV Disabled\n");
2271 }
2272#endif
559e9c49 2273
28b0759c
AD
2274 iounmap(hw->hw_addr);
2275 if (hw->flash_address)
2276 iounmap(hw->flash_address);
559e9c49
AD
2277 pci_release_selected_regions(pdev,
2278 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2279
1128c756 2280 kfree(adapter->shadow_vfta);
9d5c8243
AK
2281 free_netdev(netdev);
2282
19d5afd4 2283 pci_disable_pcie_error_reporting(pdev);
40a914fa 2284
9d5c8243
AK
2285 pci_disable_device(pdev);
2286}
2287
a6b623e0
AD
2288/**
2289 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2290 * @adapter: board private structure to initialize
2291 *
2292 * This function initializes the vf specific data storage and then attempts to
2293 * allocate the VFs. The reason for ordering it this way is because it is much
2294 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2295 * the memory for the VFs.
2296 **/
2297static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2298{
2299#ifdef CONFIG_PCI_IOV
2300 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2301 struct e1000_hw *hw = &adapter->hw;
f557147c 2302 int old_vfs = pci_num_vf(adapter->pdev);
0224d663 2303 int i;
a6b623e0 2304
f96a8a0b
CW
2305 /* Virtualization features not supported on i210 family. */
2306 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2307 return;
2308
0224d663
GR
2309 if (old_vfs) {
2310 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2311 "max_vfs setting of %d\n", old_vfs, max_vfs);
2312 adapter->vfs_allocated_count = old_vfs;
a6b623e0
AD
2313 }
2314
0224d663
GR
2315 if (!adapter->vfs_allocated_count)
2316 return;
2317
2318 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2319 sizeof(struct vf_data_storage), GFP_KERNEL);
f96a8a0b 2320
0224d663
GR
2321 /* if allocation failed then we do not support SR-IOV */
2322 if (!adapter->vf_data) {
a6b623e0 2323 adapter->vfs_allocated_count = 0;
0224d663
GR
2324 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2325 "Data Storage\n");
2326 goto out;
a6b623e0 2327 }
0224d663
GR
2328
2329 if (!old_vfs) {
2330 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2331 goto err_out;
2332 }
2333 dev_info(&pdev->dev, "%d VFs allocated\n",
2334 adapter->vfs_allocated_count);
2335 for (i = 0; i < adapter->vfs_allocated_count; i++)
2336 igb_vf_configure(adapter, i);
2337
2338 /* DMA Coalescing is not supported in IOV mode. */
2339 adapter->flags &= ~IGB_FLAG_DMAC;
2340 goto out;
2341err_out:
2342 kfree(adapter->vf_data);
2343 adapter->vf_data = NULL;
2344 adapter->vfs_allocated_count = 0;
2345out:
2346 return;
a6b623e0
AD
2347#endif /* CONFIG_PCI_IOV */
2348}
2349
9d5c8243
AK
2350/**
2351 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2352 * @adapter: board private structure to initialize
2353 *
2354 * igb_sw_init initializes the Adapter private data structure.
2355 * Fields are initialized based on PCI device information and
2356 * OS network device settings (MTU size).
2357 **/
2358static int __devinit igb_sw_init(struct igb_adapter *adapter)
2359{
2360 struct e1000_hw *hw = &adapter->hw;
2361 struct net_device *netdev = adapter->netdev;
2362 struct pci_dev *pdev = adapter->pdev;
374a542d 2363 u32 max_rss_queues;
9d5c8243
AK
2364
2365 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2366
13fde97a 2367 /* set default ring sizes */
68fd9910
AD
2368 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2369 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2370
2371 /* set default ITR values */
4fc82adf
AD
2372 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2373 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2374
13fde97a
AD
2375 /* set default work limits */
2376 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2377
153285f9
AD
2378 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2379 VLAN_HLEN;
9d5c8243
AK
2380 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2381
12dcd86b 2382 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2383#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2384 switch (hw->mac.type) {
2385 case e1000_82576:
2386 case e1000_i350:
9b082d73
SA
2387 if (max_vfs > 7) {
2388 dev_warn(&pdev->dev,
2389 "Maximum of 7 VFs per PF, using max\n");
2390 adapter->vfs_allocated_count = 7;
2391 } else
2392 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2393 break;
2394 default:
2395 break;
2396 }
a6b623e0 2397#endif /* CONFIG_PCI_IOV */
374a542d
MV
2398
2399 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2400 switch (hw->mac.type) {
374a542d
MV
2401 case e1000_i211:
2402 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2403 break;
2404 case e1000_82575:
f96a8a0b 2405 case e1000_i210:
374a542d
MV
2406 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2407 break;
2408 case e1000_i350:
2409 /* I350 cannot do RSS and SR-IOV at the same time */
2410 if (!!adapter->vfs_allocated_count) {
2411 max_rss_queues = 1;
2412 break;
2413 }
2414 /* fall through */
2415 case e1000_82576:
2416 if (!!adapter->vfs_allocated_count) {
2417 max_rss_queues = 2;
2418 break;
2419 }
2420 /* fall through */
2421 case e1000_82580:
2422 default:
2423 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2424 break;
374a542d
MV
2425 }
2426
2427 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2428
2429 /* Determine if we need to pair queues. */
2430 switch (hw->mac.type) {
2431 case e1000_82575:
f96a8a0b 2432 case e1000_i211:
374a542d 2433 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2434 break;
374a542d
MV
2435 case e1000_82576:
2436 /*
2437 * If VFs are going to be allocated with RSS queues then we
2438 * should pair the queues in order to conserve interrupts due
2439 * to limited supply.
2440 */
2441 if ((adapter->rss_queues > 1) &&
2442 (adapter->vfs_allocated_count > 6))
2443 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2444 /* fall through */
2445 case e1000_82580:
2446 case e1000_i350:
2447 case e1000_i210:
f96a8a0b 2448 default:
374a542d
MV
2449 /*
2450 * If rss_queues > half of max_rss_queues, pair the queues in
2451 * order to conserve interrupts due to limited supply.
2452 */
2453 if (adapter->rss_queues > (max_rss_queues / 2))
2454 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2455 break;
2456 }
a99955fc 2457
1128c756
CW
2458 /* Setup and initialize a copy of the hw vlan table array */
2459 adapter->shadow_vfta = kzalloc(sizeof(u32) *
2460 E1000_VLAN_FILTER_TBL_SIZE,
2461 GFP_ATOMIC);
2462
a6b623e0 2463 /* This call may decrease the number of queues */
047e0030 2464 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2465 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2466 return -ENOMEM;
2467 }
2468
a6b623e0
AD
2469 igb_probe_vfs(adapter);
2470
9d5c8243
AK
2471 /* Explicitly disable IRQ since the NIC can be in any state. */
2472 igb_irq_disable(adapter);
2473
f96a8a0b 2474 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2475 adapter->flags &= ~IGB_FLAG_DMAC;
2476
9d5c8243
AK
2477 set_bit(__IGB_DOWN, &adapter->state);
2478 return 0;
2479}
2480
2481/**
2482 * igb_open - Called when a network interface is made active
2483 * @netdev: network interface device structure
2484 *
2485 * Returns 0 on success, negative value on failure
2486 *
2487 * The open entry point is called when a network interface is made
2488 * active by the system (IFF_UP). At this point all resources needed
2489 * for transmit and receive operations are allocated, the interrupt
2490 * handler is registered with the OS, the watchdog timer is started,
2491 * and the stack is notified that the interface is ready.
2492 **/
749ab2cd 2493static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2494{
2495 struct igb_adapter *adapter = netdev_priv(netdev);
2496 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2497 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2498 int err;
2499 int i;
2500
2501 /* disallow open during test */
749ab2cd
YZ
2502 if (test_bit(__IGB_TESTING, &adapter->state)) {
2503 WARN_ON(resuming);
9d5c8243 2504 return -EBUSY;
749ab2cd
YZ
2505 }
2506
2507 if (!resuming)
2508 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2509
b168dfc5
JB
2510 netif_carrier_off(netdev);
2511
9d5c8243
AK
2512 /* allocate transmit descriptors */
2513 err = igb_setup_all_tx_resources(adapter);
2514 if (err)
2515 goto err_setup_tx;
2516
2517 /* allocate receive descriptors */
2518 err = igb_setup_all_rx_resources(adapter);
2519 if (err)
2520 goto err_setup_rx;
2521
88a268c1 2522 igb_power_up_link(adapter);
9d5c8243 2523
9d5c8243
AK
2524 /* before we allocate an interrupt, we must be ready to handle it.
2525 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2526 * as soon as we call pci_request_irq, so we have to setup our
2527 * clean_rx handler before we do so. */
2528 igb_configure(adapter);
2529
2530 err = igb_request_irq(adapter);
2531 if (err)
2532 goto err_req_irq;
2533
2534 /* From here on the code is the same as igb_up() */
2535 clear_bit(__IGB_DOWN, &adapter->state);
2536
0d1ae7f4
AD
2537 for (i = 0; i < adapter->num_q_vectors; i++)
2538 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2539
2540 /* Clear any pending interrupts. */
2541 rd32(E1000_ICR);
844290e5
PW
2542
2543 igb_irq_enable(adapter);
2544
d4960307
AD
2545 /* notify VFs that reset has been completed */
2546 if (adapter->vfs_allocated_count) {
2547 u32 reg_data = rd32(E1000_CTRL_EXT);
2548 reg_data |= E1000_CTRL_EXT_PFRSTD;
2549 wr32(E1000_CTRL_EXT, reg_data);
2550 }
2551
d55b53ff
JK
2552 netif_tx_start_all_queues(netdev);
2553
749ab2cd
YZ
2554 if (!resuming)
2555 pm_runtime_put(&pdev->dev);
2556
25568a53
AD
2557 /* start the watchdog. */
2558 hw->mac.get_link_status = 1;
2559 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2560
2561 return 0;
2562
2563err_req_irq:
2564 igb_release_hw_control(adapter);
88a268c1 2565 igb_power_down_link(adapter);
9d5c8243
AK
2566 igb_free_all_rx_resources(adapter);
2567err_setup_rx:
2568 igb_free_all_tx_resources(adapter);
2569err_setup_tx:
2570 igb_reset(adapter);
749ab2cd
YZ
2571 if (!resuming)
2572 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2573
2574 return err;
2575}
2576
749ab2cd
YZ
2577static int igb_open(struct net_device *netdev)
2578{
2579 return __igb_open(netdev, false);
2580}
2581
9d5c8243
AK
2582/**
2583 * igb_close - Disables a network interface
2584 * @netdev: network interface device structure
2585 *
2586 * Returns 0, this is not allowed to fail
2587 *
2588 * The close entry point is called when an interface is de-activated
2589 * by the OS. The hardware is still under the driver's control, but
2590 * needs to be disabled. A global MAC reset is issued to stop the
2591 * hardware, and all transmit and receive resources are freed.
2592 **/
749ab2cd 2593static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2594{
2595 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2596 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2597
2598 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2599
749ab2cd
YZ
2600 if (!suspending)
2601 pm_runtime_get_sync(&pdev->dev);
2602
2603 igb_down(adapter);
9d5c8243
AK
2604 igb_free_irq(adapter);
2605
2606 igb_free_all_tx_resources(adapter);
2607 igb_free_all_rx_resources(adapter);
2608
749ab2cd
YZ
2609 if (!suspending)
2610 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2611 return 0;
2612}
2613
749ab2cd
YZ
2614static int igb_close(struct net_device *netdev)
2615{
2616 return __igb_close(netdev, false);
2617}
2618
9d5c8243
AK
2619/**
2620 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2621 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2622 *
2623 * Return 0 on success, negative on failure
2624 **/
80785298 2625int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2626{
59d71989 2627 struct device *dev = tx_ring->dev;
9d5c8243
AK
2628 int size;
2629
06034649 2630 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
2631
2632 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2633 if (!tx_ring->tx_buffer_info)
9d5c8243 2634 goto err;
9d5c8243
AK
2635
2636 /* round up to nearest 4K */
85e8d004 2637 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2638 tx_ring->size = ALIGN(tx_ring->size, 4096);
2639
59d71989
AD
2640 tx_ring->desc = dma_alloc_coherent(dev,
2641 tx_ring->size,
2642 &tx_ring->dma,
2643 GFP_KERNEL);
9d5c8243
AK
2644 if (!tx_ring->desc)
2645 goto err;
2646
9d5c8243
AK
2647 tx_ring->next_to_use = 0;
2648 tx_ring->next_to_clean = 0;
81c2fc22 2649
9d5c8243
AK
2650 return 0;
2651
2652err:
06034649 2653 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
2654 tx_ring->tx_buffer_info = NULL;
2655 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
2656 return -ENOMEM;
2657}
2658
2659/**
2660 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2661 * (Descriptors) for all queues
2662 * @adapter: board private structure
2663 *
2664 * Return 0 on success, negative on failure
2665 **/
2666static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2667{
439705e1 2668 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2669 int i, err = 0;
2670
2671 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2672 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2673 if (err) {
439705e1 2674 dev_err(&pdev->dev,
9d5c8243
AK
2675 "Allocation for Tx Queue %u failed\n", i);
2676 for (i--; i >= 0; i--)
3025a446 2677 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2678 break;
2679 }
2680 }
2681
2682 return err;
2683}
2684
2685/**
85b430b4
AD
2686 * igb_setup_tctl - configure the transmit control registers
2687 * @adapter: Board private structure
9d5c8243 2688 **/
d7ee5b3a 2689void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2690{
9d5c8243
AK
2691 struct e1000_hw *hw = &adapter->hw;
2692 u32 tctl;
9d5c8243 2693
85b430b4
AD
2694 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2695 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2696
2697 /* Program the Transmit Control Register */
9d5c8243
AK
2698 tctl = rd32(E1000_TCTL);
2699 tctl &= ~E1000_TCTL_CT;
2700 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2701 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2702
2703 igb_config_collision_dist(hw);
2704
9d5c8243
AK
2705 /* Enable transmits */
2706 tctl |= E1000_TCTL_EN;
2707
2708 wr32(E1000_TCTL, tctl);
2709}
2710
85b430b4
AD
2711/**
2712 * igb_configure_tx_ring - Configure transmit ring after Reset
2713 * @adapter: board private structure
2714 * @ring: tx ring to configure
2715 *
2716 * Configure a transmit ring after a reset.
2717 **/
d7ee5b3a
AD
2718void igb_configure_tx_ring(struct igb_adapter *adapter,
2719 struct igb_ring *ring)
85b430b4
AD
2720{
2721 struct e1000_hw *hw = &adapter->hw;
a74420e0 2722 u32 txdctl = 0;
85b430b4
AD
2723 u64 tdba = ring->dma;
2724 int reg_idx = ring->reg_idx;
2725
2726 /* disable the queue */
a74420e0 2727 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2728 wrfl();
2729 mdelay(10);
2730
2731 wr32(E1000_TDLEN(reg_idx),
2732 ring->count * sizeof(union e1000_adv_tx_desc));
2733 wr32(E1000_TDBAL(reg_idx),
2734 tdba & 0x00000000ffffffffULL);
2735 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2736
fce99e34 2737 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2738 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2739 writel(0, ring->tail);
85b430b4
AD
2740
2741 txdctl |= IGB_TX_PTHRESH;
2742 txdctl |= IGB_TX_HTHRESH << 8;
2743 txdctl |= IGB_TX_WTHRESH << 16;
2744
2745 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2746 wr32(E1000_TXDCTL(reg_idx), txdctl);
2747}
2748
2749/**
2750 * igb_configure_tx - Configure transmit Unit after Reset
2751 * @adapter: board private structure
2752 *
2753 * Configure the Tx unit of the MAC after a reset.
2754 **/
2755static void igb_configure_tx(struct igb_adapter *adapter)
2756{
2757 int i;
2758
2759 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2760 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2761}
2762
9d5c8243
AK
2763/**
2764 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2765 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2766 *
2767 * Returns 0 on success, negative on failure
2768 **/
80785298 2769int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2770{
59d71989 2771 struct device *dev = rx_ring->dev;
f33005a6 2772 int size;
9d5c8243 2773
06034649 2774 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
2775
2776 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2777 if (!rx_ring->rx_buffer_info)
9d5c8243 2778 goto err;
9d5c8243 2779
9d5c8243
AK
2780
2781 /* Round up to nearest 4K */
f33005a6 2782 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
2783 rx_ring->size = ALIGN(rx_ring->size, 4096);
2784
59d71989
AD
2785 rx_ring->desc = dma_alloc_coherent(dev,
2786 rx_ring->size,
2787 &rx_ring->dma,
2788 GFP_KERNEL);
9d5c8243
AK
2789 if (!rx_ring->desc)
2790 goto err;
2791
2792 rx_ring->next_to_clean = 0;
2793 rx_ring->next_to_use = 0;
9d5c8243 2794
9d5c8243
AK
2795 return 0;
2796
2797err:
06034649
AD
2798 vfree(rx_ring->rx_buffer_info);
2799 rx_ring->rx_buffer_info = NULL;
f33005a6 2800 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
2801 return -ENOMEM;
2802}
2803
2804/**
2805 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2806 * (Descriptors) for all queues
2807 * @adapter: board private structure
2808 *
2809 * Return 0 on success, negative on failure
2810 **/
2811static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2812{
439705e1 2813 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2814 int i, err = 0;
2815
2816 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2817 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2818 if (err) {
439705e1 2819 dev_err(&pdev->dev,
9d5c8243
AK
2820 "Allocation for Rx Queue %u failed\n", i);
2821 for (i--; i >= 0; i--)
3025a446 2822 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2823 break;
2824 }
2825 }
2826
2827 return err;
2828}
2829
06cf2666
AD
2830/**
2831 * igb_setup_mrqc - configure the multiple receive queue control registers
2832 * @adapter: Board private structure
2833 **/
2834static void igb_setup_mrqc(struct igb_adapter *adapter)
2835{
2836 struct e1000_hw *hw = &adapter->hw;
2837 u32 mrqc, rxcsum;
797fd4be 2838 u32 j, num_rx_queues, shift = 0;
a57fe23e
AD
2839 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2840 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2841 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2842 0xFA01ACBE };
06cf2666
AD
2843
2844 /* Fill out hash function seeds */
a57fe23e
AD
2845 for (j = 0; j < 10; j++)
2846 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 2847
a99955fc 2848 num_rx_queues = adapter->rss_queues;
06cf2666 2849
797fd4be
AD
2850 switch (hw->mac.type) {
2851 case e1000_82575:
2852 shift = 6;
2853 break;
2854 case e1000_82576:
2855 /* 82576 supports 2 RSS queues for SR-IOV */
2856 if (adapter->vfs_allocated_count) {
06cf2666
AD
2857 shift = 3;
2858 num_rx_queues = 2;
06cf2666 2859 }
797fd4be
AD
2860 break;
2861 default:
2862 break;
06cf2666
AD
2863 }
2864
797fd4be
AD
2865 /*
2866 * Populate the indirection table 4 entries at a time. To do this
2867 * we are generating the results for n and n+2 and then interleaving
2868 * those with the results with n+1 and n+3.
2869 */
2870 for (j = 0; j < 32; j++) {
2871 /* first pass generates n and n+2 */
2872 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2873 u32 reta = (base & 0x07800780) >> (7 - shift);
2874
2875 /* second pass generates n+1 and n+3 */
2876 base += 0x00010001 * num_rx_queues;
2877 reta |= (base & 0x07800780) << (1 + shift);
2878
2879 wr32(E1000_RETA(j), reta);
06cf2666
AD
2880 }
2881
2882 /*
2883 * Disable raw packet checksumming so that RSS hash is placed in
2884 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2885 * offloads as they are enabled by default
2886 */
2887 rxcsum = rd32(E1000_RXCSUM);
2888 rxcsum |= E1000_RXCSUM_PCSD;
2889
2890 if (adapter->hw.mac.type >= e1000_82576)
2891 /* Enable Receive Checksum Offload for SCTP */
2892 rxcsum |= E1000_RXCSUM_CRCOFL;
2893
2894 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2895 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b
CW
2896 /*
2897 * Generate RSS hash based on TCP port numbers and/or
2898 * IPv4/v6 src and dst addresses since UDP cannot be
2899 * hashed reliably due to IP fragmentation
2900 */
2901
2902 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2903 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2904 E1000_MRQC_RSS_FIELD_IPV6 |
2905 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2906 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2907
2908 /* If VMDq is enabled then we set the appropriate mode for that, else
2909 * we default to RSS so that an RSS hash is calculated per packet even
2910 * if we are only using one queue */
2911 if (adapter->vfs_allocated_count) {
2912 if (hw->mac.type > e1000_82575) {
2913 /* Set the default pool for the PF's first queue */
2914 u32 vtctl = rd32(E1000_VT_CTL);
2915 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2916 E1000_VT_CTL_DISABLE_DEF_POOL);
2917 vtctl |= adapter->vfs_allocated_count <<
2918 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2919 wr32(E1000_VT_CTL, vtctl);
2920 }
a99955fc 2921 if (adapter->rss_queues > 1)
f96a8a0b 2922 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 2923 else
f96a8a0b 2924 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 2925 } else {
f96a8a0b
CW
2926 if (hw->mac.type != e1000_i211)
2927 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
2928 }
2929 igb_vmm_control(adapter);
2930
06cf2666
AD
2931 wr32(E1000_MRQC, mrqc);
2932}
2933
9d5c8243
AK
2934/**
2935 * igb_setup_rctl - configure the receive control registers
2936 * @adapter: Board private structure
2937 **/
d7ee5b3a 2938void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2939{
2940 struct e1000_hw *hw = &adapter->hw;
2941 u32 rctl;
9d5c8243
AK
2942
2943 rctl = rd32(E1000_RCTL);
2944
2945 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2946 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2947
69d728ba 2948 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2949 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2950
87cb7e8c
AK
2951 /*
2952 * enable stripping of CRC. It's unlikely this will break BMC
2953 * redirection as it did with e1000. Newer features require
2954 * that the HW strips the CRC.
73cd78f1 2955 */
87cb7e8c 2956 rctl |= E1000_RCTL_SECRC;
9d5c8243 2957
559e9c49 2958 /* disable store bad packets and clear size bits. */
ec54d7d6 2959 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2960
6ec43fe6
AD
2961 /* enable LPE to prevent packets larger than max_frame_size */
2962 rctl |= E1000_RCTL_LPE;
9d5c8243 2963
952f72a8
AD
2964 /* disable queue 0 to prevent tail write w/o re-config */
2965 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2966
e1739522
AD
2967 /* Attention!!! For SR-IOV PF driver operations you must enable
2968 * queue drop for all VF and PF queues to prevent head of line blocking
2969 * if an un-trusted VF does not provide descriptors to hardware.
2970 */
2971 if (adapter->vfs_allocated_count) {
e1739522
AD
2972 /* set all queue drop enable bits */
2973 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2974 }
2975
89eaefb6
BG
2976 /* This is useful for sniffing bad packets. */
2977 if (adapter->netdev->features & NETIF_F_RXALL) {
2978 /* UPE and MPE will be handled by normal PROMISC logic
2979 * in e1000e_set_rx_mode */
2980 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983
2984 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985 E1000_RCTL_DPF | /* Allow filtered pause */
2986 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2987 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988 * and that breaks VLANs.
2989 */
2990 }
2991
9d5c8243
AK
2992 wr32(E1000_RCTL, rctl);
2993}
2994
7d5753f0
AD
2995static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2996 int vfn)
2997{
2998 struct e1000_hw *hw = &adapter->hw;
2999 u32 vmolr;
3000
3001 /* if it isn't the PF check to see if VFs are enabled and
3002 * increase the size to support vlan tags */
3003 if (vfn < adapter->vfs_allocated_count &&
3004 adapter->vf_data[vfn].vlans_enabled)
3005 size += VLAN_TAG_SIZE;
3006
3007 vmolr = rd32(E1000_VMOLR(vfn));
3008 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3009 vmolr |= size | E1000_VMOLR_LPE;
3010 wr32(E1000_VMOLR(vfn), vmolr);
3011
3012 return 0;
3013}
3014
e1739522
AD
3015/**
3016 * igb_rlpml_set - set maximum receive packet size
3017 * @adapter: board private structure
3018 *
3019 * Configure maximum receivable packet size.
3020 **/
3021static void igb_rlpml_set(struct igb_adapter *adapter)
3022{
153285f9 3023 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3024 struct e1000_hw *hw = &adapter->hw;
3025 u16 pf_id = adapter->vfs_allocated_count;
3026
e1739522
AD
3027 if (pf_id) {
3028 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3029 /*
3030 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3031 * to our max jumbo frame size, in case we need to enable
3032 * jumbo frames on one of the rings later.
3033 * This will not pass over-length frames into the default
3034 * queue because it's gated by the VMOLR.RLPML.
3035 */
7d5753f0 3036 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3037 }
3038
3039 wr32(E1000_RLPML, max_frame_size);
3040}
3041
8151d294
WM
3042static inline void igb_set_vmolr(struct igb_adapter *adapter,
3043 int vfn, bool aupe)
7d5753f0
AD
3044{
3045 struct e1000_hw *hw = &adapter->hw;
3046 u32 vmolr;
3047
3048 /*
3049 * This register exists only on 82576 and newer so if we are older then
3050 * we should exit and do nothing
3051 */
3052 if (hw->mac.type < e1000_82576)
3053 return;
3054
3055 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3056 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3057 if (aupe)
3058 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3059 else
3060 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3061
3062 /* clear all bits that might not be set */
3063 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3064
a99955fc 3065 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3066 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3067 /*
3068 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3069 * multicast packets
3070 */
3071 if (vfn <= adapter->vfs_allocated_count)
3072 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3073
3074 wr32(E1000_VMOLR(vfn), vmolr);
3075}
3076
85b430b4
AD
3077/**
3078 * igb_configure_rx_ring - Configure a receive ring after Reset
3079 * @adapter: board private structure
3080 * @ring: receive ring to be configured
3081 *
3082 * Configure the Rx unit of the MAC after a reset.
3083 **/
d7ee5b3a
AD
3084void igb_configure_rx_ring(struct igb_adapter *adapter,
3085 struct igb_ring *ring)
85b430b4
AD
3086{
3087 struct e1000_hw *hw = &adapter->hw;
3088 u64 rdba = ring->dma;
3089 int reg_idx = ring->reg_idx;
a74420e0 3090 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3091
3092 /* disable the queue */
a74420e0 3093 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3094
3095 /* Set DMA base address registers */
3096 wr32(E1000_RDBAL(reg_idx),
3097 rdba & 0x00000000ffffffffULL);
3098 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3099 wr32(E1000_RDLEN(reg_idx),
3100 ring->count * sizeof(union e1000_adv_rx_desc));
3101
3102 /* initialize head and tail */
fce99e34 3103 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3104 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3105 writel(0, ring->tail);
85b430b4 3106
952f72a8 3107 /* set descriptor configuration */
44390ca6 3108 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3109#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3110 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3111#else
44390ca6 3112 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3113#endif
44390ca6 3114 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3c89f6d0 3115#ifdef CONFIG_IGB_PTP
06218a8d 3116 if (hw->mac.type >= e1000_82580)
757b77e2 3117 srrctl |= E1000_SRRCTL_TIMESTAMP;
3c89f6d0 3118#endif /* CONFIG_IGB_PTP */
e6bdb6fe
NN
3119 /* Only set Drop Enable if we are supporting multiple queues */
3120 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3121 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3122
3123 wr32(E1000_SRRCTL(reg_idx), srrctl);
3124
7d5753f0 3125 /* set filtering for VMDQ pools */
8151d294 3126 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3127
85b430b4
AD
3128 rxdctl |= IGB_RX_PTHRESH;
3129 rxdctl |= IGB_RX_HTHRESH << 8;
3130 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3131
3132 /* enable receive descriptor fetching */
3133 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3134 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3135}
3136
9d5c8243
AK
3137/**
3138 * igb_configure_rx - Configure receive Unit after Reset
3139 * @adapter: board private structure
3140 *
3141 * Configure the Rx unit of the MAC after a reset.
3142 **/
3143static void igb_configure_rx(struct igb_adapter *adapter)
3144{
9107584e 3145 int i;
9d5c8243 3146
68d480c4
AD
3147 /* set UTA to appropriate mode */
3148 igb_set_uta(adapter);
3149
26ad9178
AD
3150 /* set the correct pool for the PF default MAC address in entry 0 */
3151 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3152 adapter->vfs_allocated_count);
3153
06cf2666
AD
3154 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3155 * the Base and Length of the Rx Descriptor Ring */
3156 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3157 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3158}
3159
3160/**
3161 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3162 * @tx_ring: Tx descriptor ring for a specific queue
3163 *
3164 * Free all transmit software resources
3165 **/
68fd9910 3166void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3167{
3b644cf6 3168 igb_clean_tx_ring(tx_ring);
9d5c8243 3169
06034649
AD
3170 vfree(tx_ring->tx_buffer_info);
3171 tx_ring->tx_buffer_info = NULL;
9d5c8243 3172
439705e1
AD
3173 /* if not set, then don't free */
3174 if (!tx_ring->desc)
3175 return;
3176
59d71989
AD
3177 dma_free_coherent(tx_ring->dev, tx_ring->size,
3178 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3179
3180 tx_ring->desc = NULL;
3181}
3182
3183/**
3184 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3185 * @adapter: board private structure
3186 *
3187 * Free all transmit software resources
3188 **/
3189static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3190{
3191 int i;
3192
3193 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3194 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3195}
3196
ebe42d16
AD
3197void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3198 struct igb_tx_buffer *tx_buffer)
3199{
3200 if (tx_buffer->skb) {
3201 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3202 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3203 dma_unmap_single(ring->dev,
c9f14bf3
AD
3204 dma_unmap_addr(tx_buffer, dma),
3205 dma_unmap_len(tx_buffer, len),
ebe42d16 3206 DMA_TO_DEVICE);
c9f14bf3 3207 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3208 dma_unmap_page(ring->dev,
c9f14bf3
AD
3209 dma_unmap_addr(tx_buffer, dma),
3210 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3211 DMA_TO_DEVICE);
3212 }
3213 tx_buffer->next_to_watch = NULL;
3214 tx_buffer->skb = NULL;
c9f14bf3 3215 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3216 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3217}
3218
3219/**
3220 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3221 * @tx_ring: ring to be cleaned
3222 **/
3b644cf6 3223static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3224{
06034649 3225 struct igb_tx_buffer *buffer_info;
9d5c8243 3226 unsigned long size;
6ad4edfc 3227 u16 i;
9d5c8243 3228
06034649 3229 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3230 return;
3231 /* Free all the Tx ring sk_buffs */
3232
3233 for (i = 0; i < tx_ring->count; i++) {
06034649 3234 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3235 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3236 }
3237
dad8a3b3
JF
3238 netdev_tx_reset_queue(txring_txq(tx_ring));
3239
06034649
AD
3240 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3241 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3242
3243 /* Zero out the descriptor ring */
9d5c8243
AK
3244 memset(tx_ring->desc, 0, tx_ring->size);
3245
3246 tx_ring->next_to_use = 0;
3247 tx_ring->next_to_clean = 0;
9d5c8243
AK
3248}
3249
3250/**
3251 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3252 * @adapter: board private structure
3253 **/
3254static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3255{
3256 int i;
3257
3258 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3259 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3260}
3261
3262/**
3263 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3264 * @rx_ring: ring to clean the resources from
3265 *
3266 * Free all receive software resources
3267 **/
68fd9910 3268void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3269{
3b644cf6 3270 igb_clean_rx_ring(rx_ring);
9d5c8243 3271
06034649
AD
3272 vfree(rx_ring->rx_buffer_info);
3273 rx_ring->rx_buffer_info = NULL;
9d5c8243 3274
439705e1
AD
3275 /* if not set, then don't free */
3276 if (!rx_ring->desc)
3277 return;
3278
59d71989
AD
3279 dma_free_coherent(rx_ring->dev, rx_ring->size,
3280 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3281
3282 rx_ring->desc = NULL;
3283}
3284
3285/**
3286 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3287 * @adapter: board private structure
3288 *
3289 * Free all receive software resources
3290 **/
3291static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3292{
3293 int i;
3294
3295 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3296 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3297}
3298
3299/**
3300 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3301 * @rx_ring: ring to free buffers from
3302 **/
3b644cf6 3303static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3304{
9d5c8243 3305 unsigned long size;
c023cd88 3306 u16 i;
9d5c8243 3307
06034649 3308 if (!rx_ring->rx_buffer_info)
9d5c8243 3309 return;
439705e1 3310
9d5c8243
AK
3311 /* Free all the Rx ring sk_buffs */
3312 for (i = 0; i < rx_ring->count; i++) {
06034649 3313 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3314 if (buffer_info->dma) {
59d71989 3315 dma_unmap_single(rx_ring->dev,
80785298 3316 buffer_info->dma,
44390ca6 3317 IGB_RX_HDR_LEN,
59d71989 3318 DMA_FROM_DEVICE);
9d5c8243
AK
3319 buffer_info->dma = 0;
3320 }
3321
3322 if (buffer_info->skb) {
3323 dev_kfree_skb(buffer_info->skb);
3324 buffer_info->skb = NULL;
3325 }
6ec43fe6 3326 if (buffer_info->page_dma) {
59d71989 3327 dma_unmap_page(rx_ring->dev,
80785298 3328 buffer_info->page_dma,
6ec43fe6 3329 PAGE_SIZE / 2,
59d71989 3330 DMA_FROM_DEVICE);
6ec43fe6
AD
3331 buffer_info->page_dma = 0;
3332 }
9d5c8243 3333 if (buffer_info->page) {
9d5c8243
AK
3334 put_page(buffer_info->page);
3335 buffer_info->page = NULL;
bf36c1a0 3336 buffer_info->page_offset = 0;
9d5c8243
AK
3337 }
3338 }
3339
06034649
AD
3340 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3341 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3342
3343 /* Zero out the descriptor ring */
3344 memset(rx_ring->desc, 0, rx_ring->size);
3345
3346 rx_ring->next_to_clean = 0;
3347 rx_ring->next_to_use = 0;
9d5c8243
AK
3348}
3349
3350/**
3351 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3352 * @adapter: board private structure
3353 **/
3354static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3355{
3356 int i;
3357
3358 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3359 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3360}
3361
3362/**
3363 * igb_set_mac - Change the Ethernet Address of the NIC
3364 * @netdev: network interface device structure
3365 * @p: pointer to an address structure
3366 *
3367 * Returns 0 on success, negative on failure
3368 **/
3369static int igb_set_mac(struct net_device *netdev, void *p)
3370{
3371 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3372 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3373 struct sockaddr *addr = p;
3374
3375 if (!is_valid_ether_addr(addr->sa_data))
3376 return -EADDRNOTAVAIL;
3377
3378 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3379 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3380
26ad9178
AD
3381 /* set the correct pool for the new PF MAC address in entry 0 */
3382 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3383 adapter->vfs_allocated_count);
e1739522 3384
9d5c8243
AK
3385 return 0;
3386}
3387
3388/**
68d480c4 3389 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3390 * @netdev: network interface device structure
3391 *
68d480c4
AD
3392 * Writes multicast address list to the MTA hash table.
3393 * Returns: -ENOMEM on failure
3394 * 0 on no addresses written
3395 * X on writing X addresses to MTA
9d5c8243 3396 **/
68d480c4 3397static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3398{
3399 struct igb_adapter *adapter = netdev_priv(netdev);
3400 struct e1000_hw *hw = &adapter->hw;
22bedad3 3401 struct netdev_hw_addr *ha;
68d480c4 3402 u8 *mta_list;
9d5c8243
AK
3403 int i;
3404
4cd24eaf 3405 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3406 /* nothing to program, so clear mc list */
3407 igb_update_mc_addr_list(hw, NULL, 0);
3408 igb_restore_vf_multicasts(adapter);
3409 return 0;
3410 }
9d5c8243 3411
4cd24eaf 3412 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3413 if (!mta_list)
3414 return -ENOMEM;
ff41f8dc 3415
68d480c4 3416 /* The shared function expects a packed array of only addresses. */
48e2f183 3417 i = 0;
22bedad3
JP
3418 netdev_for_each_mc_addr(ha, netdev)
3419 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3420
68d480c4
AD
3421 igb_update_mc_addr_list(hw, mta_list, i);
3422 kfree(mta_list);
3423
4cd24eaf 3424 return netdev_mc_count(netdev);
68d480c4
AD
3425}
3426
3427/**
3428 * igb_write_uc_addr_list - write unicast addresses to RAR table
3429 * @netdev: network interface device structure
3430 *
3431 * Writes unicast address list to the RAR table.
3432 * Returns: -ENOMEM on failure/insufficient address space
3433 * 0 on no addresses written
3434 * X on writing X addresses to the RAR table
3435 **/
3436static int igb_write_uc_addr_list(struct net_device *netdev)
3437{
3438 struct igb_adapter *adapter = netdev_priv(netdev);
3439 struct e1000_hw *hw = &adapter->hw;
3440 unsigned int vfn = adapter->vfs_allocated_count;
3441 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3442 int count = 0;
3443
3444 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3445 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3446 return -ENOMEM;
9d5c8243 3447
32e7bfc4 3448 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3449 struct netdev_hw_addr *ha;
32e7bfc4
JP
3450
3451 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3452 if (!rar_entries)
3453 break;
26ad9178
AD
3454 igb_rar_set_qsel(adapter, ha->addr,
3455 rar_entries--,
68d480c4
AD
3456 vfn);
3457 count++;
ff41f8dc
AD
3458 }
3459 }
3460 /* write the addresses in reverse order to avoid write combining */
3461 for (; rar_entries > 0 ; rar_entries--) {
3462 wr32(E1000_RAH(rar_entries), 0);
3463 wr32(E1000_RAL(rar_entries), 0);
3464 }
3465 wrfl();
3466
68d480c4
AD
3467 return count;
3468}
3469
3470/**
3471 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3472 * @netdev: network interface device structure
3473 *
3474 * The set_rx_mode entry point is called whenever the unicast or multicast
3475 * address lists or the network interface flags are updated. This routine is
3476 * responsible for configuring the hardware for proper unicast, multicast,
3477 * promiscuous mode, and all-multi behavior.
3478 **/
3479static void igb_set_rx_mode(struct net_device *netdev)
3480{
3481 struct igb_adapter *adapter = netdev_priv(netdev);
3482 struct e1000_hw *hw = &adapter->hw;
3483 unsigned int vfn = adapter->vfs_allocated_count;
3484 u32 rctl, vmolr = 0;
3485 int count;
3486
3487 /* Check for Promiscuous and All Multicast modes */
3488 rctl = rd32(E1000_RCTL);
3489
3490 /* clear the effected bits */
3491 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3492
3493 if (netdev->flags & IFF_PROMISC) {
3494 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3495 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3496 } else {
3497 if (netdev->flags & IFF_ALLMULTI) {
3498 rctl |= E1000_RCTL_MPE;
3499 vmolr |= E1000_VMOLR_MPME;
3500 } else {
3501 /*
3502 * Write addresses to the MTA, if the attempt fails
25985edc 3503 * then we should just turn on promiscuous mode so
68d480c4
AD
3504 * that we can at least receive multicast traffic
3505 */
3506 count = igb_write_mc_addr_list(netdev);
3507 if (count < 0) {
3508 rctl |= E1000_RCTL_MPE;
3509 vmolr |= E1000_VMOLR_MPME;
3510 } else if (count) {
3511 vmolr |= E1000_VMOLR_ROMPE;
3512 }
3513 }
3514 /*
3515 * Write addresses to available RAR registers, if there is not
3516 * sufficient space to store all the addresses then enable
25985edc 3517 * unicast promiscuous mode
68d480c4
AD
3518 */
3519 count = igb_write_uc_addr_list(netdev);
3520 if (count < 0) {
3521 rctl |= E1000_RCTL_UPE;
3522 vmolr |= E1000_VMOLR_ROPE;
3523 }
3524 rctl |= E1000_RCTL_VFE;
28fc06f5 3525 }
68d480c4 3526 wr32(E1000_RCTL, rctl);
28fc06f5 3527
68d480c4
AD
3528 /*
3529 * In order to support SR-IOV and eventually VMDq it is necessary to set
3530 * the VMOLR to enable the appropriate modes. Without this workaround
3531 * we will have issues with VLAN tag stripping not being done for frames
3532 * that are only arriving because we are the default pool
3533 */
f96a8a0b 3534 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3535 return;
9d5c8243 3536
68d480c4
AD
3537 vmolr |= rd32(E1000_VMOLR(vfn)) &
3538 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3539 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3540 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3541}
3542
13800469
GR
3543static void igb_check_wvbr(struct igb_adapter *adapter)
3544{
3545 struct e1000_hw *hw = &adapter->hw;
3546 u32 wvbr = 0;
3547
3548 switch (hw->mac.type) {
3549 case e1000_82576:
3550 case e1000_i350:
3551 if (!(wvbr = rd32(E1000_WVBR)))
3552 return;
3553 break;
3554 default:
3555 break;
3556 }
3557
3558 adapter->wvbr |= wvbr;
3559}
3560
3561#define IGB_STAGGERED_QUEUE_OFFSET 8
3562
3563static void igb_spoof_check(struct igb_adapter *adapter)
3564{
3565 int j;
3566
3567 if (!adapter->wvbr)
3568 return;
3569
3570 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3571 if (adapter->wvbr & (1 << j) ||
3572 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3573 dev_warn(&adapter->pdev->dev,
3574 "Spoof event(s) detected on VF %d\n", j);
3575 adapter->wvbr &=
3576 ~((1 << j) |
3577 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3578 }
3579 }
3580}
3581
9d5c8243
AK
3582/* Need to wait a few seconds after link up to get diagnostic information from
3583 * the phy */
3584static void igb_update_phy_info(unsigned long data)
3585{
3586 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3587 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3588}
3589
4d6b725e
AD
3590/**
3591 * igb_has_link - check shared code for link and determine up/down
3592 * @adapter: pointer to driver private info
3593 **/
3145535a 3594bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3595{
3596 struct e1000_hw *hw = &adapter->hw;
3597 bool link_active = false;
3598 s32 ret_val = 0;
3599
3600 /* get_link_status is set on LSC (link status) interrupt or
3601 * rx sequence error interrupt. get_link_status will stay
3602 * false until the e1000_check_for_link establishes link
3603 * for copper adapters ONLY
3604 */
3605 switch (hw->phy.media_type) {
3606 case e1000_media_type_copper:
3607 if (hw->mac.get_link_status) {
3608 ret_val = hw->mac.ops.check_for_link(hw);
3609 link_active = !hw->mac.get_link_status;
3610 } else {
3611 link_active = true;
3612 }
3613 break;
4d6b725e
AD
3614 case e1000_media_type_internal_serdes:
3615 ret_val = hw->mac.ops.check_for_link(hw);
3616 link_active = hw->mac.serdes_has_link;
3617 break;
3618 default:
3619 case e1000_media_type_unknown:
3620 break;
3621 }
3622
3623 return link_active;
3624}
3625
563988dc
SA
3626static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3627{
3628 bool ret = false;
3629 u32 ctrl_ext, thstat;
3630
f96a8a0b 3631 /* check for thermal sensor event on i350 copper only */
563988dc
SA
3632 if (hw->mac.type == e1000_i350) {
3633 thstat = rd32(E1000_THSTAT);
3634 ctrl_ext = rd32(E1000_CTRL_EXT);
3635
3636 if ((hw->phy.media_type == e1000_media_type_copper) &&
3637 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3638 ret = !!(thstat & event);
3639 }
3640 }
3641
3642 return ret;
3643}
3644
9d5c8243
AK
3645/**
3646 * igb_watchdog - Timer Call-back
3647 * @data: pointer to adapter cast into an unsigned long
3648 **/
3649static void igb_watchdog(unsigned long data)
3650{
3651 struct igb_adapter *adapter = (struct igb_adapter *)data;
3652 /* Do the rest outside of interrupt context */
3653 schedule_work(&adapter->watchdog_task);
3654}
3655
3656static void igb_watchdog_task(struct work_struct *work)
3657{
3658 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3659 struct igb_adapter,
3660 watchdog_task);
9d5c8243 3661 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3662 struct net_device *netdev = adapter->netdev;
563988dc 3663 u32 link;
7a6ea550 3664 int i;
9d5c8243 3665
4d6b725e 3666 link = igb_has_link(adapter);
9d5c8243 3667 if (link) {
749ab2cd
YZ
3668 /* Cancel scheduled suspend requests. */
3669 pm_runtime_resume(netdev->dev.parent);
3670
9d5c8243
AK
3671 if (!netif_carrier_ok(netdev)) {
3672 u32 ctrl;
330a6d6a
AD
3673 hw->mac.ops.get_speed_and_duplex(hw,
3674 &adapter->link_speed,
3675 &adapter->link_duplex);
9d5c8243
AK
3676
3677 ctrl = rd32(E1000_CTRL);
527d47c1 3678 /* Links status message must follow this format */
876d2d6f
JK
3679 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3680 "Duplex, Flow Control: %s\n",
559e9c49
AD
3681 netdev->name,
3682 adapter->link_speed,
3683 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3684 "Full" : "Half",
3685 (ctrl & E1000_CTRL_TFCE) &&
3686 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3687 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3688 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3689
563988dc 3690 /* check for thermal sensor event */
876d2d6f
JK
3691 if (igb_thermal_sensor_event(hw,
3692 E1000_THSTAT_LINK_THROTTLE)) {
3693 netdev_info(netdev, "The network adapter link "
3694 "speed was downshifted because it "
3695 "overheated\n");
7ef5ed1c 3696 }
563988dc 3697
d07f3e37 3698 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3699 adapter->tx_timeout_factor = 1;
3700 switch (adapter->link_speed) {
3701 case SPEED_10:
9d5c8243
AK
3702 adapter->tx_timeout_factor = 14;
3703 break;
3704 case SPEED_100:
9d5c8243
AK
3705 /* maybe add some timeout factor ? */
3706 break;
3707 }
3708
3709 netif_carrier_on(netdev);
9d5c8243 3710
4ae196df 3711 igb_ping_all_vfs(adapter);
17dc566c 3712 igb_check_vf_rate_limit(adapter);
4ae196df 3713
4b1a9877 3714 /* link state has changed, schedule phy info update */
9d5c8243
AK
3715 if (!test_bit(__IGB_DOWN, &adapter->state))
3716 mod_timer(&adapter->phy_info_timer,
3717 round_jiffies(jiffies + 2 * HZ));
3718 }
3719 } else {
3720 if (netif_carrier_ok(netdev)) {
3721 adapter->link_speed = 0;
3722 adapter->link_duplex = 0;
563988dc
SA
3723
3724 /* check for thermal sensor event */
876d2d6f
JK
3725 if (igb_thermal_sensor_event(hw,
3726 E1000_THSTAT_PWR_DOWN)) {
3727 netdev_err(netdev, "The network adapter was "
3728 "stopped because it overheated\n");
7ef5ed1c 3729 }
563988dc 3730
527d47c1
AD
3731 /* Links status message must follow this format */
3732 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3733 netdev->name);
9d5c8243 3734 netif_carrier_off(netdev);
4b1a9877 3735
4ae196df
AD
3736 igb_ping_all_vfs(adapter);
3737
4b1a9877 3738 /* link state has changed, schedule phy info update */
9d5c8243
AK
3739 if (!test_bit(__IGB_DOWN, &adapter->state))
3740 mod_timer(&adapter->phy_info_timer,
3741 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3742
3743 pm_schedule_suspend(netdev->dev.parent,
3744 MSEC_PER_SEC * 5);
9d5c8243
AK
3745 }
3746 }
3747
12dcd86b
ED
3748 spin_lock(&adapter->stats64_lock);
3749 igb_update_stats(adapter, &adapter->stats64);
3750 spin_unlock(&adapter->stats64_lock);
9d5c8243 3751
dbabb065 3752 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3753 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3754 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3755 /* We've lost link, so the controller stops DMA,
3756 * but we've got queued Tx work that's never going
3757 * to get done, so reset controller to flush Tx.
3758 * (Do the reset outside of interrupt context). */
dbabb065
AD
3759 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3760 adapter->tx_timeout_count++;
3761 schedule_work(&adapter->reset_task);
3762 /* return immediately since reset is imminent */
3763 return;
3764 }
9d5c8243 3765 }
9d5c8243 3766
dbabb065 3767 /* Force detection of hung controller every watchdog period */
6d095fa8 3768 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3769 }
f7ba205e 3770
9d5c8243 3771 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3772 if (adapter->msix_entries) {
047e0030 3773 u32 eics = 0;
0d1ae7f4
AD
3774 for (i = 0; i < adapter->num_q_vectors; i++)
3775 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
3776 wr32(E1000_EICS, eics);
3777 } else {
3778 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3779 }
9d5c8243 3780
13800469
GR
3781 igb_spoof_check(adapter);
3782
9d5c8243
AK
3783 /* Reset the timer */
3784 if (!test_bit(__IGB_DOWN, &adapter->state))
3785 mod_timer(&adapter->watchdog_timer,
3786 round_jiffies(jiffies + 2 * HZ));
3787}
3788
3789enum latency_range {
3790 lowest_latency = 0,
3791 low_latency = 1,
3792 bulk_latency = 2,
3793 latency_invalid = 255
3794};
3795
6eb5a7f1
AD
3796/**
3797 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3798 *
3799 * Stores a new ITR value based on strictly on packet size. This
3800 * algorithm is less sophisticated than that used in igb_update_itr,
3801 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3802 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3803 * were determined based on theoretical maximum wire speed and testing
3804 * data, in order to minimize response time while increasing bulk
3805 * throughput.
3806 * This functionality is controlled by the InterruptThrottleRate module
3807 * parameter (see igb_param.c)
3808 * NOTE: This function is called only when operating in a multiqueue
3809 * receive environment.
047e0030 3810 * @q_vector: pointer to q_vector
6eb5a7f1 3811 **/
047e0030 3812static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3813{
047e0030 3814 int new_val = q_vector->itr_val;
6eb5a7f1 3815 int avg_wire_size = 0;
047e0030 3816 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3817 unsigned int packets;
9d5c8243 3818
6eb5a7f1
AD
3819 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3820 * ints/sec - ITR timer value of 120 ticks.
3821 */
3822 if (adapter->link_speed != SPEED_1000) {
0ba82994 3823 new_val = IGB_4K_ITR;
6eb5a7f1 3824 goto set_itr_val;
9d5c8243 3825 }
047e0030 3826
0ba82994
AD
3827 packets = q_vector->rx.total_packets;
3828 if (packets)
3829 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3830
0ba82994
AD
3831 packets = q_vector->tx.total_packets;
3832 if (packets)
3833 avg_wire_size = max_t(u32, avg_wire_size,
3834 q_vector->tx.total_bytes / packets);
047e0030
AD
3835
3836 /* if avg_wire_size isn't set no work was done */
3837 if (!avg_wire_size)
3838 goto clear_counts;
9d5c8243 3839
6eb5a7f1
AD
3840 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3841 avg_wire_size += 24;
3842
3843 /* Don't starve jumbo frames */
3844 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3845
6eb5a7f1
AD
3846 /* Give a little boost to mid-size frames */
3847 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3848 new_val = avg_wire_size / 3;
3849 else
3850 new_val = avg_wire_size / 2;
9d5c8243 3851
0ba82994
AD
3852 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3853 if (new_val < IGB_20K_ITR &&
3854 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3855 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3856 new_val = IGB_20K_ITR;
abe1c363 3857
6eb5a7f1 3858set_itr_val:
047e0030
AD
3859 if (new_val != q_vector->itr_val) {
3860 q_vector->itr_val = new_val;
3861 q_vector->set_itr = 1;
9d5c8243 3862 }
6eb5a7f1 3863clear_counts:
0ba82994
AD
3864 q_vector->rx.total_bytes = 0;
3865 q_vector->rx.total_packets = 0;
3866 q_vector->tx.total_bytes = 0;
3867 q_vector->tx.total_packets = 0;
9d5c8243
AK
3868}
3869
3870/**
3871 * igb_update_itr - update the dynamic ITR value based on statistics
3872 * Stores a new ITR value based on packets and byte
3873 * counts during the last interrupt. The advantage of per interrupt
3874 * computation is faster updates and more accurate ITR for the current
3875 * traffic pattern. Constants in this function were computed
3876 * based on theoretical maximum wire speed and thresholds were set based
3877 * on testing data as well as attempting to minimize response time
3878 * while increasing bulk throughput.
3879 * this functionality is controlled by the InterruptThrottleRate module
3880 * parameter (see igb_param.c)
3881 * NOTE: These calculations are only valid when operating in a single-
3882 * queue environment.
0ba82994
AD
3883 * @q_vector: pointer to q_vector
3884 * @ring_container: ring info to update the itr for
9d5c8243 3885 **/
0ba82994
AD
3886static void igb_update_itr(struct igb_q_vector *q_vector,
3887 struct igb_ring_container *ring_container)
9d5c8243 3888{
0ba82994
AD
3889 unsigned int packets = ring_container->total_packets;
3890 unsigned int bytes = ring_container->total_bytes;
3891 u8 itrval = ring_container->itr;
9d5c8243 3892
0ba82994 3893 /* no packets, exit with status unchanged */
9d5c8243 3894 if (packets == 0)
0ba82994 3895 return;
9d5c8243 3896
0ba82994 3897 switch (itrval) {
9d5c8243
AK
3898 case lowest_latency:
3899 /* handle TSO and jumbo frames */
3900 if (bytes/packets > 8000)
0ba82994 3901 itrval = bulk_latency;
9d5c8243 3902 else if ((packets < 5) && (bytes > 512))
0ba82994 3903 itrval = low_latency;
9d5c8243
AK
3904 break;
3905 case low_latency: /* 50 usec aka 20000 ints/s */
3906 if (bytes > 10000) {
3907 /* this if handles the TSO accounting */
3908 if (bytes/packets > 8000) {
0ba82994 3909 itrval = bulk_latency;
9d5c8243 3910 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3911 itrval = bulk_latency;
9d5c8243 3912 } else if ((packets > 35)) {
0ba82994 3913 itrval = lowest_latency;
9d5c8243
AK
3914 }
3915 } else if (bytes/packets > 2000) {
0ba82994 3916 itrval = bulk_latency;
9d5c8243 3917 } else if (packets <= 2 && bytes < 512) {
0ba82994 3918 itrval = lowest_latency;
9d5c8243
AK
3919 }
3920 break;
3921 case bulk_latency: /* 250 usec aka 4000 ints/s */
3922 if (bytes > 25000) {
3923 if (packets > 35)
0ba82994 3924 itrval = low_latency;
1e5c3d21 3925 } else if (bytes < 1500) {
0ba82994 3926 itrval = low_latency;
9d5c8243
AK
3927 }
3928 break;
3929 }
3930
0ba82994
AD
3931 /* clear work counters since we have the values we need */
3932 ring_container->total_bytes = 0;
3933 ring_container->total_packets = 0;
3934
3935 /* write updated itr to ring container */
3936 ring_container->itr = itrval;
9d5c8243
AK
3937}
3938
0ba82994 3939static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 3940{
0ba82994 3941 struct igb_adapter *adapter = q_vector->adapter;
047e0030 3942 u32 new_itr = q_vector->itr_val;
0ba82994 3943 u8 current_itr = 0;
9d5c8243
AK
3944
3945 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3946 if (adapter->link_speed != SPEED_1000) {
3947 current_itr = 0;
0ba82994 3948 new_itr = IGB_4K_ITR;
9d5c8243
AK
3949 goto set_itr_now;
3950 }
3951
0ba82994
AD
3952 igb_update_itr(q_vector, &q_vector->tx);
3953 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 3954
0ba82994 3955 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 3956
6eb5a7f1 3957 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
3958 if (current_itr == lowest_latency &&
3959 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3960 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
3961 current_itr = low_latency;
3962
9d5c8243
AK
3963 switch (current_itr) {
3964 /* counts and packets in update_itr are dependent on these numbers */
3965 case lowest_latency:
0ba82994 3966 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
3967 break;
3968 case low_latency:
0ba82994 3969 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
3970 break;
3971 case bulk_latency:
0ba82994 3972 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
3973 break;
3974 default:
3975 break;
3976 }
3977
3978set_itr_now:
047e0030 3979 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3980 /* this attempts to bias the interrupt rate towards Bulk
3981 * by adding intermediate steps when interrupt rate is
3982 * increasing */
047e0030
AD
3983 new_itr = new_itr > q_vector->itr_val ?
3984 max((new_itr * q_vector->itr_val) /
3985 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 3986 new_itr) :
9d5c8243
AK
3987 new_itr;
3988 /* Don't write the value here; it resets the adapter's
3989 * internal timer, and causes us to delay far longer than
3990 * we should between interrupts. Instead, we write the ITR
3991 * value at the beginning of the next interrupt so the timing
3992 * ends up being correct.
3993 */
047e0030
AD
3994 q_vector->itr_val = new_itr;
3995 q_vector->set_itr = 1;
9d5c8243 3996 }
9d5c8243
AK
3997}
3998
c50b52a0
SH
3999static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4000 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4001{
4002 struct e1000_adv_tx_context_desc *context_desc;
4003 u16 i = tx_ring->next_to_use;
4004
4005 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4006
4007 i++;
4008 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4009
4010 /* set bits to identify this as an advanced context descriptor */
4011 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4012
4013 /* For 82575, context index must be unique per ring. */
866cff06 4014 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4015 mss_l4len_idx |= tx_ring->reg_idx << 4;
4016
4017 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4018 context_desc->seqnum_seed = 0;
4019 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4020 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4021}
4022
7af40ad9
AD
4023static int igb_tso(struct igb_ring *tx_ring,
4024 struct igb_tx_buffer *first,
4025 u8 *hdr_len)
9d5c8243 4026{
7af40ad9 4027 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4028 u32 vlan_macip_lens, type_tucmd;
4029 u32 mss_l4len_idx, l4len;
4030
4031 if (!skb_is_gso(skb))
4032 return 0;
9d5c8243
AK
4033
4034 if (skb_header_cloned(skb)) {
7af40ad9 4035 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4036 if (err)
4037 return err;
4038 }
4039
7d13a7d0
AD
4040 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4041 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4042
7af40ad9 4043 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4044 struct iphdr *iph = ip_hdr(skb);
4045 iph->tot_len = 0;
4046 iph->check = 0;
4047 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4048 iph->daddr, 0,
4049 IPPROTO_TCP,
4050 0);
7d13a7d0 4051 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4052 first->tx_flags |= IGB_TX_FLAGS_TSO |
4053 IGB_TX_FLAGS_CSUM |
4054 IGB_TX_FLAGS_IPV4;
8e1e8a47 4055 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4056 ipv6_hdr(skb)->payload_len = 0;
4057 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4058 &ipv6_hdr(skb)->daddr,
4059 0, IPPROTO_TCP, 0);
7af40ad9
AD
4060 first->tx_flags |= IGB_TX_FLAGS_TSO |
4061 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4062 }
4063
7af40ad9 4064 /* compute header lengths */
7d13a7d0
AD
4065 l4len = tcp_hdrlen(skb);
4066 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4067
7af40ad9
AD
4068 /* update gso size and bytecount with header size */
4069 first->gso_segs = skb_shinfo(skb)->gso_segs;
4070 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4071
9d5c8243 4072 /* MSS L4LEN IDX */
7d13a7d0
AD
4073 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4074 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4075
7d13a7d0
AD
4076 /* VLAN MACLEN IPLEN */
4077 vlan_macip_lens = skb_network_header_len(skb);
4078 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4079 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4080
7d13a7d0 4081 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4082
7d13a7d0 4083 return 1;
9d5c8243
AK
4084}
4085
7af40ad9 4086static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4087{
7af40ad9 4088 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4089 u32 vlan_macip_lens = 0;
4090 u32 mss_l4len_idx = 0;
4091 u32 type_tucmd = 0;
9d5c8243 4092
7d13a7d0 4093 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4094 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4095 return;
7d13a7d0
AD
4096 } else {
4097 u8 l4_hdr = 0;
7af40ad9 4098 switch (first->protocol) {
7d13a7d0
AD
4099 case __constant_htons(ETH_P_IP):
4100 vlan_macip_lens |= skb_network_header_len(skb);
4101 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4102 l4_hdr = ip_hdr(skb)->protocol;
4103 break;
4104 case __constant_htons(ETH_P_IPV6):
4105 vlan_macip_lens |= skb_network_header_len(skb);
4106 l4_hdr = ipv6_hdr(skb)->nexthdr;
4107 break;
4108 default:
4109 if (unlikely(net_ratelimit())) {
4110 dev_warn(tx_ring->dev,
4111 "partial checksum but proto=%x!\n",
7af40ad9 4112 first->protocol);
fa4a7ef3 4113 }
7d13a7d0
AD
4114 break;
4115 }
fa4a7ef3 4116
7d13a7d0
AD
4117 switch (l4_hdr) {
4118 case IPPROTO_TCP:
4119 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4120 mss_l4len_idx = tcp_hdrlen(skb) <<
4121 E1000_ADVTXD_L4LEN_SHIFT;
4122 break;
4123 case IPPROTO_SCTP:
4124 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4125 mss_l4len_idx = sizeof(struct sctphdr) <<
4126 E1000_ADVTXD_L4LEN_SHIFT;
4127 break;
4128 case IPPROTO_UDP:
4129 mss_l4len_idx = sizeof(struct udphdr) <<
4130 E1000_ADVTXD_L4LEN_SHIFT;
4131 break;
4132 default:
4133 if (unlikely(net_ratelimit())) {
4134 dev_warn(tx_ring->dev,
4135 "partial checksum but l4 proto=%x!\n",
4136 l4_hdr);
44b0cda3 4137 }
7d13a7d0 4138 break;
9d5c8243 4139 }
7af40ad9
AD
4140
4141 /* update TX checksum flag */
4142 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4143 }
9d5c8243 4144
7d13a7d0 4145 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4146 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4147
7d13a7d0 4148 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4149}
4150
e032afc8
AD
4151static __le32 igb_tx_cmd_type(u32 tx_flags)
4152{
4153 /* set type for advanced descriptor with frame checksum insertion */
4154 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4155 E1000_ADVTXD_DCMD_IFCS |
4156 E1000_ADVTXD_DCMD_DEXT);
4157
4158 /* set HW vlan bit if vlan is present */
4159 if (tx_flags & IGB_TX_FLAGS_VLAN)
4160 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4161
3c89f6d0 4162#ifdef CONFIG_IGB_PTP
e032afc8 4163 /* set timestamp bit if present */
1f6e8178 4164 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
e032afc8 4165 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
3c89f6d0 4166#endif /* CONFIG_IGB_PTP */
e032afc8
AD
4167
4168 /* set segmentation bits for TSO */
4169 if (tx_flags & IGB_TX_FLAGS_TSO)
4170 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4171
4172 return cmd_type;
4173}
4174
7af40ad9
AD
4175static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4176 union e1000_adv_tx_desc *tx_desc,
4177 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4178{
4179 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4180
4181 /* 82575 requires a unique index per ring if any offload is enabled */
4182 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
866cff06 4183 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4184 olinfo_status |= tx_ring->reg_idx << 4;
4185
4186 /* insert L4 checksum */
4187 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4188 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4189
4190 /* insert IPv4 checksum */
4191 if (tx_flags & IGB_TX_FLAGS_IPV4)
4192 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4193 }
4194
7af40ad9 4195 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4196}
4197
ebe42d16
AD
4198/*
4199 * The largest size we can write to the descriptor is 65535. In order to
4200 * maintain a power of two alignment we have to limit ourselves to 32K.
4201 */
4202#define IGB_MAX_TXD_PWR 15
7af40ad9 4203#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4204
7af40ad9
AD
4205static void igb_tx_map(struct igb_ring *tx_ring,
4206 struct igb_tx_buffer *first,
ebe42d16 4207 const u8 hdr_len)
9d5c8243 4208{
7af40ad9 4209 struct sk_buff *skb = first->skb;
c9f14bf3 4210 struct igb_tx_buffer *tx_buffer;
ebe42d16
AD
4211 union e1000_adv_tx_desc *tx_desc;
4212 dma_addr_t dma;
4213 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4214 unsigned int data_len = skb->data_len;
4215 unsigned int size = skb_headlen(skb);
4216 unsigned int paylen = skb->len - hdr_len;
4217 __le32 cmd_type;
7af40ad9 4218 u32 tx_flags = first->tx_flags;
ebe42d16 4219 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4220
4221 tx_desc = IGB_TX_DESC(tx_ring, i);
4222
7af40ad9 4223 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
ebe42d16
AD
4224 cmd_type = igb_tx_cmd_type(tx_flags);
4225
4226 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4227 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4228 goto dma_error;
9d5c8243 4229
ebe42d16 4230 /* record length, and DMA address */
c9f14bf3
AD
4231 dma_unmap_len_set(first, len, size);
4232 dma_unmap_addr_set(first, dma, dma);
ebe42d16
AD
4233 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4234
4235 for (;;) {
4236 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4237 tx_desc->read.cmd_type_len =
4238 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4239
4240 i++;
4241 tx_desc++;
4242 if (i == tx_ring->count) {
4243 tx_desc = IGB_TX_DESC(tx_ring, 0);
4244 i = 0;
4245 }
4246
4247 dma += IGB_MAX_DATA_PER_TXD;
4248 size -= IGB_MAX_DATA_PER_TXD;
4249
4250 tx_desc->read.olinfo_status = 0;
4251 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4252 }
4253
4254 if (likely(!data_len))
4255 break;
2bbfebe2 4256
ebe42d16 4257 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4258
65689fef 4259 i++;
ebe42d16
AD
4260 tx_desc++;
4261 if (i == tx_ring->count) {
4262 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4263 i = 0;
ebe42d16 4264 }
65689fef 4265
9e903e08 4266 size = skb_frag_size(frag);
ebe42d16
AD
4267 data_len -= size;
4268
4269 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4270 size, DMA_TO_DEVICE);
4271 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4272 goto dma_error;
4273
c9f14bf3
AD
4274 tx_buffer = &tx_ring->tx_buffer_info[i];
4275 dma_unmap_len_set(tx_buffer, len, size);
4276 dma_unmap_addr_set(tx_buffer, dma, dma);
ebe42d16
AD
4277
4278 tx_desc->read.olinfo_status = 0;
4279 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4280
4281 frag++;
9d5c8243
AK
4282 }
4283
bdbc0631
ED
4284 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4285
ebe42d16
AD
4286 /* write last descriptor with RS and EOP bits */
4287 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
6b8f0922
BG
4288 if (unlikely(skb->no_fcs))
4289 cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
ebe42d16 4290 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4291
4292 /* set the timestamp */
4293 first->time_stamp = jiffies;
4294
ebe42d16
AD
4295 /*
4296 * Force memory writes to complete before letting h/w know there
4297 * are new descriptors to fetch. (Only applicable for weak-ordered
4298 * memory model archs, such as IA-64).
4299 *
4300 * We also need this memory barrier to make certain all of the
4301 * status bits have been updated before next_to_watch is written.
4302 */
4303 wmb();
4304
8542db05 4305 /* set next_to_watch value indicating a packet is present */
ebe42d16 4306 first->next_to_watch = tx_desc;
9d5c8243 4307
ebe42d16
AD
4308 i++;
4309 if (i == tx_ring->count)
4310 i = 0;
6366ad33 4311
ebe42d16 4312 tx_ring->next_to_use = i;
6366ad33 4313
ebe42d16 4314 writel(i, tx_ring->tail);
6366ad33 4315
ebe42d16
AD
4316 /* we need this if more than one processor can write to our tail
4317 * at a time, it syncronizes IO on IA64/Altix systems */
4318 mmiowb();
4319
4320 return;
4321
4322dma_error:
4323 dev_err(tx_ring->dev, "TX DMA map failed\n");
4324
4325 /* clear dma mappings for failed tx_buffer_info map */
4326 for (;;) {
c9f14bf3
AD
4327 tx_buffer = &tx_ring->tx_buffer_info[i];
4328 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4329 if (tx_buffer == first)
ebe42d16 4330 break;
a77ff709
NN
4331 if (i == 0)
4332 i = tx_ring->count;
6366ad33 4333 i--;
6366ad33
AD
4334 }
4335
9d5c8243 4336 tx_ring->next_to_use = i;
9d5c8243
AK
4337}
4338
6ad4edfc 4339static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4340{
e694e964
AD
4341 struct net_device *netdev = tx_ring->netdev;
4342
661086df 4343 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4344
9d5c8243
AK
4345 /* Herbert's original patch had:
4346 * smp_mb__after_netif_stop_queue();
4347 * but since that doesn't exist yet, just open code it. */
4348 smp_mb();
4349
4350 /* We need to check again in a case another CPU has just
4351 * made room available. */
c493ea45 4352 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4353 return -EBUSY;
4354
4355 /* A reprieve! */
661086df 4356 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4357
4358 u64_stats_update_begin(&tx_ring->tx_syncp2);
4359 tx_ring->tx_stats.restart_queue2++;
4360 u64_stats_update_end(&tx_ring->tx_syncp2);
4361
9d5c8243
AK
4362 return 0;
4363}
4364
6ad4edfc 4365static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4366{
c493ea45 4367 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4368 return 0;
e694e964 4369 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4370}
4371
cd392f5c
AD
4372netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4373 struct igb_ring *tx_ring)
9d5c8243 4374{
1f6e8178
MV
4375#ifdef CONFIG_IGB_PTP
4376 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4377#endif /* CONFIG_IGB_PTP */
8542db05 4378 struct igb_tx_buffer *first;
ebe42d16 4379 int tso;
91d4ee33 4380 u32 tx_flags = 0;
31f6adbb 4381 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4382 u8 hdr_len = 0;
9d5c8243 4383
9d5c8243
AK
4384 /* need: 1 descriptor per page,
4385 * + 2 desc gap to keep tail from touching head,
4386 * + 1 desc for skb->data,
4387 * + 1 desc for context descriptor,
4388 * otherwise try next time */
e694e964 4389 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4390 /* this is a hard error */
9d5c8243
AK
4391 return NETDEV_TX_BUSY;
4392 }
33af6bcc 4393
7af40ad9
AD
4394 /* record the location of the first descriptor for this packet */
4395 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4396 first->skb = skb;
4397 first->bytecount = skb->len;
4398 first->gso_segs = 1;
4399
3c89f6d0 4400#ifdef CONFIG_IGB_PTP
1f6e8178
MV
4401 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4402 !(adapter->ptp_tx_skb))) {
2244d07b 4403 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4404 tx_flags |= IGB_TX_FLAGS_TSTAMP;
1f6e8178
MV
4405
4406 adapter->ptp_tx_skb = skb_get(skb);
4407 if (adapter->hw.mac.type == e1000_82576)
4408 schedule_work(&adapter->ptp_tx_work);
33af6bcc 4409 }
3c89f6d0 4410#endif /* CONFIG_IGB_PTP */
9d5c8243 4411
eab6d18d 4412 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4413 tx_flags |= IGB_TX_FLAGS_VLAN;
4414 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4415 }
4416
7af40ad9
AD
4417 /* record initial flags and protocol */
4418 first->tx_flags = tx_flags;
4419 first->protocol = protocol;
cdfd01fc 4420
7af40ad9
AD
4421 tso = igb_tso(tx_ring, first, &hdr_len);
4422 if (tso < 0)
7d13a7d0 4423 goto out_drop;
7af40ad9
AD
4424 else if (!tso)
4425 igb_tx_csum(tx_ring, first);
9d5c8243 4426
7af40ad9 4427 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4428
4429 /* Make sure there is space in the ring for the next send. */
e694e964 4430 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4431
9d5c8243 4432 return NETDEV_TX_OK;
7d13a7d0
AD
4433
4434out_drop:
7af40ad9
AD
4435 igb_unmap_and_free_tx_resource(tx_ring, first);
4436
7d13a7d0 4437 return NETDEV_TX_OK;
9d5c8243
AK
4438}
4439
1cc3bd87
AD
4440static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4441 struct sk_buff *skb)
4442{
4443 unsigned int r_idx = skb->queue_mapping;
4444
4445 if (r_idx >= adapter->num_tx_queues)
4446 r_idx = r_idx % adapter->num_tx_queues;
4447
4448 return adapter->tx_ring[r_idx];
4449}
4450
cd392f5c
AD
4451static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4452 struct net_device *netdev)
9d5c8243
AK
4453{
4454 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4455
4456 if (test_bit(__IGB_DOWN, &adapter->state)) {
4457 dev_kfree_skb_any(skb);
4458 return NETDEV_TX_OK;
4459 }
4460
4461 if (skb->len <= 0) {
4462 dev_kfree_skb_any(skb);
4463 return NETDEV_TX_OK;
4464 }
4465
1cc3bd87
AD
4466 /*
4467 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4468 * in order to meet this minimum size requirement.
4469 */
4470 if (skb->len < 17) {
4471 if (skb_padto(skb, 17))
4472 return NETDEV_TX_OK;
4473 skb->len = 17;
4474 }
9d5c8243 4475
1cc3bd87 4476 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4477}
4478
4479/**
4480 * igb_tx_timeout - Respond to a Tx Hang
4481 * @netdev: network interface device structure
4482 **/
4483static void igb_tx_timeout(struct net_device *netdev)
4484{
4485 struct igb_adapter *adapter = netdev_priv(netdev);
4486 struct e1000_hw *hw = &adapter->hw;
4487
4488 /* Do the reset outside of interrupt context */
4489 adapter->tx_timeout_count++;
f7ba205e 4490
06218a8d 4491 if (hw->mac.type >= e1000_82580)
55cac248
AD
4492 hw->dev_spec._82575.global_device_reset = true;
4493
9d5c8243 4494 schedule_work(&adapter->reset_task);
265de409
AD
4495 wr32(E1000_EICS,
4496 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4497}
4498
4499static void igb_reset_task(struct work_struct *work)
4500{
4501 struct igb_adapter *adapter;
4502 adapter = container_of(work, struct igb_adapter, reset_task);
4503
c97ec42a
TI
4504 igb_dump(adapter);
4505 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4506 igb_reinit_locked(adapter);
4507}
4508
4509/**
12dcd86b 4510 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4511 * @netdev: network interface device structure
12dcd86b 4512 * @stats: rtnl_link_stats64 pointer
9d5c8243 4513 *
9d5c8243 4514 **/
12dcd86b
ED
4515static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4516 struct rtnl_link_stats64 *stats)
9d5c8243 4517{
12dcd86b
ED
4518 struct igb_adapter *adapter = netdev_priv(netdev);
4519
4520 spin_lock(&adapter->stats64_lock);
4521 igb_update_stats(adapter, &adapter->stats64);
4522 memcpy(stats, &adapter->stats64, sizeof(*stats));
4523 spin_unlock(&adapter->stats64_lock);
4524
4525 return stats;
9d5c8243
AK
4526}
4527
4528/**
4529 * igb_change_mtu - Change the Maximum Transfer Unit
4530 * @netdev: network interface device structure
4531 * @new_mtu: new value for maximum frame size
4532 *
4533 * Returns 0 on success, negative on failure
4534 **/
4535static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4536{
4537 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4538 struct pci_dev *pdev = adapter->pdev;
153285f9 4539 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4540
c809d227 4541 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4542 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4543 return -EINVAL;
4544 }
4545
153285f9 4546#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4547 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4548 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4549 return -EINVAL;
4550 }
4551
4552 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4553 msleep(1);
73cd78f1 4554
9d5c8243
AK
4555 /* igb_down has a dependency on max_frame_size */
4556 adapter->max_frame_size = max_frame;
559e9c49 4557
4c844851
AD
4558 if (netif_running(netdev))
4559 igb_down(adapter);
9d5c8243 4560
090b1795 4561 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4562 netdev->mtu, new_mtu);
4563 netdev->mtu = new_mtu;
4564
4565 if (netif_running(netdev))
4566 igb_up(adapter);
4567 else
4568 igb_reset(adapter);
4569
4570 clear_bit(__IGB_RESETTING, &adapter->state);
4571
4572 return 0;
4573}
4574
4575/**
4576 * igb_update_stats - Update the board statistics counters
4577 * @adapter: board private structure
4578 **/
4579
12dcd86b
ED
4580void igb_update_stats(struct igb_adapter *adapter,
4581 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4582{
4583 struct e1000_hw *hw = &adapter->hw;
4584 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4585 u32 reg, mpc;
9d5c8243 4586 u16 phy_tmp;
3f9c0164
AD
4587 int i;
4588 u64 bytes, packets;
12dcd86b
ED
4589 unsigned int start;
4590 u64 _bytes, _packets;
9d5c8243
AK
4591
4592#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4593
4594 /*
4595 * Prevent stats update while adapter is being reset, or if the pci
4596 * connection is down.
4597 */
4598 if (adapter->link_speed == 0)
4599 return;
4600 if (pci_channel_offline(pdev))
4601 return;
4602
3f9c0164
AD
4603 bytes = 0;
4604 packets = 0;
4605 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 4606 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 4607 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4608
ae1c07a6
AD
4609 if (rqdpc) {
4610 ring->rx_stats.drops += rqdpc;
4611 net_stats->rx_fifo_errors += rqdpc;
4612 }
12dcd86b
ED
4613
4614 do {
4615 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4616 _bytes = ring->rx_stats.bytes;
4617 _packets = ring->rx_stats.packets;
4618 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4619 bytes += _bytes;
4620 packets += _packets;
3f9c0164
AD
4621 }
4622
128e45eb
AD
4623 net_stats->rx_bytes = bytes;
4624 net_stats->rx_packets = packets;
3f9c0164
AD
4625
4626 bytes = 0;
4627 packets = 0;
4628 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4629 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4630 do {
4631 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4632 _bytes = ring->tx_stats.bytes;
4633 _packets = ring->tx_stats.packets;
4634 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4635 bytes += _bytes;
4636 packets += _packets;
3f9c0164 4637 }
128e45eb
AD
4638 net_stats->tx_bytes = bytes;
4639 net_stats->tx_packets = packets;
3f9c0164
AD
4640
4641 /* read stats registers */
9d5c8243
AK
4642 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4643 adapter->stats.gprc += rd32(E1000_GPRC);
4644 adapter->stats.gorc += rd32(E1000_GORCL);
4645 rd32(E1000_GORCH); /* clear GORCL */
4646 adapter->stats.bprc += rd32(E1000_BPRC);
4647 adapter->stats.mprc += rd32(E1000_MPRC);
4648 adapter->stats.roc += rd32(E1000_ROC);
4649
4650 adapter->stats.prc64 += rd32(E1000_PRC64);
4651 adapter->stats.prc127 += rd32(E1000_PRC127);
4652 adapter->stats.prc255 += rd32(E1000_PRC255);
4653 adapter->stats.prc511 += rd32(E1000_PRC511);
4654 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4655 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4656 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4657 adapter->stats.sec += rd32(E1000_SEC);
4658
fa3d9a6d
MW
4659 mpc = rd32(E1000_MPC);
4660 adapter->stats.mpc += mpc;
4661 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4662 adapter->stats.scc += rd32(E1000_SCC);
4663 adapter->stats.ecol += rd32(E1000_ECOL);
4664 adapter->stats.mcc += rd32(E1000_MCC);
4665 adapter->stats.latecol += rd32(E1000_LATECOL);
4666 adapter->stats.dc += rd32(E1000_DC);
4667 adapter->stats.rlec += rd32(E1000_RLEC);
4668 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4669 adapter->stats.xontxc += rd32(E1000_XONTXC);
4670 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4671 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4672 adapter->stats.fcruc += rd32(E1000_FCRUC);
4673 adapter->stats.gptc += rd32(E1000_GPTC);
4674 adapter->stats.gotc += rd32(E1000_GOTCL);
4675 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4676 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4677 adapter->stats.ruc += rd32(E1000_RUC);
4678 adapter->stats.rfc += rd32(E1000_RFC);
4679 adapter->stats.rjc += rd32(E1000_RJC);
4680 adapter->stats.tor += rd32(E1000_TORH);
4681 adapter->stats.tot += rd32(E1000_TOTH);
4682 adapter->stats.tpr += rd32(E1000_TPR);
4683
4684 adapter->stats.ptc64 += rd32(E1000_PTC64);
4685 adapter->stats.ptc127 += rd32(E1000_PTC127);
4686 adapter->stats.ptc255 += rd32(E1000_PTC255);
4687 adapter->stats.ptc511 += rd32(E1000_PTC511);
4688 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4689 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4690
4691 adapter->stats.mptc += rd32(E1000_MPTC);
4692 adapter->stats.bptc += rd32(E1000_BPTC);
4693
2d0b0f69
NN
4694 adapter->stats.tpt += rd32(E1000_TPT);
4695 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4696
4697 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4698 /* read internal phy specific stats */
4699 reg = rd32(E1000_CTRL_EXT);
4700 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4701 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
4702
4703 /* this stat has invalid values on i210/i211 */
4704 if ((hw->mac.type != e1000_i210) &&
4705 (hw->mac.type != e1000_i211))
4706 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
4707 }
4708
9d5c8243
AK
4709 adapter->stats.tsctc += rd32(E1000_TSCTC);
4710 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4711
4712 adapter->stats.iac += rd32(E1000_IAC);
4713 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4714 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4715 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4716 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4717 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4718 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4719 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4720 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4721
4722 /* Fill out the OS statistics structure */
128e45eb
AD
4723 net_stats->multicast = adapter->stats.mprc;
4724 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4725
4726 /* Rx Errors */
4727
4728 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4729 * our own version based on RUC and ROC */
128e45eb 4730 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4731 adapter->stats.crcerrs + adapter->stats.algnerrc +
4732 adapter->stats.ruc + adapter->stats.roc +
4733 adapter->stats.cexterr;
128e45eb
AD
4734 net_stats->rx_length_errors = adapter->stats.ruc +
4735 adapter->stats.roc;
4736 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4737 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4738 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4739
4740 /* Tx Errors */
128e45eb
AD
4741 net_stats->tx_errors = adapter->stats.ecol +
4742 adapter->stats.latecol;
4743 net_stats->tx_aborted_errors = adapter->stats.ecol;
4744 net_stats->tx_window_errors = adapter->stats.latecol;
4745 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4746
4747 /* Tx Dropped needs to be maintained elsewhere */
4748
4749 /* Phy Stats */
4750 if (hw->phy.media_type == e1000_media_type_copper) {
4751 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4752 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4753 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4754 adapter->phy_stats.idle_errors += phy_tmp;
4755 }
4756 }
4757
4758 /* Management Stats */
4759 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4760 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4761 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4762
4763 /* OS2BMC Stats */
4764 reg = rd32(E1000_MANC);
4765 if (reg & E1000_MANC_EN_BMC2OS) {
4766 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4767 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4768 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4769 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4770 }
9d5c8243
AK
4771}
4772
9d5c8243
AK
4773static irqreturn_t igb_msix_other(int irq, void *data)
4774{
047e0030 4775 struct igb_adapter *adapter = data;
9d5c8243 4776 struct e1000_hw *hw = &adapter->hw;
844290e5 4777 u32 icr = rd32(E1000_ICR);
844290e5 4778 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4779
7f081d40
AD
4780 if (icr & E1000_ICR_DRSTA)
4781 schedule_work(&adapter->reset_task);
4782
047e0030 4783 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4784 /* HW is reporting DMA is out of sync */
4785 adapter->stats.doosync++;
13800469
GR
4786 /* The DMA Out of Sync is also indication of a spoof event
4787 * in IOV mode. Check the Wrong VM Behavior register to
4788 * see if it is really a spoof event. */
4789 igb_check_wvbr(adapter);
dda0e083 4790 }
eebbbdba 4791
4ae196df
AD
4792 /* Check for a mailbox event */
4793 if (icr & E1000_ICR_VMMB)
4794 igb_msg_task(adapter);
4795
4796 if (icr & E1000_ICR_LSC) {
4797 hw->mac.get_link_status = 1;
4798 /* guard against interrupt when we're going down */
4799 if (!test_bit(__IGB_DOWN, &adapter->state))
4800 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4801 }
4802
1f6e8178
MV
4803#ifdef CONFIG_IGB_PTP
4804 if (icr & E1000_ICR_TS) {
4805 u32 tsicr = rd32(E1000_TSICR);
4806
4807 if (tsicr & E1000_TSICR_TXTS) {
4808 /* acknowledge the interrupt */
4809 wr32(E1000_TSICR, E1000_TSICR_TXTS);
4810 /* retrieve hardware timestamp */
4811 schedule_work(&adapter->ptp_tx_work);
4812 }
4813 }
4814#endif /* CONFIG_IGB_PTP */
4815
844290e5 4816 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4817
4818 return IRQ_HANDLED;
4819}
4820
047e0030 4821static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4822{
26b39276 4823 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4824 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4825
047e0030
AD
4826 if (!q_vector->set_itr)
4827 return;
73cd78f1 4828
047e0030
AD
4829 if (!itr_val)
4830 itr_val = 0x4;
661086df 4831
26b39276
AD
4832 if (adapter->hw.mac.type == e1000_82575)
4833 itr_val |= itr_val << 16;
661086df 4834 else
0ba82994 4835 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4836
047e0030
AD
4837 writel(itr_val, q_vector->itr_register);
4838 q_vector->set_itr = 0;
6eb5a7f1
AD
4839}
4840
047e0030 4841static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4842{
047e0030 4843 struct igb_q_vector *q_vector = data;
9d5c8243 4844
047e0030
AD
4845 /* Write the ITR value calculated from the previous interrupt. */
4846 igb_write_itr(q_vector);
9d5c8243 4847
047e0030 4848 napi_schedule(&q_vector->napi);
844290e5 4849
047e0030 4850 return IRQ_HANDLED;
fe4506b6
JC
4851}
4852
421e02f0 4853#ifdef CONFIG_IGB_DCA
047e0030 4854static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4855{
047e0030 4856 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4857 struct e1000_hw *hw = &adapter->hw;
4858 int cpu = get_cpu();
fe4506b6 4859
047e0030
AD
4860 if (q_vector->cpu == cpu)
4861 goto out_no_update;
4862
0ba82994
AD
4863 if (q_vector->tx.ring) {
4864 int q = q_vector->tx.ring->reg_idx;
047e0030
AD
4865 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4866 if (hw->mac.type == e1000_82575) {
4867 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4868 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4869 } else {
047e0030
AD
4870 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4871 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4872 E1000_DCA_TXCTRL_CPUID_SHIFT;
4873 }
4874 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4875 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4876 }
0ba82994
AD
4877 if (q_vector->rx.ring) {
4878 int q = q_vector->rx.ring->reg_idx;
047e0030
AD
4879 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4880 if (hw->mac.type == e1000_82575) {
2d064c06 4881 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4882 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4883 } else {
4884 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4885 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4886 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4887 }
fe4506b6
JC
4888 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4889 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4890 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4891 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4892 }
047e0030
AD
4893 q_vector->cpu = cpu;
4894out_no_update:
fe4506b6
JC
4895 put_cpu();
4896}
4897
4898static void igb_setup_dca(struct igb_adapter *adapter)
4899{
7e0e99ef 4900 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4901 int i;
4902
7dfc16fa 4903 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4904 return;
4905
7e0e99ef
AD
4906 /* Always use CB2 mode, difference is masked in the CB driver. */
4907 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4908
047e0030 4909 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4910 adapter->q_vector[i]->cpu = -1;
4911 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4912 }
4913}
4914
4915static int __igb_notify_dca(struct device *dev, void *data)
4916{
4917 struct net_device *netdev = dev_get_drvdata(dev);
4918 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4919 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4920 struct e1000_hw *hw = &adapter->hw;
4921 unsigned long event = *(unsigned long *)data;
4922
4923 switch (event) {
4924 case DCA_PROVIDER_ADD:
4925 /* if already enabled, don't do it again */
7dfc16fa 4926 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4927 break;
fe4506b6 4928 if (dca_add_requester(dev) == 0) {
bbd98fe4 4929 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4930 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4931 igb_setup_dca(adapter);
4932 break;
4933 }
4934 /* Fall Through since DCA is disabled. */
4935 case DCA_PROVIDER_REMOVE:
7dfc16fa 4936 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4937 /* without this a class_device is left
047e0030 4938 * hanging around in the sysfs model */
fe4506b6 4939 dca_remove_requester(dev);
090b1795 4940 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4941 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4942 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4943 }
4944 break;
4945 }
bbd98fe4 4946
fe4506b6 4947 return 0;
9d5c8243
AK
4948}
4949
fe4506b6
JC
4950static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4951 void *p)
4952{
4953 int ret_val;
4954
4955 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4956 __igb_notify_dca);
4957
4958 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4959}
421e02f0 4960#endif /* CONFIG_IGB_DCA */
9d5c8243 4961
0224d663
GR
4962#ifdef CONFIG_PCI_IOV
4963static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4964{
4965 unsigned char mac_addr[ETH_ALEN];
0224d663 4966
7efd26d0 4967 eth_random_addr(mac_addr);
0224d663
GR
4968 igb_set_vf_mac(adapter, vf, mac_addr);
4969
f557147c 4970 return 0;
0224d663
GR
4971}
4972
f557147c 4973static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
0224d663 4974{
0224d663 4975 struct pci_dev *pdev = adapter->pdev;
f557147c
SA
4976 struct pci_dev *vfdev;
4977 int dev_id;
0224d663
GR
4978
4979 switch (adapter->hw.mac.type) {
4980 case e1000_82576:
f557147c 4981 dev_id = IGB_82576_VF_DEV_ID;
0224d663
GR
4982 break;
4983 case e1000_i350:
f557147c 4984 dev_id = IGB_I350_VF_DEV_ID;
0224d663
GR
4985 break;
4986 default:
f557147c 4987 return false;
0224d663
GR
4988 }
4989
f557147c
SA
4990 /* loop through all the VFs to see if we own any that are assigned */
4991 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
4992 while (vfdev) {
4993 /* if we don't own it we don't care */
4994 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
4995 /* if it is assigned we cannot release it */
4996 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
0224d663
GR
4997 return true;
4998 }
f557147c
SA
4999
5000 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
0224d663 5001 }
f557147c 5002
0224d663
GR
5003 return false;
5004}
5005
5006#endif
4ae196df
AD
5007static void igb_ping_all_vfs(struct igb_adapter *adapter)
5008{
5009 struct e1000_hw *hw = &adapter->hw;
5010 u32 ping;
5011 int i;
5012
5013 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5014 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5015 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5016 ping |= E1000_VT_MSGTYPE_CTS;
5017 igb_write_mbx(hw, &ping, 1, i);
5018 }
5019}
5020
7d5753f0
AD
5021static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5022{
5023 struct e1000_hw *hw = &adapter->hw;
5024 u32 vmolr = rd32(E1000_VMOLR(vf));
5025 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5026
d85b9004 5027 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
5028 IGB_VF_FLAG_MULTI_PROMISC);
5029 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5030
5031 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5032 vmolr |= E1000_VMOLR_MPME;
d85b9004 5033 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5034 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5035 } else {
5036 /*
5037 * if we have hashes and we are clearing a multicast promisc
5038 * flag we need to write the hashes to the MTA as this step
5039 * was previously skipped
5040 */
5041 if (vf_data->num_vf_mc_hashes > 30) {
5042 vmolr |= E1000_VMOLR_MPME;
5043 } else if (vf_data->num_vf_mc_hashes) {
5044 int j;
5045 vmolr |= E1000_VMOLR_ROMPE;
5046 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5047 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5048 }
5049 }
5050
5051 wr32(E1000_VMOLR(vf), vmolr);
5052
5053 /* there are flags left unprocessed, likely not supported */
5054 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5055 return -EINVAL;
5056
5057 return 0;
5058
5059}
5060
4ae196df
AD
5061static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5062 u32 *msgbuf, u32 vf)
5063{
5064 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5065 u16 *hash_list = (u16 *)&msgbuf[1];
5066 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5067 int i;
5068
7d5753f0 5069 /* salt away the number of multicast addresses assigned
4ae196df
AD
5070 * to this VF for later use to restore when the PF multi cast
5071 * list changes
5072 */
5073 vf_data->num_vf_mc_hashes = n;
5074
7d5753f0
AD
5075 /* only up to 30 hash values supported */
5076 if (n > 30)
5077 n = 30;
5078
5079 /* store the hashes for later use */
4ae196df 5080 for (i = 0; i < n; i++)
a419aef8 5081 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5082
5083 /* Flush and reset the mta with the new values */
ff41f8dc 5084 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5085
5086 return 0;
5087}
5088
5089static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5090{
5091 struct e1000_hw *hw = &adapter->hw;
5092 struct vf_data_storage *vf_data;
5093 int i, j;
5094
5095 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5096 u32 vmolr = rd32(E1000_VMOLR(i));
5097 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5098
4ae196df 5099 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5100
5101 if ((vf_data->num_vf_mc_hashes > 30) ||
5102 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5103 vmolr |= E1000_VMOLR_MPME;
5104 } else if (vf_data->num_vf_mc_hashes) {
5105 vmolr |= E1000_VMOLR_ROMPE;
5106 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5107 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5108 }
5109 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5110 }
5111}
5112
5113static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5114{
5115 struct e1000_hw *hw = &adapter->hw;
5116 u32 pool_mask, reg, vid;
5117 int i;
5118
5119 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5120
5121 /* Find the vlan filter for this id */
5122 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5123 reg = rd32(E1000_VLVF(i));
5124
5125 /* remove the vf from the pool */
5126 reg &= ~pool_mask;
5127
5128 /* if pool is empty then remove entry from vfta */
5129 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5130 (reg & E1000_VLVF_VLANID_ENABLE)) {
5131 reg = 0;
5132 vid = reg & E1000_VLVF_VLANID_MASK;
5133 igb_vfta_set(hw, vid, false);
5134 }
5135
5136 wr32(E1000_VLVF(i), reg);
5137 }
ae641bdc
AD
5138
5139 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5140}
5141
5142static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5143{
5144 struct e1000_hw *hw = &adapter->hw;
5145 u32 reg, i;
5146
51466239
AD
5147 /* The vlvf table only exists on 82576 hardware and newer */
5148 if (hw->mac.type < e1000_82576)
5149 return -1;
5150
5151 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5152 if (!adapter->vfs_allocated_count)
5153 return -1;
5154
5155 /* Find the vlan filter for this id */
5156 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5157 reg = rd32(E1000_VLVF(i));
5158 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5159 vid == (reg & E1000_VLVF_VLANID_MASK))
5160 break;
5161 }
5162
5163 if (add) {
5164 if (i == E1000_VLVF_ARRAY_SIZE) {
5165 /* Did not find a matching VLAN ID entry that was
5166 * enabled. Search for a free filter entry, i.e.
5167 * one without the enable bit set
5168 */
5169 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5170 reg = rd32(E1000_VLVF(i));
5171 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5172 break;
5173 }
5174 }
5175 if (i < E1000_VLVF_ARRAY_SIZE) {
5176 /* Found an enabled/available entry */
5177 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5178
5179 /* if !enabled we need to set this up in vfta */
5180 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5181 /* add VID to filter table */
5182 igb_vfta_set(hw, vid, true);
4ae196df
AD
5183 reg |= E1000_VLVF_VLANID_ENABLE;
5184 }
cad6d05f
AD
5185 reg &= ~E1000_VLVF_VLANID_MASK;
5186 reg |= vid;
4ae196df 5187 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5188
5189 /* do not modify RLPML for PF devices */
5190 if (vf >= adapter->vfs_allocated_count)
5191 return 0;
5192
5193 if (!adapter->vf_data[vf].vlans_enabled) {
5194 u32 size;
5195 reg = rd32(E1000_VMOLR(vf));
5196 size = reg & E1000_VMOLR_RLPML_MASK;
5197 size += 4;
5198 reg &= ~E1000_VMOLR_RLPML_MASK;
5199 reg |= size;
5200 wr32(E1000_VMOLR(vf), reg);
5201 }
ae641bdc 5202
51466239 5203 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5204 }
5205 } else {
5206 if (i < E1000_VLVF_ARRAY_SIZE) {
5207 /* remove vf from the pool */
5208 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5209 /* if pool is empty then remove entry from vfta */
5210 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5211 reg = 0;
5212 igb_vfta_set(hw, vid, false);
5213 }
5214 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5215
5216 /* do not modify RLPML for PF devices */
5217 if (vf >= adapter->vfs_allocated_count)
5218 return 0;
5219
5220 adapter->vf_data[vf].vlans_enabled--;
5221 if (!adapter->vf_data[vf].vlans_enabled) {
5222 u32 size;
5223 reg = rd32(E1000_VMOLR(vf));
5224 size = reg & E1000_VMOLR_RLPML_MASK;
5225 size -= 4;
5226 reg &= ~E1000_VMOLR_RLPML_MASK;
5227 reg |= size;
5228 wr32(E1000_VMOLR(vf), reg);
5229 }
4ae196df
AD
5230 }
5231 }
8151d294
WM
5232 return 0;
5233}
5234
5235static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5236{
5237 struct e1000_hw *hw = &adapter->hw;
5238
5239 if (vid)
5240 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5241 else
5242 wr32(E1000_VMVIR(vf), 0);
5243}
5244
5245static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5246 int vf, u16 vlan, u8 qos)
5247{
5248 int err = 0;
5249 struct igb_adapter *adapter = netdev_priv(netdev);
5250
5251 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5252 return -EINVAL;
5253 if (vlan || qos) {
5254 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5255 if (err)
5256 goto out;
5257 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5258 igb_set_vmolr(adapter, vf, !vlan);
5259 adapter->vf_data[vf].pf_vlan = vlan;
5260 adapter->vf_data[vf].pf_qos = qos;
5261 dev_info(&adapter->pdev->dev,
5262 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5263 if (test_bit(__IGB_DOWN, &adapter->state)) {
5264 dev_warn(&adapter->pdev->dev,
5265 "The VF VLAN has been set,"
5266 " but the PF device is not up.\n");
5267 dev_warn(&adapter->pdev->dev,
5268 "Bring the PF device up before"
5269 " attempting to use the VF device.\n");
5270 }
5271 } else {
5272 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5273 false, vf);
5274 igb_set_vmvir(adapter, vlan, vf);
5275 igb_set_vmolr(adapter, vf, true);
5276 adapter->vf_data[vf].pf_vlan = 0;
5277 adapter->vf_data[vf].pf_qos = 0;
5278 }
5279out:
5280 return err;
4ae196df
AD
5281}
5282
5283static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5284{
5285 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5286 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5287
5288 return igb_vlvf_set(adapter, vid, add, vf);
5289}
5290
f2ca0dbe 5291static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5292{
8fa7e0f7
GR
5293 /* clear flags - except flag that indicates PF has set the MAC */
5294 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5295 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5296
5297 /* reset offloads to defaults */
8151d294 5298 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5299
5300 /* reset vlans for device */
5301 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5302 if (adapter->vf_data[vf].pf_vlan)
5303 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5304 adapter->vf_data[vf].pf_vlan,
5305 adapter->vf_data[vf].pf_qos);
5306 else
5307 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5308
5309 /* reset multicast table array for vf */
5310 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5311
5312 /* Flush and reset the mta with the new values */
ff41f8dc 5313 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5314}
5315
f2ca0dbe
AD
5316static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5317{
5318 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5319
5320 /* generate a new mac address as we were hotplug removed/added */
8151d294 5321 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7efd26d0 5322 eth_random_addr(vf_mac);
f2ca0dbe
AD
5323
5324 /* process remaining reset events */
5325 igb_vf_reset(adapter, vf);
5326}
5327
5328static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5329{
5330 struct e1000_hw *hw = &adapter->hw;
5331 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5332 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5333 u32 reg, msgbuf[3];
5334 u8 *addr = (u8 *)(&msgbuf[1]);
5335
5336 /* process all the same items cleared in a function level reset */
f2ca0dbe 5337 igb_vf_reset(adapter, vf);
4ae196df
AD
5338
5339 /* set vf mac address */
26ad9178 5340 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5341
5342 /* enable transmit and receive for vf */
5343 reg = rd32(E1000_VFTE);
5344 wr32(E1000_VFTE, reg | (1 << vf));
5345 reg = rd32(E1000_VFRE);
5346 wr32(E1000_VFRE, reg | (1 << vf));
5347
8fa7e0f7 5348 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5349
5350 /* reply to reset with ack and vf mac address */
5351 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5352 memcpy(addr, vf_mac, 6);
5353 igb_write_mbx(hw, msgbuf, 3, vf);
5354}
5355
5356static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5357{
de42edde
GR
5358 /*
5359 * The VF MAC Address is stored in a packed array of bytes
5360 * starting at the second 32 bit word of the msg array
5361 */
f2ca0dbe
AD
5362 unsigned char *addr = (char *)&msg[1];
5363 int err = -1;
4ae196df 5364
f2ca0dbe
AD
5365 if (is_valid_ether_addr(addr))
5366 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5367
f2ca0dbe 5368 return err;
4ae196df
AD
5369}
5370
5371static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5372{
5373 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5374 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5375 u32 msg = E1000_VT_MSGTYPE_NACK;
5376
5377 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5378 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5379 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5380 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5381 vf_data->last_nack = jiffies;
4ae196df
AD
5382 }
5383}
5384
f2ca0dbe 5385static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5386{
f2ca0dbe
AD
5387 struct pci_dev *pdev = adapter->pdev;
5388 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5389 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5390 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5391 s32 retval;
5392
f2ca0dbe 5393 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5394
fef45f4c
AD
5395 if (retval) {
5396 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5397 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5398 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5399 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5400 return;
5401 goto out;
5402 }
4ae196df
AD
5403
5404 /* this is a message we already processed, do nothing */
5405 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5406 return;
4ae196df
AD
5407
5408 /*
5409 * until the vf completes a reset it should not be
5410 * allowed to start any configuration.
5411 */
5412
5413 if (msgbuf[0] == E1000_VF_RESET) {
5414 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5415 return;
4ae196df
AD
5416 }
5417
f2ca0dbe 5418 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5419 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5420 return;
5421 retval = -1;
5422 goto out;
4ae196df
AD
5423 }
5424
5425 switch ((msgbuf[0] & 0xFFFF)) {
5426 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5427 retval = -EINVAL;
5428 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5429 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5430 else
5431 dev_warn(&pdev->dev,
5432 "VF %d attempted to override administratively "
5433 "set MAC address\nReload the VF driver to "
5434 "resume operations\n", vf);
4ae196df 5435 break;
7d5753f0
AD
5436 case E1000_VF_SET_PROMISC:
5437 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5438 break;
4ae196df
AD
5439 case E1000_VF_SET_MULTICAST:
5440 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5441 break;
5442 case E1000_VF_SET_LPE:
5443 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5444 break;
5445 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5446 retval = -1;
5447 if (vf_data->pf_vlan)
5448 dev_warn(&pdev->dev,
5449 "VF %d attempted to override administratively "
5450 "set VLAN tag\nReload the VF driver to "
5451 "resume operations\n", vf);
8151d294
WM
5452 else
5453 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5454 break;
5455 default:
090b1795 5456 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5457 retval = -1;
5458 break;
5459 }
5460
fef45f4c
AD
5461 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5462out:
4ae196df
AD
5463 /* notify the VF of the results of what it sent us */
5464 if (retval)
5465 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5466 else
5467 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5468
4ae196df 5469 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5470}
4ae196df 5471
f2ca0dbe
AD
5472static void igb_msg_task(struct igb_adapter *adapter)
5473{
5474 struct e1000_hw *hw = &adapter->hw;
5475 u32 vf;
5476
5477 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5478 /* process any reset requests */
5479 if (!igb_check_for_rst(hw, vf))
5480 igb_vf_reset_event(adapter, vf);
5481
5482 /* process any messages pending */
5483 if (!igb_check_for_msg(hw, vf))
5484 igb_rcv_msg_from_vf(adapter, vf);
5485
5486 /* process any acks */
5487 if (!igb_check_for_ack(hw, vf))
5488 igb_rcv_ack_from_vf(adapter, vf);
5489 }
4ae196df
AD
5490}
5491
68d480c4
AD
5492/**
5493 * igb_set_uta - Set unicast filter table address
5494 * @adapter: board private structure
5495 *
5496 * The unicast table address is a register array of 32-bit registers.
5497 * The table is meant to be used in a way similar to how the MTA is used
5498 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5499 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5500 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5501 **/
5502static void igb_set_uta(struct igb_adapter *adapter)
5503{
5504 struct e1000_hw *hw = &adapter->hw;
5505 int i;
5506
5507 /* The UTA table only exists on 82576 hardware and newer */
5508 if (hw->mac.type < e1000_82576)
5509 return;
5510
5511 /* we only need to do this if VMDq is enabled */
5512 if (!adapter->vfs_allocated_count)
5513 return;
5514
5515 for (i = 0; i < hw->mac.uta_reg_count; i++)
5516 array_wr32(E1000_UTA, i, ~0);
5517}
5518
9d5c8243
AK
5519/**
5520 * igb_intr_msi - Interrupt Handler
5521 * @irq: interrupt number
5522 * @data: pointer to a network interface device structure
5523 **/
5524static irqreturn_t igb_intr_msi(int irq, void *data)
5525{
047e0030
AD
5526 struct igb_adapter *adapter = data;
5527 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5528 struct e1000_hw *hw = &adapter->hw;
5529 /* read ICR disables interrupts using IAM */
5530 u32 icr = rd32(E1000_ICR);
5531
047e0030 5532 igb_write_itr(q_vector);
9d5c8243 5533
7f081d40
AD
5534 if (icr & E1000_ICR_DRSTA)
5535 schedule_work(&adapter->reset_task);
5536
047e0030 5537 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5538 /* HW is reporting DMA is out of sync */
5539 adapter->stats.doosync++;
5540 }
5541
9d5c8243
AK
5542 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5543 hw->mac.get_link_status = 1;
5544 if (!test_bit(__IGB_DOWN, &adapter->state))
5545 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5546 }
5547
1f6e8178
MV
5548#ifdef CONFIG_IGB_PTP
5549 if (icr & E1000_ICR_TS) {
5550 u32 tsicr = rd32(E1000_TSICR);
5551
5552 if (tsicr & E1000_TSICR_TXTS) {
5553 /* acknowledge the interrupt */
5554 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5555 /* retrieve hardware timestamp */
5556 schedule_work(&adapter->ptp_tx_work);
5557 }
5558 }
5559#endif /* CONFIG_IGB_PTP */
5560
047e0030 5561 napi_schedule(&q_vector->napi);
9d5c8243
AK
5562
5563 return IRQ_HANDLED;
5564}
5565
5566/**
4a3c6433 5567 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5568 * @irq: interrupt number
5569 * @data: pointer to a network interface device structure
5570 **/
5571static irqreturn_t igb_intr(int irq, void *data)
5572{
047e0030
AD
5573 struct igb_adapter *adapter = data;
5574 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5575 struct e1000_hw *hw = &adapter->hw;
5576 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5577 * need for the IMC write */
5578 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5579
5580 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5581 * not set, then the adapter didn't send an interrupt */
5582 if (!(icr & E1000_ICR_INT_ASSERTED))
5583 return IRQ_NONE;
5584
0ba82994
AD
5585 igb_write_itr(q_vector);
5586
7f081d40
AD
5587 if (icr & E1000_ICR_DRSTA)
5588 schedule_work(&adapter->reset_task);
5589
047e0030 5590 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5591 /* HW is reporting DMA is out of sync */
5592 adapter->stats.doosync++;
5593 }
5594
9d5c8243
AK
5595 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5596 hw->mac.get_link_status = 1;
5597 /* guard against interrupt when we're going down */
5598 if (!test_bit(__IGB_DOWN, &adapter->state))
5599 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5600 }
5601
1f6e8178
MV
5602#ifdef CONFIG_IGB_PTP
5603 if (icr & E1000_ICR_TS) {
5604 u32 tsicr = rd32(E1000_TSICR);
5605
5606 if (tsicr & E1000_TSICR_TXTS) {
5607 /* acknowledge the interrupt */
5608 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5609 /* retrieve hardware timestamp */
5610 schedule_work(&adapter->ptp_tx_work);
5611 }
5612 }
5613#endif /* CONFIG_IGB_PTP */
5614
047e0030 5615 napi_schedule(&q_vector->napi);
9d5c8243
AK
5616
5617 return IRQ_HANDLED;
5618}
5619
c50b52a0 5620static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5621{
047e0030 5622 struct igb_adapter *adapter = q_vector->adapter;
46544258 5623 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5624
0ba82994
AD
5625 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5626 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5627 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5628 igb_set_itr(q_vector);
46544258 5629 else
047e0030 5630 igb_update_ring_itr(q_vector);
9d5c8243
AK
5631 }
5632
46544258
AD
5633 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5634 if (adapter->msix_entries)
047e0030 5635 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5636 else
5637 igb_irq_enable(adapter);
5638 }
9d5c8243
AK
5639}
5640
46544258
AD
5641/**
5642 * igb_poll - NAPI Rx polling callback
5643 * @napi: napi polling structure
5644 * @budget: count of how many packets we should handle
5645 **/
5646static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5647{
047e0030
AD
5648 struct igb_q_vector *q_vector = container_of(napi,
5649 struct igb_q_vector,
5650 napi);
16eb8815 5651 bool clean_complete = true;
9d5c8243 5652
421e02f0 5653#ifdef CONFIG_IGB_DCA
047e0030
AD
5654 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5655 igb_update_dca(q_vector);
fe4506b6 5656#endif
0ba82994 5657 if (q_vector->tx.ring)
13fde97a 5658 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5659
0ba82994 5660 if (q_vector->rx.ring)
cd392f5c 5661 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5662
16eb8815
AD
5663 /* If all work not completed, return budget and keep polling */
5664 if (!clean_complete)
5665 return budget;
46544258 5666
9d5c8243 5667 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5668 napi_complete(napi);
5669 igb_ring_irq_enable(q_vector);
9d5c8243 5670
16eb8815 5671 return 0;
9d5c8243 5672}
6d8126f9 5673
9d5c8243
AK
5674/**
5675 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5676 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 5677 *
9d5c8243
AK
5678 * returns true if ring is completely cleaned
5679 **/
047e0030 5680static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5681{
047e0030 5682 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5683 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5684 struct igb_tx_buffer *tx_buffer;
f4128785 5685 union e1000_adv_tx_desc *tx_desc;
9d5c8243 5686 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5687 unsigned int budget = q_vector->tx.work_limit;
8542db05 5688 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5689
13fde97a
AD
5690 if (test_bit(__IGB_DOWN, &adapter->state))
5691 return true;
0e014cb1 5692
06034649 5693 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5694 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5695 i -= tx_ring->count;
9d5c8243 5696
f4128785
AD
5697 do {
5698 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
5699
5700 /* if next_to_watch is not set then there is no work pending */
5701 if (!eop_desc)
5702 break;
13fde97a 5703
f4128785
AD
5704 /* prevent any other reads prior to eop_desc */
5705 rmb();
5706
13fde97a
AD
5707 /* if DD is not set pending work has not been completed */
5708 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5709 break;
5710
8542db05
AD
5711 /* clear next_to_watch to prevent false hangs */
5712 tx_buffer->next_to_watch = NULL;
9d5c8243 5713
ebe42d16
AD
5714 /* update the statistics for this packet */
5715 total_bytes += tx_buffer->bytecount;
5716 total_packets += tx_buffer->gso_segs;
13fde97a 5717
ebe42d16
AD
5718 /* free the skb */
5719 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 5720
ebe42d16
AD
5721 /* unmap skb header data */
5722 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
5723 dma_unmap_addr(tx_buffer, dma),
5724 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
5725 DMA_TO_DEVICE);
5726
c9f14bf3
AD
5727 /* clear tx_buffer data */
5728 tx_buffer->skb = NULL;
5729 dma_unmap_len_set(tx_buffer, len, 0);
5730
ebe42d16
AD
5731 /* clear last DMA location and unmap remaining buffers */
5732 while (tx_desc != eop_desc) {
13fde97a
AD
5733 tx_buffer++;
5734 tx_desc++;
9d5c8243 5735 i++;
8542db05
AD
5736 if (unlikely(!i)) {
5737 i -= tx_ring->count;
06034649 5738 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5739 tx_desc = IGB_TX_DESC(tx_ring, 0);
5740 }
ebe42d16
AD
5741
5742 /* unmap any remaining paged data */
c9f14bf3 5743 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 5744 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
5745 dma_unmap_addr(tx_buffer, dma),
5746 dma_unmap_len(tx_buffer, len),
ebe42d16 5747 DMA_TO_DEVICE);
c9f14bf3 5748 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
5749 }
5750 }
5751
ebe42d16
AD
5752 /* move us one more past the eop_desc for start of next pkt */
5753 tx_buffer++;
5754 tx_desc++;
5755 i++;
5756 if (unlikely(!i)) {
5757 i -= tx_ring->count;
5758 tx_buffer = tx_ring->tx_buffer_info;
5759 tx_desc = IGB_TX_DESC(tx_ring, 0);
5760 }
f4128785
AD
5761
5762 /* issue prefetch for next Tx descriptor */
5763 prefetch(tx_desc);
5764
5765 /* update budget accounting */
5766 budget--;
5767 } while (likely(budget));
0e014cb1 5768
bdbc0631
ED
5769 netdev_tx_completed_queue(txring_txq(tx_ring),
5770 total_packets, total_bytes);
8542db05 5771 i += tx_ring->count;
9d5c8243 5772 tx_ring->next_to_clean = i;
13fde97a
AD
5773 u64_stats_update_begin(&tx_ring->tx_syncp);
5774 tx_ring->tx_stats.bytes += total_bytes;
5775 tx_ring->tx_stats.packets += total_packets;
5776 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5777 q_vector->tx.total_bytes += total_bytes;
5778 q_vector->tx.total_packets += total_packets;
9d5c8243 5779
6d095fa8 5780 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 5781 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5782
9d5c8243
AK
5783 /* Detect a transmit hang in hardware, this serializes the
5784 * check with the clearing of time_stamp and movement of i */
6d095fa8 5785 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 5786 if (tx_buffer->next_to_watch &&
8542db05 5787 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5788 (adapter->tx_timeout_factor * HZ)) &&
5789 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5790
9d5c8243 5791 /* detected Tx unit hang */
59d71989 5792 dev_err(tx_ring->dev,
9d5c8243 5793 "Detected Tx Unit Hang\n"
2d064c06 5794 " Tx Queue <%d>\n"
9d5c8243
AK
5795 " TDH <%x>\n"
5796 " TDT <%x>\n"
5797 " next_to_use <%x>\n"
5798 " next_to_clean <%x>\n"
9d5c8243
AK
5799 "buffer_info[next_to_clean]\n"
5800 " time_stamp <%lx>\n"
8542db05 5801 " next_to_watch <%p>\n"
9d5c8243
AK
5802 " jiffies <%lx>\n"
5803 " desc.status <%x>\n",
2d064c06 5804 tx_ring->queue_index,
238ac817 5805 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5806 readl(tx_ring->tail),
9d5c8243
AK
5807 tx_ring->next_to_use,
5808 tx_ring->next_to_clean,
8542db05 5809 tx_buffer->time_stamp,
f4128785 5810 tx_buffer->next_to_watch,
9d5c8243 5811 jiffies,
f4128785 5812 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
5813 netif_stop_subqueue(tx_ring->netdev,
5814 tx_ring->queue_index);
5815
5816 /* we are about to reset, no point in enabling stuff */
5817 return true;
9d5c8243
AK
5818 }
5819 }
13fde97a
AD
5820
5821 if (unlikely(total_packets &&
5822 netif_carrier_ok(tx_ring->netdev) &&
5823 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5824 /* Make sure that anybody stopping the queue after this
5825 * sees the new next_to_clean.
5826 */
5827 smp_mb();
5828 if (__netif_subqueue_stopped(tx_ring->netdev,
5829 tx_ring->queue_index) &&
5830 !(test_bit(__IGB_DOWN, &adapter->state))) {
5831 netif_wake_subqueue(tx_ring->netdev,
5832 tx_ring->queue_index);
5833
5834 u64_stats_update_begin(&tx_ring->tx_syncp);
5835 tx_ring->tx_stats.restart_queue++;
5836 u64_stats_update_end(&tx_ring->tx_syncp);
5837 }
5838 }
5839
5840 return !!budget;
9d5c8243
AK
5841}
5842
cd392f5c 5843static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
5844 union e1000_adv_rx_desc *rx_desc,
5845 struct sk_buff *skb)
9d5c8243 5846{
bc8acf2c 5847 skb_checksum_none_assert(skb);
9d5c8243 5848
294e7d78 5849 /* Ignore Checksum bit is set */
3ceb90fd 5850 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
5851 return;
5852
5853 /* Rx checksum disabled via ethtool */
5854 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 5855 return;
85ad76b2 5856
9d5c8243 5857 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
5858 if (igb_test_staterr(rx_desc,
5859 E1000_RXDEXT_STATERR_TCPE |
5860 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5861 /*
5862 * work around errata with sctp packets where the TCPE aka
5863 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5864 * packets, (aka let the stack check the crc32c)
5865 */
866cff06
AD
5866 if (!((skb->len == 60) &&
5867 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 5868 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5869 ring->rx_stats.csum_err++;
12dcd86b
ED
5870 u64_stats_update_end(&ring->rx_syncp);
5871 }
9d5c8243 5872 /* let the stack verify checksum errors */
9d5c8243
AK
5873 return;
5874 }
5875 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
5876 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5877 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
5878 skb->ip_summed = CHECKSUM_UNNECESSARY;
5879
3ceb90fd
AD
5880 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5881 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
5882}
5883
077887c3
AD
5884static inline void igb_rx_hash(struct igb_ring *ring,
5885 union e1000_adv_rx_desc *rx_desc,
5886 struct sk_buff *skb)
5887{
5888 if (ring->netdev->features & NETIF_F_RXHASH)
5889 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5890}
5891
8be10e91
AD
5892static void igb_rx_vlan(struct igb_ring *ring,
5893 union e1000_adv_rx_desc *rx_desc,
5894 struct sk_buff *skb)
5895{
5896 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
5897 u16 vid;
5898 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
5899 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
5900 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
5901 else
5902 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5903
5904 __vlan_hwaccel_put_tag(skb, vid);
5905 }
5906}
5907
44390ca6 5908static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5909{
5910 /* HW will not DMA in data larger than the given buffer, even if it
5911 * parses the (NFS, of course) header to be larger. In that case, it
5912 * fills the header buffer and spills the rest into the page.
5913 */
5914 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5915 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5916 if (hlen > IGB_RX_HDR_LEN)
5917 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5918 return hlen;
5919}
5920
cd392f5c 5921static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5922{
0ba82994 5923 struct igb_ring *rx_ring = q_vector->rx.ring;
16eb8815
AD
5924 union e1000_adv_rx_desc *rx_desc;
5925 const int current_node = numa_node_id();
9d5c8243 5926 unsigned int total_bytes = 0, total_packets = 0;
16eb8815
AD
5927 u16 cleaned_count = igb_desc_unused(rx_ring);
5928 u16 i = rx_ring->next_to_clean;
9d5c8243 5929
60136906 5930 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243 5931
3ceb90fd 5932 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
06034649 5933 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
5934 struct sk_buff *skb = buffer_info->skb;
5935 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5936
69d3ca53 5937 buffer_info->skb = NULL;
16eb8815 5938 prefetch(skb->data);
69d3ca53
AD
5939
5940 i++;
5941 if (i == rx_ring->count)
5942 i = 0;
42d0781a 5943
60136906 5944 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5945 prefetch(next_rxd);
9d5c8243 5946
16eb8815
AD
5947 /*
5948 * This memory barrier is needed to keep us from reading
5949 * any other fields out of the rx_desc until we know the
5950 * RXD_STAT_DD bit is set
5951 */
5952 rmb();
9d5c8243 5953
16eb8815
AD
5954 if (!skb_is_nonlinear(skb)) {
5955 __skb_put(skb, igb_get_hlen(rx_desc));
5956 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 5957 IGB_RX_HDR_LEN,
59d71989 5958 DMA_FROM_DEVICE);
91615f76 5959 buffer_info->dma = 0;
bf36c1a0
AD
5960 }
5961
16eb8815
AD
5962 if (rx_desc->wb.upper.length) {
5963 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 5964
aa913403 5965 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5966 buffer_info->page,
5967 buffer_info->page_offset,
5968 length);
5969
16eb8815
AD
5970 skb->len += length;
5971 skb->data_len += length;
95b9c1df 5972 skb->truesize += PAGE_SIZE / 2;
16eb8815 5973
d1eff350
AD
5974 if ((page_count(buffer_info->page) != 1) ||
5975 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5976 buffer_info->page = NULL;
5977 else
5978 get_page(buffer_info->page);
9d5c8243 5979
16eb8815
AD
5980 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5981 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5982 buffer_info->page_dma = 0;
9d5c8243 5983 }
9d5c8243 5984
3ceb90fd 5985 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
06034649
AD
5986 struct igb_rx_buffer *next_buffer;
5987 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
5988 buffer_info->skb = next_buffer->skb;
5989 buffer_info->dma = next_buffer->dma;
5990 next_buffer->skb = skb;
5991 next_buffer->dma = 0;
bf36c1a0
AD
5992 goto next_desc;
5993 }
44390ca6 5994
89eaefb6
BG
5995 if (unlikely((igb_test_staterr(rx_desc,
5996 E1000_RXDEXT_ERR_FRAME_ERR_MASK))
5997 && !(rx_ring->netdev->features & NETIF_F_RXALL))) {
16eb8815 5998 dev_kfree_skb_any(skb);
9d5c8243
AK
5999 goto next_desc;
6000 }
9d5c8243 6001
7ebae817 6002#ifdef CONFIG_IGB_PTP
a79f4f88 6003 igb_ptp_rx_hwtstamp(q_vector, rx_desc, skb);
3c89f6d0 6004#endif /* CONFIG_IGB_PTP */
077887c3 6005 igb_rx_hash(rx_ring, rx_desc, skb);
3ceb90fd 6006 igb_rx_checksum(rx_ring, rx_desc, skb);
8be10e91 6007 igb_rx_vlan(rx_ring, rx_desc, skb);
3ceb90fd
AD
6008
6009 total_bytes += skb->len;
6010 total_packets++;
6011
6012 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6013
b2cb09b1 6014 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6015
16eb8815 6016 budget--;
9d5c8243 6017next_desc:
16eb8815
AD
6018 if (!budget)
6019 break;
6020
6021 cleaned_count++;
9d5c8243
AK
6022 /* return some buffers to hardware, one at a time is too slow */
6023 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 6024 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
6025 cleaned_count = 0;
6026 }
6027
6028 /* use prefetched values */
6029 rx_desc = next_rxd;
9d5c8243 6030 }
bf36c1a0 6031
9d5c8243 6032 rx_ring->next_to_clean = i;
12dcd86b 6033 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6034 rx_ring->rx_stats.packets += total_packets;
6035 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6036 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6037 q_vector->rx.total_packets += total_packets;
6038 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6039
6040 if (cleaned_count)
cd392f5c 6041 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6042
16eb8815 6043 return !!budget;
9d5c8243
AK
6044}
6045
c023cd88 6046static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 6047 struct igb_rx_buffer *bi)
c023cd88
AD
6048{
6049 struct sk_buff *skb = bi->skb;
6050 dma_addr_t dma = bi->dma;
6051
6052 if (dma)
6053 return true;
6054
6055 if (likely(!skb)) {
6056 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6057 IGB_RX_HDR_LEN);
6058 bi->skb = skb;
6059 if (!skb) {
6060 rx_ring->rx_stats.alloc_failed++;
6061 return false;
6062 }
6063
6064 /* initialize skb for ring */
6065 skb_record_rx_queue(skb, rx_ring->queue_index);
6066 }
6067
6068 dma = dma_map_single(rx_ring->dev, skb->data,
6069 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6070
6071 if (dma_mapping_error(rx_ring->dev, dma)) {
6072 rx_ring->rx_stats.alloc_failed++;
6073 return false;
6074 }
6075
6076 bi->dma = dma;
6077 return true;
6078}
6079
6080static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6081 struct igb_rx_buffer *bi)
c023cd88
AD
6082{
6083 struct page *page = bi->page;
6084 dma_addr_t page_dma = bi->page_dma;
6085 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6086
6087 if (page_dma)
6088 return true;
6089
6090 if (!page) {
0614002b 6091 page = __skb_alloc_page(GFP_ATOMIC, bi->skb);
c023cd88
AD
6092 bi->page = page;
6093 if (unlikely(!page)) {
6094 rx_ring->rx_stats.alloc_failed++;
6095 return false;
6096 }
6097 }
6098
6099 page_dma = dma_map_page(rx_ring->dev, page,
6100 page_offset, PAGE_SIZE / 2,
6101 DMA_FROM_DEVICE);
6102
6103 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6104 rx_ring->rx_stats.alloc_failed++;
6105 return false;
6106 }
6107
6108 bi->page_dma = page_dma;
6109 bi->page_offset = page_offset;
6110 return true;
6111}
6112
9d5c8243 6113/**
cd392f5c 6114 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6115 * @adapter: address of board private structure
6116 **/
cd392f5c 6117void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6118{
9d5c8243 6119 union e1000_adv_rx_desc *rx_desc;
06034649 6120 struct igb_rx_buffer *bi;
c023cd88 6121 u16 i = rx_ring->next_to_use;
9d5c8243 6122
60136906 6123 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6124 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6125 i -= rx_ring->count;
9d5c8243
AK
6126
6127 while (cleaned_count--) {
c023cd88
AD
6128 if (!igb_alloc_mapped_skb(rx_ring, bi))
6129 break;
9d5c8243 6130
c023cd88
AD
6131 /* Refresh the desc even if buffer_addrs didn't change
6132 * because each write-back erases this info. */
6133 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6134
c023cd88
AD
6135 if (!igb_alloc_mapped_page(rx_ring, bi))
6136 break;
6137
6138 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6139
c023cd88
AD
6140 rx_desc++;
6141 bi++;
9d5c8243 6142 i++;
c023cd88 6143 if (unlikely(!i)) {
60136906 6144 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6145 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6146 i -= rx_ring->count;
6147 }
6148
6149 /* clear the hdr_addr for the next_to_use descriptor */
6150 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6151 }
6152
c023cd88
AD
6153 i += rx_ring->count;
6154
9d5c8243
AK
6155 if (rx_ring->next_to_use != i) {
6156 rx_ring->next_to_use = i;
9d5c8243
AK
6157
6158 /* Force memory writes to complete before letting h/w
6159 * know there are new descriptors to fetch. (Only
6160 * applicable for weak-ordered memory model archs,
6161 * such as IA-64). */
6162 wmb();
fce99e34 6163 writel(i, rx_ring->tail);
9d5c8243
AK
6164 }
6165}
6166
6167/**
6168 * igb_mii_ioctl -
6169 * @netdev:
6170 * @ifreq:
6171 * @cmd:
6172 **/
6173static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6174{
6175 struct igb_adapter *adapter = netdev_priv(netdev);
6176 struct mii_ioctl_data *data = if_mii(ifr);
6177
6178 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6179 return -EOPNOTSUPP;
6180
6181 switch (cmd) {
6182 case SIOCGMIIPHY:
6183 data->phy_id = adapter->hw.phy.addr;
6184 break;
6185 case SIOCGMIIREG:
f5f4cf08
AD
6186 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6187 &data->val_out))
9d5c8243
AK
6188 return -EIO;
6189 break;
6190 case SIOCSMIIREG:
6191 default:
6192 return -EOPNOTSUPP;
6193 }
6194 return 0;
6195}
6196
6197/**
6198 * igb_ioctl -
6199 * @netdev:
6200 * @ifreq:
6201 * @cmd:
6202 **/
6203static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6204{
6205 switch (cmd) {
6206 case SIOCGMIIPHY:
6207 case SIOCGMIIREG:
6208 case SIOCSMIIREG:
6209 return igb_mii_ioctl(netdev, ifr, cmd);
3c89f6d0 6210#ifdef CONFIG_IGB_PTP
c6cb090b 6211 case SIOCSHWTSTAMP:
a79f4f88 6212 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
3c89f6d0 6213#endif /* CONFIG_IGB_PTP */
9d5c8243
AK
6214 default:
6215 return -EOPNOTSUPP;
6216 }
6217}
6218
009bc06e
AD
6219s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6220{
6221 struct igb_adapter *adapter = hw->back;
009bc06e 6222
23d028cc 6223 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
6224 return -E1000_ERR_CONFIG;
6225
009bc06e
AD
6226 return 0;
6227}
6228
6229s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6230{
6231 struct igb_adapter *adapter = hw->back;
009bc06e 6232
23d028cc 6233 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
6234 return -E1000_ERR_CONFIG;
6235
009bc06e
AD
6236 return 0;
6237}
6238
c8f44aff 6239static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6240{
6241 struct igb_adapter *adapter = netdev_priv(netdev);
6242 struct e1000_hw *hw = &adapter->hw;
6243 u32 ctrl, rctl;
5faf030c 6244 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6245
5faf030c 6246 if (enable) {
9d5c8243
AK
6247 /* enable VLAN tag insert/strip */
6248 ctrl = rd32(E1000_CTRL);
6249 ctrl |= E1000_CTRL_VME;
6250 wr32(E1000_CTRL, ctrl);
6251
51466239 6252 /* Disable CFI check */
9d5c8243 6253 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6254 rctl &= ~E1000_RCTL_CFIEN;
6255 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6256 } else {
6257 /* disable VLAN tag insert/strip */
6258 ctrl = rd32(E1000_CTRL);
6259 ctrl &= ~E1000_CTRL_VME;
6260 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6261 }
6262
e1739522 6263 igb_rlpml_set(adapter);
9d5c8243
AK
6264}
6265
8e586137 6266static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6267{
6268 struct igb_adapter *adapter = netdev_priv(netdev);
6269 struct e1000_hw *hw = &adapter->hw;
4ae196df 6270 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6271
51466239
AD
6272 /* attempt to add filter to vlvf array */
6273 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6274
51466239
AD
6275 /* add the filter since PF can receive vlans w/o entry in vlvf */
6276 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6277
6278 set_bit(vid, adapter->active_vlans);
8e586137
JP
6279
6280 return 0;
9d5c8243
AK
6281}
6282
8e586137 6283static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6284{
6285 struct igb_adapter *adapter = netdev_priv(netdev);
6286 struct e1000_hw *hw = &adapter->hw;
4ae196df 6287 int pf_id = adapter->vfs_allocated_count;
51466239 6288 s32 err;
9d5c8243 6289
51466239
AD
6290 /* remove vlan from VLVF table array */
6291 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6292
51466239
AD
6293 /* if vid was not present in VLVF just remove it from table */
6294 if (err)
4ae196df 6295 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6296
6297 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6298
6299 return 0;
9d5c8243
AK
6300}
6301
6302static void igb_restore_vlan(struct igb_adapter *adapter)
6303{
b2cb09b1 6304 u16 vid;
9d5c8243 6305
5faf030c
AD
6306 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6307
b2cb09b1
JP
6308 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6309 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6310}
6311
14ad2513 6312int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6313{
090b1795 6314 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6315 struct e1000_mac_info *mac = &adapter->hw.mac;
6316
6317 mac->autoneg = 0;
6318
14ad2513
DD
6319 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6320 * for the switch() below to work */
6321 if ((spd & 1) || (dplx & ~1))
6322 goto err_inval;
6323
cd2638a8
CW
6324 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6325 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6326 spd != SPEED_1000 &&
6327 dplx != DUPLEX_FULL)
6328 goto err_inval;
cd2638a8 6329
14ad2513 6330 switch (spd + dplx) {
9d5c8243
AK
6331 case SPEED_10 + DUPLEX_HALF:
6332 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6333 break;
6334 case SPEED_10 + DUPLEX_FULL:
6335 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6336 break;
6337 case SPEED_100 + DUPLEX_HALF:
6338 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6339 break;
6340 case SPEED_100 + DUPLEX_FULL:
6341 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6342 break;
6343 case SPEED_1000 + DUPLEX_FULL:
6344 mac->autoneg = 1;
6345 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6346 break;
6347 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6348 default:
14ad2513 6349 goto err_inval;
9d5c8243 6350 }
8376dad0
JB
6351
6352 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6353 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6354
9d5c8243 6355 return 0;
14ad2513
DD
6356
6357err_inval:
6358 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6359 return -EINVAL;
9d5c8243
AK
6360}
6361
749ab2cd
YZ
6362static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6363 bool runtime)
9d5c8243
AK
6364{
6365 struct net_device *netdev = pci_get_drvdata(pdev);
6366 struct igb_adapter *adapter = netdev_priv(netdev);
6367 struct e1000_hw *hw = &adapter->hw;
2d064c06 6368 u32 ctrl, rctl, status;
749ab2cd 6369 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
6370#ifdef CONFIG_PM
6371 int retval = 0;
6372#endif
6373
6374 netif_device_detach(netdev);
6375
a88f10ec 6376 if (netif_running(netdev))
749ab2cd 6377 __igb_close(netdev, true);
a88f10ec 6378
047e0030 6379 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6380
6381#ifdef CONFIG_PM
6382 retval = pci_save_state(pdev);
6383 if (retval)
6384 return retval;
6385#endif
6386
6387 status = rd32(E1000_STATUS);
6388 if (status & E1000_STATUS_LU)
6389 wufc &= ~E1000_WUFC_LNKC;
6390
6391 if (wufc) {
6392 igb_setup_rctl(adapter);
ff41f8dc 6393 igb_set_rx_mode(netdev);
9d5c8243
AK
6394
6395 /* turn on all-multi mode if wake on multicast is enabled */
6396 if (wufc & E1000_WUFC_MC) {
6397 rctl = rd32(E1000_RCTL);
6398 rctl |= E1000_RCTL_MPE;
6399 wr32(E1000_RCTL, rctl);
6400 }
6401
6402 ctrl = rd32(E1000_CTRL);
6403 /* advertise wake from D3Cold */
6404 #define E1000_CTRL_ADVD3WUC 0x00100000
6405 /* phy power management enable */
6406 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6407 ctrl |= E1000_CTRL_ADVD3WUC;
6408 wr32(E1000_CTRL, ctrl);
6409
9d5c8243 6410 /* Allow time for pending master requests to run */
330a6d6a 6411 igb_disable_pcie_master(hw);
9d5c8243
AK
6412
6413 wr32(E1000_WUC, E1000_WUC_PME_EN);
6414 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6415 } else {
6416 wr32(E1000_WUC, 0);
6417 wr32(E1000_WUFC, 0);
9d5c8243
AK
6418 }
6419
3fe7c4c9
RW
6420 *enable_wake = wufc || adapter->en_mng_pt;
6421 if (!*enable_wake)
88a268c1
NN
6422 igb_power_down_link(adapter);
6423 else
6424 igb_power_up_link(adapter);
9d5c8243
AK
6425
6426 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6427 * would have already happened in close and is redundant. */
6428 igb_release_hw_control(adapter);
6429
6430 pci_disable_device(pdev);
6431
9d5c8243
AK
6432 return 0;
6433}
6434
6435#ifdef CONFIG_PM
d9dd966d 6436#ifdef CONFIG_PM_SLEEP
749ab2cd 6437static int igb_suspend(struct device *dev)
3fe7c4c9
RW
6438{
6439 int retval;
6440 bool wake;
749ab2cd 6441 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 6442
749ab2cd 6443 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6444 if (retval)
6445 return retval;
6446
6447 if (wake) {
6448 pci_prepare_to_sleep(pdev);
6449 } else {
6450 pci_wake_from_d3(pdev, false);
6451 pci_set_power_state(pdev, PCI_D3hot);
6452 }
6453
6454 return 0;
6455}
d9dd966d 6456#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 6457
749ab2cd 6458static int igb_resume(struct device *dev)
9d5c8243 6459{
749ab2cd 6460 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
6461 struct net_device *netdev = pci_get_drvdata(pdev);
6462 struct igb_adapter *adapter = netdev_priv(netdev);
6463 struct e1000_hw *hw = &adapter->hw;
6464 u32 err;
6465
6466 pci_set_power_state(pdev, PCI_D0);
6467 pci_restore_state(pdev);
b94f2d77 6468 pci_save_state(pdev);
42bfd33a 6469
aed5dec3 6470 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6471 if (err) {
6472 dev_err(&pdev->dev,
6473 "igb: Cannot enable PCI device from suspend\n");
6474 return err;
6475 }
6476 pci_set_master(pdev);
6477
6478 pci_enable_wake(pdev, PCI_D3hot, 0);
6479 pci_enable_wake(pdev, PCI_D3cold, 0);
6480
cfb8c3aa 6481 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6482 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6483 return -ENOMEM;
9d5c8243
AK
6484 }
6485
9d5c8243 6486 igb_reset(adapter);
a8564f03
AD
6487
6488 /* let the f/w know that the h/w is now under the control of the
6489 * driver. */
6490 igb_get_hw_control(adapter);
6491
9d5c8243
AK
6492 wr32(E1000_WUS, ~0);
6493
749ab2cd
YZ
6494 if (netdev->flags & IFF_UP) {
6495 err = __igb_open(netdev, true);
a88f10ec
AD
6496 if (err)
6497 return err;
6498 }
9d5c8243
AK
6499
6500 netif_device_attach(netdev);
749ab2cd
YZ
6501 return 0;
6502}
6503
6504#ifdef CONFIG_PM_RUNTIME
6505static int igb_runtime_idle(struct device *dev)
6506{
6507 struct pci_dev *pdev = to_pci_dev(dev);
6508 struct net_device *netdev = pci_get_drvdata(pdev);
6509 struct igb_adapter *adapter = netdev_priv(netdev);
6510
6511 if (!igb_has_link(adapter))
6512 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6513
6514 return -EBUSY;
6515}
6516
6517static int igb_runtime_suspend(struct device *dev)
6518{
6519 struct pci_dev *pdev = to_pci_dev(dev);
6520 int retval;
6521 bool wake;
6522
6523 retval = __igb_shutdown(pdev, &wake, 1);
6524 if (retval)
6525 return retval;
6526
6527 if (wake) {
6528 pci_prepare_to_sleep(pdev);
6529 } else {
6530 pci_wake_from_d3(pdev, false);
6531 pci_set_power_state(pdev, PCI_D3hot);
6532 }
9d5c8243 6533
9d5c8243
AK
6534 return 0;
6535}
749ab2cd
YZ
6536
6537static int igb_runtime_resume(struct device *dev)
6538{
6539 return igb_resume(dev);
6540}
6541#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
6542#endif
6543
6544static void igb_shutdown(struct pci_dev *pdev)
6545{
3fe7c4c9
RW
6546 bool wake;
6547
749ab2cd 6548 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6549
6550 if (system_state == SYSTEM_POWER_OFF) {
6551 pci_wake_from_d3(pdev, wake);
6552 pci_set_power_state(pdev, PCI_D3hot);
6553 }
9d5c8243
AK
6554}
6555
6556#ifdef CONFIG_NET_POLL_CONTROLLER
6557/*
6558 * Polling 'interrupt' - used by things like netconsole to send skbs
6559 * without having to re-enable interrupts. It's not called while
6560 * the interrupt routine is executing.
6561 */
6562static void igb_netpoll(struct net_device *netdev)
6563{
6564 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6565 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 6566 struct igb_q_vector *q_vector;
9d5c8243 6567 int i;
9d5c8243 6568
047e0030 6569 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
6570 q_vector = adapter->q_vector[i];
6571 if (adapter->msix_entries)
6572 wr32(E1000_EIMC, q_vector->eims_value);
6573 else
6574 igb_irq_disable(adapter);
047e0030 6575 napi_schedule(&q_vector->napi);
eebbbdba 6576 }
9d5c8243
AK
6577}
6578#endif /* CONFIG_NET_POLL_CONTROLLER */
6579
6580/**
6581 * igb_io_error_detected - called when PCI error is detected
6582 * @pdev: Pointer to PCI device
6583 * @state: The current pci connection state
6584 *
6585 * This function is called after a PCI bus error affecting
6586 * this device has been detected.
6587 */
6588static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6589 pci_channel_state_t state)
6590{
6591 struct net_device *netdev = pci_get_drvdata(pdev);
6592 struct igb_adapter *adapter = netdev_priv(netdev);
6593
6594 netif_device_detach(netdev);
6595
59ed6eec
AD
6596 if (state == pci_channel_io_perm_failure)
6597 return PCI_ERS_RESULT_DISCONNECT;
6598
9d5c8243
AK
6599 if (netif_running(netdev))
6600 igb_down(adapter);
6601 pci_disable_device(pdev);
6602
6603 /* Request a slot slot reset. */
6604 return PCI_ERS_RESULT_NEED_RESET;
6605}
6606
6607/**
6608 * igb_io_slot_reset - called after the pci bus has been reset.
6609 * @pdev: Pointer to PCI device
6610 *
6611 * Restart the card from scratch, as if from a cold-boot. Implementation
6612 * resembles the first-half of the igb_resume routine.
6613 */
6614static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6615{
6616 struct net_device *netdev = pci_get_drvdata(pdev);
6617 struct igb_adapter *adapter = netdev_priv(netdev);
6618 struct e1000_hw *hw = &adapter->hw;
40a914fa 6619 pci_ers_result_t result;
42bfd33a 6620 int err;
9d5c8243 6621
aed5dec3 6622 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6623 dev_err(&pdev->dev,
6624 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6625 result = PCI_ERS_RESULT_DISCONNECT;
6626 } else {
6627 pci_set_master(pdev);
6628 pci_restore_state(pdev);
b94f2d77 6629 pci_save_state(pdev);
9d5c8243 6630
40a914fa
AD
6631 pci_enable_wake(pdev, PCI_D3hot, 0);
6632 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6633
40a914fa
AD
6634 igb_reset(adapter);
6635 wr32(E1000_WUS, ~0);
6636 result = PCI_ERS_RESULT_RECOVERED;
6637 }
9d5c8243 6638
ea943d41
JK
6639 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6640 if (err) {
6641 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6642 "failed 0x%0x\n", err);
6643 /* non-fatal, continue */
6644 }
40a914fa
AD
6645
6646 return result;
9d5c8243
AK
6647}
6648
6649/**
6650 * igb_io_resume - called when traffic can start flowing again.
6651 * @pdev: Pointer to PCI device
6652 *
6653 * This callback is called when the error recovery driver tells us that
6654 * its OK to resume normal operation. Implementation resembles the
6655 * second-half of the igb_resume routine.
6656 */
6657static void igb_io_resume(struct pci_dev *pdev)
6658{
6659 struct net_device *netdev = pci_get_drvdata(pdev);
6660 struct igb_adapter *adapter = netdev_priv(netdev);
6661
9d5c8243
AK
6662 if (netif_running(netdev)) {
6663 if (igb_up(adapter)) {
6664 dev_err(&pdev->dev, "igb_up failed after reset\n");
6665 return;
6666 }
6667 }
6668
6669 netif_device_attach(netdev);
6670
6671 /* let the f/w know that the h/w is now under the control of the
6672 * driver. */
6673 igb_get_hw_control(adapter);
9d5c8243
AK
6674}
6675
26ad9178
AD
6676static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6677 u8 qsel)
6678{
6679 u32 rar_low, rar_high;
6680 struct e1000_hw *hw = &adapter->hw;
6681
6682 /* HW expects these in little endian so we reverse the byte order
6683 * from network order (big endian) to little endian
6684 */
6685 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6686 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6687 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6688
6689 /* Indicate to hardware the Address is Valid. */
6690 rar_high |= E1000_RAH_AV;
6691
6692 if (hw->mac.type == e1000_82575)
6693 rar_high |= E1000_RAH_POOL_1 * qsel;
6694 else
6695 rar_high |= E1000_RAH_POOL_1 << qsel;
6696
6697 wr32(E1000_RAL(index), rar_low);
6698 wrfl();
6699 wr32(E1000_RAH(index), rar_high);
6700 wrfl();
6701}
6702
4ae196df
AD
6703static int igb_set_vf_mac(struct igb_adapter *adapter,
6704 int vf, unsigned char *mac_addr)
6705{
6706 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6707 /* VF MAC addresses start at end of receive addresses and moves
6708 * torwards the first, as a result a collision should not be possible */
6709 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6710
37680117 6711 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6712
26ad9178 6713 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6714
6715 return 0;
6716}
6717
8151d294
WM
6718static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6719{
6720 struct igb_adapter *adapter = netdev_priv(netdev);
6721 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6722 return -EINVAL;
6723 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6724 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6725 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6726 " change effective.");
6727 if (test_bit(__IGB_DOWN, &adapter->state)) {
6728 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6729 " but the PF device is not up.\n");
6730 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6731 " attempting to use the VF device.\n");
6732 }
6733 return igb_set_vf_mac(adapter, vf, mac);
6734}
6735
17dc566c
LL
6736static int igb_link_mbps(int internal_link_speed)
6737{
6738 switch (internal_link_speed) {
6739 case SPEED_100:
6740 return 100;
6741 case SPEED_1000:
6742 return 1000;
6743 default:
6744 return 0;
6745 }
6746}
6747
6748static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6749 int link_speed)
6750{
6751 int rf_dec, rf_int;
6752 u32 bcnrc_val;
6753
6754 if (tx_rate != 0) {
6755 /* Calculate the rate factor values to set */
6756 rf_int = link_speed / tx_rate;
6757 rf_dec = (link_speed - (rf_int * tx_rate));
6758 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6759
6760 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6761 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6762 E1000_RTTBCNRC_RF_INT_MASK);
6763 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6764 } else {
6765 bcnrc_val = 0;
6766 }
6767
6768 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
f00b0da7
LL
6769 /*
6770 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
6771 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
6772 */
6773 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
6774 wr32(E1000_RTTBCNRC, bcnrc_val);
6775}
6776
6777static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6778{
6779 int actual_link_speed, i;
6780 bool reset_rate = false;
6781
6782 /* VF TX rate limit was not set or not supported */
6783 if ((adapter->vf_rate_link_speed == 0) ||
6784 (adapter->hw.mac.type != e1000_82576))
6785 return;
6786
6787 actual_link_speed = igb_link_mbps(adapter->link_speed);
6788 if (actual_link_speed != adapter->vf_rate_link_speed) {
6789 reset_rate = true;
6790 adapter->vf_rate_link_speed = 0;
6791 dev_info(&adapter->pdev->dev,
6792 "Link speed has been changed. VF Transmit "
6793 "rate is disabled\n");
6794 }
6795
6796 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6797 if (reset_rate)
6798 adapter->vf_data[i].tx_rate = 0;
6799
6800 igb_set_vf_rate_limit(&adapter->hw, i,
6801 adapter->vf_data[i].tx_rate,
6802 actual_link_speed);
6803 }
6804}
6805
8151d294
WM
6806static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6807{
17dc566c
LL
6808 struct igb_adapter *adapter = netdev_priv(netdev);
6809 struct e1000_hw *hw = &adapter->hw;
6810 int actual_link_speed;
6811
6812 if (hw->mac.type != e1000_82576)
6813 return -EOPNOTSUPP;
6814
6815 actual_link_speed = igb_link_mbps(adapter->link_speed);
6816 if ((vf >= adapter->vfs_allocated_count) ||
6817 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6818 (tx_rate < 0) || (tx_rate > actual_link_speed))
6819 return -EINVAL;
6820
6821 adapter->vf_rate_link_speed = actual_link_speed;
6822 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6823 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6824
6825 return 0;
8151d294
WM
6826}
6827
6828static int igb_ndo_get_vf_config(struct net_device *netdev,
6829 int vf, struct ifla_vf_info *ivi)
6830{
6831 struct igb_adapter *adapter = netdev_priv(netdev);
6832 if (vf >= adapter->vfs_allocated_count)
6833 return -EINVAL;
6834 ivi->vf = vf;
6835 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6836 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6837 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6838 ivi->qos = adapter->vf_data[vf].pf_qos;
6839 return 0;
6840}
6841
4ae196df
AD
6842static void igb_vmm_control(struct igb_adapter *adapter)
6843{
6844 struct e1000_hw *hw = &adapter->hw;
10d8e907 6845 u32 reg;
4ae196df 6846
52a1dd4d
AD
6847 switch (hw->mac.type) {
6848 case e1000_82575:
f96a8a0b
CW
6849 case e1000_i210:
6850 case e1000_i211:
52a1dd4d
AD
6851 default:
6852 /* replication is not supported for 82575 */
4ae196df 6853 return;
52a1dd4d
AD
6854 case e1000_82576:
6855 /* notify HW that the MAC is adding vlan tags */
6856 reg = rd32(E1000_DTXCTL);
6857 reg |= E1000_DTXCTL_VLAN_ADDED;
6858 wr32(E1000_DTXCTL, reg);
6859 case e1000_82580:
6860 /* enable replication vlan tag stripping */
6861 reg = rd32(E1000_RPLOLR);
6862 reg |= E1000_RPLOLR_STRVLAN;
6863 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6864 case e1000_i350:
6865 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6866 break;
6867 }
10d8e907 6868
d4960307
AD
6869 if (adapter->vfs_allocated_count) {
6870 igb_vmdq_set_loopback_pf(hw, true);
6871 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6872 igb_vmdq_set_anti_spoofing_pf(hw, true,
6873 adapter->vfs_allocated_count);
d4960307
AD
6874 } else {
6875 igb_vmdq_set_loopback_pf(hw, false);
6876 igb_vmdq_set_replication_pf(hw, false);
6877 }
4ae196df
AD
6878}
6879
b6e0c419
CW
6880static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
6881{
6882 struct e1000_hw *hw = &adapter->hw;
6883 u32 dmac_thr;
6884 u16 hwm;
6885
6886 if (hw->mac.type > e1000_82580) {
6887 if (adapter->flags & IGB_FLAG_DMAC) {
6888 u32 reg;
6889
6890 /* force threshold to 0. */
6891 wr32(E1000_DMCTXTH, 0);
6892
6893 /*
e8c626e9
MV
6894 * DMA Coalescing high water mark needs to be greater
6895 * than the Rx threshold. Set hwm to PBA - max frame
6896 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 6897 */
e8c626e9
MV
6898 hwm = 64 * pba - adapter->max_frame_size / 16;
6899 if (hwm < 64 * (pba - 6))
6900 hwm = 64 * (pba - 6);
6901 reg = rd32(E1000_FCRTC);
6902 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
6903 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
6904 & E1000_FCRTC_RTH_COAL_MASK);
6905 wr32(E1000_FCRTC, reg);
6906
6907 /*
6908 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
6909 * frame size, capping it at PBA - 10KB.
6910 */
6911 dmac_thr = pba - adapter->max_frame_size / 512;
6912 if (dmac_thr < pba - 10)
6913 dmac_thr = pba - 10;
b6e0c419
CW
6914 reg = rd32(E1000_DMACR);
6915 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
6916 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
6917 & E1000_DMACR_DMACTHR_MASK);
6918
6919 /* transition to L0x or L1 if available..*/
6920 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
6921
6922 /* watchdog timer= +-1000 usec in 32usec intervals */
6923 reg |= (1000 >> 5);
0c02dd98
MV
6924
6925 /* Disable BMC-to-OS Watchdog Enable */
6926 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
b6e0c419
CW
6927 wr32(E1000_DMACR, reg);
6928
6929 /*
6930 * no lower threshold to disable
6931 * coalescing(smart fifb)-UTRESH=0
6932 */
6933 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
6934
6935 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
6936
6937 wr32(E1000_DMCTLX, reg);
6938
6939 /*
6940 * free space in tx packet buffer to wake from
6941 * DMA coal
6942 */
6943 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
6944 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
6945
6946 /*
6947 * make low power state decision controlled
6948 * by DMA coal
6949 */
6950 reg = rd32(E1000_PCIEMISC);
6951 reg &= ~E1000_PCIEMISC_LX_DECISION;
6952 wr32(E1000_PCIEMISC, reg);
6953 } /* endif adapter->dmac is not disabled */
6954 } else if (hw->mac.type == e1000_82580) {
6955 u32 reg = rd32(E1000_PCIEMISC);
6956 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
6957 wr32(E1000_DMACR, 0);
6958 }
6959}
6960
9d5c8243 6961/* igb_main.c */