]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
igb: leave staterr in place and instead us a helper function to check bits
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
b2cb09b1 31#include <linux/bitops.h>
9d5c8243
AK
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/netdevice.h>
9d5c8243 35#include <linux/ipv6.h>
5a0e3ad6 36#include <linux/slab.h>
9d5c8243
AK
37#include <net/checksum.h>
38#include <net/ip6_checksum.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
7d13a7d0
AD
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
9d5c8243 51#include <linux/if_ether.h>
40a914fa 52#include <linux/aer.h>
70c71606 53#include <linux/prefetch.h>
421e02f0 54#ifdef CONFIG_IGB_DCA
fe4506b6
JC
55#include <linux/dca.h>
56#endif
9d5c8243
AK
57#include "igb.h"
58
0d1fe82d
CW
59#define MAJ 3
60#define MIN 0
61#define BUILD 6
0d1fe82d 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 63__stringify(BUILD) "-k"
9d5c8243
AK
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 68static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 69
9d5c8243
AK
70static const struct e1000_info *igb_info_tbl[] = {
71 [board_82575] = &e1000_82575_info,
72};
73
a3aa1884 74static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
100 /* required last entry */
101 {0, }
102};
103
104MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
105
106void igb_reset(struct igb_adapter *);
107static int igb_setup_all_tx_resources(struct igb_adapter *);
108static int igb_setup_all_rx_resources(struct igb_adapter *);
109static void igb_free_all_tx_resources(struct igb_adapter *);
110static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 111static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
112static int igb_probe(struct pci_dev *, const struct pci_device_id *);
113static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 114static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
115static int igb_sw_init(struct igb_adapter *);
116static int igb_open(struct net_device *);
117static int igb_close(struct net_device *);
118static void igb_configure_tx(struct igb_adapter *);
119static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
120static void igb_clean_all_tx_rings(struct igb_adapter *);
121static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
122static void igb_clean_tx_ring(struct igb_ring *);
123static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 124static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
125static void igb_update_phy_info(unsigned long);
126static void igb_watchdog(unsigned long);
127static void igb_watchdog_task(struct work_struct *);
cd392f5c 128static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
129static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
130 struct rtnl_link_stats64 *stats);
9d5c8243
AK
131static int igb_change_mtu(struct net_device *, int);
132static int igb_set_mac(struct net_device *, void *);
68d480c4 133static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
134static irqreturn_t igb_intr(int irq, void *);
135static irqreturn_t igb_intr_msi(int irq, void *);
136static irqreturn_t igb_msix_other(int irq, void *);
047e0030 137static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 138#ifdef CONFIG_IGB_DCA
047e0030 139static void igb_update_dca(struct igb_q_vector *);
fe4506b6 140static void igb_setup_dca(struct igb_adapter *);
421e02f0 141#endif /* CONFIG_IGB_DCA */
661086df 142static int igb_poll(struct napi_struct *, int);
13fde97a 143static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 144static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
145static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
146static void igb_tx_timeout(struct net_device *);
147static void igb_reset_task(struct work_struct *);
b2cb09b1 148static void igb_vlan_mode(struct net_device *netdev, u32 features);
9d5c8243
AK
149static void igb_vlan_rx_add_vid(struct net_device *, u16);
150static void igb_vlan_rx_kill_vid(struct net_device *, u16);
151static void igb_restore_vlan(struct igb_adapter *);
26ad9178 152static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
153static void igb_ping_all_vfs(struct igb_adapter *);
154static void igb_msg_task(struct igb_adapter *);
4ae196df 155static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 156static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 157static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
158static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos);
161static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
162static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
163 struct ifla_vf_info *ivi);
17dc566c 164static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 165
9d5c8243 166#ifdef CONFIG_PM
3fe7c4c9 167static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
168static int igb_resume(struct pci_dev *);
169#endif
170static void igb_shutdown(struct pci_dev *);
421e02f0 171#ifdef CONFIG_IGB_DCA
fe4506b6
JC
172static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
173static struct notifier_block dca_notifier = {
174 .notifier_call = igb_notify_dca,
175 .next = NULL,
176 .priority = 0
177};
178#endif
9d5c8243
AK
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void igb_netpoll(struct net_device *);
182#endif
37680117 183#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
184static unsigned int max_vfs = 0;
185module_param(max_vfs, uint, 0);
186MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
187 "per physical function");
188#endif /* CONFIG_PCI_IOV */
189
9d5c8243
AK
190static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
191 pci_channel_state_t);
192static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
193static void igb_io_resume(struct pci_dev *);
194
195static struct pci_error_handlers igb_err_handler = {
196 .error_detected = igb_io_error_detected,
197 .slot_reset = igb_io_slot_reset,
198 .resume = igb_io_resume,
199};
200
201
202static struct pci_driver igb_driver = {
203 .name = igb_driver_name,
204 .id_table = igb_pci_tbl,
205 .probe = igb_probe,
206 .remove = __devexit_p(igb_remove),
207#ifdef CONFIG_PM
25985edc 208 /* Power Management Hooks */
9d5c8243
AK
209 .suspend = igb_suspend,
210 .resume = igb_resume,
211#endif
212 .shutdown = igb_shutdown,
213 .err_handler = &igb_err_handler
214};
215
216MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
217MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
c97ec42a
TI
221struct igb_reg_info {
222 u32 ofs;
223 char *name;
224};
225
226static const struct igb_reg_info igb_reg_info_tbl[] = {
227
228 /* General Registers */
229 {E1000_CTRL, "CTRL"},
230 {E1000_STATUS, "STATUS"},
231 {E1000_CTRL_EXT, "CTRL_EXT"},
232
233 /* Interrupt Registers */
234 {E1000_ICR, "ICR"},
235
236 /* RX Registers */
237 {E1000_RCTL, "RCTL"},
238 {E1000_RDLEN(0), "RDLEN"},
239 {E1000_RDH(0), "RDH"},
240 {E1000_RDT(0), "RDT"},
241 {E1000_RXDCTL(0), "RXDCTL"},
242 {E1000_RDBAL(0), "RDBAL"},
243 {E1000_RDBAH(0), "RDBAH"},
244
245 /* TX Registers */
246 {E1000_TCTL, "TCTL"},
247 {E1000_TDBAL(0), "TDBAL"},
248 {E1000_TDBAH(0), "TDBAH"},
249 {E1000_TDLEN(0), "TDLEN"},
250 {E1000_TDH(0), "TDH"},
251 {E1000_TDT(0), "TDT"},
252 {E1000_TXDCTL(0), "TXDCTL"},
253 {E1000_TDFH, "TDFH"},
254 {E1000_TDFT, "TDFT"},
255 {E1000_TDFHS, "TDFHS"},
256 {E1000_TDFPC, "TDFPC"},
257
258 /* List Terminator */
259 {}
260};
261
262/*
263 * igb_regdump - register printout routine
264 */
265static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
266{
267 int n = 0;
268 char rname[16];
269 u32 regs[8];
270
271 switch (reginfo->ofs) {
272 case E1000_RDLEN(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RDLEN(n));
275 break;
276 case E1000_RDH(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RDH(n));
279 break;
280 case E1000_RDT(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDT(n));
283 break;
284 case E1000_RXDCTL(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RXDCTL(n));
287 break;
288 case E1000_RDBAL(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_RDBAL(n));
291 break;
292 case E1000_RDBAH(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_RDBAH(n));
295 break;
296 case E1000_TDBAL(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_RDBAL(n));
299 break;
300 case E1000_TDBAH(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDBAH(n));
303 break;
304 case E1000_TDLEN(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TDLEN(n));
307 break;
308 case E1000_TDH(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_TDH(n));
311 break;
312 case E1000_TDT(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_TDT(n));
315 break;
316 case E1000_TXDCTL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_TXDCTL(n));
319 break;
320 default:
321 printk(KERN_INFO "%-15s %08x\n",
322 reginfo->name, rd32(reginfo->ofs));
323 return;
324 }
325
326 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
327 printk(KERN_INFO "%-15s ", rname);
328 for (n = 0; n < 4; n++)
329 printk(KERN_CONT "%08x ", regs[n]);
330 printk(KERN_CONT "\n");
331}
332
333/*
334 * igb_dump - Print registers, tx-rings and rx-rings
335 */
336static void igb_dump(struct igb_adapter *adapter)
337{
338 struct net_device *netdev = adapter->netdev;
339 struct e1000_hw *hw = &adapter->hw;
340 struct igb_reg_info *reginfo;
c97ec42a
TI
341 struct igb_ring *tx_ring;
342 union e1000_adv_tx_desc *tx_desc;
343 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
344 struct igb_ring *rx_ring;
345 union e1000_adv_rx_desc *rx_desc;
346 u32 staterr;
6ad4edfc 347 u16 i, n;
c97ec42a
TI
348
349 if (!netif_msg_hw(adapter))
350 return;
351
352 /* Print netdevice Info */
353 if (netdev) {
354 dev_info(&adapter->pdev->dev, "Net device Info\n");
355 printk(KERN_INFO "Device Name state "
356 "trans_start last_rx\n");
357 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
358 netdev->name,
359 netdev->state,
360 netdev->trans_start,
361 netdev->last_rx);
362 }
363
364 /* Print Registers */
365 dev_info(&adapter->pdev->dev, "Register Dump\n");
366 printk(KERN_INFO " Register Name Value\n");
367 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
368 reginfo->name; reginfo++) {
369 igb_regdump(hw, reginfo);
370 }
371
372 /* Print TX Ring Summary */
373 if (!netdev || !netif_running(netdev))
374 goto exit;
375
376 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
377 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
378 " leng ntw timestamp\n");
379 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 380 struct igb_tx_buffer *buffer_info;
c97ec42a 381 tx_ring = adapter->tx_ring[n];
06034649 382 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
8542db05 383 printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
c97ec42a
TI
384 n, tx_ring->next_to_use, tx_ring->next_to_clean,
385 (u64)buffer_info->dma,
386 buffer_info->length,
387 buffer_info->next_to_watch,
388 (u64)buffer_info->time_stamp);
389 }
390
391 /* Print TX Rings */
392 if (!netif_msg_tx_done(adapter))
393 goto rx_ring_summary;
394
395 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
396
397 /* Transmit Descriptor Formats
398 *
399 * Advanced Transmit Descriptor
400 * +--------------------------------------------------------------+
401 * 0 | Buffer Address [63:0] |
402 * +--------------------------------------------------------------+
403 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
404 * +--------------------------------------------------------------+
405 * 63 46 45 40 39 38 36 35 32 31 24 15 0
406 */
407
408 for (n = 0; n < adapter->num_tx_queues; n++) {
409 tx_ring = adapter->tx_ring[n];
410 printk(KERN_INFO "------------------------------------\n");
411 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
412 printk(KERN_INFO "------------------------------------\n");
413 printk(KERN_INFO "T [desc] [address 63:0 ] "
414 "[PlPOCIStDDM Ln] [bi->dma ] "
415 "leng ntw timestamp bi->skb\n");
416
417 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
06034649 418 struct igb_tx_buffer *buffer_info;
60136906 419 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 420 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a
TI
421 u0 = (struct my_u0 *)tx_desc;
422 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
8542db05 423 " %04X %p %016llX %p", i,
c97ec42a
TI
424 le64_to_cpu(u0->a),
425 le64_to_cpu(u0->b),
426 (u64)buffer_info->dma,
427 buffer_info->length,
428 buffer_info->next_to_watch,
429 (u64)buffer_info->time_stamp,
430 buffer_info->skb);
431 if (i == tx_ring->next_to_use &&
432 i == tx_ring->next_to_clean)
433 printk(KERN_CONT " NTC/U\n");
434 else if (i == tx_ring->next_to_use)
435 printk(KERN_CONT " NTU\n");
436 else if (i == tx_ring->next_to_clean)
437 printk(KERN_CONT " NTC\n");
438 else
439 printk(KERN_CONT "\n");
440
441 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
442 print_hex_dump(KERN_INFO, "",
443 DUMP_PREFIX_ADDRESS,
444 16, 1, phys_to_virt(buffer_info->dma),
445 buffer_info->length, true);
446 }
447 }
448
449 /* Print RX Rings Summary */
450rx_ring_summary:
451 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
452 printk(KERN_INFO "Queue [NTU] [NTC]\n");
453 for (n = 0; n < adapter->num_rx_queues; n++) {
454 rx_ring = adapter->rx_ring[n];
455 printk(KERN_INFO " %5d %5X %5X\n", n,
456 rx_ring->next_to_use, rx_ring->next_to_clean);
457 }
458
459 /* Print RX Rings */
460 if (!netif_msg_rx_status(adapter))
461 goto exit;
462
463 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
464
465 /* Advanced Receive Descriptor (Read) Format
466 * 63 1 0
467 * +-----------------------------------------------------+
468 * 0 | Packet Buffer Address [63:1] |A0/NSE|
469 * +----------------------------------------------+------+
470 * 8 | Header Buffer Address [63:1] | DD |
471 * +-----------------------------------------------------+
472 *
473 *
474 * Advanced Receive Descriptor (Write-Back) Format
475 *
476 * 63 48 47 32 31 30 21 20 17 16 4 3 0
477 * +------------------------------------------------------+
478 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
479 * | Checksum Ident | | | | Type | Type |
480 * +------------------------------------------------------+
481 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
482 * +------------------------------------------------------+
483 * 63 48 47 32 31 20 19 0
484 */
485
486 for (n = 0; n < adapter->num_rx_queues; n++) {
487 rx_ring = adapter->rx_ring[n];
488 printk(KERN_INFO "------------------------------------\n");
489 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
490 printk(KERN_INFO "------------------------------------\n");
491 printk(KERN_INFO "R [desc] [ PktBuf A0] "
492 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
493 "<-- Adv Rx Read format\n");
494 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
495 "[vl er S cks ln] ---------------- [bi->skb] "
496 "<-- Adv Rx Write-Back format\n");
497
498 for (i = 0; i < rx_ring->count; i++) {
06034649
AD
499 struct igb_rx_buffer *buffer_info;
500 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 501 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
502 u0 = (struct my_u0 *)rx_desc;
503 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
504 if (staterr & E1000_RXD_STAT_DD) {
505 /* Descriptor Done */
506 printk(KERN_INFO "RWB[0x%03X] %016llX "
507 "%016llX ---------------- %p", i,
508 le64_to_cpu(u0->a),
509 le64_to_cpu(u0->b),
510 buffer_info->skb);
511 } else {
512 printk(KERN_INFO "R [0x%03X] %016llX "
513 "%016llX %016llX %p", i,
514 le64_to_cpu(u0->a),
515 le64_to_cpu(u0->b),
516 (u64)buffer_info->dma,
517 buffer_info->skb);
518
519 if (netif_msg_pktdata(adapter)) {
520 print_hex_dump(KERN_INFO, "",
521 DUMP_PREFIX_ADDRESS,
522 16, 1,
523 phys_to_virt(buffer_info->dma),
44390ca6
AD
524 IGB_RX_HDR_LEN, true);
525 print_hex_dump(KERN_INFO, "",
526 DUMP_PREFIX_ADDRESS,
527 16, 1,
528 phys_to_virt(
529 buffer_info->page_dma +
530 buffer_info->page_offset),
531 PAGE_SIZE/2, true);
c97ec42a
TI
532 }
533 }
534
535 if (i == rx_ring->next_to_use)
536 printk(KERN_CONT " NTU\n");
537 else if (i == rx_ring->next_to_clean)
538 printk(KERN_CONT " NTC\n");
539 else
540 printk(KERN_CONT "\n");
541
542 }
543 }
544
545exit:
546 return;
547}
548
549
38c845c7
PO
550/**
551 * igb_read_clock - read raw cycle counter (to be used by time counter)
552 */
553static cycle_t igb_read_clock(const struct cyclecounter *tc)
554{
555 struct igb_adapter *adapter =
556 container_of(tc, struct igb_adapter, cycles);
557 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
558 u64 stamp = 0;
559 int shift = 0;
38c845c7 560
55cac248
AD
561 /*
562 * The timestamp latches on lowest register read. For the 82580
563 * the lowest register is SYSTIMR instead of SYSTIML. However we never
564 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
565 */
566 if (hw->mac.type == e1000_82580) {
567 stamp = rd32(E1000_SYSTIMR) >> 8;
568 shift = IGB_82580_TSYNC_SHIFT;
569 }
570
c5b9bd5e
AD
571 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
572 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
573 return stamp;
574}
575
9d5c8243 576/**
c041076a 577 * igb_get_hw_dev - return device
9d5c8243
AK
578 * used by hardware layer to print debugging information
579 **/
c041076a 580struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
581{
582 struct igb_adapter *adapter = hw->back;
c041076a 583 return adapter->netdev;
9d5c8243 584}
38c845c7 585
9d5c8243
AK
586/**
587 * igb_init_module - Driver Registration Routine
588 *
589 * igb_init_module is the first routine called when the driver is
590 * loaded. All it does is register with the PCI subsystem.
591 **/
592static int __init igb_init_module(void)
593{
594 int ret;
595 printk(KERN_INFO "%s - version %s\n",
596 igb_driver_string, igb_driver_version);
597
598 printk(KERN_INFO "%s\n", igb_copyright);
599
421e02f0 600#ifdef CONFIG_IGB_DCA
fe4506b6
JC
601 dca_register_notify(&dca_notifier);
602#endif
bbd98fe4 603 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
604 return ret;
605}
606
607module_init(igb_init_module);
608
609/**
610 * igb_exit_module - Driver Exit Cleanup Routine
611 *
612 * igb_exit_module is called just before the driver is removed
613 * from memory.
614 **/
615static void __exit igb_exit_module(void)
616{
421e02f0 617#ifdef CONFIG_IGB_DCA
fe4506b6
JC
618 dca_unregister_notify(&dca_notifier);
619#endif
9d5c8243
AK
620 pci_unregister_driver(&igb_driver);
621}
622
623module_exit(igb_exit_module);
624
26bc19ec
AD
625#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
626/**
627 * igb_cache_ring_register - Descriptor ring to register mapping
628 * @adapter: board private structure to initialize
629 *
630 * Once we know the feature-set enabled for the device, we'll cache
631 * the register offset the descriptor ring is assigned to.
632 **/
633static void igb_cache_ring_register(struct igb_adapter *adapter)
634{
ee1b9f06 635 int i = 0, j = 0;
047e0030 636 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
637
638 switch (adapter->hw.mac.type) {
639 case e1000_82576:
640 /* The queues are allocated for virtualization such that VF 0
641 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
642 * In order to avoid collision we start at the first free queue
643 * and continue consuming queues in the same sequence
644 */
ee1b9f06 645 if (adapter->vfs_allocated_count) {
a99955fc 646 for (; i < adapter->rss_queues; i++)
3025a446
AD
647 adapter->rx_ring[i]->reg_idx = rbase_offset +
648 Q_IDX_82576(i);
ee1b9f06 649 }
26bc19ec 650 case e1000_82575:
55cac248 651 case e1000_82580:
d2ba2ed8 652 case e1000_i350:
26bc19ec 653 default:
ee1b9f06 654 for (; i < adapter->num_rx_queues; i++)
3025a446 655 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 656 for (; j < adapter->num_tx_queues; j++)
3025a446 657 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
658 break;
659 }
660}
661
047e0030
AD
662static void igb_free_queues(struct igb_adapter *adapter)
663{
3025a446 664 int i;
047e0030 665
3025a446
AD
666 for (i = 0; i < adapter->num_tx_queues; i++) {
667 kfree(adapter->tx_ring[i]);
668 adapter->tx_ring[i] = NULL;
669 }
670 for (i = 0; i < adapter->num_rx_queues; i++) {
671 kfree(adapter->rx_ring[i]);
672 adapter->rx_ring[i] = NULL;
673 }
047e0030
AD
674 adapter->num_rx_queues = 0;
675 adapter->num_tx_queues = 0;
676}
677
9d5c8243
AK
678/**
679 * igb_alloc_queues - Allocate memory for all rings
680 * @adapter: board private structure to initialize
681 *
682 * We allocate one ring per queue at run-time since we don't know the
683 * number of queues at compile-time.
684 **/
685static int igb_alloc_queues(struct igb_adapter *adapter)
686{
3025a446 687 struct igb_ring *ring;
9d5c8243 688 int i;
81c2fc22 689 int orig_node = adapter->node;
9d5c8243 690
661086df 691 for (i = 0; i < adapter->num_tx_queues; i++) {
81c2fc22
AD
692 if (orig_node == -1) {
693 int cur_node = next_online_node(adapter->node);
694 if (cur_node == MAX_NUMNODES)
695 cur_node = first_online_node;
696 adapter->node = cur_node;
697 }
698 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
699 adapter->node);
700 if (!ring)
701 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
702 if (!ring)
703 goto err;
68fd9910 704 ring->count = adapter->tx_ring_count;
661086df 705 ring->queue_index = i;
59d71989 706 ring->dev = &adapter->pdev->dev;
e694e964 707 ring->netdev = adapter->netdev;
81c2fc22 708 ring->numa_node = adapter->node;
85ad76b2
AD
709 /* For 82575, context index must be unique per ring. */
710 if (adapter->hw.mac.type == e1000_82575)
866cff06 711 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
3025a446 712 adapter->tx_ring[i] = ring;
661086df 713 }
81c2fc22
AD
714 /* Restore the adapter's original node */
715 adapter->node = orig_node;
85ad76b2 716
9d5c8243 717 for (i = 0; i < adapter->num_rx_queues; i++) {
81c2fc22
AD
718 if (orig_node == -1) {
719 int cur_node = next_online_node(adapter->node);
720 if (cur_node == MAX_NUMNODES)
721 cur_node = first_online_node;
722 adapter->node = cur_node;
723 }
724 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
725 adapter->node);
726 if (!ring)
727 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
728 if (!ring)
729 goto err;
68fd9910 730 ring->count = adapter->rx_ring_count;
844290e5 731 ring->queue_index = i;
59d71989 732 ring->dev = &adapter->pdev->dev;
e694e964 733 ring->netdev = adapter->netdev;
81c2fc22 734 ring->numa_node = adapter->node;
85ad76b2
AD
735 /* set flag indicating ring supports SCTP checksum offload */
736 if (adapter->hw.mac.type >= e1000_82576)
866cff06 737 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
3025a446 738 adapter->rx_ring[i] = ring;
9d5c8243 739 }
81c2fc22
AD
740 /* Restore the adapter's original node */
741 adapter->node = orig_node;
26bc19ec
AD
742
743 igb_cache_ring_register(adapter);
9d5c8243 744
047e0030 745 return 0;
a88f10ec 746
047e0030 747err:
81c2fc22
AD
748 /* Restore the adapter's original node */
749 adapter->node = orig_node;
047e0030 750 igb_free_queues(adapter);
d1a8c9e1 751
047e0030 752 return -ENOMEM;
a88f10ec
AD
753}
754
4be000c8
AD
755/**
756 * igb_write_ivar - configure ivar for given MSI-X vector
757 * @hw: pointer to the HW structure
758 * @msix_vector: vector number we are allocating to a given ring
759 * @index: row index of IVAR register to write within IVAR table
760 * @offset: column offset of in IVAR, should be multiple of 8
761 *
762 * This function is intended to handle the writing of the IVAR register
763 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
764 * each containing an cause allocation for an Rx and Tx ring, and a
765 * variable number of rows depending on the number of queues supported.
766 **/
767static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768 int index, int offset)
769{
770 u32 ivar = array_rd32(E1000_IVAR0, index);
771
772 /* clear any bits that are currently set */
773 ivar &= ~((u32)0xFF << offset);
774
775 /* write vector and valid bit */
776 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777
778 array_wr32(E1000_IVAR0, index, ivar);
779}
780
9d5c8243 781#define IGB_N0_QUEUE -1
047e0030 782static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 783{
047e0030 784 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 785 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
786 int rx_queue = IGB_N0_QUEUE;
787 int tx_queue = IGB_N0_QUEUE;
4be000c8 788 u32 msixbm = 0;
047e0030 789
0ba82994
AD
790 if (q_vector->rx.ring)
791 rx_queue = q_vector->rx.ring->reg_idx;
792 if (q_vector->tx.ring)
793 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
794
795 switch (hw->mac.type) {
796 case e1000_82575:
9d5c8243
AK
797 /* The 82575 assigns vectors using a bitmask, which matches the
798 bitmask for the EICR/EIMS/EIMC registers. To assign one
799 or more queues to a vector, we write the appropriate bits
800 into the MSIXBM register for that vector. */
047e0030 801 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 803 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
805 if (!adapter->msix_entries && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
9d5c8243 807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 808 q_vector->eims_value = msixbm;
2d064c06
AD
809 break;
810 case e1000_82576:
4be000c8
AD
811 /*
812 * 82576 uses a table that essentially consists of 2 columns
813 * with 8 rows. The ordering is column-major so we use the
814 * lower 3 bits as the row index, and the 4th bit as the
815 * column offset.
816 */
817 if (rx_queue > IGB_N0_QUEUE)
818 igb_write_ivar(hw, msix_vector,
819 rx_queue & 0x7,
820 (rx_queue & 0x8) << 1);
821 if (tx_queue > IGB_N0_QUEUE)
822 igb_write_ivar(hw, msix_vector,
823 tx_queue & 0x7,
824 ((tx_queue & 0x8) << 1) + 8);
047e0030 825 q_vector->eims_value = 1 << msix_vector;
2d064c06 826 break;
55cac248 827 case e1000_82580:
d2ba2ed8 828 case e1000_i350:
4be000c8
AD
829 /*
830 * On 82580 and newer adapters the scheme is similar to 82576
831 * however instead of ordering column-major we have things
832 * ordered row-major. So we traverse the table by using
833 * bit 0 as the column offset, and the remaining bits as the
834 * row index.
835 */
836 if (rx_queue > IGB_N0_QUEUE)
837 igb_write_ivar(hw, msix_vector,
838 rx_queue >> 1,
839 (rx_queue & 0x1) << 4);
840 if (tx_queue > IGB_N0_QUEUE)
841 igb_write_ivar(hw, msix_vector,
842 tx_queue >> 1,
843 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
844 q_vector->eims_value = 1 << msix_vector;
845 break;
2d064c06
AD
846 default:
847 BUG();
848 break;
849 }
26b39276
AD
850
851 /* add q_vector eims value to global eims_enable_mask */
852 adapter->eims_enable_mask |= q_vector->eims_value;
853
854 /* configure q_vector to set itr on first interrupt */
855 q_vector->set_itr = 1;
9d5c8243
AK
856}
857
858/**
859 * igb_configure_msix - Configure MSI-X hardware
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
9d5c8243
AK
871
872 /* set vector for other causes, i.e. link changes */
2d064c06
AD
873 switch (hw->mac.type) {
874 case e1000_82575:
9d5c8243
AK
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++,
887 E1000_EIMS_OTHER);
844290e5 888 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 889
2d064c06
AD
890 break;
891
892 case e1000_82576:
55cac248 893 case e1000_82580:
d2ba2ed8 894 case e1000_i350:
047e0030
AD
895 /* Turn on MSI-X capability first, or our settings
896 * won't stick. And it will take days to debug. */
897 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
898 E1000_GPIE_PBA | E1000_GPIE_EIAME |
899 E1000_GPIE_NSICR);
900
901 /* enable msix_other interrupt */
902 adapter->eims_other = 1 << vector;
2d064c06 903 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 904
047e0030 905 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
906 break;
907 default:
908 /* do nothing, since nothing else supports MSI-X */
909 break;
910 } /* switch (hw->mac.type) */
047e0030
AD
911
912 adapter->eims_enable_mask |= adapter->eims_other;
913
26b39276
AD
914 for (i = 0; i < adapter->num_q_vectors; i++)
915 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 916
9d5c8243
AK
917 wrfl();
918}
919
920/**
921 * igb_request_msix - Initialize MSI-X interrupts
922 *
923 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
924 * kernel.
925 **/
926static int igb_request_msix(struct igb_adapter *adapter)
927{
928 struct net_device *netdev = adapter->netdev;
047e0030 929 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
930 int i, err = 0, vector = 0;
931
047e0030 932 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 933 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
934 if (err)
935 goto out;
936 vector++;
937
938 for (i = 0; i < adapter->num_q_vectors; i++) {
939 struct igb_q_vector *q_vector = adapter->q_vector[i];
940
941 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
942
0ba82994 943 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 944 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
945 q_vector->rx.ring->queue_index);
946 else if (q_vector->tx.ring)
047e0030 947 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
948 q_vector->tx.ring->queue_index);
949 else if (q_vector->rx.ring)
047e0030 950 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 951 q_vector->rx.ring->queue_index);
9d5c8243 952 else
047e0030
AD
953 sprintf(q_vector->name, "%s-unused", netdev->name);
954
9d5c8243 955 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 956 igb_msix_ring, 0, q_vector->name,
047e0030 957 q_vector);
9d5c8243
AK
958 if (err)
959 goto out;
9d5c8243
AK
960 vector++;
961 }
962
9d5c8243
AK
963 igb_configure_msix(adapter);
964 return 0;
965out:
966 return err;
967}
968
969static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
970{
971 if (adapter->msix_entries) {
972 pci_disable_msix(adapter->pdev);
973 kfree(adapter->msix_entries);
974 adapter->msix_entries = NULL;
047e0030 975 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 976 pci_disable_msi(adapter->pdev);
047e0030 977 }
9d5c8243
AK
978}
979
047e0030
AD
980/**
981 * igb_free_q_vectors - Free memory allocated for interrupt vectors
982 * @adapter: board private structure to initialize
983 *
984 * This function frees the memory allocated to the q_vectors. In addition if
985 * NAPI is enabled it will delete any references to the NAPI struct prior
986 * to freeing the q_vector.
987 **/
988static void igb_free_q_vectors(struct igb_adapter *adapter)
989{
990 int v_idx;
991
992 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
993 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
995 if (!q_vector)
996 continue;
047e0030
AD
997 netif_napi_del(&q_vector->napi);
998 kfree(q_vector);
999 }
1000 adapter->num_q_vectors = 0;
1001}
1002
1003/**
1004 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1005 *
1006 * This function resets the device so that it has 0 rx queues, tx queues, and
1007 * MSI-X interrupts allocated.
1008 */
1009static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1010{
1011 igb_free_queues(adapter);
1012 igb_free_q_vectors(adapter);
1013 igb_reset_interrupt_capability(adapter);
1014}
9d5c8243
AK
1015
1016/**
1017 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1018 *
1019 * Attempt to configure interrupts using the best available
1020 * capabilities of the hardware and kernel.
1021 **/
21adef3e 1022static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1023{
1024 int err;
1025 int numvecs, i;
1026
83b7180d 1027 /* Number of supported queues. */
a99955fc 1028 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1029 if (adapter->vfs_allocated_count)
1030 adapter->num_tx_queues = 1;
1031 else
1032 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1033
047e0030
AD
1034 /* start with one vector for every rx queue */
1035 numvecs = adapter->num_rx_queues;
1036
3ad2f3fb 1037 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1038 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1039 numvecs += adapter->num_tx_queues;
047e0030
AD
1040
1041 /* store the number of vectors reserved for queues */
1042 adapter->num_q_vectors = numvecs;
1043
1044 /* add 1 vector for link status interrupts */
1045 numvecs++;
9d5c8243
AK
1046 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1047 GFP_KERNEL);
1048 if (!adapter->msix_entries)
1049 goto msi_only;
1050
1051 for (i = 0; i < numvecs; i++)
1052 adapter->msix_entries[i].entry = i;
1053
1054 err = pci_enable_msix(adapter->pdev,
1055 adapter->msix_entries,
1056 numvecs);
1057 if (err == 0)
34a20e89 1058 goto out;
9d5c8243
AK
1059
1060 igb_reset_interrupt_capability(adapter);
1061
1062 /* If we can't do MSI-X, try MSI */
1063msi_only:
2a3abf6d
AD
1064#ifdef CONFIG_PCI_IOV
1065 /* disable SR-IOV for non MSI-X configurations */
1066 if (adapter->vf_data) {
1067 struct e1000_hw *hw = &adapter->hw;
1068 /* disable iov and allow time for transactions to clear */
1069 pci_disable_sriov(adapter->pdev);
1070 msleep(500);
1071
1072 kfree(adapter->vf_data);
1073 adapter->vf_data = NULL;
1074 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1075 wrfl();
2a3abf6d
AD
1076 msleep(100);
1077 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1078 }
1079#endif
4fc82adf 1080 adapter->vfs_allocated_count = 0;
a99955fc 1081 adapter->rss_queues = 1;
4fc82adf 1082 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1083 adapter->num_rx_queues = 1;
661086df 1084 adapter->num_tx_queues = 1;
047e0030 1085 adapter->num_q_vectors = 1;
9d5c8243 1086 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1087 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1088out:
21adef3e
BH
1089 /* Notify the stack of the (possibly) reduced queue counts. */
1090 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1091 return netif_set_real_num_rx_queues(adapter->netdev,
1092 adapter->num_rx_queues);
9d5c8243
AK
1093}
1094
047e0030
AD
1095/**
1096 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1097 * @adapter: board private structure to initialize
1098 *
1099 * We allocate one q_vector per queue interrupt. If allocation fails we
1100 * return -ENOMEM.
1101 **/
1102static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1103{
1104 struct igb_q_vector *q_vector;
1105 struct e1000_hw *hw = &adapter->hw;
1106 int v_idx;
81c2fc22 1107 int orig_node = adapter->node;
047e0030
AD
1108
1109 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
81c2fc22
AD
1110 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1111 adapter->num_tx_queues)) &&
1112 (adapter->num_rx_queues == v_idx))
1113 adapter->node = orig_node;
1114 if (orig_node == -1) {
1115 int cur_node = next_online_node(adapter->node);
1116 if (cur_node == MAX_NUMNODES)
1117 cur_node = first_online_node;
1118 adapter->node = cur_node;
1119 }
1120 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1121 adapter->node);
1122 if (!q_vector)
1123 q_vector = kzalloc(sizeof(struct igb_q_vector),
1124 GFP_KERNEL);
047e0030
AD
1125 if (!q_vector)
1126 goto err_out;
1127 q_vector->adapter = adapter;
047e0030
AD
1128 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1129 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1130 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1131 adapter->q_vector[v_idx] = q_vector;
1132 }
81c2fc22
AD
1133 /* Restore the adapter's original node */
1134 adapter->node = orig_node;
1135
047e0030
AD
1136 return 0;
1137
1138err_out:
81c2fc22
AD
1139 /* Restore the adapter's original node */
1140 adapter->node = orig_node;
fe0592b4 1141 igb_free_q_vectors(adapter);
047e0030
AD
1142 return -ENOMEM;
1143}
1144
1145static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1146 int ring_idx, int v_idx)
1147{
3025a446 1148 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1149
0ba82994
AD
1150 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1151 q_vector->rx.ring->q_vector = q_vector;
1152 q_vector->rx.count++;
4fc82adf
AD
1153 q_vector->itr_val = adapter->rx_itr_setting;
1154 if (q_vector->itr_val && q_vector->itr_val <= 3)
1155 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1156}
1157
1158static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1159 int ring_idx, int v_idx)
1160{
3025a446 1161 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1162
0ba82994
AD
1163 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1164 q_vector->tx.ring->q_vector = q_vector;
1165 q_vector->tx.count++;
4fc82adf 1166 q_vector->itr_val = adapter->tx_itr_setting;
0ba82994 1167 q_vector->tx.work_limit = adapter->tx_work_limit;
4fc82adf
AD
1168 if (q_vector->itr_val && q_vector->itr_val <= 3)
1169 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1170}
1171
1172/**
1173 * igb_map_ring_to_vector - maps allocated queues to vectors
1174 *
1175 * This function maps the recently allocated queues to vectors.
1176 **/
1177static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1178{
1179 int i;
1180 int v_idx = 0;
1181
1182 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1183 (adapter->num_q_vectors < adapter->num_tx_queues))
1184 return -ENOMEM;
1185
1186 if (adapter->num_q_vectors >=
1187 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1188 for (i = 0; i < adapter->num_rx_queues; i++)
1189 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1190 for (i = 0; i < adapter->num_tx_queues; i++)
1191 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1192 } else {
1193 for (i = 0; i < adapter->num_rx_queues; i++) {
1194 if (i < adapter->num_tx_queues)
1195 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1196 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1197 }
1198 for (; i < adapter->num_tx_queues; i++)
1199 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1200 }
1201 return 0;
1202}
1203
1204/**
1205 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1206 *
1207 * This function initializes the interrupts and allocates all of the queues.
1208 **/
1209static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1210{
1211 struct pci_dev *pdev = adapter->pdev;
1212 int err;
1213
21adef3e
BH
1214 err = igb_set_interrupt_capability(adapter);
1215 if (err)
1216 return err;
047e0030
AD
1217
1218 err = igb_alloc_q_vectors(adapter);
1219 if (err) {
1220 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1221 goto err_alloc_q_vectors;
1222 }
1223
1224 err = igb_alloc_queues(adapter);
1225 if (err) {
1226 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1227 goto err_alloc_queues;
1228 }
1229
1230 err = igb_map_ring_to_vector(adapter);
1231 if (err) {
1232 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1233 goto err_map_queues;
1234 }
1235
1236
1237 return 0;
1238err_map_queues:
1239 igb_free_queues(adapter);
1240err_alloc_queues:
1241 igb_free_q_vectors(adapter);
1242err_alloc_q_vectors:
1243 igb_reset_interrupt_capability(adapter);
1244 return err;
1245}
1246
9d5c8243
AK
1247/**
1248 * igb_request_irq - initialize interrupts
1249 *
1250 * Attempts to configure interrupts using the best available
1251 * capabilities of the hardware and kernel.
1252 **/
1253static int igb_request_irq(struct igb_adapter *adapter)
1254{
1255 struct net_device *netdev = adapter->netdev;
047e0030 1256 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1257 int err = 0;
1258
1259 if (adapter->msix_entries) {
1260 err = igb_request_msix(adapter);
844290e5 1261 if (!err)
9d5c8243 1262 goto request_done;
9d5c8243 1263 /* fall back to MSI */
047e0030 1264 igb_clear_interrupt_scheme(adapter);
9d5c8243 1265 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1266 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1267 igb_free_all_tx_resources(adapter);
1268 igb_free_all_rx_resources(adapter);
047e0030 1269 adapter->num_tx_queues = 1;
9d5c8243 1270 adapter->num_rx_queues = 1;
047e0030
AD
1271 adapter->num_q_vectors = 1;
1272 err = igb_alloc_q_vectors(adapter);
1273 if (err) {
1274 dev_err(&pdev->dev,
1275 "Unable to allocate memory for vectors\n");
1276 goto request_done;
1277 }
1278 err = igb_alloc_queues(adapter);
1279 if (err) {
1280 dev_err(&pdev->dev,
1281 "Unable to allocate memory for queues\n");
1282 igb_free_q_vectors(adapter);
1283 goto request_done;
1284 }
1285 igb_setup_all_tx_resources(adapter);
1286 igb_setup_all_rx_resources(adapter);
844290e5 1287 } else {
feeb2721 1288 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1289 }
844290e5 1290
7dfc16fa 1291 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1292 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1293 netdev->name, adapter);
9d5c8243
AK
1294 if (!err)
1295 goto request_done;
047e0030 1296
9d5c8243
AK
1297 /* fall back to legacy interrupts */
1298 igb_reset_interrupt_capability(adapter);
7dfc16fa 1299 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1300 }
1301
a0607fd3 1302 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1303 netdev->name, adapter);
9d5c8243 1304
6cb5e577 1305 if (err)
9d5c8243
AK
1306 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1307 err);
9d5c8243
AK
1308
1309request_done:
1310 return err;
1311}
1312
1313static void igb_free_irq(struct igb_adapter *adapter)
1314{
9d5c8243
AK
1315 if (adapter->msix_entries) {
1316 int vector = 0, i;
1317
047e0030 1318 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1319
047e0030
AD
1320 for (i = 0; i < adapter->num_q_vectors; i++) {
1321 struct igb_q_vector *q_vector = adapter->q_vector[i];
1322 free_irq(adapter->msix_entries[vector++].vector,
1323 q_vector);
1324 }
1325 } else {
1326 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1327 }
9d5c8243
AK
1328}
1329
1330/**
1331 * igb_irq_disable - Mask off interrupt generation on the NIC
1332 * @adapter: board private structure
1333 **/
1334static void igb_irq_disable(struct igb_adapter *adapter)
1335{
1336 struct e1000_hw *hw = &adapter->hw;
1337
25568a53
AD
1338 /*
1339 * we need to be careful when disabling interrupts. The VFs are also
1340 * mapped into these registers and so clearing the bits can cause
1341 * issues on the VF drivers so we only need to clear what we set
1342 */
9d5c8243 1343 if (adapter->msix_entries) {
2dfd1212
AD
1344 u32 regval = rd32(E1000_EIAM);
1345 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1346 wr32(E1000_EIMC, adapter->eims_enable_mask);
1347 regval = rd32(E1000_EIAC);
1348 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1349 }
844290e5
PW
1350
1351 wr32(E1000_IAM, 0);
9d5c8243
AK
1352 wr32(E1000_IMC, ~0);
1353 wrfl();
81a61859
ET
1354 if (adapter->msix_entries) {
1355 int i;
1356 for (i = 0; i < adapter->num_q_vectors; i++)
1357 synchronize_irq(adapter->msix_entries[i].vector);
1358 } else {
1359 synchronize_irq(adapter->pdev->irq);
1360 }
9d5c8243
AK
1361}
1362
1363/**
1364 * igb_irq_enable - Enable default interrupt generation settings
1365 * @adapter: board private structure
1366 **/
1367static void igb_irq_enable(struct igb_adapter *adapter)
1368{
1369 struct e1000_hw *hw = &adapter->hw;
1370
1371 if (adapter->msix_entries) {
25568a53 1372 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1373 u32 regval = rd32(E1000_EIAC);
1374 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1375 regval = rd32(E1000_EIAM);
1376 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1377 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1378 if (adapter->vfs_allocated_count) {
4ae196df 1379 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1380 ims |= E1000_IMS_VMMB;
1381 }
55cac248
AD
1382 if (adapter->hw.mac.type == e1000_82580)
1383 ims |= E1000_IMS_DRSTA;
1384
25568a53 1385 wr32(E1000_IMS, ims);
844290e5 1386 } else {
55cac248
AD
1387 wr32(E1000_IMS, IMS_ENABLE_MASK |
1388 E1000_IMS_DRSTA);
1389 wr32(E1000_IAM, IMS_ENABLE_MASK |
1390 E1000_IMS_DRSTA);
844290e5 1391 }
9d5c8243
AK
1392}
1393
1394static void igb_update_mng_vlan(struct igb_adapter *adapter)
1395{
51466239 1396 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1397 u16 vid = adapter->hw.mng_cookie.vlan_id;
1398 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1399
1400 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1401 /* add VID to filter table */
1402 igb_vfta_set(hw, vid, true);
1403 adapter->mng_vlan_id = vid;
1404 } else {
1405 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1406 }
1407
1408 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1409 (vid != old_vid) &&
b2cb09b1 1410 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1411 /* remove VID from filter table */
1412 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1413 }
1414}
1415
1416/**
1417 * igb_release_hw_control - release control of the h/w to f/w
1418 * @adapter: address of board private structure
1419 *
1420 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1421 * For ASF and Pass Through versions of f/w this means that the
1422 * driver is no longer loaded.
1423 *
1424 **/
1425static void igb_release_hw_control(struct igb_adapter *adapter)
1426{
1427 struct e1000_hw *hw = &adapter->hw;
1428 u32 ctrl_ext;
1429
1430 /* Let firmware take over control of h/w */
1431 ctrl_ext = rd32(E1000_CTRL_EXT);
1432 wr32(E1000_CTRL_EXT,
1433 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1434}
1435
9d5c8243
AK
1436/**
1437 * igb_get_hw_control - get control of the h/w from f/w
1438 * @adapter: address of board private structure
1439 *
1440 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1441 * For ASF and Pass Through versions of f/w this means that
1442 * the driver is loaded.
1443 *
1444 **/
1445static void igb_get_hw_control(struct igb_adapter *adapter)
1446{
1447 struct e1000_hw *hw = &adapter->hw;
1448 u32 ctrl_ext;
1449
1450 /* Let firmware know the driver has taken over */
1451 ctrl_ext = rd32(E1000_CTRL_EXT);
1452 wr32(E1000_CTRL_EXT,
1453 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1454}
1455
9d5c8243
AK
1456/**
1457 * igb_configure - configure the hardware for RX and TX
1458 * @adapter: private board structure
1459 **/
1460static void igb_configure(struct igb_adapter *adapter)
1461{
1462 struct net_device *netdev = adapter->netdev;
1463 int i;
1464
1465 igb_get_hw_control(adapter);
ff41f8dc 1466 igb_set_rx_mode(netdev);
9d5c8243
AK
1467
1468 igb_restore_vlan(adapter);
9d5c8243 1469
85b430b4 1470 igb_setup_tctl(adapter);
06cf2666 1471 igb_setup_mrqc(adapter);
9d5c8243 1472 igb_setup_rctl(adapter);
85b430b4
AD
1473
1474 igb_configure_tx(adapter);
9d5c8243 1475 igb_configure_rx(adapter);
662d7205
AD
1476
1477 igb_rx_fifo_flush_82575(&adapter->hw);
1478
c493ea45 1479 /* call igb_desc_unused which always leaves
9d5c8243
AK
1480 * at least 1 descriptor unused to make sure
1481 * next_to_use != next_to_clean */
1482 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1483 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1484 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1485 }
9d5c8243
AK
1486}
1487
88a268c1
NN
1488/**
1489 * igb_power_up_link - Power up the phy/serdes link
1490 * @adapter: address of board private structure
1491 **/
1492void igb_power_up_link(struct igb_adapter *adapter)
1493{
1494 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1495 igb_power_up_phy_copper(&adapter->hw);
1496 else
1497 igb_power_up_serdes_link_82575(&adapter->hw);
1498}
1499
1500/**
1501 * igb_power_down_link - Power down the phy/serdes link
1502 * @adapter: address of board private structure
1503 */
1504static void igb_power_down_link(struct igb_adapter *adapter)
1505{
1506 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1507 igb_power_down_phy_copper_82575(&adapter->hw);
1508 else
1509 igb_shutdown_serdes_link_82575(&adapter->hw);
1510}
9d5c8243
AK
1511
1512/**
1513 * igb_up - Open the interface and prepare it to handle traffic
1514 * @adapter: board private structure
1515 **/
9d5c8243
AK
1516int igb_up(struct igb_adapter *adapter)
1517{
1518 struct e1000_hw *hw = &adapter->hw;
1519 int i;
1520
1521 /* hardware has been reset, we need to reload some things */
1522 igb_configure(adapter);
1523
1524 clear_bit(__IGB_DOWN, &adapter->state);
1525
047e0030
AD
1526 for (i = 0; i < adapter->num_q_vectors; i++) {
1527 struct igb_q_vector *q_vector = adapter->q_vector[i];
1528 napi_enable(&q_vector->napi);
1529 }
844290e5 1530 if (adapter->msix_entries)
9d5c8243 1531 igb_configure_msix(adapter);
feeb2721
AD
1532 else
1533 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1534
1535 /* Clear any pending interrupts. */
1536 rd32(E1000_ICR);
1537 igb_irq_enable(adapter);
1538
d4960307
AD
1539 /* notify VFs that reset has been completed */
1540 if (adapter->vfs_allocated_count) {
1541 u32 reg_data = rd32(E1000_CTRL_EXT);
1542 reg_data |= E1000_CTRL_EXT_PFRSTD;
1543 wr32(E1000_CTRL_EXT, reg_data);
1544 }
1545
4cb9be7a
JB
1546 netif_tx_start_all_queues(adapter->netdev);
1547
25568a53
AD
1548 /* start the watchdog. */
1549 hw->mac.get_link_status = 1;
1550 schedule_work(&adapter->watchdog_task);
1551
9d5c8243
AK
1552 return 0;
1553}
1554
1555void igb_down(struct igb_adapter *adapter)
1556{
9d5c8243 1557 struct net_device *netdev = adapter->netdev;
330a6d6a 1558 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1559 u32 tctl, rctl;
1560 int i;
1561
1562 /* signal that we're down so the interrupt handler does not
1563 * reschedule our watchdog timer */
1564 set_bit(__IGB_DOWN, &adapter->state);
1565
1566 /* disable receives in the hardware */
1567 rctl = rd32(E1000_RCTL);
1568 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1569 /* flush and sleep below */
1570
fd2ea0a7 1571 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1572
1573 /* disable transmits in the hardware */
1574 tctl = rd32(E1000_TCTL);
1575 tctl &= ~E1000_TCTL_EN;
1576 wr32(E1000_TCTL, tctl);
1577 /* flush both disables and wait for them to finish */
1578 wrfl();
1579 msleep(10);
1580
047e0030
AD
1581 for (i = 0; i < adapter->num_q_vectors; i++) {
1582 struct igb_q_vector *q_vector = adapter->q_vector[i];
1583 napi_disable(&q_vector->napi);
1584 }
9d5c8243 1585
9d5c8243
AK
1586 igb_irq_disable(adapter);
1587
1588 del_timer_sync(&adapter->watchdog_timer);
1589 del_timer_sync(&adapter->phy_info_timer);
1590
9d5c8243 1591 netif_carrier_off(netdev);
04fe6358
AD
1592
1593 /* record the stats before reset*/
12dcd86b
ED
1594 spin_lock(&adapter->stats64_lock);
1595 igb_update_stats(adapter, &adapter->stats64);
1596 spin_unlock(&adapter->stats64_lock);
04fe6358 1597
9d5c8243
AK
1598 adapter->link_speed = 0;
1599 adapter->link_duplex = 0;
1600
3023682e
JK
1601 if (!pci_channel_offline(adapter->pdev))
1602 igb_reset(adapter);
9d5c8243
AK
1603 igb_clean_all_tx_rings(adapter);
1604 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1605#ifdef CONFIG_IGB_DCA
1606
1607 /* since we reset the hardware DCA settings were cleared */
1608 igb_setup_dca(adapter);
1609#endif
9d5c8243
AK
1610}
1611
1612void igb_reinit_locked(struct igb_adapter *adapter)
1613{
1614 WARN_ON(in_interrupt());
1615 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1616 msleep(1);
1617 igb_down(adapter);
1618 igb_up(adapter);
1619 clear_bit(__IGB_RESETTING, &adapter->state);
1620}
1621
1622void igb_reset(struct igb_adapter *adapter)
1623{
090b1795 1624 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1625 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1626 struct e1000_mac_info *mac = &hw->mac;
1627 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1628 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1629 u16 hwm;
1630
1631 /* Repartition Pba for greater than 9k mtu
1632 * To take effect CTRL.RST is required.
1633 */
fa4dfae0 1634 switch (mac->type) {
d2ba2ed8 1635 case e1000_i350:
55cac248
AD
1636 case e1000_82580:
1637 pba = rd32(E1000_RXPBS);
1638 pba = igb_rxpbs_adjust_82580(pba);
1639 break;
fa4dfae0 1640 case e1000_82576:
d249be54
AD
1641 pba = rd32(E1000_RXPBS);
1642 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1643 break;
1644 case e1000_82575:
1645 default:
1646 pba = E1000_PBA_34K;
1647 break;
2d064c06 1648 }
9d5c8243 1649
2d064c06
AD
1650 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1651 (mac->type < e1000_82576)) {
9d5c8243
AK
1652 /* adjust PBA for jumbo frames */
1653 wr32(E1000_PBA, pba);
1654
1655 /* To maintain wire speed transmits, the Tx FIFO should be
1656 * large enough to accommodate two full transmit packets,
1657 * rounded up to the next 1KB and expressed in KB. Likewise,
1658 * the Rx FIFO should be large enough to accommodate at least
1659 * one full receive packet and is similarly rounded up and
1660 * expressed in KB. */
1661 pba = rd32(E1000_PBA);
1662 /* upper 16 bits has Tx packet buffer allocation size in KB */
1663 tx_space = pba >> 16;
1664 /* lower 16 bits has Rx packet buffer allocation size in KB */
1665 pba &= 0xffff;
1666 /* the tx fifo also stores 16 bytes of information about the tx
1667 * but don't include ethernet FCS because hardware appends it */
1668 min_tx_space = (adapter->max_frame_size +
85e8d004 1669 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1670 ETH_FCS_LEN) * 2;
1671 min_tx_space = ALIGN(min_tx_space, 1024);
1672 min_tx_space >>= 10;
1673 /* software strips receive CRC, so leave room for it */
1674 min_rx_space = adapter->max_frame_size;
1675 min_rx_space = ALIGN(min_rx_space, 1024);
1676 min_rx_space >>= 10;
1677
1678 /* If current Tx allocation is less than the min Tx FIFO size,
1679 * and the min Tx FIFO size is less than the current Rx FIFO
1680 * allocation, take space away from current Rx allocation */
1681 if (tx_space < min_tx_space &&
1682 ((min_tx_space - tx_space) < pba)) {
1683 pba = pba - (min_tx_space - tx_space);
1684
1685 /* if short on rx space, rx wins and must trump tx
1686 * adjustment */
1687 if (pba < min_rx_space)
1688 pba = min_rx_space;
1689 }
2d064c06 1690 wr32(E1000_PBA, pba);
9d5c8243 1691 }
9d5c8243
AK
1692
1693 /* flow control settings */
1694 /* The high water mark must be low enough to fit one full frame
1695 * (or the size used for early receive) above it in the Rx FIFO.
1696 * Set it to the lower of:
1697 * - 90% of the Rx FIFO size, or
1698 * - the full Rx FIFO size minus one full frame */
1699 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1700 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1701
d405ea3e
AD
1702 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1703 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1704 fc->pause_time = 0xFFFF;
1705 fc->send_xon = 1;
0cce119a 1706 fc->current_mode = fc->requested_mode;
9d5c8243 1707
4ae196df
AD
1708 /* disable receive for all VFs and wait one second */
1709 if (adapter->vfs_allocated_count) {
1710 int i;
1711 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1712 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1713
1714 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1715 igb_ping_all_vfs(adapter);
4ae196df
AD
1716
1717 /* disable transmits and receives */
1718 wr32(E1000_VFRE, 0);
1719 wr32(E1000_VFTE, 0);
1720 }
1721
9d5c8243 1722 /* Allow time for pending master requests to run */
330a6d6a 1723 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1724 wr32(E1000_WUC, 0);
1725
330a6d6a 1726 if (hw->mac.ops.init_hw(hw))
090b1795 1727 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1728 if (hw->mac.type > e1000_82580) {
1729 if (adapter->flags & IGB_FLAG_DMAC) {
1730 u32 reg;
1731
1732 /*
1733 * DMA Coalescing high water mark needs to be higher
1734 * than * the * Rx threshold. The Rx threshold is
1735 * currently * pba - 6, so we * should use a high water
1736 * mark of pba * - 4. */
1737 hwm = (pba - 4) << 10;
1738
1739 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1740 & E1000_DMACR_DMACTHR_MASK);
1741
1742 /* transition to L0x or L1 if available..*/
1743 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1744
1745 /* watchdog timer= +-1000 usec in 32usec intervals */
1746 reg |= (1000 >> 5);
1747 wr32(E1000_DMACR, reg);
1748
1749 /* no lower threshold to disable coalescing(smart fifb)
1750 * -UTRESH=0*/
1751 wr32(E1000_DMCRTRH, 0);
1752
1753 /* set hwm to PBA - 2 * max frame size */
1754 wr32(E1000_FCRTC, hwm);
1755
1756 /*
1757 * This sets the time to wait before requesting tran-
1758 * sition to * low power state to number of usecs needed
1759 * to receive 1 512 * byte frame at gigabit line rate
1760 */
1761 reg = rd32(E1000_DMCTLX);
1762 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1763
1764 /* Delay 255 usec before entering Lx state. */
1765 reg |= 0xFF;
1766 wr32(E1000_DMCTLX, reg);
1767
1768 /* free space in Tx packet buffer to wake from DMAC */
1769 wr32(E1000_DMCTXTH,
1770 (IGB_MIN_TXPBSIZE -
1771 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1772 >> 6);
1773
1774 /* make low power state decision controlled by DMAC */
1775 reg = rd32(E1000_PCIEMISC);
1776 reg |= E1000_PCIEMISC_LX_DECISION;
1777 wr32(E1000_PCIEMISC, reg);
1778 } /* end if IGB_FLAG_DMAC set */
1779 }
55cac248
AD
1780 if (hw->mac.type == e1000_82580) {
1781 u32 reg = rd32(E1000_PCIEMISC);
1782 wr32(E1000_PCIEMISC,
1783 reg & ~E1000_PCIEMISC_LX_DECISION);
1784 }
88a268c1
NN
1785 if (!netif_running(adapter->netdev))
1786 igb_power_down_link(adapter);
1787
9d5c8243
AK
1788 igb_update_mng_vlan(adapter);
1789
1790 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1791 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1792
330a6d6a 1793 igb_get_phy_info(hw);
9d5c8243
AK
1794}
1795
b2cb09b1
JP
1796static u32 igb_fix_features(struct net_device *netdev, u32 features)
1797{
1798 /*
1799 * Since there is no support for separate rx/tx vlan accel
1800 * enable/disable make sure tx flag is always in same state as rx.
1801 */
1802 if (features & NETIF_F_HW_VLAN_RX)
1803 features |= NETIF_F_HW_VLAN_TX;
1804 else
1805 features &= ~NETIF_F_HW_VLAN_TX;
1806
1807 return features;
1808}
1809
ac52caa3
MM
1810static int igb_set_features(struct net_device *netdev, u32 features)
1811{
b2cb09b1 1812 u32 changed = netdev->features ^ features;
ac52caa3 1813
b2cb09b1
JP
1814 if (changed & NETIF_F_HW_VLAN_RX)
1815 igb_vlan_mode(netdev, features);
1816
ac52caa3
MM
1817 return 0;
1818}
1819
2e5c6922 1820static const struct net_device_ops igb_netdev_ops = {
559e9c49 1821 .ndo_open = igb_open,
2e5c6922 1822 .ndo_stop = igb_close,
cd392f5c 1823 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1824 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1825 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1826 .ndo_set_mac_address = igb_set_mac,
1827 .ndo_change_mtu = igb_change_mtu,
1828 .ndo_do_ioctl = igb_ioctl,
1829 .ndo_tx_timeout = igb_tx_timeout,
1830 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1831 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1832 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1833 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1834 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1835 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1836 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1837#ifdef CONFIG_NET_POLL_CONTROLLER
1838 .ndo_poll_controller = igb_netpoll,
1839#endif
b2cb09b1
JP
1840 .ndo_fix_features = igb_fix_features,
1841 .ndo_set_features = igb_set_features,
2e5c6922
SH
1842};
1843
9d5c8243
AK
1844/**
1845 * igb_probe - Device Initialization Routine
1846 * @pdev: PCI device information struct
1847 * @ent: entry in igb_pci_tbl
1848 *
1849 * Returns 0 on success, negative on failure
1850 *
1851 * igb_probe initializes an adapter identified by a pci_dev structure.
1852 * The OS initialization, configuring of the adapter private structure,
1853 * and a hardware reset occur.
1854 **/
1855static int __devinit igb_probe(struct pci_dev *pdev,
1856 const struct pci_device_id *ent)
1857{
1858 struct net_device *netdev;
1859 struct igb_adapter *adapter;
1860 struct e1000_hw *hw;
4337e993 1861 u16 eeprom_data = 0;
9835fd73 1862 s32 ret_val;
4337e993 1863 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1864 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1865 unsigned long mmio_start, mmio_len;
2d6a5e95 1866 int err, pci_using_dac;
9d5c8243 1867 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1868 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1869
bded64a7
AG
1870 /* Catch broken hardware that put the wrong VF device ID in
1871 * the PCIe SR-IOV capability.
1872 */
1873 if (pdev->is_virtfn) {
1874 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1875 pci_name(pdev), pdev->vendor, pdev->device);
1876 return -EINVAL;
1877 }
1878
aed5dec3 1879 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1880 if (err)
1881 return err;
1882
1883 pci_using_dac = 0;
59d71989 1884 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1885 if (!err) {
59d71989 1886 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1887 if (!err)
1888 pci_using_dac = 1;
1889 } else {
59d71989 1890 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1891 if (err) {
59d71989 1892 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1893 if (err) {
1894 dev_err(&pdev->dev, "No usable DMA "
1895 "configuration, aborting\n");
1896 goto err_dma;
1897 }
1898 }
1899 }
1900
aed5dec3
AD
1901 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1902 IORESOURCE_MEM),
1903 igb_driver_name);
9d5c8243
AK
1904 if (err)
1905 goto err_pci_reg;
1906
19d5afd4 1907 pci_enable_pcie_error_reporting(pdev);
40a914fa 1908
9d5c8243 1909 pci_set_master(pdev);
c682fc23 1910 pci_save_state(pdev);
9d5c8243
AK
1911
1912 err = -ENOMEM;
1bfaf07b 1913 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1914 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1915 if (!netdev)
1916 goto err_alloc_etherdev;
1917
1918 SET_NETDEV_DEV(netdev, &pdev->dev);
1919
1920 pci_set_drvdata(pdev, netdev);
1921 adapter = netdev_priv(netdev);
1922 adapter->netdev = netdev;
1923 adapter->pdev = pdev;
1924 hw = &adapter->hw;
1925 hw->back = adapter;
1926 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1927
1928 mmio_start = pci_resource_start(pdev, 0);
1929 mmio_len = pci_resource_len(pdev, 0);
1930
1931 err = -EIO;
28b0759c
AD
1932 hw->hw_addr = ioremap(mmio_start, mmio_len);
1933 if (!hw->hw_addr)
9d5c8243
AK
1934 goto err_ioremap;
1935
2e5c6922 1936 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1937 igb_set_ethtool_ops(netdev);
9d5c8243 1938 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1939
1940 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1941
1942 netdev->mem_start = mmio_start;
1943 netdev->mem_end = mmio_start + mmio_len;
1944
9d5c8243
AK
1945 /* PCI config space info */
1946 hw->vendor_id = pdev->vendor;
1947 hw->device_id = pdev->device;
1948 hw->revision_id = pdev->revision;
1949 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1950 hw->subsystem_device_id = pdev->subsystem_device;
1951
9d5c8243
AK
1952 /* Copy the default MAC, PHY and NVM function pointers */
1953 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1954 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1955 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1956 /* Initialize skew-specific constants */
1957 err = ei->get_invariants(hw);
1958 if (err)
450c87c8 1959 goto err_sw_init;
9d5c8243 1960
450c87c8 1961 /* setup the private structure */
9d5c8243
AK
1962 err = igb_sw_init(adapter);
1963 if (err)
1964 goto err_sw_init;
1965
1966 igb_get_bus_info_pcie(hw);
1967
1968 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1969
1970 /* Copper options */
1971 if (hw->phy.media_type == e1000_media_type_copper) {
1972 hw->phy.mdix = AUTO_ALL_MODES;
1973 hw->phy.disable_polarity_correction = false;
1974 hw->phy.ms_type = e1000_ms_hw_default;
1975 }
1976
1977 if (igb_check_reset_block(hw))
1978 dev_info(&pdev->dev,
1979 "PHY reset is blocked due to SOL/IDER session.\n");
1980
ac52caa3 1981 netdev->hw_features = NETIF_F_SG |
7d8eb29e 1982 NETIF_F_IP_CSUM |
ac52caa3
MM
1983 NETIF_F_IPV6_CSUM |
1984 NETIF_F_TSO |
1985 NETIF_F_TSO6 |
b2cb09b1
JP
1986 NETIF_F_RXCSUM |
1987 NETIF_F_HW_VLAN_RX;
ac52caa3
MM
1988
1989 netdev->features = netdev->hw_features |
9d5c8243 1990 NETIF_F_HW_VLAN_TX |
9d5c8243
AK
1991 NETIF_F_HW_VLAN_FILTER;
1992
48f29ffc
JK
1993 netdev->vlan_features |= NETIF_F_TSO;
1994 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1995 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1996 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1997 netdev->vlan_features |= NETIF_F_SG;
1998
7b872a55 1999 if (pci_using_dac) {
9d5c8243 2000 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2001 netdev->vlan_features |= NETIF_F_HIGHDMA;
2002 }
9d5c8243 2003
ac52caa3
MM
2004 if (hw->mac.type >= e1000_82576) {
2005 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2006 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2007 }
b9473560 2008
01789349
JP
2009 netdev->priv_flags |= IFF_UNICAST_FLT;
2010
330a6d6a 2011 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2012
2013 /* before reading the NVM, reset the controller to put the device in a
2014 * known good starting state */
2015 hw->mac.ops.reset_hw(hw);
2016
2017 /* make sure the NVM is good */
4322e561 2018 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
2019 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2020 err = -EIO;
2021 goto err_eeprom;
2022 }
2023
2024 /* copy the MAC address out of the NVM */
2025 if (hw->mac.ops.read_mac_addr(hw))
2026 dev_err(&pdev->dev, "NVM Read Error\n");
2027
2028 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2029 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2030
2031 if (!is_valid_ether_addr(netdev->perm_addr)) {
2032 dev_err(&pdev->dev, "Invalid MAC Address\n");
2033 err = -EIO;
2034 goto err_eeprom;
2035 }
2036
c061b18d 2037 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2038 (unsigned long) adapter);
c061b18d 2039 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2040 (unsigned long) adapter);
9d5c8243
AK
2041
2042 INIT_WORK(&adapter->reset_task, igb_reset_task);
2043 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2044
450c87c8 2045 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2046 adapter->fc_autoneg = true;
2047 hw->mac.autoneg = true;
2048 hw->phy.autoneg_advertised = 0x2f;
2049
0cce119a
AD
2050 hw->fc.requested_mode = e1000_fc_default;
2051 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2052
9d5c8243
AK
2053 igb_validate_mdi_setting(hw);
2054
9d5c8243
AK
2055 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2056 * enable the ACPI Magic Packet filter
2057 */
2058
a2cf8b6c 2059 if (hw->bus.func == 0)
312c75ae 2060 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2061 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2062 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2063 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2064 &eeprom_data);
a2cf8b6c
AD
2065 else if (hw->bus.func == 1)
2066 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2067
2068 if (eeprom_data & eeprom_apme_mask)
2069 adapter->eeprom_wol |= E1000_WUFC_MAG;
2070
2071 /* now that we have the eeprom settings, apply the special cases where
2072 * the eeprom may be wrong or the board simply won't support wake on
2073 * lan on a particular port */
2074 switch (pdev->device) {
2075 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2076 adapter->eeprom_wol = 0;
2077 break;
2078 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2079 case E1000_DEV_ID_82576_FIBER:
2080 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2081 /* Wake events only supported on port A for dual fiber
2082 * regardless of eeprom setting */
2083 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2084 adapter->eeprom_wol = 0;
2085 break;
c8ea5ea9 2086 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2087 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2088 /* if quad port adapter, disable WoL on all but port A */
2089 if (global_quad_port_a != 0)
2090 adapter->eeprom_wol = 0;
2091 else
2092 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2093 /* Reset for multiple quad port adapters */
2094 if (++global_quad_port_a == 4)
2095 global_quad_port_a = 0;
2096 break;
9d5c8243
AK
2097 }
2098
2099 /* initialize the wol settings based on the eeprom settings */
2100 adapter->wol = adapter->eeprom_wol;
e1b86d84 2101 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2102
2103 /* reset the hardware with the new settings */
2104 igb_reset(adapter);
2105
2106 /* let the f/w know that the h/w is now under the control of the
2107 * driver. */
2108 igb_get_hw_control(adapter);
2109
9d5c8243
AK
2110 strcpy(netdev->name, "eth%d");
2111 err = register_netdev(netdev);
2112 if (err)
2113 goto err_register;
2114
b2cb09b1
JP
2115 igb_vlan_mode(netdev, netdev->features);
2116
b168dfc5
JB
2117 /* carrier off reporting is important to ethtool even BEFORE open */
2118 netif_carrier_off(netdev);
2119
421e02f0 2120#ifdef CONFIG_IGB_DCA
bbd98fe4 2121 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2122 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2123 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2124 igb_setup_dca(adapter);
2125 }
fe4506b6 2126
38c845c7 2127#endif
673b8b70
AB
2128 /* do hw tstamp init after resetting */
2129 igb_init_hw_timer(adapter);
2130
9d5c8243
AK
2131 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2132 /* print bus type/speed/width info */
7c510e4b 2133 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2134 netdev->name,
559e9c49 2135 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2136 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2137 "unknown"),
59c3de89
AD
2138 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2139 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2140 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2141 "unknown"),
7c510e4b 2142 netdev->dev_addr);
9d5c8243 2143
9835fd73
CW
2144 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2145 if (ret_val)
2146 strcpy(part_str, "Unknown");
2147 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2148 dev_info(&pdev->dev,
2149 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2150 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2151 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2152 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2153 switch (hw->mac.type) {
2154 case e1000_i350:
2155 igb_set_eee_i350(hw);
2156 break;
2157 default:
2158 break;
2159 }
9d5c8243
AK
2160 return 0;
2161
2162err_register:
2163 igb_release_hw_control(adapter);
2164err_eeprom:
2165 if (!igb_check_reset_block(hw))
f5f4cf08 2166 igb_reset_phy(hw);
9d5c8243
AK
2167
2168 if (hw->flash_address)
2169 iounmap(hw->flash_address);
9d5c8243 2170err_sw_init:
047e0030 2171 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2172 iounmap(hw->hw_addr);
2173err_ioremap:
2174 free_netdev(netdev);
2175err_alloc_etherdev:
559e9c49
AD
2176 pci_release_selected_regions(pdev,
2177 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2178err_pci_reg:
2179err_dma:
2180 pci_disable_device(pdev);
2181 return err;
2182}
2183
2184/**
2185 * igb_remove - Device Removal Routine
2186 * @pdev: PCI device information struct
2187 *
2188 * igb_remove is called by the PCI subsystem to alert the driver
2189 * that it should release a PCI device. The could be caused by a
2190 * Hot-Plug event, or because the driver is going to be removed from
2191 * memory.
2192 **/
2193static void __devexit igb_remove(struct pci_dev *pdev)
2194{
2195 struct net_device *netdev = pci_get_drvdata(pdev);
2196 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2197 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2198
760141a5
TH
2199 /*
2200 * The watchdog timer may be rescheduled, so explicitly
2201 * disable watchdog from being rescheduled.
2202 */
9d5c8243
AK
2203 set_bit(__IGB_DOWN, &adapter->state);
2204 del_timer_sync(&adapter->watchdog_timer);
2205 del_timer_sync(&adapter->phy_info_timer);
2206
760141a5
TH
2207 cancel_work_sync(&adapter->reset_task);
2208 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2209
421e02f0 2210#ifdef CONFIG_IGB_DCA
7dfc16fa 2211 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2212 dev_info(&pdev->dev, "DCA disabled\n");
2213 dca_remove_requester(&pdev->dev);
7dfc16fa 2214 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2215 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2216 }
2217#endif
2218
9d5c8243
AK
2219 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2220 * would have already happened in close and is redundant. */
2221 igb_release_hw_control(adapter);
2222
2223 unregister_netdev(netdev);
2224
047e0030 2225 igb_clear_interrupt_scheme(adapter);
9d5c8243 2226
37680117
AD
2227#ifdef CONFIG_PCI_IOV
2228 /* reclaim resources allocated to VFs */
2229 if (adapter->vf_data) {
2230 /* disable iov and allow time for transactions to clear */
2231 pci_disable_sriov(pdev);
2232 msleep(500);
2233
2234 kfree(adapter->vf_data);
2235 adapter->vf_data = NULL;
2236 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2237 wrfl();
37680117
AD
2238 msleep(100);
2239 dev_info(&pdev->dev, "IOV Disabled\n");
2240 }
2241#endif
559e9c49 2242
28b0759c
AD
2243 iounmap(hw->hw_addr);
2244 if (hw->flash_address)
2245 iounmap(hw->flash_address);
559e9c49
AD
2246 pci_release_selected_regions(pdev,
2247 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2248
2249 free_netdev(netdev);
2250
19d5afd4 2251 pci_disable_pcie_error_reporting(pdev);
40a914fa 2252
9d5c8243
AK
2253 pci_disable_device(pdev);
2254}
2255
a6b623e0
AD
2256/**
2257 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2258 * @adapter: board private structure to initialize
2259 *
2260 * This function initializes the vf specific data storage and then attempts to
2261 * allocate the VFs. The reason for ordering it this way is because it is much
2262 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2263 * the memory for the VFs.
2264 **/
2265static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2266{
2267#ifdef CONFIG_PCI_IOV
2268 struct pci_dev *pdev = adapter->pdev;
2269
a6b623e0
AD
2270 if (adapter->vfs_allocated_count) {
2271 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2272 sizeof(struct vf_data_storage),
2273 GFP_KERNEL);
2274 /* if allocation failed then we do not support SR-IOV */
2275 if (!adapter->vf_data) {
2276 adapter->vfs_allocated_count = 0;
2277 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2278 "Data Storage\n");
2279 }
2280 }
2281
2282 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2283 kfree(adapter->vf_data);
2284 adapter->vf_data = NULL;
2285#endif /* CONFIG_PCI_IOV */
2286 adapter->vfs_allocated_count = 0;
2287#ifdef CONFIG_PCI_IOV
2288 } else {
2289 unsigned char mac_addr[ETH_ALEN];
2290 int i;
2291 dev_info(&pdev->dev, "%d vfs allocated\n",
2292 adapter->vfs_allocated_count);
2293 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2294 random_ether_addr(mac_addr);
2295 igb_set_vf_mac(adapter, i, mac_addr);
2296 }
831ec0b4
CW
2297 /* DMA Coalescing is not supported in IOV mode. */
2298 if (adapter->flags & IGB_FLAG_DMAC)
2299 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2300 }
2301#endif /* CONFIG_PCI_IOV */
2302}
2303
115f459a
AD
2304
2305/**
2306 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2307 * @adapter: board private structure to initialize
2308 *
2309 * igb_init_hw_timer initializes the function pointer and values for the hw
2310 * timer found in hardware.
2311 **/
2312static void igb_init_hw_timer(struct igb_adapter *adapter)
2313{
2314 struct e1000_hw *hw = &adapter->hw;
2315
2316 switch (hw->mac.type) {
d2ba2ed8 2317 case e1000_i350:
55cac248
AD
2318 case e1000_82580:
2319 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2320 adapter->cycles.read = igb_read_clock;
2321 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2322 adapter->cycles.mult = 1;
2323 /*
2324 * The 82580 timesync updates the system timer every 8ns by 8ns
2325 * and the value cannot be shifted. Instead we need to shift
2326 * the registers to generate a 64bit timer value. As a result
2327 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2328 * 24 in order to generate a larger value for synchronization.
2329 */
2330 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2331 /* disable system timer temporarily by setting bit 31 */
2332 wr32(E1000_TSAUXC, 0x80000000);
2333 wrfl();
2334
2335 /* Set registers so that rollover occurs soon to test this. */
2336 wr32(E1000_SYSTIMR, 0x00000000);
2337 wr32(E1000_SYSTIML, 0x80000000);
2338 wr32(E1000_SYSTIMH, 0x000000FF);
2339 wrfl();
2340
2341 /* enable system timer by clearing bit 31 */
2342 wr32(E1000_TSAUXC, 0x0);
2343 wrfl();
2344
2345 timecounter_init(&adapter->clock,
2346 &adapter->cycles,
2347 ktime_to_ns(ktime_get_real()));
2348 /*
2349 * Synchronize our NIC clock against system wall clock. NIC
2350 * time stamp reading requires ~3us per sample, each sample
2351 * was pretty stable even under load => only require 10
2352 * samples for each offset comparison.
2353 */
2354 memset(&adapter->compare, 0, sizeof(adapter->compare));
2355 adapter->compare.source = &adapter->clock;
2356 adapter->compare.target = ktime_get_real;
2357 adapter->compare.num_samples = 10;
2358 timecompare_update(&adapter->compare, 0);
2359 break;
115f459a
AD
2360 case e1000_82576:
2361 /*
2362 * Initialize hardware timer: we keep it running just in case
2363 * that some program needs it later on.
2364 */
2365 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2366 adapter->cycles.read = igb_read_clock;
2367 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2368 adapter->cycles.mult = 1;
2369 /**
2370 * Scale the NIC clock cycle by a large factor so that
2371 * relatively small clock corrections can be added or
25985edc 2372 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2373 * factor are a) that the clock register overflows more quickly
2374 * (not such a big deal) and b) that the increment per tick has
2375 * to fit into 24 bits. As a result we need to use a shift of
2376 * 19 so we can fit a value of 16 into the TIMINCA register.
2377 */
2378 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2379 wr32(E1000_TIMINCA,
2380 (1 << E1000_TIMINCA_16NS_SHIFT) |
2381 (16 << IGB_82576_TSYNC_SHIFT));
2382
2383 /* Set registers so that rollover occurs soon to test this. */
2384 wr32(E1000_SYSTIML, 0x00000000);
2385 wr32(E1000_SYSTIMH, 0xFF800000);
2386 wrfl();
2387
2388 timecounter_init(&adapter->clock,
2389 &adapter->cycles,
2390 ktime_to_ns(ktime_get_real()));
2391 /*
2392 * Synchronize our NIC clock against system wall clock. NIC
2393 * time stamp reading requires ~3us per sample, each sample
2394 * was pretty stable even under load => only require 10
2395 * samples for each offset comparison.
2396 */
2397 memset(&adapter->compare, 0, sizeof(adapter->compare));
2398 adapter->compare.source = &adapter->clock;
2399 adapter->compare.target = ktime_get_real;
2400 adapter->compare.num_samples = 10;
2401 timecompare_update(&adapter->compare, 0);
2402 break;
2403 case e1000_82575:
2404 /* 82575 does not support timesync */
2405 default:
2406 break;
2407 }
2408
2409}
2410
9d5c8243
AK
2411/**
2412 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2413 * @adapter: board private structure to initialize
2414 *
2415 * igb_sw_init initializes the Adapter private data structure.
2416 * Fields are initialized based on PCI device information and
2417 * OS network device settings (MTU size).
2418 **/
2419static int __devinit igb_sw_init(struct igb_adapter *adapter)
2420{
2421 struct e1000_hw *hw = &adapter->hw;
2422 struct net_device *netdev = adapter->netdev;
2423 struct pci_dev *pdev = adapter->pdev;
2424
2425 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2426
13fde97a 2427 /* set default ring sizes */
68fd9910
AD
2428 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2429 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2430
2431 /* set default ITR values */
4fc82adf
AD
2432 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2433 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2434
13fde97a
AD
2435 /* set default work limits */
2436 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2437
153285f9
AD
2438 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2439 VLAN_HLEN;
9d5c8243
AK
2440 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2441
81c2fc22
AD
2442 adapter->node = -1;
2443
12dcd86b 2444 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2445#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2446 switch (hw->mac.type) {
2447 case e1000_82576:
2448 case e1000_i350:
9b082d73
SA
2449 if (max_vfs > 7) {
2450 dev_warn(&pdev->dev,
2451 "Maximum of 7 VFs per PF, using max\n");
2452 adapter->vfs_allocated_count = 7;
2453 } else
2454 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2455 break;
2456 default:
2457 break;
2458 }
a6b623e0 2459#endif /* CONFIG_PCI_IOV */
a99955fc 2460 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2461 /* i350 cannot do RSS and SR-IOV at the same time */
2462 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2463 adapter->rss_queues = 1;
a99955fc
AD
2464
2465 /*
2466 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2467 * then we should combine the queues into a queue pair in order to
2468 * conserve interrupts due to limited supply
2469 */
2470 if ((adapter->rss_queues > 4) ||
2471 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2472 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2473
a6b623e0 2474 /* This call may decrease the number of queues */
047e0030 2475 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2476 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2477 return -ENOMEM;
2478 }
2479
a6b623e0
AD
2480 igb_probe_vfs(adapter);
2481
9d5c8243
AK
2482 /* Explicitly disable IRQ since the NIC can be in any state. */
2483 igb_irq_disable(adapter);
2484
831ec0b4
CW
2485 if (hw->mac.type == e1000_i350)
2486 adapter->flags &= ~IGB_FLAG_DMAC;
2487
9d5c8243
AK
2488 set_bit(__IGB_DOWN, &adapter->state);
2489 return 0;
2490}
2491
2492/**
2493 * igb_open - Called when a network interface is made active
2494 * @netdev: network interface device structure
2495 *
2496 * Returns 0 on success, negative value on failure
2497 *
2498 * The open entry point is called when a network interface is made
2499 * active by the system (IFF_UP). At this point all resources needed
2500 * for transmit and receive operations are allocated, the interrupt
2501 * handler is registered with the OS, the watchdog timer is started,
2502 * and the stack is notified that the interface is ready.
2503 **/
2504static int igb_open(struct net_device *netdev)
2505{
2506 struct igb_adapter *adapter = netdev_priv(netdev);
2507 struct e1000_hw *hw = &adapter->hw;
2508 int err;
2509 int i;
2510
2511 /* disallow open during test */
2512 if (test_bit(__IGB_TESTING, &adapter->state))
2513 return -EBUSY;
2514
b168dfc5
JB
2515 netif_carrier_off(netdev);
2516
9d5c8243
AK
2517 /* allocate transmit descriptors */
2518 err = igb_setup_all_tx_resources(adapter);
2519 if (err)
2520 goto err_setup_tx;
2521
2522 /* allocate receive descriptors */
2523 err = igb_setup_all_rx_resources(adapter);
2524 if (err)
2525 goto err_setup_rx;
2526
88a268c1 2527 igb_power_up_link(adapter);
9d5c8243 2528
9d5c8243
AK
2529 /* before we allocate an interrupt, we must be ready to handle it.
2530 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2531 * as soon as we call pci_request_irq, so we have to setup our
2532 * clean_rx handler before we do so. */
2533 igb_configure(adapter);
2534
2535 err = igb_request_irq(adapter);
2536 if (err)
2537 goto err_req_irq;
2538
2539 /* From here on the code is the same as igb_up() */
2540 clear_bit(__IGB_DOWN, &adapter->state);
2541
047e0030
AD
2542 for (i = 0; i < adapter->num_q_vectors; i++) {
2543 struct igb_q_vector *q_vector = adapter->q_vector[i];
2544 napi_enable(&q_vector->napi);
2545 }
9d5c8243
AK
2546
2547 /* Clear any pending interrupts. */
2548 rd32(E1000_ICR);
844290e5
PW
2549
2550 igb_irq_enable(adapter);
2551
d4960307
AD
2552 /* notify VFs that reset has been completed */
2553 if (adapter->vfs_allocated_count) {
2554 u32 reg_data = rd32(E1000_CTRL_EXT);
2555 reg_data |= E1000_CTRL_EXT_PFRSTD;
2556 wr32(E1000_CTRL_EXT, reg_data);
2557 }
2558
d55b53ff
JK
2559 netif_tx_start_all_queues(netdev);
2560
25568a53
AD
2561 /* start the watchdog. */
2562 hw->mac.get_link_status = 1;
2563 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2564
2565 return 0;
2566
2567err_req_irq:
2568 igb_release_hw_control(adapter);
88a268c1 2569 igb_power_down_link(adapter);
9d5c8243
AK
2570 igb_free_all_rx_resources(adapter);
2571err_setup_rx:
2572 igb_free_all_tx_resources(adapter);
2573err_setup_tx:
2574 igb_reset(adapter);
2575
2576 return err;
2577}
2578
2579/**
2580 * igb_close - Disables a network interface
2581 * @netdev: network interface device structure
2582 *
2583 * Returns 0, this is not allowed to fail
2584 *
2585 * The close entry point is called when an interface is de-activated
2586 * by the OS. The hardware is still under the driver's control, but
2587 * needs to be disabled. A global MAC reset is issued to stop the
2588 * hardware, and all transmit and receive resources are freed.
2589 **/
2590static int igb_close(struct net_device *netdev)
2591{
2592 struct igb_adapter *adapter = netdev_priv(netdev);
2593
2594 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2595 igb_down(adapter);
2596
2597 igb_free_irq(adapter);
2598
2599 igb_free_all_tx_resources(adapter);
2600 igb_free_all_rx_resources(adapter);
2601
9d5c8243
AK
2602 return 0;
2603}
2604
2605/**
2606 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2607 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2608 *
2609 * Return 0 on success, negative on failure
2610 **/
80785298 2611int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2612{
59d71989 2613 struct device *dev = tx_ring->dev;
81c2fc22 2614 int orig_node = dev_to_node(dev);
9d5c8243
AK
2615 int size;
2616
06034649 2617 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
81c2fc22
AD
2618 tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2619 if (!tx_ring->tx_buffer_info)
2620 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2621 if (!tx_ring->tx_buffer_info)
9d5c8243 2622 goto err;
9d5c8243
AK
2623
2624 /* round up to nearest 4K */
85e8d004 2625 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2626 tx_ring->size = ALIGN(tx_ring->size, 4096);
2627
81c2fc22 2628 set_dev_node(dev, tx_ring->numa_node);
59d71989
AD
2629 tx_ring->desc = dma_alloc_coherent(dev,
2630 tx_ring->size,
2631 &tx_ring->dma,
2632 GFP_KERNEL);
81c2fc22
AD
2633 set_dev_node(dev, orig_node);
2634 if (!tx_ring->desc)
2635 tx_ring->desc = dma_alloc_coherent(dev,
2636 tx_ring->size,
2637 &tx_ring->dma,
2638 GFP_KERNEL);
9d5c8243
AK
2639
2640 if (!tx_ring->desc)
2641 goto err;
2642
9d5c8243
AK
2643 tx_ring->next_to_use = 0;
2644 tx_ring->next_to_clean = 0;
81c2fc22 2645
9d5c8243
AK
2646 return 0;
2647
2648err:
06034649 2649 vfree(tx_ring->tx_buffer_info);
59d71989 2650 dev_err(dev,
9d5c8243
AK
2651 "Unable to allocate memory for the transmit descriptor ring\n");
2652 return -ENOMEM;
2653}
2654
2655/**
2656 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2657 * (Descriptors) for all queues
2658 * @adapter: board private structure
2659 *
2660 * Return 0 on success, negative on failure
2661 **/
2662static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2663{
439705e1 2664 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2665 int i, err = 0;
2666
2667 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2668 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2669 if (err) {
439705e1 2670 dev_err(&pdev->dev,
9d5c8243
AK
2671 "Allocation for Tx Queue %u failed\n", i);
2672 for (i--; i >= 0; i--)
3025a446 2673 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2674 break;
2675 }
2676 }
2677
2678 return err;
2679}
2680
2681/**
85b430b4
AD
2682 * igb_setup_tctl - configure the transmit control registers
2683 * @adapter: Board private structure
9d5c8243 2684 **/
d7ee5b3a 2685void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2686{
9d5c8243
AK
2687 struct e1000_hw *hw = &adapter->hw;
2688 u32 tctl;
9d5c8243 2689
85b430b4
AD
2690 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2691 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2692
2693 /* Program the Transmit Control Register */
9d5c8243
AK
2694 tctl = rd32(E1000_TCTL);
2695 tctl &= ~E1000_TCTL_CT;
2696 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2697 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2698
2699 igb_config_collision_dist(hw);
2700
9d5c8243
AK
2701 /* Enable transmits */
2702 tctl |= E1000_TCTL_EN;
2703
2704 wr32(E1000_TCTL, tctl);
2705}
2706
85b430b4
AD
2707/**
2708 * igb_configure_tx_ring - Configure transmit ring after Reset
2709 * @adapter: board private structure
2710 * @ring: tx ring to configure
2711 *
2712 * Configure a transmit ring after a reset.
2713 **/
d7ee5b3a
AD
2714void igb_configure_tx_ring(struct igb_adapter *adapter,
2715 struct igb_ring *ring)
85b430b4
AD
2716{
2717 struct e1000_hw *hw = &adapter->hw;
a74420e0 2718 u32 txdctl = 0;
85b430b4
AD
2719 u64 tdba = ring->dma;
2720 int reg_idx = ring->reg_idx;
2721
2722 /* disable the queue */
a74420e0 2723 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2724 wrfl();
2725 mdelay(10);
2726
2727 wr32(E1000_TDLEN(reg_idx),
2728 ring->count * sizeof(union e1000_adv_tx_desc));
2729 wr32(E1000_TDBAL(reg_idx),
2730 tdba & 0x00000000ffffffffULL);
2731 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2732
fce99e34 2733 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2734 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2735 writel(0, ring->tail);
85b430b4
AD
2736
2737 txdctl |= IGB_TX_PTHRESH;
2738 txdctl |= IGB_TX_HTHRESH << 8;
2739 txdctl |= IGB_TX_WTHRESH << 16;
2740
2741 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2742 wr32(E1000_TXDCTL(reg_idx), txdctl);
2743}
2744
2745/**
2746 * igb_configure_tx - Configure transmit Unit after Reset
2747 * @adapter: board private structure
2748 *
2749 * Configure the Tx unit of the MAC after a reset.
2750 **/
2751static void igb_configure_tx(struct igb_adapter *adapter)
2752{
2753 int i;
2754
2755 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2756 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2757}
2758
9d5c8243
AK
2759/**
2760 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2761 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2762 *
2763 * Returns 0 on success, negative on failure
2764 **/
80785298 2765int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2766{
59d71989 2767 struct device *dev = rx_ring->dev;
81c2fc22 2768 int orig_node = dev_to_node(dev);
9d5c8243
AK
2769 int size, desc_len;
2770
06034649 2771 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
81c2fc22
AD
2772 rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2773 if (!rx_ring->rx_buffer_info)
2774 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2775 if (!rx_ring->rx_buffer_info)
9d5c8243 2776 goto err;
9d5c8243
AK
2777
2778 desc_len = sizeof(union e1000_adv_rx_desc);
2779
2780 /* Round up to nearest 4K */
2781 rx_ring->size = rx_ring->count * desc_len;
2782 rx_ring->size = ALIGN(rx_ring->size, 4096);
2783
81c2fc22 2784 set_dev_node(dev, rx_ring->numa_node);
59d71989
AD
2785 rx_ring->desc = dma_alloc_coherent(dev,
2786 rx_ring->size,
2787 &rx_ring->dma,
2788 GFP_KERNEL);
81c2fc22
AD
2789 set_dev_node(dev, orig_node);
2790 if (!rx_ring->desc)
2791 rx_ring->desc = dma_alloc_coherent(dev,
2792 rx_ring->size,
2793 &rx_ring->dma,
2794 GFP_KERNEL);
9d5c8243
AK
2795
2796 if (!rx_ring->desc)
2797 goto err;
2798
2799 rx_ring->next_to_clean = 0;
2800 rx_ring->next_to_use = 0;
9d5c8243 2801
9d5c8243
AK
2802 return 0;
2803
2804err:
06034649
AD
2805 vfree(rx_ring->rx_buffer_info);
2806 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2807 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2808 " ring\n");
9d5c8243
AK
2809 return -ENOMEM;
2810}
2811
2812/**
2813 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2814 * (Descriptors) for all queues
2815 * @adapter: board private structure
2816 *
2817 * Return 0 on success, negative on failure
2818 **/
2819static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2820{
439705e1 2821 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2822 int i, err = 0;
2823
2824 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2825 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2826 if (err) {
439705e1 2827 dev_err(&pdev->dev,
9d5c8243
AK
2828 "Allocation for Rx Queue %u failed\n", i);
2829 for (i--; i >= 0; i--)
3025a446 2830 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2831 break;
2832 }
2833 }
2834
2835 return err;
2836}
2837
06cf2666
AD
2838/**
2839 * igb_setup_mrqc - configure the multiple receive queue control registers
2840 * @adapter: Board private structure
2841 **/
2842static void igb_setup_mrqc(struct igb_adapter *adapter)
2843{
2844 struct e1000_hw *hw = &adapter->hw;
2845 u32 mrqc, rxcsum;
2846 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2847 union e1000_reta {
2848 u32 dword;
2849 u8 bytes[4];
2850 } reta;
2851 static const u8 rsshash[40] = {
2852 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2853 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2854 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2855 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2856
2857 /* Fill out hash function seeds */
2858 for (j = 0; j < 10; j++) {
2859 u32 rsskey = rsshash[(j * 4)];
2860 rsskey |= rsshash[(j * 4) + 1] << 8;
2861 rsskey |= rsshash[(j * 4) + 2] << 16;
2862 rsskey |= rsshash[(j * 4) + 3] << 24;
2863 array_wr32(E1000_RSSRK(0), j, rsskey);
2864 }
2865
a99955fc 2866 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2867
2868 if (adapter->vfs_allocated_count) {
2869 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2870 switch (hw->mac.type) {
d2ba2ed8 2871 case e1000_i350:
55cac248
AD
2872 case e1000_82580:
2873 num_rx_queues = 1;
2874 shift = 0;
2875 break;
06cf2666
AD
2876 case e1000_82576:
2877 shift = 3;
2878 num_rx_queues = 2;
2879 break;
2880 case e1000_82575:
2881 shift = 2;
2882 shift2 = 6;
2883 default:
2884 break;
2885 }
2886 } else {
2887 if (hw->mac.type == e1000_82575)
2888 shift = 6;
2889 }
2890
2891 for (j = 0; j < (32 * 4); j++) {
2892 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2893 if (shift2)
2894 reta.bytes[j & 3] |= num_rx_queues << shift2;
2895 if ((j & 3) == 3)
2896 wr32(E1000_RETA(j >> 2), reta.dword);
2897 }
2898
2899 /*
2900 * Disable raw packet checksumming so that RSS hash is placed in
2901 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2902 * offloads as they are enabled by default
2903 */
2904 rxcsum = rd32(E1000_RXCSUM);
2905 rxcsum |= E1000_RXCSUM_PCSD;
2906
2907 if (adapter->hw.mac.type >= e1000_82576)
2908 /* Enable Receive Checksum Offload for SCTP */
2909 rxcsum |= E1000_RXCSUM_CRCOFL;
2910
2911 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2912 wr32(E1000_RXCSUM, rxcsum);
2913
2914 /* If VMDq is enabled then we set the appropriate mode for that, else
2915 * we default to RSS so that an RSS hash is calculated per packet even
2916 * if we are only using one queue */
2917 if (adapter->vfs_allocated_count) {
2918 if (hw->mac.type > e1000_82575) {
2919 /* Set the default pool for the PF's first queue */
2920 u32 vtctl = rd32(E1000_VT_CTL);
2921 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2922 E1000_VT_CTL_DISABLE_DEF_POOL);
2923 vtctl |= adapter->vfs_allocated_count <<
2924 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2925 wr32(E1000_VT_CTL, vtctl);
2926 }
a99955fc 2927 if (adapter->rss_queues > 1)
06cf2666
AD
2928 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2929 else
2930 mrqc = E1000_MRQC_ENABLE_VMDQ;
2931 } else {
2932 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2933 }
2934 igb_vmm_control(adapter);
2935
4478a9cd
AD
2936 /*
2937 * Generate RSS hash based on TCP port numbers and/or
2938 * IPv4/v6 src and dst addresses since UDP cannot be
2939 * hashed reliably due to IP fragmentation
2940 */
2941 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2942 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2943 E1000_MRQC_RSS_FIELD_IPV6 |
2944 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2945 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2946
2947 wr32(E1000_MRQC, mrqc);
2948}
2949
9d5c8243
AK
2950/**
2951 * igb_setup_rctl - configure the receive control registers
2952 * @adapter: Board private structure
2953 **/
d7ee5b3a 2954void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2955{
2956 struct e1000_hw *hw = &adapter->hw;
2957 u32 rctl;
9d5c8243
AK
2958
2959 rctl = rd32(E1000_RCTL);
2960
2961 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2962 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2963
69d728ba 2964 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2965 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2966
87cb7e8c
AK
2967 /*
2968 * enable stripping of CRC. It's unlikely this will break BMC
2969 * redirection as it did with e1000. Newer features require
2970 * that the HW strips the CRC.
73cd78f1 2971 */
87cb7e8c 2972 rctl |= E1000_RCTL_SECRC;
9d5c8243 2973
559e9c49 2974 /* disable store bad packets and clear size bits. */
ec54d7d6 2975 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2976
6ec43fe6
AD
2977 /* enable LPE to prevent packets larger than max_frame_size */
2978 rctl |= E1000_RCTL_LPE;
9d5c8243 2979
952f72a8
AD
2980 /* disable queue 0 to prevent tail write w/o re-config */
2981 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2982
e1739522
AD
2983 /* Attention!!! For SR-IOV PF driver operations you must enable
2984 * queue drop for all VF and PF queues to prevent head of line blocking
2985 * if an un-trusted VF does not provide descriptors to hardware.
2986 */
2987 if (adapter->vfs_allocated_count) {
e1739522
AD
2988 /* set all queue drop enable bits */
2989 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2990 }
2991
9d5c8243
AK
2992 wr32(E1000_RCTL, rctl);
2993}
2994
7d5753f0
AD
2995static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2996 int vfn)
2997{
2998 struct e1000_hw *hw = &adapter->hw;
2999 u32 vmolr;
3000
3001 /* if it isn't the PF check to see if VFs are enabled and
3002 * increase the size to support vlan tags */
3003 if (vfn < adapter->vfs_allocated_count &&
3004 adapter->vf_data[vfn].vlans_enabled)
3005 size += VLAN_TAG_SIZE;
3006
3007 vmolr = rd32(E1000_VMOLR(vfn));
3008 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3009 vmolr |= size | E1000_VMOLR_LPE;
3010 wr32(E1000_VMOLR(vfn), vmolr);
3011
3012 return 0;
3013}
3014
e1739522
AD
3015/**
3016 * igb_rlpml_set - set maximum receive packet size
3017 * @adapter: board private structure
3018 *
3019 * Configure maximum receivable packet size.
3020 **/
3021static void igb_rlpml_set(struct igb_adapter *adapter)
3022{
153285f9 3023 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3024 struct e1000_hw *hw = &adapter->hw;
3025 u16 pf_id = adapter->vfs_allocated_count;
3026
e1739522
AD
3027 if (pf_id) {
3028 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3029 /*
3030 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3031 * to our max jumbo frame size, in case we need to enable
3032 * jumbo frames on one of the rings later.
3033 * This will not pass over-length frames into the default
3034 * queue because it's gated by the VMOLR.RLPML.
3035 */
7d5753f0 3036 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3037 }
3038
3039 wr32(E1000_RLPML, max_frame_size);
3040}
3041
8151d294
WM
3042static inline void igb_set_vmolr(struct igb_adapter *adapter,
3043 int vfn, bool aupe)
7d5753f0
AD
3044{
3045 struct e1000_hw *hw = &adapter->hw;
3046 u32 vmolr;
3047
3048 /*
3049 * This register exists only on 82576 and newer so if we are older then
3050 * we should exit and do nothing
3051 */
3052 if (hw->mac.type < e1000_82576)
3053 return;
3054
3055 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3056 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3057 if (aupe)
3058 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3059 else
3060 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3061
3062 /* clear all bits that might not be set */
3063 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3064
a99955fc 3065 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3066 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3067 /*
3068 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3069 * multicast packets
3070 */
3071 if (vfn <= adapter->vfs_allocated_count)
3072 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3073
3074 wr32(E1000_VMOLR(vfn), vmolr);
3075}
3076
85b430b4
AD
3077/**
3078 * igb_configure_rx_ring - Configure a receive ring after Reset
3079 * @adapter: board private structure
3080 * @ring: receive ring to be configured
3081 *
3082 * Configure the Rx unit of the MAC after a reset.
3083 **/
d7ee5b3a
AD
3084void igb_configure_rx_ring(struct igb_adapter *adapter,
3085 struct igb_ring *ring)
85b430b4
AD
3086{
3087 struct e1000_hw *hw = &adapter->hw;
3088 u64 rdba = ring->dma;
3089 int reg_idx = ring->reg_idx;
a74420e0 3090 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3091
3092 /* disable the queue */
a74420e0 3093 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3094
3095 /* Set DMA base address registers */
3096 wr32(E1000_RDBAL(reg_idx),
3097 rdba & 0x00000000ffffffffULL);
3098 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3099 wr32(E1000_RDLEN(reg_idx),
3100 ring->count * sizeof(union e1000_adv_rx_desc));
3101
3102 /* initialize head and tail */
fce99e34 3103 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3104 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3105 writel(0, ring->tail);
85b430b4 3106
952f72a8 3107 /* set descriptor configuration */
44390ca6 3108 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3109#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3110 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3111#else
44390ca6 3112 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3113#endif
44390ca6 3114 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
757b77e2
NN
3115 if (hw->mac.type == e1000_82580)
3116 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3117 /* Only set Drop Enable if we are supporting multiple queues */
3118 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3119 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3120
3121 wr32(E1000_SRRCTL(reg_idx), srrctl);
3122
7d5753f0 3123 /* set filtering for VMDQ pools */
8151d294 3124 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3125
85b430b4
AD
3126 rxdctl |= IGB_RX_PTHRESH;
3127 rxdctl |= IGB_RX_HTHRESH << 8;
3128 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3129
3130 /* enable receive descriptor fetching */
3131 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3132 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3133}
3134
9d5c8243
AK
3135/**
3136 * igb_configure_rx - Configure receive Unit after Reset
3137 * @adapter: board private structure
3138 *
3139 * Configure the Rx unit of the MAC after a reset.
3140 **/
3141static void igb_configure_rx(struct igb_adapter *adapter)
3142{
9107584e 3143 int i;
9d5c8243 3144
68d480c4
AD
3145 /* set UTA to appropriate mode */
3146 igb_set_uta(adapter);
3147
26ad9178
AD
3148 /* set the correct pool for the PF default MAC address in entry 0 */
3149 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3150 adapter->vfs_allocated_count);
3151
06cf2666
AD
3152 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3153 * the Base and Length of the Rx Descriptor Ring */
3154 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3155 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3156}
3157
3158/**
3159 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3160 * @tx_ring: Tx descriptor ring for a specific queue
3161 *
3162 * Free all transmit software resources
3163 **/
68fd9910 3164void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3165{
3b644cf6 3166 igb_clean_tx_ring(tx_ring);
9d5c8243 3167
06034649
AD
3168 vfree(tx_ring->tx_buffer_info);
3169 tx_ring->tx_buffer_info = NULL;
9d5c8243 3170
439705e1
AD
3171 /* if not set, then don't free */
3172 if (!tx_ring->desc)
3173 return;
3174
59d71989
AD
3175 dma_free_coherent(tx_ring->dev, tx_ring->size,
3176 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3177
3178 tx_ring->desc = NULL;
3179}
3180
3181/**
3182 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3183 * @adapter: board private structure
3184 *
3185 * Free all transmit software resources
3186 **/
3187static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3188{
3189 int i;
3190
3191 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3192 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3193}
3194
ebe42d16
AD
3195void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3196 struct igb_tx_buffer *tx_buffer)
3197{
3198 if (tx_buffer->skb) {
3199 dev_kfree_skb_any(tx_buffer->skb);
3200 if (tx_buffer->dma)
3201 dma_unmap_single(ring->dev,
3202 tx_buffer->dma,
3203 tx_buffer->length,
3204 DMA_TO_DEVICE);
3205 } else if (tx_buffer->dma) {
3206 dma_unmap_page(ring->dev,
3207 tx_buffer->dma,
3208 tx_buffer->length,
3209 DMA_TO_DEVICE);
3210 }
3211 tx_buffer->next_to_watch = NULL;
3212 tx_buffer->skb = NULL;
3213 tx_buffer->dma = 0;
3214 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3215}
3216
3217/**
3218 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3219 * @tx_ring: ring to be cleaned
3220 **/
3b644cf6 3221static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3222{
06034649 3223 struct igb_tx_buffer *buffer_info;
9d5c8243 3224 unsigned long size;
6ad4edfc 3225 u16 i;
9d5c8243 3226
06034649 3227 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3228 return;
3229 /* Free all the Tx ring sk_buffs */
3230
3231 for (i = 0; i < tx_ring->count; i++) {
06034649 3232 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3233 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3234 }
3235
06034649
AD
3236 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3237 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3238
3239 /* Zero out the descriptor ring */
9d5c8243
AK
3240 memset(tx_ring->desc, 0, tx_ring->size);
3241
3242 tx_ring->next_to_use = 0;
3243 tx_ring->next_to_clean = 0;
9d5c8243
AK
3244}
3245
3246/**
3247 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3248 * @adapter: board private structure
3249 **/
3250static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3251{
3252 int i;
3253
3254 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3255 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3256}
3257
3258/**
3259 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3260 * @rx_ring: ring to clean the resources from
3261 *
3262 * Free all receive software resources
3263 **/
68fd9910 3264void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3265{
3b644cf6 3266 igb_clean_rx_ring(rx_ring);
9d5c8243 3267
06034649
AD
3268 vfree(rx_ring->rx_buffer_info);
3269 rx_ring->rx_buffer_info = NULL;
9d5c8243 3270
439705e1
AD
3271 /* if not set, then don't free */
3272 if (!rx_ring->desc)
3273 return;
3274
59d71989
AD
3275 dma_free_coherent(rx_ring->dev, rx_ring->size,
3276 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3277
3278 rx_ring->desc = NULL;
3279}
3280
3281/**
3282 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3283 * @adapter: board private structure
3284 *
3285 * Free all receive software resources
3286 **/
3287static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3288{
3289 int i;
3290
3291 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3292 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3293}
3294
3295/**
3296 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3297 * @rx_ring: ring to free buffers from
3298 **/
3b644cf6 3299static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3300{
9d5c8243 3301 unsigned long size;
c023cd88 3302 u16 i;
9d5c8243 3303
06034649 3304 if (!rx_ring->rx_buffer_info)
9d5c8243 3305 return;
439705e1 3306
9d5c8243
AK
3307 /* Free all the Rx ring sk_buffs */
3308 for (i = 0; i < rx_ring->count; i++) {
06034649 3309 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3310 if (buffer_info->dma) {
59d71989 3311 dma_unmap_single(rx_ring->dev,
80785298 3312 buffer_info->dma,
44390ca6 3313 IGB_RX_HDR_LEN,
59d71989 3314 DMA_FROM_DEVICE);
9d5c8243
AK
3315 buffer_info->dma = 0;
3316 }
3317
3318 if (buffer_info->skb) {
3319 dev_kfree_skb(buffer_info->skb);
3320 buffer_info->skb = NULL;
3321 }
6ec43fe6 3322 if (buffer_info->page_dma) {
59d71989 3323 dma_unmap_page(rx_ring->dev,
80785298 3324 buffer_info->page_dma,
6ec43fe6 3325 PAGE_SIZE / 2,
59d71989 3326 DMA_FROM_DEVICE);
6ec43fe6
AD
3327 buffer_info->page_dma = 0;
3328 }
9d5c8243 3329 if (buffer_info->page) {
9d5c8243
AK
3330 put_page(buffer_info->page);
3331 buffer_info->page = NULL;
bf36c1a0 3332 buffer_info->page_offset = 0;
9d5c8243
AK
3333 }
3334 }
3335
06034649
AD
3336 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3337 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3338
3339 /* Zero out the descriptor ring */
3340 memset(rx_ring->desc, 0, rx_ring->size);
3341
3342 rx_ring->next_to_clean = 0;
3343 rx_ring->next_to_use = 0;
9d5c8243
AK
3344}
3345
3346/**
3347 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3348 * @adapter: board private structure
3349 **/
3350static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3351{
3352 int i;
3353
3354 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3355 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3356}
3357
3358/**
3359 * igb_set_mac - Change the Ethernet Address of the NIC
3360 * @netdev: network interface device structure
3361 * @p: pointer to an address structure
3362 *
3363 * Returns 0 on success, negative on failure
3364 **/
3365static int igb_set_mac(struct net_device *netdev, void *p)
3366{
3367 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3368 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3369 struct sockaddr *addr = p;
3370
3371 if (!is_valid_ether_addr(addr->sa_data))
3372 return -EADDRNOTAVAIL;
3373
3374 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3375 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3376
26ad9178
AD
3377 /* set the correct pool for the new PF MAC address in entry 0 */
3378 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3379 adapter->vfs_allocated_count);
e1739522 3380
9d5c8243
AK
3381 return 0;
3382}
3383
3384/**
68d480c4 3385 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3386 * @netdev: network interface device structure
3387 *
68d480c4
AD
3388 * Writes multicast address list to the MTA hash table.
3389 * Returns: -ENOMEM on failure
3390 * 0 on no addresses written
3391 * X on writing X addresses to MTA
9d5c8243 3392 **/
68d480c4 3393static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3394{
3395 struct igb_adapter *adapter = netdev_priv(netdev);
3396 struct e1000_hw *hw = &adapter->hw;
22bedad3 3397 struct netdev_hw_addr *ha;
68d480c4 3398 u8 *mta_list;
9d5c8243
AK
3399 int i;
3400
4cd24eaf 3401 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3402 /* nothing to program, so clear mc list */
3403 igb_update_mc_addr_list(hw, NULL, 0);
3404 igb_restore_vf_multicasts(adapter);
3405 return 0;
3406 }
9d5c8243 3407
4cd24eaf 3408 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3409 if (!mta_list)
3410 return -ENOMEM;
ff41f8dc 3411
68d480c4 3412 /* The shared function expects a packed array of only addresses. */
48e2f183 3413 i = 0;
22bedad3
JP
3414 netdev_for_each_mc_addr(ha, netdev)
3415 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3416
68d480c4
AD
3417 igb_update_mc_addr_list(hw, mta_list, i);
3418 kfree(mta_list);
3419
4cd24eaf 3420 return netdev_mc_count(netdev);
68d480c4
AD
3421}
3422
3423/**
3424 * igb_write_uc_addr_list - write unicast addresses to RAR table
3425 * @netdev: network interface device structure
3426 *
3427 * Writes unicast address list to the RAR table.
3428 * Returns: -ENOMEM on failure/insufficient address space
3429 * 0 on no addresses written
3430 * X on writing X addresses to the RAR table
3431 **/
3432static int igb_write_uc_addr_list(struct net_device *netdev)
3433{
3434 struct igb_adapter *adapter = netdev_priv(netdev);
3435 struct e1000_hw *hw = &adapter->hw;
3436 unsigned int vfn = adapter->vfs_allocated_count;
3437 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3438 int count = 0;
3439
3440 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3441 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3442 return -ENOMEM;
9d5c8243 3443
32e7bfc4 3444 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3445 struct netdev_hw_addr *ha;
32e7bfc4
JP
3446
3447 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3448 if (!rar_entries)
3449 break;
26ad9178
AD
3450 igb_rar_set_qsel(adapter, ha->addr,
3451 rar_entries--,
68d480c4
AD
3452 vfn);
3453 count++;
ff41f8dc
AD
3454 }
3455 }
3456 /* write the addresses in reverse order to avoid write combining */
3457 for (; rar_entries > 0 ; rar_entries--) {
3458 wr32(E1000_RAH(rar_entries), 0);
3459 wr32(E1000_RAL(rar_entries), 0);
3460 }
3461 wrfl();
3462
68d480c4
AD
3463 return count;
3464}
3465
3466/**
3467 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3468 * @netdev: network interface device structure
3469 *
3470 * The set_rx_mode entry point is called whenever the unicast or multicast
3471 * address lists or the network interface flags are updated. This routine is
3472 * responsible for configuring the hardware for proper unicast, multicast,
3473 * promiscuous mode, and all-multi behavior.
3474 **/
3475static void igb_set_rx_mode(struct net_device *netdev)
3476{
3477 struct igb_adapter *adapter = netdev_priv(netdev);
3478 struct e1000_hw *hw = &adapter->hw;
3479 unsigned int vfn = adapter->vfs_allocated_count;
3480 u32 rctl, vmolr = 0;
3481 int count;
3482
3483 /* Check for Promiscuous and All Multicast modes */
3484 rctl = rd32(E1000_RCTL);
3485
3486 /* clear the effected bits */
3487 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3488
3489 if (netdev->flags & IFF_PROMISC) {
3490 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3491 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3492 } else {
3493 if (netdev->flags & IFF_ALLMULTI) {
3494 rctl |= E1000_RCTL_MPE;
3495 vmolr |= E1000_VMOLR_MPME;
3496 } else {
3497 /*
3498 * Write addresses to the MTA, if the attempt fails
25985edc 3499 * then we should just turn on promiscuous mode so
68d480c4
AD
3500 * that we can at least receive multicast traffic
3501 */
3502 count = igb_write_mc_addr_list(netdev);
3503 if (count < 0) {
3504 rctl |= E1000_RCTL_MPE;
3505 vmolr |= E1000_VMOLR_MPME;
3506 } else if (count) {
3507 vmolr |= E1000_VMOLR_ROMPE;
3508 }
3509 }
3510 /*
3511 * Write addresses to available RAR registers, if there is not
3512 * sufficient space to store all the addresses then enable
25985edc 3513 * unicast promiscuous mode
68d480c4
AD
3514 */
3515 count = igb_write_uc_addr_list(netdev);
3516 if (count < 0) {
3517 rctl |= E1000_RCTL_UPE;
3518 vmolr |= E1000_VMOLR_ROPE;
3519 }
3520 rctl |= E1000_RCTL_VFE;
28fc06f5 3521 }
68d480c4 3522 wr32(E1000_RCTL, rctl);
28fc06f5 3523
68d480c4
AD
3524 /*
3525 * In order to support SR-IOV and eventually VMDq it is necessary to set
3526 * the VMOLR to enable the appropriate modes. Without this workaround
3527 * we will have issues with VLAN tag stripping not being done for frames
3528 * that are only arriving because we are the default pool
3529 */
3530 if (hw->mac.type < e1000_82576)
28fc06f5 3531 return;
9d5c8243 3532
68d480c4
AD
3533 vmolr |= rd32(E1000_VMOLR(vfn)) &
3534 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3535 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3536 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3537}
3538
13800469
GR
3539static void igb_check_wvbr(struct igb_adapter *adapter)
3540{
3541 struct e1000_hw *hw = &adapter->hw;
3542 u32 wvbr = 0;
3543
3544 switch (hw->mac.type) {
3545 case e1000_82576:
3546 case e1000_i350:
3547 if (!(wvbr = rd32(E1000_WVBR)))
3548 return;
3549 break;
3550 default:
3551 break;
3552 }
3553
3554 adapter->wvbr |= wvbr;
3555}
3556
3557#define IGB_STAGGERED_QUEUE_OFFSET 8
3558
3559static void igb_spoof_check(struct igb_adapter *adapter)
3560{
3561 int j;
3562
3563 if (!adapter->wvbr)
3564 return;
3565
3566 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3567 if (adapter->wvbr & (1 << j) ||
3568 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3569 dev_warn(&adapter->pdev->dev,
3570 "Spoof event(s) detected on VF %d\n", j);
3571 adapter->wvbr &=
3572 ~((1 << j) |
3573 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3574 }
3575 }
3576}
3577
9d5c8243
AK
3578/* Need to wait a few seconds after link up to get diagnostic information from
3579 * the phy */
3580static void igb_update_phy_info(unsigned long data)
3581{
3582 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3583 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3584}
3585
4d6b725e
AD
3586/**
3587 * igb_has_link - check shared code for link and determine up/down
3588 * @adapter: pointer to driver private info
3589 **/
3145535a 3590bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3591{
3592 struct e1000_hw *hw = &adapter->hw;
3593 bool link_active = false;
3594 s32 ret_val = 0;
3595
3596 /* get_link_status is set on LSC (link status) interrupt or
3597 * rx sequence error interrupt. get_link_status will stay
3598 * false until the e1000_check_for_link establishes link
3599 * for copper adapters ONLY
3600 */
3601 switch (hw->phy.media_type) {
3602 case e1000_media_type_copper:
3603 if (hw->mac.get_link_status) {
3604 ret_val = hw->mac.ops.check_for_link(hw);
3605 link_active = !hw->mac.get_link_status;
3606 } else {
3607 link_active = true;
3608 }
3609 break;
4d6b725e
AD
3610 case e1000_media_type_internal_serdes:
3611 ret_val = hw->mac.ops.check_for_link(hw);
3612 link_active = hw->mac.serdes_has_link;
3613 break;
3614 default:
3615 case e1000_media_type_unknown:
3616 break;
3617 }
3618
3619 return link_active;
3620}
3621
563988dc
SA
3622static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3623{
3624 bool ret = false;
3625 u32 ctrl_ext, thstat;
3626
3627 /* check for thermal sensor event on i350, copper only */
3628 if (hw->mac.type == e1000_i350) {
3629 thstat = rd32(E1000_THSTAT);
3630 ctrl_ext = rd32(E1000_CTRL_EXT);
3631
3632 if ((hw->phy.media_type == e1000_media_type_copper) &&
3633 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3634 ret = !!(thstat & event);
3635 }
3636 }
3637
3638 return ret;
3639}
3640
9d5c8243
AK
3641/**
3642 * igb_watchdog - Timer Call-back
3643 * @data: pointer to adapter cast into an unsigned long
3644 **/
3645static void igb_watchdog(unsigned long data)
3646{
3647 struct igb_adapter *adapter = (struct igb_adapter *)data;
3648 /* Do the rest outside of interrupt context */
3649 schedule_work(&adapter->watchdog_task);
3650}
3651
3652static void igb_watchdog_task(struct work_struct *work)
3653{
3654 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3655 struct igb_adapter,
3656 watchdog_task);
9d5c8243 3657 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3658 struct net_device *netdev = adapter->netdev;
563988dc 3659 u32 link;
7a6ea550 3660 int i;
9d5c8243 3661
4d6b725e 3662 link = igb_has_link(adapter);
9d5c8243
AK
3663 if (link) {
3664 if (!netif_carrier_ok(netdev)) {
3665 u32 ctrl;
330a6d6a
AD
3666 hw->mac.ops.get_speed_and_duplex(hw,
3667 &adapter->link_speed,
3668 &adapter->link_duplex);
9d5c8243
AK
3669
3670 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3671 /* Links status message must follow this format */
3672 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3673 "Flow Control: %s\n",
559e9c49
AD
3674 netdev->name,
3675 adapter->link_speed,
3676 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3677 "Full Duplex" : "Half Duplex",
559e9c49
AD
3678 ((ctrl & E1000_CTRL_TFCE) &&
3679 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3680 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3681 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3682
563988dc
SA
3683 /* check for thermal sensor event */
3684 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3685 printk(KERN_INFO "igb: %s The network adapter "
3686 "link speed was downshifted "
3687 "because it overheated.\n",
3688 netdev->name);
7ef5ed1c 3689 }
563988dc 3690
d07f3e37 3691 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3692 adapter->tx_timeout_factor = 1;
3693 switch (adapter->link_speed) {
3694 case SPEED_10:
9d5c8243
AK
3695 adapter->tx_timeout_factor = 14;
3696 break;
3697 case SPEED_100:
9d5c8243
AK
3698 /* maybe add some timeout factor ? */
3699 break;
3700 }
3701
3702 netif_carrier_on(netdev);
9d5c8243 3703
4ae196df 3704 igb_ping_all_vfs(adapter);
17dc566c 3705 igb_check_vf_rate_limit(adapter);
4ae196df 3706
4b1a9877 3707 /* link state has changed, schedule phy info update */
9d5c8243
AK
3708 if (!test_bit(__IGB_DOWN, &adapter->state))
3709 mod_timer(&adapter->phy_info_timer,
3710 round_jiffies(jiffies + 2 * HZ));
3711 }
3712 } else {
3713 if (netif_carrier_ok(netdev)) {
3714 adapter->link_speed = 0;
3715 adapter->link_duplex = 0;
563988dc
SA
3716
3717 /* check for thermal sensor event */
3718 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3719 printk(KERN_ERR "igb: %s The network adapter "
3720 "was stopped because it "
3721 "overheated.\n",
7ef5ed1c 3722 netdev->name);
7ef5ed1c 3723 }
563988dc 3724
527d47c1
AD
3725 /* Links status message must follow this format */
3726 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3727 netdev->name);
9d5c8243 3728 netif_carrier_off(netdev);
4b1a9877 3729
4ae196df
AD
3730 igb_ping_all_vfs(adapter);
3731
4b1a9877 3732 /* link state has changed, schedule phy info update */
9d5c8243
AK
3733 if (!test_bit(__IGB_DOWN, &adapter->state))
3734 mod_timer(&adapter->phy_info_timer,
3735 round_jiffies(jiffies + 2 * HZ));
3736 }
3737 }
3738
12dcd86b
ED
3739 spin_lock(&adapter->stats64_lock);
3740 igb_update_stats(adapter, &adapter->stats64);
3741 spin_unlock(&adapter->stats64_lock);
9d5c8243 3742
dbabb065 3743 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3744 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3745 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3746 /* We've lost link, so the controller stops DMA,
3747 * but we've got queued Tx work that's never going
3748 * to get done, so reset controller to flush Tx.
3749 * (Do the reset outside of interrupt context). */
dbabb065
AD
3750 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3751 adapter->tx_timeout_count++;
3752 schedule_work(&adapter->reset_task);
3753 /* return immediately since reset is imminent */
3754 return;
3755 }
9d5c8243 3756 }
9d5c8243 3757
dbabb065
AD
3758 /* Force detection of hung controller every watchdog period */
3759 tx_ring->detect_tx_hung = true;
3760 }
f7ba205e 3761
9d5c8243 3762 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3763 if (adapter->msix_entries) {
047e0030
AD
3764 u32 eics = 0;
3765 for (i = 0; i < adapter->num_q_vectors; i++) {
3766 struct igb_q_vector *q_vector = adapter->q_vector[i];
3767 eics |= q_vector->eims_value;
3768 }
7a6ea550
AD
3769 wr32(E1000_EICS, eics);
3770 } else {
3771 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3772 }
9d5c8243 3773
13800469
GR
3774 igb_spoof_check(adapter);
3775
9d5c8243
AK
3776 /* Reset the timer */
3777 if (!test_bit(__IGB_DOWN, &adapter->state))
3778 mod_timer(&adapter->watchdog_timer,
3779 round_jiffies(jiffies + 2 * HZ));
3780}
3781
3782enum latency_range {
3783 lowest_latency = 0,
3784 low_latency = 1,
3785 bulk_latency = 2,
3786 latency_invalid = 255
3787};
3788
6eb5a7f1
AD
3789/**
3790 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3791 *
3792 * Stores a new ITR value based on strictly on packet size. This
3793 * algorithm is less sophisticated than that used in igb_update_itr,
3794 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3795 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3796 * were determined based on theoretical maximum wire speed and testing
3797 * data, in order to minimize response time while increasing bulk
3798 * throughput.
3799 * This functionality is controlled by the InterruptThrottleRate module
3800 * parameter (see igb_param.c)
3801 * NOTE: This function is called only when operating in a multiqueue
3802 * receive environment.
047e0030 3803 * @q_vector: pointer to q_vector
6eb5a7f1 3804 **/
047e0030 3805static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3806{
047e0030 3807 int new_val = q_vector->itr_val;
6eb5a7f1 3808 int avg_wire_size = 0;
047e0030 3809 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3810 unsigned int packets;
9d5c8243 3811
6eb5a7f1
AD
3812 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3813 * ints/sec - ITR timer value of 120 ticks.
3814 */
3815 if (adapter->link_speed != SPEED_1000) {
0ba82994 3816 new_val = IGB_4K_ITR;
6eb5a7f1 3817 goto set_itr_val;
9d5c8243 3818 }
047e0030 3819
0ba82994
AD
3820 packets = q_vector->rx.total_packets;
3821 if (packets)
3822 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3823
0ba82994
AD
3824 packets = q_vector->tx.total_packets;
3825 if (packets)
3826 avg_wire_size = max_t(u32, avg_wire_size,
3827 q_vector->tx.total_bytes / packets);
047e0030
AD
3828
3829 /* if avg_wire_size isn't set no work was done */
3830 if (!avg_wire_size)
3831 goto clear_counts;
9d5c8243 3832
6eb5a7f1
AD
3833 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3834 avg_wire_size += 24;
3835
3836 /* Don't starve jumbo frames */
3837 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3838
6eb5a7f1
AD
3839 /* Give a little boost to mid-size frames */
3840 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3841 new_val = avg_wire_size / 3;
3842 else
3843 new_val = avg_wire_size / 2;
9d5c8243 3844
0ba82994
AD
3845 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3846 if (new_val < IGB_20K_ITR &&
3847 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3848 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3849 new_val = IGB_20K_ITR;
abe1c363 3850
6eb5a7f1 3851set_itr_val:
047e0030
AD
3852 if (new_val != q_vector->itr_val) {
3853 q_vector->itr_val = new_val;
3854 q_vector->set_itr = 1;
9d5c8243 3855 }
6eb5a7f1 3856clear_counts:
0ba82994
AD
3857 q_vector->rx.total_bytes = 0;
3858 q_vector->rx.total_packets = 0;
3859 q_vector->tx.total_bytes = 0;
3860 q_vector->tx.total_packets = 0;
9d5c8243
AK
3861}
3862
3863/**
3864 * igb_update_itr - update the dynamic ITR value based on statistics
3865 * Stores a new ITR value based on packets and byte
3866 * counts during the last interrupt. The advantage of per interrupt
3867 * computation is faster updates and more accurate ITR for the current
3868 * traffic pattern. Constants in this function were computed
3869 * based on theoretical maximum wire speed and thresholds were set based
3870 * on testing data as well as attempting to minimize response time
3871 * while increasing bulk throughput.
3872 * this functionality is controlled by the InterruptThrottleRate module
3873 * parameter (see igb_param.c)
3874 * NOTE: These calculations are only valid when operating in a single-
3875 * queue environment.
0ba82994
AD
3876 * @q_vector: pointer to q_vector
3877 * @ring_container: ring info to update the itr for
9d5c8243 3878 **/
0ba82994
AD
3879static void igb_update_itr(struct igb_q_vector *q_vector,
3880 struct igb_ring_container *ring_container)
9d5c8243 3881{
0ba82994
AD
3882 unsigned int packets = ring_container->total_packets;
3883 unsigned int bytes = ring_container->total_bytes;
3884 u8 itrval = ring_container->itr;
9d5c8243 3885
0ba82994 3886 /* no packets, exit with status unchanged */
9d5c8243 3887 if (packets == 0)
0ba82994 3888 return;
9d5c8243 3889
0ba82994 3890 switch (itrval) {
9d5c8243
AK
3891 case lowest_latency:
3892 /* handle TSO and jumbo frames */
3893 if (bytes/packets > 8000)
0ba82994 3894 itrval = bulk_latency;
9d5c8243 3895 else if ((packets < 5) && (bytes > 512))
0ba82994 3896 itrval = low_latency;
9d5c8243
AK
3897 break;
3898 case low_latency: /* 50 usec aka 20000 ints/s */
3899 if (bytes > 10000) {
3900 /* this if handles the TSO accounting */
3901 if (bytes/packets > 8000) {
0ba82994 3902 itrval = bulk_latency;
9d5c8243 3903 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3904 itrval = bulk_latency;
9d5c8243 3905 } else if ((packets > 35)) {
0ba82994 3906 itrval = lowest_latency;
9d5c8243
AK
3907 }
3908 } else if (bytes/packets > 2000) {
0ba82994 3909 itrval = bulk_latency;
9d5c8243 3910 } else if (packets <= 2 && bytes < 512) {
0ba82994 3911 itrval = lowest_latency;
9d5c8243
AK
3912 }
3913 break;
3914 case bulk_latency: /* 250 usec aka 4000 ints/s */
3915 if (bytes > 25000) {
3916 if (packets > 35)
0ba82994 3917 itrval = low_latency;
1e5c3d21 3918 } else if (bytes < 1500) {
0ba82994 3919 itrval = low_latency;
9d5c8243
AK
3920 }
3921 break;
3922 }
3923
0ba82994
AD
3924 /* clear work counters since we have the values we need */
3925 ring_container->total_bytes = 0;
3926 ring_container->total_packets = 0;
3927
3928 /* write updated itr to ring container */
3929 ring_container->itr = itrval;
9d5c8243
AK
3930}
3931
0ba82994 3932static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 3933{
0ba82994 3934 struct igb_adapter *adapter = q_vector->adapter;
047e0030 3935 u32 new_itr = q_vector->itr_val;
0ba82994 3936 u8 current_itr = 0;
9d5c8243
AK
3937
3938 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3939 if (adapter->link_speed != SPEED_1000) {
3940 current_itr = 0;
0ba82994 3941 new_itr = IGB_4K_ITR;
9d5c8243
AK
3942 goto set_itr_now;
3943 }
3944
0ba82994
AD
3945 igb_update_itr(q_vector, &q_vector->tx);
3946 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 3947
0ba82994 3948 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 3949
6eb5a7f1 3950 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
3951 if (current_itr == lowest_latency &&
3952 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3953 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
3954 current_itr = low_latency;
3955
9d5c8243
AK
3956 switch (current_itr) {
3957 /* counts and packets in update_itr are dependent on these numbers */
3958 case lowest_latency:
0ba82994 3959 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
3960 break;
3961 case low_latency:
0ba82994 3962 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
3963 break;
3964 case bulk_latency:
0ba82994 3965 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
3966 break;
3967 default:
3968 break;
3969 }
3970
3971set_itr_now:
047e0030 3972 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3973 /* this attempts to bias the interrupt rate towards Bulk
3974 * by adding intermediate steps when interrupt rate is
3975 * increasing */
047e0030
AD
3976 new_itr = new_itr > q_vector->itr_val ?
3977 max((new_itr * q_vector->itr_val) /
3978 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 3979 new_itr) :
9d5c8243
AK
3980 new_itr;
3981 /* Don't write the value here; it resets the adapter's
3982 * internal timer, and causes us to delay far longer than
3983 * we should between interrupts. Instead, we write the ITR
3984 * value at the beginning of the next interrupt so the timing
3985 * ends up being correct.
3986 */
047e0030
AD
3987 q_vector->itr_val = new_itr;
3988 q_vector->set_itr = 1;
9d5c8243 3989 }
9d5c8243
AK
3990}
3991
7d13a7d0
AD
3992void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3993 u32 type_tucmd, u32 mss_l4len_idx)
3994{
3995 struct e1000_adv_tx_context_desc *context_desc;
3996 u16 i = tx_ring->next_to_use;
3997
3998 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3999
4000 i++;
4001 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4002
4003 /* set bits to identify this as an advanced context descriptor */
4004 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4005
4006 /* For 82575, context index must be unique per ring. */
866cff06 4007 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4008 mss_l4len_idx |= tx_ring->reg_idx << 4;
4009
4010 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4011 context_desc->seqnum_seed = 0;
4012 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4013 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4014}
4015
7af40ad9
AD
4016static int igb_tso(struct igb_ring *tx_ring,
4017 struct igb_tx_buffer *first,
4018 u8 *hdr_len)
9d5c8243 4019{
7af40ad9 4020 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4021 u32 vlan_macip_lens, type_tucmd;
4022 u32 mss_l4len_idx, l4len;
4023
4024 if (!skb_is_gso(skb))
4025 return 0;
9d5c8243
AK
4026
4027 if (skb_header_cloned(skb)) {
7af40ad9 4028 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4029 if (err)
4030 return err;
4031 }
4032
7d13a7d0
AD
4033 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4034 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4035
7af40ad9 4036 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4037 struct iphdr *iph = ip_hdr(skb);
4038 iph->tot_len = 0;
4039 iph->check = 0;
4040 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4041 iph->daddr, 0,
4042 IPPROTO_TCP,
4043 0);
7d13a7d0 4044 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4045 first->tx_flags |= IGB_TX_FLAGS_TSO |
4046 IGB_TX_FLAGS_CSUM |
4047 IGB_TX_FLAGS_IPV4;
8e1e8a47 4048 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4049 ipv6_hdr(skb)->payload_len = 0;
4050 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4051 &ipv6_hdr(skb)->daddr,
4052 0, IPPROTO_TCP, 0);
7af40ad9
AD
4053 first->tx_flags |= IGB_TX_FLAGS_TSO |
4054 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4055 }
4056
7af40ad9 4057 /* compute header lengths */
7d13a7d0
AD
4058 l4len = tcp_hdrlen(skb);
4059 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4060
7af40ad9
AD
4061 /* update gso size and bytecount with header size */
4062 first->gso_segs = skb_shinfo(skb)->gso_segs;
4063 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4064
9d5c8243 4065 /* MSS L4LEN IDX */
7d13a7d0
AD
4066 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4067 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4068
7d13a7d0
AD
4069 /* VLAN MACLEN IPLEN */
4070 vlan_macip_lens = skb_network_header_len(skb);
4071 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4072 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4073
7d13a7d0 4074 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4075
7d13a7d0 4076 return 1;
9d5c8243
AK
4077}
4078
7af40ad9 4079static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4080{
7af40ad9 4081 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4082 u32 vlan_macip_lens = 0;
4083 u32 mss_l4len_idx = 0;
4084 u32 type_tucmd = 0;
9d5c8243 4085
7d13a7d0 4086 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4087 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4088 return;
7d13a7d0
AD
4089 } else {
4090 u8 l4_hdr = 0;
7af40ad9 4091 switch (first->protocol) {
7d13a7d0
AD
4092 case __constant_htons(ETH_P_IP):
4093 vlan_macip_lens |= skb_network_header_len(skb);
4094 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4095 l4_hdr = ip_hdr(skb)->protocol;
4096 break;
4097 case __constant_htons(ETH_P_IPV6):
4098 vlan_macip_lens |= skb_network_header_len(skb);
4099 l4_hdr = ipv6_hdr(skb)->nexthdr;
4100 break;
4101 default:
4102 if (unlikely(net_ratelimit())) {
4103 dev_warn(tx_ring->dev,
4104 "partial checksum but proto=%x!\n",
7af40ad9 4105 first->protocol);
fa4a7ef3 4106 }
7d13a7d0
AD
4107 break;
4108 }
fa4a7ef3 4109
7d13a7d0
AD
4110 switch (l4_hdr) {
4111 case IPPROTO_TCP:
4112 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4113 mss_l4len_idx = tcp_hdrlen(skb) <<
4114 E1000_ADVTXD_L4LEN_SHIFT;
4115 break;
4116 case IPPROTO_SCTP:
4117 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4118 mss_l4len_idx = sizeof(struct sctphdr) <<
4119 E1000_ADVTXD_L4LEN_SHIFT;
4120 break;
4121 case IPPROTO_UDP:
4122 mss_l4len_idx = sizeof(struct udphdr) <<
4123 E1000_ADVTXD_L4LEN_SHIFT;
4124 break;
4125 default:
4126 if (unlikely(net_ratelimit())) {
4127 dev_warn(tx_ring->dev,
4128 "partial checksum but l4 proto=%x!\n",
4129 l4_hdr);
44b0cda3 4130 }
7d13a7d0 4131 break;
9d5c8243 4132 }
7af40ad9
AD
4133
4134 /* update TX checksum flag */
4135 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4136 }
9d5c8243 4137
7d13a7d0 4138 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4139 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4140
7d13a7d0 4141 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4142}
4143
e032afc8
AD
4144static __le32 igb_tx_cmd_type(u32 tx_flags)
4145{
4146 /* set type for advanced descriptor with frame checksum insertion */
4147 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4148 E1000_ADVTXD_DCMD_IFCS |
4149 E1000_ADVTXD_DCMD_DEXT);
4150
4151 /* set HW vlan bit if vlan is present */
4152 if (tx_flags & IGB_TX_FLAGS_VLAN)
4153 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4154
4155 /* set timestamp bit if present */
4156 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4157 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4158
4159 /* set segmentation bits for TSO */
4160 if (tx_flags & IGB_TX_FLAGS_TSO)
4161 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4162
4163 return cmd_type;
4164}
4165
7af40ad9
AD
4166static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4167 union e1000_adv_tx_desc *tx_desc,
4168 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4169{
4170 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4171
4172 /* 82575 requires a unique index per ring if any offload is enabled */
4173 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
866cff06 4174 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4175 olinfo_status |= tx_ring->reg_idx << 4;
4176
4177 /* insert L4 checksum */
4178 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4179 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4180
4181 /* insert IPv4 checksum */
4182 if (tx_flags & IGB_TX_FLAGS_IPV4)
4183 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4184 }
4185
7af40ad9 4186 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4187}
4188
ebe42d16
AD
4189/*
4190 * The largest size we can write to the descriptor is 65535. In order to
4191 * maintain a power of two alignment we have to limit ourselves to 32K.
4192 */
4193#define IGB_MAX_TXD_PWR 15
7af40ad9 4194#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4195
7af40ad9
AD
4196static void igb_tx_map(struct igb_ring *tx_ring,
4197 struct igb_tx_buffer *first,
ebe42d16 4198 const u8 hdr_len)
9d5c8243 4199{
7af40ad9 4200 struct sk_buff *skb = first->skb;
ebe42d16
AD
4201 struct igb_tx_buffer *tx_buffer_info;
4202 union e1000_adv_tx_desc *tx_desc;
4203 dma_addr_t dma;
4204 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4205 unsigned int data_len = skb->data_len;
4206 unsigned int size = skb_headlen(skb);
4207 unsigned int paylen = skb->len - hdr_len;
4208 __le32 cmd_type;
7af40ad9 4209 u32 tx_flags = first->tx_flags;
ebe42d16 4210 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4211
4212 tx_desc = IGB_TX_DESC(tx_ring, i);
4213
7af40ad9 4214 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
ebe42d16
AD
4215 cmd_type = igb_tx_cmd_type(tx_flags);
4216
4217 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4218 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4219 goto dma_error;
9d5c8243 4220
ebe42d16
AD
4221 /* record length, and DMA address */
4222 first->length = size;
4223 first->dma = dma;
ebe42d16
AD
4224 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4225
4226 for (;;) {
4227 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4228 tx_desc->read.cmd_type_len =
4229 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4230
4231 i++;
4232 tx_desc++;
4233 if (i == tx_ring->count) {
4234 tx_desc = IGB_TX_DESC(tx_ring, 0);
4235 i = 0;
4236 }
4237
4238 dma += IGB_MAX_DATA_PER_TXD;
4239 size -= IGB_MAX_DATA_PER_TXD;
4240
4241 tx_desc->read.olinfo_status = 0;
4242 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4243 }
4244
4245 if (likely(!data_len))
4246 break;
2bbfebe2 4247
ebe42d16 4248 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4249
65689fef 4250 i++;
ebe42d16
AD
4251 tx_desc++;
4252 if (i == tx_ring->count) {
4253 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4254 i = 0;
ebe42d16 4255 }
65689fef 4256
ebe42d16
AD
4257 size = frag->size;
4258 data_len -= size;
4259
4260 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4261 size, DMA_TO_DEVICE);
4262 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4263 goto dma_error;
4264
ebe42d16
AD
4265 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4266 tx_buffer_info->length = size;
4267 tx_buffer_info->dma = dma;
4268
4269 tx_desc->read.olinfo_status = 0;
4270 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4271
4272 frag++;
9d5c8243
AK
4273 }
4274
ebe42d16
AD
4275 /* write last descriptor with RS and EOP bits */
4276 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4277 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4278
4279 /* set the timestamp */
4280 first->time_stamp = jiffies;
4281
ebe42d16
AD
4282 /*
4283 * Force memory writes to complete before letting h/w know there
4284 * are new descriptors to fetch. (Only applicable for weak-ordered
4285 * memory model archs, such as IA-64).
4286 *
4287 * We also need this memory barrier to make certain all of the
4288 * status bits have been updated before next_to_watch is written.
4289 */
4290 wmb();
4291
8542db05 4292 /* set next_to_watch value indicating a packet is present */
ebe42d16 4293 first->next_to_watch = tx_desc;
9d5c8243 4294
ebe42d16
AD
4295 i++;
4296 if (i == tx_ring->count)
4297 i = 0;
6366ad33 4298
ebe42d16 4299 tx_ring->next_to_use = i;
6366ad33 4300
ebe42d16 4301 writel(i, tx_ring->tail);
6366ad33 4302
ebe42d16
AD
4303 /* we need this if more than one processor can write to our tail
4304 * at a time, it syncronizes IO on IA64/Altix systems */
4305 mmiowb();
4306
4307 return;
4308
4309dma_error:
4310 dev_err(tx_ring->dev, "TX DMA map failed\n");
4311
4312 /* clear dma mappings for failed tx_buffer_info map */
4313 for (;;) {
4314 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4315 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4316 if (tx_buffer_info == first)
4317 break;
a77ff709
NN
4318 if (i == 0)
4319 i = tx_ring->count;
6366ad33 4320 i--;
6366ad33
AD
4321 }
4322
9d5c8243 4323 tx_ring->next_to_use = i;
9d5c8243
AK
4324}
4325
6ad4edfc 4326static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4327{
e694e964
AD
4328 struct net_device *netdev = tx_ring->netdev;
4329
661086df 4330 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4331
9d5c8243
AK
4332 /* Herbert's original patch had:
4333 * smp_mb__after_netif_stop_queue();
4334 * but since that doesn't exist yet, just open code it. */
4335 smp_mb();
4336
4337 /* We need to check again in a case another CPU has just
4338 * made room available. */
c493ea45 4339 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4340 return -EBUSY;
4341
4342 /* A reprieve! */
661086df 4343 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4344
4345 u64_stats_update_begin(&tx_ring->tx_syncp2);
4346 tx_ring->tx_stats.restart_queue2++;
4347 u64_stats_update_end(&tx_ring->tx_syncp2);
4348
9d5c8243
AK
4349 return 0;
4350}
4351
6ad4edfc 4352static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4353{
c493ea45 4354 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4355 return 0;
e694e964 4356 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4357}
4358
cd392f5c
AD
4359netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4360 struct igb_ring *tx_ring)
9d5c8243 4361{
8542db05 4362 struct igb_tx_buffer *first;
ebe42d16 4363 int tso;
91d4ee33 4364 u32 tx_flags = 0;
31f6adbb 4365 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4366 u8 hdr_len = 0;
9d5c8243 4367
9d5c8243
AK
4368 /* need: 1 descriptor per page,
4369 * + 2 desc gap to keep tail from touching head,
4370 * + 1 desc for skb->data,
4371 * + 1 desc for context descriptor,
4372 * otherwise try next time */
e694e964 4373 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4374 /* this is a hard error */
9d5c8243
AK
4375 return NETDEV_TX_BUSY;
4376 }
33af6bcc 4377
7af40ad9
AD
4378 /* record the location of the first descriptor for this packet */
4379 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4380 first->skb = skb;
4381 first->bytecount = skb->len;
4382 first->gso_segs = 1;
4383
2244d07b
OH
4384 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4385 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4386 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4387 }
9d5c8243 4388
eab6d18d 4389 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4390 tx_flags |= IGB_TX_FLAGS_VLAN;
4391 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4392 }
4393
7af40ad9
AD
4394 /* record initial flags and protocol */
4395 first->tx_flags = tx_flags;
4396 first->protocol = protocol;
cdfd01fc 4397
7af40ad9
AD
4398 tso = igb_tso(tx_ring, first, &hdr_len);
4399 if (tso < 0)
7d13a7d0 4400 goto out_drop;
7af40ad9
AD
4401 else if (!tso)
4402 igb_tx_csum(tx_ring, first);
9d5c8243 4403
7af40ad9 4404 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4405
4406 /* Make sure there is space in the ring for the next send. */
e694e964 4407 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4408
9d5c8243 4409 return NETDEV_TX_OK;
7d13a7d0
AD
4410
4411out_drop:
7af40ad9
AD
4412 igb_unmap_and_free_tx_resource(tx_ring, first);
4413
7d13a7d0 4414 return NETDEV_TX_OK;
9d5c8243
AK
4415}
4416
1cc3bd87
AD
4417static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4418 struct sk_buff *skb)
4419{
4420 unsigned int r_idx = skb->queue_mapping;
4421
4422 if (r_idx >= adapter->num_tx_queues)
4423 r_idx = r_idx % adapter->num_tx_queues;
4424
4425 return adapter->tx_ring[r_idx];
4426}
4427
cd392f5c
AD
4428static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4429 struct net_device *netdev)
9d5c8243
AK
4430{
4431 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4432
4433 if (test_bit(__IGB_DOWN, &adapter->state)) {
4434 dev_kfree_skb_any(skb);
4435 return NETDEV_TX_OK;
4436 }
4437
4438 if (skb->len <= 0) {
4439 dev_kfree_skb_any(skb);
4440 return NETDEV_TX_OK;
4441 }
4442
1cc3bd87
AD
4443 /*
4444 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4445 * in order to meet this minimum size requirement.
4446 */
4447 if (skb->len < 17) {
4448 if (skb_padto(skb, 17))
4449 return NETDEV_TX_OK;
4450 skb->len = 17;
4451 }
9d5c8243 4452
1cc3bd87 4453 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4454}
4455
4456/**
4457 * igb_tx_timeout - Respond to a Tx Hang
4458 * @netdev: network interface device structure
4459 **/
4460static void igb_tx_timeout(struct net_device *netdev)
4461{
4462 struct igb_adapter *adapter = netdev_priv(netdev);
4463 struct e1000_hw *hw = &adapter->hw;
4464
4465 /* Do the reset outside of interrupt context */
4466 adapter->tx_timeout_count++;
f7ba205e 4467
55cac248
AD
4468 if (hw->mac.type == e1000_82580)
4469 hw->dev_spec._82575.global_device_reset = true;
4470
9d5c8243 4471 schedule_work(&adapter->reset_task);
265de409
AD
4472 wr32(E1000_EICS,
4473 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4474}
4475
4476static void igb_reset_task(struct work_struct *work)
4477{
4478 struct igb_adapter *adapter;
4479 adapter = container_of(work, struct igb_adapter, reset_task);
4480
c97ec42a
TI
4481 igb_dump(adapter);
4482 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4483 igb_reinit_locked(adapter);
4484}
4485
4486/**
12dcd86b 4487 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4488 * @netdev: network interface device structure
12dcd86b 4489 * @stats: rtnl_link_stats64 pointer
9d5c8243 4490 *
9d5c8243 4491 **/
12dcd86b
ED
4492static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4493 struct rtnl_link_stats64 *stats)
9d5c8243 4494{
12dcd86b
ED
4495 struct igb_adapter *adapter = netdev_priv(netdev);
4496
4497 spin_lock(&adapter->stats64_lock);
4498 igb_update_stats(adapter, &adapter->stats64);
4499 memcpy(stats, &adapter->stats64, sizeof(*stats));
4500 spin_unlock(&adapter->stats64_lock);
4501
4502 return stats;
9d5c8243
AK
4503}
4504
4505/**
4506 * igb_change_mtu - Change the Maximum Transfer Unit
4507 * @netdev: network interface device structure
4508 * @new_mtu: new value for maximum frame size
4509 *
4510 * Returns 0 on success, negative on failure
4511 **/
4512static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4513{
4514 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4515 struct pci_dev *pdev = adapter->pdev;
153285f9 4516 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4517
c809d227 4518 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4519 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4520 return -EINVAL;
4521 }
4522
153285f9 4523#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4524 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4525 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4526 return -EINVAL;
4527 }
4528
4529 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4530 msleep(1);
73cd78f1 4531
9d5c8243
AK
4532 /* igb_down has a dependency on max_frame_size */
4533 adapter->max_frame_size = max_frame;
559e9c49 4534
4c844851
AD
4535 if (netif_running(netdev))
4536 igb_down(adapter);
9d5c8243 4537
090b1795 4538 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4539 netdev->mtu, new_mtu);
4540 netdev->mtu = new_mtu;
4541
4542 if (netif_running(netdev))
4543 igb_up(adapter);
4544 else
4545 igb_reset(adapter);
4546
4547 clear_bit(__IGB_RESETTING, &adapter->state);
4548
4549 return 0;
4550}
4551
4552/**
4553 * igb_update_stats - Update the board statistics counters
4554 * @adapter: board private structure
4555 **/
4556
12dcd86b
ED
4557void igb_update_stats(struct igb_adapter *adapter,
4558 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4559{
4560 struct e1000_hw *hw = &adapter->hw;
4561 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4562 u32 reg, mpc;
9d5c8243 4563 u16 phy_tmp;
3f9c0164
AD
4564 int i;
4565 u64 bytes, packets;
12dcd86b
ED
4566 unsigned int start;
4567 u64 _bytes, _packets;
9d5c8243
AK
4568
4569#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4570
4571 /*
4572 * Prevent stats update while adapter is being reset, or if the pci
4573 * connection is down.
4574 */
4575 if (adapter->link_speed == 0)
4576 return;
4577 if (pci_channel_offline(pdev))
4578 return;
4579
3f9c0164
AD
4580 bytes = 0;
4581 packets = 0;
4582 for (i = 0; i < adapter->num_rx_queues; i++) {
4583 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4584 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4585
3025a446 4586 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4587 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4588
4589 do {
4590 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4591 _bytes = ring->rx_stats.bytes;
4592 _packets = ring->rx_stats.packets;
4593 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4594 bytes += _bytes;
4595 packets += _packets;
3f9c0164
AD
4596 }
4597
128e45eb
AD
4598 net_stats->rx_bytes = bytes;
4599 net_stats->rx_packets = packets;
3f9c0164
AD
4600
4601 bytes = 0;
4602 packets = 0;
4603 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4604 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4605 do {
4606 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4607 _bytes = ring->tx_stats.bytes;
4608 _packets = ring->tx_stats.packets;
4609 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4610 bytes += _bytes;
4611 packets += _packets;
3f9c0164 4612 }
128e45eb
AD
4613 net_stats->tx_bytes = bytes;
4614 net_stats->tx_packets = packets;
3f9c0164
AD
4615
4616 /* read stats registers */
9d5c8243
AK
4617 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4618 adapter->stats.gprc += rd32(E1000_GPRC);
4619 adapter->stats.gorc += rd32(E1000_GORCL);
4620 rd32(E1000_GORCH); /* clear GORCL */
4621 adapter->stats.bprc += rd32(E1000_BPRC);
4622 adapter->stats.mprc += rd32(E1000_MPRC);
4623 adapter->stats.roc += rd32(E1000_ROC);
4624
4625 adapter->stats.prc64 += rd32(E1000_PRC64);
4626 adapter->stats.prc127 += rd32(E1000_PRC127);
4627 adapter->stats.prc255 += rd32(E1000_PRC255);
4628 adapter->stats.prc511 += rd32(E1000_PRC511);
4629 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4630 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4631 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4632 adapter->stats.sec += rd32(E1000_SEC);
4633
fa3d9a6d
MW
4634 mpc = rd32(E1000_MPC);
4635 adapter->stats.mpc += mpc;
4636 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4637 adapter->stats.scc += rd32(E1000_SCC);
4638 adapter->stats.ecol += rd32(E1000_ECOL);
4639 adapter->stats.mcc += rd32(E1000_MCC);
4640 adapter->stats.latecol += rd32(E1000_LATECOL);
4641 adapter->stats.dc += rd32(E1000_DC);
4642 adapter->stats.rlec += rd32(E1000_RLEC);
4643 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4644 adapter->stats.xontxc += rd32(E1000_XONTXC);
4645 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4646 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4647 adapter->stats.fcruc += rd32(E1000_FCRUC);
4648 adapter->stats.gptc += rd32(E1000_GPTC);
4649 adapter->stats.gotc += rd32(E1000_GOTCL);
4650 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4651 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4652 adapter->stats.ruc += rd32(E1000_RUC);
4653 adapter->stats.rfc += rd32(E1000_RFC);
4654 adapter->stats.rjc += rd32(E1000_RJC);
4655 adapter->stats.tor += rd32(E1000_TORH);
4656 adapter->stats.tot += rd32(E1000_TOTH);
4657 adapter->stats.tpr += rd32(E1000_TPR);
4658
4659 adapter->stats.ptc64 += rd32(E1000_PTC64);
4660 adapter->stats.ptc127 += rd32(E1000_PTC127);
4661 adapter->stats.ptc255 += rd32(E1000_PTC255);
4662 adapter->stats.ptc511 += rd32(E1000_PTC511);
4663 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4664 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4665
4666 adapter->stats.mptc += rd32(E1000_MPTC);
4667 adapter->stats.bptc += rd32(E1000_BPTC);
4668
2d0b0f69
NN
4669 adapter->stats.tpt += rd32(E1000_TPT);
4670 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4671
4672 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4673 /* read internal phy specific stats */
4674 reg = rd32(E1000_CTRL_EXT);
4675 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4676 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4677 adapter->stats.tncrs += rd32(E1000_TNCRS);
4678 }
4679
9d5c8243
AK
4680 adapter->stats.tsctc += rd32(E1000_TSCTC);
4681 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4682
4683 adapter->stats.iac += rd32(E1000_IAC);
4684 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4685 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4686 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4687 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4688 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4689 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4690 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4691 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4692
4693 /* Fill out the OS statistics structure */
128e45eb
AD
4694 net_stats->multicast = adapter->stats.mprc;
4695 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4696
4697 /* Rx Errors */
4698
4699 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4700 * our own version based on RUC and ROC */
128e45eb 4701 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4702 adapter->stats.crcerrs + adapter->stats.algnerrc +
4703 adapter->stats.ruc + adapter->stats.roc +
4704 adapter->stats.cexterr;
128e45eb
AD
4705 net_stats->rx_length_errors = adapter->stats.ruc +
4706 adapter->stats.roc;
4707 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4708 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4709 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4710
4711 /* Tx Errors */
128e45eb
AD
4712 net_stats->tx_errors = adapter->stats.ecol +
4713 adapter->stats.latecol;
4714 net_stats->tx_aborted_errors = adapter->stats.ecol;
4715 net_stats->tx_window_errors = adapter->stats.latecol;
4716 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4717
4718 /* Tx Dropped needs to be maintained elsewhere */
4719
4720 /* Phy Stats */
4721 if (hw->phy.media_type == e1000_media_type_copper) {
4722 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4723 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4724 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4725 adapter->phy_stats.idle_errors += phy_tmp;
4726 }
4727 }
4728
4729 /* Management Stats */
4730 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4731 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4732 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4733
4734 /* OS2BMC Stats */
4735 reg = rd32(E1000_MANC);
4736 if (reg & E1000_MANC_EN_BMC2OS) {
4737 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4738 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4739 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4740 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4741 }
9d5c8243
AK
4742}
4743
9d5c8243
AK
4744static irqreturn_t igb_msix_other(int irq, void *data)
4745{
047e0030 4746 struct igb_adapter *adapter = data;
9d5c8243 4747 struct e1000_hw *hw = &adapter->hw;
844290e5 4748 u32 icr = rd32(E1000_ICR);
844290e5 4749 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4750
7f081d40
AD
4751 if (icr & E1000_ICR_DRSTA)
4752 schedule_work(&adapter->reset_task);
4753
047e0030 4754 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4755 /* HW is reporting DMA is out of sync */
4756 adapter->stats.doosync++;
13800469
GR
4757 /* The DMA Out of Sync is also indication of a spoof event
4758 * in IOV mode. Check the Wrong VM Behavior register to
4759 * see if it is really a spoof event. */
4760 igb_check_wvbr(adapter);
dda0e083 4761 }
eebbbdba 4762
4ae196df
AD
4763 /* Check for a mailbox event */
4764 if (icr & E1000_ICR_VMMB)
4765 igb_msg_task(adapter);
4766
4767 if (icr & E1000_ICR_LSC) {
4768 hw->mac.get_link_status = 1;
4769 /* guard against interrupt when we're going down */
4770 if (!test_bit(__IGB_DOWN, &adapter->state))
4771 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4772 }
4773
25568a53
AD
4774 if (adapter->vfs_allocated_count)
4775 wr32(E1000_IMS, E1000_IMS_LSC |
4776 E1000_IMS_VMMB |
4777 E1000_IMS_DOUTSYNC);
4778 else
4779 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4780 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4781
4782 return IRQ_HANDLED;
4783}
4784
047e0030 4785static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4786{
26b39276 4787 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4788 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4789
047e0030
AD
4790 if (!q_vector->set_itr)
4791 return;
73cd78f1 4792
047e0030
AD
4793 if (!itr_val)
4794 itr_val = 0x4;
661086df 4795
26b39276
AD
4796 if (adapter->hw.mac.type == e1000_82575)
4797 itr_val |= itr_val << 16;
661086df 4798 else
0ba82994 4799 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4800
047e0030
AD
4801 writel(itr_val, q_vector->itr_register);
4802 q_vector->set_itr = 0;
6eb5a7f1
AD
4803}
4804
047e0030 4805static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4806{
047e0030 4807 struct igb_q_vector *q_vector = data;
9d5c8243 4808
047e0030
AD
4809 /* Write the ITR value calculated from the previous interrupt. */
4810 igb_write_itr(q_vector);
9d5c8243 4811
047e0030 4812 napi_schedule(&q_vector->napi);
844290e5 4813
047e0030 4814 return IRQ_HANDLED;
fe4506b6
JC
4815}
4816
421e02f0 4817#ifdef CONFIG_IGB_DCA
047e0030 4818static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4819{
047e0030 4820 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4821 struct e1000_hw *hw = &adapter->hw;
4822 int cpu = get_cpu();
fe4506b6 4823
047e0030
AD
4824 if (q_vector->cpu == cpu)
4825 goto out_no_update;
4826
0ba82994
AD
4827 if (q_vector->tx.ring) {
4828 int q = q_vector->tx.ring->reg_idx;
047e0030
AD
4829 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4830 if (hw->mac.type == e1000_82575) {
4831 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4832 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4833 } else {
047e0030
AD
4834 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4835 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4836 E1000_DCA_TXCTRL_CPUID_SHIFT;
4837 }
4838 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4839 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4840 }
0ba82994
AD
4841 if (q_vector->rx.ring) {
4842 int q = q_vector->rx.ring->reg_idx;
047e0030
AD
4843 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4844 if (hw->mac.type == e1000_82575) {
2d064c06 4845 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4846 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4847 } else {
4848 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4849 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4850 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4851 }
fe4506b6
JC
4852 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4853 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4854 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4855 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4856 }
047e0030
AD
4857 q_vector->cpu = cpu;
4858out_no_update:
fe4506b6
JC
4859 put_cpu();
4860}
4861
4862static void igb_setup_dca(struct igb_adapter *adapter)
4863{
7e0e99ef 4864 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4865 int i;
4866
7dfc16fa 4867 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4868 return;
4869
7e0e99ef
AD
4870 /* Always use CB2 mode, difference is masked in the CB driver. */
4871 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4872
047e0030 4873 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4874 adapter->q_vector[i]->cpu = -1;
4875 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4876 }
4877}
4878
4879static int __igb_notify_dca(struct device *dev, void *data)
4880{
4881 struct net_device *netdev = dev_get_drvdata(dev);
4882 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4883 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4884 struct e1000_hw *hw = &adapter->hw;
4885 unsigned long event = *(unsigned long *)data;
4886
4887 switch (event) {
4888 case DCA_PROVIDER_ADD:
4889 /* if already enabled, don't do it again */
7dfc16fa 4890 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4891 break;
fe4506b6 4892 if (dca_add_requester(dev) == 0) {
bbd98fe4 4893 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4894 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4895 igb_setup_dca(adapter);
4896 break;
4897 }
4898 /* Fall Through since DCA is disabled. */
4899 case DCA_PROVIDER_REMOVE:
7dfc16fa 4900 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4901 /* without this a class_device is left
047e0030 4902 * hanging around in the sysfs model */
fe4506b6 4903 dca_remove_requester(dev);
090b1795 4904 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4905 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4906 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4907 }
4908 break;
4909 }
bbd98fe4 4910
fe4506b6 4911 return 0;
9d5c8243
AK
4912}
4913
fe4506b6
JC
4914static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4915 void *p)
4916{
4917 int ret_val;
4918
4919 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4920 __igb_notify_dca);
4921
4922 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4923}
421e02f0 4924#endif /* CONFIG_IGB_DCA */
9d5c8243 4925
4ae196df
AD
4926static void igb_ping_all_vfs(struct igb_adapter *adapter)
4927{
4928 struct e1000_hw *hw = &adapter->hw;
4929 u32 ping;
4930 int i;
4931
4932 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4933 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4934 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4935 ping |= E1000_VT_MSGTYPE_CTS;
4936 igb_write_mbx(hw, &ping, 1, i);
4937 }
4938}
4939
7d5753f0
AD
4940static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4941{
4942 struct e1000_hw *hw = &adapter->hw;
4943 u32 vmolr = rd32(E1000_VMOLR(vf));
4944 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4945
d85b9004 4946 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4947 IGB_VF_FLAG_MULTI_PROMISC);
4948 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4949
4950 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4951 vmolr |= E1000_VMOLR_MPME;
d85b9004 4952 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4953 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4954 } else {
4955 /*
4956 * if we have hashes and we are clearing a multicast promisc
4957 * flag we need to write the hashes to the MTA as this step
4958 * was previously skipped
4959 */
4960 if (vf_data->num_vf_mc_hashes > 30) {
4961 vmolr |= E1000_VMOLR_MPME;
4962 } else if (vf_data->num_vf_mc_hashes) {
4963 int j;
4964 vmolr |= E1000_VMOLR_ROMPE;
4965 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4966 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4967 }
4968 }
4969
4970 wr32(E1000_VMOLR(vf), vmolr);
4971
4972 /* there are flags left unprocessed, likely not supported */
4973 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4974 return -EINVAL;
4975
4976 return 0;
4977
4978}
4979
4ae196df
AD
4980static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4981 u32 *msgbuf, u32 vf)
4982{
4983 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4984 u16 *hash_list = (u16 *)&msgbuf[1];
4985 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4986 int i;
4987
7d5753f0 4988 /* salt away the number of multicast addresses assigned
4ae196df
AD
4989 * to this VF for later use to restore when the PF multi cast
4990 * list changes
4991 */
4992 vf_data->num_vf_mc_hashes = n;
4993
7d5753f0
AD
4994 /* only up to 30 hash values supported */
4995 if (n > 30)
4996 n = 30;
4997
4998 /* store the hashes for later use */
4ae196df 4999 for (i = 0; i < n; i++)
a419aef8 5000 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5001
5002 /* Flush and reset the mta with the new values */
ff41f8dc 5003 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5004
5005 return 0;
5006}
5007
5008static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5009{
5010 struct e1000_hw *hw = &adapter->hw;
5011 struct vf_data_storage *vf_data;
5012 int i, j;
5013
5014 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5015 u32 vmolr = rd32(E1000_VMOLR(i));
5016 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5017
4ae196df 5018 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5019
5020 if ((vf_data->num_vf_mc_hashes > 30) ||
5021 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5022 vmolr |= E1000_VMOLR_MPME;
5023 } else if (vf_data->num_vf_mc_hashes) {
5024 vmolr |= E1000_VMOLR_ROMPE;
5025 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5026 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5027 }
5028 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5029 }
5030}
5031
5032static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5033{
5034 struct e1000_hw *hw = &adapter->hw;
5035 u32 pool_mask, reg, vid;
5036 int i;
5037
5038 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5039
5040 /* Find the vlan filter for this id */
5041 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5042 reg = rd32(E1000_VLVF(i));
5043
5044 /* remove the vf from the pool */
5045 reg &= ~pool_mask;
5046
5047 /* if pool is empty then remove entry from vfta */
5048 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5049 (reg & E1000_VLVF_VLANID_ENABLE)) {
5050 reg = 0;
5051 vid = reg & E1000_VLVF_VLANID_MASK;
5052 igb_vfta_set(hw, vid, false);
5053 }
5054
5055 wr32(E1000_VLVF(i), reg);
5056 }
ae641bdc
AD
5057
5058 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5059}
5060
5061static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5062{
5063 struct e1000_hw *hw = &adapter->hw;
5064 u32 reg, i;
5065
51466239
AD
5066 /* The vlvf table only exists on 82576 hardware and newer */
5067 if (hw->mac.type < e1000_82576)
5068 return -1;
5069
5070 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5071 if (!adapter->vfs_allocated_count)
5072 return -1;
5073
5074 /* Find the vlan filter for this id */
5075 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5076 reg = rd32(E1000_VLVF(i));
5077 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5078 vid == (reg & E1000_VLVF_VLANID_MASK))
5079 break;
5080 }
5081
5082 if (add) {
5083 if (i == E1000_VLVF_ARRAY_SIZE) {
5084 /* Did not find a matching VLAN ID entry that was
5085 * enabled. Search for a free filter entry, i.e.
5086 * one without the enable bit set
5087 */
5088 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5089 reg = rd32(E1000_VLVF(i));
5090 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5091 break;
5092 }
5093 }
5094 if (i < E1000_VLVF_ARRAY_SIZE) {
5095 /* Found an enabled/available entry */
5096 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5097
5098 /* if !enabled we need to set this up in vfta */
5099 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5100 /* add VID to filter table */
5101 igb_vfta_set(hw, vid, true);
4ae196df
AD
5102 reg |= E1000_VLVF_VLANID_ENABLE;
5103 }
cad6d05f
AD
5104 reg &= ~E1000_VLVF_VLANID_MASK;
5105 reg |= vid;
4ae196df 5106 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5107
5108 /* do not modify RLPML for PF devices */
5109 if (vf >= adapter->vfs_allocated_count)
5110 return 0;
5111
5112 if (!adapter->vf_data[vf].vlans_enabled) {
5113 u32 size;
5114 reg = rd32(E1000_VMOLR(vf));
5115 size = reg & E1000_VMOLR_RLPML_MASK;
5116 size += 4;
5117 reg &= ~E1000_VMOLR_RLPML_MASK;
5118 reg |= size;
5119 wr32(E1000_VMOLR(vf), reg);
5120 }
ae641bdc 5121
51466239 5122 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5123 return 0;
5124 }
5125 } else {
5126 if (i < E1000_VLVF_ARRAY_SIZE) {
5127 /* remove vf from the pool */
5128 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5129 /* if pool is empty then remove entry from vfta */
5130 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5131 reg = 0;
5132 igb_vfta_set(hw, vid, false);
5133 }
5134 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5135
5136 /* do not modify RLPML for PF devices */
5137 if (vf >= adapter->vfs_allocated_count)
5138 return 0;
5139
5140 adapter->vf_data[vf].vlans_enabled--;
5141 if (!adapter->vf_data[vf].vlans_enabled) {
5142 u32 size;
5143 reg = rd32(E1000_VMOLR(vf));
5144 size = reg & E1000_VMOLR_RLPML_MASK;
5145 size -= 4;
5146 reg &= ~E1000_VMOLR_RLPML_MASK;
5147 reg |= size;
5148 wr32(E1000_VMOLR(vf), reg);
5149 }
4ae196df
AD
5150 }
5151 }
8151d294
WM
5152 return 0;
5153}
5154
5155static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5156{
5157 struct e1000_hw *hw = &adapter->hw;
5158
5159 if (vid)
5160 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5161 else
5162 wr32(E1000_VMVIR(vf), 0);
5163}
5164
5165static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5166 int vf, u16 vlan, u8 qos)
5167{
5168 int err = 0;
5169 struct igb_adapter *adapter = netdev_priv(netdev);
5170
5171 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5172 return -EINVAL;
5173 if (vlan || qos) {
5174 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5175 if (err)
5176 goto out;
5177 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5178 igb_set_vmolr(adapter, vf, !vlan);
5179 adapter->vf_data[vf].pf_vlan = vlan;
5180 adapter->vf_data[vf].pf_qos = qos;
5181 dev_info(&adapter->pdev->dev,
5182 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5183 if (test_bit(__IGB_DOWN, &adapter->state)) {
5184 dev_warn(&adapter->pdev->dev,
5185 "The VF VLAN has been set,"
5186 " but the PF device is not up.\n");
5187 dev_warn(&adapter->pdev->dev,
5188 "Bring the PF device up before"
5189 " attempting to use the VF device.\n");
5190 }
5191 } else {
5192 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5193 false, vf);
5194 igb_set_vmvir(adapter, vlan, vf);
5195 igb_set_vmolr(adapter, vf, true);
5196 adapter->vf_data[vf].pf_vlan = 0;
5197 adapter->vf_data[vf].pf_qos = 0;
5198 }
5199out:
5200 return err;
4ae196df
AD
5201}
5202
5203static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5204{
5205 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5206 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5207
5208 return igb_vlvf_set(adapter, vid, add, vf);
5209}
5210
f2ca0dbe 5211static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5212{
8fa7e0f7
GR
5213 /* clear flags - except flag that indicates PF has set the MAC */
5214 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5215 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5216
5217 /* reset offloads to defaults */
8151d294 5218 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5219
5220 /* reset vlans for device */
5221 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5222 if (adapter->vf_data[vf].pf_vlan)
5223 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5224 adapter->vf_data[vf].pf_vlan,
5225 adapter->vf_data[vf].pf_qos);
5226 else
5227 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5228
5229 /* reset multicast table array for vf */
5230 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5231
5232 /* Flush and reset the mta with the new values */
ff41f8dc 5233 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5234}
5235
f2ca0dbe
AD
5236static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5237{
5238 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5239
5240 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5241 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5242 random_ether_addr(vf_mac);
f2ca0dbe
AD
5243
5244 /* process remaining reset events */
5245 igb_vf_reset(adapter, vf);
5246}
5247
5248static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5249{
5250 struct e1000_hw *hw = &adapter->hw;
5251 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5252 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5253 u32 reg, msgbuf[3];
5254 u8 *addr = (u8 *)(&msgbuf[1]);
5255
5256 /* process all the same items cleared in a function level reset */
f2ca0dbe 5257 igb_vf_reset(adapter, vf);
4ae196df
AD
5258
5259 /* set vf mac address */
26ad9178 5260 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5261
5262 /* enable transmit and receive for vf */
5263 reg = rd32(E1000_VFTE);
5264 wr32(E1000_VFTE, reg | (1 << vf));
5265 reg = rd32(E1000_VFRE);
5266 wr32(E1000_VFRE, reg | (1 << vf));
5267
8fa7e0f7 5268 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5269
5270 /* reply to reset with ack and vf mac address */
5271 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5272 memcpy(addr, vf_mac, 6);
5273 igb_write_mbx(hw, msgbuf, 3, vf);
5274}
5275
5276static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5277{
de42edde
GR
5278 /*
5279 * The VF MAC Address is stored in a packed array of bytes
5280 * starting at the second 32 bit word of the msg array
5281 */
f2ca0dbe
AD
5282 unsigned char *addr = (char *)&msg[1];
5283 int err = -1;
4ae196df 5284
f2ca0dbe
AD
5285 if (is_valid_ether_addr(addr))
5286 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5287
f2ca0dbe 5288 return err;
4ae196df
AD
5289}
5290
5291static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5292{
5293 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5294 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5295 u32 msg = E1000_VT_MSGTYPE_NACK;
5296
5297 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5298 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5299 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5300 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5301 vf_data->last_nack = jiffies;
4ae196df
AD
5302 }
5303}
5304
f2ca0dbe 5305static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5306{
f2ca0dbe
AD
5307 struct pci_dev *pdev = adapter->pdev;
5308 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5309 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5310 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5311 s32 retval;
5312
f2ca0dbe 5313 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5314
fef45f4c
AD
5315 if (retval) {
5316 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5317 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5318 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5319 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5320 return;
5321 goto out;
5322 }
4ae196df
AD
5323
5324 /* this is a message we already processed, do nothing */
5325 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5326 return;
4ae196df
AD
5327
5328 /*
5329 * until the vf completes a reset it should not be
5330 * allowed to start any configuration.
5331 */
5332
5333 if (msgbuf[0] == E1000_VF_RESET) {
5334 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5335 return;
4ae196df
AD
5336 }
5337
f2ca0dbe 5338 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5339 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5340 return;
5341 retval = -1;
5342 goto out;
4ae196df
AD
5343 }
5344
5345 switch ((msgbuf[0] & 0xFFFF)) {
5346 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5347 retval = -EINVAL;
5348 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5349 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5350 else
5351 dev_warn(&pdev->dev,
5352 "VF %d attempted to override administratively "
5353 "set MAC address\nReload the VF driver to "
5354 "resume operations\n", vf);
4ae196df 5355 break;
7d5753f0
AD
5356 case E1000_VF_SET_PROMISC:
5357 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5358 break;
4ae196df
AD
5359 case E1000_VF_SET_MULTICAST:
5360 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5361 break;
5362 case E1000_VF_SET_LPE:
5363 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5364 break;
5365 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5366 retval = -1;
5367 if (vf_data->pf_vlan)
5368 dev_warn(&pdev->dev,
5369 "VF %d attempted to override administratively "
5370 "set VLAN tag\nReload the VF driver to "
5371 "resume operations\n", vf);
8151d294
WM
5372 else
5373 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5374 break;
5375 default:
090b1795 5376 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5377 retval = -1;
5378 break;
5379 }
5380
fef45f4c
AD
5381 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5382out:
4ae196df
AD
5383 /* notify the VF of the results of what it sent us */
5384 if (retval)
5385 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5386 else
5387 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5388
4ae196df 5389 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5390}
4ae196df 5391
f2ca0dbe
AD
5392static void igb_msg_task(struct igb_adapter *adapter)
5393{
5394 struct e1000_hw *hw = &adapter->hw;
5395 u32 vf;
5396
5397 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5398 /* process any reset requests */
5399 if (!igb_check_for_rst(hw, vf))
5400 igb_vf_reset_event(adapter, vf);
5401
5402 /* process any messages pending */
5403 if (!igb_check_for_msg(hw, vf))
5404 igb_rcv_msg_from_vf(adapter, vf);
5405
5406 /* process any acks */
5407 if (!igb_check_for_ack(hw, vf))
5408 igb_rcv_ack_from_vf(adapter, vf);
5409 }
4ae196df
AD
5410}
5411
68d480c4
AD
5412/**
5413 * igb_set_uta - Set unicast filter table address
5414 * @adapter: board private structure
5415 *
5416 * The unicast table address is a register array of 32-bit registers.
5417 * The table is meant to be used in a way similar to how the MTA is used
5418 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5419 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5420 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5421 **/
5422static void igb_set_uta(struct igb_adapter *adapter)
5423{
5424 struct e1000_hw *hw = &adapter->hw;
5425 int i;
5426
5427 /* The UTA table only exists on 82576 hardware and newer */
5428 if (hw->mac.type < e1000_82576)
5429 return;
5430
5431 /* we only need to do this if VMDq is enabled */
5432 if (!adapter->vfs_allocated_count)
5433 return;
5434
5435 for (i = 0; i < hw->mac.uta_reg_count; i++)
5436 array_wr32(E1000_UTA, i, ~0);
5437}
5438
9d5c8243
AK
5439/**
5440 * igb_intr_msi - Interrupt Handler
5441 * @irq: interrupt number
5442 * @data: pointer to a network interface device structure
5443 **/
5444static irqreturn_t igb_intr_msi(int irq, void *data)
5445{
047e0030
AD
5446 struct igb_adapter *adapter = data;
5447 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5448 struct e1000_hw *hw = &adapter->hw;
5449 /* read ICR disables interrupts using IAM */
5450 u32 icr = rd32(E1000_ICR);
5451
047e0030 5452 igb_write_itr(q_vector);
9d5c8243 5453
7f081d40
AD
5454 if (icr & E1000_ICR_DRSTA)
5455 schedule_work(&adapter->reset_task);
5456
047e0030 5457 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5458 /* HW is reporting DMA is out of sync */
5459 adapter->stats.doosync++;
5460 }
5461
9d5c8243
AK
5462 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5463 hw->mac.get_link_status = 1;
5464 if (!test_bit(__IGB_DOWN, &adapter->state))
5465 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5466 }
5467
047e0030 5468 napi_schedule(&q_vector->napi);
9d5c8243
AK
5469
5470 return IRQ_HANDLED;
5471}
5472
5473/**
4a3c6433 5474 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5475 * @irq: interrupt number
5476 * @data: pointer to a network interface device structure
5477 **/
5478static irqreturn_t igb_intr(int irq, void *data)
5479{
047e0030
AD
5480 struct igb_adapter *adapter = data;
5481 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5482 struct e1000_hw *hw = &adapter->hw;
5483 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5484 * need for the IMC write */
5485 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5486
5487 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5488 * not set, then the adapter didn't send an interrupt */
5489 if (!(icr & E1000_ICR_INT_ASSERTED))
5490 return IRQ_NONE;
5491
0ba82994
AD
5492 igb_write_itr(q_vector);
5493
7f081d40
AD
5494 if (icr & E1000_ICR_DRSTA)
5495 schedule_work(&adapter->reset_task);
5496
047e0030 5497 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5498 /* HW is reporting DMA is out of sync */
5499 adapter->stats.doosync++;
5500 }
5501
9d5c8243
AK
5502 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5503 hw->mac.get_link_status = 1;
5504 /* guard against interrupt when we're going down */
5505 if (!test_bit(__IGB_DOWN, &adapter->state))
5506 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5507 }
5508
047e0030 5509 napi_schedule(&q_vector->napi);
9d5c8243
AK
5510
5511 return IRQ_HANDLED;
5512}
5513
0ba82994 5514void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5515{
047e0030 5516 struct igb_adapter *adapter = q_vector->adapter;
46544258 5517 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5518
0ba82994
AD
5519 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5520 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5521 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5522 igb_set_itr(q_vector);
46544258 5523 else
047e0030 5524 igb_update_ring_itr(q_vector);
9d5c8243
AK
5525 }
5526
46544258
AD
5527 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5528 if (adapter->msix_entries)
047e0030 5529 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5530 else
5531 igb_irq_enable(adapter);
5532 }
9d5c8243
AK
5533}
5534
46544258
AD
5535/**
5536 * igb_poll - NAPI Rx polling callback
5537 * @napi: napi polling structure
5538 * @budget: count of how many packets we should handle
5539 **/
5540static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5541{
047e0030
AD
5542 struct igb_q_vector *q_vector = container_of(napi,
5543 struct igb_q_vector,
5544 napi);
16eb8815 5545 bool clean_complete = true;
9d5c8243 5546
421e02f0 5547#ifdef CONFIG_IGB_DCA
047e0030
AD
5548 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5549 igb_update_dca(q_vector);
fe4506b6 5550#endif
0ba82994 5551 if (q_vector->tx.ring)
13fde97a 5552 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5553
0ba82994 5554 if (q_vector->rx.ring)
cd392f5c 5555 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5556
16eb8815
AD
5557 /* If all work not completed, return budget and keep polling */
5558 if (!clean_complete)
5559 return budget;
46544258 5560
9d5c8243 5561 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5562 napi_complete(napi);
5563 igb_ring_irq_enable(q_vector);
9d5c8243 5564
16eb8815 5565 return 0;
9d5c8243 5566}
6d8126f9 5567
33af6bcc 5568/**
c5b9bd5e 5569 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5570 * @adapter: board private structure
c5b9bd5e
AD
5571 * @shhwtstamps: timestamp structure to update
5572 * @regval: unsigned 64bit system time value.
5573 *
5574 * We need to convert the system time value stored in the RX/TXSTMP registers
5575 * into a hwtstamp which can be used by the upper level timestamping functions
5576 */
5577static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5578 struct skb_shared_hwtstamps *shhwtstamps,
5579 u64 regval)
5580{
5581 u64 ns;
5582
55cac248
AD
5583 /*
5584 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5585 * 24 to match clock shift we setup earlier.
5586 */
5587 if (adapter->hw.mac.type == e1000_82580)
5588 regval <<= IGB_82580_TSYNC_SHIFT;
5589
c5b9bd5e
AD
5590 ns = timecounter_cyc2time(&adapter->clock, regval);
5591 timecompare_update(&adapter->compare, ns);
5592 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5593 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5594 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5595}
5596
5597/**
5598 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5599 * @q_vector: pointer to q_vector containing needed info
06034649 5600 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5601 *
5602 * If we were asked to do hardware stamping and such a time stamp is
5603 * available, then it must have been for this skb here because we only
5604 * allow only one such packet into the queue.
5605 */
06034649
AD
5606static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5607 struct igb_tx_buffer *buffer_info)
33af6bcc 5608{
c5b9bd5e 5609 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5610 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5611 struct skb_shared_hwtstamps shhwtstamps;
5612 u64 regval;
33af6bcc 5613
c5b9bd5e 5614 /* if skb does not support hw timestamp or TX stamp not valid exit */
2bbfebe2 5615 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
c5b9bd5e
AD
5616 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5617 return;
5618
5619 regval = rd32(E1000_TXSTMPL);
5620 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5621
5622 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5623 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5624}
5625
9d5c8243
AK
5626/**
5627 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5628 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5629 * returns true if ring is completely cleaned
5630 **/
047e0030 5631static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5632{
047e0030 5633 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5634 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5635 struct igb_tx_buffer *tx_buffer;
8542db05 5636 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5637 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5638 unsigned int budget = q_vector->tx.work_limit;
8542db05 5639 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5640
13fde97a
AD
5641 if (test_bit(__IGB_DOWN, &adapter->state))
5642 return true;
0e014cb1 5643
06034649 5644 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5645 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5646 i -= tx_ring->count;
9d5c8243 5647
13fde97a 5648 for (; budget; budget--) {
8542db05 5649 eop_desc = tx_buffer->next_to_watch;
13fde97a 5650
8542db05
AD
5651 /* prevent any other reads prior to eop_desc */
5652 rmb();
5653
5654 /* if next_to_watch is not set then there is no work pending */
5655 if (!eop_desc)
5656 break;
13fde97a
AD
5657
5658 /* if DD is not set pending work has not been completed */
5659 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5660 break;
5661
8542db05
AD
5662 /* clear next_to_watch to prevent false hangs */
5663 tx_buffer->next_to_watch = NULL;
9d5c8243 5664
ebe42d16
AD
5665 /* update the statistics for this packet */
5666 total_bytes += tx_buffer->bytecount;
5667 total_packets += tx_buffer->gso_segs;
13fde97a 5668
ebe42d16
AD
5669 /* retrieve hardware timestamp */
5670 igb_tx_hwtstamp(q_vector, tx_buffer);
5671
5672 /* free the skb */
5673 dev_kfree_skb_any(tx_buffer->skb);
5674 tx_buffer->skb = NULL;
13fde97a 5675
ebe42d16
AD
5676 /* unmap skb header data */
5677 dma_unmap_single(tx_ring->dev,
5678 tx_buffer->dma,
5679 tx_buffer->length,
5680 DMA_TO_DEVICE);
5681
5682 /* clear last DMA location and unmap remaining buffers */
5683 while (tx_desc != eop_desc) {
5684 tx_buffer->dma = 0;
9d5c8243 5685
13fde97a
AD
5686 tx_buffer++;
5687 tx_desc++;
9d5c8243 5688 i++;
8542db05
AD
5689 if (unlikely(!i)) {
5690 i -= tx_ring->count;
06034649 5691 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5692 tx_desc = IGB_TX_DESC(tx_ring, 0);
5693 }
ebe42d16
AD
5694
5695 /* unmap any remaining paged data */
5696 if (tx_buffer->dma) {
5697 dma_unmap_page(tx_ring->dev,
5698 tx_buffer->dma,
5699 tx_buffer->length,
5700 DMA_TO_DEVICE);
5701 }
5702 }
5703
5704 /* clear last DMA location */
5705 tx_buffer->dma = 0;
5706
5707 /* move us one more past the eop_desc for start of next pkt */
5708 tx_buffer++;
5709 tx_desc++;
5710 i++;
5711 if (unlikely(!i)) {
5712 i -= tx_ring->count;
5713 tx_buffer = tx_ring->tx_buffer_info;
5714 tx_desc = IGB_TX_DESC(tx_ring, 0);
5715 }
0e014cb1
AD
5716 }
5717
8542db05 5718 i += tx_ring->count;
9d5c8243 5719 tx_ring->next_to_clean = i;
13fde97a
AD
5720 u64_stats_update_begin(&tx_ring->tx_syncp);
5721 tx_ring->tx_stats.bytes += total_bytes;
5722 tx_ring->tx_stats.packets += total_packets;
5723 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5724 q_vector->tx.total_bytes += total_bytes;
5725 q_vector->tx.total_packets += total_packets;
9d5c8243 5726
13fde97a
AD
5727 if (tx_ring->detect_tx_hung) {
5728 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5729
8542db05 5730 eop_desc = tx_buffer->next_to_watch;
9d5c8243 5731
9d5c8243
AK
5732 /* Detect a transmit hang in hardware, this serializes the
5733 * check with the clearing of time_stamp and movement of i */
5734 tx_ring->detect_tx_hung = false;
8542db05
AD
5735 if (eop_desc &&
5736 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5737 (adapter->tx_timeout_factor * HZ)) &&
5738 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5739
9d5c8243 5740 /* detected Tx unit hang */
59d71989 5741 dev_err(tx_ring->dev,
9d5c8243 5742 "Detected Tx Unit Hang\n"
2d064c06 5743 " Tx Queue <%d>\n"
9d5c8243
AK
5744 " TDH <%x>\n"
5745 " TDT <%x>\n"
5746 " next_to_use <%x>\n"
5747 " next_to_clean <%x>\n"
9d5c8243
AK
5748 "buffer_info[next_to_clean]\n"
5749 " time_stamp <%lx>\n"
8542db05 5750 " next_to_watch <%p>\n"
9d5c8243
AK
5751 " jiffies <%lx>\n"
5752 " desc.status <%x>\n",
2d064c06 5753 tx_ring->queue_index,
238ac817 5754 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5755 readl(tx_ring->tail),
9d5c8243
AK
5756 tx_ring->next_to_use,
5757 tx_ring->next_to_clean,
8542db05
AD
5758 tx_buffer->time_stamp,
5759 eop_desc,
9d5c8243 5760 jiffies,
0e014cb1 5761 eop_desc->wb.status);
13fde97a
AD
5762 netif_stop_subqueue(tx_ring->netdev,
5763 tx_ring->queue_index);
5764
5765 /* we are about to reset, no point in enabling stuff */
5766 return true;
9d5c8243
AK
5767 }
5768 }
13fde97a
AD
5769
5770 if (unlikely(total_packets &&
5771 netif_carrier_ok(tx_ring->netdev) &&
5772 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5773 /* Make sure that anybody stopping the queue after this
5774 * sees the new next_to_clean.
5775 */
5776 smp_mb();
5777 if (__netif_subqueue_stopped(tx_ring->netdev,
5778 tx_ring->queue_index) &&
5779 !(test_bit(__IGB_DOWN, &adapter->state))) {
5780 netif_wake_subqueue(tx_ring->netdev,
5781 tx_ring->queue_index);
5782
5783 u64_stats_update_begin(&tx_ring->tx_syncp);
5784 tx_ring->tx_stats.restart_queue++;
5785 u64_stats_update_end(&tx_ring->tx_syncp);
5786 }
5787 }
5788
5789 return !!budget;
9d5c8243
AK
5790}
5791
cd392f5c 5792static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
5793 union e1000_adv_rx_desc *rx_desc,
5794 struct sk_buff *skb)
9d5c8243 5795{
bc8acf2c 5796 skb_checksum_none_assert(skb);
9d5c8243 5797
294e7d78 5798 /* Ignore Checksum bit is set */
3ceb90fd 5799 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
5800 return;
5801
5802 /* Rx checksum disabled via ethtool */
5803 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 5804 return;
85ad76b2 5805
9d5c8243 5806 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
5807 if (igb_test_staterr(rx_desc,
5808 E1000_RXDEXT_STATERR_TCPE |
5809 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5810 /*
5811 * work around errata with sctp packets where the TCPE aka
5812 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5813 * packets, (aka let the stack check the crc32c)
5814 */
866cff06
AD
5815 if (!((skb->len == 60) &&
5816 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 5817 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5818 ring->rx_stats.csum_err++;
12dcd86b
ED
5819 u64_stats_update_end(&ring->rx_syncp);
5820 }
9d5c8243 5821 /* let the stack verify checksum errors */
9d5c8243
AK
5822 return;
5823 }
5824 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
5825 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5826 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
5827 skb->ip_summed = CHECKSUM_UNNECESSARY;
5828
3ceb90fd
AD
5829 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5830 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
5831}
5832
3ceb90fd
AD
5833static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5834 union e1000_adv_rx_desc *rx_desc,
5835 struct sk_buff *skb)
c5b9bd5e
AD
5836{
5837 struct igb_adapter *adapter = q_vector->adapter;
5838 struct e1000_hw *hw = &adapter->hw;
5839 u64 regval;
5840
3ceb90fd
AD
5841 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
5842 E1000_RXDADV_STAT_TS))
5843 return;
5844
c5b9bd5e
AD
5845 /*
5846 * If this bit is set, then the RX registers contain the time stamp. No
5847 * other packet will be time stamped until we read these registers, so
5848 * read the registers to make them available again. Because only one
5849 * packet can be time stamped at a time, we know that the register
5850 * values must belong to this one here and therefore we don't need to
5851 * compare any of the additional attributes stored for it.
5852 *
2244d07b 5853 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5854 * can turn into a skb_shared_hwtstamps.
5855 */
3ceb90fd 5856 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
757b77e2
NN
5857 u32 *stamp = (u32 *)skb->data;
5858 regval = le32_to_cpu(*(stamp + 2));
5859 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5860 skb_pull(skb, IGB_TS_HDR_LEN);
5861 } else {
5862 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5863 return;
c5b9bd5e 5864
757b77e2
NN
5865 regval = rd32(E1000_RXSTMPL);
5866 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5867 }
c5b9bd5e
AD
5868
5869 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5870}
44390ca6 5871static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5872{
5873 /* HW will not DMA in data larger than the given buffer, even if it
5874 * parses the (NFS, of course) header to be larger. In that case, it
5875 * fills the header buffer and spills the rest into the page.
5876 */
5877 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5878 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5879 if (hlen > IGB_RX_HDR_LEN)
5880 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5881 return hlen;
5882}
5883
cd392f5c 5884static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5885{
0ba82994 5886 struct igb_ring *rx_ring = q_vector->rx.ring;
16eb8815
AD
5887 union e1000_adv_rx_desc *rx_desc;
5888 const int current_node = numa_node_id();
9d5c8243 5889 unsigned int total_bytes = 0, total_packets = 0;
16eb8815
AD
5890 u16 cleaned_count = igb_desc_unused(rx_ring);
5891 u16 i = rx_ring->next_to_clean;
9d5c8243 5892
60136906 5893 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243 5894
3ceb90fd 5895 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
06034649 5896 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
5897 struct sk_buff *skb = buffer_info->skb;
5898 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5899
69d3ca53 5900 buffer_info->skb = NULL;
16eb8815 5901 prefetch(skb->data);
69d3ca53
AD
5902
5903 i++;
5904 if (i == rx_ring->count)
5905 i = 0;
42d0781a 5906
60136906 5907 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5908 prefetch(next_rxd);
9d5c8243 5909
16eb8815
AD
5910 /*
5911 * This memory barrier is needed to keep us from reading
5912 * any other fields out of the rx_desc until we know the
5913 * RXD_STAT_DD bit is set
5914 */
5915 rmb();
9d5c8243 5916
16eb8815
AD
5917 if (!skb_is_nonlinear(skb)) {
5918 __skb_put(skb, igb_get_hlen(rx_desc));
5919 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 5920 IGB_RX_HDR_LEN,
59d71989 5921 DMA_FROM_DEVICE);
91615f76 5922 buffer_info->dma = 0;
bf36c1a0
AD
5923 }
5924
16eb8815
AD
5925 if (rx_desc->wb.upper.length) {
5926 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 5927
aa913403 5928 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5929 buffer_info->page,
5930 buffer_info->page_offset,
5931 length);
5932
16eb8815
AD
5933 skb->len += length;
5934 skb->data_len += length;
5935 skb->truesize += length;
5936
d1eff350
AD
5937 if ((page_count(buffer_info->page) != 1) ||
5938 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5939 buffer_info->page = NULL;
5940 else
5941 get_page(buffer_info->page);
9d5c8243 5942
16eb8815
AD
5943 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5944 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5945 buffer_info->page_dma = 0;
9d5c8243 5946 }
9d5c8243 5947
3ceb90fd 5948 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
06034649
AD
5949 struct igb_rx_buffer *next_buffer;
5950 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
5951 buffer_info->skb = next_buffer->skb;
5952 buffer_info->dma = next_buffer->dma;
5953 next_buffer->skb = skb;
5954 next_buffer->dma = 0;
bf36c1a0
AD
5955 goto next_desc;
5956 }
44390ca6 5957
3ceb90fd
AD
5958 if (igb_test_staterr(rx_desc,
5959 E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
16eb8815 5960 dev_kfree_skb_any(skb);
9d5c8243
AK
5961 goto next_desc;
5962 }
9d5c8243 5963
3ceb90fd
AD
5964 igb_rx_hwtstamp(q_vector, rx_desc, skb);
5965 igb_rx_checksum(rx_ring, rx_desc, skb);
047e0030 5966
3ceb90fd 5967 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
b2cb09b1 5968 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
9d5c8243 5969
b2cb09b1
JP
5970 __vlan_hwaccel_put_tag(skb, vid);
5971 }
3ceb90fd
AD
5972
5973 total_bytes += skb->len;
5974 total_packets++;
5975
5976 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
5977
b2cb09b1 5978 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 5979
16eb8815 5980 budget--;
9d5c8243 5981next_desc:
16eb8815
AD
5982 if (!budget)
5983 break;
5984
5985 cleaned_count++;
9d5c8243
AK
5986 /* return some buffers to hardware, one at a time is too slow */
5987 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 5988 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
5989 cleaned_count = 0;
5990 }
5991
5992 /* use prefetched values */
5993 rx_desc = next_rxd;
9d5c8243 5994 }
bf36c1a0 5995
9d5c8243 5996 rx_ring->next_to_clean = i;
12dcd86b 5997 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5998 rx_ring->rx_stats.packets += total_packets;
5999 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6000 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6001 q_vector->rx.total_packets += total_packets;
6002 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6003
6004 if (cleaned_count)
cd392f5c 6005 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6006
16eb8815 6007 return !!budget;
9d5c8243
AK
6008}
6009
c023cd88 6010static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 6011 struct igb_rx_buffer *bi)
c023cd88
AD
6012{
6013 struct sk_buff *skb = bi->skb;
6014 dma_addr_t dma = bi->dma;
6015
6016 if (dma)
6017 return true;
6018
6019 if (likely(!skb)) {
6020 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6021 IGB_RX_HDR_LEN);
6022 bi->skb = skb;
6023 if (!skb) {
6024 rx_ring->rx_stats.alloc_failed++;
6025 return false;
6026 }
6027
6028 /* initialize skb for ring */
6029 skb_record_rx_queue(skb, rx_ring->queue_index);
6030 }
6031
6032 dma = dma_map_single(rx_ring->dev, skb->data,
6033 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6034
6035 if (dma_mapping_error(rx_ring->dev, dma)) {
6036 rx_ring->rx_stats.alloc_failed++;
6037 return false;
6038 }
6039
6040 bi->dma = dma;
6041 return true;
6042}
6043
6044static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6045 struct igb_rx_buffer *bi)
c023cd88
AD
6046{
6047 struct page *page = bi->page;
6048 dma_addr_t page_dma = bi->page_dma;
6049 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6050
6051 if (page_dma)
6052 return true;
6053
6054 if (!page) {
6055 page = netdev_alloc_page(rx_ring->netdev);
6056 bi->page = page;
6057 if (unlikely(!page)) {
6058 rx_ring->rx_stats.alloc_failed++;
6059 return false;
6060 }
6061 }
6062
6063 page_dma = dma_map_page(rx_ring->dev, page,
6064 page_offset, PAGE_SIZE / 2,
6065 DMA_FROM_DEVICE);
6066
6067 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6068 rx_ring->rx_stats.alloc_failed++;
6069 return false;
6070 }
6071
6072 bi->page_dma = page_dma;
6073 bi->page_offset = page_offset;
6074 return true;
6075}
6076
9d5c8243 6077/**
cd392f5c 6078 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6079 * @adapter: address of board private structure
6080 **/
cd392f5c 6081void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6082{
9d5c8243 6083 union e1000_adv_rx_desc *rx_desc;
06034649 6084 struct igb_rx_buffer *bi;
c023cd88 6085 u16 i = rx_ring->next_to_use;
9d5c8243 6086
60136906 6087 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6088 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6089 i -= rx_ring->count;
9d5c8243
AK
6090
6091 while (cleaned_count--) {
c023cd88
AD
6092 if (!igb_alloc_mapped_skb(rx_ring, bi))
6093 break;
9d5c8243 6094
c023cd88
AD
6095 /* Refresh the desc even if buffer_addrs didn't change
6096 * because each write-back erases this info. */
6097 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6098
c023cd88
AD
6099 if (!igb_alloc_mapped_page(rx_ring, bi))
6100 break;
6101
6102 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6103
c023cd88
AD
6104 rx_desc++;
6105 bi++;
9d5c8243 6106 i++;
c023cd88 6107 if (unlikely(!i)) {
60136906 6108 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6109 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6110 i -= rx_ring->count;
6111 }
6112
6113 /* clear the hdr_addr for the next_to_use descriptor */
6114 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6115 }
6116
c023cd88
AD
6117 i += rx_ring->count;
6118
9d5c8243
AK
6119 if (rx_ring->next_to_use != i) {
6120 rx_ring->next_to_use = i;
9d5c8243
AK
6121
6122 /* Force memory writes to complete before letting h/w
6123 * know there are new descriptors to fetch. (Only
6124 * applicable for weak-ordered memory model archs,
6125 * such as IA-64). */
6126 wmb();
fce99e34 6127 writel(i, rx_ring->tail);
9d5c8243
AK
6128 }
6129}
6130
6131/**
6132 * igb_mii_ioctl -
6133 * @netdev:
6134 * @ifreq:
6135 * @cmd:
6136 **/
6137static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6138{
6139 struct igb_adapter *adapter = netdev_priv(netdev);
6140 struct mii_ioctl_data *data = if_mii(ifr);
6141
6142 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6143 return -EOPNOTSUPP;
6144
6145 switch (cmd) {
6146 case SIOCGMIIPHY:
6147 data->phy_id = adapter->hw.phy.addr;
6148 break;
6149 case SIOCGMIIREG:
f5f4cf08
AD
6150 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6151 &data->val_out))
9d5c8243
AK
6152 return -EIO;
6153 break;
6154 case SIOCSMIIREG:
6155 default:
6156 return -EOPNOTSUPP;
6157 }
6158 return 0;
6159}
6160
c6cb090b
PO
6161/**
6162 * igb_hwtstamp_ioctl - control hardware time stamping
6163 * @netdev:
6164 * @ifreq:
6165 * @cmd:
6166 *
33af6bcc
PO
6167 * Outgoing time stamping can be enabled and disabled. Play nice and
6168 * disable it when requested, although it shouldn't case any overhead
6169 * when no packet needs it. At most one packet in the queue may be
6170 * marked for time stamping, otherwise it would be impossible to tell
6171 * for sure to which packet the hardware time stamp belongs.
6172 *
6173 * Incoming time stamping has to be configured via the hardware
6174 * filters. Not all combinations are supported, in particular event
6175 * type has to be specified. Matching the kind of event packet is
6176 * not supported, with the exception of "all V2 events regardless of
6177 * level 2 or 4".
6178 *
c6cb090b
PO
6179 **/
6180static int igb_hwtstamp_ioctl(struct net_device *netdev,
6181 struct ifreq *ifr, int cmd)
6182{
33af6bcc
PO
6183 struct igb_adapter *adapter = netdev_priv(netdev);
6184 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6185 struct hwtstamp_config config;
c5b9bd5e
AD
6186 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6187 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6188 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6189 bool is_l4 = false;
6190 bool is_l2 = false;
33af6bcc 6191 u32 regval;
c6cb090b
PO
6192
6193 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6194 return -EFAULT;
6195
6196 /* reserved for future extensions */
6197 if (config.flags)
6198 return -EINVAL;
6199
33af6bcc
PO
6200 switch (config.tx_type) {
6201 case HWTSTAMP_TX_OFF:
c5b9bd5e 6202 tsync_tx_ctl = 0;
33af6bcc 6203 case HWTSTAMP_TX_ON:
33af6bcc
PO
6204 break;
6205 default:
6206 return -ERANGE;
6207 }
6208
6209 switch (config.rx_filter) {
6210 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6211 tsync_rx_ctl = 0;
33af6bcc
PO
6212 break;
6213 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6214 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6215 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6216 case HWTSTAMP_FILTER_ALL:
6217 /*
6218 * register TSYNCRXCFG must be set, therefore it is not
6219 * possible to time stamp both Sync and Delay_Req messages
6220 * => fall back to time stamping all packets
6221 */
c5b9bd5e 6222 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6223 config.rx_filter = HWTSTAMP_FILTER_ALL;
6224 break;
6225 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6226 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6227 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6228 is_l4 = true;
33af6bcc
PO
6229 break;
6230 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6231 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6232 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6233 is_l4 = true;
33af6bcc
PO
6234 break;
6235 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6236 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6237 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6238 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6239 is_l2 = true;
6240 is_l4 = true;
33af6bcc
PO
6241 config.rx_filter = HWTSTAMP_FILTER_SOME;
6242 break;
6243 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6244 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6245 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6246 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6247 is_l2 = true;
6248 is_l4 = true;
33af6bcc
PO
6249 config.rx_filter = HWTSTAMP_FILTER_SOME;
6250 break;
6251 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6252 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6253 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6254 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6255 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6256 is_l2 = true;
33af6bcc
PO
6257 break;
6258 default:
6259 return -ERANGE;
6260 }
6261
c5b9bd5e
AD
6262 if (hw->mac.type == e1000_82575) {
6263 if (tsync_rx_ctl | tsync_tx_ctl)
6264 return -EINVAL;
6265 return 0;
6266 }
6267
757b77e2
NN
6268 /*
6269 * Per-packet timestamping only works if all packets are
6270 * timestamped, so enable timestamping in all packets as
6271 * long as one rx filter was configured.
6272 */
6273 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6274 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6275 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6276 }
6277
33af6bcc
PO
6278 /* enable/disable TX */
6279 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6280 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6281 regval |= tsync_tx_ctl;
33af6bcc
PO
6282 wr32(E1000_TSYNCTXCTL, regval);
6283
c5b9bd5e 6284 /* enable/disable RX */
33af6bcc 6285 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6286 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6287 regval |= tsync_rx_ctl;
33af6bcc 6288 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6289
c5b9bd5e
AD
6290 /* define which PTP packets are time stamped */
6291 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6292
c5b9bd5e
AD
6293 /* define ethertype filter for timestamped packets */
6294 if (is_l2)
6295 wr32(E1000_ETQF(3),
6296 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6297 E1000_ETQF_1588 | /* enable timestamping */
6298 ETH_P_1588)); /* 1588 eth protocol type */
6299 else
6300 wr32(E1000_ETQF(3), 0);
6301
6302#define PTP_PORT 319
6303 /* L4 Queue Filter[3]: filter by destination port and protocol */
6304 if (is_l4) {
6305 u32 ftqf = (IPPROTO_UDP /* UDP */
6306 | E1000_FTQF_VF_BP /* VF not compared */
6307 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6308 | E1000_FTQF_MASK); /* mask all inputs */
6309 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6310
6311 wr32(E1000_IMIR(3), htons(PTP_PORT));
6312 wr32(E1000_IMIREXT(3),
6313 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6314 if (hw->mac.type == e1000_82576) {
6315 /* enable source port check */
6316 wr32(E1000_SPQF(3), htons(PTP_PORT));
6317 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6318 }
6319 wr32(E1000_FTQF(3), ftqf);
6320 } else {
6321 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6322 }
33af6bcc
PO
6323 wrfl();
6324
6325 adapter->hwtstamp_config = config;
6326
6327 /* clear TX/RX time stamp registers, just to be sure */
6328 regval = rd32(E1000_TXSTMPH);
6329 regval = rd32(E1000_RXSTMPH);
c6cb090b 6330
33af6bcc
PO
6331 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6332 -EFAULT : 0;
c6cb090b
PO
6333}
6334
9d5c8243
AK
6335/**
6336 * igb_ioctl -
6337 * @netdev:
6338 * @ifreq:
6339 * @cmd:
6340 **/
6341static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6342{
6343 switch (cmd) {
6344 case SIOCGMIIPHY:
6345 case SIOCGMIIREG:
6346 case SIOCSMIIREG:
6347 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6348 case SIOCSHWTSTAMP:
6349 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6350 default:
6351 return -EOPNOTSUPP;
6352 }
6353}
6354
009bc06e
AD
6355s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6356{
6357 struct igb_adapter *adapter = hw->back;
6358 u16 cap_offset;
6359
bdaae04c 6360 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6361 if (!cap_offset)
6362 return -E1000_ERR_CONFIG;
6363
6364 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6365
6366 return 0;
6367}
6368
6369s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6370{
6371 struct igb_adapter *adapter = hw->back;
6372 u16 cap_offset;
6373
bdaae04c 6374 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6375 if (!cap_offset)
6376 return -E1000_ERR_CONFIG;
6377
6378 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6379
6380 return 0;
6381}
6382
b2cb09b1 6383static void igb_vlan_mode(struct net_device *netdev, u32 features)
9d5c8243
AK
6384{
6385 struct igb_adapter *adapter = netdev_priv(netdev);
6386 struct e1000_hw *hw = &adapter->hw;
6387 u32 ctrl, rctl;
6388
6389 igb_irq_disable(adapter);
9d5c8243 6390
b2cb09b1 6391 if (features & NETIF_F_HW_VLAN_RX) {
9d5c8243
AK
6392 /* enable VLAN tag insert/strip */
6393 ctrl = rd32(E1000_CTRL);
6394 ctrl |= E1000_CTRL_VME;
6395 wr32(E1000_CTRL, ctrl);
6396
51466239 6397 /* Disable CFI check */
9d5c8243 6398 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6399 rctl &= ~E1000_RCTL_CFIEN;
6400 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6401 } else {
6402 /* disable VLAN tag insert/strip */
6403 ctrl = rd32(E1000_CTRL);
6404 ctrl &= ~E1000_CTRL_VME;
6405 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6406 }
6407
e1739522
AD
6408 igb_rlpml_set(adapter);
6409
9d5c8243
AK
6410 if (!test_bit(__IGB_DOWN, &adapter->state))
6411 igb_irq_enable(adapter);
6412}
6413
6414static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6415{
6416 struct igb_adapter *adapter = netdev_priv(netdev);
6417 struct e1000_hw *hw = &adapter->hw;
4ae196df 6418 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6419
51466239
AD
6420 /* attempt to add filter to vlvf array */
6421 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6422
51466239
AD
6423 /* add the filter since PF can receive vlans w/o entry in vlvf */
6424 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6425
6426 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6427}
6428
6429static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6430{
6431 struct igb_adapter *adapter = netdev_priv(netdev);
6432 struct e1000_hw *hw = &adapter->hw;
4ae196df 6433 int pf_id = adapter->vfs_allocated_count;
51466239 6434 s32 err;
9d5c8243
AK
6435
6436 igb_irq_disable(adapter);
9d5c8243
AK
6437
6438 if (!test_bit(__IGB_DOWN, &adapter->state))
6439 igb_irq_enable(adapter);
6440
51466239
AD
6441 /* remove vlan from VLVF table array */
6442 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6443
51466239
AD
6444 /* if vid was not present in VLVF just remove it from table */
6445 if (err)
4ae196df 6446 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6447
6448 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6449}
6450
6451static void igb_restore_vlan(struct igb_adapter *adapter)
6452{
b2cb09b1 6453 u16 vid;
9d5c8243 6454
b2cb09b1
JP
6455 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6456 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6457}
6458
14ad2513 6459int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6460{
090b1795 6461 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6462 struct e1000_mac_info *mac = &adapter->hw.mac;
6463
6464 mac->autoneg = 0;
6465
14ad2513
DD
6466 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6467 * for the switch() below to work */
6468 if ((spd & 1) || (dplx & ~1))
6469 goto err_inval;
6470
cd2638a8
CW
6471 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6472 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6473 spd != SPEED_1000 &&
6474 dplx != DUPLEX_FULL)
6475 goto err_inval;
cd2638a8 6476
14ad2513 6477 switch (spd + dplx) {
9d5c8243
AK
6478 case SPEED_10 + DUPLEX_HALF:
6479 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6480 break;
6481 case SPEED_10 + DUPLEX_FULL:
6482 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6483 break;
6484 case SPEED_100 + DUPLEX_HALF:
6485 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6486 break;
6487 case SPEED_100 + DUPLEX_FULL:
6488 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6489 break;
6490 case SPEED_1000 + DUPLEX_FULL:
6491 mac->autoneg = 1;
6492 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6493 break;
6494 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6495 default:
14ad2513 6496 goto err_inval;
9d5c8243
AK
6497 }
6498 return 0;
14ad2513
DD
6499
6500err_inval:
6501 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6502 return -EINVAL;
9d5c8243
AK
6503}
6504
3fe7c4c9 6505static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6506{
6507 struct net_device *netdev = pci_get_drvdata(pdev);
6508 struct igb_adapter *adapter = netdev_priv(netdev);
6509 struct e1000_hw *hw = &adapter->hw;
2d064c06 6510 u32 ctrl, rctl, status;
9d5c8243
AK
6511 u32 wufc = adapter->wol;
6512#ifdef CONFIG_PM
6513 int retval = 0;
6514#endif
6515
6516 netif_device_detach(netdev);
6517
a88f10ec
AD
6518 if (netif_running(netdev))
6519 igb_close(netdev);
6520
047e0030 6521 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6522
6523#ifdef CONFIG_PM
6524 retval = pci_save_state(pdev);
6525 if (retval)
6526 return retval;
6527#endif
6528
6529 status = rd32(E1000_STATUS);
6530 if (status & E1000_STATUS_LU)
6531 wufc &= ~E1000_WUFC_LNKC;
6532
6533 if (wufc) {
6534 igb_setup_rctl(adapter);
ff41f8dc 6535 igb_set_rx_mode(netdev);
9d5c8243
AK
6536
6537 /* turn on all-multi mode if wake on multicast is enabled */
6538 if (wufc & E1000_WUFC_MC) {
6539 rctl = rd32(E1000_RCTL);
6540 rctl |= E1000_RCTL_MPE;
6541 wr32(E1000_RCTL, rctl);
6542 }
6543
6544 ctrl = rd32(E1000_CTRL);
6545 /* advertise wake from D3Cold */
6546 #define E1000_CTRL_ADVD3WUC 0x00100000
6547 /* phy power management enable */
6548 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6549 ctrl |= E1000_CTRL_ADVD3WUC;
6550 wr32(E1000_CTRL, ctrl);
6551
9d5c8243 6552 /* Allow time for pending master requests to run */
330a6d6a 6553 igb_disable_pcie_master(hw);
9d5c8243
AK
6554
6555 wr32(E1000_WUC, E1000_WUC_PME_EN);
6556 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6557 } else {
6558 wr32(E1000_WUC, 0);
6559 wr32(E1000_WUFC, 0);
9d5c8243
AK
6560 }
6561
3fe7c4c9
RW
6562 *enable_wake = wufc || adapter->en_mng_pt;
6563 if (!*enable_wake)
88a268c1
NN
6564 igb_power_down_link(adapter);
6565 else
6566 igb_power_up_link(adapter);
9d5c8243
AK
6567
6568 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6569 * would have already happened in close and is redundant. */
6570 igb_release_hw_control(adapter);
6571
6572 pci_disable_device(pdev);
6573
9d5c8243
AK
6574 return 0;
6575}
6576
6577#ifdef CONFIG_PM
3fe7c4c9
RW
6578static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6579{
6580 int retval;
6581 bool wake;
6582
6583 retval = __igb_shutdown(pdev, &wake);
6584 if (retval)
6585 return retval;
6586
6587 if (wake) {
6588 pci_prepare_to_sleep(pdev);
6589 } else {
6590 pci_wake_from_d3(pdev, false);
6591 pci_set_power_state(pdev, PCI_D3hot);
6592 }
6593
6594 return 0;
6595}
6596
9d5c8243
AK
6597static int igb_resume(struct pci_dev *pdev)
6598{
6599 struct net_device *netdev = pci_get_drvdata(pdev);
6600 struct igb_adapter *adapter = netdev_priv(netdev);
6601 struct e1000_hw *hw = &adapter->hw;
6602 u32 err;
6603
6604 pci_set_power_state(pdev, PCI_D0);
6605 pci_restore_state(pdev);
b94f2d77 6606 pci_save_state(pdev);
42bfd33a 6607
aed5dec3 6608 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6609 if (err) {
6610 dev_err(&pdev->dev,
6611 "igb: Cannot enable PCI device from suspend\n");
6612 return err;
6613 }
6614 pci_set_master(pdev);
6615
6616 pci_enable_wake(pdev, PCI_D3hot, 0);
6617 pci_enable_wake(pdev, PCI_D3cold, 0);
6618
047e0030 6619 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6620 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6621 return -ENOMEM;
9d5c8243
AK
6622 }
6623
9d5c8243 6624 igb_reset(adapter);
a8564f03
AD
6625
6626 /* let the f/w know that the h/w is now under the control of the
6627 * driver. */
6628 igb_get_hw_control(adapter);
6629
9d5c8243
AK
6630 wr32(E1000_WUS, ~0);
6631
a88f10ec
AD
6632 if (netif_running(netdev)) {
6633 err = igb_open(netdev);
6634 if (err)
6635 return err;
6636 }
9d5c8243
AK
6637
6638 netif_device_attach(netdev);
6639
9d5c8243
AK
6640 return 0;
6641}
6642#endif
6643
6644static void igb_shutdown(struct pci_dev *pdev)
6645{
3fe7c4c9
RW
6646 bool wake;
6647
6648 __igb_shutdown(pdev, &wake);
6649
6650 if (system_state == SYSTEM_POWER_OFF) {
6651 pci_wake_from_d3(pdev, wake);
6652 pci_set_power_state(pdev, PCI_D3hot);
6653 }
9d5c8243
AK
6654}
6655
6656#ifdef CONFIG_NET_POLL_CONTROLLER
6657/*
6658 * Polling 'interrupt' - used by things like netconsole to send skbs
6659 * without having to re-enable interrupts. It's not called while
6660 * the interrupt routine is executing.
6661 */
6662static void igb_netpoll(struct net_device *netdev)
6663{
6664 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6665 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6666 int i;
9d5c8243 6667
eebbbdba 6668 if (!adapter->msix_entries) {
047e0030 6669 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6670 igb_irq_disable(adapter);
047e0030 6671 napi_schedule(&q_vector->napi);
eebbbdba
AD
6672 return;
6673 }
9d5c8243 6674
047e0030
AD
6675 for (i = 0; i < adapter->num_q_vectors; i++) {
6676 struct igb_q_vector *q_vector = adapter->q_vector[i];
6677 wr32(E1000_EIMC, q_vector->eims_value);
6678 napi_schedule(&q_vector->napi);
eebbbdba 6679 }
9d5c8243
AK
6680}
6681#endif /* CONFIG_NET_POLL_CONTROLLER */
6682
6683/**
6684 * igb_io_error_detected - called when PCI error is detected
6685 * @pdev: Pointer to PCI device
6686 * @state: The current pci connection state
6687 *
6688 * This function is called after a PCI bus error affecting
6689 * this device has been detected.
6690 */
6691static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6692 pci_channel_state_t state)
6693{
6694 struct net_device *netdev = pci_get_drvdata(pdev);
6695 struct igb_adapter *adapter = netdev_priv(netdev);
6696
6697 netif_device_detach(netdev);
6698
59ed6eec
AD
6699 if (state == pci_channel_io_perm_failure)
6700 return PCI_ERS_RESULT_DISCONNECT;
6701
9d5c8243
AK
6702 if (netif_running(netdev))
6703 igb_down(adapter);
6704 pci_disable_device(pdev);
6705
6706 /* Request a slot slot reset. */
6707 return PCI_ERS_RESULT_NEED_RESET;
6708}
6709
6710/**
6711 * igb_io_slot_reset - called after the pci bus has been reset.
6712 * @pdev: Pointer to PCI device
6713 *
6714 * Restart the card from scratch, as if from a cold-boot. Implementation
6715 * resembles the first-half of the igb_resume routine.
6716 */
6717static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6718{
6719 struct net_device *netdev = pci_get_drvdata(pdev);
6720 struct igb_adapter *adapter = netdev_priv(netdev);
6721 struct e1000_hw *hw = &adapter->hw;
40a914fa 6722 pci_ers_result_t result;
42bfd33a 6723 int err;
9d5c8243 6724
aed5dec3 6725 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6726 dev_err(&pdev->dev,
6727 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6728 result = PCI_ERS_RESULT_DISCONNECT;
6729 } else {
6730 pci_set_master(pdev);
6731 pci_restore_state(pdev);
b94f2d77 6732 pci_save_state(pdev);
9d5c8243 6733
40a914fa
AD
6734 pci_enable_wake(pdev, PCI_D3hot, 0);
6735 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6736
40a914fa
AD
6737 igb_reset(adapter);
6738 wr32(E1000_WUS, ~0);
6739 result = PCI_ERS_RESULT_RECOVERED;
6740 }
9d5c8243 6741
ea943d41
JK
6742 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6743 if (err) {
6744 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6745 "failed 0x%0x\n", err);
6746 /* non-fatal, continue */
6747 }
40a914fa
AD
6748
6749 return result;
9d5c8243
AK
6750}
6751
6752/**
6753 * igb_io_resume - called when traffic can start flowing again.
6754 * @pdev: Pointer to PCI device
6755 *
6756 * This callback is called when the error recovery driver tells us that
6757 * its OK to resume normal operation. Implementation resembles the
6758 * second-half of the igb_resume routine.
6759 */
6760static void igb_io_resume(struct pci_dev *pdev)
6761{
6762 struct net_device *netdev = pci_get_drvdata(pdev);
6763 struct igb_adapter *adapter = netdev_priv(netdev);
6764
9d5c8243
AK
6765 if (netif_running(netdev)) {
6766 if (igb_up(adapter)) {
6767 dev_err(&pdev->dev, "igb_up failed after reset\n");
6768 return;
6769 }
6770 }
6771
6772 netif_device_attach(netdev);
6773
6774 /* let the f/w know that the h/w is now under the control of the
6775 * driver. */
6776 igb_get_hw_control(adapter);
9d5c8243
AK
6777}
6778
26ad9178
AD
6779static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6780 u8 qsel)
6781{
6782 u32 rar_low, rar_high;
6783 struct e1000_hw *hw = &adapter->hw;
6784
6785 /* HW expects these in little endian so we reverse the byte order
6786 * from network order (big endian) to little endian
6787 */
6788 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6789 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6790 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6791
6792 /* Indicate to hardware the Address is Valid. */
6793 rar_high |= E1000_RAH_AV;
6794
6795 if (hw->mac.type == e1000_82575)
6796 rar_high |= E1000_RAH_POOL_1 * qsel;
6797 else
6798 rar_high |= E1000_RAH_POOL_1 << qsel;
6799
6800 wr32(E1000_RAL(index), rar_low);
6801 wrfl();
6802 wr32(E1000_RAH(index), rar_high);
6803 wrfl();
6804}
6805
4ae196df
AD
6806static int igb_set_vf_mac(struct igb_adapter *adapter,
6807 int vf, unsigned char *mac_addr)
6808{
6809 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6810 /* VF MAC addresses start at end of receive addresses and moves
6811 * torwards the first, as a result a collision should not be possible */
6812 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6813
37680117 6814 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6815
26ad9178 6816 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6817
6818 return 0;
6819}
6820
8151d294
WM
6821static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6822{
6823 struct igb_adapter *adapter = netdev_priv(netdev);
6824 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6825 return -EINVAL;
6826 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6827 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6828 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6829 " change effective.");
6830 if (test_bit(__IGB_DOWN, &adapter->state)) {
6831 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6832 " but the PF device is not up.\n");
6833 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6834 " attempting to use the VF device.\n");
6835 }
6836 return igb_set_vf_mac(adapter, vf, mac);
6837}
6838
17dc566c
LL
6839static int igb_link_mbps(int internal_link_speed)
6840{
6841 switch (internal_link_speed) {
6842 case SPEED_100:
6843 return 100;
6844 case SPEED_1000:
6845 return 1000;
6846 default:
6847 return 0;
6848 }
6849}
6850
6851static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6852 int link_speed)
6853{
6854 int rf_dec, rf_int;
6855 u32 bcnrc_val;
6856
6857 if (tx_rate != 0) {
6858 /* Calculate the rate factor values to set */
6859 rf_int = link_speed / tx_rate;
6860 rf_dec = (link_speed - (rf_int * tx_rate));
6861 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6862
6863 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6864 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6865 E1000_RTTBCNRC_RF_INT_MASK);
6866 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6867 } else {
6868 bcnrc_val = 0;
6869 }
6870
6871 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6872 wr32(E1000_RTTBCNRC, bcnrc_val);
6873}
6874
6875static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6876{
6877 int actual_link_speed, i;
6878 bool reset_rate = false;
6879
6880 /* VF TX rate limit was not set or not supported */
6881 if ((adapter->vf_rate_link_speed == 0) ||
6882 (adapter->hw.mac.type != e1000_82576))
6883 return;
6884
6885 actual_link_speed = igb_link_mbps(adapter->link_speed);
6886 if (actual_link_speed != adapter->vf_rate_link_speed) {
6887 reset_rate = true;
6888 adapter->vf_rate_link_speed = 0;
6889 dev_info(&adapter->pdev->dev,
6890 "Link speed has been changed. VF Transmit "
6891 "rate is disabled\n");
6892 }
6893
6894 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6895 if (reset_rate)
6896 adapter->vf_data[i].tx_rate = 0;
6897
6898 igb_set_vf_rate_limit(&adapter->hw, i,
6899 adapter->vf_data[i].tx_rate,
6900 actual_link_speed);
6901 }
6902}
6903
8151d294
WM
6904static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6905{
17dc566c
LL
6906 struct igb_adapter *adapter = netdev_priv(netdev);
6907 struct e1000_hw *hw = &adapter->hw;
6908 int actual_link_speed;
6909
6910 if (hw->mac.type != e1000_82576)
6911 return -EOPNOTSUPP;
6912
6913 actual_link_speed = igb_link_mbps(adapter->link_speed);
6914 if ((vf >= adapter->vfs_allocated_count) ||
6915 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6916 (tx_rate < 0) || (tx_rate > actual_link_speed))
6917 return -EINVAL;
6918
6919 adapter->vf_rate_link_speed = actual_link_speed;
6920 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6921 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6922
6923 return 0;
8151d294
WM
6924}
6925
6926static int igb_ndo_get_vf_config(struct net_device *netdev,
6927 int vf, struct ifla_vf_info *ivi)
6928{
6929 struct igb_adapter *adapter = netdev_priv(netdev);
6930 if (vf >= adapter->vfs_allocated_count)
6931 return -EINVAL;
6932 ivi->vf = vf;
6933 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6934 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6935 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6936 ivi->qos = adapter->vf_data[vf].pf_qos;
6937 return 0;
6938}
6939
4ae196df
AD
6940static void igb_vmm_control(struct igb_adapter *adapter)
6941{
6942 struct e1000_hw *hw = &adapter->hw;
10d8e907 6943 u32 reg;
4ae196df 6944
52a1dd4d
AD
6945 switch (hw->mac.type) {
6946 case e1000_82575:
6947 default:
6948 /* replication is not supported for 82575 */
4ae196df 6949 return;
52a1dd4d
AD
6950 case e1000_82576:
6951 /* notify HW that the MAC is adding vlan tags */
6952 reg = rd32(E1000_DTXCTL);
6953 reg |= E1000_DTXCTL_VLAN_ADDED;
6954 wr32(E1000_DTXCTL, reg);
6955 case e1000_82580:
6956 /* enable replication vlan tag stripping */
6957 reg = rd32(E1000_RPLOLR);
6958 reg |= E1000_RPLOLR_STRVLAN;
6959 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6960 case e1000_i350:
6961 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6962 break;
6963 }
10d8e907 6964
d4960307
AD
6965 if (adapter->vfs_allocated_count) {
6966 igb_vmdq_set_loopback_pf(hw, true);
6967 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6968 igb_vmdq_set_anti_spoofing_pf(hw, true,
6969 adapter->vfs_allocated_count);
d4960307
AD
6970 } else {
6971 igb_vmdq_set_loopback_pf(hw, false);
6972 igb_vmdq_set_replication_pf(hw, false);
6973 }
4ae196df
AD
6974}
6975
9d5c8243 6976/* igb_main.c */