]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
e1000: fix vlan processing regression
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
6e861326 4 Copyright(c) 2007-2012 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
9d5c8243
AK
60#include "igb.h"
61
0d1fe82d 62#define MAJ 3
a28dc43f
CW
63#define MIN 2
64#define BUILD 10
0d1fe82d 65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 66__stringify(BUILD) "-k"
9d5c8243
AK
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
6e861326 71static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
9d5c8243 72
9d5c8243
AK
73static const struct e1000_info *igb_info_tbl[] = {
74 [board_82575] = &e1000_82575_info,
75};
76
a3aa1884 77static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
103 /* required last entry */
104 {0, }
105};
106
107MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
108
109void igb_reset(struct igb_adapter *);
110static int igb_setup_all_tx_resources(struct igb_adapter *);
111static int igb_setup_all_rx_resources(struct igb_adapter *);
112static void igb_free_all_tx_resources(struct igb_adapter *);
113static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 114static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
115static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 117static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
118static int igb_sw_init(struct igb_adapter *);
119static int igb_open(struct net_device *);
120static int igb_close(struct net_device *);
121static void igb_configure_tx(struct igb_adapter *);
122static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
123static void igb_clean_all_tx_rings(struct igb_adapter *);
124static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
125static void igb_clean_tx_ring(struct igb_ring *);
126static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 127static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
128static void igb_update_phy_info(unsigned long);
129static void igb_watchdog(unsigned long);
130static void igb_watchdog_task(struct work_struct *);
cd392f5c 131static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
132static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
9d5c8243
AK
134static int igb_change_mtu(struct net_device *, int);
135static int igb_set_mac(struct net_device *, void *);
68d480c4 136static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
137static irqreturn_t igb_intr(int irq, void *);
138static irqreturn_t igb_intr_msi(int irq, void *);
139static irqreturn_t igb_msix_other(int irq, void *);
047e0030 140static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 141#ifdef CONFIG_IGB_DCA
047e0030 142static void igb_update_dca(struct igb_q_vector *);
fe4506b6 143static void igb_setup_dca(struct igb_adapter *);
421e02f0 144#endif /* CONFIG_IGB_DCA */
661086df 145static int igb_poll(struct napi_struct *, int);
13fde97a 146static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 147static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
148static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149static void igb_tx_timeout(struct net_device *);
150static void igb_reset_task(struct work_struct *);
c8f44aff 151static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
8e586137
JP
152static int igb_vlan_rx_add_vid(struct net_device *, u16);
153static int igb_vlan_rx_kill_vid(struct net_device *, u16);
9d5c8243 154static void igb_restore_vlan(struct igb_adapter *);
26ad9178 155static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
156static void igb_ping_all_vfs(struct igb_adapter *);
157static void igb_msg_task(struct igb_adapter *);
4ae196df 158static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 159static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 160static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
161static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
162static int igb_ndo_set_vf_vlan(struct net_device *netdev,
163 int vf, u16 vlan, u8 qos);
164static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
165static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
166 struct ifla_vf_info *ivi);
17dc566c 167static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
168
169#ifdef CONFIG_PCI_IOV
0224d663
GR
170static int igb_vf_configure(struct igb_adapter *adapter, int vf);
171static int igb_find_enabled_vfs(struct igb_adapter *adapter);
172static int igb_check_vf_assignment(struct igb_adapter *adapter);
46a01698 173#endif
9d5c8243 174
9d5c8243 175#ifdef CONFIG_PM
d9dd966d 176#ifdef CONFIG_PM_SLEEP
749ab2cd 177static int igb_suspend(struct device *);
d9dd966d 178#endif
749ab2cd
YZ
179static int igb_resume(struct device *);
180#ifdef CONFIG_PM_RUNTIME
181static int igb_runtime_suspend(struct device *dev);
182static int igb_runtime_resume(struct device *dev);
183static int igb_runtime_idle(struct device *dev);
184#endif
185static const struct dev_pm_ops igb_pm_ops = {
186 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
187 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
188 igb_runtime_idle)
189};
9d5c8243
AK
190#endif
191static void igb_shutdown(struct pci_dev *);
421e02f0 192#ifdef CONFIG_IGB_DCA
fe4506b6
JC
193static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
194static struct notifier_block dca_notifier = {
195 .notifier_call = igb_notify_dca,
196 .next = NULL,
197 .priority = 0
198};
199#endif
9d5c8243
AK
200#ifdef CONFIG_NET_POLL_CONTROLLER
201/* for netdump / net console */
202static void igb_netpoll(struct net_device *);
203#endif
37680117 204#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
205static unsigned int max_vfs = 0;
206module_param(max_vfs, uint, 0);
207MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
208 "per physical function");
209#endif /* CONFIG_PCI_IOV */
210
9d5c8243
AK
211static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
212 pci_channel_state_t);
213static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
214static void igb_io_resume(struct pci_dev *);
215
216static struct pci_error_handlers igb_err_handler = {
217 .error_detected = igb_io_error_detected,
218 .slot_reset = igb_io_slot_reset,
219 .resume = igb_io_resume,
220};
221
b6e0c419 222static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
223
224static struct pci_driver igb_driver = {
225 .name = igb_driver_name,
226 .id_table = igb_pci_tbl,
227 .probe = igb_probe,
228 .remove = __devexit_p(igb_remove),
229#ifdef CONFIG_PM
749ab2cd 230 .driver.pm = &igb_pm_ops,
9d5c8243
AK
231#endif
232 .shutdown = igb_shutdown,
233 .err_handler = &igb_err_handler
234};
235
236MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
237MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
238MODULE_LICENSE("GPL");
239MODULE_VERSION(DRV_VERSION);
240
c97ec42a
TI
241struct igb_reg_info {
242 u32 ofs;
243 char *name;
244};
245
246static const struct igb_reg_info igb_reg_info_tbl[] = {
247
248 /* General Registers */
249 {E1000_CTRL, "CTRL"},
250 {E1000_STATUS, "STATUS"},
251 {E1000_CTRL_EXT, "CTRL_EXT"},
252
253 /* Interrupt Registers */
254 {E1000_ICR, "ICR"},
255
256 /* RX Registers */
257 {E1000_RCTL, "RCTL"},
258 {E1000_RDLEN(0), "RDLEN"},
259 {E1000_RDH(0), "RDH"},
260 {E1000_RDT(0), "RDT"},
261 {E1000_RXDCTL(0), "RXDCTL"},
262 {E1000_RDBAL(0), "RDBAL"},
263 {E1000_RDBAH(0), "RDBAH"},
264
265 /* TX Registers */
266 {E1000_TCTL, "TCTL"},
267 {E1000_TDBAL(0), "TDBAL"},
268 {E1000_TDBAH(0), "TDBAH"},
269 {E1000_TDLEN(0), "TDLEN"},
270 {E1000_TDH(0), "TDH"},
271 {E1000_TDT(0), "TDT"},
272 {E1000_TXDCTL(0), "TXDCTL"},
273 {E1000_TDFH, "TDFH"},
274 {E1000_TDFT, "TDFT"},
275 {E1000_TDFHS, "TDFHS"},
276 {E1000_TDFPC, "TDFPC"},
277
278 /* List Terminator */
279 {}
280};
281
282/*
283 * igb_regdump - register printout routine
284 */
285static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
286{
287 int n = 0;
288 char rname[16];
289 u32 regs[8];
290
291 switch (reginfo->ofs) {
292 case E1000_RDLEN(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_RDLEN(n));
295 break;
296 case E1000_RDH(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_RDH(n));
299 break;
300 case E1000_RDT(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_RDT(n));
303 break;
304 case E1000_RXDCTL(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_RXDCTL(n));
307 break;
308 case E1000_RDBAL(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDBAL(n));
311 break;
312 case E1000_RDBAH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDBAH(n));
315 break;
316 case E1000_TDBAL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDBAL(n));
319 break;
320 case E1000_TDBAH(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_TDBAH(n));
323 break;
324 case E1000_TDLEN(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_TDLEN(n));
327 break;
328 case E1000_TDH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_TDH(n));
331 break;
332 case E1000_TDT(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_TDT(n));
335 break;
336 case E1000_TXDCTL(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TXDCTL(n));
339 break;
340 default:
876d2d6f 341 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
342 return;
343 }
344
345 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
346 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
347 regs[2], regs[3]);
c97ec42a
TI
348}
349
350/*
351 * igb_dump - Print registers, tx-rings and rx-rings
352 */
353static void igb_dump(struct igb_adapter *adapter)
354{
355 struct net_device *netdev = adapter->netdev;
356 struct e1000_hw *hw = &adapter->hw;
357 struct igb_reg_info *reginfo;
c97ec42a
TI
358 struct igb_ring *tx_ring;
359 union e1000_adv_tx_desc *tx_desc;
360 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
361 struct igb_ring *rx_ring;
362 union e1000_adv_rx_desc *rx_desc;
363 u32 staterr;
6ad4edfc 364 u16 i, n;
c97ec42a
TI
365
366 if (!netif_msg_hw(adapter))
367 return;
368
369 /* Print netdevice Info */
370 if (netdev) {
371 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
372 pr_info("Device Name state trans_start "
373 "last_rx\n");
374 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
375 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
376 }
377
378 /* Print Registers */
379 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 380 pr_info(" Register Name Value\n");
c97ec42a
TI
381 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
382 reginfo->name; reginfo++) {
383 igb_regdump(hw, reginfo);
384 }
385
386 /* Print TX Ring Summary */
387 if (!netdev || !netif_running(netdev))
388 goto exit;
389
390 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 391 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 392 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 393 struct igb_tx_buffer *buffer_info;
c97ec42a 394 tx_ring = adapter->tx_ring[n];
06034649 395 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
396 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
397 n, tx_ring->next_to_use, tx_ring->next_to_clean,
398 (u64)buffer_info->dma,
399 buffer_info->length,
400 buffer_info->next_to_watch,
401 (u64)buffer_info->time_stamp);
c97ec42a
TI
402 }
403
404 /* Print TX Rings */
405 if (!netif_msg_tx_done(adapter))
406 goto rx_ring_summary;
407
408 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
409
410 /* Transmit Descriptor Formats
411 *
412 * Advanced Transmit Descriptor
413 * +--------------------------------------------------------------+
414 * 0 | Buffer Address [63:0] |
415 * +--------------------------------------------------------------+
416 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
417 * +--------------------------------------------------------------+
418 * 63 46 45 40 39 38 36 35 32 31 24 15 0
419 */
420
421 for (n = 0; n < adapter->num_tx_queues; n++) {
422 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
423 pr_info("------------------------------------\n");
424 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
425 pr_info("------------------------------------\n");
426 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
427 "[bi->dma ] leng ntw timestamp "
428 "bi->skb\n");
c97ec42a
TI
429
430 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 431 const char *next_desc;
06034649 432 struct igb_tx_buffer *buffer_info;
60136906 433 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 434 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 435 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
436 if (i == tx_ring->next_to_use &&
437 i == tx_ring->next_to_clean)
438 next_desc = " NTC/U";
439 else if (i == tx_ring->next_to_use)
440 next_desc = " NTU";
441 else if (i == tx_ring->next_to_clean)
442 next_desc = " NTC";
443 else
444 next_desc = "";
445
446 pr_info("T [0x%03X] %016llX %016llX %016llX"
447 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
448 le64_to_cpu(u0->a),
449 le64_to_cpu(u0->b),
450 (u64)buffer_info->dma,
451 buffer_info->length,
452 buffer_info->next_to_watch,
453 (u64)buffer_info->time_stamp,
876d2d6f 454 buffer_info->skb, next_desc);
c97ec42a
TI
455
456 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
457 print_hex_dump(KERN_INFO, "",
458 DUMP_PREFIX_ADDRESS,
459 16, 1, phys_to_virt(buffer_info->dma),
460 buffer_info->length, true);
461 }
462 }
463
464 /* Print RX Rings Summary */
465rx_ring_summary:
466 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 467 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
468 for (n = 0; n < adapter->num_rx_queues; n++) {
469 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
470 pr_info(" %5d %5X %5X\n",
471 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
472 }
473
474 /* Print RX Rings */
475 if (!netif_msg_rx_status(adapter))
476 goto exit;
477
478 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
479
480 /* Advanced Receive Descriptor (Read) Format
481 * 63 1 0
482 * +-----------------------------------------------------+
483 * 0 | Packet Buffer Address [63:1] |A0/NSE|
484 * +----------------------------------------------+------+
485 * 8 | Header Buffer Address [63:1] | DD |
486 * +-----------------------------------------------------+
487 *
488 *
489 * Advanced Receive Descriptor (Write-Back) Format
490 *
491 * 63 48 47 32 31 30 21 20 17 16 4 3 0
492 * +------------------------------------------------------+
493 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
494 * | Checksum Ident | | | | Type | Type |
495 * +------------------------------------------------------+
496 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
497 * +------------------------------------------------------+
498 * 63 48 47 32 31 20 19 0
499 */
500
501 for (n = 0; n < adapter->num_rx_queues; n++) {
502 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
503 pr_info("------------------------------------\n");
504 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
505 pr_info("------------------------------------\n");
506 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
507 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
508 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
509 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
510
511 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 512 const char *next_desc;
06034649
AD
513 struct igb_rx_buffer *buffer_info;
514 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 515 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
516 u0 = (struct my_u0 *)rx_desc;
517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
518
519 if (i == rx_ring->next_to_use)
520 next_desc = " NTU";
521 else if (i == rx_ring->next_to_clean)
522 next_desc = " NTC";
523 else
524 next_desc = "";
525
c97ec42a
TI
526 if (staterr & E1000_RXD_STAT_DD) {
527 /* Descriptor Done */
876d2d6f
JK
528 pr_info("%s[0x%03X] %016llX %016llX -------"
529 "--------- %p%s\n", "RWB", i,
c97ec42a
TI
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
876d2d6f 532 buffer_info->skb, next_desc);
c97ec42a 533 } else {
876d2d6f
JK
534 pr_info("%s[0x%03X] %016llX %016llX %016llX"
535 " %p%s\n", "R ", i,
c97ec42a
TI
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 (u64)buffer_info->dma,
876d2d6f 539 buffer_info->skb, next_desc);
c97ec42a
TI
540
541 if (netif_msg_pktdata(adapter)) {
542 print_hex_dump(KERN_INFO, "",
543 DUMP_PREFIX_ADDRESS,
544 16, 1,
545 phys_to_virt(buffer_info->dma),
44390ca6
AD
546 IGB_RX_HDR_LEN, true);
547 print_hex_dump(KERN_INFO, "",
548 DUMP_PREFIX_ADDRESS,
549 16, 1,
550 phys_to_virt(
551 buffer_info->page_dma +
552 buffer_info->page_offset),
553 PAGE_SIZE/2, true);
c97ec42a
TI
554 }
555 }
c97ec42a
TI
556 }
557 }
558
559exit:
560 return;
561}
562
563
38c845c7
PO
564/**
565 * igb_read_clock - read raw cycle counter (to be used by time counter)
566 */
567static cycle_t igb_read_clock(const struct cyclecounter *tc)
568{
569 struct igb_adapter *adapter =
570 container_of(tc, struct igb_adapter, cycles);
571 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
572 u64 stamp = 0;
573 int shift = 0;
38c845c7 574
55cac248
AD
575 /*
576 * The timestamp latches on lowest register read. For the 82580
577 * the lowest register is SYSTIMR instead of SYSTIML. However we never
578 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
579 */
06218a8d 580 if (hw->mac.type >= e1000_82580) {
55cac248
AD
581 stamp = rd32(E1000_SYSTIMR) >> 8;
582 shift = IGB_82580_TSYNC_SHIFT;
583 }
584
c5b9bd5e
AD
585 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
586 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
587 return stamp;
588}
589
9d5c8243 590/**
c041076a 591 * igb_get_hw_dev - return device
9d5c8243
AK
592 * used by hardware layer to print debugging information
593 **/
c041076a 594struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
595{
596 struct igb_adapter *adapter = hw->back;
c041076a 597 return adapter->netdev;
9d5c8243 598}
38c845c7 599
9d5c8243
AK
600/**
601 * igb_init_module - Driver Registration Routine
602 *
603 * igb_init_module is the first routine called when the driver is
604 * loaded. All it does is register with the PCI subsystem.
605 **/
606static int __init igb_init_module(void)
607{
608 int ret;
876d2d6f 609 pr_info("%s - version %s\n",
9d5c8243
AK
610 igb_driver_string, igb_driver_version);
611
876d2d6f 612 pr_info("%s\n", igb_copyright);
9d5c8243 613
421e02f0 614#ifdef CONFIG_IGB_DCA
fe4506b6
JC
615 dca_register_notify(&dca_notifier);
616#endif
bbd98fe4 617 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
618 return ret;
619}
620
621module_init(igb_init_module);
622
623/**
624 * igb_exit_module - Driver Exit Cleanup Routine
625 *
626 * igb_exit_module is called just before the driver is removed
627 * from memory.
628 **/
629static void __exit igb_exit_module(void)
630{
421e02f0 631#ifdef CONFIG_IGB_DCA
fe4506b6
JC
632 dca_unregister_notify(&dca_notifier);
633#endif
9d5c8243
AK
634 pci_unregister_driver(&igb_driver);
635}
636
637module_exit(igb_exit_module);
638
26bc19ec
AD
639#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
640/**
641 * igb_cache_ring_register - Descriptor ring to register mapping
642 * @adapter: board private structure to initialize
643 *
644 * Once we know the feature-set enabled for the device, we'll cache
645 * the register offset the descriptor ring is assigned to.
646 **/
647static void igb_cache_ring_register(struct igb_adapter *adapter)
648{
ee1b9f06 649 int i = 0, j = 0;
047e0030 650 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
651
652 switch (adapter->hw.mac.type) {
653 case e1000_82576:
654 /* The queues are allocated for virtualization such that VF 0
655 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
656 * In order to avoid collision we start at the first free queue
657 * and continue consuming queues in the same sequence
658 */
ee1b9f06 659 if (adapter->vfs_allocated_count) {
a99955fc 660 for (; i < adapter->rss_queues; i++)
3025a446
AD
661 adapter->rx_ring[i]->reg_idx = rbase_offset +
662 Q_IDX_82576(i);
ee1b9f06 663 }
26bc19ec 664 case e1000_82575:
55cac248 665 case e1000_82580:
d2ba2ed8 666 case e1000_i350:
26bc19ec 667 default:
ee1b9f06 668 for (; i < adapter->num_rx_queues; i++)
3025a446 669 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 670 for (; j < adapter->num_tx_queues; j++)
3025a446 671 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
672 break;
673 }
674}
675
047e0030
AD
676static void igb_free_queues(struct igb_adapter *adapter)
677{
3025a446 678 int i;
047e0030 679
3025a446
AD
680 for (i = 0; i < adapter->num_tx_queues; i++) {
681 kfree(adapter->tx_ring[i]);
682 adapter->tx_ring[i] = NULL;
683 }
684 for (i = 0; i < adapter->num_rx_queues; i++) {
685 kfree(adapter->rx_ring[i]);
686 adapter->rx_ring[i] = NULL;
687 }
047e0030
AD
688 adapter->num_rx_queues = 0;
689 adapter->num_tx_queues = 0;
690}
691
9d5c8243
AK
692/**
693 * igb_alloc_queues - Allocate memory for all rings
694 * @adapter: board private structure to initialize
695 *
696 * We allocate one ring per queue at run-time since we don't know the
697 * number of queues at compile-time.
698 **/
699static int igb_alloc_queues(struct igb_adapter *adapter)
700{
3025a446 701 struct igb_ring *ring;
9d5c8243 702 int i;
81c2fc22 703 int orig_node = adapter->node;
9d5c8243 704
661086df 705 for (i = 0; i < adapter->num_tx_queues; i++) {
81c2fc22
AD
706 if (orig_node == -1) {
707 int cur_node = next_online_node(adapter->node);
708 if (cur_node == MAX_NUMNODES)
709 cur_node = first_online_node;
710 adapter->node = cur_node;
711 }
712 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
713 adapter->node);
714 if (!ring)
715 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
716 if (!ring)
717 goto err;
68fd9910 718 ring->count = adapter->tx_ring_count;
661086df 719 ring->queue_index = i;
59d71989 720 ring->dev = &adapter->pdev->dev;
e694e964 721 ring->netdev = adapter->netdev;
81c2fc22 722 ring->numa_node = adapter->node;
85ad76b2
AD
723 /* For 82575, context index must be unique per ring. */
724 if (adapter->hw.mac.type == e1000_82575)
866cff06 725 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
3025a446 726 adapter->tx_ring[i] = ring;
661086df 727 }
81c2fc22
AD
728 /* Restore the adapter's original node */
729 adapter->node = orig_node;
85ad76b2 730
9d5c8243 731 for (i = 0; i < adapter->num_rx_queues; i++) {
81c2fc22
AD
732 if (orig_node == -1) {
733 int cur_node = next_online_node(adapter->node);
734 if (cur_node == MAX_NUMNODES)
735 cur_node = first_online_node;
736 adapter->node = cur_node;
737 }
738 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
739 adapter->node);
740 if (!ring)
741 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
742 if (!ring)
743 goto err;
68fd9910 744 ring->count = adapter->rx_ring_count;
844290e5 745 ring->queue_index = i;
59d71989 746 ring->dev = &adapter->pdev->dev;
e694e964 747 ring->netdev = adapter->netdev;
81c2fc22 748 ring->numa_node = adapter->node;
85ad76b2
AD
749 /* set flag indicating ring supports SCTP checksum offload */
750 if (adapter->hw.mac.type >= e1000_82576)
866cff06 751 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
8be10e91
AD
752
753 /* On i350, loopback VLAN packets have the tag byte-swapped. */
754 if (adapter->hw.mac.type == e1000_i350)
755 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
756
3025a446 757 adapter->rx_ring[i] = ring;
9d5c8243 758 }
81c2fc22
AD
759 /* Restore the adapter's original node */
760 adapter->node = orig_node;
26bc19ec
AD
761
762 igb_cache_ring_register(adapter);
9d5c8243 763
047e0030 764 return 0;
a88f10ec 765
047e0030 766err:
81c2fc22
AD
767 /* Restore the adapter's original node */
768 adapter->node = orig_node;
047e0030 769 igb_free_queues(adapter);
d1a8c9e1 770
047e0030 771 return -ENOMEM;
a88f10ec
AD
772}
773
4be000c8
AD
774/**
775 * igb_write_ivar - configure ivar for given MSI-X vector
776 * @hw: pointer to the HW structure
777 * @msix_vector: vector number we are allocating to a given ring
778 * @index: row index of IVAR register to write within IVAR table
779 * @offset: column offset of in IVAR, should be multiple of 8
780 *
781 * This function is intended to handle the writing of the IVAR register
782 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
783 * each containing an cause allocation for an Rx and Tx ring, and a
784 * variable number of rows depending on the number of queues supported.
785 **/
786static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
787 int index, int offset)
788{
789 u32 ivar = array_rd32(E1000_IVAR0, index);
790
791 /* clear any bits that are currently set */
792 ivar &= ~((u32)0xFF << offset);
793
794 /* write vector and valid bit */
795 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
796
797 array_wr32(E1000_IVAR0, index, ivar);
798}
799
9d5c8243 800#define IGB_N0_QUEUE -1
047e0030 801static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 802{
047e0030 803 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 804 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
805 int rx_queue = IGB_N0_QUEUE;
806 int tx_queue = IGB_N0_QUEUE;
4be000c8 807 u32 msixbm = 0;
047e0030 808
0ba82994
AD
809 if (q_vector->rx.ring)
810 rx_queue = q_vector->rx.ring->reg_idx;
811 if (q_vector->tx.ring)
812 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
813
814 switch (hw->mac.type) {
815 case e1000_82575:
9d5c8243
AK
816 /* The 82575 assigns vectors using a bitmask, which matches the
817 bitmask for the EICR/EIMS/EIMC registers. To assign one
818 or more queues to a vector, we write the appropriate bits
819 into the MSIXBM register for that vector. */
047e0030 820 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 821 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 822 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 823 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
824 if (!adapter->msix_entries && msix_vector == 0)
825 msixbm |= E1000_EIMS_OTHER;
9d5c8243 826 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 827 q_vector->eims_value = msixbm;
2d064c06
AD
828 break;
829 case e1000_82576:
4be000c8
AD
830 /*
831 * 82576 uses a table that essentially consists of 2 columns
832 * with 8 rows. The ordering is column-major so we use the
833 * lower 3 bits as the row index, and the 4th bit as the
834 * column offset.
835 */
836 if (rx_queue > IGB_N0_QUEUE)
837 igb_write_ivar(hw, msix_vector,
838 rx_queue & 0x7,
839 (rx_queue & 0x8) << 1);
840 if (tx_queue > IGB_N0_QUEUE)
841 igb_write_ivar(hw, msix_vector,
842 tx_queue & 0x7,
843 ((tx_queue & 0x8) << 1) + 8);
047e0030 844 q_vector->eims_value = 1 << msix_vector;
2d064c06 845 break;
55cac248 846 case e1000_82580:
d2ba2ed8 847 case e1000_i350:
4be000c8
AD
848 /*
849 * On 82580 and newer adapters the scheme is similar to 82576
850 * however instead of ordering column-major we have things
851 * ordered row-major. So we traverse the table by using
852 * bit 0 as the column offset, and the remaining bits as the
853 * row index.
854 */
855 if (rx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 rx_queue >> 1,
858 (rx_queue & 0x1) << 4);
859 if (tx_queue > IGB_N0_QUEUE)
860 igb_write_ivar(hw, msix_vector,
861 tx_queue >> 1,
862 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
863 q_vector->eims_value = 1 << msix_vector;
864 break;
2d064c06
AD
865 default:
866 BUG();
867 break;
868 }
26b39276
AD
869
870 /* add q_vector eims value to global eims_enable_mask */
871 adapter->eims_enable_mask |= q_vector->eims_value;
872
873 /* configure q_vector to set itr on first interrupt */
874 q_vector->set_itr = 1;
9d5c8243
AK
875}
876
877/**
878 * igb_configure_msix - Configure MSI-X hardware
879 *
880 * igb_configure_msix sets up the hardware to properly
881 * generate MSI-X interrupts.
882 **/
883static void igb_configure_msix(struct igb_adapter *adapter)
884{
885 u32 tmp;
886 int i, vector = 0;
887 struct e1000_hw *hw = &adapter->hw;
888
889 adapter->eims_enable_mask = 0;
9d5c8243
AK
890
891 /* set vector for other causes, i.e. link changes */
2d064c06
AD
892 switch (hw->mac.type) {
893 case e1000_82575:
9d5c8243
AK
894 tmp = rd32(E1000_CTRL_EXT);
895 /* enable MSI-X PBA support*/
896 tmp |= E1000_CTRL_EXT_PBA_CLR;
897
898 /* Auto-Mask interrupts upon ICR read. */
899 tmp |= E1000_CTRL_EXT_EIAME;
900 tmp |= E1000_CTRL_EXT_IRCA;
901
902 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
903
904 /* enable msix_other interrupt */
905 array_wr32(E1000_MSIXBM(0), vector++,
906 E1000_EIMS_OTHER);
844290e5 907 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 908
2d064c06
AD
909 break;
910
911 case e1000_82576:
55cac248 912 case e1000_82580:
d2ba2ed8 913 case e1000_i350:
047e0030
AD
914 /* Turn on MSI-X capability first, or our settings
915 * won't stick. And it will take days to debug. */
916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
2d064c06 922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 923
047e0030 924 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
047e0030
AD
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
26b39276
AD
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 935
9d5c8243
AK
936 wrfl();
937}
938
939/**
940 * igb_request_msix - Initialize MSI-X interrupts
941 *
942 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
943 * kernel.
944 **/
945static int igb_request_msix(struct igb_adapter *adapter)
946{
947 struct net_device *netdev = adapter->netdev;
047e0030 948 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
949 int i, err = 0, vector = 0;
950
047e0030 951 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 952 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
953 if (err)
954 goto out;
955 vector++;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
0ba82994 962 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 963 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
964 q_vector->rx.ring->queue_index);
965 else if (q_vector->tx.ring)
047e0030 966 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
967 q_vector->tx.ring->queue_index);
968 else if (q_vector->rx.ring)
047e0030 969 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 970 q_vector->rx.ring->queue_index);
9d5c8243 971 else
047e0030
AD
972 sprintf(q_vector->name, "%s-unused", netdev->name);
973
9d5c8243 974 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 975 igb_msix_ring, 0, q_vector->name,
047e0030 976 q_vector);
9d5c8243
AK
977 if (err)
978 goto out;
9d5c8243
AK
979 vector++;
980 }
981
9d5c8243
AK
982 igb_configure_msix(adapter);
983 return 0;
984out:
985 return err;
986}
987
988static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
989{
990 if (adapter->msix_entries) {
991 pci_disable_msix(adapter->pdev);
992 kfree(adapter->msix_entries);
993 adapter->msix_entries = NULL;
047e0030 994 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 995 pci_disable_msi(adapter->pdev);
047e0030 996 }
9d5c8243
AK
997}
998
047e0030
AD
999/**
1000 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1001 * @adapter: board private structure to initialize
1002 *
1003 * This function frees the memory allocated to the q_vectors. In addition if
1004 * NAPI is enabled it will delete any references to the NAPI struct prior
1005 * to freeing the q_vector.
1006 **/
1007static void igb_free_q_vectors(struct igb_adapter *adapter)
1008{
1009 int v_idx;
1010
1011 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1012 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1013 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
1014 if (!q_vector)
1015 continue;
047e0030
AD
1016 netif_napi_del(&q_vector->napi);
1017 kfree(q_vector);
1018 }
1019 adapter->num_q_vectors = 0;
1020}
1021
1022/**
1023 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1024 *
1025 * This function resets the device so that it has 0 rx queues, tx queues, and
1026 * MSI-X interrupts allocated.
1027 */
1028static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1029{
1030 igb_free_queues(adapter);
1031 igb_free_q_vectors(adapter);
1032 igb_reset_interrupt_capability(adapter);
1033}
9d5c8243
AK
1034
1035/**
1036 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1037 *
1038 * Attempt to configure interrupts using the best available
1039 * capabilities of the hardware and kernel.
1040 **/
21adef3e 1041static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1042{
1043 int err;
1044 int numvecs, i;
1045
83b7180d 1046 /* Number of supported queues. */
a99955fc 1047 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1048 if (adapter->vfs_allocated_count)
1049 adapter->num_tx_queues = 1;
1050 else
1051 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1052
047e0030
AD
1053 /* start with one vector for every rx queue */
1054 numvecs = adapter->num_rx_queues;
1055
3ad2f3fb 1056 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1057 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1058 numvecs += adapter->num_tx_queues;
047e0030
AD
1059
1060 /* store the number of vectors reserved for queues */
1061 adapter->num_q_vectors = numvecs;
1062
1063 /* add 1 vector for link status interrupts */
1064 numvecs++;
9d5c8243
AK
1065 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1066 GFP_KERNEL);
1067 if (!adapter->msix_entries)
1068 goto msi_only;
1069
1070 for (i = 0; i < numvecs; i++)
1071 adapter->msix_entries[i].entry = i;
1072
1073 err = pci_enable_msix(adapter->pdev,
1074 adapter->msix_entries,
1075 numvecs);
1076 if (err == 0)
34a20e89 1077 goto out;
9d5c8243
AK
1078
1079 igb_reset_interrupt_capability(adapter);
1080
1081 /* If we can't do MSI-X, try MSI */
1082msi_only:
2a3abf6d
AD
1083#ifdef CONFIG_PCI_IOV
1084 /* disable SR-IOV for non MSI-X configurations */
1085 if (adapter->vf_data) {
1086 struct e1000_hw *hw = &adapter->hw;
1087 /* disable iov and allow time for transactions to clear */
1088 pci_disable_sriov(adapter->pdev);
1089 msleep(500);
1090
1091 kfree(adapter->vf_data);
1092 adapter->vf_data = NULL;
1093 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1094 wrfl();
2a3abf6d
AD
1095 msleep(100);
1096 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1097 }
1098#endif
4fc82adf 1099 adapter->vfs_allocated_count = 0;
a99955fc 1100 adapter->rss_queues = 1;
4fc82adf 1101 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1102 adapter->num_rx_queues = 1;
661086df 1103 adapter->num_tx_queues = 1;
047e0030 1104 adapter->num_q_vectors = 1;
9d5c8243 1105 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1106 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1107out:
21adef3e
BH
1108 /* Notify the stack of the (possibly) reduced queue counts. */
1109 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1110 return netif_set_real_num_rx_queues(adapter->netdev,
1111 adapter->num_rx_queues);
9d5c8243
AK
1112}
1113
047e0030
AD
1114/**
1115 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1116 * @adapter: board private structure to initialize
1117 *
1118 * We allocate one q_vector per queue interrupt. If allocation fails we
1119 * return -ENOMEM.
1120 **/
1121static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1122{
1123 struct igb_q_vector *q_vector;
1124 struct e1000_hw *hw = &adapter->hw;
1125 int v_idx;
81c2fc22 1126 int orig_node = adapter->node;
047e0030
AD
1127
1128 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
81c2fc22
AD
1129 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1130 adapter->num_tx_queues)) &&
1131 (adapter->num_rx_queues == v_idx))
1132 adapter->node = orig_node;
1133 if (orig_node == -1) {
1134 int cur_node = next_online_node(adapter->node);
1135 if (cur_node == MAX_NUMNODES)
1136 cur_node = first_online_node;
1137 adapter->node = cur_node;
1138 }
1139 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1140 adapter->node);
1141 if (!q_vector)
1142 q_vector = kzalloc(sizeof(struct igb_q_vector),
1143 GFP_KERNEL);
047e0030
AD
1144 if (!q_vector)
1145 goto err_out;
1146 q_vector->adapter = adapter;
047e0030
AD
1147 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1148 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1149 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1150 adapter->q_vector[v_idx] = q_vector;
1151 }
81c2fc22
AD
1152 /* Restore the adapter's original node */
1153 adapter->node = orig_node;
1154
047e0030
AD
1155 return 0;
1156
1157err_out:
81c2fc22
AD
1158 /* Restore the adapter's original node */
1159 adapter->node = orig_node;
fe0592b4 1160 igb_free_q_vectors(adapter);
047e0030
AD
1161 return -ENOMEM;
1162}
1163
1164static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1165 int ring_idx, int v_idx)
1166{
3025a446 1167 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1168
0ba82994
AD
1169 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1170 q_vector->rx.ring->q_vector = q_vector;
1171 q_vector->rx.count++;
4fc82adf
AD
1172 q_vector->itr_val = adapter->rx_itr_setting;
1173 if (q_vector->itr_val && q_vector->itr_val <= 3)
1174 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1175}
1176
1177static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1178 int ring_idx, int v_idx)
1179{
3025a446 1180 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1181
0ba82994
AD
1182 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1183 q_vector->tx.ring->q_vector = q_vector;
1184 q_vector->tx.count++;
4fc82adf 1185 q_vector->itr_val = adapter->tx_itr_setting;
0ba82994 1186 q_vector->tx.work_limit = adapter->tx_work_limit;
4fc82adf
AD
1187 if (q_vector->itr_val && q_vector->itr_val <= 3)
1188 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1189}
1190
1191/**
1192 * igb_map_ring_to_vector - maps allocated queues to vectors
1193 *
1194 * This function maps the recently allocated queues to vectors.
1195 **/
1196static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1197{
1198 int i;
1199 int v_idx = 0;
1200
1201 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1202 (adapter->num_q_vectors < adapter->num_tx_queues))
1203 return -ENOMEM;
1204
1205 if (adapter->num_q_vectors >=
1206 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1207 for (i = 0; i < adapter->num_rx_queues; i++)
1208 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1209 for (i = 0; i < adapter->num_tx_queues; i++)
1210 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1211 } else {
1212 for (i = 0; i < adapter->num_rx_queues; i++) {
1213 if (i < adapter->num_tx_queues)
1214 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1215 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1216 }
1217 for (; i < adapter->num_tx_queues; i++)
1218 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1219 }
1220 return 0;
1221}
1222
1223/**
1224 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1225 *
1226 * This function initializes the interrupts and allocates all of the queues.
1227 **/
1228static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1229{
1230 struct pci_dev *pdev = adapter->pdev;
1231 int err;
1232
21adef3e
BH
1233 err = igb_set_interrupt_capability(adapter);
1234 if (err)
1235 return err;
047e0030
AD
1236
1237 err = igb_alloc_q_vectors(adapter);
1238 if (err) {
1239 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1240 goto err_alloc_q_vectors;
1241 }
1242
1243 err = igb_alloc_queues(adapter);
1244 if (err) {
1245 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1246 goto err_alloc_queues;
1247 }
1248
1249 err = igb_map_ring_to_vector(adapter);
1250 if (err) {
1251 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1252 goto err_map_queues;
1253 }
1254
1255
1256 return 0;
1257err_map_queues:
1258 igb_free_queues(adapter);
1259err_alloc_queues:
1260 igb_free_q_vectors(adapter);
1261err_alloc_q_vectors:
1262 igb_reset_interrupt_capability(adapter);
1263 return err;
1264}
1265
9d5c8243
AK
1266/**
1267 * igb_request_irq - initialize interrupts
1268 *
1269 * Attempts to configure interrupts using the best available
1270 * capabilities of the hardware and kernel.
1271 **/
1272static int igb_request_irq(struct igb_adapter *adapter)
1273{
1274 struct net_device *netdev = adapter->netdev;
047e0030 1275 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1276 int err = 0;
1277
1278 if (adapter->msix_entries) {
1279 err = igb_request_msix(adapter);
844290e5 1280 if (!err)
9d5c8243 1281 goto request_done;
9d5c8243 1282 /* fall back to MSI */
047e0030 1283 igb_clear_interrupt_scheme(adapter);
c74d588e 1284 if (!pci_enable_msi(pdev))
7dfc16fa 1285 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1286 igb_free_all_tx_resources(adapter);
1287 igb_free_all_rx_resources(adapter);
047e0030 1288 adapter->num_tx_queues = 1;
9d5c8243 1289 adapter->num_rx_queues = 1;
047e0030
AD
1290 adapter->num_q_vectors = 1;
1291 err = igb_alloc_q_vectors(adapter);
1292 if (err) {
1293 dev_err(&pdev->dev,
1294 "Unable to allocate memory for vectors\n");
1295 goto request_done;
1296 }
1297 err = igb_alloc_queues(adapter);
1298 if (err) {
1299 dev_err(&pdev->dev,
1300 "Unable to allocate memory for queues\n");
1301 igb_free_q_vectors(adapter);
1302 goto request_done;
1303 }
1304 igb_setup_all_tx_resources(adapter);
1305 igb_setup_all_rx_resources(adapter);
9d5c8243 1306 }
844290e5 1307
c74d588e
AD
1308 igb_assign_vector(adapter->q_vector[0], 0);
1309
7dfc16fa 1310 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1311 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1312 netdev->name, adapter);
9d5c8243
AK
1313 if (!err)
1314 goto request_done;
047e0030 1315
9d5c8243
AK
1316 /* fall back to legacy interrupts */
1317 igb_reset_interrupt_capability(adapter);
7dfc16fa 1318 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1319 }
1320
c74d588e 1321 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1322 netdev->name, adapter);
9d5c8243 1323
6cb5e577 1324 if (err)
c74d588e 1325 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1326 err);
9d5c8243
AK
1327
1328request_done:
1329 return err;
1330}
1331
1332static void igb_free_irq(struct igb_adapter *adapter)
1333{
9d5c8243
AK
1334 if (adapter->msix_entries) {
1335 int vector = 0, i;
1336
047e0030 1337 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1338
0d1ae7f4 1339 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1340 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1341 adapter->q_vector[i]);
047e0030
AD
1342 } else {
1343 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1344 }
9d5c8243
AK
1345}
1346
1347/**
1348 * igb_irq_disable - Mask off interrupt generation on the NIC
1349 * @adapter: board private structure
1350 **/
1351static void igb_irq_disable(struct igb_adapter *adapter)
1352{
1353 struct e1000_hw *hw = &adapter->hw;
1354
25568a53
AD
1355 /*
1356 * we need to be careful when disabling interrupts. The VFs are also
1357 * mapped into these registers and so clearing the bits can cause
1358 * issues on the VF drivers so we only need to clear what we set
1359 */
9d5c8243 1360 if (adapter->msix_entries) {
2dfd1212
AD
1361 u32 regval = rd32(E1000_EIAM);
1362 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1363 wr32(E1000_EIMC, adapter->eims_enable_mask);
1364 regval = rd32(E1000_EIAC);
1365 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1366 }
844290e5
PW
1367
1368 wr32(E1000_IAM, 0);
9d5c8243
AK
1369 wr32(E1000_IMC, ~0);
1370 wrfl();
81a61859
ET
1371 if (adapter->msix_entries) {
1372 int i;
1373 for (i = 0; i < adapter->num_q_vectors; i++)
1374 synchronize_irq(adapter->msix_entries[i].vector);
1375 } else {
1376 synchronize_irq(adapter->pdev->irq);
1377 }
9d5c8243
AK
1378}
1379
1380/**
1381 * igb_irq_enable - Enable default interrupt generation settings
1382 * @adapter: board private structure
1383 **/
1384static void igb_irq_enable(struct igb_adapter *adapter)
1385{
1386 struct e1000_hw *hw = &adapter->hw;
1387
1388 if (adapter->msix_entries) {
06218a8d 1389 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1390 u32 regval = rd32(E1000_EIAC);
1391 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1392 regval = rd32(E1000_EIAM);
1393 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1394 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1395 if (adapter->vfs_allocated_count) {
4ae196df 1396 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1397 ims |= E1000_IMS_VMMB;
1398 }
1399 wr32(E1000_IMS, ims);
844290e5 1400 } else {
55cac248
AD
1401 wr32(E1000_IMS, IMS_ENABLE_MASK |
1402 E1000_IMS_DRSTA);
1403 wr32(E1000_IAM, IMS_ENABLE_MASK |
1404 E1000_IMS_DRSTA);
844290e5 1405 }
9d5c8243
AK
1406}
1407
1408static void igb_update_mng_vlan(struct igb_adapter *adapter)
1409{
51466239 1410 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1411 u16 vid = adapter->hw.mng_cookie.vlan_id;
1412 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1413
1414 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1415 /* add VID to filter table */
1416 igb_vfta_set(hw, vid, true);
1417 adapter->mng_vlan_id = vid;
1418 } else {
1419 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1420 }
1421
1422 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1423 (vid != old_vid) &&
b2cb09b1 1424 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1425 /* remove VID from filter table */
1426 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1427 }
1428}
1429
1430/**
1431 * igb_release_hw_control - release control of the h/w to f/w
1432 * @adapter: address of board private structure
1433 *
1434 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1435 * For ASF and Pass Through versions of f/w this means that the
1436 * driver is no longer loaded.
1437 *
1438 **/
1439static void igb_release_hw_control(struct igb_adapter *adapter)
1440{
1441 struct e1000_hw *hw = &adapter->hw;
1442 u32 ctrl_ext;
1443
1444 /* Let firmware take over control of h/w */
1445 ctrl_ext = rd32(E1000_CTRL_EXT);
1446 wr32(E1000_CTRL_EXT,
1447 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1448}
1449
9d5c8243
AK
1450/**
1451 * igb_get_hw_control - get control of the h/w from f/w
1452 * @adapter: address of board private structure
1453 *
1454 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1455 * For ASF and Pass Through versions of f/w this means that
1456 * the driver is loaded.
1457 *
1458 **/
1459static void igb_get_hw_control(struct igb_adapter *adapter)
1460{
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 ctrl_ext;
1463
1464 /* Let firmware know the driver has taken over */
1465 ctrl_ext = rd32(E1000_CTRL_EXT);
1466 wr32(E1000_CTRL_EXT,
1467 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1468}
1469
9d5c8243
AK
1470/**
1471 * igb_configure - configure the hardware for RX and TX
1472 * @adapter: private board structure
1473 **/
1474static void igb_configure(struct igb_adapter *adapter)
1475{
1476 struct net_device *netdev = adapter->netdev;
1477 int i;
1478
1479 igb_get_hw_control(adapter);
ff41f8dc 1480 igb_set_rx_mode(netdev);
9d5c8243
AK
1481
1482 igb_restore_vlan(adapter);
9d5c8243 1483
85b430b4 1484 igb_setup_tctl(adapter);
06cf2666 1485 igb_setup_mrqc(adapter);
9d5c8243 1486 igb_setup_rctl(adapter);
85b430b4
AD
1487
1488 igb_configure_tx(adapter);
9d5c8243 1489 igb_configure_rx(adapter);
662d7205
AD
1490
1491 igb_rx_fifo_flush_82575(&adapter->hw);
1492
c493ea45 1493 /* call igb_desc_unused which always leaves
9d5c8243
AK
1494 * at least 1 descriptor unused to make sure
1495 * next_to_use != next_to_clean */
1496 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1497 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1498 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1499 }
9d5c8243
AK
1500}
1501
88a268c1
NN
1502/**
1503 * igb_power_up_link - Power up the phy/serdes link
1504 * @adapter: address of board private structure
1505 **/
1506void igb_power_up_link(struct igb_adapter *adapter)
1507{
1508 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1509 igb_power_up_phy_copper(&adapter->hw);
1510 else
1511 igb_power_up_serdes_link_82575(&adapter->hw);
a95a0744 1512 igb_reset_phy(&adapter->hw);
88a268c1
NN
1513}
1514
1515/**
1516 * igb_power_down_link - Power down the phy/serdes link
1517 * @adapter: address of board private structure
1518 */
1519static void igb_power_down_link(struct igb_adapter *adapter)
1520{
1521 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1522 igb_power_down_phy_copper_82575(&adapter->hw);
1523 else
1524 igb_shutdown_serdes_link_82575(&adapter->hw);
1525}
9d5c8243
AK
1526
1527/**
1528 * igb_up - Open the interface and prepare it to handle traffic
1529 * @adapter: board private structure
1530 **/
9d5c8243
AK
1531int igb_up(struct igb_adapter *adapter)
1532{
1533 struct e1000_hw *hw = &adapter->hw;
1534 int i;
1535
1536 /* hardware has been reset, we need to reload some things */
1537 igb_configure(adapter);
1538
1539 clear_bit(__IGB_DOWN, &adapter->state);
1540
0d1ae7f4
AD
1541 for (i = 0; i < adapter->num_q_vectors; i++)
1542 napi_enable(&(adapter->q_vector[i]->napi));
1543
844290e5 1544 if (adapter->msix_entries)
9d5c8243 1545 igb_configure_msix(adapter);
feeb2721
AD
1546 else
1547 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1548
1549 /* Clear any pending interrupts. */
1550 rd32(E1000_ICR);
1551 igb_irq_enable(adapter);
1552
d4960307
AD
1553 /* notify VFs that reset has been completed */
1554 if (adapter->vfs_allocated_count) {
1555 u32 reg_data = rd32(E1000_CTRL_EXT);
1556 reg_data |= E1000_CTRL_EXT_PFRSTD;
1557 wr32(E1000_CTRL_EXT, reg_data);
1558 }
1559
4cb9be7a
JB
1560 netif_tx_start_all_queues(adapter->netdev);
1561
25568a53
AD
1562 /* start the watchdog. */
1563 hw->mac.get_link_status = 1;
1564 schedule_work(&adapter->watchdog_task);
1565
9d5c8243
AK
1566 return 0;
1567}
1568
1569void igb_down(struct igb_adapter *adapter)
1570{
9d5c8243 1571 struct net_device *netdev = adapter->netdev;
330a6d6a 1572 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1573 u32 tctl, rctl;
1574 int i;
1575
1576 /* signal that we're down so the interrupt handler does not
1577 * reschedule our watchdog timer */
1578 set_bit(__IGB_DOWN, &adapter->state);
1579
1580 /* disable receives in the hardware */
1581 rctl = rd32(E1000_RCTL);
1582 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1583 /* flush and sleep below */
1584
fd2ea0a7 1585 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1586
1587 /* disable transmits in the hardware */
1588 tctl = rd32(E1000_TCTL);
1589 tctl &= ~E1000_TCTL_EN;
1590 wr32(E1000_TCTL, tctl);
1591 /* flush both disables and wait for them to finish */
1592 wrfl();
1593 msleep(10);
1594
0d1ae7f4
AD
1595 for (i = 0; i < adapter->num_q_vectors; i++)
1596 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1597
9d5c8243
AK
1598 igb_irq_disable(adapter);
1599
1600 del_timer_sync(&adapter->watchdog_timer);
1601 del_timer_sync(&adapter->phy_info_timer);
1602
9d5c8243 1603 netif_carrier_off(netdev);
04fe6358
AD
1604
1605 /* record the stats before reset*/
12dcd86b
ED
1606 spin_lock(&adapter->stats64_lock);
1607 igb_update_stats(adapter, &adapter->stats64);
1608 spin_unlock(&adapter->stats64_lock);
04fe6358 1609
9d5c8243
AK
1610 adapter->link_speed = 0;
1611 adapter->link_duplex = 0;
1612
3023682e
JK
1613 if (!pci_channel_offline(adapter->pdev))
1614 igb_reset(adapter);
9d5c8243
AK
1615 igb_clean_all_tx_rings(adapter);
1616 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1617#ifdef CONFIG_IGB_DCA
1618
1619 /* since we reset the hardware DCA settings were cleared */
1620 igb_setup_dca(adapter);
1621#endif
9d5c8243
AK
1622}
1623
1624void igb_reinit_locked(struct igb_adapter *adapter)
1625{
1626 WARN_ON(in_interrupt());
1627 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1628 msleep(1);
1629 igb_down(adapter);
1630 igb_up(adapter);
1631 clear_bit(__IGB_RESETTING, &adapter->state);
1632}
1633
1634void igb_reset(struct igb_adapter *adapter)
1635{
090b1795 1636 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1637 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1638 struct e1000_mac_info *mac = &hw->mac;
1639 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1640 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1641 u16 hwm;
1642
1643 /* Repartition Pba for greater than 9k mtu
1644 * To take effect CTRL.RST is required.
1645 */
fa4dfae0 1646 switch (mac->type) {
d2ba2ed8 1647 case e1000_i350:
55cac248
AD
1648 case e1000_82580:
1649 pba = rd32(E1000_RXPBS);
1650 pba = igb_rxpbs_adjust_82580(pba);
1651 break;
fa4dfae0 1652 case e1000_82576:
d249be54
AD
1653 pba = rd32(E1000_RXPBS);
1654 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1655 break;
1656 case e1000_82575:
1657 default:
1658 pba = E1000_PBA_34K;
1659 break;
2d064c06 1660 }
9d5c8243 1661
2d064c06
AD
1662 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1663 (mac->type < e1000_82576)) {
9d5c8243
AK
1664 /* adjust PBA for jumbo frames */
1665 wr32(E1000_PBA, pba);
1666
1667 /* To maintain wire speed transmits, the Tx FIFO should be
1668 * large enough to accommodate two full transmit packets,
1669 * rounded up to the next 1KB and expressed in KB. Likewise,
1670 * the Rx FIFO should be large enough to accommodate at least
1671 * one full receive packet and is similarly rounded up and
1672 * expressed in KB. */
1673 pba = rd32(E1000_PBA);
1674 /* upper 16 bits has Tx packet buffer allocation size in KB */
1675 tx_space = pba >> 16;
1676 /* lower 16 bits has Rx packet buffer allocation size in KB */
1677 pba &= 0xffff;
1678 /* the tx fifo also stores 16 bytes of information about the tx
1679 * but don't include ethernet FCS because hardware appends it */
1680 min_tx_space = (adapter->max_frame_size +
85e8d004 1681 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1682 ETH_FCS_LEN) * 2;
1683 min_tx_space = ALIGN(min_tx_space, 1024);
1684 min_tx_space >>= 10;
1685 /* software strips receive CRC, so leave room for it */
1686 min_rx_space = adapter->max_frame_size;
1687 min_rx_space = ALIGN(min_rx_space, 1024);
1688 min_rx_space >>= 10;
1689
1690 /* If current Tx allocation is less than the min Tx FIFO size,
1691 * and the min Tx FIFO size is less than the current Rx FIFO
1692 * allocation, take space away from current Rx allocation */
1693 if (tx_space < min_tx_space &&
1694 ((min_tx_space - tx_space) < pba)) {
1695 pba = pba - (min_tx_space - tx_space);
1696
1697 /* if short on rx space, rx wins and must trump tx
1698 * adjustment */
1699 if (pba < min_rx_space)
1700 pba = min_rx_space;
1701 }
2d064c06 1702 wr32(E1000_PBA, pba);
9d5c8243 1703 }
9d5c8243
AK
1704
1705 /* flow control settings */
1706 /* The high water mark must be low enough to fit one full frame
1707 * (or the size used for early receive) above it in the Rx FIFO.
1708 * Set it to the lower of:
1709 * - 90% of the Rx FIFO size, or
1710 * - the full Rx FIFO size minus one full frame */
1711 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1712 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1713
d405ea3e
AD
1714 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1715 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1716 fc->pause_time = 0xFFFF;
1717 fc->send_xon = 1;
0cce119a 1718 fc->current_mode = fc->requested_mode;
9d5c8243 1719
4ae196df
AD
1720 /* disable receive for all VFs and wait one second */
1721 if (adapter->vfs_allocated_count) {
1722 int i;
1723 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1724 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1725
1726 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1727 igb_ping_all_vfs(adapter);
4ae196df
AD
1728
1729 /* disable transmits and receives */
1730 wr32(E1000_VFRE, 0);
1731 wr32(E1000_VFTE, 0);
1732 }
1733
9d5c8243 1734 /* Allow time for pending master requests to run */
330a6d6a 1735 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1736 wr32(E1000_WUC, 0);
1737
330a6d6a 1738 if (hw->mac.ops.init_hw(hw))
090b1795 1739 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1740
b6e0c419 1741 igb_init_dmac(adapter, pba);
88a268c1
NN
1742 if (!netif_running(adapter->netdev))
1743 igb_power_down_link(adapter);
1744
9d5c8243
AK
1745 igb_update_mng_vlan(adapter);
1746
1747 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1748 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1749
330a6d6a 1750 igb_get_phy_info(hw);
9d5c8243
AK
1751}
1752
c8f44aff
MM
1753static netdev_features_t igb_fix_features(struct net_device *netdev,
1754 netdev_features_t features)
b2cb09b1
JP
1755{
1756 /*
1757 * Since there is no support for separate rx/tx vlan accel
1758 * enable/disable make sure tx flag is always in same state as rx.
1759 */
1760 if (features & NETIF_F_HW_VLAN_RX)
1761 features |= NETIF_F_HW_VLAN_TX;
1762 else
1763 features &= ~NETIF_F_HW_VLAN_TX;
1764
1765 return features;
1766}
1767
c8f44aff
MM
1768static int igb_set_features(struct net_device *netdev,
1769 netdev_features_t features)
ac52caa3 1770{
c8f44aff 1771 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1772 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1773
b2cb09b1
JP
1774 if (changed & NETIF_F_HW_VLAN_RX)
1775 igb_vlan_mode(netdev, features);
1776
89eaefb6
BG
1777 if (!(changed & NETIF_F_RXALL))
1778 return 0;
1779
1780 netdev->features = features;
1781
1782 if (netif_running(netdev))
1783 igb_reinit_locked(adapter);
1784 else
1785 igb_reset(adapter);
1786
ac52caa3
MM
1787 return 0;
1788}
1789
2e5c6922 1790static const struct net_device_ops igb_netdev_ops = {
559e9c49 1791 .ndo_open = igb_open,
2e5c6922 1792 .ndo_stop = igb_close,
cd392f5c 1793 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1794 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1795 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1796 .ndo_set_mac_address = igb_set_mac,
1797 .ndo_change_mtu = igb_change_mtu,
1798 .ndo_do_ioctl = igb_ioctl,
1799 .ndo_tx_timeout = igb_tx_timeout,
1800 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1801 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1802 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1803 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1804 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1805 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1806 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1807#ifdef CONFIG_NET_POLL_CONTROLLER
1808 .ndo_poll_controller = igb_netpoll,
1809#endif
b2cb09b1
JP
1810 .ndo_fix_features = igb_fix_features,
1811 .ndo_set_features = igb_set_features,
2e5c6922
SH
1812};
1813
9d5c8243
AK
1814/**
1815 * igb_probe - Device Initialization Routine
1816 * @pdev: PCI device information struct
1817 * @ent: entry in igb_pci_tbl
1818 *
1819 * Returns 0 on success, negative on failure
1820 *
1821 * igb_probe initializes an adapter identified by a pci_dev structure.
1822 * The OS initialization, configuring of the adapter private structure,
1823 * and a hardware reset occur.
1824 **/
1825static int __devinit igb_probe(struct pci_dev *pdev,
1826 const struct pci_device_id *ent)
1827{
1828 struct net_device *netdev;
1829 struct igb_adapter *adapter;
1830 struct e1000_hw *hw;
4337e993 1831 u16 eeprom_data = 0;
9835fd73 1832 s32 ret_val;
4337e993 1833 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1834 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1835 unsigned long mmio_start, mmio_len;
2d6a5e95 1836 int err, pci_using_dac;
9d5c8243 1837 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1838 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1839
bded64a7
AG
1840 /* Catch broken hardware that put the wrong VF device ID in
1841 * the PCIe SR-IOV capability.
1842 */
1843 if (pdev->is_virtfn) {
1844 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1845 pci_name(pdev), pdev->vendor, pdev->device);
1846 return -EINVAL;
1847 }
1848
aed5dec3 1849 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1850 if (err)
1851 return err;
1852
1853 pci_using_dac = 0;
59d71989 1854 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1855 if (!err) {
59d71989 1856 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1857 if (!err)
1858 pci_using_dac = 1;
1859 } else {
59d71989 1860 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1861 if (err) {
59d71989 1862 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1863 if (err) {
1864 dev_err(&pdev->dev, "No usable DMA "
1865 "configuration, aborting\n");
1866 goto err_dma;
1867 }
1868 }
1869 }
1870
aed5dec3
AD
1871 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1872 IORESOURCE_MEM),
1873 igb_driver_name);
9d5c8243
AK
1874 if (err)
1875 goto err_pci_reg;
1876
19d5afd4 1877 pci_enable_pcie_error_reporting(pdev);
40a914fa 1878
9d5c8243 1879 pci_set_master(pdev);
c682fc23 1880 pci_save_state(pdev);
9d5c8243
AK
1881
1882 err = -ENOMEM;
1bfaf07b 1883 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1884 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1885 if (!netdev)
1886 goto err_alloc_etherdev;
1887
1888 SET_NETDEV_DEV(netdev, &pdev->dev);
1889
1890 pci_set_drvdata(pdev, netdev);
1891 adapter = netdev_priv(netdev);
1892 adapter->netdev = netdev;
1893 adapter->pdev = pdev;
1894 hw = &adapter->hw;
1895 hw->back = adapter;
1896 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1897
1898 mmio_start = pci_resource_start(pdev, 0);
1899 mmio_len = pci_resource_len(pdev, 0);
1900
1901 err = -EIO;
28b0759c
AD
1902 hw->hw_addr = ioremap(mmio_start, mmio_len);
1903 if (!hw->hw_addr)
9d5c8243
AK
1904 goto err_ioremap;
1905
2e5c6922 1906 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1907 igb_set_ethtool_ops(netdev);
9d5c8243 1908 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1909
1910 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1911
1912 netdev->mem_start = mmio_start;
1913 netdev->mem_end = mmio_start + mmio_len;
1914
9d5c8243
AK
1915 /* PCI config space info */
1916 hw->vendor_id = pdev->vendor;
1917 hw->device_id = pdev->device;
1918 hw->revision_id = pdev->revision;
1919 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1920 hw->subsystem_device_id = pdev->subsystem_device;
1921
9d5c8243
AK
1922 /* Copy the default MAC, PHY and NVM function pointers */
1923 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1924 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1925 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1926 /* Initialize skew-specific constants */
1927 err = ei->get_invariants(hw);
1928 if (err)
450c87c8 1929 goto err_sw_init;
9d5c8243 1930
450c87c8 1931 /* setup the private structure */
9d5c8243
AK
1932 err = igb_sw_init(adapter);
1933 if (err)
1934 goto err_sw_init;
1935
1936 igb_get_bus_info_pcie(hw);
1937
1938 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1939
1940 /* Copper options */
1941 if (hw->phy.media_type == e1000_media_type_copper) {
1942 hw->phy.mdix = AUTO_ALL_MODES;
1943 hw->phy.disable_polarity_correction = false;
1944 hw->phy.ms_type = e1000_ms_hw_default;
1945 }
1946
1947 if (igb_check_reset_block(hw))
1948 dev_info(&pdev->dev,
1949 "PHY reset is blocked due to SOL/IDER session.\n");
1950
077887c3
AD
1951 /*
1952 * features is initialized to 0 in allocation, it might have bits
1953 * set by igb_sw_init so we should use an or instead of an
1954 * assignment.
1955 */
1956 netdev->features |= NETIF_F_SG |
1957 NETIF_F_IP_CSUM |
1958 NETIF_F_IPV6_CSUM |
1959 NETIF_F_TSO |
1960 NETIF_F_TSO6 |
1961 NETIF_F_RXHASH |
1962 NETIF_F_RXCSUM |
1963 NETIF_F_HW_VLAN_RX |
1964 NETIF_F_HW_VLAN_TX;
1965
1966 /* copy netdev features into list of user selectable features */
1967 netdev->hw_features |= netdev->features;
89eaefb6 1968 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
1969
1970 /* set this bit last since it cannot be part of hw_features */
1971 netdev->features |= NETIF_F_HW_VLAN_FILTER;
1972
1973 netdev->vlan_features |= NETIF_F_TSO |
1974 NETIF_F_TSO6 |
1975 NETIF_F_IP_CSUM |
1976 NETIF_F_IPV6_CSUM |
1977 NETIF_F_SG;
48f29ffc 1978
6b8f0922
BG
1979 netdev->priv_flags |= IFF_SUPP_NOFCS;
1980
7b872a55 1981 if (pci_using_dac) {
9d5c8243 1982 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1983 netdev->vlan_features |= NETIF_F_HIGHDMA;
1984 }
9d5c8243 1985
ac52caa3
MM
1986 if (hw->mac.type >= e1000_82576) {
1987 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1988 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1989 }
b9473560 1990
01789349
JP
1991 netdev->priv_flags |= IFF_UNICAST_FLT;
1992
330a6d6a 1993 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1994
1995 /* before reading the NVM, reset the controller to put the device in a
1996 * known good starting state */
1997 hw->mac.ops.reset_hw(hw);
1998
1999 /* make sure the NVM is good */
4322e561 2000 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
2001 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2002 err = -EIO;
2003 goto err_eeprom;
2004 }
2005
2006 /* copy the MAC address out of the NVM */
2007 if (hw->mac.ops.read_mac_addr(hw))
2008 dev_err(&pdev->dev, "NVM Read Error\n");
2009
2010 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2011 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2012
2013 if (!is_valid_ether_addr(netdev->perm_addr)) {
2014 dev_err(&pdev->dev, "Invalid MAC Address\n");
2015 err = -EIO;
2016 goto err_eeprom;
2017 }
2018
c061b18d 2019 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2020 (unsigned long) adapter);
c061b18d 2021 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2022 (unsigned long) adapter);
9d5c8243
AK
2023
2024 INIT_WORK(&adapter->reset_task, igb_reset_task);
2025 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2026
450c87c8 2027 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2028 adapter->fc_autoneg = true;
2029 hw->mac.autoneg = true;
2030 hw->phy.autoneg_advertised = 0x2f;
2031
0cce119a
AD
2032 hw->fc.requested_mode = e1000_fc_default;
2033 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2034
9d5c8243
AK
2035 igb_validate_mdi_setting(hw);
2036
9d5c8243
AK
2037 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2038 * enable the ACPI Magic Packet filter
2039 */
2040
a2cf8b6c 2041 if (hw->bus.func == 0)
312c75ae 2042 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2043 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2044 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2045 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2046 &eeprom_data);
a2cf8b6c
AD
2047 else if (hw->bus.func == 1)
2048 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2049
2050 if (eeprom_data & eeprom_apme_mask)
2051 adapter->eeprom_wol |= E1000_WUFC_MAG;
2052
2053 /* now that we have the eeprom settings, apply the special cases where
2054 * the eeprom may be wrong or the board simply won't support wake on
2055 * lan on a particular port */
2056 switch (pdev->device) {
2057 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2058 adapter->eeprom_wol = 0;
2059 break;
2060 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2061 case E1000_DEV_ID_82576_FIBER:
2062 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2063 /* Wake events only supported on port A for dual fiber
2064 * regardless of eeprom setting */
2065 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2066 adapter->eeprom_wol = 0;
2067 break;
c8ea5ea9 2068 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2069 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2070 /* if quad port adapter, disable WoL on all but port A */
2071 if (global_quad_port_a != 0)
2072 adapter->eeprom_wol = 0;
2073 else
2074 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2075 /* Reset for multiple quad port adapters */
2076 if (++global_quad_port_a == 4)
2077 global_quad_port_a = 0;
2078 break;
9d5c8243
AK
2079 }
2080
2081 /* initialize the wol settings based on the eeprom settings */
2082 adapter->wol = adapter->eeprom_wol;
e1b86d84 2083 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2084
2085 /* reset the hardware with the new settings */
2086 igb_reset(adapter);
2087
2088 /* let the f/w know that the h/w is now under the control of the
2089 * driver. */
2090 igb_get_hw_control(adapter);
2091
9d5c8243
AK
2092 strcpy(netdev->name, "eth%d");
2093 err = register_netdev(netdev);
2094 if (err)
2095 goto err_register;
2096
b168dfc5
JB
2097 /* carrier off reporting is important to ethtool even BEFORE open */
2098 netif_carrier_off(netdev);
2099
421e02f0 2100#ifdef CONFIG_IGB_DCA
bbd98fe4 2101 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2102 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2103 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2104 igb_setup_dca(adapter);
2105 }
fe4506b6 2106
38c845c7 2107#endif
673b8b70
AB
2108 /* do hw tstamp init after resetting */
2109 igb_init_hw_timer(adapter);
2110
9d5c8243
AK
2111 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2112 /* print bus type/speed/width info */
7c510e4b 2113 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2114 netdev->name,
559e9c49 2115 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2116 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2117 "unknown"),
59c3de89
AD
2118 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2119 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2120 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2121 "unknown"),
7c510e4b 2122 netdev->dev_addr);
9d5c8243 2123
9835fd73
CW
2124 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2125 if (ret_val)
2126 strcpy(part_str, "Unknown");
2127 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2128 dev_info(&pdev->dev,
2129 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2130 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2131 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2132 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2133 switch (hw->mac.type) {
2134 case e1000_i350:
2135 igb_set_eee_i350(hw);
2136 break;
2137 default:
2138 break;
2139 }
749ab2cd
YZ
2140
2141 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2142 return 0;
2143
2144err_register:
2145 igb_release_hw_control(adapter);
2146err_eeprom:
2147 if (!igb_check_reset_block(hw))
f5f4cf08 2148 igb_reset_phy(hw);
9d5c8243
AK
2149
2150 if (hw->flash_address)
2151 iounmap(hw->flash_address);
9d5c8243 2152err_sw_init:
047e0030 2153 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2154 iounmap(hw->hw_addr);
2155err_ioremap:
2156 free_netdev(netdev);
2157err_alloc_etherdev:
559e9c49
AD
2158 pci_release_selected_regions(pdev,
2159 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2160err_pci_reg:
2161err_dma:
2162 pci_disable_device(pdev);
2163 return err;
2164}
2165
2166/**
2167 * igb_remove - Device Removal Routine
2168 * @pdev: PCI device information struct
2169 *
2170 * igb_remove is called by the PCI subsystem to alert the driver
2171 * that it should release a PCI device. The could be caused by a
2172 * Hot-Plug event, or because the driver is going to be removed from
2173 * memory.
2174 **/
2175static void __devexit igb_remove(struct pci_dev *pdev)
2176{
2177 struct net_device *netdev = pci_get_drvdata(pdev);
2178 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2179 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2180
749ab2cd
YZ
2181 pm_runtime_get_noresume(&pdev->dev);
2182
760141a5
TH
2183 /*
2184 * The watchdog timer may be rescheduled, so explicitly
2185 * disable watchdog from being rescheduled.
2186 */
9d5c8243
AK
2187 set_bit(__IGB_DOWN, &adapter->state);
2188 del_timer_sync(&adapter->watchdog_timer);
2189 del_timer_sync(&adapter->phy_info_timer);
2190
760141a5
TH
2191 cancel_work_sync(&adapter->reset_task);
2192 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2193
421e02f0 2194#ifdef CONFIG_IGB_DCA
7dfc16fa 2195 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2196 dev_info(&pdev->dev, "DCA disabled\n");
2197 dca_remove_requester(&pdev->dev);
7dfc16fa 2198 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2199 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2200 }
2201#endif
2202
9d5c8243
AK
2203 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2204 * would have already happened in close and is redundant. */
2205 igb_release_hw_control(adapter);
2206
2207 unregister_netdev(netdev);
2208
047e0030 2209 igb_clear_interrupt_scheme(adapter);
9d5c8243 2210
37680117
AD
2211#ifdef CONFIG_PCI_IOV
2212 /* reclaim resources allocated to VFs */
2213 if (adapter->vf_data) {
2214 /* disable iov and allow time for transactions to clear */
0224d663
GR
2215 if (!igb_check_vf_assignment(adapter)) {
2216 pci_disable_sriov(pdev);
2217 msleep(500);
2218 } else {
2219 dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
2220 }
37680117
AD
2221
2222 kfree(adapter->vf_data);
2223 adapter->vf_data = NULL;
2224 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2225 wrfl();
37680117
AD
2226 msleep(100);
2227 dev_info(&pdev->dev, "IOV Disabled\n");
2228 }
2229#endif
559e9c49 2230
28b0759c
AD
2231 iounmap(hw->hw_addr);
2232 if (hw->flash_address)
2233 iounmap(hw->flash_address);
559e9c49
AD
2234 pci_release_selected_regions(pdev,
2235 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2236
1128c756 2237 kfree(adapter->shadow_vfta);
9d5c8243
AK
2238 free_netdev(netdev);
2239
19d5afd4 2240 pci_disable_pcie_error_reporting(pdev);
40a914fa 2241
9d5c8243
AK
2242 pci_disable_device(pdev);
2243}
2244
a6b623e0
AD
2245/**
2246 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2247 * @adapter: board private structure to initialize
2248 *
2249 * This function initializes the vf specific data storage and then attempts to
2250 * allocate the VFs. The reason for ordering it this way is because it is much
2251 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2252 * the memory for the VFs.
2253 **/
2254static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2255{
2256#ifdef CONFIG_PCI_IOV
2257 struct pci_dev *pdev = adapter->pdev;
0224d663
GR
2258 int old_vfs = igb_find_enabled_vfs(adapter);
2259 int i;
a6b623e0 2260
0224d663
GR
2261 if (old_vfs) {
2262 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2263 "max_vfs setting of %d\n", old_vfs, max_vfs);
2264 adapter->vfs_allocated_count = old_vfs;
a6b623e0
AD
2265 }
2266
0224d663
GR
2267 if (!adapter->vfs_allocated_count)
2268 return;
2269
2270 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2271 sizeof(struct vf_data_storage), GFP_KERNEL);
2272 /* if allocation failed then we do not support SR-IOV */
2273 if (!adapter->vf_data) {
a6b623e0 2274 adapter->vfs_allocated_count = 0;
0224d663
GR
2275 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2276 "Data Storage\n");
2277 goto out;
a6b623e0 2278 }
0224d663
GR
2279
2280 if (!old_vfs) {
2281 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2282 goto err_out;
2283 }
2284 dev_info(&pdev->dev, "%d VFs allocated\n",
2285 adapter->vfs_allocated_count);
2286 for (i = 0; i < adapter->vfs_allocated_count; i++)
2287 igb_vf_configure(adapter, i);
2288
2289 /* DMA Coalescing is not supported in IOV mode. */
2290 adapter->flags &= ~IGB_FLAG_DMAC;
2291 goto out;
2292err_out:
2293 kfree(adapter->vf_data);
2294 adapter->vf_data = NULL;
2295 adapter->vfs_allocated_count = 0;
2296out:
2297 return;
a6b623e0
AD
2298#endif /* CONFIG_PCI_IOV */
2299}
2300
115f459a
AD
2301/**
2302 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2303 * @adapter: board private structure to initialize
2304 *
2305 * igb_init_hw_timer initializes the function pointer and values for the hw
2306 * timer found in hardware.
2307 **/
2308static void igb_init_hw_timer(struct igb_adapter *adapter)
2309{
2310 struct e1000_hw *hw = &adapter->hw;
2311
2312 switch (hw->mac.type) {
d2ba2ed8 2313 case e1000_i350:
55cac248
AD
2314 case e1000_82580:
2315 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2316 adapter->cycles.read = igb_read_clock;
2317 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2318 adapter->cycles.mult = 1;
2319 /*
2320 * The 82580 timesync updates the system timer every 8ns by 8ns
2321 * and the value cannot be shifted. Instead we need to shift
2322 * the registers to generate a 64bit timer value. As a result
2323 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2324 * 24 in order to generate a larger value for synchronization.
2325 */
2326 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2327 /* disable system timer temporarily by setting bit 31 */
2328 wr32(E1000_TSAUXC, 0x80000000);
2329 wrfl();
2330
2331 /* Set registers so that rollover occurs soon to test this. */
2332 wr32(E1000_SYSTIMR, 0x00000000);
2333 wr32(E1000_SYSTIML, 0x80000000);
2334 wr32(E1000_SYSTIMH, 0x000000FF);
2335 wrfl();
2336
2337 /* enable system timer by clearing bit 31 */
2338 wr32(E1000_TSAUXC, 0x0);
2339 wrfl();
2340
2341 timecounter_init(&adapter->clock,
2342 &adapter->cycles,
2343 ktime_to_ns(ktime_get_real()));
2344 /*
2345 * Synchronize our NIC clock against system wall clock. NIC
2346 * time stamp reading requires ~3us per sample, each sample
2347 * was pretty stable even under load => only require 10
2348 * samples for each offset comparison.
2349 */
2350 memset(&adapter->compare, 0, sizeof(adapter->compare));
2351 adapter->compare.source = &adapter->clock;
2352 adapter->compare.target = ktime_get_real;
2353 adapter->compare.num_samples = 10;
2354 timecompare_update(&adapter->compare, 0);
2355 break;
115f459a
AD
2356 case e1000_82576:
2357 /*
2358 * Initialize hardware timer: we keep it running just in case
2359 * that some program needs it later on.
2360 */
2361 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2362 adapter->cycles.read = igb_read_clock;
2363 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2364 adapter->cycles.mult = 1;
2365 /**
2366 * Scale the NIC clock cycle by a large factor so that
2367 * relatively small clock corrections can be added or
25985edc 2368 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2369 * factor are a) that the clock register overflows more quickly
2370 * (not such a big deal) and b) that the increment per tick has
2371 * to fit into 24 bits. As a result we need to use a shift of
2372 * 19 so we can fit a value of 16 into the TIMINCA register.
2373 */
2374 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2375 wr32(E1000_TIMINCA,
2376 (1 << E1000_TIMINCA_16NS_SHIFT) |
2377 (16 << IGB_82576_TSYNC_SHIFT));
2378
2379 /* Set registers so that rollover occurs soon to test this. */
2380 wr32(E1000_SYSTIML, 0x00000000);
2381 wr32(E1000_SYSTIMH, 0xFF800000);
2382 wrfl();
2383
2384 timecounter_init(&adapter->clock,
2385 &adapter->cycles,
2386 ktime_to_ns(ktime_get_real()));
2387 /*
2388 * Synchronize our NIC clock against system wall clock. NIC
2389 * time stamp reading requires ~3us per sample, each sample
2390 * was pretty stable even under load => only require 10
2391 * samples for each offset comparison.
2392 */
2393 memset(&adapter->compare, 0, sizeof(adapter->compare));
2394 adapter->compare.source = &adapter->clock;
2395 adapter->compare.target = ktime_get_real;
2396 adapter->compare.num_samples = 10;
2397 timecompare_update(&adapter->compare, 0);
2398 break;
2399 case e1000_82575:
2400 /* 82575 does not support timesync */
2401 default:
2402 break;
2403 }
2404
2405}
2406
9d5c8243
AK
2407/**
2408 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2409 * @adapter: board private structure to initialize
2410 *
2411 * igb_sw_init initializes the Adapter private data structure.
2412 * Fields are initialized based on PCI device information and
2413 * OS network device settings (MTU size).
2414 **/
2415static int __devinit igb_sw_init(struct igb_adapter *adapter)
2416{
2417 struct e1000_hw *hw = &adapter->hw;
2418 struct net_device *netdev = adapter->netdev;
2419 struct pci_dev *pdev = adapter->pdev;
2420
2421 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2422
13fde97a 2423 /* set default ring sizes */
68fd9910
AD
2424 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2425 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2426
2427 /* set default ITR values */
4fc82adf
AD
2428 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2429 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2430
13fde97a
AD
2431 /* set default work limits */
2432 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2433
153285f9
AD
2434 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2435 VLAN_HLEN;
9d5c8243
AK
2436 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2437
81c2fc22
AD
2438 adapter->node = -1;
2439
12dcd86b 2440 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2441#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2442 switch (hw->mac.type) {
2443 case e1000_82576:
2444 case e1000_i350:
9b082d73
SA
2445 if (max_vfs > 7) {
2446 dev_warn(&pdev->dev,
2447 "Maximum of 7 VFs per PF, using max\n");
2448 adapter->vfs_allocated_count = 7;
2449 } else
2450 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2451 break;
2452 default:
2453 break;
2454 }
a6b623e0 2455#endif /* CONFIG_PCI_IOV */
a99955fc 2456 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2457 /* i350 cannot do RSS and SR-IOV at the same time */
2458 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2459 adapter->rss_queues = 1;
a99955fc
AD
2460
2461 /*
2462 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2463 * then we should combine the queues into a queue pair in order to
2464 * conserve interrupts due to limited supply
2465 */
2466 if ((adapter->rss_queues > 4) ||
2467 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2468 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2469
1128c756
CW
2470 /* Setup and initialize a copy of the hw vlan table array */
2471 adapter->shadow_vfta = kzalloc(sizeof(u32) *
2472 E1000_VLAN_FILTER_TBL_SIZE,
2473 GFP_ATOMIC);
2474
a6b623e0 2475 /* This call may decrease the number of queues */
047e0030 2476 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2477 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2478 return -ENOMEM;
2479 }
2480
a6b623e0
AD
2481 igb_probe_vfs(adapter);
2482
9d5c8243
AK
2483 /* Explicitly disable IRQ since the NIC can be in any state. */
2484 igb_irq_disable(adapter);
2485
831ec0b4
CW
2486 if (hw->mac.type == e1000_i350)
2487 adapter->flags &= ~IGB_FLAG_DMAC;
2488
9d5c8243
AK
2489 set_bit(__IGB_DOWN, &adapter->state);
2490 return 0;
2491}
2492
2493/**
2494 * igb_open - Called when a network interface is made active
2495 * @netdev: network interface device structure
2496 *
2497 * Returns 0 on success, negative value on failure
2498 *
2499 * The open entry point is called when a network interface is made
2500 * active by the system (IFF_UP). At this point all resources needed
2501 * for transmit and receive operations are allocated, the interrupt
2502 * handler is registered with the OS, the watchdog timer is started,
2503 * and the stack is notified that the interface is ready.
2504 **/
749ab2cd 2505static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2506{
2507 struct igb_adapter *adapter = netdev_priv(netdev);
2508 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2509 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2510 int err;
2511 int i;
2512
2513 /* disallow open during test */
749ab2cd
YZ
2514 if (test_bit(__IGB_TESTING, &adapter->state)) {
2515 WARN_ON(resuming);
9d5c8243 2516 return -EBUSY;
749ab2cd
YZ
2517 }
2518
2519 if (!resuming)
2520 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2521
b168dfc5
JB
2522 netif_carrier_off(netdev);
2523
9d5c8243
AK
2524 /* allocate transmit descriptors */
2525 err = igb_setup_all_tx_resources(adapter);
2526 if (err)
2527 goto err_setup_tx;
2528
2529 /* allocate receive descriptors */
2530 err = igb_setup_all_rx_resources(adapter);
2531 if (err)
2532 goto err_setup_rx;
2533
88a268c1 2534 igb_power_up_link(adapter);
9d5c8243 2535
9d5c8243
AK
2536 /* before we allocate an interrupt, we must be ready to handle it.
2537 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2538 * as soon as we call pci_request_irq, so we have to setup our
2539 * clean_rx handler before we do so. */
2540 igb_configure(adapter);
2541
2542 err = igb_request_irq(adapter);
2543 if (err)
2544 goto err_req_irq;
2545
2546 /* From here on the code is the same as igb_up() */
2547 clear_bit(__IGB_DOWN, &adapter->state);
2548
0d1ae7f4
AD
2549 for (i = 0; i < adapter->num_q_vectors; i++)
2550 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2551
2552 /* Clear any pending interrupts. */
2553 rd32(E1000_ICR);
844290e5
PW
2554
2555 igb_irq_enable(adapter);
2556
d4960307
AD
2557 /* notify VFs that reset has been completed */
2558 if (adapter->vfs_allocated_count) {
2559 u32 reg_data = rd32(E1000_CTRL_EXT);
2560 reg_data |= E1000_CTRL_EXT_PFRSTD;
2561 wr32(E1000_CTRL_EXT, reg_data);
2562 }
2563
d55b53ff
JK
2564 netif_tx_start_all_queues(netdev);
2565
749ab2cd
YZ
2566 if (!resuming)
2567 pm_runtime_put(&pdev->dev);
2568
25568a53
AD
2569 /* start the watchdog. */
2570 hw->mac.get_link_status = 1;
2571 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2572
2573 return 0;
2574
2575err_req_irq:
2576 igb_release_hw_control(adapter);
88a268c1 2577 igb_power_down_link(adapter);
9d5c8243
AK
2578 igb_free_all_rx_resources(adapter);
2579err_setup_rx:
2580 igb_free_all_tx_resources(adapter);
2581err_setup_tx:
2582 igb_reset(adapter);
749ab2cd
YZ
2583 if (!resuming)
2584 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2585
2586 return err;
2587}
2588
749ab2cd
YZ
2589static int igb_open(struct net_device *netdev)
2590{
2591 return __igb_open(netdev, false);
2592}
2593
9d5c8243
AK
2594/**
2595 * igb_close - Disables a network interface
2596 * @netdev: network interface device structure
2597 *
2598 * Returns 0, this is not allowed to fail
2599 *
2600 * The close entry point is called when an interface is de-activated
2601 * by the OS. The hardware is still under the driver's control, but
2602 * needs to be disabled. A global MAC reset is issued to stop the
2603 * hardware, and all transmit and receive resources are freed.
2604 **/
749ab2cd 2605static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2606{
2607 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2608 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2609
2610 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2611
749ab2cd
YZ
2612 if (!suspending)
2613 pm_runtime_get_sync(&pdev->dev);
2614
2615 igb_down(adapter);
9d5c8243
AK
2616 igb_free_irq(adapter);
2617
2618 igb_free_all_tx_resources(adapter);
2619 igb_free_all_rx_resources(adapter);
2620
749ab2cd
YZ
2621 if (!suspending)
2622 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2623 return 0;
2624}
2625
749ab2cd
YZ
2626static int igb_close(struct net_device *netdev)
2627{
2628 return __igb_close(netdev, false);
2629}
2630
9d5c8243
AK
2631/**
2632 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2633 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2634 *
2635 * Return 0 on success, negative on failure
2636 **/
80785298 2637int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2638{
59d71989 2639 struct device *dev = tx_ring->dev;
81c2fc22 2640 int orig_node = dev_to_node(dev);
9d5c8243
AK
2641 int size;
2642
06034649 2643 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
81c2fc22
AD
2644 tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2645 if (!tx_ring->tx_buffer_info)
2646 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2647 if (!tx_ring->tx_buffer_info)
9d5c8243 2648 goto err;
9d5c8243
AK
2649
2650 /* round up to nearest 4K */
85e8d004 2651 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2652 tx_ring->size = ALIGN(tx_ring->size, 4096);
2653
81c2fc22 2654 set_dev_node(dev, tx_ring->numa_node);
59d71989
AD
2655 tx_ring->desc = dma_alloc_coherent(dev,
2656 tx_ring->size,
2657 &tx_ring->dma,
2658 GFP_KERNEL);
81c2fc22
AD
2659 set_dev_node(dev, orig_node);
2660 if (!tx_ring->desc)
2661 tx_ring->desc = dma_alloc_coherent(dev,
2662 tx_ring->size,
2663 &tx_ring->dma,
2664 GFP_KERNEL);
9d5c8243
AK
2665
2666 if (!tx_ring->desc)
2667 goto err;
2668
9d5c8243
AK
2669 tx_ring->next_to_use = 0;
2670 tx_ring->next_to_clean = 0;
81c2fc22 2671
9d5c8243
AK
2672 return 0;
2673
2674err:
06034649 2675 vfree(tx_ring->tx_buffer_info);
59d71989 2676 dev_err(dev,
9d5c8243
AK
2677 "Unable to allocate memory for the transmit descriptor ring\n");
2678 return -ENOMEM;
2679}
2680
2681/**
2682 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2683 * (Descriptors) for all queues
2684 * @adapter: board private structure
2685 *
2686 * Return 0 on success, negative on failure
2687 **/
2688static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2689{
439705e1 2690 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2691 int i, err = 0;
2692
2693 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2694 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2695 if (err) {
439705e1 2696 dev_err(&pdev->dev,
9d5c8243
AK
2697 "Allocation for Tx Queue %u failed\n", i);
2698 for (i--; i >= 0; i--)
3025a446 2699 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2700 break;
2701 }
2702 }
2703
2704 return err;
2705}
2706
2707/**
85b430b4
AD
2708 * igb_setup_tctl - configure the transmit control registers
2709 * @adapter: Board private structure
9d5c8243 2710 **/
d7ee5b3a 2711void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2712{
9d5c8243
AK
2713 struct e1000_hw *hw = &adapter->hw;
2714 u32 tctl;
9d5c8243 2715
85b430b4
AD
2716 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2717 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2718
2719 /* Program the Transmit Control Register */
9d5c8243
AK
2720 tctl = rd32(E1000_TCTL);
2721 tctl &= ~E1000_TCTL_CT;
2722 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2723 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2724
2725 igb_config_collision_dist(hw);
2726
9d5c8243
AK
2727 /* Enable transmits */
2728 tctl |= E1000_TCTL_EN;
2729
2730 wr32(E1000_TCTL, tctl);
2731}
2732
85b430b4
AD
2733/**
2734 * igb_configure_tx_ring - Configure transmit ring after Reset
2735 * @adapter: board private structure
2736 * @ring: tx ring to configure
2737 *
2738 * Configure a transmit ring after a reset.
2739 **/
d7ee5b3a
AD
2740void igb_configure_tx_ring(struct igb_adapter *adapter,
2741 struct igb_ring *ring)
85b430b4
AD
2742{
2743 struct e1000_hw *hw = &adapter->hw;
a74420e0 2744 u32 txdctl = 0;
85b430b4
AD
2745 u64 tdba = ring->dma;
2746 int reg_idx = ring->reg_idx;
2747
2748 /* disable the queue */
a74420e0 2749 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2750 wrfl();
2751 mdelay(10);
2752
2753 wr32(E1000_TDLEN(reg_idx),
2754 ring->count * sizeof(union e1000_adv_tx_desc));
2755 wr32(E1000_TDBAL(reg_idx),
2756 tdba & 0x00000000ffffffffULL);
2757 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2758
fce99e34 2759 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2760 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2761 writel(0, ring->tail);
85b430b4
AD
2762
2763 txdctl |= IGB_TX_PTHRESH;
2764 txdctl |= IGB_TX_HTHRESH << 8;
2765 txdctl |= IGB_TX_WTHRESH << 16;
2766
2767 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2768 wr32(E1000_TXDCTL(reg_idx), txdctl);
5c490354
AD
2769
2770 netdev_tx_reset_queue(txring_txq(ring));
85b430b4
AD
2771}
2772
2773/**
2774 * igb_configure_tx - Configure transmit Unit after Reset
2775 * @adapter: board private structure
2776 *
2777 * Configure the Tx unit of the MAC after a reset.
2778 **/
2779static void igb_configure_tx(struct igb_adapter *adapter)
2780{
2781 int i;
2782
2783 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2784 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2785}
2786
9d5c8243
AK
2787/**
2788 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2789 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2790 *
2791 * Returns 0 on success, negative on failure
2792 **/
80785298 2793int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2794{
59d71989 2795 struct device *dev = rx_ring->dev;
81c2fc22 2796 int orig_node = dev_to_node(dev);
9d5c8243
AK
2797 int size, desc_len;
2798
06034649 2799 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
81c2fc22
AD
2800 rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2801 if (!rx_ring->rx_buffer_info)
2802 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2803 if (!rx_ring->rx_buffer_info)
9d5c8243 2804 goto err;
9d5c8243
AK
2805
2806 desc_len = sizeof(union e1000_adv_rx_desc);
2807
2808 /* Round up to nearest 4K */
2809 rx_ring->size = rx_ring->count * desc_len;
2810 rx_ring->size = ALIGN(rx_ring->size, 4096);
2811
81c2fc22 2812 set_dev_node(dev, rx_ring->numa_node);
59d71989
AD
2813 rx_ring->desc = dma_alloc_coherent(dev,
2814 rx_ring->size,
2815 &rx_ring->dma,
2816 GFP_KERNEL);
81c2fc22
AD
2817 set_dev_node(dev, orig_node);
2818 if (!rx_ring->desc)
2819 rx_ring->desc = dma_alloc_coherent(dev,
2820 rx_ring->size,
2821 &rx_ring->dma,
2822 GFP_KERNEL);
9d5c8243
AK
2823
2824 if (!rx_ring->desc)
2825 goto err;
2826
2827 rx_ring->next_to_clean = 0;
2828 rx_ring->next_to_use = 0;
9d5c8243 2829
9d5c8243
AK
2830 return 0;
2831
2832err:
06034649
AD
2833 vfree(rx_ring->rx_buffer_info);
2834 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2835 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2836 " ring\n");
9d5c8243
AK
2837 return -ENOMEM;
2838}
2839
2840/**
2841 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2842 * (Descriptors) for all queues
2843 * @adapter: board private structure
2844 *
2845 * Return 0 on success, negative on failure
2846 **/
2847static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2848{
439705e1 2849 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2850 int i, err = 0;
2851
2852 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2853 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2854 if (err) {
439705e1 2855 dev_err(&pdev->dev,
9d5c8243
AK
2856 "Allocation for Rx Queue %u failed\n", i);
2857 for (i--; i >= 0; i--)
3025a446 2858 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2859 break;
2860 }
2861 }
2862
2863 return err;
2864}
2865
06cf2666
AD
2866/**
2867 * igb_setup_mrqc - configure the multiple receive queue control registers
2868 * @adapter: Board private structure
2869 **/
2870static void igb_setup_mrqc(struct igb_adapter *adapter)
2871{
2872 struct e1000_hw *hw = &adapter->hw;
2873 u32 mrqc, rxcsum;
2874 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2875 union e1000_reta {
2876 u32 dword;
2877 u8 bytes[4];
2878 } reta;
2879 static const u8 rsshash[40] = {
2880 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2881 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2882 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2883 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2884
2885 /* Fill out hash function seeds */
2886 for (j = 0; j < 10; j++) {
2887 u32 rsskey = rsshash[(j * 4)];
2888 rsskey |= rsshash[(j * 4) + 1] << 8;
2889 rsskey |= rsshash[(j * 4) + 2] << 16;
2890 rsskey |= rsshash[(j * 4) + 3] << 24;
2891 array_wr32(E1000_RSSRK(0), j, rsskey);
2892 }
2893
a99955fc 2894 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2895
2896 if (adapter->vfs_allocated_count) {
2897 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2898 switch (hw->mac.type) {
d2ba2ed8 2899 case e1000_i350:
55cac248
AD
2900 case e1000_82580:
2901 num_rx_queues = 1;
2902 shift = 0;
2903 break;
06cf2666
AD
2904 case e1000_82576:
2905 shift = 3;
2906 num_rx_queues = 2;
2907 break;
2908 case e1000_82575:
2909 shift = 2;
2910 shift2 = 6;
2911 default:
2912 break;
2913 }
2914 } else {
2915 if (hw->mac.type == e1000_82575)
2916 shift = 6;
2917 }
2918
2919 for (j = 0; j < (32 * 4); j++) {
2920 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2921 if (shift2)
2922 reta.bytes[j & 3] |= num_rx_queues << shift2;
2923 if ((j & 3) == 3)
2924 wr32(E1000_RETA(j >> 2), reta.dword);
2925 }
2926
2927 /*
2928 * Disable raw packet checksumming so that RSS hash is placed in
2929 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2930 * offloads as they are enabled by default
2931 */
2932 rxcsum = rd32(E1000_RXCSUM);
2933 rxcsum |= E1000_RXCSUM_PCSD;
2934
2935 if (adapter->hw.mac.type >= e1000_82576)
2936 /* Enable Receive Checksum Offload for SCTP */
2937 rxcsum |= E1000_RXCSUM_CRCOFL;
2938
2939 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2940 wr32(E1000_RXCSUM, rxcsum);
2941
2942 /* If VMDq is enabled then we set the appropriate mode for that, else
2943 * we default to RSS so that an RSS hash is calculated per packet even
2944 * if we are only using one queue */
2945 if (adapter->vfs_allocated_count) {
2946 if (hw->mac.type > e1000_82575) {
2947 /* Set the default pool for the PF's first queue */
2948 u32 vtctl = rd32(E1000_VT_CTL);
2949 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2950 E1000_VT_CTL_DISABLE_DEF_POOL);
2951 vtctl |= adapter->vfs_allocated_count <<
2952 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2953 wr32(E1000_VT_CTL, vtctl);
2954 }
a99955fc 2955 if (adapter->rss_queues > 1)
06cf2666
AD
2956 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2957 else
2958 mrqc = E1000_MRQC_ENABLE_VMDQ;
2959 } else {
2960 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2961 }
2962 igb_vmm_control(adapter);
2963
4478a9cd
AD
2964 /*
2965 * Generate RSS hash based on TCP port numbers and/or
2966 * IPv4/v6 src and dst addresses since UDP cannot be
2967 * hashed reliably due to IP fragmentation
2968 */
2969 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2970 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2971 E1000_MRQC_RSS_FIELD_IPV6 |
2972 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2973 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2974
2975 wr32(E1000_MRQC, mrqc);
2976}
2977
9d5c8243
AK
2978/**
2979 * igb_setup_rctl - configure the receive control registers
2980 * @adapter: Board private structure
2981 **/
d7ee5b3a 2982void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2983{
2984 struct e1000_hw *hw = &adapter->hw;
2985 u32 rctl;
9d5c8243
AK
2986
2987 rctl = rd32(E1000_RCTL);
2988
2989 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2990 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2991
69d728ba 2992 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2993 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2994
87cb7e8c
AK
2995 /*
2996 * enable stripping of CRC. It's unlikely this will break BMC
2997 * redirection as it did with e1000. Newer features require
2998 * that the HW strips the CRC.
73cd78f1 2999 */
87cb7e8c 3000 rctl |= E1000_RCTL_SECRC;
9d5c8243 3001
559e9c49 3002 /* disable store bad packets and clear size bits. */
ec54d7d6 3003 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3004
6ec43fe6
AD
3005 /* enable LPE to prevent packets larger than max_frame_size */
3006 rctl |= E1000_RCTL_LPE;
9d5c8243 3007
952f72a8
AD
3008 /* disable queue 0 to prevent tail write w/o re-config */
3009 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3010
e1739522
AD
3011 /* Attention!!! For SR-IOV PF driver operations you must enable
3012 * queue drop for all VF and PF queues to prevent head of line blocking
3013 * if an un-trusted VF does not provide descriptors to hardware.
3014 */
3015 if (adapter->vfs_allocated_count) {
e1739522
AD
3016 /* set all queue drop enable bits */
3017 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3018 }
3019
89eaefb6
BG
3020 /* This is useful for sniffing bad packets. */
3021 if (adapter->netdev->features & NETIF_F_RXALL) {
3022 /* UPE and MPE will be handled by normal PROMISC logic
3023 * in e1000e_set_rx_mode */
3024 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3025 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3026 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3027
3028 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3029 E1000_RCTL_DPF | /* Allow filtered pause */
3030 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3031 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3032 * and that breaks VLANs.
3033 */
3034 }
3035
9d5c8243
AK
3036 wr32(E1000_RCTL, rctl);
3037}
3038
7d5753f0
AD
3039static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3040 int vfn)
3041{
3042 struct e1000_hw *hw = &adapter->hw;
3043 u32 vmolr;
3044
3045 /* if it isn't the PF check to see if VFs are enabled and
3046 * increase the size to support vlan tags */
3047 if (vfn < adapter->vfs_allocated_count &&
3048 adapter->vf_data[vfn].vlans_enabled)
3049 size += VLAN_TAG_SIZE;
3050
3051 vmolr = rd32(E1000_VMOLR(vfn));
3052 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3053 vmolr |= size | E1000_VMOLR_LPE;
3054 wr32(E1000_VMOLR(vfn), vmolr);
3055
3056 return 0;
3057}
3058
e1739522
AD
3059/**
3060 * igb_rlpml_set - set maximum receive packet size
3061 * @adapter: board private structure
3062 *
3063 * Configure maximum receivable packet size.
3064 **/
3065static void igb_rlpml_set(struct igb_adapter *adapter)
3066{
153285f9 3067 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3068 struct e1000_hw *hw = &adapter->hw;
3069 u16 pf_id = adapter->vfs_allocated_count;
3070
e1739522
AD
3071 if (pf_id) {
3072 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3073 /*
3074 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3075 * to our max jumbo frame size, in case we need to enable
3076 * jumbo frames on one of the rings later.
3077 * This will not pass over-length frames into the default
3078 * queue because it's gated by the VMOLR.RLPML.
3079 */
7d5753f0 3080 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3081 }
3082
3083 wr32(E1000_RLPML, max_frame_size);
3084}
3085
8151d294
WM
3086static inline void igb_set_vmolr(struct igb_adapter *adapter,
3087 int vfn, bool aupe)
7d5753f0
AD
3088{
3089 struct e1000_hw *hw = &adapter->hw;
3090 u32 vmolr;
3091
3092 /*
3093 * This register exists only on 82576 and newer so if we are older then
3094 * we should exit and do nothing
3095 */
3096 if (hw->mac.type < e1000_82576)
3097 return;
3098
3099 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3100 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3101 if (aupe)
3102 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3103 else
3104 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3105
3106 /* clear all bits that might not be set */
3107 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3108
a99955fc 3109 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3110 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3111 /*
3112 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3113 * multicast packets
3114 */
3115 if (vfn <= adapter->vfs_allocated_count)
3116 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3117
3118 wr32(E1000_VMOLR(vfn), vmolr);
3119}
3120
85b430b4
AD
3121/**
3122 * igb_configure_rx_ring - Configure a receive ring after Reset
3123 * @adapter: board private structure
3124 * @ring: receive ring to be configured
3125 *
3126 * Configure the Rx unit of the MAC after a reset.
3127 **/
d7ee5b3a
AD
3128void igb_configure_rx_ring(struct igb_adapter *adapter,
3129 struct igb_ring *ring)
85b430b4
AD
3130{
3131 struct e1000_hw *hw = &adapter->hw;
3132 u64 rdba = ring->dma;
3133 int reg_idx = ring->reg_idx;
a74420e0 3134 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3135
3136 /* disable the queue */
a74420e0 3137 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3138
3139 /* Set DMA base address registers */
3140 wr32(E1000_RDBAL(reg_idx),
3141 rdba & 0x00000000ffffffffULL);
3142 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3143 wr32(E1000_RDLEN(reg_idx),
3144 ring->count * sizeof(union e1000_adv_rx_desc));
3145
3146 /* initialize head and tail */
fce99e34 3147 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3148 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3149 writel(0, ring->tail);
85b430b4 3150
952f72a8 3151 /* set descriptor configuration */
44390ca6 3152 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3153#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3154 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3155#else
44390ca6 3156 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3157#endif
44390ca6 3158 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
06218a8d 3159 if (hw->mac.type >= e1000_82580)
757b77e2 3160 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3161 /* Only set Drop Enable if we are supporting multiple queues */
3162 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3163 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3164
3165 wr32(E1000_SRRCTL(reg_idx), srrctl);
3166
7d5753f0 3167 /* set filtering for VMDQ pools */
8151d294 3168 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3169
85b430b4
AD
3170 rxdctl |= IGB_RX_PTHRESH;
3171 rxdctl |= IGB_RX_HTHRESH << 8;
3172 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3173
3174 /* enable receive descriptor fetching */
3175 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3176 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3177}
3178
9d5c8243
AK
3179/**
3180 * igb_configure_rx - Configure receive Unit after Reset
3181 * @adapter: board private structure
3182 *
3183 * Configure the Rx unit of the MAC after a reset.
3184 **/
3185static void igb_configure_rx(struct igb_adapter *adapter)
3186{
9107584e 3187 int i;
9d5c8243 3188
68d480c4
AD
3189 /* set UTA to appropriate mode */
3190 igb_set_uta(adapter);
3191
26ad9178
AD
3192 /* set the correct pool for the PF default MAC address in entry 0 */
3193 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3194 adapter->vfs_allocated_count);
3195
06cf2666
AD
3196 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3197 * the Base and Length of the Rx Descriptor Ring */
3198 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3199 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3200}
3201
3202/**
3203 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3204 * @tx_ring: Tx descriptor ring for a specific queue
3205 *
3206 * Free all transmit software resources
3207 **/
68fd9910 3208void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3209{
3b644cf6 3210 igb_clean_tx_ring(tx_ring);
9d5c8243 3211
06034649
AD
3212 vfree(tx_ring->tx_buffer_info);
3213 tx_ring->tx_buffer_info = NULL;
9d5c8243 3214
439705e1
AD
3215 /* if not set, then don't free */
3216 if (!tx_ring->desc)
3217 return;
3218
59d71989
AD
3219 dma_free_coherent(tx_ring->dev, tx_ring->size,
3220 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3221
3222 tx_ring->desc = NULL;
3223}
3224
3225/**
3226 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3227 * @adapter: board private structure
3228 *
3229 * Free all transmit software resources
3230 **/
3231static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3232{
3233 int i;
3234
3235 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3236 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3237}
3238
ebe42d16
AD
3239void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3240 struct igb_tx_buffer *tx_buffer)
3241{
3242 if (tx_buffer->skb) {
3243 dev_kfree_skb_any(tx_buffer->skb);
3244 if (tx_buffer->dma)
3245 dma_unmap_single(ring->dev,
3246 tx_buffer->dma,
3247 tx_buffer->length,
3248 DMA_TO_DEVICE);
3249 } else if (tx_buffer->dma) {
3250 dma_unmap_page(ring->dev,
3251 tx_buffer->dma,
3252 tx_buffer->length,
3253 DMA_TO_DEVICE);
3254 }
3255 tx_buffer->next_to_watch = NULL;
3256 tx_buffer->skb = NULL;
3257 tx_buffer->dma = 0;
3258 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3259}
3260
3261/**
3262 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3263 * @tx_ring: ring to be cleaned
3264 **/
3b644cf6 3265static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3266{
06034649 3267 struct igb_tx_buffer *buffer_info;
9d5c8243 3268 unsigned long size;
6ad4edfc 3269 u16 i;
9d5c8243 3270
06034649 3271 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3272 return;
3273 /* Free all the Tx ring sk_buffs */
3274
3275 for (i = 0; i < tx_ring->count; i++) {
06034649 3276 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3277 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3278 }
3279
06034649
AD
3280 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3281 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3282
3283 /* Zero out the descriptor ring */
9d5c8243
AK
3284 memset(tx_ring->desc, 0, tx_ring->size);
3285
3286 tx_ring->next_to_use = 0;
3287 tx_ring->next_to_clean = 0;
9d5c8243
AK
3288}
3289
3290/**
3291 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3292 * @adapter: board private structure
3293 **/
3294static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3295{
3296 int i;
3297
3298 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3299 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3300}
3301
3302/**
3303 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3304 * @rx_ring: ring to clean the resources from
3305 *
3306 * Free all receive software resources
3307 **/
68fd9910 3308void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3309{
3b644cf6 3310 igb_clean_rx_ring(rx_ring);
9d5c8243 3311
06034649
AD
3312 vfree(rx_ring->rx_buffer_info);
3313 rx_ring->rx_buffer_info = NULL;
9d5c8243 3314
439705e1
AD
3315 /* if not set, then don't free */
3316 if (!rx_ring->desc)
3317 return;
3318
59d71989
AD
3319 dma_free_coherent(rx_ring->dev, rx_ring->size,
3320 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3321
3322 rx_ring->desc = NULL;
3323}
3324
3325/**
3326 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3327 * @adapter: board private structure
3328 *
3329 * Free all receive software resources
3330 **/
3331static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3332{
3333 int i;
3334
3335 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3336 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3337}
3338
3339/**
3340 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3341 * @rx_ring: ring to free buffers from
3342 **/
3b644cf6 3343static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3344{
9d5c8243 3345 unsigned long size;
c023cd88 3346 u16 i;
9d5c8243 3347
06034649 3348 if (!rx_ring->rx_buffer_info)
9d5c8243 3349 return;
439705e1 3350
9d5c8243
AK
3351 /* Free all the Rx ring sk_buffs */
3352 for (i = 0; i < rx_ring->count; i++) {
06034649 3353 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3354 if (buffer_info->dma) {
59d71989 3355 dma_unmap_single(rx_ring->dev,
80785298 3356 buffer_info->dma,
44390ca6 3357 IGB_RX_HDR_LEN,
59d71989 3358 DMA_FROM_DEVICE);
9d5c8243
AK
3359 buffer_info->dma = 0;
3360 }
3361
3362 if (buffer_info->skb) {
3363 dev_kfree_skb(buffer_info->skb);
3364 buffer_info->skb = NULL;
3365 }
6ec43fe6 3366 if (buffer_info->page_dma) {
59d71989 3367 dma_unmap_page(rx_ring->dev,
80785298 3368 buffer_info->page_dma,
6ec43fe6 3369 PAGE_SIZE / 2,
59d71989 3370 DMA_FROM_DEVICE);
6ec43fe6
AD
3371 buffer_info->page_dma = 0;
3372 }
9d5c8243 3373 if (buffer_info->page) {
9d5c8243
AK
3374 put_page(buffer_info->page);
3375 buffer_info->page = NULL;
bf36c1a0 3376 buffer_info->page_offset = 0;
9d5c8243
AK
3377 }
3378 }
3379
06034649
AD
3380 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3381 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3382
3383 /* Zero out the descriptor ring */
3384 memset(rx_ring->desc, 0, rx_ring->size);
3385
3386 rx_ring->next_to_clean = 0;
3387 rx_ring->next_to_use = 0;
9d5c8243
AK
3388}
3389
3390/**
3391 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3392 * @adapter: board private structure
3393 **/
3394static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3395{
3396 int i;
3397
3398 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3399 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3400}
3401
3402/**
3403 * igb_set_mac - Change the Ethernet Address of the NIC
3404 * @netdev: network interface device structure
3405 * @p: pointer to an address structure
3406 *
3407 * Returns 0 on success, negative on failure
3408 **/
3409static int igb_set_mac(struct net_device *netdev, void *p)
3410{
3411 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3412 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3413 struct sockaddr *addr = p;
3414
3415 if (!is_valid_ether_addr(addr->sa_data))
3416 return -EADDRNOTAVAIL;
3417
3418 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3419 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3420
26ad9178
AD
3421 /* set the correct pool for the new PF MAC address in entry 0 */
3422 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3423 adapter->vfs_allocated_count);
e1739522 3424
9d5c8243
AK
3425 return 0;
3426}
3427
3428/**
68d480c4 3429 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3430 * @netdev: network interface device structure
3431 *
68d480c4
AD
3432 * Writes multicast address list to the MTA hash table.
3433 * Returns: -ENOMEM on failure
3434 * 0 on no addresses written
3435 * X on writing X addresses to MTA
9d5c8243 3436 **/
68d480c4 3437static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3438{
3439 struct igb_adapter *adapter = netdev_priv(netdev);
3440 struct e1000_hw *hw = &adapter->hw;
22bedad3 3441 struct netdev_hw_addr *ha;
68d480c4 3442 u8 *mta_list;
9d5c8243
AK
3443 int i;
3444
4cd24eaf 3445 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3446 /* nothing to program, so clear mc list */
3447 igb_update_mc_addr_list(hw, NULL, 0);
3448 igb_restore_vf_multicasts(adapter);
3449 return 0;
3450 }
9d5c8243 3451
4cd24eaf 3452 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3453 if (!mta_list)
3454 return -ENOMEM;
ff41f8dc 3455
68d480c4 3456 /* The shared function expects a packed array of only addresses. */
48e2f183 3457 i = 0;
22bedad3
JP
3458 netdev_for_each_mc_addr(ha, netdev)
3459 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3460
68d480c4
AD
3461 igb_update_mc_addr_list(hw, mta_list, i);
3462 kfree(mta_list);
3463
4cd24eaf 3464 return netdev_mc_count(netdev);
68d480c4
AD
3465}
3466
3467/**
3468 * igb_write_uc_addr_list - write unicast addresses to RAR table
3469 * @netdev: network interface device structure
3470 *
3471 * Writes unicast address list to the RAR table.
3472 * Returns: -ENOMEM on failure/insufficient address space
3473 * 0 on no addresses written
3474 * X on writing X addresses to the RAR table
3475 **/
3476static int igb_write_uc_addr_list(struct net_device *netdev)
3477{
3478 struct igb_adapter *adapter = netdev_priv(netdev);
3479 struct e1000_hw *hw = &adapter->hw;
3480 unsigned int vfn = adapter->vfs_allocated_count;
3481 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3482 int count = 0;
3483
3484 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3485 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3486 return -ENOMEM;
9d5c8243 3487
32e7bfc4 3488 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3489 struct netdev_hw_addr *ha;
32e7bfc4
JP
3490
3491 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3492 if (!rar_entries)
3493 break;
26ad9178
AD
3494 igb_rar_set_qsel(adapter, ha->addr,
3495 rar_entries--,
68d480c4
AD
3496 vfn);
3497 count++;
ff41f8dc
AD
3498 }
3499 }
3500 /* write the addresses in reverse order to avoid write combining */
3501 for (; rar_entries > 0 ; rar_entries--) {
3502 wr32(E1000_RAH(rar_entries), 0);
3503 wr32(E1000_RAL(rar_entries), 0);
3504 }
3505 wrfl();
3506
68d480c4
AD
3507 return count;
3508}
3509
3510/**
3511 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3512 * @netdev: network interface device structure
3513 *
3514 * The set_rx_mode entry point is called whenever the unicast or multicast
3515 * address lists or the network interface flags are updated. This routine is
3516 * responsible for configuring the hardware for proper unicast, multicast,
3517 * promiscuous mode, and all-multi behavior.
3518 **/
3519static void igb_set_rx_mode(struct net_device *netdev)
3520{
3521 struct igb_adapter *adapter = netdev_priv(netdev);
3522 struct e1000_hw *hw = &adapter->hw;
3523 unsigned int vfn = adapter->vfs_allocated_count;
3524 u32 rctl, vmolr = 0;
3525 int count;
3526
3527 /* Check for Promiscuous and All Multicast modes */
3528 rctl = rd32(E1000_RCTL);
3529
3530 /* clear the effected bits */
3531 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3532
3533 if (netdev->flags & IFF_PROMISC) {
3534 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3535 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3536 } else {
3537 if (netdev->flags & IFF_ALLMULTI) {
3538 rctl |= E1000_RCTL_MPE;
3539 vmolr |= E1000_VMOLR_MPME;
3540 } else {
3541 /*
3542 * Write addresses to the MTA, if the attempt fails
25985edc 3543 * then we should just turn on promiscuous mode so
68d480c4
AD
3544 * that we can at least receive multicast traffic
3545 */
3546 count = igb_write_mc_addr_list(netdev);
3547 if (count < 0) {
3548 rctl |= E1000_RCTL_MPE;
3549 vmolr |= E1000_VMOLR_MPME;
3550 } else if (count) {
3551 vmolr |= E1000_VMOLR_ROMPE;
3552 }
3553 }
3554 /*
3555 * Write addresses to available RAR registers, if there is not
3556 * sufficient space to store all the addresses then enable
25985edc 3557 * unicast promiscuous mode
68d480c4
AD
3558 */
3559 count = igb_write_uc_addr_list(netdev);
3560 if (count < 0) {
3561 rctl |= E1000_RCTL_UPE;
3562 vmolr |= E1000_VMOLR_ROPE;
3563 }
3564 rctl |= E1000_RCTL_VFE;
28fc06f5 3565 }
68d480c4 3566 wr32(E1000_RCTL, rctl);
28fc06f5 3567
68d480c4
AD
3568 /*
3569 * In order to support SR-IOV and eventually VMDq it is necessary to set
3570 * the VMOLR to enable the appropriate modes. Without this workaround
3571 * we will have issues with VLAN tag stripping not being done for frames
3572 * that are only arriving because we are the default pool
3573 */
3574 if (hw->mac.type < e1000_82576)
28fc06f5 3575 return;
9d5c8243 3576
68d480c4
AD
3577 vmolr |= rd32(E1000_VMOLR(vfn)) &
3578 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3579 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3580 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3581}
3582
13800469
GR
3583static void igb_check_wvbr(struct igb_adapter *adapter)
3584{
3585 struct e1000_hw *hw = &adapter->hw;
3586 u32 wvbr = 0;
3587
3588 switch (hw->mac.type) {
3589 case e1000_82576:
3590 case e1000_i350:
3591 if (!(wvbr = rd32(E1000_WVBR)))
3592 return;
3593 break;
3594 default:
3595 break;
3596 }
3597
3598 adapter->wvbr |= wvbr;
3599}
3600
3601#define IGB_STAGGERED_QUEUE_OFFSET 8
3602
3603static void igb_spoof_check(struct igb_adapter *adapter)
3604{
3605 int j;
3606
3607 if (!adapter->wvbr)
3608 return;
3609
3610 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3611 if (adapter->wvbr & (1 << j) ||
3612 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3613 dev_warn(&adapter->pdev->dev,
3614 "Spoof event(s) detected on VF %d\n", j);
3615 adapter->wvbr &=
3616 ~((1 << j) |
3617 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3618 }
3619 }
3620}
3621
9d5c8243
AK
3622/* Need to wait a few seconds after link up to get diagnostic information from
3623 * the phy */
3624static void igb_update_phy_info(unsigned long data)
3625{
3626 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3627 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3628}
3629
4d6b725e
AD
3630/**
3631 * igb_has_link - check shared code for link and determine up/down
3632 * @adapter: pointer to driver private info
3633 **/
3145535a 3634bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3635{
3636 struct e1000_hw *hw = &adapter->hw;
3637 bool link_active = false;
3638 s32 ret_val = 0;
3639
3640 /* get_link_status is set on LSC (link status) interrupt or
3641 * rx sequence error interrupt. get_link_status will stay
3642 * false until the e1000_check_for_link establishes link
3643 * for copper adapters ONLY
3644 */
3645 switch (hw->phy.media_type) {
3646 case e1000_media_type_copper:
3647 if (hw->mac.get_link_status) {
3648 ret_val = hw->mac.ops.check_for_link(hw);
3649 link_active = !hw->mac.get_link_status;
3650 } else {
3651 link_active = true;
3652 }
3653 break;
4d6b725e
AD
3654 case e1000_media_type_internal_serdes:
3655 ret_val = hw->mac.ops.check_for_link(hw);
3656 link_active = hw->mac.serdes_has_link;
3657 break;
3658 default:
3659 case e1000_media_type_unknown:
3660 break;
3661 }
3662
3663 return link_active;
3664}
3665
563988dc
SA
3666static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3667{
3668 bool ret = false;
3669 u32 ctrl_ext, thstat;
3670
3671 /* check for thermal sensor event on i350, copper only */
3672 if (hw->mac.type == e1000_i350) {
3673 thstat = rd32(E1000_THSTAT);
3674 ctrl_ext = rd32(E1000_CTRL_EXT);
3675
3676 if ((hw->phy.media_type == e1000_media_type_copper) &&
3677 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3678 ret = !!(thstat & event);
3679 }
3680 }
3681
3682 return ret;
3683}
3684
9d5c8243
AK
3685/**
3686 * igb_watchdog - Timer Call-back
3687 * @data: pointer to adapter cast into an unsigned long
3688 **/
3689static void igb_watchdog(unsigned long data)
3690{
3691 struct igb_adapter *adapter = (struct igb_adapter *)data;
3692 /* Do the rest outside of interrupt context */
3693 schedule_work(&adapter->watchdog_task);
3694}
3695
3696static void igb_watchdog_task(struct work_struct *work)
3697{
3698 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3699 struct igb_adapter,
3700 watchdog_task);
9d5c8243 3701 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3702 struct net_device *netdev = adapter->netdev;
563988dc 3703 u32 link;
7a6ea550 3704 int i;
9d5c8243 3705
4d6b725e 3706 link = igb_has_link(adapter);
9d5c8243 3707 if (link) {
749ab2cd
YZ
3708 /* Cancel scheduled suspend requests. */
3709 pm_runtime_resume(netdev->dev.parent);
3710
9d5c8243
AK
3711 if (!netif_carrier_ok(netdev)) {
3712 u32 ctrl;
330a6d6a
AD
3713 hw->mac.ops.get_speed_and_duplex(hw,
3714 &adapter->link_speed,
3715 &adapter->link_duplex);
9d5c8243
AK
3716
3717 ctrl = rd32(E1000_CTRL);
527d47c1 3718 /* Links status message must follow this format */
876d2d6f
JK
3719 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3720 "Duplex, Flow Control: %s\n",
559e9c49
AD
3721 netdev->name,
3722 adapter->link_speed,
3723 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3724 "Full" : "Half",
3725 (ctrl & E1000_CTRL_TFCE) &&
3726 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3727 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3728 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3729
563988dc 3730 /* check for thermal sensor event */
876d2d6f
JK
3731 if (igb_thermal_sensor_event(hw,
3732 E1000_THSTAT_LINK_THROTTLE)) {
3733 netdev_info(netdev, "The network adapter link "
3734 "speed was downshifted because it "
3735 "overheated\n");
7ef5ed1c 3736 }
563988dc 3737
d07f3e37 3738 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3739 adapter->tx_timeout_factor = 1;
3740 switch (adapter->link_speed) {
3741 case SPEED_10:
9d5c8243
AK
3742 adapter->tx_timeout_factor = 14;
3743 break;
3744 case SPEED_100:
9d5c8243
AK
3745 /* maybe add some timeout factor ? */
3746 break;
3747 }
3748
3749 netif_carrier_on(netdev);
9d5c8243 3750
4ae196df 3751 igb_ping_all_vfs(adapter);
17dc566c 3752 igb_check_vf_rate_limit(adapter);
4ae196df 3753
4b1a9877 3754 /* link state has changed, schedule phy info update */
9d5c8243
AK
3755 if (!test_bit(__IGB_DOWN, &adapter->state))
3756 mod_timer(&adapter->phy_info_timer,
3757 round_jiffies(jiffies + 2 * HZ));
3758 }
3759 } else {
3760 if (netif_carrier_ok(netdev)) {
3761 adapter->link_speed = 0;
3762 adapter->link_duplex = 0;
563988dc
SA
3763
3764 /* check for thermal sensor event */
876d2d6f
JK
3765 if (igb_thermal_sensor_event(hw,
3766 E1000_THSTAT_PWR_DOWN)) {
3767 netdev_err(netdev, "The network adapter was "
3768 "stopped because it overheated\n");
7ef5ed1c 3769 }
563988dc 3770
527d47c1
AD
3771 /* Links status message must follow this format */
3772 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3773 netdev->name);
9d5c8243 3774 netif_carrier_off(netdev);
4b1a9877 3775
4ae196df
AD
3776 igb_ping_all_vfs(adapter);
3777
4b1a9877 3778 /* link state has changed, schedule phy info update */
9d5c8243
AK
3779 if (!test_bit(__IGB_DOWN, &adapter->state))
3780 mod_timer(&adapter->phy_info_timer,
3781 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3782
3783 pm_schedule_suspend(netdev->dev.parent,
3784 MSEC_PER_SEC * 5);
9d5c8243
AK
3785 }
3786 }
3787
12dcd86b
ED
3788 spin_lock(&adapter->stats64_lock);
3789 igb_update_stats(adapter, &adapter->stats64);
3790 spin_unlock(&adapter->stats64_lock);
9d5c8243 3791
dbabb065 3792 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3793 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3794 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3795 /* We've lost link, so the controller stops DMA,
3796 * but we've got queued Tx work that's never going
3797 * to get done, so reset controller to flush Tx.
3798 * (Do the reset outside of interrupt context). */
dbabb065
AD
3799 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3800 adapter->tx_timeout_count++;
3801 schedule_work(&adapter->reset_task);
3802 /* return immediately since reset is imminent */
3803 return;
3804 }
9d5c8243 3805 }
9d5c8243 3806
dbabb065 3807 /* Force detection of hung controller every watchdog period */
6d095fa8 3808 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3809 }
f7ba205e 3810
9d5c8243 3811 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3812 if (adapter->msix_entries) {
047e0030 3813 u32 eics = 0;
0d1ae7f4
AD
3814 for (i = 0; i < adapter->num_q_vectors; i++)
3815 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
3816 wr32(E1000_EICS, eics);
3817 } else {
3818 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3819 }
9d5c8243 3820
13800469
GR
3821 igb_spoof_check(adapter);
3822
9d5c8243
AK
3823 /* Reset the timer */
3824 if (!test_bit(__IGB_DOWN, &adapter->state))
3825 mod_timer(&adapter->watchdog_timer,
3826 round_jiffies(jiffies + 2 * HZ));
3827}
3828
3829enum latency_range {
3830 lowest_latency = 0,
3831 low_latency = 1,
3832 bulk_latency = 2,
3833 latency_invalid = 255
3834};
3835
6eb5a7f1
AD
3836/**
3837 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3838 *
3839 * Stores a new ITR value based on strictly on packet size. This
3840 * algorithm is less sophisticated than that used in igb_update_itr,
3841 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3842 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3843 * were determined based on theoretical maximum wire speed and testing
3844 * data, in order to minimize response time while increasing bulk
3845 * throughput.
3846 * This functionality is controlled by the InterruptThrottleRate module
3847 * parameter (see igb_param.c)
3848 * NOTE: This function is called only when operating in a multiqueue
3849 * receive environment.
047e0030 3850 * @q_vector: pointer to q_vector
6eb5a7f1 3851 **/
047e0030 3852static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3853{
047e0030 3854 int new_val = q_vector->itr_val;
6eb5a7f1 3855 int avg_wire_size = 0;
047e0030 3856 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3857 unsigned int packets;
9d5c8243 3858
6eb5a7f1
AD
3859 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3860 * ints/sec - ITR timer value of 120 ticks.
3861 */
3862 if (adapter->link_speed != SPEED_1000) {
0ba82994 3863 new_val = IGB_4K_ITR;
6eb5a7f1 3864 goto set_itr_val;
9d5c8243 3865 }
047e0030 3866
0ba82994
AD
3867 packets = q_vector->rx.total_packets;
3868 if (packets)
3869 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3870
0ba82994
AD
3871 packets = q_vector->tx.total_packets;
3872 if (packets)
3873 avg_wire_size = max_t(u32, avg_wire_size,
3874 q_vector->tx.total_bytes / packets);
047e0030
AD
3875
3876 /* if avg_wire_size isn't set no work was done */
3877 if (!avg_wire_size)
3878 goto clear_counts;
9d5c8243 3879
6eb5a7f1
AD
3880 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3881 avg_wire_size += 24;
3882
3883 /* Don't starve jumbo frames */
3884 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3885
6eb5a7f1
AD
3886 /* Give a little boost to mid-size frames */
3887 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3888 new_val = avg_wire_size / 3;
3889 else
3890 new_val = avg_wire_size / 2;
9d5c8243 3891
0ba82994
AD
3892 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3893 if (new_val < IGB_20K_ITR &&
3894 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3895 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3896 new_val = IGB_20K_ITR;
abe1c363 3897
6eb5a7f1 3898set_itr_val:
047e0030
AD
3899 if (new_val != q_vector->itr_val) {
3900 q_vector->itr_val = new_val;
3901 q_vector->set_itr = 1;
9d5c8243 3902 }
6eb5a7f1 3903clear_counts:
0ba82994
AD
3904 q_vector->rx.total_bytes = 0;
3905 q_vector->rx.total_packets = 0;
3906 q_vector->tx.total_bytes = 0;
3907 q_vector->tx.total_packets = 0;
9d5c8243
AK
3908}
3909
3910/**
3911 * igb_update_itr - update the dynamic ITR value based on statistics
3912 * Stores a new ITR value based on packets and byte
3913 * counts during the last interrupt. The advantage of per interrupt
3914 * computation is faster updates and more accurate ITR for the current
3915 * traffic pattern. Constants in this function were computed
3916 * based on theoretical maximum wire speed and thresholds were set based
3917 * on testing data as well as attempting to minimize response time
3918 * while increasing bulk throughput.
3919 * this functionality is controlled by the InterruptThrottleRate module
3920 * parameter (see igb_param.c)
3921 * NOTE: These calculations are only valid when operating in a single-
3922 * queue environment.
0ba82994
AD
3923 * @q_vector: pointer to q_vector
3924 * @ring_container: ring info to update the itr for
9d5c8243 3925 **/
0ba82994
AD
3926static void igb_update_itr(struct igb_q_vector *q_vector,
3927 struct igb_ring_container *ring_container)
9d5c8243 3928{
0ba82994
AD
3929 unsigned int packets = ring_container->total_packets;
3930 unsigned int bytes = ring_container->total_bytes;
3931 u8 itrval = ring_container->itr;
9d5c8243 3932
0ba82994 3933 /* no packets, exit with status unchanged */
9d5c8243 3934 if (packets == 0)
0ba82994 3935 return;
9d5c8243 3936
0ba82994 3937 switch (itrval) {
9d5c8243
AK
3938 case lowest_latency:
3939 /* handle TSO and jumbo frames */
3940 if (bytes/packets > 8000)
0ba82994 3941 itrval = bulk_latency;
9d5c8243 3942 else if ((packets < 5) && (bytes > 512))
0ba82994 3943 itrval = low_latency;
9d5c8243
AK
3944 break;
3945 case low_latency: /* 50 usec aka 20000 ints/s */
3946 if (bytes > 10000) {
3947 /* this if handles the TSO accounting */
3948 if (bytes/packets > 8000) {
0ba82994 3949 itrval = bulk_latency;
9d5c8243 3950 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3951 itrval = bulk_latency;
9d5c8243 3952 } else if ((packets > 35)) {
0ba82994 3953 itrval = lowest_latency;
9d5c8243
AK
3954 }
3955 } else if (bytes/packets > 2000) {
0ba82994 3956 itrval = bulk_latency;
9d5c8243 3957 } else if (packets <= 2 && bytes < 512) {
0ba82994 3958 itrval = lowest_latency;
9d5c8243
AK
3959 }
3960 break;
3961 case bulk_latency: /* 250 usec aka 4000 ints/s */
3962 if (bytes > 25000) {
3963 if (packets > 35)
0ba82994 3964 itrval = low_latency;
1e5c3d21 3965 } else if (bytes < 1500) {
0ba82994 3966 itrval = low_latency;
9d5c8243
AK
3967 }
3968 break;
3969 }
3970
0ba82994
AD
3971 /* clear work counters since we have the values we need */
3972 ring_container->total_bytes = 0;
3973 ring_container->total_packets = 0;
3974
3975 /* write updated itr to ring container */
3976 ring_container->itr = itrval;
9d5c8243
AK
3977}
3978
0ba82994 3979static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 3980{
0ba82994 3981 struct igb_adapter *adapter = q_vector->adapter;
047e0030 3982 u32 new_itr = q_vector->itr_val;
0ba82994 3983 u8 current_itr = 0;
9d5c8243
AK
3984
3985 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3986 if (adapter->link_speed != SPEED_1000) {
3987 current_itr = 0;
0ba82994 3988 new_itr = IGB_4K_ITR;
9d5c8243
AK
3989 goto set_itr_now;
3990 }
3991
0ba82994
AD
3992 igb_update_itr(q_vector, &q_vector->tx);
3993 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 3994
0ba82994 3995 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 3996
6eb5a7f1 3997 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
3998 if (current_itr == lowest_latency &&
3999 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4000 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4001 current_itr = low_latency;
4002
9d5c8243
AK
4003 switch (current_itr) {
4004 /* counts and packets in update_itr are dependent on these numbers */
4005 case lowest_latency:
0ba82994 4006 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4007 break;
4008 case low_latency:
0ba82994 4009 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4010 break;
4011 case bulk_latency:
0ba82994 4012 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4013 break;
4014 default:
4015 break;
4016 }
4017
4018set_itr_now:
047e0030 4019 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4020 /* this attempts to bias the interrupt rate towards Bulk
4021 * by adding intermediate steps when interrupt rate is
4022 * increasing */
047e0030
AD
4023 new_itr = new_itr > q_vector->itr_val ?
4024 max((new_itr * q_vector->itr_val) /
4025 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 4026 new_itr) :
9d5c8243
AK
4027 new_itr;
4028 /* Don't write the value here; it resets the adapter's
4029 * internal timer, and causes us to delay far longer than
4030 * we should between interrupts. Instead, we write the ITR
4031 * value at the beginning of the next interrupt so the timing
4032 * ends up being correct.
4033 */
047e0030
AD
4034 q_vector->itr_val = new_itr;
4035 q_vector->set_itr = 1;
9d5c8243 4036 }
9d5c8243
AK
4037}
4038
c50b52a0
SH
4039static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4040 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4041{
4042 struct e1000_adv_tx_context_desc *context_desc;
4043 u16 i = tx_ring->next_to_use;
4044
4045 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4046
4047 i++;
4048 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4049
4050 /* set bits to identify this as an advanced context descriptor */
4051 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4052
4053 /* For 82575, context index must be unique per ring. */
866cff06 4054 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4055 mss_l4len_idx |= tx_ring->reg_idx << 4;
4056
4057 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4058 context_desc->seqnum_seed = 0;
4059 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4060 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4061}
4062
7af40ad9
AD
4063static int igb_tso(struct igb_ring *tx_ring,
4064 struct igb_tx_buffer *first,
4065 u8 *hdr_len)
9d5c8243 4066{
7af40ad9 4067 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4068 u32 vlan_macip_lens, type_tucmd;
4069 u32 mss_l4len_idx, l4len;
4070
4071 if (!skb_is_gso(skb))
4072 return 0;
9d5c8243
AK
4073
4074 if (skb_header_cloned(skb)) {
7af40ad9 4075 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4076 if (err)
4077 return err;
4078 }
4079
7d13a7d0
AD
4080 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4081 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4082
7af40ad9 4083 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4084 struct iphdr *iph = ip_hdr(skb);
4085 iph->tot_len = 0;
4086 iph->check = 0;
4087 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4088 iph->daddr, 0,
4089 IPPROTO_TCP,
4090 0);
7d13a7d0 4091 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4092 first->tx_flags |= IGB_TX_FLAGS_TSO |
4093 IGB_TX_FLAGS_CSUM |
4094 IGB_TX_FLAGS_IPV4;
8e1e8a47 4095 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4096 ipv6_hdr(skb)->payload_len = 0;
4097 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4098 &ipv6_hdr(skb)->daddr,
4099 0, IPPROTO_TCP, 0);
7af40ad9
AD
4100 first->tx_flags |= IGB_TX_FLAGS_TSO |
4101 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4102 }
4103
7af40ad9 4104 /* compute header lengths */
7d13a7d0
AD
4105 l4len = tcp_hdrlen(skb);
4106 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4107
7af40ad9
AD
4108 /* update gso size and bytecount with header size */
4109 first->gso_segs = skb_shinfo(skb)->gso_segs;
4110 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4111
9d5c8243 4112 /* MSS L4LEN IDX */
7d13a7d0
AD
4113 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4114 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4115
7d13a7d0
AD
4116 /* VLAN MACLEN IPLEN */
4117 vlan_macip_lens = skb_network_header_len(skb);
4118 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4119 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4120
7d13a7d0 4121 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4122
7d13a7d0 4123 return 1;
9d5c8243
AK
4124}
4125
7af40ad9 4126static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4127{
7af40ad9 4128 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4129 u32 vlan_macip_lens = 0;
4130 u32 mss_l4len_idx = 0;
4131 u32 type_tucmd = 0;
9d5c8243 4132
7d13a7d0 4133 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4134 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4135 return;
7d13a7d0
AD
4136 } else {
4137 u8 l4_hdr = 0;
7af40ad9 4138 switch (first->protocol) {
7d13a7d0
AD
4139 case __constant_htons(ETH_P_IP):
4140 vlan_macip_lens |= skb_network_header_len(skb);
4141 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4142 l4_hdr = ip_hdr(skb)->protocol;
4143 break;
4144 case __constant_htons(ETH_P_IPV6):
4145 vlan_macip_lens |= skb_network_header_len(skb);
4146 l4_hdr = ipv6_hdr(skb)->nexthdr;
4147 break;
4148 default:
4149 if (unlikely(net_ratelimit())) {
4150 dev_warn(tx_ring->dev,
4151 "partial checksum but proto=%x!\n",
7af40ad9 4152 first->protocol);
fa4a7ef3 4153 }
7d13a7d0
AD
4154 break;
4155 }
fa4a7ef3 4156
7d13a7d0
AD
4157 switch (l4_hdr) {
4158 case IPPROTO_TCP:
4159 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4160 mss_l4len_idx = tcp_hdrlen(skb) <<
4161 E1000_ADVTXD_L4LEN_SHIFT;
4162 break;
4163 case IPPROTO_SCTP:
4164 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4165 mss_l4len_idx = sizeof(struct sctphdr) <<
4166 E1000_ADVTXD_L4LEN_SHIFT;
4167 break;
4168 case IPPROTO_UDP:
4169 mss_l4len_idx = sizeof(struct udphdr) <<
4170 E1000_ADVTXD_L4LEN_SHIFT;
4171 break;
4172 default:
4173 if (unlikely(net_ratelimit())) {
4174 dev_warn(tx_ring->dev,
4175 "partial checksum but l4 proto=%x!\n",
4176 l4_hdr);
44b0cda3 4177 }
7d13a7d0 4178 break;
9d5c8243 4179 }
7af40ad9
AD
4180
4181 /* update TX checksum flag */
4182 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4183 }
9d5c8243 4184
7d13a7d0 4185 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4186 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4187
7d13a7d0 4188 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4189}
4190
e032afc8
AD
4191static __le32 igb_tx_cmd_type(u32 tx_flags)
4192{
4193 /* set type for advanced descriptor with frame checksum insertion */
4194 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4195 E1000_ADVTXD_DCMD_IFCS |
4196 E1000_ADVTXD_DCMD_DEXT);
4197
4198 /* set HW vlan bit if vlan is present */
4199 if (tx_flags & IGB_TX_FLAGS_VLAN)
4200 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4201
4202 /* set timestamp bit if present */
4203 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4204 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4205
4206 /* set segmentation bits for TSO */
4207 if (tx_flags & IGB_TX_FLAGS_TSO)
4208 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4209
4210 return cmd_type;
4211}
4212
7af40ad9
AD
4213static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4214 union e1000_adv_tx_desc *tx_desc,
4215 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4216{
4217 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4218
4219 /* 82575 requires a unique index per ring if any offload is enabled */
4220 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
866cff06 4221 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4222 olinfo_status |= tx_ring->reg_idx << 4;
4223
4224 /* insert L4 checksum */
4225 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4226 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4227
4228 /* insert IPv4 checksum */
4229 if (tx_flags & IGB_TX_FLAGS_IPV4)
4230 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4231 }
4232
7af40ad9 4233 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4234}
4235
ebe42d16
AD
4236/*
4237 * The largest size we can write to the descriptor is 65535. In order to
4238 * maintain a power of two alignment we have to limit ourselves to 32K.
4239 */
4240#define IGB_MAX_TXD_PWR 15
7af40ad9 4241#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4242
7af40ad9
AD
4243static void igb_tx_map(struct igb_ring *tx_ring,
4244 struct igb_tx_buffer *first,
ebe42d16 4245 const u8 hdr_len)
9d5c8243 4246{
7af40ad9 4247 struct sk_buff *skb = first->skb;
ebe42d16
AD
4248 struct igb_tx_buffer *tx_buffer_info;
4249 union e1000_adv_tx_desc *tx_desc;
4250 dma_addr_t dma;
4251 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4252 unsigned int data_len = skb->data_len;
4253 unsigned int size = skb_headlen(skb);
4254 unsigned int paylen = skb->len - hdr_len;
4255 __le32 cmd_type;
7af40ad9 4256 u32 tx_flags = first->tx_flags;
ebe42d16 4257 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4258
4259 tx_desc = IGB_TX_DESC(tx_ring, i);
4260
7af40ad9 4261 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
ebe42d16
AD
4262 cmd_type = igb_tx_cmd_type(tx_flags);
4263
4264 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4265 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4266 goto dma_error;
9d5c8243 4267
ebe42d16
AD
4268 /* record length, and DMA address */
4269 first->length = size;
4270 first->dma = dma;
ebe42d16
AD
4271 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4272
4273 for (;;) {
4274 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4275 tx_desc->read.cmd_type_len =
4276 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4277
4278 i++;
4279 tx_desc++;
4280 if (i == tx_ring->count) {
4281 tx_desc = IGB_TX_DESC(tx_ring, 0);
4282 i = 0;
4283 }
4284
4285 dma += IGB_MAX_DATA_PER_TXD;
4286 size -= IGB_MAX_DATA_PER_TXD;
4287
4288 tx_desc->read.olinfo_status = 0;
4289 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4290 }
4291
4292 if (likely(!data_len))
4293 break;
2bbfebe2 4294
ebe42d16 4295 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4296
65689fef 4297 i++;
ebe42d16
AD
4298 tx_desc++;
4299 if (i == tx_ring->count) {
4300 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4301 i = 0;
ebe42d16 4302 }
65689fef 4303
9e903e08 4304 size = skb_frag_size(frag);
ebe42d16
AD
4305 data_len -= size;
4306
4307 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4308 size, DMA_TO_DEVICE);
4309 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4310 goto dma_error;
4311
ebe42d16
AD
4312 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4313 tx_buffer_info->length = size;
4314 tx_buffer_info->dma = dma;
4315
4316 tx_desc->read.olinfo_status = 0;
4317 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4318
4319 frag++;
9d5c8243
AK
4320 }
4321
bdbc0631
ED
4322 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4323
ebe42d16
AD
4324 /* write last descriptor with RS and EOP bits */
4325 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
6b8f0922
BG
4326 if (unlikely(skb->no_fcs))
4327 cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
ebe42d16 4328 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4329
4330 /* set the timestamp */
4331 first->time_stamp = jiffies;
4332
ebe42d16
AD
4333 /*
4334 * Force memory writes to complete before letting h/w know there
4335 * are new descriptors to fetch. (Only applicable for weak-ordered
4336 * memory model archs, such as IA-64).
4337 *
4338 * We also need this memory barrier to make certain all of the
4339 * status bits have been updated before next_to_watch is written.
4340 */
4341 wmb();
4342
8542db05 4343 /* set next_to_watch value indicating a packet is present */
ebe42d16 4344 first->next_to_watch = tx_desc;
9d5c8243 4345
ebe42d16
AD
4346 i++;
4347 if (i == tx_ring->count)
4348 i = 0;
6366ad33 4349
ebe42d16 4350 tx_ring->next_to_use = i;
6366ad33 4351
ebe42d16 4352 writel(i, tx_ring->tail);
6366ad33 4353
ebe42d16
AD
4354 /* we need this if more than one processor can write to our tail
4355 * at a time, it syncronizes IO on IA64/Altix systems */
4356 mmiowb();
4357
4358 return;
4359
4360dma_error:
4361 dev_err(tx_ring->dev, "TX DMA map failed\n");
4362
4363 /* clear dma mappings for failed tx_buffer_info map */
4364 for (;;) {
4365 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4366 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4367 if (tx_buffer_info == first)
4368 break;
a77ff709
NN
4369 if (i == 0)
4370 i = tx_ring->count;
6366ad33 4371 i--;
6366ad33
AD
4372 }
4373
9d5c8243 4374 tx_ring->next_to_use = i;
9d5c8243
AK
4375}
4376
6ad4edfc 4377static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4378{
e694e964
AD
4379 struct net_device *netdev = tx_ring->netdev;
4380
661086df 4381 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4382
9d5c8243
AK
4383 /* Herbert's original patch had:
4384 * smp_mb__after_netif_stop_queue();
4385 * but since that doesn't exist yet, just open code it. */
4386 smp_mb();
4387
4388 /* We need to check again in a case another CPU has just
4389 * made room available. */
c493ea45 4390 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4391 return -EBUSY;
4392
4393 /* A reprieve! */
661086df 4394 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4395
4396 u64_stats_update_begin(&tx_ring->tx_syncp2);
4397 tx_ring->tx_stats.restart_queue2++;
4398 u64_stats_update_end(&tx_ring->tx_syncp2);
4399
9d5c8243
AK
4400 return 0;
4401}
4402
6ad4edfc 4403static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4404{
c493ea45 4405 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4406 return 0;
e694e964 4407 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4408}
4409
cd392f5c
AD
4410netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4411 struct igb_ring *tx_ring)
9d5c8243 4412{
8542db05 4413 struct igb_tx_buffer *first;
ebe42d16 4414 int tso;
91d4ee33 4415 u32 tx_flags = 0;
31f6adbb 4416 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4417 u8 hdr_len = 0;
9d5c8243 4418
9d5c8243
AK
4419 /* need: 1 descriptor per page,
4420 * + 2 desc gap to keep tail from touching head,
4421 * + 1 desc for skb->data,
4422 * + 1 desc for context descriptor,
4423 * otherwise try next time */
e694e964 4424 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4425 /* this is a hard error */
9d5c8243
AK
4426 return NETDEV_TX_BUSY;
4427 }
33af6bcc 4428
7af40ad9
AD
4429 /* record the location of the first descriptor for this packet */
4430 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4431 first->skb = skb;
4432 first->bytecount = skb->len;
4433 first->gso_segs = 1;
4434
2244d07b
OH
4435 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4436 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4437 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4438 }
9d5c8243 4439
eab6d18d 4440 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4441 tx_flags |= IGB_TX_FLAGS_VLAN;
4442 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4443 }
4444
7af40ad9
AD
4445 /* record initial flags and protocol */
4446 first->tx_flags = tx_flags;
4447 first->protocol = protocol;
cdfd01fc 4448
7af40ad9
AD
4449 tso = igb_tso(tx_ring, first, &hdr_len);
4450 if (tso < 0)
7d13a7d0 4451 goto out_drop;
7af40ad9
AD
4452 else if (!tso)
4453 igb_tx_csum(tx_ring, first);
9d5c8243 4454
7af40ad9 4455 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4456
4457 /* Make sure there is space in the ring for the next send. */
e694e964 4458 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4459
9d5c8243 4460 return NETDEV_TX_OK;
7d13a7d0
AD
4461
4462out_drop:
7af40ad9
AD
4463 igb_unmap_and_free_tx_resource(tx_ring, first);
4464
7d13a7d0 4465 return NETDEV_TX_OK;
9d5c8243
AK
4466}
4467
1cc3bd87
AD
4468static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4469 struct sk_buff *skb)
4470{
4471 unsigned int r_idx = skb->queue_mapping;
4472
4473 if (r_idx >= adapter->num_tx_queues)
4474 r_idx = r_idx % adapter->num_tx_queues;
4475
4476 return adapter->tx_ring[r_idx];
4477}
4478
cd392f5c
AD
4479static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4480 struct net_device *netdev)
9d5c8243
AK
4481{
4482 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4483
4484 if (test_bit(__IGB_DOWN, &adapter->state)) {
4485 dev_kfree_skb_any(skb);
4486 return NETDEV_TX_OK;
4487 }
4488
4489 if (skb->len <= 0) {
4490 dev_kfree_skb_any(skb);
4491 return NETDEV_TX_OK;
4492 }
4493
1cc3bd87
AD
4494 /*
4495 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4496 * in order to meet this minimum size requirement.
4497 */
4498 if (skb->len < 17) {
4499 if (skb_padto(skb, 17))
4500 return NETDEV_TX_OK;
4501 skb->len = 17;
4502 }
9d5c8243 4503
1cc3bd87 4504 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4505}
4506
4507/**
4508 * igb_tx_timeout - Respond to a Tx Hang
4509 * @netdev: network interface device structure
4510 **/
4511static void igb_tx_timeout(struct net_device *netdev)
4512{
4513 struct igb_adapter *adapter = netdev_priv(netdev);
4514 struct e1000_hw *hw = &adapter->hw;
4515
4516 /* Do the reset outside of interrupt context */
4517 adapter->tx_timeout_count++;
f7ba205e 4518
06218a8d 4519 if (hw->mac.type >= e1000_82580)
55cac248
AD
4520 hw->dev_spec._82575.global_device_reset = true;
4521
9d5c8243 4522 schedule_work(&adapter->reset_task);
265de409
AD
4523 wr32(E1000_EICS,
4524 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4525}
4526
4527static void igb_reset_task(struct work_struct *work)
4528{
4529 struct igb_adapter *adapter;
4530 adapter = container_of(work, struct igb_adapter, reset_task);
4531
c97ec42a
TI
4532 igb_dump(adapter);
4533 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4534 igb_reinit_locked(adapter);
4535}
4536
4537/**
12dcd86b 4538 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4539 * @netdev: network interface device structure
12dcd86b 4540 * @stats: rtnl_link_stats64 pointer
9d5c8243 4541 *
9d5c8243 4542 **/
12dcd86b
ED
4543static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4544 struct rtnl_link_stats64 *stats)
9d5c8243 4545{
12dcd86b
ED
4546 struct igb_adapter *adapter = netdev_priv(netdev);
4547
4548 spin_lock(&adapter->stats64_lock);
4549 igb_update_stats(adapter, &adapter->stats64);
4550 memcpy(stats, &adapter->stats64, sizeof(*stats));
4551 spin_unlock(&adapter->stats64_lock);
4552
4553 return stats;
9d5c8243
AK
4554}
4555
4556/**
4557 * igb_change_mtu - Change the Maximum Transfer Unit
4558 * @netdev: network interface device structure
4559 * @new_mtu: new value for maximum frame size
4560 *
4561 * Returns 0 on success, negative on failure
4562 **/
4563static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4564{
4565 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4566 struct pci_dev *pdev = adapter->pdev;
153285f9 4567 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4568
c809d227 4569 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4570 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4571 return -EINVAL;
4572 }
4573
153285f9 4574#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4575 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4576 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4577 return -EINVAL;
4578 }
4579
4580 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4581 msleep(1);
73cd78f1 4582
9d5c8243
AK
4583 /* igb_down has a dependency on max_frame_size */
4584 adapter->max_frame_size = max_frame;
559e9c49 4585
4c844851
AD
4586 if (netif_running(netdev))
4587 igb_down(adapter);
9d5c8243 4588
090b1795 4589 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4590 netdev->mtu, new_mtu);
4591 netdev->mtu = new_mtu;
4592
4593 if (netif_running(netdev))
4594 igb_up(adapter);
4595 else
4596 igb_reset(adapter);
4597
4598 clear_bit(__IGB_RESETTING, &adapter->state);
4599
4600 return 0;
4601}
4602
4603/**
4604 * igb_update_stats - Update the board statistics counters
4605 * @adapter: board private structure
4606 **/
4607
12dcd86b
ED
4608void igb_update_stats(struct igb_adapter *adapter,
4609 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4610{
4611 struct e1000_hw *hw = &adapter->hw;
4612 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4613 u32 reg, mpc;
9d5c8243 4614 u16 phy_tmp;
3f9c0164
AD
4615 int i;
4616 u64 bytes, packets;
12dcd86b
ED
4617 unsigned int start;
4618 u64 _bytes, _packets;
9d5c8243
AK
4619
4620#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4621
4622 /*
4623 * Prevent stats update while adapter is being reset, or if the pci
4624 * connection is down.
4625 */
4626 if (adapter->link_speed == 0)
4627 return;
4628 if (pci_channel_offline(pdev))
4629 return;
4630
3f9c0164
AD
4631 bytes = 0;
4632 packets = 0;
4633 for (i = 0; i < adapter->num_rx_queues; i++) {
4634 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4635 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4636
3025a446 4637 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4638 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4639
4640 do {
4641 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4642 _bytes = ring->rx_stats.bytes;
4643 _packets = ring->rx_stats.packets;
4644 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4645 bytes += _bytes;
4646 packets += _packets;
3f9c0164
AD
4647 }
4648
128e45eb
AD
4649 net_stats->rx_bytes = bytes;
4650 net_stats->rx_packets = packets;
3f9c0164
AD
4651
4652 bytes = 0;
4653 packets = 0;
4654 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4655 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4656 do {
4657 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4658 _bytes = ring->tx_stats.bytes;
4659 _packets = ring->tx_stats.packets;
4660 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4661 bytes += _bytes;
4662 packets += _packets;
3f9c0164 4663 }
128e45eb
AD
4664 net_stats->tx_bytes = bytes;
4665 net_stats->tx_packets = packets;
3f9c0164
AD
4666
4667 /* read stats registers */
9d5c8243
AK
4668 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4669 adapter->stats.gprc += rd32(E1000_GPRC);
4670 adapter->stats.gorc += rd32(E1000_GORCL);
4671 rd32(E1000_GORCH); /* clear GORCL */
4672 adapter->stats.bprc += rd32(E1000_BPRC);
4673 adapter->stats.mprc += rd32(E1000_MPRC);
4674 adapter->stats.roc += rd32(E1000_ROC);
4675
4676 adapter->stats.prc64 += rd32(E1000_PRC64);
4677 adapter->stats.prc127 += rd32(E1000_PRC127);
4678 adapter->stats.prc255 += rd32(E1000_PRC255);
4679 adapter->stats.prc511 += rd32(E1000_PRC511);
4680 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4681 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4682 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4683 adapter->stats.sec += rd32(E1000_SEC);
4684
fa3d9a6d
MW
4685 mpc = rd32(E1000_MPC);
4686 adapter->stats.mpc += mpc;
4687 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4688 adapter->stats.scc += rd32(E1000_SCC);
4689 adapter->stats.ecol += rd32(E1000_ECOL);
4690 adapter->stats.mcc += rd32(E1000_MCC);
4691 adapter->stats.latecol += rd32(E1000_LATECOL);
4692 adapter->stats.dc += rd32(E1000_DC);
4693 adapter->stats.rlec += rd32(E1000_RLEC);
4694 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4695 adapter->stats.xontxc += rd32(E1000_XONTXC);
4696 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4697 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4698 adapter->stats.fcruc += rd32(E1000_FCRUC);
4699 adapter->stats.gptc += rd32(E1000_GPTC);
4700 adapter->stats.gotc += rd32(E1000_GOTCL);
4701 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4702 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4703 adapter->stats.ruc += rd32(E1000_RUC);
4704 adapter->stats.rfc += rd32(E1000_RFC);
4705 adapter->stats.rjc += rd32(E1000_RJC);
4706 adapter->stats.tor += rd32(E1000_TORH);
4707 adapter->stats.tot += rd32(E1000_TOTH);
4708 adapter->stats.tpr += rd32(E1000_TPR);
4709
4710 adapter->stats.ptc64 += rd32(E1000_PTC64);
4711 adapter->stats.ptc127 += rd32(E1000_PTC127);
4712 adapter->stats.ptc255 += rd32(E1000_PTC255);
4713 adapter->stats.ptc511 += rd32(E1000_PTC511);
4714 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4715 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4716
4717 adapter->stats.mptc += rd32(E1000_MPTC);
4718 adapter->stats.bptc += rd32(E1000_BPTC);
4719
2d0b0f69
NN
4720 adapter->stats.tpt += rd32(E1000_TPT);
4721 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4722
4723 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4724 /* read internal phy specific stats */
4725 reg = rd32(E1000_CTRL_EXT);
4726 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4727 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4728 adapter->stats.tncrs += rd32(E1000_TNCRS);
4729 }
4730
9d5c8243
AK
4731 adapter->stats.tsctc += rd32(E1000_TSCTC);
4732 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4733
4734 adapter->stats.iac += rd32(E1000_IAC);
4735 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4736 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4737 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4738 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4739 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4740 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4741 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4742 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4743
4744 /* Fill out the OS statistics structure */
128e45eb
AD
4745 net_stats->multicast = adapter->stats.mprc;
4746 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4747
4748 /* Rx Errors */
4749
4750 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4751 * our own version based on RUC and ROC */
128e45eb 4752 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4753 adapter->stats.crcerrs + adapter->stats.algnerrc +
4754 adapter->stats.ruc + adapter->stats.roc +
4755 adapter->stats.cexterr;
128e45eb
AD
4756 net_stats->rx_length_errors = adapter->stats.ruc +
4757 adapter->stats.roc;
4758 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4759 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4760 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4761
4762 /* Tx Errors */
128e45eb
AD
4763 net_stats->tx_errors = adapter->stats.ecol +
4764 adapter->stats.latecol;
4765 net_stats->tx_aborted_errors = adapter->stats.ecol;
4766 net_stats->tx_window_errors = adapter->stats.latecol;
4767 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4768
4769 /* Tx Dropped needs to be maintained elsewhere */
4770
4771 /* Phy Stats */
4772 if (hw->phy.media_type == e1000_media_type_copper) {
4773 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4774 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4775 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4776 adapter->phy_stats.idle_errors += phy_tmp;
4777 }
4778 }
4779
4780 /* Management Stats */
4781 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4782 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4783 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4784
4785 /* OS2BMC Stats */
4786 reg = rd32(E1000_MANC);
4787 if (reg & E1000_MANC_EN_BMC2OS) {
4788 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4789 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4790 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4791 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4792 }
9d5c8243
AK
4793}
4794
9d5c8243
AK
4795static irqreturn_t igb_msix_other(int irq, void *data)
4796{
047e0030 4797 struct igb_adapter *adapter = data;
9d5c8243 4798 struct e1000_hw *hw = &adapter->hw;
844290e5 4799 u32 icr = rd32(E1000_ICR);
844290e5 4800 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4801
7f081d40
AD
4802 if (icr & E1000_ICR_DRSTA)
4803 schedule_work(&adapter->reset_task);
4804
047e0030 4805 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4806 /* HW is reporting DMA is out of sync */
4807 adapter->stats.doosync++;
13800469
GR
4808 /* The DMA Out of Sync is also indication of a spoof event
4809 * in IOV mode. Check the Wrong VM Behavior register to
4810 * see if it is really a spoof event. */
4811 igb_check_wvbr(adapter);
dda0e083 4812 }
eebbbdba 4813
4ae196df
AD
4814 /* Check for a mailbox event */
4815 if (icr & E1000_ICR_VMMB)
4816 igb_msg_task(adapter);
4817
4818 if (icr & E1000_ICR_LSC) {
4819 hw->mac.get_link_status = 1;
4820 /* guard against interrupt when we're going down */
4821 if (!test_bit(__IGB_DOWN, &adapter->state))
4822 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4823 }
4824
844290e5 4825 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4826
4827 return IRQ_HANDLED;
4828}
4829
047e0030 4830static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4831{
26b39276 4832 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4833 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4834
047e0030
AD
4835 if (!q_vector->set_itr)
4836 return;
73cd78f1 4837
047e0030
AD
4838 if (!itr_val)
4839 itr_val = 0x4;
661086df 4840
26b39276
AD
4841 if (adapter->hw.mac.type == e1000_82575)
4842 itr_val |= itr_val << 16;
661086df 4843 else
0ba82994 4844 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4845
047e0030
AD
4846 writel(itr_val, q_vector->itr_register);
4847 q_vector->set_itr = 0;
6eb5a7f1
AD
4848}
4849
047e0030 4850static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4851{
047e0030 4852 struct igb_q_vector *q_vector = data;
9d5c8243 4853
047e0030
AD
4854 /* Write the ITR value calculated from the previous interrupt. */
4855 igb_write_itr(q_vector);
9d5c8243 4856
047e0030 4857 napi_schedule(&q_vector->napi);
844290e5 4858
047e0030 4859 return IRQ_HANDLED;
fe4506b6
JC
4860}
4861
421e02f0 4862#ifdef CONFIG_IGB_DCA
047e0030 4863static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4864{
047e0030 4865 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4866 struct e1000_hw *hw = &adapter->hw;
4867 int cpu = get_cpu();
fe4506b6 4868
047e0030
AD
4869 if (q_vector->cpu == cpu)
4870 goto out_no_update;
4871
0ba82994
AD
4872 if (q_vector->tx.ring) {
4873 int q = q_vector->tx.ring->reg_idx;
047e0030
AD
4874 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4875 if (hw->mac.type == e1000_82575) {
4876 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4877 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4878 } else {
047e0030
AD
4879 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4880 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4881 E1000_DCA_TXCTRL_CPUID_SHIFT;
4882 }
4883 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4884 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4885 }
0ba82994
AD
4886 if (q_vector->rx.ring) {
4887 int q = q_vector->rx.ring->reg_idx;
047e0030
AD
4888 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4889 if (hw->mac.type == e1000_82575) {
2d064c06 4890 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4891 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4892 } else {
4893 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4894 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4895 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4896 }
fe4506b6
JC
4897 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4898 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4899 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4900 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4901 }
047e0030
AD
4902 q_vector->cpu = cpu;
4903out_no_update:
fe4506b6
JC
4904 put_cpu();
4905}
4906
4907static void igb_setup_dca(struct igb_adapter *adapter)
4908{
7e0e99ef 4909 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4910 int i;
4911
7dfc16fa 4912 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4913 return;
4914
7e0e99ef
AD
4915 /* Always use CB2 mode, difference is masked in the CB driver. */
4916 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4917
047e0030 4918 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4919 adapter->q_vector[i]->cpu = -1;
4920 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4921 }
4922}
4923
4924static int __igb_notify_dca(struct device *dev, void *data)
4925{
4926 struct net_device *netdev = dev_get_drvdata(dev);
4927 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4928 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4929 struct e1000_hw *hw = &adapter->hw;
4930 unsigned long event = *(unsigned long *)data;
4931
4932 switch (event) {
4933 case DCA_PROVIDER_ADD:
4934 /* if already enabled, don't do it again */
7dfc16fa 4935 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4936 break;
fe4506b6 4937 if (dca_add_requester(dev) == 0) {
bbd98fe4 4938 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4939 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4940 igb_setup_dca(adapter);
4941 break;
4942 }
4943 /* Fall Through since DCA is disabled. */
4944 case DCA_PROVIDER_REMOVE:
7dfc16fa 4945 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4946 /* without this a class_device is left
047e0030 4947 * hanging around in the sysfs model */
fe4506b6 4948 dca_remove_requester(dev);
090b1795 4949 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4950 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4951 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4952 }
4953 break;
4954 }
bbd98fe4 4955
fe4506b6 4956 return 0;
9d5c8243
AK
4957}
4958
fe4506b6
JC
4959static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4960 void *p)
4961{
4962 int ret_val;
4963
4964 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4965 __igb_notify_dca);
4966
4967 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4968}
421e02f0 4969#endif /* CONFIG_IGB_DCA */
9d5c8243 4970
0224d663
GR
4971#ifdef CONFIG_PCI_IOV
4972static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4973{
4974 unsigned char mac_addr[ETH_ALEN];
4975 struct pci_dev *pdev = adapter->pdev;
4976 struct e1000_hw *hw = &adapter->hw;
4977 struct pci_dev *pvfdev;
4978 unsigned int device_id;
4979 u16 thisvf_devfn;
4980
4981 random_ether_addr(mac_addr);
4982 igb_set_vf_mac(adapter, vf, mac_addr);
4983
4984 switch (adapter->hw.mac.type) {
4985 case e1000_82576:
4986 device_id = IGB_82576_VF_DEV_ID;
4987 /* VF Stride for 82576 is 2 */
4988 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
4989 (pdev->devfn & 1);
4990 break;
4991 case e1000_i350:
4992 device_id = IGB_I350_VF_DEV_ID;
4993 /* VF Stride for I350 is 4 */
4994 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
4995 (pdev->devfn & 3);
4996 break;
4997 default:
4998 device_id = 0;
4999 thisvf_devfn = 0;
5000 break;
5001 }
5002
5003 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
5004 while (pvfdev) {
5005 if (pvfdev->devfn == thisvf_devfn)
5006 break;
5007 pvfdev = pci_get_device(hw->vendor_id,
5008 device_id, pvfdev);
5009 }
5010
5011 if (pvfdev)
5012 adapter->vf_data[vf].vfdev = pvfdev;
5013 else
5014 dev_err(&pdev->dev,
5015 "Couldn't find pci dev ptr for VF %4.4x\n",
5016 thisvf_devfn);
5017 return pvfdev != NULL;
5018}
5019
5020static int igb_find_enabled_vfs(struct igb_adapter *adapter)
5021{
5022 struct e1000_hw *hw = &adapter->hw;
5023 struct pci_dev *pdev = adapter->pdev;
5024 struct pci_dev *pvfdev;
5025 u16 vf_devfn = 0;
5026 u16 vf_stride;
5027 unsigned int device_id;
5028 int vfs_found = 0;
5029
5030 switch (adapter->hw.mac.type) {
5031 case e1000_82576:
5032 device_id = IGB_82576_VF_DEV_ID;
5033 /* VF Stride for 82576 is 2 */
5034 vf_stride = 2;
5035 break;
5036 case e1000_i350:
5037 device_id = IGB_I350_VF_DEV_ID;
5038 /* VF Stride for I350 is 4 */
5039 vf_stride = 4;
5040 break;
5041 default:
5042 device_id = 0;
5043 vf_stride = 0;
5044 break;
5045 }
5046
5047 vf_devfn = pdev->devfn + 0x80;
5048 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
5049 while (pvfdev) {
06292921
GR
5050 if (pvfdev->devfn == vf_devfn &&
5051 (pvfdev->bus->number >= pdev->bus->number))
0224d663
GR
5052 vfs_found++;
5053 vf_devfn += vf_stride;
5054 pvfdev = pci_get_device(hw->vendor_id,
5055 device_id, pvfdev);
5056 }
5057
5058 return vfs_found;
5059}
5060
5061static int igb_check_vf_assignment(struct igb_adapter *adapter)
5062{
5063 int i;
5064 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5065 if (adapter->vf_data[i].vfdev) {
5066 if (adapter->vf_data[i].vfdev->dev_flags &
5067 PCI_DEV_FLAGS_ASSIGNED)
5068 return true;
5069 }
5070 }
5071 return false;
5072}
5073
5074#endif
4ae196df
AD
5075static void igb_ping_all_vfs(struct igb_adapter *adapter)
5076{
5077 struct e1000_hw *hw = &adapter->hw;
5078 u32 ping;
5079 int i;
5080
5081 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5082 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5083 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5084 ping |= E1000_VT_MSGTYPE_CTS;
5085 igb_write_mbx(hw, &ping, 1, i);
5086 }
5087}
5088
7d5753f0
AD
5089static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5090{
5091 struct e1000_hw *hw = &adapter->hw;
5092 u32 vmolr = rd32(E1000_VMOLR(vf));
5093 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5094
d85b9004 5095 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
5096 IGB_VF_FLAG_MULTI_PROMISC);
5097 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5098
5099 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5100 vmolr |= E1000_VMOLR_MPME;
d85b9004 5101 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5102 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5103 } else {
5104 /*
5105 * if we have hashes and we are clearing a multicast promisc
5106 * flag we need to write the hashes to the MTA as this step
5107 * was previously skipped
5108 */
5109 if (vf_data->num_vf_mc_hashes > 30) {
5110 vmolr |= E1000_VMOLR_MPME;
5111 } else if (vf_data->num_vf_mc_hashes) {
5112 int j;
5113 vmolr |= E1000_VMOLR_ROMPE;
5114 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5115 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5116 }
5117 }
5118
5119 wr32(E1000_VMOLR(vf), vmolr);
5120
5121 /* there are flags left unprocessed, likely not supported */
5122 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5123 return -EINVAL;
5124
5125 return 0;
5126
5127}
5128
4ae196df
AD
5129static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5130 u32 *msgbuf, u32 vf)
5131{
5132 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5133 u16 *hash_list = (u16 *)&msgbuf[1];
5134 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5135 int i;
5136
7d5753f0 5137 /* salt away the number of multicast addresses assigned
4ae196df
AD
5138 * to this VF for later use to restore when the PF multi cast
5139 * list changes
5140 */
5141 vf_data->num_vf_mc_hashes = n;
5142
7d5753f0
AD
5143 /* only up to 30 hash values supported */
5144 if (n > 30)
5145 n = 30;
5146
5147 /* store the hashes for later use */
4ae196df 5148 for (i = 0; i < n; i++)
a419aef8 5149 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5150
5151 /* Flush and reset the mta with the new values */
ff41f8dc 5152 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5153
5154 return 0;
5155}
5156
5157static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5158{
5159 struct e1000_hw *hw = &adapter->hw;
5160 struct vf_data_storage *vf_data;
5161 int i, j;
5162
5163 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5164 u32 vmolr = rd32(E1000_VMOLR(i));
5165 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5166
4ae196df 5167 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5168
5169 if ((vf_data->num_vf_mc_hashes > 30) ||
5170 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5171 vmolr |= E1000_VMOLR_MPME;
5172 } else if (vf_data->num_vf_mc_hashes) {
5173 vmolr |= E1000_VMOLR_ROMPE;
5174 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5175 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5176 }
5177 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5178 }
5179}
5180
5181static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5182{
5183 struct e1000_hw *hw = &adapter->hw;
5184 u32 pool_mask, reg, vid;
5185 int i;
5186
5187 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5188
5189 /* Find the vlan filter for this id */
5190 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5191 reg = rd32(E1000_VLVF(i));
5192
5193 /* remove the vf from the pool */
5194 reg &= ~pool_mask;
5195
5196 /* if pool is empty then remove entry from vfta */
5197 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5198 (reg & E1000_VLVF_VLANID_ENABLE)) {
5199 reg = 0;
5200 vid = reg & E1000_VLVF_VLANID_MASK;
5201 igb_vfta_set(hw, vid, false);
5202 }
5203
5204 wr32(E1000_VLVF(i), reg);
5205 }
ae641bdc
AD
5206
5207 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5208}
5209
5210static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5211{
5212 struct e1000_hw *hw = &adapter->hw;
5213 u32 reg, i;
5214
51466239
AD
5215 /* The vlvf table only exists on 82576 hardware and newer */
5216 if (hw->mac.type < e1000_82576)
5217 return -1;
5218
5219 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5220 if (!adapter->vfs_allocated_count)
5221 return -1;
5222
5223 /* Find the vlan filter for this id */
5224 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5225 reg = rd32(E1000_VLVF(i));
5226 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5227 vid == (reg & E1000_VLVF_VLANID_MASK))
5228 break;
5229 }
5230
5231 if (add) {
5232 if (i == E1000_VLVF_ARRAY_SIZE) {
5233 /* Did not find a matching VLAN ID entry that was
5234 * enabled. Search for a free filter entry, i.e.
5235 * one without the enable bit set
5236 */
5237 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5238 reg = rd32(E1000_VLVF(i));
5239 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5240 break;
5241 }
5242 }
5243 if (i < E1000_VLVF_ARRAY_SIZE) {
5244 /* Found an enabled/available entry */
5245 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5246
5247 /* if !enabled we need to set this up in vfta */
5248 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5249 /* add VID to filter table */
5250 igb_vfta_set(hw, vid, true);
4ae196df
AD
5251 reg |= E1000_VLVF_VLANID_ENABLE;
5252 }
cad6d05f
AD
5253 reg &= ~E1000_VLVF_VLANID_MASK;
5254 reg |= vid;
4ae196df 5255 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5256
5257 /* do not modify RLPML for PF devices */
5258 if (vf >= adapter->vfs_allocated_count)
5259 return 0;
5260
5261 if (!adapter->vf_data[vf].vlans_enabled) {
5262 u32 size;
5263 reg = rd32(E1000_VMOLR(vf));
5264 size = reg & E1000_VMOLR_RLPML_MASK;
5265 size += 4;
5266 reg &= ~E1000_VMOLR_RLPML_MASK;
5267 reg |= size;
5268 wr32(E1000_VMOLR(vf), reg);
5269 }
ae641bdc 5270
51466239 5271 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5272 }
5273 } else {
5274 if (i < E1000_VLVF_ARRAY_SIZE) {
5275 /* remove vf from the pool */
5276 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5277 /* if pool is empty then remove entry from vfta */
5278 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5279 reg = 0;
5280 igb_vfta_set(hw, vid, false);
5281 }
5282 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5283
5284 /* do not modify RLPML for PF devices */
5285 if (vf >= adapter->vfs_allocated_count)
5286 return 0;
5287
5288 adapter->vf_data[vf].vlans_enabled--;
5289 if (!adapter->vf_data[vf].vlans_enabled) {
5290 u32 size;
5291 reg = rd32(E1000_VMOLR(vf));
5292 size = reg & E1000_VMOLR_RLPML_MASK;
5293 size -= 4;
5294 reg &= ~E1000_VMOLR_RLPML_MASK;
5295 reg |= size;
5296 wr32(E1000_VMOLR(vf), reg);
5297 }
4ae196df
AD
5298 }
5299 }
8151d294
WM
5300 return 0;
5301}
5302
5303static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5304{
5305 struct e1000_hw *hw = &adapter->hw;
5306
5307 if (vid)
5308 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5309 else
5310 wr32(E1000_VMVIR(vf), 0);
5311}
5312
5313static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5314 int vf, u16 vlan, u8 qos)
5315{
5316 int err = 0;
5317 struct igb_adapter *adapter = netdev_priv(netdev);
5318
5319 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5320 return -EINVAL;
5321 if (vlan || qos) {
5322 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5323 if (err)
5324 goto out;
5325 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5326 igb_set_vmolr(adapter, vf, !vlan);
5327 adapter->vf_data[vf].pf_vlan = vlan;
5328 adapter->vf_data[vf].pf_qos = qos;
5329 dev_info(&adapter->pdev->dev,
5330 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5331 if (test_bit(__IGB_DOWN, &adapter->state)) {
5332 dev_warn(&adapter->pdev->dev,
5333 "The VF VLAN has been set,"
5334 " but the PF device is not up.\n");
5335 dev_warn(&adapter->pdev->dev,
5336 "Bring the PF device up before"
5337 " attempting to use the VF device.\n");
5338 }
5339 } else {
5340 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5341 false, vf);
5342 igb_set_vmvir(adapter, vlan, vf);
5343 igb_set_vmolr(adapter, vf, true);
5344 adapter->vf_data[vf].pf_vlan = 0;
5345 adapter->vf_data[vf].pf_qos = 0;
5346 }
5347out:
5348 return err;
4ae196df
AD
5349}
5350
5351static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5352{
5353 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5354 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5355
5356 return igb_vlvf_set(adapter, vid, add, vf);
5357}
5358
f2ca0dbe 5359static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5360{
8fa7e0f7
GR
5361 /* clear flags - except flag that indicates PF has set the MAC */
5362 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5363 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5364
5365 /* reset offloads to defaults */
8151d294 5366 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5367
5368 /* reset vlans for device */
5369 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5370 if (adapter->vf_data[vf].pf_vlan)
5371 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5372 adapter->vf_data[vf].pf_vlan,
5373 adapter->vf_data[vf].pf_qos);
5374 else
5375 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5376
5377 /* reset multicast table array for vf */
5378 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5379
5380 /* Flush and reset the mta with the new values */
ff41f8dc 5381 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5382}
5383
f2ca0dbe
AD
5384static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5385{
5386 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5387
5388 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5389 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5390 random_ether_addr(vf_mac);
f2ca0dbe
AD
5391
5392 /* process remaining reset events */
5393 igb_vf_reset(adapter, vf);
5394}
5395
5396static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5397{
5398 struct e1000_hw *hw = &adapter->hw;
5399 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5400 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5401 u32 reg, msgbuf[3];
5402 u8 *addr = (u8 *)(&msgbuf[1]);
5403
5404 /* process all the same items cleared in a function level reset */
f2ca0dbe 5405 igb_vf_reset(adapter, vf);
4ae196df
AD
5406
5407 /* set vf mac address */
26ad9178 5408 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5409
5410 /* enable transmit and receive for vf */
5411 reg = rd32(E1000_VFTE);
5412 wr32(E1000_VFTE, reg | (1 << vf));
5413 reg = rd32(E1000_VFRE);
5414 wr32(E1000_VFRE, reg | (1 << vf));
5415
8fa7e0f7 5416 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5417
5418 /* reply to reset with ack and vf mac address */
5419 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5420 memcpy(addr, vf_mac, 6);
5421 igb_write_mbx(hw, msgbuf, 3, vf);
5422}
5423
5424static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5425{
de42edde
GR
5426 /*
5427 * The VF MAC Address is stored in a packed array of bytes
5428 * starting at the second 32 bit word of the msg array
5429 */
f2ca0dbe
AD
5430 unsigned char *addr = (char *)&msg[1];
5431 int err = -1;
4ae196df 5432
f2ca0dbe
AD
5433 if (is_valid_ether_addr(addr))
5434 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5435
f2ca0dbe 5436 return err;
4ae196df
AD
5437}
5438
5439static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5440{
5441 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5442 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5443 u32 msg = E1000_VT_MSGTYPE_NACK;
5444
5445 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5446 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5447 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5448 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5449 vf_data->last_nack = jiffies;
4ae196df
AD
5450 }
5451}
5452
f2ca0dbe 5453static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5454{
f2ca0dbe
AD
5455 struct pci_dev *pdev = adapter->pdev;
5456 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5457 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5458 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5459 s32 retval;
5460
f2ca0dbe 5461 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5462
fef45f4c
AD
5463 if (retval) {
5464 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5465 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5466 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5467 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5468 return;
5469 goto out;
5470 }
4ae196df
AD
5471
5472 /* this is a message we already processed, do nothing */
5473 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5474 return;
4ae196df
AD
5475
5476 /*
5477 * until the vf completes a reset it should not be
5478 * allowed to start any configuration.
5479 */
5480
5481 if (msgbuf[0] == E1000_VF_RESET) {
5482 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5483 return;
4ae196df
AD
5484 }
5485
f2ca0dbe 5486 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5487 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5488 return;
5489 retval = -1;
5490 goto out;
4ae196df
AD
5491 }
5492
5493 switch ((msgbuf[0] & 0xFFFF)) {
5494 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5495 retval = -EINVAL;
5496 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5497 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5498 else
5499 dev_warn(&pdev->dev,
5500 "VF %d attempted to override administratively "
5501 "set MAC address\nReload the VF driver to "
5502 "resume operations\n", vf);
4ae196df 5503 break;
7d5753f0
AD
5504 case E1000_VF_SET_PROMISC:
5505 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5506 break;
4ae196df
AD
5507 case E1000_VF_SET_MULTICAST:
5508 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5509 break;
5510 case E1000_VF_SET_LPE:
5511 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5512 break;
5513 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5514 retval = -1;
5515 if (vf_data->pf_vlan)
5516 dev_warn(&pdev->dev,
5517 "VF %d attempted to override administratively "
5518 "set VLAN tag\nReload the VF driver to "
5519 "resume operations\n", vf);
8151d294
WM
5520 else
5521 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5522 break;
5523 default:
090b1795 5524 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5525 retval = -1;
5526 break;
5527 }
5528
fef45f4c
AD
5529 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5530out:
4ae196df
AD
5531 /* notify the VF of the results of what it sent us */
5532 if (retval)
5533 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5534 else
5535 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5536
4ae196df 5537 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5538}
4ae196df 5539
f2ca0dbe
AD
5540static void igb_msg_task(struct igb_adapter *adapter)
5541{
5542 struct e1000_hw *hw = &adapter->hw;
5543 u32 vf;
5544
5545 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5546 /* process any reset requests */
5547 if (!igb_check_for_rst(hw, vf))
5548 igb_vf_reset_event(adapter, vf);
5549
5550 /* process any messages pending */
5551 if (!igb_check_for_msg(hw, vf))
5552 igb_rcv_msg_from_vf(adapter, vf);
5553
5554 /* process any acks */
5555 if (!igb_check_for_ack(hw, vf))
5556 igb_rcv_ack_from_vf(adapter, vf);
5557 }
4ae196df
AD
5558}
5559
68d480c4
AD
5560/**
5561 * igb_set_uta - Set unicast filter table address
5562 * @adapter: board private structure
5563 *
5564 * The unicast table address is a register array of 32-bit registers.
5565 * The table is meant to be used in a way similar to how the MTA is used
5566 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5567 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5568 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5569 **/
5570static void igb_set_uta(struct igb_adapter *adapter)
5571{
5572 struct e1000_hw *hw = &adapter->hw;
5573 int i;
5574
5575 /* The UTA table only exists on 82576 hardware and newer */
5576 if (hw->mac.type < e1000_82576)
5577 return;
5578
5579 /* we only need to do this if VMDq is enabled */
5580 if (!adapter->vfs_allocated_count)
5581 return;
5582
5583 for (i = 0; i < hw->mac.uta_reg_count; i++)
5584 array_wr32(E1000_UTA, i, ~0);
5585}
5586
9d5c8243
AK
5587/**
5588 * igb_intr_msi - Interrupt Handler
5589 * @irq: interrupt number
5590 * @data: pointer to a network interface device structure
5591 **/
5592static irqreturn_t igb_intr_msi(int irq, void *data)
5593{
047e0030
AD
5594 struct igb_adapter *adapter = data;
5595 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5596 struct e1000_hw *hw = &adapter->hw;
5597 /* read ICR disables interrupts using IAM */
5598 u32 icr = rd32(E1000_ICR);
5599
047e0030 5600 igb_write_itr(q_vector);
9d5c8243 5601
7f081d40
AD
5602 if (icr & E1000_ICR_DRSTA)
5603 schedule_work(&adapter->reset_task);
5604
047e0030 5605 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5606 /* HW is reporting DMA is out of sync */
5607 adapter->stats.doosync++;
5608 }
5609
9d5c8243
AK
5610 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5611 hw->mac.get_link_status = 1;
5612 if (!test_bit(__IGB_DOWN, &adapter->state))
5613 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5614 }
5615
047e0030 5616 napi_schedule(&q_vector->napi);
9d5c8243
AK
5617
5618 return IRQ_HANDLED;
5619}
5620
5621/**
4a3c6433 5622 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5623 * @irq: interrupt number
5624 * @data: pointer to a network interface device structure
5625 **/
5626static irqreturn_t igb_intr(int irq, void *data)
5627{
047e0030
AD
5628 struct igb_adapter *adapter = data;
5629 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5630 struct e1000_hw *hw = &adapter->hw;
5631 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5632 * need for the IMC write */
5633 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5634
5635 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5636 * not set, then the adapter didn't send an interrupt */
5637 if (!(icr & E1000_ICR_INT_ASSERTED))
5638 return IRQ_NONE;
5639
0ba82994
AD
5640 igb_write_itr(q_vector);
5641
7f081d40
AD
5642 if (icr & E1000_ICR_DRSTA)
5643 schedule_work(&adapter->reset_task);
5644
047e0030 5645 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5646 /* HW is reporting DMA is out of sync */
5647 adapter->stats.doosync++;
5648 }
5649
9d5c8243
AK
5650 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5651 hw->mac.get_link_status = 1;
5652 /* guard against interrupt when we're going down */
5653 if (!test_bit(__IGB_DOWN, &adapter->state))
5654 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5655 }
5656
047e0030 5657 napi_schedule(&q_vector->napi);
9d5c8243
AK
5658
5659 return IRQ_HANDLED;
5660}
5661
c50b52a0 5662static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5663{
047e0030 5664 struct igb_adapter *adapter = q_vector->adapter;
46544258 5665 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5666
0ba82994
AD
5667 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5668 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5669 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5670 igb_set_itr(q_vector);
46544258 5671 else
047e0030 5672 igb_update_ring_itr(q_vector);
9d5c8243
AK
5673 }
5674
46544258
AD
5675 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5676 if (adapter->msix_entries)
047e0030 5677 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5678 else
5679 igb_irq_enable(adapter);
5680 }
9d5c8243
AK
5681}
5682
46544258
AD
5683/**
5684 * igb_poll - NAPI Rx polling callback
5685 * @napi: napi polling structure
5686 * @budget: count of how many packets we should handle
5687 **/
5688static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5689{
047e0030
AD
5690 struct igb_q_vector *q_vector = container_of(napi,
5691 struct igb_q_vector,
5692 napi);
16eb8815 5693 bool clean_complete = true;
9d5c8243 5694
421e02f0 5695#ifdef CONFIG_IGB_DCA
047e0030
AD
5696 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5697 igb_update_dca(q_vector);
fe4506b6 5698#endif
0ba82994 5699 if (q_vector->tx.ring)
13fde97a 5700 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5701
0ba82994 5702 if (q_vector->rx.ring)
cd392f5c 5703 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5704
16eb8815
AD
5705 /* If all work not completed, return budget and keep polling */
5706 if (!clean_complete)
5707 return budget;
46544258 5708
9d5c8243 5709 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5710 napi_complete(napi);
5711 igb_ring_irq_enable(q_vector);
9d5c8243 5712
16eb8815 5713 return 0;
9d5c8243 5714}
6d8126f9 5715
33af6bcc 5716/**
c5b9bd5e 5717 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5718 * @adapter: board private structure
c5b9bd5e
AD
5719 * @shhwtstamps: timestamp structure to update
5720 * @regval: unsigned 64bit system time value.
5721 *
5722 * We need to convert the system time value stored in the RX/TXSTMP registers
5723 * into a hwtstamp which can be used by the upper level timestamping functions
5724 */
5725static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5726 struct skb_shared_hwtstamps *shhwtstamps,
5727 u64 regval)
5728{
5729 u64 ns;
5730
55cac248
AD
5731 /*
5732 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5733 * 24 to match clock shift we setup earlier.
5734 */
06218a8d 5735 if (adapter->hw.mac.type >= e1000_82580)
55cac248
AD
5736 regval <<= IGB_82580_TSYNC_SHIFT;
5737
c5b9bd5e
AD
5738 ns = timecounter_cyc2time(&adapter->clock, regval);
5739 timecompare_update(&adapter->compare, ns);
5740 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5741 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5742 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5743}
5744
5745/**
5746 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5747 * @q_vector: pointer to q_vector containing needed info
06034649 5748 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5749 *
5750 * If we were asked to do hardware stamping and such a time stamp is
5751 * available, then it must have been for this skb here because we only
5752 * allow only one such packet into the queue.
5753 */
06034649
AD
5754static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5755 struct igb_tx_buffer *buffer_info)
33af6bcc 5756{
c5b9bd5e 5757 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5758 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5759 struct skb_shared_hwtstamps shhwtstamps;
5760 u64 regval;
33af6bcc 5761
c5b9bd5e 5762 /* if skb does not support hw timestamp or TX stamp not valid exit */
2bbfebe2 5763 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
c5b9bd5e
AD
5764 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5765 return;
5766
5767 regval = rd32(E1000_TXSTMPL);
5768 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5769
5770 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5771 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5772}
5773
9d5c8243
AK
5774/**
5775 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5776 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5777 * returns true if ring is completely cleaned
5778 **/
047e0030 5779static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5780{
047e0030 5781 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5782 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5783 struct igb_tx_buffer *tx_buffer;
8542db05 5784 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5785 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5786 unsigned int budget = q_vector->tx.work_limit;
8542db05 5787 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5788
13fde97a
AD
5789 if (test_bit(__IGB_DOWN, &adapter->state))
5790 return true;
0e014cb1 5791
06034649 5792 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5793 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5794 i -= tx_ring->count;
9d5c8243 5795
13fde97a 5796 for (; budget; budget--) {
8542db05 5797 eop_desc = tx_buffer->next_to_watch;
13fde97a 5798
8542db05
AD
5799 /* prevent any other reads prior to eop_desc */
5800 rmb();
5801
5802 /* if next_to_watch is not set then there is no work pending */
5803 if (!eop_desc)
5804 break;
13fde97a
AD
5805
5806 /* if DD is not set pending work has not been completed */
5807 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5808 break;
5809
8542db05
AD
5810 /* clear next_to_watch to prevent false hangs */
5811 tx_buffer->next_to_watch = NULL;
9d5c8243 5812
ebe42d16
AD
5813 /* update the statistics for this packet */
5814 total_bytes += tx_buffer->bytecount;
5815 total_packets += tx_buffer->gso_segs;
13fde97a 5816
ebe42d16
AD
5817 /* retrieve hardware timestamp */
5818 igb_tx_hwtstamp(q_vector, tx_buffer);
5819
5820 /* free the skb */
5821 dev_kfree_skb_any(tx_buffer->skb);
5822 tx_buffer->skb = NULL;
13fde97a 5823
ebe42d16
AD
5824 /* unmap skb header data */
5825 dma_unmap_single(tx_ring->dev,
5826 tx_buffer->dma,
5827 tx_buffer->length,
5828 DMA_TO_DEVICE);
5829
5830 /* clear last DMA location and unmap remaining buffers */
5831 while (tx_desc != eop_desc) {
5832 tx_buffer->dma = 0;
9d5c8243 5833
13fde97a
AD
5834 tx_buffer++;
5835 tx_desc++;
9d5c8243 5836 i++;
8542db05
AD
5837 if (unlikely(!i)) {
5838 i -= tx_ring->count;
06034649 5839 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5840 tx_desc = IGB_TX_DESC(tx_ring, 0);
5841 }
ebe42d16
AD
5842
5843 /* unmap any remaining paged data */
5844 if (tx_buffer->dma) {
5845 dma_unmap_page(tx_ring->dev,
5846 tx_buffer->dma,
5847 tx_buffer->length,
5848 DMA_TO_DEVICE);
5849 }
5850 }
5851
5852 /* clear last DMA location */
5853 tx_buffer->dma = 0;
5854
5855 /* move us one more past the eop_desc for start of next pkt */
5856 tx_buffer++;
5857 tx_desc++;
5858 i++;
5859 if (unlikely(!i)) {
5860 i -= tx_ring->count;
5861 tx_buffer = tx_ring->tx_buffer_info;
5862 tx_desc = IGB_TX_DESC(tx_ring, 0);
5863 }
0e014cb1
AD
5864 }
5865
bdbc0631
ED
5866 netdev_tx_completed_queue(txring_txq(tx_ring),
5867 total_packets, total_bytes);
8542db05 5868 i += tx_ring->count;
9d5c8243 5869 tx_ring->next_to_clean = i;
13fde97a
AD
5870 u64_stats_update_begin(&tx_ring->tx_syncp);
5871 tx_ring->tx_stats.bytes += total_bytes;
5872 tx_ring->tx_stats.packets += total_packets;
5873 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5874 q_vector->tx.total_bytes += total_bytes;
5875 q_vector->tx.total_packets += total_packets;
9d5c8243 5876
6d095fa8 5877 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 5878 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5879
8542db05 5880 eop_desc = tx_buffer->next_to_watch;
9d5c8243 5881
9d5c8243
AK
5882 /* Detect a transmit hang in hardware, this serializes the
5883 * check with the clearing of time_stamp and movement of i */
6d095fa8 5884 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8542db05
AD
5885 if (eop_desc &&
5886 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5887 (adapter->tx_timeout_factor * HZ)) &&
5888 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5889
9d5c8243 5890 /* detected Tx unit hang */
59d71989 5891 dev_err(tx_ring->dev,
9d5c8243 5892 "Detected Tx Unit Hang\n"
2d064c06 5893 " Tx Queue <%d>\n"
9d5c8243
AK
5894 " TDH <%x>\n"
5895 " TDT <%x>\n"
5896 " next_to_use <%x>\n"
5897 " next_to_clean <%x>\n"
9d5c8243
AK
5898 "buffer_info[next_to_clean]\n"
5899 " time_stamp <%lx>\n"
8542db05 5900 " next_to_watch <%p>\n"
9d5c8243
AK
5901 " jiffies <%lx>\n"
5902 " desc.status <%x>\n",
2d064c06 5903 tx_ring->queue_index,
238ac817 5904 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5905 readl(tx_ring->tail),
9d5c8243
AK
5906 tx_ring->next_to_use,
5907 tx_ring->next_to_clean,
8542db05
AD
5908 tx_buffer->time_stamp,
5909 eop_desc,
9d5c8243 5910 jiffies,
0e014cb1 5911 eop_desc->wb.status);
13fde97a
AD
5912 netif_stop_subqueue(tx_ring->netdev,
5913 tx_ring->queue_index);
5914
5915 /* we are about to reset, no point in enabling stuff */
5916 return true;
9d5c8243
AK
5917 }
5918 }
13fde97a
AD
5919
5920 if (unlikely(total_packets &&
5921 netif_carrier_ok(tx_ring->netdev) &&
5922 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5923 /* Make sure that anybody stopping the queue after this
5924 * sees the new next_to_clean.
5925 */
5926 smp_mb();
5927 if (__netif_subqueue_stopped(tx_ring->netdev,
5928 tx_ring->queue_index) &&
5929 !(test_bit(__IGB_DOWN, &adapter->state))) {
5930 netif_wake_subqueue(tx_ring->netdev,
5931 tx_ring->queue_index);
5932
5933 u64_stats_update_begin(&tx_ring->tx_syncp);
5934 tx_ring->tx_stats.restart_queue++;
5935 u64_stats_update_end(&tx_ring->tx_syncp);
5936 }
5937 }
5938
5939 return !!budget;
9d5c8243
AK
5940}
5941
cd392f5c 5942static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
5943 union e1000_adv_rx_desc *rx_desc,
5944 struct sk_buff *skb)
9d5c8243 5945{
bc8acf2c 5946 skb_checksum_none_assert(skb);
9d5c8243 5947
294e7d78 5948 /* Ignore Checksum bit is set */
3ceb90fd 5949 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
5950 return;
5951
5952 /* Rx checksum disabled via ethtool */
5953 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 5954 return;
85ad76b2 5955
9d5c8243 5956 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
5957 if (igb_test_staterr(rx_desc,
5958 E1000_RXDEXT_STATERR_TCPE |
5959 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5960 /*
5961 * work around errata with sctp packets where the TCPE aka
5962 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5963 * packets, (aka let the stack check the crc32c)
5964 */
866cff06
AD
5965 if (!((skb->len == 60) &&
5966 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 5967 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5968 ring->rx_stats.csum_err++;
12dcd86b
ED
5969 u64_stats_update_end(&ring->rx_syncp);
5970 }
9d5c8243 5971 /* let the stack verify checksum errors */
9d5c8243
AK
5972 return;
5973 }
5974 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
5975 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5976 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
5977 skb->ip_summed = CHECKSUM_UNNECESSARY;
5978
3ceb90fd
AD
5979 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5980 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
5981}
5982
077887c3
AD
5983static inline void igb_rx_hash(struct igb_ring *ring,
5984 union e1000_adv_rx_desc *rx_desc,
5985 struct sk_buff *skb)
5986{
5987 if (ring->netdev->features & NETIF_F_RXHASH)
5988 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5989}
5990
3ceb90fd
AD
5991static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5992 union e1000_adv_rx_desc *rx_desc,
5993 struct sk_buff *skb)
c5b9bd5e
AD
5994{
5995 struct igb_adapter *adapter = q_vector->adapter;
5996 struct e1000_hw *hw = &adapter->hw;
5997 u64 regval;
5998
3ceb90fd
AD
5999 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
6000 E1000_RXDADV_STAT_TS))
6001 return;
6002
c5b9bd5e
AD
6003 /*
6004 * If this bit is set, then the RX registers contain the time stamp. No
6005 * other packet will be time stamped until we read these registers, so
6006 * read the registers to make them available again. Because only one
6007 * packet can be time stamped at a time, we know that the register
6008 * values must belong to this one here and therefore we don't need to
6009 * compare any of the additional attributes stored for it.
6010 *
2244d07b 6011 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
6012 * can turn into a skb_shared_hwtstamps.
6013 */
3ceb90fd 6014 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
757b77e2
NN
6015 u32 *stamp = (u32 *)skb->data;
6016 regval = le32_to_cpu(*(stamp + 2));
6017 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
6018 skb_pull(skb, IGB_TS_HDR_LEN);
6019 } else {
6020 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
6021 return;
c5b9bd5e 6022
757b77e2
NN
6023 regval = rd32(E1000_RXSTMPL);
6024 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
6025 }
c5b9bd5e
AD
6026
6027 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
6028}
8be10e91
AD
6029
6030static void igb_rx_vlan(struct igb_ring *ring,
6031 union e1000_adv_rx_desc *rx_desc,
6032 struct sk_buff *skb)
6033{
6034 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6035 u16 vid;
6036 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6037 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
6038 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6039 else
6040 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6041
6042 __vlan_hwaccel_put_tag(skb, vid);
6043 }
6044}
6045
44390ca6 6046static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
6047{
6048 /* HW will not DMA in data larger than the given buffer, even if it
6049 * parses the (NFS, of course) header to be larger. In that case, it
6050 * fills the header buffer and spills the rest into the page.
6051 */
6052 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
6053 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
6054 if (hlen > IGB_RX_HDR_LEN)
6055 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
6056 return hlen;
6057}
6058
cd392f5c 6059static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 6060{
0ba82994 6061 struct igb_ring *rx_ring = q_vector->rx.ring;
16eb8815
AD
6062 union e1000_adv_rx_desc *rx_desc;
6063 const int current_node = numa_node_id();
9d5c8243 6064 unsigned int total_bytes = 0, total_packets = 0;
16eb8815
AD
6065 u16 cleaned_count = igb_desc_unused(rx_ring);
6066 u16 i = rx_ring->next_to_clean;
9d5c8243 6067
60136906 6068 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243 6069
3ceb90fd 6070 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
06034649 6071 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
6072 struct sk_buff *skb = buffer_info->skb;
6073 union e1000_adv_rx_desc *next_rxd;
9d5c8243 6074
69d3ca53 6075 buffer_info->skb = NULL;
16eb8815 6076 prefetch(skb->data);
69d3ca53
AD
6077
6078 i++;
6079 if (i == rx_ring->count)
6080 i = 0;
42d0781a 6081
60136906 6082 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 6083 prefetch(next_rxd);
9d5c8243 6084
16eb8815
AD
6085 /*
6086 * This memory barrier is needed to keep us from reading
6087 * any other fields out of the rx_desc until we know the
6088 * RXD_STAT_DD bit is set
6089 */
6090 rmb();
9d5c8243 6091
16eb8815
AD
6092 if (!skb_is_nonlinear(skb)) {
6093 __skb_put(skb, igb_get_hlen(rx_desc));
6094 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 6095 IGB_RX_HDR_LEN,
59d71989 6096 DMA_FROM_DEVICE);
91615f76 6097 buffer_info->dma = 0;
bf36c1a0
AD
6098 }
6099
16eb8815
AD
6100 if (rx_desc->wb.upper.length) {
6101 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 6102
aa913403 6103 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
6104 buffer_info->page,
6105 buffer_info->page_offset,
6106 length);
6107
16eb8815
AD
6108 skb->len += length;
6109 skb->data_len += length;
95b9c1df 6110 skb->truesize += PAGE_SIZE / 2;
16eb8815 6111
d1eff350
AD
6112 if ((page_count(buffer_info->page) != 1) ||
6113 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
6114 buffer_info->page = NULL;
6115 else
6116 get_page(buffer_info->page);
9d5c8243 6117
16eb8815
AD
6118 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
6119 PAGE_SIZE / 2, DMA_FROM_DEVICE);
6120 buffer_info->page_dma = 0;
9d5c8243 6121 }
9d5c8243 6122
3ceb90fd 6123 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
06034649
AD
6124 struct igb_rx_buffer *next_buffer;
6125 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
6126 buffer_info->skb = next_buffer->skb;
6127 buffer_info->dma = next_buffer->dma;
6128 next_buffer->skb = skb;
6129 next_buffer->dma = 0;
bf36c1a0
AD
6130 goto next_desc;
6131 }
44390ca6 6132
89eaefb6
BG
6133 if (unlikely((igb_test_staterr(rx_desc,
6134 E1000_RXDEXT_ERR_FRAME_ERR_MASK))
6135 && !(rx_ring->netdev->features & NETIF_F_RXALL))) {
16eb8815 6136 dev_kfree_skb_any(skb);
9d5c8243
AK
6137 goto next_desc;
6138 }
9d5c8243 6139
3ceb90fd 6140 igb_rx_hwtstamp(q_vector, rx_desc, skb);
077887c3 6141 igb_rx_hash(rx_ring, rx_desc, skb);
3ceb90fd 6142 igb_rx_checksum(rx_ring, rx_desc, skb);
8be10e91 6143 igb_rx_vlan(rx_ring, rx_desc, skb);
3ceb90fd
AD
6144
6145 total_bytes += skb->len;
6146 total_packets++;
6147
6148 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6149
b2cb09b1 6150 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6151
16eb8815 6152 budget--;
9d5c8243 6153next_desc:
16eb8815
AD
6154 if (!budget)
6155 break;
6156
6157 cleaned_count++;
9d5c8243
AK
6158 /* return some buffers to hardware, one at a time is too slow */
6159 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 6160 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
6161 cleaned_count = 0;
6162 }
6163
6164 /* use prefetched values */
6165 rx_desc = next_rxd;
9d5c8243 6166 }
bf36c1a0 6167
9d5c8243 6168 rx_ring->next_to_clean = i;
12dcd86b 6169 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6170 rx_ring->rx_stats.packets += total_packets;
6171 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6172 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6173 q_vector->rx.total_packets += total_packets;
6174 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6175
6176 if (cleaned_count)
cd392f5c 6177 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6178
16eb8815 6179 return !!budget;
9d5c8243
AK
6180}
6181
c023cd88 6182static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 6183 struct igb_rx_buffer *bi)
c023cd88
AD
6184{
6185 struct sk_buff *skb = bi->skb;
6186 dma_addr_t dma = bi->dma;
6187
6188 if (dma)
6189 return true;
6190
6191 if (likely(!skb)) {
6192 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6193 IGB_RX_HDR_LEN);
6194 bi->skb = skb;
6195 if (!skb) {
6196 rx_ring->rx_stats.alloc_failed++;
6197 return false;
6198 }
6199
6200 /* initialize skb for ring */
6201 skb_record_rx_queue(skb, rx_ring->queue_index);
6202 }
6203
6204 dma = dma_map_single(rx_ring->dev, skb->data,
6205 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6206
6207 if (dma_mapping_error(rx_ring->dev, dma)) {
6208 rx_ring->rx_stats.alloc_failed++;
6209 return false;
6210 }
6211
6212 bi->dma = dma;
6213 return true;
6214}
6215
6216static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6217 struct igb_rx_buffer *bi)
c023cd88
AD
6218{
6219 struct page *page = bi->page;
6220 dma_addr_t page_dma = bi->page_dma;
6221 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6222
6223 if (page_dma)
6224 return true;
6225
6226 if (!page) {
1f2149c1 6227 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
c023cd88
AD
6228 bi->page = page;
6229 if (unlikely(!page)) {
6230 rx_ring->rx_stats.alloc_failed++;
6231 return false;
6232 }
6233 }
6234
6235 page_dma = dma_map_page(rx_ring->dev, page,
6236 page_offset, PAGE_SIZE / 2,
6237 DMA_FROM_DEVICE);
6238
6239 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6240 rx_ring->rx_stats.alloc_failed++;
6241 return false;
6242 }
6243
6244 bi->page_dma = page_dma;
6245 bi->page_offset = page_offset;
6246 return true;
6247}
6248
9d5c8243 6249/**
cd392f5c 6250 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6251 * @adapter: address of board private structure
6252 **/
cd392f5c 6253void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6254{
9d5c8243 6255 union e1000_adv_rx_desc *rx_desc;
06034649 6256 struct igb_rx_buffer *bi;
c023cd88 6257 u16 i = rx_ring->next_to_use;
9d5c8243 6258
60136906 6259 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6260 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6261 i -= rx_ring->count;
9d5c8243
AK
6262
6263 while (cleaned_count--) {
c023cd88
AD
6264 if (!igb_alloc_mapped_skb(rx_ring, bi))
6265 break;
9d5c8243 6266
c023cd88
AD
6267 /* Refresh the desc even if buffer_addrs didn't change
6268 * because each write-back erases this info. */
6269 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6270
c023cd88
AD
6271 if (!igb_alloc_mapped_page(rx_ring, bi))
6272 break;
6273
6274 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6275
c023cd88
AD
6276 rx_desc++;
6277 bi++;
9d5c8243 6278 i++;
c023cd88 6279 if (unlikely(!i)) {
60136906 6280 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6281 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6282 i -= rx_ring->count;
6283 }
6284
6285 /* clear the hdr_addr for the next_to_use descriptor */
6286 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6287 }
6288
c023cd88
AD
6289 i += rx_ring->count;
6290
9d5c8243
AK
6291 if (rx_ring->next_to_use != i) {
6292 rx_ring->next_to_use = i;
9d5c8243
AK
6293
6294 /* Force memory writes to complete before letting h/w
6295 * know there are new descriptors to fetch. (Only
6296 * applicable for weak-ordered memory model archs,
6297 * such as IA-64). */
6298 wmb();
fce99e34 6299 writel(i, rx_ring->tail);
9d5c8243
AK
6300 }
6301}
6302
6303/**
6304 * igb_mii_ioctl -
6305 * @netdev:
6306 * @ifreq:
6307 * @cmd:
6308 **/
6309static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6310{
6311 struct igb_adapter *adapter = netdev_priv(netdev);
6312 struct mii_ioctl_data *data = if_mii(ifr);
6313
6314 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6315 return -EOPNOTSUPP;
6316
6317 switch (cmd) {
6318 case SIOCGMIIPHY:
6319 data->phy_id = adapter->hw.phy.addr;
6320 break;
6321 case SIOCGMIIREG:
f5f4cf08
AD
6322 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6323 &data->val_out))
9d5c8243
AK
6324 return -EIO;
6325 break;
6326 case SIOCSMIIREG:
6327 default:
6328 return -EOPNOTSUPP;
6329 }
6330 return 0;
6331}
6332
c6cb090b
PO
6333/**
6334 * igb_hwtstamp_ioctl - control hardware time stamping
6335 * @netdev:
6336 * @ifreq:
6337 * @cmd:
6338 *
33af6bcc
PO
6339 * Outgoing time stamping can be enabled and disabled. Play nice and
6340 * disable it when requested, although it shouldn't case any overhead
6341 * when no packet needs it. At most one packet in the queue may be
6342 * marked for time stamping, otherwise it would be impossible to tell
6343 * for sure to which packet the hardware time stamp belongs.
6344 *
6345 * Incoming time stamping has to be configured via the hardware
6346 * filters. Not all combinations are supported, in particular event
6347 * type has to be specified. Matching the kind of event packet is
6348 * not supported, with the exception of "all V2 events regardless of
6349 * level 2 or 4".
6350 *
c6cb090b
PO
6351 **/
6352static int igb_hwtstamp_ioctl(struct net_device *netdev,
6353 struct ifreq *ifr, int cmd)
6354{
33af6bcc
PO
6355 struct igb_adapter *adapter = netdev_priv(netdev);
6356 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6357 struct hwtstamp_config config;
c5b9bd5e
AD
6358 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6359 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6360 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6361 bool is_l4 = false;
6362 bool is_l2 = false;
33af6bcc 6363 u32 regval;
c6cb090b
PO
6364
6365 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6366 return -EFAULT;
6367
6368 /* reserved for future extensions */
6369 if (config.flags)
6370 return -EINVAL;
6371
33af6bcc
PO
6372 switch (config.tx_type) {
6373 case HWTSTAMP_TX_OFF:
c5b9bd5e 6374 tsync_tx_ctl = 0;
33af6bcc 6375 case HWTSTAMP_TX_ON:
33af6bcc
PO
6376 break;
6377 default:
6378 return -ERANGE;
6379 }
6380
6381 switch (config.rx_filter) {
6382 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6383 tsync_rx_ctl = 0;
33af6bcc
PO
6384 break;
6385 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6386 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6387 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6388 case HWTSTAMP_FILTER_ALL:
6389 /*
6390 * register TSYNCRXCFG must be set, therefore it is not
6391 * possible to time stamp both Sync and Delay_Req messages
6392 * => fall back to time stamping all packets
6393 */
c5b9bd5e 6394 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6395 config.rx_filter = HWTSTAMP_FILTER_ALL;
6396 break;
6397 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6398 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6399 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6400 is_l4 = true;
33af6bcc
PO
6401 break;
6402 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6403 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6404 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6405 is_l4 = true;
33af6bcc
PO
6406 break;
6407 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6408 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6409 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6410 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6411 is_l2 = true;
6412 is_l4 = true;
33af6bcc
PO
6413 config.rx_filter = HWTSTAMP_FILTER_SOME;
6414 break;
6415 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6416 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6417 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6418 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6419 is_l2 = true;
6420 is_l4 = true;
33af6bcc
PO
6421 config.rx_filter = HWTSTAMP_FILTER_SOME;
6422 break;
6423 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6424 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6425 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6426 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6427 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6428 is_l2 = true;
11ba69e8 6429 is_l4 = true;
33af6bcc
PO
6430 break;
6431 default:
6432 return -ERANGE;
6433 }
6434
c5b9bd5e
AD
6435 if (hw->mac.type == e1000_82575) {
6436 if (tsync_rx_ctl | tsync_tx_ctl)
6437 return -EINVAL;
6438 return 0;
6439 }
6440
757b77e2
NN
6441 /*
6442 * Per-packet timestamping only works if all packets are
6443 * timestamped, so enable timestamping in all packets as
6444 * long as one rx filter was configured.
6445 */
06218a8d 6446 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
757b77e2
NN
6447 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6448 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6449 }
6450
33af6bcc
PO
6451 /* enable/disable TX */
6452 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6453 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6454 regval |= tsync_tx_ctl;
33af6bcc
PO
6455 wr32(E1000_TSYNCTXCTL, regval);
6456
c5b9bd5e 6457 /* enable/disable RX */
33af6bcc 6458 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6459 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6460 regval |= tsync_rx_ctl;
33af6bcc 6461 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6462
c5b9bd5e
AD
6463 /* define which PTP packets are time stamped */
6464 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6465
c5b9bd5e
AD
6466 /* define ethertype filter for timestamped packets */
6467 if (is_l2)
6468 wr32(E1000_ETQF(3),
6469 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6470 E1000_ETQF_1588 | /* enable timestamping */
6471 ETH_P_1588)); /* 1588 eth protocol type */
6472 else
6473 wr32(E1000_ETQF(3), 0);
6474
6475#define PTP_PORT 319
6476 /* L4 Queue Filter[3]: filter by destination port and protocol */
6477 if (is_l4) {
6478 u32 ftqf = (IPPROTO_UDP /* UDP */
6479 | E1000_FTQF_VF_BP /* VF not compared */
6480 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6481 | E1000_FTQF_MASK); /* mask all inputs */
6482 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6483
6484 wr32(E1000_IMIR(3), htons(PTP_PORT));
6485 wr32(E1000_IMIREXT(3),
6486 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6487 if (hw->mac.type == e1000_82576) {
6488 /* enable source port check */
6489 wr32(E1000_SPQF(3), htons(PTP_PORT));
6490 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6491 }
6492 wr32(E1000_FTQF(3), ftqf);
6493 } else {
6494 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6495 }
33af6bcc
PO
6496 wrfl();
6497
6498 adapter->hwtstamp_config = config;
6499
6500 /* clear TX/RX time stamp registers, just to be sure */
6501 regval = rd32(E1000_TXSTMPH);
6502 regval = rd32(E1000_RXSTMPH);
c6cb090b 6503
33af6bcc
PO
6504 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6505 -EFAULT : 0;
c6cb090b
PO
6506}
6507
9d5c8243
AK
6508/**
6509 * igb_ioctl -
6510 * @netdev:
6511 * @ifreq:
6512 * @cmd:
6513 **/
6514static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6515{
6516 switch (cmd) {
6517 case SIOCGMIIPHY:
6518 case SIOCGMIIREG:
6519 case SIOCSMIIREG:
6520 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6521 case SIOCSHWTSTAMP:
6522 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6523 default:
6524 return -EOPNOTSUPP;
6525 }
6526}
6527
009bc06e
AD
6528s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6529{
6530 struct igb_adapter *adapter = hw->back;
6531 u16 cap_offset;
6532
bdaae04c 6533 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6534 if (!cap_offset)
6535 return -E1000_ERR_CONFIG;
6536
6537 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6538
6539 return 0;
6540}
6541
6542s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6543{
6544 struct igb_adapter *adapter = hw->back;
6545 u16 cap_offset;
6546
bdaae04c 6547 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6548 if (!cap_offset)
6549 return -E1000_ERR_CONFIG;
6550
6551 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6552
6553 return 0;
6554}
6555
c8f44aff 6556static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6557{
6558 struct igb_adapter *adapter = netdev_priv(netdev);
6559 struct e1000_hw *hw = &adapter->hw;
6560 u32 ctrl, rctl;
5faf030c 6561 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6562
5faf030c 6563 if (enable) {
9d5c8243
AK
6564 /* enable VLAN tag insert/strip */
6565 ctrl = rd32(E1000_CTRL);
6566 ctrl |= E1000_CTRL_VME;
6567 wr32(E1000_CTRL, ctrl);
6568
51466239 6569 /* Disable CFI check */
9d5c8243 6570 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6571 rctl &= ~E1000_RCTL_CFIEN;
6572 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6573 } else {
6574 /* disable VLAN tag insert/strip */
6575 ctrl = rd32(E1000_CTRL);
6576 ctrl &= ~E1000_CTRL_VME;
6577 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6578 }
6579
e1739522 6580 igb_rlpml_set(adapter);
9d5c8243
AK
6581}
6582
8e586137 6583static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6584{
6585 struct igb_adapter *adapter = netdev_priv(netdev);
6586 struct e1000_hw *hw = &adapter->hw;
4ae196df 6587 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6588
51466239
AD
6589 /* attempt to add filter to vlvf array */
6590 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6591
51466239
AD
6592 /* add the filter since PF can receive vlans w/o entry in vlvf */
6593 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6594
6595 set_bit(vid, adapter->active_vlans);
8e586137
JP
6596
6597 return 0;
9d5c8243
AK
6598}
6599
8e586137 6600static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6601{
6602 struct igb_adapter *adapter = netdev_priv(netdev);
6603 struct e1000_hw *hw = &adapter->hw;
4ae196df 6604 int pf_id = adapter->vfs_allocated_count;
51466239 6605 s32 err;
9d5c8243 6606
51466239
AD
6607 /* remove vlan from VLVF table array */
6608 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6609
51466239
AD
6610 /* if vid was not present in VLVF just remove it from table */
6611 if (err)
4ae196df 6612 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6613
6614 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6615
6616 return 0;
9d5c8243
AK
6617}
6618
6619static void igb_restore_vlan(struct igb_adapter *adapter)
6620{
b2cb09b1 6621 u16 vid;
9d5c8243 6622
5faf030c
AD
6623 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6624
b2cb09b1
JP
6625 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6626 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6627}
6628
14ad2513 6629int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6630{
090b1795 6631 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6632 struct e1000_mac_info *mac = &adapter->hw.mac;
6633
6634 mac->autoneg = 0;
6635
14ad2513
DD
6636 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6637 * for the switch() below to work */
6638 if ((spd & 1) || (dplx & ~1))
6639 goto err_inval;
6640
cd2638a8
CW
6641 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6642 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6643 spd != SPEED_1000 &&
6644 dplx != DUPLEX_FULL)
6645 goto err_inval;
cd2638a8 6646
14ad2513 6647 switch (spd + dplx) {
9d5c8243
AK
6648 case SPEED_10 + DUPLEX_HALF:
6649 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6650 break;
6651 case SPEED_10 + DUPLEX_FULL:
6652 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6653 break;
6654 case SPEED_100 + DUPLEX_HALF:
6655 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6656 break;
6657 case SPEED_100 + DUPLEX_FULL:
6658 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6659 break;
6660 case SPEED_1000 + DUPLEX_FULL:
6661 mac->autoneg = 1;
6662 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6663 break;
6664 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6665 default:
14ad2513 6666 goto err_inval;
9d5c8243
AK
6667 }
6668 return 0;
14ad2513
DD
6669
6670err_inval:
6671 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6672 return -EINVAL;
9d5c8243
AK
6673}
6674
749ab2cd
YZ
6675static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6676 bool runtime)
9d5c8243
AK
6677{
6678 struct net_device *netdev = pci_get_drvdata(pdev);
6679 struct igb_adapter *adapter = netdev_priv(netdev);
6680 struct e1000_hw *hw = &adapter->hw;
2d064c06 6681 u32 ctrl, rctl, status;
749ab2cd 6682 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
6683#ifdef CONFIG_PM
6684 int retval = 0;
6685#endif
6686
6687 netif_device_detach(netdev);
6688
a88f10ec 6689 if (netif_running(netdev))
749ab2cd 6690 __igb_close(netdev, true);
a88f10ec 6691
047e0030 6692 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6693
6694#ifdef CONFIG_PM
6695 retval = pci_save_state(pdev);
6696 if (retval)
6697 return retval;
6698#endif
6699
6700 status = rd32(E1000_STATUS);
6701 if (status & E1000_STATUS_LU)
6702 wufc &= ~E1000_WUFC_LNKC;
6703
6704 if (wufc) {
6705 igb_setup_rctl(adapter);
ff41f8dc 6706 igb_set_rx_mode(netdev);
9d5c8243
AK
6707
6708 /* turn on all-multi mode if wake on multicast is enabled */
6709 if (wufc & E1000_WUFC_MC) {
6710 rctl = rd32(E1000_RCTL);
6711 rctl |= E1000_RCTL_MPE;
6712 wr32(E1000_RCTL, rctl);
6713 }
6714
6715 ctrl = rd32(E1000_CTRL);
6716 /* advertise wake from D3Cold */
6717 #define E1000_CTRL_ADVD3WUC 0x00100000
6718 /* phy power management enable */
6719 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6720 ctrl |= E1000_CTRL_ADVD3WUC;
6721 wr32(E1000_CTRL, ctrl);
6722
9d5c8243 6723 /* Allow time for pending master requests to run */
330a6d6a 6724 igb_disable_pcie_master(hw);
9d5c8243
AK
6725
6726 wr32(E1000_WUC, E1000_WUC_PME_EN);
6727 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6728 } else {
6729 wr32(E1000_WUC, 0);
6730 wr32(E1000_WUFC, 0);
9d5c8243
AK
6731 }
6732
3fe7c4c9
RW
6733 *enable_wake = wufc || adapter->en_mng_pt;
6734 if (!*enable_wake)
88a268c1
NN
6735 igb_power_down_link(adapter);
6736 else
6737 igb_power_up_link(adapter);
9d5c8243
AK
6738
6739 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6740 * would have already happened in close and is redundant. */
6741 igb_release_hw_control(adapter);
6742
6743 pci_disable_device(pdev);
6744
9d5c8243
AK
6745 return 0;
6746}
6747
6748#ifdef CONFIG_PM
d9dd966d 6749#ifdef CONFIG_PM_SLEEP
749ab2cd 6750static int igb_suspend(struct device *dev)
3fe7c4c9
RW
6751{
6752 int retval;
6753 bool wake;
749ab2cd 6754 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 6755
749ab2cd 6756 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6757 if (retval)
6758 return retval;
6759
6760 if (wake) {
6761 pci_prepare_to_sleep(pdev);
6762 } else {
6763 pci_wake_from_d3(pdev, false);
6764 pci_set_power_state(pdev, PCI_D3hot);
6765 }
6766
6767 return 0;
6768}
d9dd966d 6769#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 6770
749ab2cd 6771static int igb_resume(struct device *dev)
9d5c8243 6772{
749ab2cd 6773 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
6774 struct net_device *netdev = pci_get_drvdata(pdev);
6775 struct igb_adapter *adapter = netdev_priv(netdev);
6776 struct e1000_hw *hw = &adapter->hw;
6777 u32 err;
6778
6779 pci_set_power_state(pdev, PCI_D0);
6780 pci_restore_state(pdev);
b94f2d77 6781 pci_save_state(pdev);
42bfd33a 6782
aed5dec3 6783 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6784 if (err) {
6785 dev_err(&pdev->dev,
6786 "igb: Cannot enable PCI device from suspend\n");
6787 return err;
6788 }
6789 pci_set_master(pdev);
6790
6791 pci_enable_wake(pdev, PCI_D3hot, 0);
6792 pci_enable_wake(pdev, PCI_D3cold, 0);
6793
749ab2cd
YZ
6794 if (!rtnl_is_locked()) {
6795 /*
6796 * shut up ASSERT_RTNL() warning in
6797 * netif_set_real_num_tx/rx_queues.
6798 */
6799 rtnl_lock();
6800 err = igb_init_interrupt_scheme(adapter);
6801 rtnl_unlock();
6802 } else {
6803 err = igb_init_interrupt_scheme(adapter);
6804 }
6805 if (err) {
a88f10ec
AD
6806 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6807 return -ENOMEM;
9d5c8243
AK
6808 }
6809
9d5c8243 6810 igb_reset(adapter);
a8564f03
AD
6811
6812 /* let the f/w know that the h/w is now under the control of the
6813 * driver. */
6814 igb_get_hw_control(adapter);
6815
9d5c8243
AK
6816 wr32(E1000_WUS, ~0);
6817
749ab2cd
YZ
6818 if (netdev->flags & IFF_UP) {
6819 err = __igb_open(netdev, true);
a88f10ec
AD
6820 if (err)
6821 return err;
6822 }
9d5c8243
AK
6823
6824 netif_device_attach(netdev);
749ab2cd
YZ
6825 return 0;
6826}
6827
6828#ifdef CONFIG_PM_RUNTIME
6829static int igb_runtime_idle(struct device *dev)
6830{
6831 struct pci_dev *pdev = to_pci_dev(dev);
6832 struct net_device *netdev = pci_get_drvdata(pdev);
6833 struct igb_adapter *adapter = netdev_priv(netdev);
6834
6835 if (!igb_has_link(adapter))
6836 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6837
6838 return -EBUSY;
6839}
6840
6841static int igb_runtime_suspend(struct device *dev)
6842{
6843 struct pci_dev *pdev = to_pci_dev(dev);
6844 int retval;
6845 bool wake;
6846
6847 retval = __igb_shutdown(pdev, &wake, 1);
6848 if (retval)
6849 return retval;
6850
6851 if (wake) {
6852 pci_prepare_to_sleep(pdev);
6853 } else {
6854 pci_wake_from_d3(pdev, false);
6855 pci_set_power_state(pdev, PCI_D3hot);
6856 }
9d5c8243 6857
9d5c8243
AK
6858 return 0;
6859}
749ab2cd
YZ
6860
6861static int igb_runtime_resume(struct device *dev)
6862{
6863 return igb_resume(dev);
6864}
6865#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
6866#endif
6867
6868static void igb_shutdown(struct pci_dev *pdev)
6869{
3fe7c4c9
RW
6870 bool wake;
6871
749ab2cd 6872 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6873
6874 if (system_state == SYSTEM_POWER_OFF) {
6875 pci_wake_from_d3(pdev, wake);
6876 pci_set_power_state(pdev, PCI_D3hot);
6877 }
9d5c8243
AK
6878}
6879
6880#ifdef CONFIG_NET_POLL_CONTROLLER
6881/*
6882 * Polling 'interrupt' - used by things like netconsole to send skbs
6883 * without having to re-enable interrupts. It's not called while
6884 * the interrupt routine is executing.
6885 */
6886static void igb_netpoll(struct net_device *netdev)
6887{
6888 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6889 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 6890 struct igb_q_vector *q_vector;
9d5c8243 6891 int i;
9d5c8243 6892
047e0030 6893 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
6894 q_vector = adapter->q_vector[i];
6895 if (adapter->msix_entries)
6896 wr32(E1000_EIMC, q_vector->eims_value);
6897 else
6898 igb_irq_disable(adapter);
047e0030 6899 napi_schedule(&q_vector->napi);
eebbbdba 6900 }
9d5c8243
AK
6901}
6902#endif /* CONFIG_NET_POLL_CONTROLLER */
6903
6904/**
6905 * igb_io_error_detected - called when PCI error is detected
6906 * @pdev: Pointer to PCI device
6907 * @state: The current pci connection state
6908 *
6909 * This function is called after a PCI bus error affecting
6910 * this device has been detected.
6911 */
6912static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6913 pci_channel_state_t state)
6914{
6915 struct net_device *netdev = pci_get_drvdata(pdev);
6916 struct igb_adapter *adapter = netdev_priv(netdev);
6917
6918 netif_device_detach(netdev);
6919
59ed6eec
AD
6920 if (state == pci_channel_io_perm_failure)
6921 return PCI_ERS_RESULT_DISCONNECT;
6922
9d5c8243
AK
6923 if (netif_running(netdev))
6924 igb_down(adapter);
6925 pci_disable_device(pdev);
6926
6927 /* Request a slot slot reset. */
6928 return PCI_ERS_RESULT_NEED_RESET;
6929}
6930
6931/**
6932 * igb_io_slot_reset - called after the pci bus has been reset.
6933 * @pdev: Pointer to PCI device
6934 *
6935 * Restart the card from scratch, as if from a cold-boot. Implementation
6936 * resembles the first-half of the igb_resume routine.
6937 */
6938static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6939{
6940 struct net_device *netdev = pci_get_drvdata(pdev);
6941 struct igb_adapter *adapter = netdev_priv(netdev);
6942 struct e1000_hw *hw = &adapter->hw;
40a914fa 6943 pci_ers_result_t result;
42bfd33a 6944 int err;
9d5c8243 6945
aed5dec3 6946 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6947 dev_err(&pdev->dev,
6948 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6949 result = PCI_ERS_RESULT_DISCONNECT;
6950 } else {
6951 pci_set_master(pdev);
6952 pci_restore_state(pdev);
b94f2d77 6953 pci_save_state(pdev);
9d5c8243 6954
40a914fa
AD
6955 pci_enable_wake(pdev, PCI_D3hot, 0);
6956 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6957
40a914fa
AD
6958 igb_reset(adapter);
6959 wr32(E1000_WUS, ~0);
6960 result = PCI_ERS_RESULT_RECOVERED;
6961 }
9d5c8243 6962
ea943d41
JK
6963 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6964 if (err) {
6965 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6966 "failed 0x%0x\n", err);
6967 /* non-fatal, continue */
6968 }
40a914fa
AD
6969
6970 return result;
9d5c8243
AK
6971}
6972
6973/**
6974 * igb_io_resume - called when traffic can start flowing again.
6975 * @pdev: Pointer to PCI device
6976 *
6977 * This callback is called when the error recovery driver tells us that
6978 * its OK to resume normal operation. Implementation resembles the
6979 * second-half of the igb_resume routine.
6980 */
6981static void igb_io_resume(struct pci_dev *pdev)
6982{
6983 struct net_device *netdev = pci_get_drvdata(pdev);
6984 struct igb_adapter *adapter = netdev_priv(netdev);
6985
9d5c8243
AK
6986 if (netif_running(netdev)) {
6987 if (igb_up(adapter)) {
6988 dev_err(&pdev->dev, "igb_up failed after reset\n");
6989 return;
6990 }
6991 }
6992
6993 netif_device_attach(netdev);
6994
6995 /* let the f/w know that the h/w is now under the control of the
6996 * driver. */
6997 igb_get_hw_control(adapter);
9d5c8243
AK
6998}
6999
26ad9178
AD
7000static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7001 u8 qsel)
7002{
7003 u32 rar_low, rar_high;
7004 struct e1000_hw *hw = &adapter->hw;
7005
7006 /* HW expects these in little endian so we reverse the byte order
7007 * from network order (big endian) to little endian
7008 */
7009 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7010 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7011 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7012
7013 /* Indicate to hardware the Address is Valid. */
7014 rar_high |= E1000_RAH_AV;
7015
7016 if (hw->mac.type == e1000_82575)
7017 rar_high |= E1000_RAH_POOL_1 * qsel;
7018 else
7019 rar_high |= E1000_RAH_POOL_1 << qsel;
7020
7021 wr32(E1000_RAL(index), rar_low);
7022 wrfl();
7023 wr32(E1000_RAH(index), rar_high);
7024 wrfl();
7025}
7026
4ae196df
AD
7027static int igb_set_vf_mac(struct igb_adapter *adapter,
7028 int vf, unsigned char *mac_addr)
7029{
7030 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
7031 /* VF MAC addresses start at end of receive addresses and moves
7032 * torwards the first, as a result a collision should not be possible */
7033 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7034
37680117 7035 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7036
26ad9178 7037 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7038
7039 return 0;
7040}
7041
8151d294
WM
7042static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7043{
7044 struct igb_adapter *adapter = netdev_priv(netdev);
7045 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7046 return -EINVAL;
7047 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7048 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7049 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7050 " change effective.");
7051 if (test_bit(__IGB_DOWN, &adapter->state)) {
7052 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7053 " but the PF device is not up.\n");
7054 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7055 " attempting to use the VF device.\n");
7056 }
7057 return igb_set_vf_mac(adapter, vf, mac);
7058}
7059
17dc566c
LL
7060static int igb_link_mbps(int internal_link_speed)
7061{
7062 switch (internal_link_speed) {
7063 case SPEED_100:
7064 return 100;
7065 case SPEED_1000:
7066 return 1000;
7067 default:
7068 return 0;
7069 }
7070}
7071
7072static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7073 int link_speed)
7074{
7075 int rf_dec, rf_int;
7076 u32 bcnrc_val;
7077
7078 if (tx_rate != 0) {
7079 /* Calculate the rate factor values to set */
7080 rf_int = link_speed / tx_rate;
7081 rf_dec = (link_speed - (rf_int * tx_rate));
7082 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7083
7084 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7085 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7086 E1000_RTTBCNRC_RF_INT_MASK);
7087 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7088 } else {
7089 bcnrc_val = 0;
7090 }
7091
7092 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7093 wr32(E1000_RTTBCNRC, bcnrc_val);
7094}
7095
7096static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7097{
7098 int actual_link_speed, i;
7099 bool reset_rate = false;
7100
7101 /* VF TX rate limit was not set or not supported */
7102 if ((adapter->vf_rate_link_speed == 0) ||
7103 (adapter->hw.mac.type != e1000_82576))
7104 return;
7105
7106 actual_link_speed = igb_link_mbps(adapter->link_speed);
7107 if (actual_link_speed != adapter->vf_rate_link_speed) {
7108 reset_rate = true;
7109 adapter->vf_rate_link_speed = 0;
7110 dev_info(&adapter->pdev->dev,
7111 "Link speed has been changed. VF Transmit "
7112 "rate is disabled\n");
7113 }
7114
7115 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7116 if (reset_rate)
7117 adapter->vf_data[i].tx_rate = 0;
7118
7119 igb_set_vf_rate_limit(&adapter->hw, i,
7120 adapter->vf_data[i].tx_rate,
7121 actual_link_speed);
7122 }
7123}
7124
8151d294
WM
7125static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7126{
17dc566c
LL
7127 struct igb_adapter *adapter = netdev_priv(netdev);
7128 struct e1000_hw *hw = &adapter->hw;
7129 int actual_link_speed;
7130
7131 if (hw->mac.type != e1000_82576)
7132 return -EOPNOTSUPP;
7133
7134 actual_link_speed = igb_link_mbps(adapter->link_speed);
7135 if ((vf >= adapter->vfs_allocated_count) ||
7136 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7137 (tx_rate < 0) || (tx_rate > actual_link_speed))
7138 return -EINVAL;
7139
7140 adapter->vf_rate_link_speed = actual_link_speed;
7141 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7142 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7143
7144 return 0;
8151d294
WM
7145}
7146
7147static int igb_ndo_get_vf_config(struct net_device *netdev,
7148 int vf, struct ifla_vf_info *ivi)
7149{
7150 struct igb_adapter *adapter = netdev_priv(netdev);
7151 if (vf >= adapter->vfs_allocated_count)
7152 return -EINVAL;
7153 ivi->vf = vf;
7154 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7155 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7156 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7157 ivi->qos = adapter->vf_data[vf].pf_qos;
7158 return 0;
7159}
7160
4ae196df
AD
7161static void igb_vmm_control(struct igb_adapter *adapter)
7162{
7163 struct e1000_hw *hw = &adapter->hw;
10d8e907 7164 u32 reg;
4ae196df 7165
52a1dd4d
AD
7166 switch (hw->mac.type) {
7167 case e1000_82575:
7168 default:
7169 /* replication is not supported for 82575 */
4ae196df 7170 return;
52a1dd4d
AD
7171 case e1000_82576:
7172 /* notify HW that the MAC is adding vlan tags */
7173 reg = rd32(E1000_DTXCTL);
7174 reg |= E1000_DTXCTL_VLAN_ADDED;
7175 wr32(E1000_DTXCTL, reg);
7176 case e1000_82580:
7177 /* enable replication vlan tag stripping */
7178 reg = rd32(E1000_RPLOLR);
7179 reg |= E1000_RPLOLR_STRVLAN;
7180 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7181 case e1000_i350:
7182 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7183 break;
7184 }
10d8e907 7185
d4960307
AD
7186 if (adapter->vfs_allocated_count) {
7187 igb_vmdq_set_loopback_pf(hw, true);
7188 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
7189 igb_vmdq_set_anti_spoofing_pf(hw, true,
7190 adapter->vfs_allocated_count);
d4960307
AD
7191 } else {
7192 igb_vmdq_set_loopback_pf(hw, false);
7193 igb_vmdq_set_replication_pf(hw, false);
7194 }
4ae196df
AD
7195}
7196
b6e0c419
CW
7197static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7198{
7199 struct e1000_hw *hw = &adapter->hw;
7200 u32 dmac_thr;
7201 u16 hwm;
7202
7203 if (hw->mac.type > e1000_82580) {
7204 if (adapter->flags & IGB_FLAG_DMAC) {
7205 u32 reg;
7206
7207 /* force threshold to 0. */
7208 wr32(E1000_DMCTXTH, 0);
7209
7210 /*
e8c626e9
MV
7211 * DMA Coalescing high water mark needs to be greater
7212 * than the Rx threshold. Set hwm to PBA - max frame
7213 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7214 */
e8c626e9
MV
7215 hwm = 64 * pba - adapter->max_frame_size / 16;
7216 if (hwm < 64 * (pba - 6))
7217 hwm = 64 * (pba - 6);
7218 reg = rd32(E1000_FCRTC);
7219 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7220 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7221 & E1000_FCRTC_RTH_COAL_MASK);
7222 wr32(E1000_FCRTC, reg);
7223
7224 /*
7225 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7226 * frame size, capping it at PBA - 10KB.
7227 */
7228 dmac_thr = pba - adapter->max_frame_size / 512;
7229 if (dmac_thr < pba - 10)
7230 dmac_thr = pba - 10;
b6e0c419
CW
7231 reg = rd32(E1000_DMACR);
7232 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7233 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7234 & E1000_DMACR_DMACTHR_MASK);
7235
7236 /* transition to L0x or L1 if available..*/
7237 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7238
7239 /* watchdog timer= +-1000 usec in 32usec intervals */
7240 reg |= (1000 >> 5);
7241 wr32(E1000_DMACR, reg);
7242
7243 /*
7244 * no lower threshold to disable
7245 * coalescing(smart fifb)-UTRESH=0
7246 */
7247 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7248
7249 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7250
7251 wr32(E1000_DMCTLX, reg);
7252
7253 /*
7254 * free space in tx packet buffer to wake from
7255 * DMA coal
7256 */
7257 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7258 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7259
7260 /*
7261 * make low power state decision controlled
7262 * by DMA coal
7263 */
7264 reg = rd32(E1000_PCIEMISC);
7265 reg &= ~E1000_PCIEMISC_LX_DECISION;
7266 wr32(E1000_PCIEMISC, reg);
7267 } /* endif adapter->dmac is not disabled */
7268 } else if (hw->mac.type == e1000_82580) {
7269 u32 reg = rd32(E1000_PCIEMISC);
7270 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7271 wr32(E1000_DMACR, 0);
7272 }
7273}
7274
9d5c8243 7275/* igb_main.c */