]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
igb: fix recent VLAN changes that would leave VLANs disabled after reset
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
b2cb09b1 31#include <linux/bitops.h>
9d5c8243
AK
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/netdevice.h>
9d5c8243 35#include <linux/ipv6.h>
5a0e3ad6 36#include <linux/slab.h>
9d5c8243
AK
37#include <net/checksum.h>
38#include <net/ip6_checksum.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
7d13a7d0
AD
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
9d5c8243 51#include <linux/if_ether.h>
40a914fa 52#include <linux/aer.h>
70c71606 53#include <linux/prefetch.h>
421e02f0 54#ifdef CONFIG_IGB_DCA
fe4506b6
JC
55#include <linux/dca.h>
56#endif
9d5c8243
AK
57#include "igb.h"
58
0d1fe82d
CW
59#define MAJ 3
60#define MIN 0
61#define BUILD 6
0d1fe82d 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 63__stringify(BUILD) "-k"
9d5c8243
AK
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 68static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 69
9d5c8243
AK
70static const struct e1000_info *igb_info_tbl[] = {
71 [board_82575] = &e1000_82575_info,
72};
73
a3aa1884 74static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
100 /* required last entry */
101 {0, }
102};
103
104MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
105
106void igb_reset(struct igb_adapter *);
107static int igb_setup_all_tx_resources(struct igb_adapter *);
108static int igb_setup_all_rx_resources(struct igb_adapter *);
109static void igb_free_all_tx_resources(struct igb_adapter *);
110static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 111static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
112static int igb_probe(struct pci_dev *, const struct pci_device_id *);
113static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 114static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
115static int igb_sw_init(struct igb_adapter *);
116static int igb_open(struct net_device *);
117static int igb_close(struct net_device *);
118static void igb_configure_tx(struct igb_adapter *);
119static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
120static void igb_clean_all_tx_rings(struct igb_adapter *);
121static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
122static void igb_clean_tx_ring(struct igb_ring *);
123static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 124static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
125static void igb_update_phy_info(unsigned long);
126static void igb_watchdog(unsigned long);
127static void igb_watchdog_task(struct work_struct *);
cd392f5c 128static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
129static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
130 struct rtnl_link_stats64 *stats);
9d5c8243
AK
131static int igb_change_mtu(struct net_device *, int);
132static int igb_set_mac(struct net_device *, void *);
68d480c4 133static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
134static irqreturn_t igb_intr(int irq, void *);
135static irqreturn_t igb_intr_msi(int irq, void *);
136static irqreturn_t igb_msix_other(int irq, void *);
047e0030 137static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 138#ifdef CONFIG_IGB_DCA
047e0030 139static void igb_update_dca(struct igb_q_vector *);
fe4506b6 140static void igb_setup_dca(struct igb_adapter *);
421e02f0 141#endif /* CONFIG_IGB_DCA */
661086df 142static int igb_poll(struct napi_struct *, int);
13fde97a 143static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 144static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
145static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
146static void igb_tx_timeout(struct net_device *);
147static void igb_reset_task(struct work_struct *);
b2cb09b1 148static void igb_vlan_mode(struct net_device *netdev, u32 features);
9d5c8243
AK
149static void igb_vlan_rx_add_vid(struct net_device *, u16);
150static void igb_vlan_rx_kill_vid(struct net_device *, u16);
151static void igb_restore_vlan(struct igb_adapter *);
26ad9178 152static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
153static void igb_ping_all_vfs(struct igb_adapter *);
154static void igb_msg_task(struct igb_adapter *);
4ae196df 155static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 156static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 157static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
158static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos);
161static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
162static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
163 struct ifla_vf_info *ivi);
17dc566c 164static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 165
9d5c8243 166#ifdef CONFIG_PM
3fe7c4c9 167static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
168static int igb_resume(struct pci_dev *);
169#endif
170static void igb_shutdown(struct pci_dev *);
421e02f0 171#ifdef CONFIG_IGB_DCA
fe4506b6
JC
172static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
173static struct notifier_block dca_notifier = {
174 .notifier_call = igb_notify_dca,
175 .next = NULL,
176 .priority = 0
177};
178#endif
9d5c8243
AK
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void igb_netpoll(struct net_device *);
182#endif
37680117 183#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
184static unsigned int max_vfs = 0;
185module_param(max_vfs, uint, 0);
186MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
187 "per physical function");
188#endif /* CONFIG_PCI_IOV */
189
9d5c8243
AK
190static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
191 pci_channel_state_t);
192static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
193static void igb_io_resume(struct pci_dev *);
194
195static struct pci_error_handlers igb_err_handler = {
196 .error_detected = igb_io_error_detected,
197 .slot_reset = igb_io_slot_reset,
198 .resume = igb_io_resume,
199};
200
201
202static struct pci_driver igb_driver = {
203 .name = igb_driver_name,
204 .id_table = igb_pci_tbl,
205 .probe = igb_probe,
206 .remove = __devexit_p(igb_remove),
207#ifdef CONFIG_PM
25985edc 208 /* Power Management Hooks */
9d5c8243
AK
209 .suspend = igb_suspend,
210 .resume = igb_resume,
211#endif
212 .shutdown = igb_shutdown,
213 .err_handler = &igb_err_handler
214};
215
216MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
217MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
c97ec42a
TI
221struct igb_reg_info {
222 u32 ofs;
223 char *name;
224};
225
226static const struct igb_reg_info igb_reg_info_tbl[] = {
227
228 /* General Registers */
229 {E1000_CTRL, "CTRL"},
230 {E1000_STATUS, "STATUS"},
231 {E1000_CTRL_EXT, "CTRL_EXT"},
232
233 /* Interrupt Registers */
234 {E1000_ICR, "ICR"},
235
236 /* RX Registers */
237 {E1000_RCTL, "RCTL"},
238 {E1000_RDLEN(0), "RDLEN"},
239 {E1000_RDH(0), "RDH"},
240 {E1000_RDT(0), "RDT"},
241 {E1000_RXDCTL(0), "RXDCTL"},
242 {E1000_RDBAL(0), "RDBAL"},
243 {E1000_RDBAH(0), "RDBAH"},
244
245 /* TX Registers */
246 {E1000_TCTL, "TCTL"},
247 {E1000_TDBAL(0), "TDBAL"},
248 {E1000_TDBAH(0), "TDBAH"},
249 {E1000_TDLEN(0), "TDLEN"},
250 {E1000_TDH(0), "TDH"},
251 {E1000_TDT(0), "TDT"},
252 {E1000_TXDCTL(0), "TXDCTL"},
253 {E1000_TDFH, "TDFH"},
254 {E1000_TDFT, "TDFT"},
255 {E1000_TDFHS, "TDFHS"},
256 {E1000_TDFPC, "TDFPC"},
257
258 /* List Terminator */
259 {}
260};
261
262/*
263 * igb_regdump - register printout routine
264 */
265static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
266{
267 int n = 0;
268 char rname[16];
269 u32 regs[8];
270
271 switch (reginfo->ofs) {
272 case E1000_RDLEN(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RDLEN(n));
275 break;
276 case E1000_RDH(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RDH(n));
279 break;
280 case E1000_RDT(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDT(n));
283 break;
284 case E1000_RXDCTL(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RXDCTL(n));
287 break;
288 case E1000_RDBAL(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_RDBAL(n));
291 break;
292 case E1000_RDBAH(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_RDBAH(n));
295 break;
296 case E1000_TDBAL(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_RDBAL(n));
299 break;
300 case E1000_TDBAH(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDBAH(n));
303 break;
304 case E1000_TDLEN(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TDLEN(n));
307 break;
308 case E1000_TDH(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_TDH(n));
311 break;
312 case E1000_TDT(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_TDT(n));
315 break;
316 case E1000_TXDCTL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_TXDCTL(n));
319 break;
320 default:
321 printk(KERN_INFO "%-15s %08x\n",
322 reginfo->name, rd32(reginfo->ofs));
323 return;
324 }
325
326 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
327 printk(KERN_INFO "%-15s ", rname);
328 for (n = 0; n < 4; n++)
329 printk(KERN_CONT "%08x ", regs[n]);
330 printk(KERN_CONT "\n");
331}
332
333/*
334 * igb_dump - Print registers, tx-rings and rx-rings
335 */
336static void igb_dump(struct igb_adapter *adapter)
337{
338 struct net_device *netdev = adapter->netdev;
339 struct e1000_hw *hw = &adapter->hw;
340 struct igb_reg_info *reginfo;
c97ec42a
TI
341 struct igb_ring *tx_ring;
342 union e1000_adv_tx_desc *tx_desc;
343 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
344 struct igb_ring *rx_ring;
345 union e1000_adv_rx_desc *rx_desc;
346 u32 staterr;
6ad4edfc 347 u16 i, n;
c97ec42a
TI
348
349 if (!netif_msg_hw(adapter))
350 return;
351
352 /* Print netdevice Info */
353 if (netdev) {
354 dev_info(&adapter->pdev->dev, "Net device Info\n");
355 printk(KERN_INFO "Device Name state "
356 "trans_start last_rx\n");
357 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
358 netdev->name,
359 netdev->state,
360 netdev->trans_start,
361 netdev->last_rx);
362 }
363
364 /* Print Registers */
365 dev_info(&adapter->pdev->dev, "Register Dump\n");
366 printk(KERN_INFO " Register Name Value\n");
367 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
368 reginfo->name; reginfo++) {
369 igb_regdump(hw, reginfo);
370 }
371
372 /* Print TX Ring Summary */
373 if (!netdev || !netif_running(netdev))
374 goto exit;
375
376 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
377 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
378 " leng ntw timestamp\n");
379 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 380 struct igb_tx_buffer *buffer_info;
c97ec42a 381 tx_ring = adapter->tx_ring[n];
06034649 382 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
8542db05 383 printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
c97ec42a
TI
384 n, tx_ring->next_to_use, tx_ring->next_to_clean,
385 (u64)buffer_info->dma,
386 buffer_info->length,
387 buffer_info->next_to_watch,
388 (u64)buffer_info->time_stamp);
389 }
390
391 /* Print TX Rings */
392 if (!netif_msg_tx_done(adapter))
393 goto rx_ring_summary;
394
395 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
396
397 /* Transmit Descriptor Formats
398 *
399 * Advanced Transmit Descriptor
400 * +--------------------------------------------------------------+
401 * 0 | Buffer Address [63:0] |
402 * +--------------------------------------------------------------+
403 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
404 * +--------------------------------------------------------------+
405 * 63 46 45 40 39 38 36 35 32 31 24 15 0
406 */
407
408 for (n = 0; n < adapter->num_tx_queues; n++) {
409 tx_ring = adapter->tx_ring[n];
410 printk(KERN_INFO "------------------------------------\n");
411 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
412 printk(KERN_INFO "------------------------------------\n");
413 printk(KERN_INFO "T [desc] [address 63:0 ] "
414 "[PlPOCIStDDM Ln] [bi->dma ] "
415 "leng ntw timestamp bi->skb\n");
416
417 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
06034649 418 struct igb_tx_buffer *buffer_info;
60136906 419 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 420 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a
TI
421 u0 = (struct my_u0 *)tx_desc;
422 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
8542db05 423 " %04X %p %016llX %p", i,
c97ec42a
TI
424 le64_to_cpu(u0->a),
425 le64_to_cpu(u0->b),
426 (u64)buffer_info->dma,
427 buffer_info->length,
428 buffer_info->next_to_watch,
429 (u64)buffer_info->time_stamp,
430 buffer_info->skb);
431 if (i == tx_ring->next_to_use &&
432 i == tx_ring->next_to_clean)
433 printk(KERN_CONT " NTC/U\n");
434 else if (i == tx_ring->next_to_use)
435 printk(KERN_CONT " NTU\n");
436 else if (i == tx_ring->next_to_clean)
437 printk(KERN_CONT " NTC\n");
438 else
439 printk(KERN_CONT "\n");
440
441 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
442 print_hex_dump(KERN_INFO, "",
443 DUMP_PREFIX_ADDRESS,
444 16, 1, phys_to_virt(buffer_info->dma),
445 buffer_info->length, true);
446 }
447 }
448
449 /* Print RX Rings Summary */
450rx_ring_summary:
451 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
452 printk(KERN_INFO "Queue [NTU] [NTC]\n");
453 for (n = 0; n < adapter->num_rx_queues; n++) {
454 rx_ring = adapter->rx_ring[n];
455 printk(KERN_INFO " %5d %5X %5X\n", n,
456 rx_ring->next_to_use, rx_ring->next_to_clean);
457 }
458
459 /* Print RX Rings */
460 if (!netif_msg_rx_status(adapter))
461 goto exit;
462
463 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
464
465 /* Advanced Receive Descriptor (Read) Format
466 * 63 1 0
467 * +-----------------------------------------------------+
468 * 0 | Packet Buffer Address [63:1] |A0/NSE|
469 * +----------------------------------------------+------+
470 * 8 | Header Buffer Address [63:1] | DD |
471 * +-----------------------------------------------------+
472 *
473 *
474 * Advanced Receive Descriptor (Write-Back) Format
475 *
476 * 63 48 47 32 31 30 21 20 17 16 4 3 0
477 * +------------------------------------------------------+
478 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
479 * | Checksum Ident | | | | Type | Type |
480 * +------------------------------------------------------+
481 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
482 * +------------------------------------------------------+
483 * 63 48 47 32 31 20 19 0
484 */
485
486 for (n = 0; n < adapter->num_rx_queues; n++) {
487 rx_ring = adapter->rx_ring[n];
488 printk(KERN_INFO "------------------------------------\n");
489 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
490 printk(KERN_INFO "------------------------------------\n");
491 printk(KERN_INFO "R [desc] [ PktBuf A0] "
492 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
493 "<-- Adv Rx Read format\n");
494 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
495 "[vl er S cks ln] ---------------- [bi->skb] "
496 "<-- Adv Rx Write-Back format\n");
497
498 for (i = 0; i < rx_ring->count; i++) {
06034649
AD
499 struct igb_rx_buffer *buffer_info;
500 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 501 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
502 u0 = (struct my_u0 *)rx_desc;
503 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
504 if (staterr & E1000_RXD_STAT_DD) {
505 /* Descriptor Done */
506 printk(KERN_INFO "RWB[0x%03X] %016llX "
507 "%016llX ---------------- %p", i,
508 le64_to_cpu(u0->a),
509 le64_to_cpu(u0->b),
510 buffer_info->skb);
511 } else {
512 printk(KERN_INFO "R [0x%03X] %016llX "
513 "%016llX %016llX %p", i,
514 le64_to_cpu(u0->a),
515 le64_to_cpu(u0->b),
516 (u64)buffer_info->dma,
517 buffer_info->skb);
518
519 if (netif_msg_pktdata(adapter)) {
520 print_hex_dump(KERN_INFO, "",
521 DUMP_PREFIX_ADDRESS,
522 16, 1,
523 phys_to_virt(buffer_info->dma),
44390ca6
AD
524 IGB_RX_HDR_LEN, true);
525 print_hex_dump(KERN_INFO, "",
526 DUMP_PREFIX_ADDRESS,
527 16, 1,
528 phys_to_virt(
529 buffer_info->page_dma +
530 buffer_info->page_offset),
531 PAGE_SIZE/2, true);
c97ec42a
TI
532 }
533 }
534
535 if (i == rx_ring->next_to_use)
536 printk(KERN_CONT " NTU\n");
537 else if (i == rx_ring->next_to_clean)
538 printk(KERN_CONT " NTC\n");
539 else
540 printk(KERN_CONT "\n");
541
542 }
543 }
544
545exit:
546 return;
547}
548
549
38c845c7
PO
550/**
551 * igb_read_clock - read raw cycle counter (to be used by time counter)
552 */
553static cycle_t igb_read_clock(const struct cyclecounter *tc)
554{
555 struct igb_adapter *adapter =
556 container_of(tc, struct igb_adapter, cycles);
557 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
558 u64 stamp = 0;
559 int shift = 0;
38c845c7 560
55cac248
AD
561 /*
562 * The timestamp latches on lowest register read. For the 82580
563 * the lowest register is SYSTIMR instead of SYSTIML. However we never
564 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
565 */
566 if (hw->mac.type == e1000_82580) {
567 stamp = rd32(E1000_SYSTIMR) >> 8;
568 shift = IGB_82580_TSYNC_SHIFT;
569 }
570
c5b9bd5e
AD
571 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
572 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
573 return stamp;
574}
575
9d5c8243 576/**
c041076a 577 * igb_get_hw_dev - return device
9d5c8243
AK
578 * used by hardware layer to print debugging information
579 **/
c041076a 580struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
581{
582 struct igb_adapter *adapter = hw->back;
c041076a 583 return adapter->netdev;
9d5c8243 584}
38c845c7 585
9d5c8243
AK
586/**
587 * igb_init_module - Driver Registration Routine
588 *
589 * igb_init_module is the first routine called when the driver is
590 * loaded. All it does is register with the PCI subsystem.
591 **/
592static int __init igb_init_module(void)
593{
594 int ret;
595 printk(KERN_INFO "%s - version %s\n",
596 igb_driver_string, igb_driver_version);
597
598 printk(KERN_INFO "%s\n", igb_copyright);
599
421e02f0 600#ifdef CONFIG_IGB_DCA
fe4506b6
JC
601 dca_register_notify(&dca_notifier);
602#endif
bbd98fe4 603 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
604 return ret;
605}
606
607module_init(igb_init_module);
608
609/**
610 * igb_exit_module - Driver Exit Cleanup Routine
611 *
612 * igb_exit_module is called just before the driver is removed
613 * from memory.
614 **/
615static void __exit igb_exit_module(void)
616{
421e02f0 617#ifdef CONFIG_IGB_DCA
fe4506b6
JC
618 dca_unregister_notify(&dca_notifier);
619#endif
9d5c8243
AK
620 pci_unregister_driver(&igb_driver);
621}
622
623module_exit(igb_exit_module);
624
26bc19ec
AD
625#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
626/**
627 * igb_cache_ring_register - Descriptor ring to register mapping
628 * @adapter: board private structure to initialize
629 *
630 * Once we know the feature-set enabled for the device, we'll cache
631 * the register offset the descriptor ring is assigned to.
632 **/
633static void igb_cache_ring_register(struct igb_adapter *adapter)
634{
ee1b9f06 635 int i = 0, j = 0;
047e0030 636 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
637
638 switch (adapter->hw.mac.type) {
639 case e1000_82576:
640 /* The queues are allocated for virtualization such that VF 0
641 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
642 * In order to avoid collision we start at the first free queue
643 * and continue consuming queues in the same sequence
644 */
ee1b9f06 645 if (adapter->vfs_allocated_count) {
a99955fc 646 for (; i < adapter->rss_queues; i++)
3025a446
AD
647 adapter->rx_ring[i]->reg_idx = rbase_offset +
648 Q_IDX_82576(i);
ee1b9f06 649 }
26bc19ec 650 case e1000_82575:
55cac248 651 case e1000_82580:
d2ba2ed8 652 case e1000_i350:
26bc19ec 653 default:
ee1b9f06 654 for (; i < adapter->num_rx_queues; i++)
3025a446 655 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 656 for (; j < adapter->num_tx_queues; j++)
3025a446 657 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
658 break;
659 }
660}
661
047e0030
AD
662static void igb_free_queues(struct igb_adapter *adapter)
663{
3025a446 664 int i;
047e0030 665
3025a446
AD
666 for (i = 0; i < adapter->num_tx_queues; i++) {
667 kfree(adapter->tx_ring[i]);
668 adapter->tx_ring[i] = NULL;
669 }
670 for (i = 0; i < adapter->num_rx_queues; i++) {
671 kfree(adapter->rx_ring[i]);
672 adapter->rx_ring[i] = NULL;
673 }
047e0030
AD
674 adapter->num_rx_queues = 0;
675 adapter->num_tx_queues = 0;
676}
677
9d5c8243
AK
678/**
679 * igb_alloc_queues - Allocate memory for all rings
680 * @adapter: board private structure to initialize
681 *
682 * We allocate one ring per queue at run-time since we don't know the
683 * number of queues at compile-time.
684 **/
685static int igb_alloc_queues(struct igb_adapter *adapter)
686{
3025a446 687 struct igb_ring *ring;
9d5c8243 688 int i;
81c2fc22 689 int orig_node = adapter->node;
9d5c8243 690
661086df 691 for (i = 0; i < adapter->num_tx_queues; i++) {
81c2fc22
AD
692 if (orig_node == -1) {
693 int cur_node = next_online_node(adapter->node);
694 if (cur_node == MAX_NUMNODES)
695 cur_node = first_online_node;
696 adapter->node = cur_node;
697 }
698 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
699 adapter->node);
700 if (!ring)
701 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
702 if (!ring)
703 goto err;
68fd9910 704 ring->count = adapter->tx_ring_count;
661086df 705 ring->queue_index = i;
59d71989 706 ring->dev = &adapter->pdev->dev;
e694e964 707 ring->netdev = adapter->netdev;
81c2fc22 708 ring->numa_node = adapter->node;
85ad76b2
AD
709 /* For 82575, context index must be unique per ring. */
710 if (adapter->hw.mac.type == e1000_82575)
866cff06 711 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
3025a446 712 adapter->tx_ring[i] = ring;
661086df 713 }
81c2fc22
AD
714 /* Restore the adapter's original node */
715 adapter->node = orig_node;
85ad76b2 716
9d5c8243 717 for (i = 0; i < adapter->num_rx_queues; i++) {
81c2fc22
AD
718 if (orig_node == -1) {
719 int cur_node = next_online_node(adapter->node);
720 if (cur_node == MAX_NUMNODES)
721 cur_node = first_online_node;
722 adapter->node = cur_node;
723 }
724 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
725 adapter->node);
726 if (!ring)
727 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
728 if (!ring)
729 goto err;
68fd9910 730 ring->count = adapter->rx_ring_count;
844290e5 731 ring->queue_index = i;
59d71989 732 ring->dev = &adapter->pdev->dev;
e694e964 733 ring->netdev = adapter->netdev;
81c2fc22 734 ring->numa_node = adapter->node;
85ad76b2
AD
735 /* set flag indicating ring supports SCTP checksum offload */
736 if (adapter->hw.mac.type >= e1000_82576)
866cff06 737 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
3025a446 738 adapter->rx_ring[i] = ring;
9d5c8243 739 }
81c2fc22
AD
740 /* Restore the adapter's original node */
741 adapter->node = orig_node;
26bc19ec
AD
742
743 igb_cache_ring_register(adapter);
9d5c8243 744
047e0030 745 return 0;
a88f10ec 746
047e0030 747err:
81c2fc22
AD
748 /* Restore the adapter's original node */
749 adapter->node = orig_node;
047e0030 750 igb_free_queues(adapter);
d1a8c9e1 751
047e0030 752 return -ENOMEM;
a88f10ec
AD
753}
754
4be000c8
AD
755/**
756 * igb_write_ivar - configure ivar for given MSI-X vector
757 * @hw: pointer to the HW structure
758 * @msix_vector: vector number we are allocating to a given ring
759 * @index: row index of IVAR register to write within IVAR table
760 * @offset: column offset of in IVAR, should be multiple of 8
761 *
762 * This function is intended to handle the writing of the IVAR register
763 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
764 * each containing an cause allocation for an Rx and Tx ring, and a
765 * variable number of rows depending on the number of queues supported.
766 **/
767static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768 int index, int offset)
769{
770 u32 ivar = array_rd32(E1000_IVAR0, index);
771
772 /* clear any bits that are currently set */
773 ivar &= ~((u32)0xFF << offset);
774
775 /* write vector and valid bit */
776 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777
778 array_wr32(E1000_IVAR0, index, ivar);
779}
780
9d5c8243 781#define IGB_N0_QUEUE -1
047e0030 782static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 783{
047e0030 784 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 785 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
786 int rx_queue = IGB_N0_QUEUE;
787 int tx_queue = IGB_N0_QUEUE;
4be000c8 788 u32 msixbm = 0;
047e0030 789
0ba82994
AD
790 if (q_vector->rx.ring)
791 rx_queue = q_vector->rx.ring->reg_idx;
792 if (q_vector->tx.ring)
793 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
794
795 switch (hw->mac.type) {
796 case e1000_82575:
9d5c8243
AK
797 /* The 82575 assigns vectors using a bitmask, which matches the
798 bitmask for the EICR/EIMS/EIMC registers. To assign one
799 or more queues to a vector, we write the appropriate bits
800 into the MSIXBM register for that vector. */
047e0030 801 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 803 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
805 if (!adapter->msix_entries && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
9d5c8243 807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 808 q_vector->eims_value = msixbm;
2d064c06
AD
809 break;
810 case e1000_82576:
4be000c8
AD
811 /*
812 * 82576 uses a table that essentially consists of 2 columns
813 * with 8 rows. The ordering is column-major so we use the
814 * lower 3 bits as the row index, and the 4th bit as the
815 * column offset.
816 */
817 if (rx_queue > IGB_N0_QUEUE)
818 igb_write_ivar(hw, msix_vector,
819 rx_queue & 0x7,
820 (rx_queue & 0x8) << 1);
821 if (tx_queue > IGB_N0_QUEUE)
822 igb_write_ivar(hw, msix_vector,
823 tx_queue & 0x7,
824 ((tx_queue & 0x8) << 1) + 8);
047e0030 825 q_vector->eims_value = 1 << msix_vector;
2d064c06 826 break;
55cac248 827 case e1000_82580:
d2ba2ed8 828 case e1000_i350:
4be000c8
AD
829 /*
830 * On 82580 and newer adapters the scheme is similar to 82576
831 * however instead of ordering column-major we have things
832 * ordered row-major. So we traverse the table by using
833 * bit 0 as the column offset, and the remaining bits as the
834 * row index.
835 */
836 if (rx_queue > IGB_N0_QUEUE)
837 igb_write_ivar(hw, msix_vector,
838 rx_queue >> 1,
839 (rx_queue & 0x1) << 4);
840 if (tx_queue > IGB_N0_QUEUE)
841 igb_write_ivar(hw, msix_vector,
842 tx_queue >> 1,
843 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
844 q_vector->eims_value = 1 << msix_vector;
845 break;
2d064c06
AD
846 default:
847 BUG();
848 break;
849 }
26b39276
AD
850
851 /* add q_vector eims value to global eims_enable_mask */
852 adapter->eims_enable_mask |= q_vector->eims_value;
853
854 /* configure q_vector to set itr on first interrupt */
855 q_vector->set_itr = 1;
9d5c8243
AK
856}
857
858/**
859 * igb_configure_msix - Configure MSI-X hardware
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
9d5c8243
AK
871
872 /* set vector for other causes, i.e. link changes */
2d064c06
AD
873 switch (hw->mac.type) {
874 case e1000_82575:
9d5c8243
AK
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++,
887 E1000_EIMS_OTHER);
844290e5 888 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 889
2d064c06
AD
890 break;
891
892 case e1000_82576:
55cac248 893 case e1000_82580:
d2ba2ed8 894 case e1000_i350:
047e0030
AD
895 /* Turn on MSI-X capability first, or our settings
896 * won't stick. And it will take days to debug. */
897 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
898 E1000_GPIE_PBA | E1000_GPIE_EIAME |
899 E1000_GPIE_NSICR);
900
901 /* enable msix_other interrupt */
902 adapter->eims_other = 1 << vector;
2d064c06 903 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 904
047e0030 905 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
906 break;
907 default:
908 /* do nothing, since nothing else supports MSI-X */
909 break;
910 } /* switch (hw->mac.type) */
047e0030
AD
911
912 adapter->eims_enable_mask |= adapter->eims_other;
913
26b39276
AD
914 for (i = 0; i < adapter->num_q_vectors; i++)
915 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 916
9d5c8243
AK
917 wrfl();
918}
919
920/**
921 * igb_request_msix - Initialize MSI-X interrupts
922 *
923 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
924 * kernel.
925 **/
926static int igb_request_msix(struct igb_adapter *adapter)
927{
928 struct net_device *netdev = adapter->netdev;
047e0030 929 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
930 int i, err = 0, vector = 0;
931
047e0030 932 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 933 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
934 if (err)
935 goto out;
936 vector++;
937
938 for (i = 0; i < adapter->num_q_vectors; i++) {
939 struct igb_q_vector *q_vector = adapter->q_vector[i];
940
941 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
942
0ba82994 943 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 944 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
945 q_vector->rx.ring->queue_index);
946 else if (q_vector->tx.ring)
047e0030 947 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
948 q_vector->tx.ring->queue_index);
949 else if (q_vector->rx.ring)
047e0030 950 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 951 q_vector->rx.ring->queue_index);
9d5c8243 952 else
047e0030
AD
953 sprintf(q_vector->name, "%s-unused", netdev->name);
954
9d5c8243 955 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 956 igb_msix_ring, 0, q_vector->name,
047e0030 957 q_vector);
9d5c8243
AK
958 if (err)
959 goto out;
9d5c8243
AK
960 vector++;
961 }
962
9d5c8243
AK
963 igb_configure_msix(adapter);
964 return 0;
965out:
966 return err;
967}
968
969static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
970{
971 if (adapter->msix_entries) {
972 pci_disable_msix(adapter->pdev);
973 kfree(adapter->msix_entries);
974 adapter->msix_entries = NULL;
047e0030 975 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 976 pci_disable_msi(adapter->pdev);
047e0030 977 }
9d5c8243
AK
978}
979
047e0030
AD
980/**
981 * igb_free_q_vectors - Free memory allocated for interrupt vectors
982 * @adapter: board private structure to initialize
983 *
984 * This function frees the memory allocated to the q_vectors. In addition if
985 * NAPI is enabled it will delete any references to the NAPI struct prior
986 * to freeing the q_vector.
987 **/
988static void igb_free_q_vectors(struct igb_adapter *adapter)
989{
990 int v_idx;
991
992 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
993 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
995 if (!q_vector)
996 continue;
047e0030
AD
997 netif_napi_del(&q_vector->napi);
998 kfree(q_vector);
999 }
1000 adapter->num_q_vectors = 0;
1001}
1002
1003/**
1004 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1005 *
1006 * This function resets the device so that it has 0 rx queues, tx queues, and
1007 * MSI-X interrupts allocated.
1008 */
1009static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1010{
1011 igb_free_queues(adapter);
1012 igb_free_q_vectors(adapter);
1013 igb_reset_interrupt_capability(adapter);
1014}
9d5c8243
AK
1015
1016/**
1017 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1018 *
1019 * Attempt to configure interrupts using the best available
1020 * capabilities of the hardware and kernel.
1021 **/
21adef3e 1022static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1023{
1024 int err;
1025 int numvecs, i;
1026
83b7180d 1027 /* Number of supported queues. */
a99955fc 1028 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1029 if (adapter->vfs_allocated_count)
1030 adapter->num_tx_queues = 1;
1031 else
1032 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1033
047e0030
AD
1034 /* start with one vector for every rx queue */
1035 numvecs = adapter->num_rx_queues;
1036
3ad2f3fb 1037 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1038 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1039 numvecs += adapter->num_tx_queues;
047e0030
AD
1040
1041 /* store the number of vectors reserved for queues */
1042 adapter->num_q_vectors = numvecs;
1043
1044 /* add 1 vector for link status interrupts */
1045 numvecs++;
9d5c8243
AK
1046 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1047 GFP_KERNEL);
1048 if (!adapter->msix_entries)
1049 goto msi_only;
1050
1051 for (i = 0; i < numvecs; i++)
1052 adapter->msix_entries[i].entry = i;
1053
1054 err = pci_enable_msix(adapter->pdev,
1055 adapter->msix_entries,
1056 numvecs);
1057 if (err == 0)
34a20e89 1058 goto out;
9d5c8243
AK
1059
1060 igb_reset_interrupt_capability(adapter);
1061
1062 /* If we can't do MSI-X, try MSI */
1063msi_only:
2a3abf6d
AD
1064#ifdef CONFIG_PCI_IOV
1065 /* disable SR-IOV for non MSI-X configurations */
1066 if (adapter->vf_data) {
1067 struct e1000_hw *hw = &adapter->hw;
1068 /* disable iov and allow time for transactions to clear */
1069 pci_disable_sriov(adapter->pdev);
1070 msleep(500);
1071
1072 kfree(adapter->vf_data);
1073 adapter->vf_data = NULL;
1074 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1075 wrfl();
2a3abf6d
AD
1076 msleep(100);
1077 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1078 }
1079#endif
4fc82adf 1080 adapter->vfs_allocated_count = 0;
a99955fc 1081 adapter->rss_queues = 1;
4fc82adf 1082 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1083 adapter->num_rx_queues = 1;
661086df 1084 adapter->num_tx_queues = 1;
047e0030 1085 adapter->num_q_vectors = 1;
9d5c8243 1086 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1087 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1088out:
21adef3e
BH
1089 /* Notify the stack of the (possibly) reduced queue counts. */
1090 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1091 return netif_set_real_num_rx_queues(adapter->netdev,
1092 adapter->num_rx_queues);
9d5c8243
AK
1093}
1094
047e0030
AD
1095/**
1096 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1097 * @adapter: board private structure to initialize
1098 *
1099 * We allocate one q_vector per queue interrupt. If allocation fails we
1100 * return -ENOMEM.
1101 **/
1102static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1103{
1104 struct igb_q_vector *q_vector;
1105 struct e1000_hw *hw = &adapter->hw;
1106 int v_idx;
81c2fc22 1107 int orig_node = adapter->node;
047e0030
AD
1108
1109 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
81c2fc22
AD
1110 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1111 adapter->num_tx_queues)) &&
1112 (adapter->num_rx_queues == v_idx))
1113 adapter->node = orig_node;
1114 if (orig_node == -1) {
1115 int cur_node = next_online_node(adapter->node);
1116 if (cur_node == MAX_NUMNODES)
1117 cur_node = first_online_node;
1118 adapter->node = cur_node;
1119 }
1120 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1121 adapter->node);
1122 if (!q_vector)
1123 q_vector = kzalloc(sizeof(struct igb_q_vector),
1124 GFP_KERNEL);
047e0030
AD
1125 if (!q_vector)
1126 goto err_out;
1127 q_vector->adapter = adapter;
047e0030
AD
1128 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1129 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1130 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1131 adapter->q_vector[v_idx] = q_vector;
1132 }
81c2fc22
AD
1133 /* Restore the adapter's original node */
1134 adapter->node = orig_node;
1135
047e0030
AD
1136 return 0;
1137
1138err_out:
81c2fc22
AD
1139 /* Restore the adapter's original node */
1140 adapter->node = orig_node;
fe0592b4 1141 igb_free_q_vectors(adapter);
047e0030
AD
1142 return -ENOMEM;
1143}
1144
1145static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1146 int ring_idx, int v_idx)
1147{
3025a446 1148 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1149
0ba82994
AD
1150 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1151 q_vector->rx.ring->q_vector = q_vector;
1152 q_vector->rx.count++;
4fc82adf
AD
1153 q_vector->itr_val = adapter->rx_itr_setting;
1154 if (q_vector->itr_val && q_vector->itr_val <= 3)
1155 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1156}
1157
1158static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1159 int ring_idx, int v_idx)
1160{
3025a446 1161 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1162
0ba82994
AD
1163 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1164 q_vector->tx.ring->q_vector = q_vector;
1165 q_vector->tx.count++;
4fc82adf 1166 q_vector->itr_val = adapter->tx_itr_setting;
0ba82994 1167 q_vector->tx.work_limit = adapter->tx_work_limit;
4fc82adf
AD
1168 if (q_vector->itr_val && q_vector->itr_val <= 3)
1169 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1170}
1171
1172/**
1173 * igb_map_ring_to_vector - maps allocated queues to vectors
1174 *
1175 * This function maps the recently allocated queues to vectors.
1176 **/
1177static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1178{
1179 int i;
1180 int v_idx = 0;
1181
1182 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1183 (adapter->num_q_vectors < adapter->num_tx_queues))
1184 return -ENOMEM;
1185
1186 if (adapter->num_q_vectors >=
1187 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1188 for (i = 0; i < adapter->num_rx_queues; i++)
1189 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1190 for (i = 0; i < adapter->num_tx_queues; i++)
1191 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1192 } else {
1193 for (i = 0; i < adapter->num_rx_queues; i++) {
1194 if (i < adapter->num_tx_queues)
1195 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1196 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1197 }
1198 for (; i < adapter->num_tx_queues; i++)
1199 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1200 }
1201 return 0;
1202}
1203
1204/**
1205 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1206 *
1207 * This function initializes the interrupts and allocates all of the queues.
1208 **/
1209static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1210{
1211 struct pci_dev *pdev = adapter->pdev;
1212 int err;
1213
21adef3e
BH
1214 err = igb_set_interrupt_capability(adapter);
1215 if (err)
1216 return err;
047e0030
AD
1217
1218 err = igb_alloc_q_vectors(adapter);
1219 if (err) {
1220 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1221 goto err_alloc_q_vectors;
1222 }
1223
1224 err = igb_alloc_queues(adapter);
1225 if (err) {
1226 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1227 goto err_alloc_queues;
1228 }
1229
1230 err = igb_map_ring_to_vector(adapter);
1231 if (err) {
1232 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1233 goto err_map_queues;
1234 }
1235
1236
1237 return 0;
1238err_map_queues:
1239 igb_free_queues(adapter);
1240err_alloc_queues:
1241 igb_free_q_vectors(adapter);
1242err_alloc_q_vectors:
1243 igb_reset_interrupt_capability(adapter);
1244 return err;
1245}
1246
9d5c8243
AK
1247/**
1248 * igb_request_irq - initialize interrupts
1249 *
1250 * Attempts to configure interrupts using the best available
1251 * capabilities of the hardware and kernel.
1252 **/
1253static int igb_request_irq(struct igb_adapter *adapter)
1254{
1255 struct net_device *netdev = adapter->netdev;
047e0030 1256 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1257 int err = 0;
1258
1259 if (adapter->msix_entries) {
1260 err = igb_request_msix(adapter);
844290e5 1261 if (!err)
9d5c8243 1262 goto request_done;
9d5c8243 1263 /* fall back to MSI */
047e0030 1264 igb_clear_interrupt_scheme(adapter);
9d5c8243 1265 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1266 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1267 igb_free_all_tx_resources(adapter);
1268 igb_free_all_rx_resources(adapter);
047e0030 1269 adapter->num_tx_queues = 1;
9d5c8243 1270 adapter->num_rx_queues = 1;
047e0030
AD
1271 adapter->num_q_vectors = 1;
1272 err = igb_alloc_q_vectors(adapter);
1273 if (err) {
1274 dev_err(&pdev->dev,
1275 "Unable to allocate memory for vectors\n");
1276 goto request_done;
1277 }
1278 err = igb_alloc_queues(adapter);
1279 if (err) {
1280 dev_err(&pdev->dev,
1281 "Unable to allocate memory for queues\n");
1282 igb_free_q_vectors(adapter);
1283 goto request_done;
1284 }
1285 igb_setup_all_tx_resources(adapter);
1286 igb_setup_all_rx_resources(adapter);
844290e5 1287 } else {
feeb2721 1288 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1289 }
844290e5 1290
7dfc16fa 1291 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1292 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1293 netdev->name, adapter);
9d5c8243
AK
1294 if (!err)
1295 goto request_done;
047e0030 1296
9d5c8243
AK
1297 /* fall back to legacy interrupts */
1298 igb_reset_interrupt_capability(adapter);
7dfc16fa 1299 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1300 }
1301
a0607fd3 1302 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1303 netdev->name, adapter);
9d5c8243 1304
6cb5e577 1305 if (err)
9d5c8243
AK
1306 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1307 err);
9d5c8243
AK
1308
1309request_done:
1310 return err;
1311}
1312
1313static void igb_free_irq(struct igb_adapter *adapter)
1314{
9d5c8243
AK
1315 if (adapter->msix_entries) {
1316 int vector = 0, i;
1317
047e0030 1318 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1319
047e0030
AD
1320 for (i = 0; i < adapter->num_q_vectors; i++) {
1321 struct igb_q_vector *q_vector = adapter->q_vector[i];
1322 free_irq(adapter->msix_entries[vector++].vector,
1323 q_vector);
1324 }
1325 } else {
1326 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1327 }
9d5c8243
AK
1328}
1329
1330/**
1331 * igb_irq_disable - Mask off interrupt generation on the NIC
1332 * @adapter: board private structure
1333 **/
1334static void igb_irq_disable(struct igb_adapter *adapter)
1335{
1336 struct e1000_hw *hw = &adapter->hw;
1337
25568a53
AD
1338 /*
1339 * we need to be careful when disabling interrupts. The VFs are also
1340 * mapped into these registers and so clearing the bits can cause
1341 * issues on the VF drivers so we only need to clear what we set
1342 */
9d5c8243 1343 if (adapter->msix_entries) {
2dfd1212
AD
1344 u32 regval = rd32(E1000_EIAM);
1345 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1346 wr32(E1000_EIMC, adapter->eims_enable_mask);
1347 regval = rd32(E1000_EIAC);
1348 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1349 }
844290e5
PW
1350
1351 wr32(E1000_IAM, 0);
9d5c8243
AK
1352 wr32(E1000_IMC, ~0);
1353 wrfl();
81a61859
ET
1354 if (adapter->msix_entries) {
1355 int i;
1356 for (i = 0; i < adapter->num_q_vectors; i++)
1357 synchronize_irq(adapter->msix_entries[i].vector);
1358 } else {
1359 synchronize_irq(adapter->pdev->irq);
1360 }
9d5c8243
AK
1361}
1362
1363/**
1364 * igb_irq_enable - Enable default interrupt generation settings
1365 * @adapter: board private structure
1366 **/
1367static void igb_irq_enable(struct igb_adapter *adapter)
1368{
1369 struct e1000_hw *hw = &adapter->hw;
1370
1371 if (adapter->msix_entries) {
25568a53 1372 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1373 u32 regval = rd32(E1000_EIAC);
1374 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1375 regval = rd32(E1000_EIAM);
1376 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1377 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1378 if (adapter->vfs_allocated_count) {
4ae196df 1379 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1380 ims |= E1000_IMS_VMMB;
1381 }
55cac248
AD
1382 if (adapter->hw.mac.type == e1000_82580)
1383 ims |= E1000_IMS_DRSTA;
1384
25568a53 1385 wr32(E1000_IMS, ims);
844290e5 1386 } else {
55cac248
AD
1387 wr32(E1000_IMS, IMS_ENABLE_MASK |
1388 E1000_IMS_DRSTA);
1389 wr32(E1000_IAM, IMS_ENABLE_MASK |
1390 E1000_IMS_DRSTA);
844290e5 1391 }
9d5c8243
AK
1392}
1393
1394static void igb_update_mng_vlan(struct igb_adapter *adapter)
1395{
51466239 1396 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1397 u16 vid = adapter->hw.mng_cookie.vlan_id;
1398 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1399
1400 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1401 /* add VID to filter table */
1402 igb_vfta_set(hw, vid, true);
1403 adapter->mng_vlan_id = vid;
1404 } else {
1405 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1406 }
1407
1408 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1409 (vid != old_vid) &&
b2cb09b1 1410 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1411 /* remove VID from filter table */
1412 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1413 }
1414}
1415
1416/**
1417 * igb_release_hw_control - release control of the h/w to f/w
1418 * @adapter: address of board private structure
1419 *
1420 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1421 * For ASF and Pass Through versions of f/w this means that the
1422 * driver is no longer loaded.
1423 *
1424 **/
1425static void igb_release_hw_control(struct igb_adapter *adapter)
1426{
1427 struct e1000_hw *hw = &adapter->hw;
1428 u32 ctrl_ext;
1429
1430 /* Let firmware take over control of h/w */
1431 ctrl_ext = rd32(E1000_CTRL_EXT);
1432 wr32(E1000_CTRL_EXT,
1433 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1434}
1435
9d5c8243
AK
1436/**
1437 * igb_get_hw_control - get control of the h/w from f/w
1438 * @adapter: address of board private structure
1439 *
1440 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1441 * For ASF and Pass Through versions of f/w this means that
1442 * the driver is loaded.
1443 *
1444 **/
1445static void igb_get_hw_control(struct igb_adapter *adapter)
1446{
1447 struct e1000_hw *hw = &adapter->hw;
1448 u32 ctrl_ext;
1449
1450 /* Let firmware know the driver has taken over */
1451 ctrl_ext = rd32(E1000_CTRL_EXT);
1452 wr32(E1000_CTRL_EXT,
1453 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1454}
1455
9d5c8243
AK
1456/**
1457 * igb_configure - configure the hardware for RX and TX
1458 * @adapter: private board structure
1459 **/
1460static void igb_configure(struct igb_adapter *adapter)
1461{
1462 struct net_device *netdev = adapter->netdev;
1463 int i;
1464
1465 igb_get_hw_control(adapter);
ff41f8dc 1466 igb_set_rx_mode(netdev);
9d5c8243
AK
1467
1468 igb_restore_vlan(adapter);
9d5c8243 1469
85b430b4 1470 igb_setup_tctl(adapter);
06cf2666 1471 igb_setup_mrqc(adapter);
9d5c8243 1472 igb_setup_rctl(adapter);
85b430b4
AD
1473
1474 igb_configure_tx(adapter);
9d5c8243 1475 igb_configure_rx(adapter);
662d7205
AD
1476
1477 igb_rx_fifo_flush_82575(&adapter->hw);
1478
c493ea45 1479 /* call igb_desc_unused which always leaves
9d5c8243
AK
1480 * at least 1 descriptor unused to make sure
1481 * next_to_use != next_to_clean */
1482 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1483 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1484 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1485 }
9d5c8243
AK
1486}
1487
88a268c1
NN
1488/**
1489 * igb_power_up_link - Power up the phy/serdes link
1490 * @adapter: address of board private structure
1491 **/
1492void igb_power_up_link(struct igb_adapter *adapter)
1493{
1494 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1495 igb_power_up_phy_copper(&adapter->hw);
1496 else
1497 igb_power_up_serdes_link_82575(&adapter->hw);
1498}
1499
1500/**
1501 * igb_power_down_link - Power down the phy/serdes link
1502 * @adapter: address of board private structure
1503 */
1504static void igb_power_down_link(struct igb_adapter *adapter)
1505{
1506 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1507 igb_power_down_phy_copper_82575(&adapter->hw);
1508 else
1509 igb_shutdown_serdes_link_82575(&adapter->hw);
1510}
9d5c8243
AK
1511
1512/**
1513 * igb_up - Open the interface and prepare it to handle traffic
1514 * @adapter: board private structure
1515 **/
9d5c8243
AK
1516int igb_up(struct igb_adapter *adapter)
1517{
1518 struct e1000_hw *hw = &adapter->hw;
1519 int i;
1520
1521 /* hardware has been reset, we need to reload some things */
1522 igb_configure(adapter);
1523
1524 clear_bit(__IGB_DOWN, &adapter->state);
1525
047e0030
AD
1526 for (i = 0; i < adapter->num_q_vectors; i++) {
1527 struct igb_q_vector *q_vector = adapter->q_vector[i];
1528 napi_enable(&q_vector->napi);
1529 }
844290e5 1530 if (adapter->msix_entries)
9d5c8243 1531 igb_configure_msix(adapter);
feeb2721
AD
1532 else
1533 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1534
1535 /* Clear any pending interrupts. */
1536 rd32(E1000_ICR);
1537 igb_irq_enable(adapter);
1538
d4960307
AD
1539 /* notify VFs that reset has been completed */
1540 if (adapter->vfs_allocated_count) {
1541 u32 reg_data = rd32(E1000_CTRL_EXT);
1542 reg_data |= E1000_CTRL_EXT_PFRSTD;
1543 wr32(E1000_CTRL_EXT, reg_data);
1544 }
1545
4cb9be7a
JB
1546 netif_tx_start_all_queues(adapter->netdev);
1547
25568a53
AD
1548 /* start the watchdog. */
1549 hw->mac.get_link_status = 1;
1550 schedule_work(&adapter->watchdog_task);
1551
9d5c8243
AK
1552 return 0;
1553}
1554
1555void igb_down(struct igb_adapter *adapter)
1556{
9d5c8243 1557 struct net_device *netdev = adapter->netdev;
330a6d6a 1558 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1559 u32 tctl, rctl;
1560 int i;
1561
1562 /* signal that we're down so the interrupt handler does not
1563 * reschedule our watchdog timer */
1564 set_bit(__IGB_DOWN, &adapter->state);
1565
1566 /* disable receives in the hardware */
1567 rctl = rd32(E1000_RCTL);
1568 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1569 /* flush and sleep below */
1570
fd2ea0a7 1571 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1572
1573 /* disable transmits in the hardware */
1574 tctl = rd32(E1000_TCTL);
1575 tctl &= ~E1000_TCTL_EN;
1576 wr32(E1000_TCTL, tctl);
1577 /* flush both disables and wait for them to finish */
1578 wrfl();
1579 msleep(10);
1580
047e0030
AD
1581 for (i = 0; i < adapter->num_q_vectors; i++) {
1582 struct igb_q_vector *q_vector = adapter->q_vector[i];
1583 napi_disable(&q_vector->napi);
1584 }
9d5c8243 1585
9d5c8243
AK
1586 igb_irq_disable(adapter);
1587
1588 del_timer_sync(&adapter->watchdog_timer);
1589 del_timer_sync(&adapter->phy_info_timer);
1590
9d5c8243 1591 netif_carrier_off(netdev);
04fe6358
AD
1592
1593 /* record the stats before reset*/
12dcd86b
ED
1594 spin_lock(&adapter->stats64_lock);
1595 igb_update_stats(adapter, &adapter->stats64);
1596 spin_unlock(&adapter->stats64_lock);
04fe6358 1597
9d5c8243
AK
1598 adapter->link_speed = 0;
1599 adapter->link_duplex = 0;
1600
3023682e
JK
1601 if (!pci_channel_offline(adapter->pdev))
1602 igb_reset(adapter);
9d5c8243
AK
1603 igb_clean_all_tx_rings(adapter);
1604 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1605#ifdef CONFIG_IGB_DCA
1606
1607 /* since we reset the hardware DCA settings were cleared */
1608 igb_setup_dca(adapter);
1609#endif
9d5c8243
AK
1610}
1611
1612void igb_reinit_locked(struct igb_adapter *adapter)
1613{
1614 WARN_ON(in_interrupt());
1615 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1616 msleep(1);
1617 igb_down(adapter);
1618 igb_up(adapter);
1619 clear_bit(__IGB_RESETTING, &adapter->state);
1620}
1621
1622void igb_reset(struct igb_adapter *adapter)
1623{
090b1795 1624 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1625 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1626 struct e1000_mac_info *mac = &hw->mac;
1627 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1628 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1629 u16 hwm;
1630
1631 /* Repartition Pba for greater than 9k mtu
1632 * To take effect CTRL.RST is required.
1633 */
fa4dfae0 1634 switch (mac->type) {
d2ba2ed8 1635 case e1000_i350:
55cac248
AD
1636 case e1000_82580:
1637 pba = rd32(E1000_RXPBS);
1638 pba = igb_rxpbs_adjust_82580(pba);
1639 break;
fa4dfae0 1640 case e1000_82576:
d249be54
AD
1641 pba = rd32(E1000_RXPBS);
1642 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1643 break;
1644 case e1000_82575:
1645 default:
1646 pba = E1000_PBA_34K;
1647 break;
2d064c06 1648 }
9d5c8243 1649
2d064c06
AD
1650 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1651 (mac->type < e1000_82576)) {
9d5c8243
AK
1652 /* adjust PBA for jumbo frames */
1653 wr32(E1000_PBA, pba);
1654
1655 /* To maintain wire speed transmits, the Tx FIFO should be
1656 * large enough to accommodate two full transmit packets,
1657 * rounded up to the next 1KB and expressed in KB. Likewise,
1658 * the Rx FIFO should be large enough to accommodate at least
1659 * one full receive packet and is similarly rounded up and
1660 * expressed in KB. */
1661 pba = rd32(E1000_PBA);
1662 /* upper 16 bits has Tx packet buffer allocation size in KB */
1663 tx_space = pba >> 16;
1664 /* lower 16 bits has Rx packet buffer allocation size in KB */
1665 pba &= 0xffff;
1666 /* the tx fifo also stores 16 bytes of information about the tx
1667 * but don't include ethernet FCS because hardware appends it */
1668 min_tx_space = (adapter->max_frame_size +
85e8d004 1669 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1670 ETH_FCS_LEN) * 2;
1671 min_tx_space = ALIGN(min_tx_space, 1024);
1672 min_tx_space >>= 10;
1673 /* software strips receive CRC, so leave room for it */
1674 min_rx_space = adapter->max_frame_size;
1675 min_rx_space = ALIGN(min_rx_space, 1024);
1676 min_rx_space >>= 10;
1677
1678 /* If current Tx allocation is less than the min Tx FIFO size,
1679 * and the min Tx FIFO size is less than the current Rx FIFO
1680 * allocation, take space away from current Rx allocation */
1681 if (tx_space < min_tx_space &&
1682 ((min_tx_space - tx_space) < pba)) {
1683 pba = pba - (min_tx_space - tx_space);
1684
1685 /* if short on rx space, rx wins and must trump tx
1686 * adjustment */
1687 if (pba < min_rx_space)
1688 pba = min_rx_space;
1689 }
2d064c06 1690 wr32(E1000_PBA, pba);
9d5c8243 1691 }
9d5c8243
AK
1692
1693 /* flow control settings */
1694 /* The high water mark must be low enough to fit one full frame
1695 * (or the size used for early receive) above it in the Rx FIFO.
1696 * Set it to the lower of:
1697 * - 90% of the Rx FIFO size, or
1698 * - the full Rx FIFO size minus one full frame */
1699 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1700 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1701
d405ea3e
AD
1702 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1703 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1704 fc->pause_time = 0xFFFF;
1705 fc->send_xon = 1;
0cce119a 1706 fc->current_mode = fc->requested_mode;
9d5c8243 1707
4ae196df
AD
1708 /* disable receive for all VFs and wait one second */
1709 if (adapter->vfs_allocated_count) {
1710 int i;
1711 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1712 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1713
1714 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1715 igb_ping_all_vfs(adapter);
4ae196df
AD
1716
1717 /* disable transmits and receives */
1718 wr32(E1000_VFRE, 0);
1719 wr32(E1000_VFTE, 0);
1720 }
1721
9d5c8243 1722 /* Allow time for pending master requests to run */
330a6d6a 1723 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1724 wr32(E1000_WUC, 0);
1725
330a6d6a 1726 if (hw->mac.ops.init_hw(hw))
090b1795 1727 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1728 if (hw->mac.type > e1000_82580) {
1729 if (adapter->flags & IGB_FLAG_DMAC) {
1730 u32 reg;
1731
1732 /*
1733 * DMA Coalescing high water mark needs to be higher
1734 * than * the * Rx threshold. The Rx threshold is
1735 * currently * pba - 6, so we * should use a high water
1736 * mark of pba * - 4. */
1737 hwm = (pba - 4) << 10;
1738
1739 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1740 & E1000_DMACR_DMACTHR_MASK);
1741
1742 /* transition to L0x or L1 if available..*/
1743 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1744
1745 /* watchdog timer= +-1000 usec in 32usec intervals */
1746 reg |= (1000 >> 5);
1747 wr32(E1000_DMACR, reg);
1748
1749 /* no lower threshold to disable coalescing(smart fifb)
1750 * -UTRESH=0*/
1751 wr32(E1000_DMCRTRH, 0);
1752
1753 /* set hwm to PBA - 2 * max frame size */
1754 wr32(E1000_FCRTC, hwm);
1755
1756 /*
1757 * This sets the time to wait before requesting tran-
1758 * sition to * low power state to number of usecs needed
1759 * to receive 1 512 * byte frame at gigabit line rate
1760 */
1761 reg = rd32(E1000_DMCTLX);
1762 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1763
1764 /* Delay 255 usec before entering Lx state. */
1765 reg |= 0xFF;
1766 wr32(E1000_DMCTLX, reg);
1767
1768 /* free space in Tx packet buffer to wake from DMAC */
1769 wr32(E1000_DMCTXTH,
1770 (IGB_MIN_TXPBSIZE -
1771 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1772 >> 6);
1773
1774 /* make low power state decision controlled by DMAC */
1775 reg = rd32(E1000_PCIEMISC);
1776 reg |= E1000_PCIEMISC_LX_DECISION;
1777 wr32(E1000_PCIEMISC, reg);
1778 } /* end if IGB_FLAG_DMAC set */
1779 }
55cac248
AD
1780 if (hw->mac.type == e1000_82580) {
1781 u32 reg = rd32(E1000_PCIEMISC);
1782 wr32(E1000_PCIEMISC,
1783 reg & ~E1000_PCIEMISC_LX_DECISION);
1784 }
88a268c1
NN
1785 if (!netif_running(adapter->netdev))
1786 igb_power_down_link(adapter);
1787
9d5c8243
AK
1788 igb_update_mng_vlan(adapter);
1789
1790 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1791 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1792
330a6d6a 1793 igb_get_phy_info(hw);
9d5c8243
AK
1794}
1795
b2cb09b1
JP
1796static u32 igb_fix_features(struct net_device *netdev, u32 features)
1797{
1798 /*
1799 * Since there is no support for separate rx/tx vlan accel
1800 * enable/disable make sure tx flag is always in same state as rx.
1801 */
1802 if (features & NETIF_F_HW_VLAN_RX)
1803 features |= NETIF_F_HW_VLAN_TX;
1804 else
1805 features &= ~NETIF_F_HW_VLAN_TX;
1806
1807 return features;
1808}
1809
ac52caa3
MM
1810static int igb_set_features(struct net_device *netdev, u32 features)
1811{
b2cb09b1 1812 u32 changed = netdev->features ^ features;
ac52caa3 1813
b2cb09b1
JP
1814 if (changed & NETIF_F_HW_VLAN_RX)
1815 igb_vlan_mode(netdev, features);
1816
ac52caa3
MM
1817 return 0;
1818}
1819
2e5c6922 1820static const struct net_device_ops igb_netdev_ops = {
559e9c49 1821 .ndo_open = igb_open,
2e5c6922 1822 .ndo_stop = igb_close,
cd392f5c 1823 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1824 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1825 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1826 .ndo_set_mac_address = igb_set_mac,
1827 .ndo_change_mtu = igb_change_mtu,
1828 .ndo_do_ioctl = igb_ioctl,
1829 .ndo_tx_timeout = igb_tx_timeout,
1830 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1831 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1832 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1833 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1834 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1835 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1836 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1837#ifdef CONFIG_NET_POLL_CONTROLLER
1838 .ndo_poll_controller = igb_netpoll,
1839#endif
b2cb09b1
JP
1840 .ndo_fix_features = igb_fix_features,
1841 .ndo_set_features = igb_set_features,
2e5c6922
SH
1842};
1843
9d5c8243
AK
1844/**
1845 * igb_probe - Device Initialization Routine
1846 * @pdev: PCI device information struct
1847 * @ent: entry in igb_pci_tbl
1848 *
1849 * Returns 0 on success, negative on failure
1850 *
1851 * igb_probe initializes an adapter identified by a pci_dev structure.
1852 * The OS initialization, configuring of the adapter private structure,
1853 * and a hardware reset occur.
1854 **/
1855static int __devinit igb_probe(struct pci_dev *pdev,
1856 const struct pci_device_id *ent)
1857{
1858 struct net_device *netdev;
1859 struct igb_adapter *adapter;
1860 struct e1000_hw *hw;
4337e993 1861 u16 eeprom_data = 0;
9835fd73 1862 s32 ret_val;
4337e993 1863 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1864 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1865 unsigned long mmio_start, mmio_len;
2d6a5e95 1866 int err, pci_using_dac;
9d5c8243 1867 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1868 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1869
bded64a7
AG
1870 /* Catch broken hardware that put the wrong VF device ID in
1871 * the PCIe SR-IOV capability.
1872 */
1873 if (pdev->is_virtfn) {
1874 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1875 pci_name(pdev), pdev->vendor, pdev->device);
1876 return -EINVAL;
1877 }
1878
aed5dec3 1879 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1880 if (err)
1881 return err;
1882
1883 pci_using_dac = 0;
59d71989 1884 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1885 if (!err) {
59d71989 1886 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1887 if (!err)
1888 pci_using_dac = 1;
1889 } else {
59d71989 1890 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1891 if (err) {
59d71989 1892 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1893 if (err) {
1894 dev_err(&pdev->dev, "No usable DMA "
1895 "configuration, aborting\n");
1896 goto err_dma;
1897 }
1898 }
1899 }
1900
aed5dec3
AD
1901 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1902 IORESOURCE_MEM),
1903 igb_driver_name);
9d5c8243
AK
1904 if (err)
1905 goto err_pci_reg;
1906
19d5afd4 1907 pci_enable_pcie_error_reporting(pdev);
40a914fa 1908
9d5c8243 1909 pci_set_master(pdev);
c682fc23 1910 pci_save_state(pdev);
9d5c8243
AK
1911
1912 err = -ENOMEM;
1bfaf07b 1913 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1914 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1915 if (!netdev)
1916 goto err_alloc_etherdev;
1917
1918 SET_NETDEV_DEV(netdev, &pdev->dev);
1919
1920 pci_set_drvdata(pdev, netdev);
1921 adapter = netdev_priv(netdev);
1922 adapter->netdev = netdev;
1923 adapter->pdev = pdev;
1924 hw = &adapter->hw;
1925 hw->back = adapter;
1926 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1927
1928 mmio_start = pci_resource_start(pdev, 0);
1929 mmio_len = pci_resource_len(pdev, 0);
1930
1931 err = -EIO;
28b0759c
AD
1932 hw->hw_addr = ioremap(mmio_start, mmio_len);
1933 if (!hw->hw_addr)
9d5c8243
AK
1934 goto err_ioremap;
1935
2e5c6922 1936 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1937 igb_set_ethtool_ops(netdev);
9d5c8243 1938 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1939
1940 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1941
1942 netdev->mem_start = mmio_start;
1943 netdev->mem_end = mmio_start + mmio_len;
1944
9d5c8243
AK
1945 /* PCI config space info */
1946 hw->vendor_id = pdev->vendor;
1947 hw->device_id = pdev->device;
1948 hw->revision_id = pdev->revision;
1949 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1950 hw->subsystem_device_id = pdev->subsystem_device;
1951
9d5c8243
AK
1952 /* Copy the default MAC, PHY and NVM function pointers */
1953 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1954 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1955 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1956 /* Initialize skew-specific constants */
1957 err = ei->get_invariants(hw);
1958 if (err)
450c87c8 1959 goto err_sw_init;
9d5c8243 1960
450c87c8 1961 /* setup the private structure */
9d5c8243
AK
1962 err = igb_sw_init(adapter);
1963 if (err)
1964 goto err_sw_init;
1965
1966 igb_get_bus_info_pcie(hw);
1967
1968 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1969
1970 /* Copper options */
1971 if (hw->phy.media_type == e1000_media_type_copper) {
1972 hw->phy.mdix = AUTO_ALL_MODES;
1973 hw->phy.disable_polarity_correction = false;
1974 hw->phy.ms_type = e1000_ms_hw_default;
1975 }
1976
1977 if (igb_check_reset_block(hw))
1978 dev_info(&pdev->dev,
1979 "PHY reset is blocked due to SOL/IDER session.\n");
1980
ac52caa3 1981 netdev->hw_features = NETIF_F_SG |
7d8eb29e 1982 NETIF_F_IP_CSUM |
ac52caa3
MM
1983 NETIF_F_IPV6_CSUM |
1984 NETIF_F_TSO |
1985 NETIF_F_TSO6 |
b2cb09b1
JP
1986 NETIF_F_RXCSUM |
1987 NETIF_F_HW_VLAN_RX;
ac52caa3
MM
1988
1989 netdev->features = netdev->hw_features |
9d5c8243 1990 NETIF_F_HW_VLAN_TX |
9d5c8243
AK
1991 NETIF_F_HW_VLAN_FILTER;
1992
48f29ffc
JK
1993 netdev->vlan_features |= NETIF_F_TSO;
1994 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1995 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1996 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1997 netdev->vlan_features |= NETIF_F_SG;
1998
7b872a55 1999 if (pci_using_dac) {
9d5c8243 2000 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2001 netdev->vlan_features |= NETIF_F_HIGHDMA;
2002 }
9d5c8243 2003
ac52caa3
MM
2004 if (hw->mac.type >= e1000_82576) {
2005 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2006 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2007 }
b9473560 2008
01789349
JP
2009 netdev->priv_flags |= IFF_UNICAST_FLT;
2010
330a6d6a 2011 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2012
2013 /* before reading the NVM, reset the controller to put the device in a
2014 * known good starting state */
2015 hw->mac.ops.reset_hw(hw);
2016
2017 /* make sure the NVM is good */
4322e561 2018 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
2019 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2020 err = -EIO;
2021 goto err_eeprom;
2022 }
2023
2024 /* copy the MAC address out of the NVM */
2025 if (hw->mac.ops.read_mac_addr(hw))
2026 dev_err(&pdev->dev, "NVM Read Error\n");
2027
2028 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2029 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2030
2031 if (!is_valid_ether_addr(netdev->perm_addr)) {
2032 dev_err(&pdev->dev, "Invalid MAC Address\n");
2033 err = -EIO;
2034 goto err_eeprom;
2035 }
2036
c061b18d 2037 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2038 (unsigned long) adapter);
c061b18d 2039 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2040 (unsigned long) adapter);
9d5c8243
AK
2041
2042 INIT_WORK(&adapter->reset_task, igb_reset_task);
2043 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2044
450c87c8 2045 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2046 adapter->fc_autoneg = true;
2047 hw->mac.autoneg = true;
2048 hw->phy.autoneg_advertised = 0x2f;
2049
0cce119a
AD
2050 hw->fc.requested_mode = e1000_fc_default;
2051 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2052
9d5c8243
AK
2053 igb_validate_mdi_setting(hw);
2054
9d5c8243
AK
2055 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2056 * enable the ACPI Magic Packet filter
2057 */
2058
a2cf8b6c 2059 if (hw->bus.func == 0)
312c75ae 2060 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2061 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2062 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2063 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2064 &eeprom_data);
a2cf8b6c
AD
2065 else if (hw->bus.func == 1)
2066 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2067
2068 if (eeprom_data & eeprom_apme_mask)
2069 adapter->eeprom_wol |= E1000_WUFC_MAG;
2070
2071 /* now that we have the eeprom settings, apply the special cases where
2072 * the eeprom may be wrong or the board simply won't support wake on
2073 * lan on a particular port */
2074 switch (pdev->device) {
2075 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2076 adapter->eeprom_wol = 0;
2077 break;
2078 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2079 case E1000_DEV_ID_82576_FIBER:
2080 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2081 /* Wake events only supported on port A for dual fiber
2082 * regardless of eeprom setting */
2083 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2084 adapter->eeprom_wol = 0;
2085 break;
c8ea5ea9 2086 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2087 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2088 /* if quad port adapter, disable WoL on all but port A */
2089 if (global_quad_port_a != 0)
2090 adapter->eeprom_wol = 0;
2091 else
2092 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2093 /* Reset for multiple quad port adapters */
2094 if (++global_quad_port_a == 4)
2095 global_quad_port_a = 0;
2096 break;
9d5c8243
AK
2097 }
2098
2099 /* initialize the wol settings based on the eeprom settings */
2100 adapter->wol = adapter->eeprom_wol;
e1b86d84 2101 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2102
2103 /* reset the hardware with the new settings */
2104 igb_reset(adapter);
2105
2106 /* let the f/w know that the h/w is now under the control of the
2107 * driver. */
2108 igb_get_hw_control(adapter);
2109
9d5c8243
AK
2110 strcpy(netdev->name, "eth%d");
2111 err = register_netdev(netdev);
2112 if (err)
2113 goto err_register;
2114
b168dfc5
JB
2115 /* carrier off reporting is important to ethtool even BEFORE open */
2116 netif_carrier_off(netdev);
2117
421e02f0 2118#ifdef CONFIG_IGB_DCA
bbd98fe4 2119 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2120 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2121 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2122 igb_setup_dca(adapter);
2123 }
fe4506b6 2124
38c845c7 2125#endif
673b8b70
AB
2126 /* do hw tstamp init after resetting */
2127 igb_init_hw_timer(adapter);
2128
9d5c8243
AK
2129 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2130 /* print bus type/speed/width info */
7c510e4b 2131 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2132 netdev->name,
559e9c49 2133 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2134 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2135 "unknown"),
59c3de89
AD
2136 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2137 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2138 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2139 "unknown"),
7c510e4b 2140 netdev->dev_addr);
9d5c8243 2141
9835fd73
CW
2142 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2143 if (ret_val)
2144 strcpy(part_str, "Unknown");
2145 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2146 dev_info(&pdev->dev,
2147 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2148 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2149 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2150 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2151 switch (hw->mac.type) {
2152 case e1000_i350:
2153 igb_set_eee_i350(hw);
2154 break;
2155 default:
2156 break;
2157 }
9d5c8243
AK
2158 return 0;
2159
2160err_register:
2161 igb_release_hw_control(adapter);
2162err_eeprom:
2163 if (!igb_check_reset_block(hw))
f5f4cf08 2164 igb_reset_phy(hw);
9d5c8243
AK
2165
2166 if (hw->flash_address)
2167 iounmap(hw->flash_address);
9d5c8243 2168err_sw_init:
047e0030 2169 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2170 iounmap(hw->hw_addr);
2171err_ioremap:
2172 free_netdev(netdev);
2173err_alloc_etherdev:
559e9c49
AD
2174 pci_release_selected_regions(pdev,
2175 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2176err_pci_reg:
2177err_dma:
2178 pci_disable_device(pdev);
2179 return err;
2180}
2181
2182/**
2183 * igb_remove - Device Removal Routine
2184 * @pdev: PCI device information struct
2185 *
2186 * igb_remove is called by the PCI subsystem to alert the driver
2187 * that it should release a PCI device. The could be caused by a
2188 * Hot-Plug event, or because the driver is going to be removed from
2189 * memory.
2190 **/
2191static void __devexit igb_remove(struct pci_dev *pdev)
2192{
2193 struct net_device *netdev = pci_get_drvdata(pdev);
2194 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2195 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2196
760141a5
TH
2197 /*
2198 * The watchdog timer may be rescheduled, so explicitly
2199 * disable watchdog from being rescheduled.
2200 */
9d5c8243
AK
2201 set_bit(__IGB_DOWN, &adapter->state);
2202 del_timer_sync(&adapter->watchdog_timer);
2203 del_timer_sync(&adapter->phy_info_timer);
2204
760141a5
TH
2205 cancel_work_sync(&adapter->reset_task);
2206 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2207
421e02f0 2208#ifdef CONFIG_IGB_DCA
7dfc16fa 2209 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2210 dev_info(&pdev->dev, "DCA disabled\n");
2211 dca_remove_requester(&pdev->dev);
7dfc16fa 2212 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2213 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2214 }
2215#endif
2216
9d5c8243
AK
2217 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2218 * would have already happened in close and is redundant. */
2219 igb_release_hw_control(adapter);
2220
2221 unregister_netdev(netdev);
2222
047e0030 2223 igb_clear_interrupt_scheme(adapter);
9d5c8243 2224
37680117
AD
2225#ifdef CONFIG_PCI_IOV
2226 /* reclaim resources allocated to VFs */
2227 if (adapter->vf_data) {
2228 /* disable iov and allow time for transactions to clear */
2229 pci_disable_sriov(pdev);
2230 msleep(500);
2231
2232 kfree(adapter->vf_data);
2233 adapter->vf_data = NULL;
2234 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2235 wrfl();
37680117
AD
2236 msleep(100);
2237 dev_info(&pdev->dev, "IOV Disabled\n");
2238 }
2239#endif
559e9c49 2240
28b0759c
AD
2241 iounmap(hw->hw_addr);
2242 if (hw->flash_address)
2243 iounmap(hw->flash_address);
559e9c49
AD
2244 pci_release_selected_regions(pdev,
2245 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2246
2247 free_netdev(netdev);
2248
19d5afd4 2249 pci_disable_pcie_error_reporting(pdev);
40a914fa 2250
9d5c8243
AK
2251 pci_disable_device(pdev);
2252}
2253
a6b623e0
AD
2254/**
2255 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2256 * @adapter: board private structure to initialize
2257 *
2258 * This function initializes the vf specific data storage and then attempts to
2259 * allocate the VFs. The reason for ordering it this way is because it is much
2260 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2261 * the memory for the VFs.
2262 **/
2263static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2264{
2265#ifdef CONFIG_PCI_IOV
2266 struct pci_dev *pdev = adapter->pdev;
2267
a6b623e0
AD
2268 if (adapter->vfs_allocated_count) {
2269 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2270 sizeof(struct vf_data_storage),
2271 GFP_KERNEL);
2272 /* if allocation failed then we do not support SR-IOV */
2273 if (!adapter->vf_data) {
2274 adapter->vfs_allocated_count = 0;
2275 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2276 "Data Storage\n");
2277 }
2278 }
2279
2280 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2281 kfree(adapter->vf_data);
2282 adapter->vf_data = NULL;
2283#endif /* CONFIG_PCI_IOV */
2284 adapter->vfs_allocated_count = 0;
2285#ifdef CONFIG_PCI_IOV
2286 } else {
2287 unsigned char mac_addr[ETH_ALEN];
2288 int i;
2289 dev_info(&pdev->dev, "%d vfs allocated\n",
2290 adapter->vfs_allocated_count);
2291 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2292 random_ether_addr(mac_addr);
2293 igb_set_vf_mac(adapter, i, mac_addr);
2294 }
831ec0b4
CW
2295 /* DMA Coalescing is not supported in IOV mode. */
2296 if (adapter->flags & IGB_FLAG_DMAC)
2297 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2298 }
2299#endif /* CONFIG_PCI_IOV */
2300}
2301
115f459a
AD
2302
2303/**
2304 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2305 * @adapter: board private structure to initialize
2306 *
2307 * igb_init_hw_timer initializes the function pointer and values for the hw
2308 * timer found in hardware.
2309 **/
2310static void igb_init_hw_timer(struct igb_adapter *adapter)
2311{
2312 struct e1000_hw *hw = &adapter->hw;
2313
2314 switch (hw->mac.type) {
d2ba2ed8 2315 case e1000_i350:
55cac248
AD
2316 case e1000_82580:
2317 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2318 adapter->cycles.read = igb_read_clock;
2319 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2320 adapter->cycles.mult = 1;
2321 /*
2322 * The 82580 timesync updates the system timer every 8ns by 8ns
2323 * and the value cannot be shifted. Instead we need to shift
2324 * the registers to generate a 64bit timer value. As a result
2325 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2326 * 24 in order to generate a larger value for synchronization.
2327 */
2328 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2329 /* disable system timer temporarily by setting bit 31 */
2330 wr32(E1000_TSAUXC, 0x80000000);
2331 wrfl();
2332
2333 /* Set registers so that rollover occurs soon to test this. */
2334 wr32(E1000_SYSTIMR, 0x00000000);
2335 wr32(E1000_SYSTIML, 0x80000000);
2336 wr32(E1000_SYSTIMH, 0x000000FF);
2337 wrfl();
2338
2339 /* enable system timer by clearing bit 31 */
2340 wr32(E1000_TSAUXC, 0x0);
2341 wrfl();
2342
2343 timecounter_init(&adapter->clock,
2344 &adapter->cycles,
2345 ktime_to_ns(ktime_get_real()));
2346 /*
2347 * Synchronize our NIC clock against system wall clock. NIC
2348 * time stamp reading requires ~3us per sample, each sample
2349 * was pretty stable even under load => only require 10
2350 * samples for each offset comparison.
2351 */
2352 memset(&adapter->compare, 0, sizeof(adapter->compare));
2353 adapter->compare.source = &adapter->clock;
2354 adapter->compare.target = ktime_get_real;
2355 adapter->compare.num_samples = 10;
2356 timecompare_update(&adapter->compare, 0);
2357 break;
115f459a
AD
2358 case e1000_82576:
2359 /*
2360 * Initialize hardware timer: we keep it running just in case
2361 * that some program needs it later on.
2362 */
2363 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2364 adapter->cycles.read = igb_read_clock;
2365 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2366 adapter->cycles.mult = 1;
2367 /**
2368 * Scale the NIC clock cycle by a large factor so that
2369 * relatively small clock corrections can be added or
25985edc 2370 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2371 * factor are a) that the clock register overflows more quickly
2372 * (not such a big deal) and b) that the increment per tick has
2373 * to fit into 24 bits. As a result we need to use a shift of
2374 * 19 so we can fit a value of 16 into the TIMINCA register.
2375 */
2376 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2377 wr32(E1000_TIMINCA,
2378 (1 << E1000_TIMINCA_16NS_SHIFT) |
2379 (16 << IGB_82576_TSYNC_SHIFT));
2380
2381 /* Set registers so that rollover occurs soon to test this. */
2382 wr32(E1000_SYSTIML, 0x00000000);
2383 wr32(E1000_SYSTIMH, 0xFF800000);
2384 wrfl();
2385
2386 timecounter_init(&adapter->clock,
2387 &adapter->cycles,
2388 ktime_to_ns(ktime_get_real()));
2389 /*
2390 * Synchronize our NIC clock against system wall clock. NIC
2391 * time stamp reading requires ~3us per sample, each sample
2392 * was pretty stable even under load => only require 10
2393 * samples for each offset comparison.
2394 */
2395 memset(&adapter->compare, 0, sizeof(adapter->compare));
2396 adapter->compare.source = &adapter->clock;
2397 adapter->compare.target = ktime_get_real;
2398 adapter->compare.num_samples = 10;
2399 timecompare_update(&adapter->compare, 0);
2400 break;
2401 case e1000_82575:
2402 /* 82575 does not support timesync */
2403 default:
2404 break;
2405 }
2406
2407}
2408
9d5c8243
AK
2409/**
2410 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2411 * @adapter: board private structure to initialize
2412 *
2413 * igb_sw_init initializes the Adapter private data structure.
2414 * Fields are initialized based on PCI device information and
2415 * OS network device settings (MTU size).
2416 **/
2417static int __devinit igb_sw_init(struct igb_adapter *adapter)
2418{
2419 struct e1000_hw *hw = &adapter->hw;
2420 struct net_device *netdev = adapter->netdev;
2421 struct pci_dev *pdev = adapter->pdev;
2422
2423 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2424
13fde97a 2425 /* set default ring sizes */
68fd9910
AD
2426 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2427 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2428
2429 /* set default ITR values */
4fc82adf
AD
2430 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2431 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2432
13fde97a
AD
2433 /* set default work limits */
2434 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2435
153285f9
AD
2436 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2437 VLAN_HLEN;
9d5c8243
AK
2438 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2439
81c2fc22
AD
2440 adapter->node = -1;
2441
12dcd86b 2442 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2443#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2444 switch (hw->mac.type) {
2445 case e1000_82576:
2446 case e1000_i350:
9b082d73
SA
2447 if (max_vfs > 7) {
2448 dev_warn(&pdev->dev,
2449 "Maximum of 7 VFs per PF, using max\n");
2450 adapter->vfs_allocated_count = 7;
2451 } else
2452 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2453 break;
2454 default:
2455 break;
2456 }
a6b623e0 2457#endif /* CONFIG_PCI_IOV */
a99955fc 2458 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2459 /* i350 cannot do RSS and SR-IOV at the same time */
2460 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2461 adapter->rss_queues = 1;
a99955fc
AD
2462
2463 /*
2464 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2465 * then we should combine the queues into a queue pair in order to
2466 * conserve interrupts due to limited supply
2467 */
2468 if ((adapter->rss_queues > 4) ||
2469 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2470 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2471
a6b623e0 2472 /* This call may decrease the number of queues */
047e0030 2473 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2474 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2475 return -ENOMEM;
2476 }
2477
a6b623e0
AD
2478 igb_probe_vfs(adapter);
2479
9d5c8243
AK
2480 /* Explicitly disable IRQ since the NIC can be in any state. */
2481 igb_irq_disable(adapter);
2482
831ec0b4
CW
2483 if (hw->mac.type == e1000_i350)
2484 adapter->flags &= ~IGB_FLAG_DMAC;
2485
9d5c8243
AK
2486 set_bit(__IGB_DOWN, &adapter->state);
2487 return 0;
2488}
2489
2490/**
2491 * igb_open - Called when a network interface is made active
2492 * @netdev: network interface device structure
2493 *
2494 * Returns 0 on success, negative value on failure
2495 *
2496 * The open entry point is called when a network interface is made
2497 * active by the system (IFF_UP). At this point all resources needed
2498 * for transmit and receive operations are allocated, the interrupt
2499 * handler is registered with the OS, the watchdog timer is started,
2500 * and the stack is notified that the interface is ready.
2501 **/
2502static int igb_open(struct net_device *netdev)
2503{
2504 struct igb_adapter *adapter = netdev_priv(netdev);
2505 struct e1000_hw *hw = &adapter->hw;
2506 int err;
2507 int i;
2508
2509 /* disallow open during test */
2510 if (test_bit(__IGB_TESTING, &adapter->state))
2511 return -EBUSY;
2512
b168dfc5
JB
2513 netif_carrier_off(netdev);
2514
9d5c8243
AK
2515 /* allocate transmit descriptors */
2516 err = igb_setup_all_tx_resources(adapter);
2517 if (err)
2518 goto err_setup_tx;
2519
2520 /* allocate receive descriptors */
2521 err = igb_setup_all_rx_resources(adapter);
2522 if (err)
2523 goto err_setup_rx;
2524
88a268c1 2525 igb_power_up_link(adapter);
9d5c8243 2526
9d5c8243
AK
2527 /* before we allocate an interrupt, we must be ready to handle it.
2528 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2529 * as soon as we call pci_request_irq, so we have to setup our
2530 * clean_rx handler before we do so. */
2531 igb_configure(adapter);
2532
2533 err = igb_request_irq(adapter);
2534 if (err)
2535 goto err_req_irq;
2536
2537 /* From here on the code is the same as igb_up() */
2538 clear_bit(__IGB_DOWN, &adapter->state);
2539
047e0030
AD
2540 for (i = 0; i < adapter->num_q_vectors; i++) {
2541 struct igb_q_vector *q_vector = adapter->q_vector[i];
2542 napi_enable(&q_vector->napi);
2543 }
9d5c8243
AK
2544
2545 /* Clear any pending interrupts. */
2546 rd32(E1000_ICR);
844290e5
PW
2547
2548 igb_irq_enable(adapter);
2549
d4960307
AD
2550 /* notify VFs that reset has been completed */
2551 if (adapter->vfs_allocated_count) {
2552 u32 reg_data = rd32(E1000_CTRL_EXT);
2553 reg_data |= E1000_CTRL_EXT_PFRSTD;
2554 wr32(E1000_CTRL_EXT, reg_data);
2555 }
2556
d55b53ff
JK
2557 netif_tx_start_all_queues(netdev);
2558
25568a53
AD
2559 /* start the watchdog. */
2560 hw->mac.get_link_status = 1;
2561 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2562
2563 return 0;
2564
2565err_req_irq:
2566 igb_release_hw_control(adapter);
88a268c1 2567 igb_power_down_link(adapter);
9d5c8243
AK
2568 igb_free_all_rx_resources(adapter);
2569err_setup_rx:
2570 igb_free_all_tx_resources(adapter);
2571err_setup_tx:
2572 igb_reset(adapter);
2573
2574 return err;
2575}
2576
2577/**
2578 * igb_close - Disables a network interface
2579 * @netdev: network interface device structure
2580 *
2581 * Returns 0, this is not allowed to fail
2582 *
2583 * The close entry point is called when an interface is de-activated
2584 * by the OS. The hardware is still under the driver's control, but
2585 * needs to be disabled. A global MAC reset is issued to stop the
2586 * hardware, and all transmit and receive resources are freed.
2587 **/
2588static int igb_close(struct net_device *netdev)
2589{
2590 struct igb_adapter *adapter = netdev_priv(netdev);
2591
2592 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2593 igb_down(adapter);
2594
2595 igb_free_irq(adapter);
2596
2597 igb_free_all_tx_resources(adapter);
2598 igb_free_all_rx_resources(adapter);
2599
9d5c8243
AK
2600 return 0;
2601}
2602
2603/**
2604 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2605 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2606 *
2607 * Return 0 on success, negative on failure
2608 **/
80785298 2609int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2610{
59d71989 2611 struct device *dev = tx_ring->dev;
81c2fc22 2612 int orig_node = dev_to_node(dev);
9d5c8243
AK
2613 int size;
2614
06034649 2615 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
81c2fc22
AD
2616 tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2617 if (!tx_ring->tx_buffer_info)
2618 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2619 if (!tx_ring->tx_buffer_info)
9d5c8243 2620 goto err;
9d5c8243
AK
2621
2622 /* round up to nearest 4K */
85e8d004 2623 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2624 tx_ring->size = ALIGN(tx_ring->size, 4096);
2625
81c2fc22 2626 set_dev_node(dev, tx_ring->numa_node);
59d71989
AD
2627 tx_ring->desc = dma_alloc_coherent(dev,
2628 tx_ring->size,
2629 &tx_ring->dma,
2630 GFP_KERNEL);
81c2fc22
AD
2631 set_dev_node(dev, orig_node);
2632 if (!tx_ring->desc)
2633 tx_ring->desc = dma_alloc_coherent(dev,
2634 tx_ring->size,
2635 &tx_ring->dma,
2636 GFP_KERNEL);
9d5c8243
AK
2637
2638 if (!tx_ring->desc)
2639 goto err;
2640
9d5c8243
AK
2641 tx_ring->next_to_use = 0;
2642 tx_ring->next_to_clean = 0;
81c2fc22 2643
9d5c8243
AK
2644 return 0;
2645
2646err:
06034649 2647 vfree(tx_ring->tx_buffer_info);
59d71989 2648 dev_err(dev,
9d5c8243
AK
2649 "Unable to allocate memory for the transmit descriptor ring\n");
2650 return -ENOMEM;
2651}
2652
2653/**
2654 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2655 * (Descriptors) for all queues
2656 * @adapter: board private structure
2657 *
2658 * Return 0 on success, negative on failure
2659 **/
2660static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2661{
439705e1 2662 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2663 int i, err = 0;
2664
2665 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2666 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2667 if (err) {
439705e1 2668 dev_err(&pdev->dev,
9d5c8243
AK
2669 "Allocation for Tx Queue %u failed\n", i);
2670 for (i--; i >= 0; i--)
3025a446 2671 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2672 break;
2673 }
2674 }
2675
2676 return err;
2677}
2678
2679/**
85b430b4
AD
2680 * igb_setup_tctl - configure the transmit control registers
2681 * @adapter: Board private structure
9d5c8243 2682 **/
d7ee5b3a 2683void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2684{
9d5c8243
AK
2685 struct e1000_hw *hw = &adapter->hw;
2686 u32 tctl;
9d5c8243 2687
85b430b4
AD
2688 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2689 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2690
2691 /* Program the Transmit Control Register */
9d5c8243
AK
2692 tctl = rd32(E1000_TCTL);
2693 tctl &= ~E1000_TCTL_CT;
2694 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2695 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2696
2697 igb_config_collision_dist(hw);
2698
9d5c8243
AK
2699 /* Enable transmits */
2700 tctl |= E1000_TCTL_EN;
2701
2702 wr32(E1000_TCTL, tctl);
2703}
2704
85b430b4
AD
2705/**
2706 * igb_configure_tx_ring - Configure transmit ring after Reset
2707 * @adapter: board private structure
2708 * @ring: tx ring to configure
2709 *
2710 * Configure a transmit ring after a reset.
2711 **/
d7ee5b3a
AD
2712void igb_configure_tx_ring(struct igb_adapter *adapter,
2713 struct igb_ring *ring)
85b430b4
AD
2714{
2715 struct e1000_hw *hw = &adapter->hw;
a74420e0 2716 u32 txdctl = 0;
85b430b4
AD
2717 u64 tdba = ring->dma;
2718 int reg_idx = ring->reg_idx;
2719
2720 /* disable the queue */
a74420e0 2721 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2722 wrfl();
2723 mdelay(10);
2724
2725 wr32(E1000_TDLEN(reg_idx),
2726 ring->count * sizeof(union e1000_adv_tx_desc));
2727 wr32(E1000_TDBAL(reg_idx),
2728 tdba & 0x00000000ffffffffULL);
2729 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2730
fce99e34 2731 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2732 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2733 writel(0, ring->tail);
85b430b4
AD
2734
2735 txdctl |= IGB_TX_PTHRESH;
2736 txdctl |= IGB_TX_HTHRESH << 8;
2737 txdctl |= IGB_TX_WTHRESH << 16;
2738
2739 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2740 wr32(E1000_TXDCTL(reg_idx), txdctl);
2741}
2742
2743/**
2744 * igb_configure_tx - Configure transmit Unit after Reset
2745 * @adapter: board private structure
2746 *
2747 * Configure the Tx unit of the MAC after a reset.
2748 **/
2749static void igb_configure_tx(struct igb_adapter *adapter)
2750{
2751 int i;
2752
2753 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2754 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2755}
2756
9d5c8243
AK
2757/**
2758 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2759 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2760 *
2761 * Returns 0 on success, negative on failure
2762 **/
80785298 2763int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2764{
59d71989 2765 struct device *dev = rx_ring->dev;
81c2fc22 2766 int orig_node = dev_to_node(dev);
9d5c8243
AK
2767 int size, desc_len;
2768
06034649 2769 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
81c2fc22
AD
2770 rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2771 if (!rx_ring->rx_buffer_info)
2772 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2773 if (!rx_ring->rx_buffer_info)
9d5c8243 2774 goto err;
9d5c8243
AK
2775
2776 desc_len = sizeof(union e1000_adv_rx_desc);
2777
2778 /* Round up to nearest 4K */
2779 rx_ring->size = rx_ring->count * desc_len;
2780 rx_ring->size = ALIGN(rx_ring->size, 4096);
2781
81c2fc22 2782 set_dev_node(dev, rx_ring->numa_node);
59d71989
AD
2783 rx_ring->desc = dma_alloc_coherent(dev,
2784 rx_ring->size,
2785 &rx_ring->dma,
2786 GFP_KERNEL);
81c2fc22
AD
2787 set_dev_node(dev, orig_node);
2788 if (!rx_ring->desc)
2789 rx_ring->desc = dma_alloc_coherent(dev,
2790 rx_ring->size,
2791 &rx_ring->dma,
2792 GFP_KERNEL);
9d5c8243
AK
2793
2794 if (!rx_ring->desc)
2795 goto err;
2796
2797 rx_ring->next_to_clean = 0;
2798 rx_ring->next_to_use = 0;
9d5c8243 2799
9d5c8243
AK
2800 return 0;
2801
2802err:
06034649
AD
2803 vfree(rx_ring->rx_buffer_info);
2804 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2805 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2806 " ring\n");
9d5c8243
AK
2807 return -ENOMEM;
2808}
2809
2810/**
2811 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2812 * (Descriptors) for all queues
2813 * @adapter: board private structure
2814 *
2815 * Return 0 on success, negative on failure
2816 **/
2817static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2818{
439705e1 2819 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2820 int i, err = 0;
2821
2822 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2823 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2824 if (err) {
439705e1 2825 dev_err(&pdev->dev,
9d5c8243
AK
2826 "Allocation for Rx Queue %u failed\n", i);
2827 for (i--; i >= 0; i--)
3025a446 2828 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2829 break;
2830 }
2831 }
2832
2833 return err;
2834}
2835
06cf2666
AD
2836/**
2837 * igb_setup_mrqc - configure the multiple receive queue control registers
2838 * @adapter: Board private structure
2839 **/
2840static void igb_setup_mrqc(struct igb_adapter *adapter)
2841{
2842 struct e1000_hw *hw = &adapter->hw;
2843 u32 mrqc, rxcsum;
2844 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2845 union e1000_reta {
2846 u32 dword;
2847 u8 bytes[4];
2848 } reta;
2849 static const u8 rsshash[40] = {
2850 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2851 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2852 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2853 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2854
2855 /* Fill out hash function seeds */
2856 for (j = 0; j < 10; j++) {
2857 u32 rsskey = rsshash[(j * 4)];
2858 rsskey |= rsshash[(j * 4) + 1] << 8;
2859 rsskey |= rsshash[(j * 4) + 2] << 16;
2860 rsskey |= rsshash[(j * 4) + 3] << 24;
2861 array_wr32(E1000_RSSRK(0), j, rsskey);
2862 }
2863
a99955fc 2864 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2865
2866 if (adapter->vfs_allocated_count) {
2867 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2868 switch (hw->mac.type) {
d2ba2ed8 2869 case e1000_i350:
55cac248
AD
2870 case e1000_82580:
2871 num_rx_queues = 1;
2872 shift = 0;
2873 break;
06cf2666
AD
2874 case e1000_82576:
2875 shift = 3;
2876 num_rx_queues = 2;
2877 break;
2878 case e1000_82575:
2879 shift = 2;
2880 shift2 = 6;
2881 default:
2882 break;
2883 }
2884 } else {
2885 if (hw->mac.type == e1000_82575)
2886 shift = 6;
2887 }
2888
2889 for (j = 0; j < (32 * 4); j++) {
2890 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2891 if (shift2)
2892 reta.bytes[j & 3] |= num_rx_queues << shift2;
2893 if ((j & 3) == 3)
2894 wr32(E1000_RETA(j >> 2), reta.dword);
2895 }
2896
2897 /*
2898 * Disable raw packet checksumming so that RSS hash is placed in
2899 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2900 * offloads as they are enabled by default
2901 */
2902 rxcsum = rd32(E1000_RXCSUM);
2903 rxcsum |= E1000_RXCSUM_PCSD;
2904
2905 if (adapter->hw.mac.type >= e1000_82576)
2906 /* Enable Receive Checksum Offload for SCTP */
2907 rxcsum |= E1000_RXCSUM_CRCOFL;
2908
2909 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2910 wr32(E1000_RXCSUM, rxcsum);
2911
2912 /* If VMDq is enabled then we set the appropriate mode for that, else
2913 * we default to RSS so that an RSS hash is calculated per packet even
2914 * if we are only using one queue */
2915 if (adapter->vfs_allocated_count) {
2916 if (hw->mac.type > e1000_82575) {
2917 /* Set the default pool for the PF's first queue */
2918 u32 vtctl = rd32(E1000_VT_CTL);
2919 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2920 E1000_VT_CTL_DISABLE_DEF_POOL);
2921 vtctl |= adapter->vfs_allocated_count <<
2922 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2923 wr32(E1000_VT_CTL, vtctl);
2924 }
a99955fc 2925 if (adapter->rss_queues > 1)
06cf2666
AD
2926 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2927 else
2928 mrqc = E1000_MRQC_ENABLE_VMDQ;
2929 } else {
2930 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2931 }
2932 igb_vmm_control(adapter);
2933
4478a9cd
AD
2934 /*
2935 * Generate RSS hash based on TCP port numbers and/or
2936 * IPv4/v6 src and dst addresses since UDP cannot be
2937 * hashed reliably due to IP fragmentation
2938 */
2939 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2940 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2941 E1000_MRQC_RSS_FIELD_IPV6 |
2942 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2943 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2944
2945 wr32(E1000_MRQC, mrqc);
2946}
2947
9d5c8243
AK
2948/**
2949 * igb_setup_rctl - configure the receive control registers
2950 * @adapter: Board private structure
2951 **/
d7ee5b3a 2952void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2953{
2954 struct e1000_hw *hw = &adapter->hw;
2955 u32 rctl;
9d5c8243
AK
2956
2957 rctl = rd32(E1000_RCTL);
2958
2959 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2960 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2961
69d728ba 2962 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2963 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2964
87cb7e8c
AK
2965 /*
2966 * enable stripping of CRC. It's unlikely this will break BMC
2967 * redirection as it did with e1000. Newer features require
2968 * that the HW strips the CRC.
73cd78f1 2969 */
87cb7e8c 2970 rctl |= E1000_RCTL_SECRC;
9d5c8243 2971
559e9c49 2972 /* disable store bad packets and clear size bits. */
ec54d7d6 2973 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2974
6ec43fe6
AD
2975 /* enable LPE to prevent packets larger than max_frame_size */
2976 rctl |= E1000_RCTL_LPE;
9d5c8243 2977
952f72a8
AD
2978 /* disable queue 0 to prevent tail write w/o re-config */
2979 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2980
e1739522
AD
2981 /* Attention!!! For SR-IOV PF driver operations you must enable
2982 * queue drop for all VF and PF queues to prevent head of line blocking
2983 * if an un-trusted VF does not provide descriptors to hardware.
2984 */
2985 if (adapter->vfs_allocated_count) {
e1739522
AD
2986 /* set all queue drop enable bits */
2987 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2988 }
2989
9d5c8243
AK
2990 wr32(E1000_RCTL, rctl);
2991}
2992
7d5753f0
AD
2993static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2994 int vfn)
2995{
2996 struct e1000_hw *hw = &adapter->hw;
2997 u32 vmolr;
2998
2999 /* if it isn't the PF check to see if VFs are enabled and
3000 * increase the size to support vlan tags */
3001 if (vfn < adapter->vfs_allocated_count &&
3002 adapter->vf_data[vfn].vlans_enabled)
3003 size += VLAN_TAG_SIZE;
3004
3005 vmolr = rd32(E1000_VMOLR(vfn));
3006 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3007 vmolr |= size | E1000_VMOLR_LPE;
3008 wr32(E1000_VMOLR(vfn), vmolr);
3009
3010 return 0;
3011}
3012
e1739522
AD
3013/**
3014 * igb_rlpml_set - set maximum receive packet size
3015 * @adapter: board private structure
3016 *
3017 * Configure maximum receivable packet size.
3018 **/
3019static void igb_rlpml_set(struct igb_adapter *adapter)
3020{
153285f9 3021 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3022 struct e1000_hw *hw = &adapter->hw;
3023 u16 pf_id = adapter->vfs_allocated_count;
3024
e1739522
AD
3025 if (pf_id) {
3026 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3027 /*
3028 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3029 * to our max jumbo frame size, in case we need to enable
3030 * jumbo frames on one of the rings later.
3031 * This will not pass over-length frames into the default
3032 * queue because it's gated by the VMOLR.RLPML.
3033 */
7d5753f0 3034 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3035 }
3036
3037 wr32(E1000_RLPML, max_frame_size);
3038}
3039
8151d294
WM
3040static inline void igb_set_vmolr(struct igb_adapter *adapter,
3041 int vfn, bool aupe)
7d5753f0
AD
3042{
3043 struct e1000_hw *hw = &adapter->hw;
3044 u32 vmolr;
3045
3046 /*
3047 * This register exists only on 82576 and newer so if we are older then
3048 * we should exit and do nothing
3049 */
3050 if (hw->mac.type < e1000_82576)
3051 return;
3052
3053 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3054 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3055 if (aupe)
3056 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3057 else
3058 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3059
3060 /* clear all bits that might not be set */
3061 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3062
a99955fc 3063 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3064 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3065 /*
3066 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3067 * multicast packets
3068 */
3069 if (vfn <= adapter->vfs_allocated_count)
3070 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3071
3072 wr32(E1000_VMOLR(vfn), vmolr);
3073}
3074
85b430b4
AD
3075/**
3076 * igb_configure_rx_ring - Configure a receive ring after Reset
3077 * @adapter: board private structure
3078 * @ring: receive ring to be configured
3079 *
3080 * Configure the Rx unit of the MAC after a reset.
3081 **/
d7ee5b3a
AD
3082void igb_configure_rx_ring(struct igb_adapter *adapter,
3083 struct igb_ring *ring)
85b430b4
AD
3084{
3085 struct e1000_hw *hw = &adapter->hw;
3086 u64 rdba = ring->dma;
3087 int reg_idx = ring->reg_idx;
a74420e0 3088 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3089
3090 /* disable the queue */
a74420e0 3091 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3092
3093 /* Set DMA base address registers */
3094 wr32(E1000_RDBAL(reg_idx),
3095 rdba & 0x00000000ffffffffULL);
3096 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3097 wr32(E1000_RDLEN(reg_idx),
3098 ring->count * sizeof(union e1000_adv_rx_desc));
3099
3100 /* initialize head and tail */
fce99e34 3101 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3102 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3103 writel(0, ring->tail);
85b430b4 3104
952f72a8 3105 /* set descriptor configuration */
44390ca6 3106 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3107#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3108 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3109#else
44390ca6 3110 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3111#endif
44390ca6 3112 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
757b77e2
NN
3113 if (hw->mac.type == e1000_82580)
3114 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3115 /* Only set Drop Enable if we are supporting multiple queues */
3116 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3117 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3118
3119 wr32(E1000_SRRCTL(reg_idx), srrctl);
3120
7d5753f0 3121 /* set filtering for VMDQ pools */
8151d294 3122 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3123
85b430b4
AD
3124 rxdctl |= IGB_RX_PTHRESH;
3125 rxdctl |= IGB_RX_HTHRESH << 8;
3126 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3127
3128 /* enable receive descriptor fetching */
3129 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3130 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3131}
3132
9d5c8243
AK
3133/**
3134 * igb_configure_rx - Configure receive Unit after Reset
3135 * @adapter: board private structure
3136 *
3137 * Configure the Rx unit of the MAC after a reset.
3138 **/
3139static void igb_configure_rx(struct igb_adapter *adapter)
3140{
9107584e 3141 int i;
9d5c8243 3142
68d480c4
AD
3143 /* set UTA to appropriate mode */
3144 igb_set_uta(adapter);
3145
26ad9178
AD
3146 /* set the correct pool for the PF default MAC address in entry 0 */
3147 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3148 adapter->vfs_allocated_count);
3149
06cf2666
AD
3150 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3151 * the Base and Length of the Rx Descriptor Ring */
3152 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3153 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3154}
3155
3156/**
3157 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3158 * @tx_ring: Tx descriptor ring for a specific queue
3159 *
3160 * Free all transmit software resources
3161 **/
68fd9910 3162void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3163{
3b644cf6 3164 igb_clean_tx_ring(tx_ring);
9d5c8243 3165
06034649
AD
3166 vfree(tx_ring->tx_buffer_info);
3167 tx_ring->tx_buffer_info = NULL;
9d5c8243 3168
439705e1
AD
3169 /* if not set, then don't free */
3170 if (!tx_ring->desc)
3171 return;
3172
59d71989
AD
3173 dma_free_coherent(tx_ring->dev, tx_ring->size,
3174 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3175
3176 tx_ring->desc = NULL;
3177}
3178
3179/**
3180 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3181 * @adapter: board private structure
3182 *
3183 * Free all transmit software resources
3184 **/
3185static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3186{
3187 int i;
3188
3189 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3190 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3191}
3192
ebe42d16
AD
3193void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3194 struct igb_tx_buffer *tx_buffer)
3195{
3196 if (tx_buffer->skb) {
3197 dev_kfree_skb_any(tx_buffer->skb);
3198 if (tx_buffer->dma)
3199 dma_unmap_single(ring->dev,
3200 tx_buffer->dma,
3201 tx_buffer->length,
3202 DMA_TO_DEVICE);
3203 } else if (tx_buffer->dma) {
3204 dma_unmap_page(ring->dev,
3205 tx_buffer->dma,
3206 tx_buffer->length,
3207 DMA_TO_DEVICE);
3208 }
3209 tx_buffer->next_to_watch = NULL;
3210 tx_buffer->skb = NULL;
3211 tx_buffer->dma = 0;
3212 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3213}
3214
3215/**
3216 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3217 * @tx_ring: ring to be cleaned
3218 **/
3b644cf6 3219static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3220{
06034649 3221 struct igb_tx_buffer *buffer_info;
9d5c8243 3222 unsigned long size;
6ad4edfc 3223 u16 i;
9d5c8243 3224
06034649 3225 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3226 return;
3227 /* Free all the Tx ring sk_buffs */
3228
3229 for (i = 0; i < tx_ring->count; i++) {
06034649 3230 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3231 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3232 }
3233
06034649
AD
3234 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3235 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3236
3237 /* Zero out the descriptor ring */
9d5c8243
AK
3238 memset(tx_ring->desc, 0, tx_ring->size);
3239
3240 tx_ring->next_to_use = 0;
3241 tx_ring->next_to_clean = 0;
9d5c8243
AK
3242}
3243
3244/**
3245 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3246 * @adapter: board private structure
3247 **/
3248static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3249{
3250 int i;
3251
3252 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3253 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3254}
3255
3256/**
3257 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3258 * @rx_ring: ring to clean the resources from
3259 *
3260 * Free all receive software resources
3261 **/
68fd9910 3262void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3263{
3b644cf6 3264 igb_clean_rx_ring(rx_ring);
9d5c8243 3265
06034649
AD
3266 vfree(rx_ring->rx_buffer_info);
3267 rx_ring->rx_buffer_info = NULL;
9d5c8243 3268
439705e1
AD
3269 /* if not set, then don't free */
3270 if (!rx_ring->desc)
3271 return;
3272
59d71989
AD
3273 dma_free_coherent(rx_ring->dev, rx_ring->size,
3274 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3275
3276 rx_ring->desc = NULL;
3277}
3278
3279/**
3280 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3281 * @adapter: board private structure
3282 *
3283 * Free all receive software resources
3284 **/
3285static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3286{
3287 int i;
3288
3289 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3290 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3291}
3292
3293/**
3294 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3295 * @rx_ring: ring to free buffers from
3296 **/
3b644cf6 3297static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3298{
9d5c8243 3299 unsigned long size;
c023cd88 3300 u16 i;
9d5c8243 3301
06034649 3302 if (!rx_ring->rx_buffer_info)
9d5c8243 3303 return;
439705e1 3304
9d5c8243
AK
3305 /* Free all the Rx ring sk_buffs */
3306 for (i = 0; i < rx_ring->count; i++) {
06034649 3307 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3308 if (buffer_info->dma) {
59d71989 3309 dma_unmap_single(rx_ring->dev,
80785298 3310 buffer_info->dma,
44390ca6 3311 IGB_RX_HDR_LEN,
59d71989 3312 DMA_FROM_DEVICE);
9d5c8243
AK
3313 buffer_info->dma = 0;
3314 }
3315
3316 if (buffer_info->skb) {
3317 dev_kfree_skb(buffer_info->skb);
3318 buffer_info->skb = NULL;
3319 }
6ec43fe6 3320 if (buffer_info->page_dma) {
59d71989 3321 dma_unmap_page(rx_ring->dev,
80785298 3322 buffer_info->page_dma,
6ec43fe6 3323 PAGE_SIZE / 2,
59d71989 3324 DMA_FROM_DEVICE);
6ec43fe6
AD
3325 buffer_info->page_dma = 0;
3326 }
9d5c8243 3327 if (buffer_info->page) {
9d5c8243
AK
3328 put_page(buffer_info->page);
3329 buffer_info->page = NULL;
bf36c1a0 3330 buffer_info->page_offset = 0;
9d5c8243
AK
3331 }
3332 }
3333
06034649
AD
3334 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3335 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3336
3337 /* Zero out the descriptor ring */
3338 memset(rx_ring->desc, 0, rx_ring->size);
3339
3340 rx_ring->next_to_clean = 0;
3341 rx_ring->next_to_use = 0;
9d5c8243
AK
3342}
3343
3344/**
3345 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3346 * @adapter: board private structure
3347 **/
3348static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3349{
3350 int i;
3351
3352 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3353 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3354}
3355
3356/**
3357 * igb_set_mac - Change the Ethernet Address of the NIC
3358 * @netdev: network interface device structure
3359 * @p: pointer to an address structure
3360 *
3361 * Returns 0 on success, negative on failure
3362 **/
3363static int igb_set_mac(struct net_device *netdev, void *p)
3364{
3365 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3366 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3367 struct sockaddr *addr = p;
3368
3369 if (!is_valid_ether_addr(addr->sa_data))
3370 return -EADDRNOTAVAIL;
3371
3372 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3373 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3374
26ad9178
AD
3375 /* set the correct pool for the new PF MAC address in entry 0 */
3376 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3377 adapter->vfs_allocated_count);
e1739522 3378
9d5c8243
AK
3379 return 0;
3380}
3381
3382/**
68d480c4 3383 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3384 * @netdev: network interface device structure
3385 *
68d480c4
AD
3386 * Writes multicast address list to the MTA hash table.
3387 * Returns: -ENOMEM on failure
3388 * 0 on no addresses written
3389 * X on writing X addresses to MTA
9d5c8243 3390 **/
68d480c4 3391static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3392{
3393 struct igb_adapter *adapter = netdev_priv(netdev);
3394 struct e1000_hw *hw = &adapter->hw;
22bedad3 3395 struct netdev_hw_addr *ha;
68d480c4 3396 u8 *mta_list;
9d5c8243
AK
3397 int i;
3398
4cd24eaf 3399 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3400 /* nothing to program, so clear mc list */
3401 igb_update_mc_addr_list(hw, NULL, 0);
3402 igb_restore_vf_multicasts(adapter);
3403 return 0;
3404 }
9d5c8243 3405
4cd24eaf 3406 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3407 if (!mta_list)
3408 return -ENOMEM;
ff41f8dc 3409
68d480c4 3410 /* The shared function expects a packed array of only addresses. */
48e2f183 3411 i = 0;
22bedad3
JP
3412 netdev_for_each_mc_addr(ha, netdev)
3413 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3414
68d480c4
AD
3415 igb_update_mc_addr_list(hw, mta_list, i);
3416 kfree(mta_list);
3417
4cd24eaf 3418 return netdev_mc_count(netdev);
68d480c4
AD
3419}
3420
3421/**
3422 * igb_write_uc_addr_list - write unicast addresses to RAR table
3423 * @netdev: network interface device structure
3424 *
3425 * Writes unicast address list to the RAR table.
3426 * Returns: -ENOMEM on failure/insufficient address space
3427 * 0 on no addresses written
3428 * X on writing X addresses to the RAR table
3429 **/
3430static int igb_write_uc_addr_list(struct net_device *netdev)
3431{
3432 struct igb_adapter *adapter = netdev_priv(netdev);
3433 struct e1000_hw *hw = &adapter->hw;
3434 unsigned int vfn = adapter->vfs_allocated_count;
3435 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3436 int count = 0;
3437
3438 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3439 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3440 return -ENOMEM;
9d5c8243 3441
32e7bfc4 3442 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3443 struct netdev_hw_addr *ha;
32e7bfc4
JP
3444
3445 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3446 if (!rar_entries)
3447 break;
26ad9178
AD
3448 igb_rar_set_qsel(adapter, ha->addr,
3449 rar_entries--,
68d480c4
AD
3450 vfn);
3451 count++;
ff41f8dc
AD
3452 }
3453 }
3454 /* write the addresses in reverse order to avoid write combining */
3455 for (; rar_entries > 0 ; rar_entries--) {
3456 wr32(E1000_RAH(rar_entries), 0);
3457 wr32(E1000_RAL(rar_entries), 0);
3458 }
3459 wrfl();
3460
68d480c4
AD
3461 return count;
3462}
3463
3464/**
3465 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3466 * @netdev: network interface device structure
3467 *
3468 * The set_rx_mode entry point is called whenever the unicast or multicast
3469 * address lists or the network interface flags are updated. This routine is
3470 * responsible for configuring the hardware for proper unicast, multicast,
3471 * promiscuous mode, and all-multi behavior.
3472 **/
3473static void igb_set_rx_mode(struct net_device *netdev)
3474{
3475 struct igb_adapter *adapter = netdev_priv(netdev);
3476 struct e1000_hw *hw = &adapter->hw;
3477 unsigned int vfn = adapter->vfs_allocated_count;
3478 u32 rctl, vmolr = 0;
3479 int count;
3480
3481 /* Check for Promiscuous and All Multicast modes */
3482 rctl = rd32(E1000_RCTL);
3483
3484 /* clear the effected bits */
3485 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3486
3487 if (netdev->flags & IFF_PROMISC) {
3488 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3489 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3490 } else {
3491 if (netdev->flags & IFF_ALLMULTI) {
3492 rctl |= E1000_RCTL_MPE;
3493 vmolr |= E1000_VMOLR_MPME;
3494 } else {
3495 /*
3496 * Write addresses to the MTA, if the attempt fails
25985edc 3497 * then we should just turn on promiscuous mode so
68d480c4
AD
3498 * that we can at least receive multicast traffic
3499 */
3500 count = igb_write_mc_addr_list(netdev);
3501 if (count < 0) {
3502 rctl |= E1000_RCTL_MPE;
3503 vmolr |= E1000_VMOLR_MPME;
3504 } else if (count) {
3505 vmolr |= E1000_VMOLR_ROMPE;
3506 }
3507 }
3508 /*
3509 * Write addresses to available RAR registers, if there is not
3510 * sufficient space to store all the addresses then enable
25985edc 3511 * unicast promiscuous mode
68d480c4
AD
3512 */
3513 count = igb_write_uc_addr_list(netdev);
3514 if (count < 0) {
3515 rctl |= E1000_RCTL_UPE;
3516 vmolr |= E1000_VMOLR_ROPE;
3517 }
3518 rctl |= E1000_RCTL_VFE;
28fc06f5 3519 }
68d480c4 3520 wr32(E1000_RCTL, rctl);
28fc06f5 3521
68d480c4
AD
3522 /*
3523 * In order to support SR-IOV and eventually VMDq it is necessary to set
3524 * the VMOLR to enable the appropriate modes. Without this workaround
3525 * we will have issues with VLAN tag stripping not being done for frames
3526 * that are only arriving because we are the default pool
3527 */
3528 if (hw->mac.type < e1000_82576)
28fc06f5 3529 return;
9d5c8243 3530
68d480c4
AD
3531 vmolr |= rd32(E1000_VMOLR(vfn)) &
3532 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3533 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3534 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3535}
3536
13800469
GR
3537static void igb_check_wvbr(struct igb_adapter *adapter)
3538{
3539 struct e1000_hw *hw = &adapter->hw;
3540 u32 wvbr = 0;
3541
3542 switch (hw->mac.type) {
3543 case e1000_82576:
3544 case e1000_i350:
3545 if (!(wvbr = rd32(E1000_WVBR)))
3546 return;
3547 break;
3548 default:
3549 break;
3550 }
3551
3552 adapter->wvbr |= wvbr;
3553}
3554
3555#define IGB_STAGGERED_QUEUE_OFFSET 8
3556
3557static void igb_spoof_check(struct igb_adapter *adapter)
3558{
3559 int j;
3560
3561 if (!adapter->wvbr)
3562 return;
3563
3564 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3565 if (adapter->wvbr & (1 << j) ||
3566 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3567 dev_warn(&adapter->pdev->dev,
3568 "Spoof event(s) detected on VF %d\n", j);
3569 adapter->wvbr &=
3570 ~((1 << j) |
3571 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3572 }
3573 }
3574}
3575
9d5c8243
AK
3576/* Need to wait a few seconds after link up to get diagnostic information from
3577 * the phy */
3578static void igb_update_phy_info(unsigned long data)
3579{
3580 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3581 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3582}
3583
4d6b725e
AD
3584/**
3585 * igb_has_link - check shared code for link and determine up/down
3586 * @adapter: pointer to driver private info
3587 **/
3145535a 3588bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3589{
3590 struct e1000_hw *hw = &adapter->hw;
3591 bool link_active = false;
3592 s32 ret_val = 0;
3593
3594 /* get_link_status is set on LSC (link status) interrupt or
3595 * rx sequence error interrupt. get_link_status will stay
3596 * false until the e1000_check_for_link establishes link
3597 * for copper adapters ONLY
3598 */
3599 switch (hw->phy.media_type) {
3600 case e1000_media_type_copper:
3601 if (hw->mac.get_link_status) {
3602 ret_val = hw->mac.ops.check_for_link(hw);
3603 link_active = !hw->mac.get_link_status;
3604 } else {
3605 link_active = true;
3606 }
3607 break;
4d6b725e
AD
3608 case e1000_media_type_internal_serdes:
3609 ret_val = hw->mac.ops.check_for_link(hw);
3610 link_active = hw->mac.serdes_has_link;
3611 break;
3612 default:
3613 case e1000_media_type_unknown:
3614 break;
3615 }
3616
3617 return link_active;
3618}
3619
563988dc
SA
3620static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3621{
3622 bool ret = false;
3623 u32 ctrl_ext, thstat;
3624
3625 /* check for thermal sensor event on i350, copper only */
3626 if (hw->mac.type == e1000_i350) {
3627 thstat = rd32(E1000_THSTAT);
3628 ctrl_ext = rd32(E1000_CTRL_EXT);
3629
3630 if ((hw->phy.media_type == e1000_media_type_copper) &&
3631 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3632 ret = !!(thstat & event);
3633 }
3634 }
3635
3636 return ret;
3637}
3638
9d5c8243
AK
3639/**
3640 * igb_watchdog - Timer Call-back
3641 * @data: pointer to adapter cast into an unsigned long
3642 **/
3643static void igb_watchdog(unsigned long data)
3644{
3645 struct igb_adapter *adapter = (struct igb_adapter *)data;
3646 /* Do the rest outside of interrupt context */
3647 schedule_work(&adapter->watchdog_task);
3648}
3649
3650static void igb_watchdog_task(struct work_struct *work)
3651{
3652 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3653 struct igb_adapter,
3654 watchdog_task);
9d5c8243 3655 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3656 struct net_device *netdev = adapter->netdev;
563988dc 3657 u32 link;
7a6ea550 3658 int i;
9d5c8243 3659
4d6b725e 3660 link = igb_has_link(adapter);
9d5c8243
AK
3661 if (link) {
3662 if (!netif_carrier_ok(netdev)) {
3663 u32 ctrl;
330a6d6a
AD
3664 hw->mac.ops.get_speed_and_duplex(hw,
3665 &adapter->link_speed,
3666 &adapter->link_duplex);
9d5c8243
AK
3667
3668 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3669 /* Links status message must follow this format */
3670 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3671 "Flow Control: %s\n",
559e9c49
AD
3672 netdev->name,
3673 adapter->link_speed,
3674 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3675 "Full Duplex" : "Half Duplex",
559e9c49
AD
3676 ((ctrl & E1000_CTRL_TFCE) &&
3677 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3678 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3679 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3680
563988dc
SA
3681 /* check for thermal sensor event */
3682 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3683 printk(KERN_INFO "igb: %s The network adapter "
3684 "link speed was downshifted "
3685 "because it overheated.\n",
3686 netdev->name);
7ef5ed1c 3687 }
563988dc 3688
d07f3e37 3689 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3690 adapter->tx_timeout_factor = 1;
3691 switch (adapter->link_speed) {
3692 case SPEED_10:
9d5c8243
AK
3693 adapter->tx_timeout_factor = 14;
3694 break;
3695 case SPEED_100:
9d5c8243
AK
3696 /* maybe add some timeout factor ? */
3697 break;
3698 }
3699
3700 netif_carrier_on(netdev);
9d5c8243 3701
4ae196df 3702 igb_ping_all_vfs(adapter);
17dc566c 3703 igb_check_vf_rate_limit(adapter);
4ae196df 3704
4b1a9877 3705 /* link state has changed, schedule phy info update */
9d5c8243
AK
3706 if (!test_bit(__IGB_DOWN, &adapter->state))
3707 mod_timer(&adapter->phy_info_timer,
3708 round_jiffies(jiffies + 2 * HZ));
3709 }
3710 } else {
3711 if (netif_carrier_ok(netdev)) {
3712 adapter->link_speed = 0;
3713 adapter->link_duplex = 0;
563988dc
SA
3714
3715 /* check for thermal sensor event */
3716 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3717 printk(KERN_ERR "igb: %s The network adapter "
3718 "was stopped because it "
3719 "overheated.\n",
7ef5ed1c 3720 netdev->name);
7ef5ed1c 3721 }
563988dc 3722
527d47c1
AD
3723 /* Links status message must follow this format */
3724 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3725 netdev->name);
9d5c8243 3726 netif_carrier_off(netdev);
4b1a9877 3727
4ae196df
AD
3728 igb_ping_all_vfs(adapter);
3729
4b1a9877 3730 /* link state has changed, schedule phy info update */
9d5c8243
AK
3731 if (!test_bit(__IGB_DOWN, &adapter->state))
3732 mod_timer(&adapter->phy_info_timer,
3733 round_jiffies(jiffies + 2 * HZ));
3734 }
3735 }
3736
12dcd86b
ED
3737 spin_lock(&adapter->stats64_lock);
3738 igb_update_stats(adapter, &adapter->stats64);
3739 spin_unlock(&adapter->stats64_lock);
9d5c8243 3740
dbabb065 3741 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3742 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3743 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3744 /* We've lost link, so the controller stops DMA,
3745 * but we've got queued Tx work that's never going
3746 * to get done, so reset controller to flush Tx.
3747 * (Do the reset outside of interrupt context). */
dbabb065
AD
3748 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3749 adapter->tx_timeout_count++;
3750 schedule_work(&adapter->reset_task);
3751 /* return immediately since reset is imminent */
3752 return;
3753 }
9d5c8243 3754 }
9d5c8243 3755
dbabb065
AD
3756 /* Force detection of hung controller every watchdog period */
3757 tx_ring->detect_tx_hung = true;
3758 }
f7ba205e 3759
9d5c8243 3760 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3761 if (adapter->msix_entries) {
047e0030
AD
3762 u32 eics = 0;
3763 for (i = 0; i < adapter->num_q_vectors; i++) {
3764 struct igb_q_vector *q_vector = adapter->q_vector[i];
3765 eics |= q_vector->eims_value;
3766 }
7a6ea550
AD
3767 wr32(E1000_EICS, eics);
3768 } else {
3769 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3770 }
9d5c8243 3771
13800469
GR
3772 igb_spoof_check(adapter);
3773
9d5c8243
AK
3774 /* Reset the timer */
3775 if (!test_bit(__IGB_DOWN, &adapter->state))
3776 mod_timer(&adapter->watchdog_timer,
3777 round_jiffies(jiffies + 2 * HZ));
3778}
3779
3780enum latency_range {
3781 lowest_latency = 0,
3782 low_latency = 1,
3783 bulk_latency = 2,
3784 latency_invalid = 255
3785};
3786
6eb5a7f1
AD
3787/**
3788 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3789 *
3790 * Stores a new ITR value based on strictly on packet size. This
3791 * algorithm is less sophisticated than that used in igb_update_itr,
3792 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3793 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3794 * were determined based on theoretical maximum wire speed and testing
3795 * data, in order to minimize response time while increasing bulk
3796 * throughput.
3797 * This functionality is controlled by the InterruptThrottleRate module
3798 * parameter (see igb_param.c)
3799 * NOTE: This function is called only when operating in a multiqueue
3800 * receive environment.
047e0030 3801 * @q_vector: pointer to q_vector
6eb5a7f1 3802 **/
047e0030 3803static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3804{
047e0030 3805 int new_val = q_vector->itr_val;
6eb5a7f1 3806 int avg_wire_size = 0;
047e0030 3807 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3808 unsigned int packets;
9d5c8243 3809
6eb5a7f1
AD
3810 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3811 * ints/sec - ITR timer value of 120 ticks.
3812 */
3813 if (adapter->link_speed != SPEED_1000) {
0ba82994 3814 new_val = IGB_4K_ITR;
6eb5a7f1 3815 goto set_itr_val;
9d5c8243 3816 }
047e0030 3817
0ba82994
AD
3818 packets = q_vector->rx.total_packets;
3819 if (packets)
3820 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3821
0ba82994
AD
3822 packets = q_vector->tx.total_packets;
3823 if (packets)
3824 avg_wire_size = max_t(u32, avg_wire_size,
3825 q_vector->tx.total_bytes / packets);
047e0030
AD
3826
3827 /* if avg_wire_size isn't set no work was done */
3828 if (!avg_wire_size)
3829 goto clear_counts;
9d5c8243 3830
6eb5a7f1
AD
3831 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3832 avg_wire_size += 24;
3833
3834 /* Don't starve jumbo frames */
3835 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3836
6eb5a7f1
AD
3837 /* Give a little boost to mid-size frames */
3838 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3839 new_val = avg_wire_size / 3;
3840 else
3841 new_val = avg_wire_size / 2;
9d5c8243 3842
0ba82994
AD
3843 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3844 if (new_val < IGB_20K_ITR &&
3845 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3846 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3847 new_val = IGB_20K_ITR;
abe1c363 3848
6eb5a7f1 3849set_itr_val:
047e0030
AD
3850 if (new_val != q_vector->itr_val) {
3851 q_vector->itr_val = new_val;
3852 q_vector->set_itr = 1;
9d5c8243 3853 }
6eb5a7f1 3854clear_counts:
0ba82994
AD
3855 q_vector->rx.total_bytes = 0;
3856 q_vector->rx.total_packets = 0;
3857 q_vector->tx.total_bytes = 0;
3858 q_vector->tx.total_packets = 0;
9d5c8243
AK
3859}
3860
3861/**
3862 * igb_update_itr - update the dynamic ITR value based on statistics
3863 * Stores a new ITR value based on packets and byte
3864 * counts during the last interrupt. The advantage of per interrupt
3865 * computation is faster updates and more accurate ITR for the current
3866 * traffic pattern. Constants in this function were computed
3867 * based on theoretical maximum wire speed and thresholds were set based
3868 * on testing data as well as attempting to minimize response time
3869 * while increasing bulk throughput.
3870 * this functionality is controlled by the InterruptThrottleRate module
3871 * parameter (see igb_param.c)
3872 * NOTE: These calculations are only valid when operating in a single-
3873 * queue environment.
0ba82994
AD
3874 * @q_vector: pointer to q_vector
3875 * @ring_container: ring info to update the itr for
9d5c8243 3876 **/
0ba82994
AD
3877static void igb_update_itr(struct igb_q_vector *q_vector,
3878 struct igb_ring_container *ring_container)
9d5c8243 3879{
0ba82994
AD
3880 unsigned int packets = ring_container->total_packets;
3881 unsigned int bytes = ring_container->total_bytes;
3882 u8 itrval = ring_container->itr;
9d5c8243 3883
0ba82994 3884 /* no packets, exit with status unchanged */
9d5c8243 3885 if (packets == 0)
0ba82994 3886 return;
9d5c8243 3887
0ba82994 3888 switch (itrval) {
9d5c8243
AK
3889 case lowest_latency:
3890 /* handle TSO and jumbo frames */
3891 if (bytes/packets > 8000)
0ba82994 3892 itrval = bulk_latency;
9d5c8243 3893 else if ((packets < 5) && (bytes > 512))
0ba82994 3894 itrval = low_latency;
9d5c8243
AK
3895 break;
3896 case low_latency: /* 50 usec aka 20000 ints/s */
3897 if (bytes > 10000) {
3898 /* this if handles the TSO accounting */
3899 if (bytes/packets > 8000) {
0ba82994 3900 itrval = bulk_latency;
9d5c8243 3901 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3902 itrval = bulk_latency;
9d5c8243 3903 } else if ((packets > 35)) {
0ba82994 3904 itrval = lowest_latency;
9d5c8243
AK
3905 }
3906 } else if (bytes/packets > 2000) {
0ba82994 3907 itrval = bulk_latency;
9d5c8243 3908 } else if (packets <= 2 && bytes < 512) {
0ba82994 3909 itrval = lowest_latency;
9d5c8243
AK
3910 }
3911 break;
3912 case bulk_latency: /* 250 usec aka 4000 ints/s */
3913 if (bytes > 25000) {
3914 if (packets > 35)
0ba82994 3915 itrval = low_latency;
1e5c3d21 3916 } else if (bytes < 1500) {
0ba82994 3917 itrval = low_latency;
9d5c8243
AK
3918 }
3919 break;
3920 }
3921
0ba82994
AD
3922 /* clear work counters since we have the values we need */
3923 ring_container->total_bytes = 0;
3924 ring_container->total_packets = 0;
3925
3926 /* write updated itr to ring container */
3927 ring_container->itr = itrval;
9d5c8243
AK
3928}
3929
0ba82994 3930static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 3931{
0ba82994 3932 struct igb_adapter *adapter = q_vector->adapter;
047e0030 3933 u32 new_itr = q_vector->itr_val;
0ba82994 3934 u8 current_itr = 0;
9d5c8243
AK
3935
3936 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3937 if (adapter->link_speed != SPEED_1000) {
3938 current_itr = 0;
0ba82994 3939 new_itr = IGB_4K_ITR;
9d5c8243
AK
3940 goto set_itr_now;
3941 }
3942
0ba82994
AD
3943 igb_update_itr(q_vector, &q_vector->tx);
3944 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 3945
0ba82994 3946 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 3947
6eb5a7f1 3948 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
3949 if (current_itr == lowest_latency &&
3950 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3951 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
3952 current_itr = low_latency;
3953
9d5c8243
AK
3954 switch (current_itr) {
3955 /* counts and packets in update_itr are dependent on these numbers */
3956 case lowest_latency:
0ba82994 3957 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
3958 break;
3959 case low_latency:
0ba82994 3960 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
3961 break;
3962 case bulk_latency:
0ba82994 3963 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
3964 break;
3965 default:
3966 break;
3967 }
3968
3969set_itr_now:
047e0030 3970 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3971 /* this attempts to bias the interrupt rate towards Bulk
3972 * by adding intermediate steps when interrupt rate is
3973 * increasing */
047e0030
AD
3974 new_itr = new_itr > q_vector->itr_val ?
3975 max((new_itr * q_vector->itr_val) /
3976 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 3977 new_itr) :
9d5c8243
AK
3978 new_itr;
3979 /* Don't write the value here; it resets the adapter's
3980 * internal timer, and causes us to delay far longer than
3981 * we should between interrupts. Instead, we write the ITR
3982 * value at the beginning of the next interrupt so the timing
3983 * ends up being correct.
3984 */
047e0030
AD
3985 q_vector->itr_val = new_itr;
3986 q_vector->set_itr = 1;
9d5c8243 3987 }
9d5c8243
AK
3988}
3989
7d13a7d0
AD
3990void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3991 u32 type_tucmd, u32 mss_l4len_idx)
3992{
3993 struct e1000_adv_tx_context_desc *context_desc;
3994 u16 i = tx_ring->next_to_use;
3995
3996 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3997
3998 i++;
3999 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4000
4001 /* set bits to identify this as an advanced context descriptor */
4002 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4003
4004 /* For 82575, context index must be unique per ring. */
866cff06 4005 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4006 mss_l4len_idx |= tx_ring->reg_idx << 4;
4007
4008 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4009 context_desc->seqnum_seed = 0;
4010 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4011 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4012}
4013
7af40ad9
AD
4014static int igb_tso(struct igb_ring *tx_ring,
4015 struct igb_tx_buffer *first,
4016 u8 *hdr_len)
9d5c8243 4017{
7af40ad9 4018 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4019 u32 vlan_macip_lens, type_tucmd;
4020 u32 mss_l4len_idx, l4len;
4021
4022 if (!skb_is_gso(skb))
4023 return 0;
9d5c8243
AK
4024
4025 if (skb_header_cloned(skb)) {
7af40ad9 4026 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4027 if (err)
4028 return err;
4029 }
4030
7d13a7d0
AD
4031 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4032 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4033
7af40ad9 4034 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4035 struct iphdr *iph = ip_hdr(skb);
4036 iph->tot_len = 0;
4037 iph->check = 0;
4038 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4039 iph->daddr, 0,
4040 IPPROTO_TCP,
4041 0);
7d13a7d0 4042 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4043 first->tx_flags |= IGB_TX_FLAGS_TSO |
4044 IGB_TX_FLAGS_CSUM |
4045 IGB_TX_FLAGS_IPV4;
8e1e8a47 4046 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4047 ipv6_hdr(skb)->payload_len = 0;
4048 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4049 &ipv6_hdr(skb)->daddr,
4050 0, IPPROTO_TCP, 0);
7af40ad9
AD
4051 first->tx_flags |= IGB_TX_FLAGS_TSO |
4052 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4053 }
4054
7af40ad9 4055 /* compute header lengths */
7d13a7d0
AD
4056 l4len = tcp_hdrlen(skb);
4057 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4058
7af40ad9
AD
4059 /* update gso size and bytecount with header size */
4060 first->gso_segs = skb_shinfo(skb)->gso_segs;
4061 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4062
9d5c8243 4063 /* MSS L4LEN IDX */
7d13a7d0
AD
4064 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4065 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4066
7d13a7d0
AD
4067 /* VLAN MACLEN IPLEN */
4068 vlan_macip_lens = skb_network_header_len(skb);
4069 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4070 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4071
7d13a7d0 4072 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4073
7d13a7d0 4074 return 1;
9d5c8243
AK
4075}
4076
7af40ad9 4077static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4078{
7af40ad9 4079 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4080 u32 vlan_macip_lens = 0;
4081 u32 mss_l4len_idx = 0;
4082 u32 type_tucmd = 0;
9d5c8243 4083
7d13a7d0 4084 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4085 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4086 return;
7d13a7d0
AD
4087 } else {
4088 u8 l4_hdr = 0;
7af40ad9 4089 switch (first->protocol) {
7d13a7d0
AD
4090 case __constant_htons(ETH_P_IP):
4091 vlan_macip_lens |= skb_network_header_len(skb);
4092 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4093 l4_hdr = ip_hdr(skb)->protocol;
4094 break;
4095 case __constant_htons(ETH_P_IPV6):
4096 vlan_macip_lens |= skb_network_header_len(skb);
4097 l4_hdr = ipv6_hdr(skb)->nexthdr;
4098 break;
4099 default:
4100 if (unlikely(net_ratelimit())) {
4101 dev_warn(tx_ring->dev,
4102 "partial checksum but proto=%x!\n",
7af40ad9 4103 first->protocol);
fa4a7ef3 4104 }
7d13a7d0
AD
4105 break;
4106 }
fa4a7ef3 4107
7d13a7d0
AD
4108 switch (l4_hdr) {
4109 case IPPROTO_TCP:
4110 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4111 mss_l4len_idx = tcp_hdrlen(skb) <<
4112 E1000_ADVTXD_L4LEN_SHIFT;
4113 break;
4114 case IPPROTO_SCTP:
4115 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4116 mss_l4len_idx = sizeof(struct sctphdr) <<
4117 E1000_ADVTXD_L4LEN_SHIFT;
4118 break;
4119 case IPPROTO_UDP:
4120 mss_l4len_idx = sizeof(struct udphdr) <<
4121 E1000_ADVTXD_L4LEN_SHIFT;
4122 break;
4123 default:
4124 if (unlikely(net_ratelimit())) {
4125 dev_warn(tx_ring->dev,
4126 "partial checksum but l4 proto=%x!\n",
4127 l4_hdr);
44b0cda3 4128 }
7d13a7d0 4129 break;
9d5c8243 4130 }
7af40ad9
AD
4131
4132 /* update TX checksum flag */
4133 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4134 }
9d5c8243 4135
7d13a7d0 4136 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4137 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4138
7d13a7d0 4139 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4140}
4141
e032afc8
AD
4142static __le32 igb_tx_cmd_type(u32 tx_flags)
4143{
4144 /* set type for advanced descriptor with frame checksum insertion */
4145 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4146 E1000_ADVTXD_DCMD_IFCS |
4147 E1000_ADVTXD_DCMD_DEXT);
4148
4149 /* set HW vlan bit if vlan is present */
4150 if (tx_flags & IGB_TX_FLAGS_VLAN)
4151 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4152
4153 /* set timestamp bit if present */
4154 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4155 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4156
4157 /* set segmentation bits for TSO */
4158 if (tx_flags & IGB_TX_FLAGS_TSO)
4159 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4160
4161 return cmd_type;
4162}
4163
7af40ad9
AD
4164static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4165 union e1000_adv_tx_desc *tx_desc,
4166 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4167{
4168 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4169
4170 /* 82575 requires a unique index per ring if any offload is enabled */
4171 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
866cff06 4172 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4173 olinfo_status |= tx_ring->reg_idx << 4;
4174
4175 /* insert L4 checksum */
4176 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4177 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4178
4179 /* insert IPv4 checksum */
4180 if (tx_flags & IGB_TX_FLAGS_IPV4)
4181 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4182 }
4183
7af40ad9 4184 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4185}
4186
ebe42d16
AD
4187/*
4188 * The largest size we can write to the descriptor is 65535. In order to
4189 * maintain a power of two alignment we have to limit ourselves to 32K.
4190 */
4191#define IGB_MAX_TXD_PWR 15
7af40ad9 4192#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4193
7af40ad9
AD
4194static void igb_tx_map(struct igb_ring *tx_ring,
4195 struct igb_tx_buffer *first,
ebe42d16 4196 const u8 hdr_len)
9d5c8243 4197{
7af40ad9 4198 struct sk_buff *skb = first->skb;
ebe42d16
AD
4199 struct igb_tx_buffer *tx_buffer_info;
4200 union e1000_adv_tx_desc *tx_desc;
4201 dma_addr_t dma;
4202 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4203 unsigned int data_len = skb->data_len;
4204 unsigned int size = skb_headlen(skb);
4205 unsigned int paylen = skb->len - hdr_len;
4206 __le32 cmd_type;
7af40ad9 4207 u32 tx_flags = first->tx_flags;
ebe42d16 4208 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4209
4210 tx_desc = IGB_TX_DESC(tx_ring, i);
4211
7af40ad9 4212 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
ebe42d16
AD
4213 cmd_type = igb_tx_cmd_type(tx_flags);
4214
4215 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4216 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4217 goto dma_error;
9d5c8243 4218
ebe42d16
AD
4219 /* record length, and DMA address */
4220 first->length = size;
4221 first->dma = dma;
ebe42d16
AD
4222 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4223
4224 for (;;) {
4225 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4226 tx_desc->read.cmd_type_len =
4227 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4228
4229 i++;
4230 tx_desc++;
4231 if (i == tx_ring->count) {
4232 tx_desc = IGB_TX_DESC(tx_ring, 0);
4233 i = 0;
4234 }
4235
4236 dma += IGB_MAX_DATA_PER_TXD;
4237 size -= IGB_MAX_DATA_PER_TXD;
4238
4239 tx_desc->read.olinfo_status = 0;
4240 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4241 }
4242
4243 if (likely(!data_len))
4244 break;
2bbfebe2 4245
ebe42d16 4246 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4247
65689fef 4248 i++;
ebe42d16
AD
4249 tx_desc++;
4250 if (i == tx_ring->count) {
4251 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4252 i = 0;
ebe42d16 4253 }
65689fef 4254
ebe42d16
AD
4255 size = frag->size;
4256 data_len -= size;
4257
4258 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4259 size, DMA_TO_DEVICE);
4260 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4261 goto dma_error;
4262
ebe42d16
AD
4263 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4264 tx_buffer_info->length = size;
4265 tx_buffer_info->dma = dma;
4266
4267 tx_desc->read.olinfo_status = 0;
4268 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4269
4270 frag++;
9d5c8243
AK
4271 }
4272
ebe42d16
AD
4273 /* write last descriptor with RS and EOP bits */
4274 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4275 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4276
4277 /* set the timestamp */
4278 first->time_stamp = jiffies;
4279
ebe42d16
AD
4280 /*
4281 * Force memory writes to complete before letting h/w know there
4282 * are new descriptors to fetch. (Only applicable for weak-ordered
4283 * memory model archs, such as IA-64).
4284 *
4285 * We also need this memory barrier to make certain all of the
4286 * status bits have been updated before next_to_watch is written.
4287 */
4288 wmb();
4289
8542db05 4290 /* set next_to_watch value indicating a packet is present */
ebe42d16 4291 first->next_to_watch = tx_desc;
9d5c8243 4292
ebe42d16
AD
4293 i++;
4294 if (i == tx_ring->count)
4295 i = 0;
6366ad33 4296
ebe42d16 4297 tx_ring->next_to_use = i;
6366ad33 4298
ebe42d16 4299 writel(i, tx_ring->tail);
6366ad33 4300
ebe42d16
AD
4301 /* we need this if more than one processor can write to our tail
4302 * at a time, it syncronizes IO on IA64/Altix systems */
4303 mmiowb();
4304
4305 return;
4306
4307dma_error:
4308 dev_err(tx_ring->dev, "TX DMA map failed\n");
4309
4310 /* clear dma mappings for failed tx_buffer_info map */
4311 for (;;) {
4312 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4313 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4314 if (tx_buffer_info == first)
4315 break;
a77ff709
NN
4316 if (i == 0)
4317 i = tx_ring->count;
6366ad33 4318 i--;
6366ad33
AD
4319 }
4320
9d5c8243 4321 tx_ring->next_to_use = i;
9d5c8243
AK
4322}
4323
6ad4edfc 4324static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4325{
e694e964
AD
4326 struct net_device *netdev = tx_ring->netdev;
4327
661086df 4328 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4329
9d5c8243
AK
4330 /* Herbert's original patch had:
4331 * smp_mb__after_netif_stop_queue();
4332 * but since that doesn't exist yet, just open code it. */
4333 smp_mb();
4334
4335 /* We need to check again in a case another CPU has just
4336 * made room available. */
c493ea45 4337 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4338 return -EBUSY;
4339
4340 /* A reprieve! */
661086df 4341 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4342
4343 u64_stats_update_begin(&tx_ring->tx_syncp2);
4344 tx_ring->tx_stats.restart_queue2++;
4345 u64_stats_update_end(&tx_ring->tx_syncp2);
4346
9d5c8243
AK
4347 return 0;
4348}
4349
6ad4edfc 4350static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4351{
c493ea45 4352 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4353 return 0;
e694e964 4354 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4355}
4356
cd392f5c
AD
4357netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4358 struct igb_ring *tx_ring)
9d5c8243 4359{
8542db05 4360 struct igb_tx_buffer *first;
ebe42d16 4361 int tso;
91d4ee33 4362 u32 tx_flags = 0;
31f6adbb 4363 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4364 u8 hdr_len = 0;
9d5c8243 4365
9d5c8243
AK
4366 /* need: 1 descriptor per page,
4367 * + 2 desc gap to keep tail from touching head,
4368 * + 1 desc for skb->data,
4369 * + 1 desc for context descriptor,
4370 * otherwise try next time */
e694e964 4371 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4372 /* this is a hard error */
9d5c8243
AK
4373 return NETDEV_TX_BUSY;
4374 }
33af6bcc 4375
7af40ad9
AD
4376 /* record the location of the first descriptor for this packet */
4377 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4378 first->skb = skb;
4379 first->bytecount = skb->len;
4380 first->gso_segs = 1;
4381
2244d07b
OH
4382 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4383 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4384 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4385 }
9d5c8243 4386
eab6d18d 4387 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4388 tx_flags |= IGB_TX_FLAGS_VLAN;
4389 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4390 }
4391
7af40ad9
AD
4392 /* record initial flags and protocol */
4393 first->tx_flags = tx_flags;
4394 first->protocol = protocol;
cdfd01fc 4395
7af40ad9
AD
4396 tso = igb_tso(tx_ring, first, &hdr_len);
4397 if (tso < 0)
7d13a7d0 4398 goto out_drop;
7af40ad9
AD
4399 else if (!tso)
4400 igb_tx_csum(tx_ring, first);
9d5c8243 4401
7af40ad9 4402 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4403
4404 /* Make sure there is space in the ring for the next send. */
e694e964 4405 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4406
9d5c8243 4407 return NETDEV_TX_OK;
7d13a7d0
AD
4408
4409out_drop:
7af40ad9
AD
4410 igb_unmap_and_free_tx_resource(tx_ring, first);
4411
7d13a7d0 4412 return NETDEV_TX_OK;
9d5c8243
AK
4413}
4414
1cc3bd87
AD
4415static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4416 struct sk_buff *skb)
4417{
4418 unsigned int r_idx = skb->queue_mapping;
4419
4420 if (r_idx >= adapter->num_tx_queues)
4421 r_idx = r_idx % adapter->num_tx_queues;
4422
4423 return adapter->tx_ring[r_idx];
4424}
4425
cd392f5c
AD
4426static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4427 struct net_device *netdev)
9d5c8243
AK
4428{
4429 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4430
4431 if (test_bit(__IGB_DOWN, &adapter->state)) {
4432 dev_kfree_skb_any(skb);
4433 return NETDEV_TX_OK;
4434 }
4435
4436 if (skb->len <= 0) {
4437 dev_kfree_skb_any(skb);
4438 return NETDEV_TX_OK;
4439 }
4440
1cc3bd87
AD
4441 /*
4442 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4443 * in order to meet this minimum size requirement.
4444 */
4445 if (skb->len < 17) {
4446 if (skb_padto(skb, 17))
4447 return NETDEV_TX_OK;
4448 skb->len = 17;
4449 }
9d5c8243 4450
1cc3bd87 4451 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4452}
4453
4454/**
4455 * igb_tx_timeout - Respond to a Tx Hang
4456 * @netdev: network interface device structure
4457 **/
4458static void igb_tx_timeout(struct net_device *netdev)
4459{
4460 struct igb_adapter *adapter = netdev_priv(netdev);
4461 struct e1000_hw *hw = &adapter->hw;
4462
4463 /* Do the reset outside of interrupt context */
4464 adapter->tx_timeout_count++;
f7ba205e 4465
55cac248
AD
4466 if (hw->mac.type == e1000_82580)
4467 hw->dev_spec._82575.global_device_reset = true;
4468
9d5c8243 4469 schedule_work(&adapter->reset_task);
265de409
AD
4470 wr32(E1000_EICS,
4471 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4472}
4473
4474static void igb_reset_task(struct work_struct *work)
4475{
4476 struct igb_adapter *adapter;
4477 adapter = container_of(work, struct igb_adapter, reset_task);
4478
c97ec42a
TI
4479 igb_dump(adapter);
4480 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4481 igb_reinit_locked(adapter);
4482}
4483
4484/**
12dcd86b 4485 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4486 * @netdev: network interface device structure
12dcd86b 4487 * @stats: rtnl_link_stats64 pointer
9d5c8243 4488 *
9d5c8243 4489 **/
12dcd86b
ED
4490static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4491 struct rtnl_link_stats64 *stats)
9d5c8243 4492{
12dcd86b
ED
4493 struct igb_adapter *adapter = netdev_priv(netdev);
4494
4495 spin_lock(&adapter->stats64_lock);
4496 igb_update_stats(adapter, &adapter->stats64);
4497 memcpy(stats, &adapter->stats64, sizeof(*stats));
4498 spin_unlock(&adapter->stats64_lock);
4499
4500 return stats;
9d5c8243
AK
4501}
4502
4503/**
4504 * igb_change_mtu - Change the Maximum Transfer Unit
4505 * @netdev: network interface device structure
4506 * @new_mtu: new value for maximum frame size
4507 *
4508 * Returns 0 on success, negative on failure
4509 **/
4510static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4511{
4512 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4513 struct pci_dev *pdev = adapter->pdev;
153285f9 4514 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4515
c809d227 4516 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4517 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4518 return -EINVAL;
4519 }
4520
153285f9 4521#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4522 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4523 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4524 return -EINVAL;
4525 }
4526
4527 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4528 msleep(1);
73cd78f1 4529
9d5c8243
AK
4530 /* igb_down has a dependency on max_frame_size */
4531 adapter->max_frame_size = max_frame;
559e9c49 4532
4c844851
AD
4533 if (netif_running(netdev))
4534 igb_down(adapter);
9d5c8243 4535
090b1795 4536 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4537 netdev->mtu, new_mtu);
4538 netdev->mtu = new_mtu;
4539
4540 if (netif_running(netdev))
4541 igb_up(adapter);
4542 else
4543 igb_reset(adapter);
4544
4545 clear_bit(__IGB_RESETTING, &adapter->state);
4546
4547 return 0;
4548}
4549
4550/**
4551 * igb_update_stats - Update the board statistics counters
4552 * @adapter: board private structure
4553 **/
4554
12dcd86b
ED
4555void igb_update_stats(struct igb_adapter *adapter,
4556 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4557{
4558 struct e1000_hw *hw = &adapter->hw;
4559 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4560 u32 reg, mpc;
9d5c8243 4561 u16 phy_tmp;
3f9c0164
AD
4562 int i;
4563 u64 bytes, packets;
12dcd86b
ED
4564 unsigned int start;
4565 u64 _bytes, _packets;
9d5c8243
AK
4566
4567#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4568
4569 /*
4570 * Prevent stats update while adapter is being reset, or if the pci
4571 * connection is down.
4572 */
4573 if (adapter->link_speed == 0)
4574 return;
4575 if (pci_channel_offline(pdev))
4576 return;
4577
3f9c0164
AD
4578 bytes = 0;
4579 packets = 0;
4580 for (i = 0; i < adapter->num_rx_queues; i++) {
4581 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4582 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4583
3025a446 4584 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4585 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4586
4587 do {
4588 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4589 _bytes = ring->rx_stats.bytes;
4590 _packets = ring->rx_stats.packets;
4591 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4592 bytes += _bytes;
4593 packets += _packets;
3f9c0164
AD
4594 }
4595
128e45eb
AD
4596 net_stats->rx_bytes = bytes;
4597 net_stats->rx_packets = packets;
3f9c0164
AD
4598
4599 bytes = 0;
4600 packets = 0;
4601 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4602 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4603 do {
4604 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4605 _bytes = ring->tx_stats.bytes;
4606 _packets = ring->tx_stats.packets;
4607 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4608 bytes += _bytes;
4609 packets += _packets;
3f9c0164 4610 }
128e45eb
AD
4611 net_stats->tx_bytes = bytes;
4612 net_stats->tx_packets = packets;
3f9c0164
AD
4613
4614 /* read stats registers */
9d5c8243
AK
4615 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4616 adapter->stats.gprc += rd32(E1000_GPRC);
4617 adapter->stats.gorc += rd32(E1000_GORCL);
4618 rd32(E1000_GORCH); /* clear GORCL */
4619 adapter->stats.bprc += rd32(E1000_BPRC);
4620 adapter->stats.mprc += rd32(E1000_MPRC);
4621 adapter->stats.roc += rd32(E1000_ROC);
4622
4623 adapter->stats.prc64 += rd32(E1000_PRC64);
4624 adapter->stats.prc127 += rd32(E1000_PRC127);
4625 adapter->stats.prc255 += rd32(E1000_PRC255);
4626 adapter->stats.prc511 += rd32(E1000_PRC511);
4627 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4628 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4629 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4630 adapter->stats.sec += rd32(E1000_SEC);
4631
fa3d9a6d
MW
4632 mpc = rd32(E1000_MPC);
4633 adapter->stats.mpc += mpc;
4634 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4635 adapter->stats.scc += rd32(E1000_SCC);
4636 adapter->stats.ecol += rd32(E1000_ECOL);
4637 adapter->stats.mcc += rd32(E1000_MCC);
4638 adapter->stats.latecol += rd32(E1000_LATECOL);
4639 adapter->stats.dc += rd32(E1000_DC);
4640 adapter->stats.rlec += rd32(E1000_RLEC);
4641 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4642 adapter->stats.xontxc += rd32(E1000_XONTXC);
4643 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4644 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4645 adapter->stats.fcruc += rd32(E1000_FCRUC);
4646 adapter->stats.gptc += rd32(E1000_GPTC);
4647 adapter->stats.gotc += rd32(E1000_GOTCL);
4648 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4649 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4650 adapter->stats.ruc += rd32(E1000_RUC);
4651 adapter->stats.rfc += rd32(E1000_RFC);
4652 adapter->stats.rjc += rd32(E1000_RJC);
4653 adapter->stats.tor += rd32(E1000_TORH);
4654 adapter->stats.tot += rd32(E1000_TOTH);
4655 adapter->stats.tpr += rd32(E1000_TPR);
4656
4657 adapter->stats.ptc64 += rd32(E1000_PTC64);
4658 adapter->stats.ptc127 += rd32(E1000_PTC127);
4659 adapter->stats.ptc255 += rd32(E1000_PTC255);
4660 adapter->stats.ptc511 += rd32(E1000_PTC511);
4661 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4662 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4663
4664 adapter->stats.mptc += rd32(E1000_MPTC);
4665 adapter->stats.bptc += rd32(E1000_BPTC);
4666
2d0b0f69
NN
4667 adapter->stats.tpt += rd32(E1000_TPT);
4668 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4669
4670 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4671 /* read internal phy specific stats */
4672 reg = rd32(E1000_CTRL_EXT);
4673 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4674 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4675 adapter->stats.tncrs += rd32(E1000_TNCRS);
4676 }
4677
9d5c8243
AK
4678 adapter->stats.tsctc += rd32(E1000_TSCTC);
4679 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4680
4681 adapter->stats.iac += rd32(E1000_IAC);
4682 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4683 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4684 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4685 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4686 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4687 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4688 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4689 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4690
4691 /* Fill out the OS statistics structure */
128e45eb
AD
4692 net_stats->multicast = adapter->stats.mprc;
4693 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4694
4695 /* Rx Errors */
4696
4697 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4698 * our own version based on RUC and ROC */
128e45eb 4699 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4700 adapter->stats.crcerrs + adapter->stats.algnerrc +
4701 adapter->stats.ruc + adapter->stats.roc +
4702 adapter->stats.cexterr;
128e45eb
AD
4703 net_stats->rx_length_errors = adapter->stats.ruc +
4704 adapter->stats.roc;
4705 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4706 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4707 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4708
4709 /* Tx Errors */
128e45eb
AD
4710 net_stats->tx_errors = adapter->stats.ecol +
4711 adapter->stats.latecol;
4712 net_stats->tx_aborted_errors = adapter->stats.ecol;
4713 net_stats->tx_window_errors = adapter->stats.latecol;
4714 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4715
4716 /* Tx Dropped needs to be maintained elsewhere */
4717
4718 /* Phy Stats */
4719 if (hw->phy.media_type == e1000_media_type_copper) {
4720 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4721 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4722 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4723 adapter->phy_stats.idle_errors += phy_tmp;
4724 }
4725 }
4726
4727 /* Management Stats */
4728 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4729 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4730 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4731
4732 /* OS2BMC Stats */
4733 reg = rd32(E1000_MANC);
4734 if (reg & E1000_MANC_EN_BMC2OS) {
4735 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4736 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4737 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4738 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4739 }
9d5c8243
AK
4740}
4741
9d5c8243
AK
4742static irqreturn_t igb_msix_other(int irq, void *data)
4743{
047e0030 4744 struct igb_adapter *adapter = data;
9d5c8243 4745 struct e1000_hw *hw = &adapter->hw;
844290e5 4746 u32 icr = rd32(E1000_ICR);
844290e5 4747 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4748
7f081d40
AD
4749 if (icr & E1000_ICR_DRSTA)
4750 schedule_work(&adapter->reset_task);
4751
047e0030 4752 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4753 /* HW is reporting DMA is out of sync */
4754 adapter->stats.doosync++;
13800469
GR
4755 /* The DMA Out of Sync is also indication of a spoof event
4756 * in IOV mode. Check the Wrong VM Behavior register to
4757 * see if it is really a spoof event. */
4758 igb_check_wvbr(adapter);
dda0e083 4759 }
eebbbdba 4760
4ae196df
AD
4761 /* Check for a mailbox event */
4762 if (icr & E1000_ICR_VMMB)
4763 igb_msg_task(adapter);
4764
4765 if (icr & E1000_ICR_LSC) {
4766 hw->mac.get_link_status = 1;
4767 /* guard against interrupt when we're going down */
4768 if (!test_bit(__IGB_DOWN, &adapter->state))
4769 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4770 }
4771
25568a53
AD
4772 if (adapter->vfs_allocated_count)
4773 wr32(E1000_IMS, E1000_IMS_LSC |
4774 E1000_IMS_VMMB |
4775 E1000_IMS_DOUTSYNC);
4776 else
4777 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4778 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4779
4780 return IRQ_HANDLED;
4781}
4782
047e0030 4783static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4784{
26b39276 4785 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4786 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4787
047e0030
AD
4788 if (!q_vector->set_itr)
4789 return;
73cd78f1 4790
047e0030
AD
4791 if (!itr_val)
4792 itr_val = 0x4;
661086df 4793
26b39276
AD
4794 if (adapter->hw.mac.type == e1000_82575)
4795 itr_val |= itr_val << 16;
661086df 4796 else
0ba82994 4797 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4798
047e0030
AD
4799 writel(itr_val, q_vector->itr_register);
4800 q_vector->set_itr = 0;
6eb5a7f1
AD
4801}
4802
047e0030 4803static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4804{
047e0030 4805 struct igb_q_vector *q_vector = data;
9d5c8243 4806
047e0030
AD
4807 /* Write the ITR value calculated from the previous interrupt. */
4808 igb_write_itr(q_vector);
9d5c8243 4809
047e0030 4810 napi_schedule(&q_vector->napi);
844290e5 4811
047e0030 4812 return IRQ_HANDLED;
fe4506b6
JC
4813}
4814
421e02f0 4815#ifdef CONFIG_IGB_DCA
047e0030 4816static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4817{
047e0030 4818 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4819 struct e1000_hw *hw = &adapter->hw;
4820 int cpu = get_cpu();
fe4506b6 4821
047e0030
AD
4822 if (q_vector->cpu == cpu)
4823 goto out_no_update;
4824
0ba82994
AD
4825 if (q_vector->tx.ring) {
4826 int q = q_vector->tx.ring->reg_idx;
047e0030
AD
4827 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4828 if (hw->mac.type == e1000_82575) {
4829 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4830 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4831 } else {
047e0030
AD
4832 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4833 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4834 E1000_DCA_TXCTRL_CPUID_SHIFT;
4835 }
4836 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4837 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4838 }
0ba82994
AD
4839 if (q_vector->rx.ring) {
4840 int q = q_vector->rx.ring->reg_idx;
047e0030
AD
4841 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4842 if (hw->mac.type == e1000_82575) {
2d064c06 4843 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4844 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4845 } else {
4846 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4847 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4848 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4849 }
fe4506b6
JC
4850 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4851 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4852 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4853 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4854 }
047e0030
AD
4855 q_vector->cpu = cpu;
4856out_no_update:
fe4506b6
JC
4857 put_cpu();
4858}
4859
4860static void igb_setup_dca(struct igb_adapter *adapter)
4861{
7e0e99ef 4862 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4863 int i;
4864
7dfc16fa 4865 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4866 return;
4867
7e0e99ef
AD
4868 /* Always use CB2 mode, difference is masked in the CB driver. */
4869 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4870
047e0030 4871 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4872 adapter->q_vector[i]->cpu = -1;
4873 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4874 }
4875}
4876
4877static int __igb_notify_dca(struct device *dev, void *data)
4878{
4879 struct net_device *netdev = dev_get_drvdata(dev);
4880 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4881 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4882 struct e1000_hw *hw = &adapter->hw;
4883 unsigned long event = *(unsigned long *)data;
4884
4885 switch (event) {
4886 case DCA_PROVIDER_ADD:
4887 /* if already enabled, don't do it again */
7dfc16fa 4888 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4889 break;
fe4506b6 4890 if (dca_add_requester(dev) == 0) {
bbd98fe4 4891 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4892 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4893 igb_setup_dca(adapter);
4894 break;
4895 }
4896 /* Fall Through since DCA is disabled. */
4897 case DCA_PROVIDER_REMOVE:
7dfc16fa 4898 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4899 /* without this a class_device is left
047e0030 4900 * hanging around in the sysfs model */
fe4506b6 4901 dca_remove_requester(dev);
090b1795 4902 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4903 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4904 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4905 }
4906 break;
4907 }
bbd98fe4 4908
fe4506b6 4909 return 0;
9d5c8243
AK
4910}
4911
fe4506b6
JC
4912static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4913 void *p)
4914{
4915 int ret_val;
4916
4917 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4918 __igb_notify_dca);
4919
4920 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4921}
421e02f0 4922#endif /* CONFIG_IGB_DCA */
9d5c8243 4923
4ae196df
AD
4924static void igb_ping_all_vfs(struct igb_adapter *adapter)
4925{
4926 struct e1000_hw *hw = &adapter->hw;
4927 u32 ping;
4928 int i;
4929
4930 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4931 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4932 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4933 ping |= E1000_VT_MSGTYPE_CTS;
4934 igb_write_mbx(hw, &ping, 1, i);
4935 }
4936}
4937
7d5753f0
AD
4938static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4939{
4940 struct e1000_hw *hw = &adapter->hw;
4941 u32 vmolr = rd32(E1000_VMOLR(vf));
4942 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4943
d85b9004 4944 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4945 IGB_VF_FLAG_MULTI_PROMISC);
4946 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4947
4948 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4949 vmolr |= E1000_VMOLR_MPME;
d85b9004 4950 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4951 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4952 } else {
4953 /*
4954 * if we have hashes and we are clearing a multicast promisc
4955 * flag we need to write the hashes to the MTA as this step
4956 * was previously skipped
4957 */
4958 if (vf_data->num_vf_mc_hashes > 30) {
4959 vmolr |= E1000_VMOLR_MPME;
4960 } else if (vf_data->num_vf_mc_hashes) {
4961 int j;
4962 vmolr |= E1000_VMOLR_ROMPE;
4963 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4964 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4965 }
4966 }
4967
4968 wr32(E1000_VMOLR(vf), vmolr);
4969
4970 /* there are flags left unprocessed, likely not supported */
4971 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4972 return -EINVAL;
4973
4974 return 0;
4975
4976}
4977
4ae196df
AD
4978static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4979 u32 *msgbuf, u32 vf)
4980{
4981 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4982 u16 *hash_list = (u16 *)&msgbuf[1];
4983 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4984 int i;
4985
7d5753f0 4986 /* salt away the number of multicast addresses assigned
4ae196df
AD
4987 * to this VF for later use to restore when the PF multi cast
4988 * list changes
4989 */
4990 vf_data->num_vf_mc_hashes = n;
4991
7d5753f0
AD
4992 /* only up to 30 hash values supported */
4993 if (n > 30)
4994 n = 30;
4995
4996 /* store the hashes for later use */
4ae196df 4997 for (i = 0; i < n; i++)
a419aef8 4998 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4999
5000 /* Flush and reset the mta with the new values */
ff41f8dc 5001 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5002
5003 return 0;
5004}
5005
5006static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5007{
5008 struct e1000_hw *hw = &adapter->hw;
5009 struct vf_data_storage *vf_data;
5010 int i, j;
5011
5012 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5013 u32 vmolr = rd32(E1000_VMOLR(i));
5014 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5015
4ae196df 5016 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5017
5018 if ((vf_data->num_vf_mc_hashes > 30) ||
5019 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5020 vmolr |= E1000_VMOLR_MPME;
5021 } else if (vf_data->num_vf_mc_hashes) {
5022 vmolr |= E1000_VMOLR_ROMPE;
5023 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5024 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5025 }
5026 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5027 }
5028}
5029
5030static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5031{
5032 struct e1000_hw *hw = &adapter->hw;
5033 u32 pool_mask, reg, vid;
5034 int i;
5035
5036 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5037
5038 /* Find the vlan filter for this id */
5039 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5040 reg = rd32(E1000_VLVF(i));
5041
5042 /* remove the vf from the pool */
5043 reg &= ~pool_mask;
5044
5045 /* if pool is empty then remove entry from vfta */
5046 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5047 (reg & E1000_VLVF_VLANID_ENABLE)) {
5048 reg = 0;
5049 vid = reg & E1000_VLVF_VLANID_MASK;
5050 igb_vfta_set(hw, vid, false);
5051 }
5052
5053 wr32(E1000_VLVF(i), reg);
5054 }
ae641bdc
AD
5055
5056 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5057}
5058
5059static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5060{
5061 struct e1000_hw *hw = &adapter->hw;
5062 u32 reg, i;
5063
51466239
AD
5064 /* The vlvf table only exists on 82576 hardware and newer */
5065 if (hw->mac.type < e1000_82576)
5066 return -1;
5067
5068 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5069 if (!adapter->vfs_allocated_count)
5070 return -1;
5071
5072 /* Find the vlan filter for this id */
5073 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5074 reg = rd32(E1000_VLVF(i));
5075 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5076 vid == (reg & E1000_VLVF_VLANID_MASK))
5077 break;
5078 }
5079
5080 if (add) {
5081 if (i == E1000_VLVF_ARRAY_SIZE) {
5082 /* Did not find a matching VLAN ID entry that was
5083 * enabled. Search for a free filter entry, i.e.
5084 * one without the enable bit set
5085 */
5086 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5087 reg = rd32(E1000_VLVF(i));
5088 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5089 break;
5090 }
5091 }
5092 if (i < E1000_VLVF_ARRAY_SIZE) {
5093 /* Found an enabled/available entry */
5094 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5095
5096 /* if !enabled we need to set this up in vfta */
5097 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5098 /* add VID to filter table */
5099 igb_vfta_set(hw, vid, true);
4ae196df
AD
5100 reg |= E1000_VLVF_VLANID_ENABLE;
5101 }
cad6d05f
AD
5102 reg &= ~E1000_VLVF_VLANID_MASK;
5103 reg |= vid;
4ae196df 5104 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5105
5106 /* do not modify RLPML for PF devices */
5107 if (vf >= adapter->vfs_allocated_count)
5108 return 0;
5109
5110 if (!adapter->vf_data[vf].vlans_enabled) {
5111 u32 size;
5112 reg = rd32(E1000_VMOLR(vf));
5113 size = reg & E1000_VMOLR_RLPML_MASK;
5114 size += 4;
5115 reg &= ~E1000_VMOLR_RLPML_MASK;
5116 reg |= size;
5117 wr32(E1000_VMOLR(vf), reg);
5118 }
ae641bdc 5119
51466239 5120 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5121 }
5122 } else {
5123 if (i < E1000_VLVF_ARRAY_SIZE) {
5124 /* remove vf from the pool */
5125 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5126 /* if pool is empty then remove entry from vfta */
5127 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5128 reg = 0;
5129 igb_vfta_set(hw, vid, false);
5130 }
5131 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5132
5133 /* do not modify RLPML for PF devices */
5134 if (vf >= adapter->vfs_allocated_count)
5135 return 0;
5136
5137 adapter->vf_data[vf].vlans_enabled--;
5138 if (!adapter->vf_data[vf].vlans_enabled) {
5139 u32 size;
5140 reg = rd32(E1000_VMOLR(vf));
5141 size = reg & E1000_VMOLR_RLPML_MASK;
5142 size -= 4;
5143 reg &= ~E1000_VMOLR_RLPML_MASK;
5144 reg |= size;
5145 wr32(E1000_VMOLR(vf), reg);
5146 }
4ae196df
AD
5147 }
5148 }
8151d294
WM
5149 return 0;
5150}
5151
5152static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5153{
5154 struct e1000_hw *hw = &adapter->hw;
5155
5156 if (vid)
5157 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5158 else
5159 wr32(E1000_VMVIR(vf), 0);
5160}
5161
5162static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5163 int vf, u16 vlan, u8 qos)
5164{
5165 int err = 0;
5166 struct igb_adapter *adapter = netdev_priv(netdev);
5167
5168 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5169 return -EINVAL;
5170 if (vlan || qos) {
5171 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5172 if (err)
5173 goto out;
5174 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5175 igb_set_vmolr(adapter, vf, !vlan);
5176 adapter->vf_data[vf].pf_vlan = vlan;
5177 adapter->vf_data[vf].pf_qos = qos;
5178 dev_info(&adapter->pdev->dev,
5179 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5180 if (test_bit(__IGB_DOWN, &adapter->state)) {
5181 dev_warn(&adapter->pdev->dev,
5182 "The VF VLAN has been set,"
5183 " but the PF device is not up.\n");
5184 dev_warn(&adapter->pdev->dev,
5185 "Bring the PF device up before"
5186 " attempting to use the VF device.\n");
5187 }
5188 } else {
5189 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5190 false, vf);
5191 igb_set_vmvir(adapter, vlan, vf);
5192 igb_set_vmolr(adapter, vf, true);
5193 adapter->vf_data[vf].pf_vlan = 0;
5194 adapter->vf_data[vf].pf_qos = 0;
5195 }
5196out:
5197 return err;
4ae196df
AD
5198}
5199
5200static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5201{
5202 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5203 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5204
5205 return igb_vlvf_set(adapter, vid, add, vf);
5206}
5207
f2ca0dbe 5208static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5209{
8fa7e0f7
GR
5210 /* clear flags - except flag that indicates PF has set the MAC */
5211 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5212 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5213
5214 /* reset offloads to defaults */
8151d294 5215 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5216
5217 /* reset vlans for device */
5218 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5219 if (adapter->vf_data[vf].pf_vlan)
5220 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5221 adapter->vf_data[vf].pf_vlan,
5222 adapter->vf_data[vf].pf_qos);
5223 else
5224 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5225
5226 /* reset multicast table array for vf */
5227 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5228
5229 /* Flush and reset the mta with the new values */
ff41f8dc 5230 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5231}
5232
f2ca0dbe
AD
5233static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5234{
5235 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5236
5237 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5238 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5239 random_ether_addr(vf_mac);
f2ca0dbe
AD
5240
5241 /* process remaining reset events */
5242 igb_vf_reset(adapter, vf);
5243}
5244
5245static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5246{
5247 struct e1000_hw *hw = &adapter->hw;
5248 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5249 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5250 u32 reg, msgbuf[3];
5251 u8 *addr = (u8 *)(&msgbuf[1]);
5252
5253 /* process all the same items cleared in a function level reset */
f2ca0dbe 5254 igb_vf_reset(adapter, vf);
4ae196df
AD
5255
5256 /* set vf mac address */
26ad9178 5257 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5258
5259 /* enable transmit and receive for vf */
5260 reg = rd32(E1000_VFTE);
5261 wr32(E1000_VFTE, reg | (1 << vf));
5262 reg = rd32(E1000_VFRE);
5263 wr32(E1000_VFRE, reg | (1 << vf));
5264
8fa7e0f7 5265 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5266
5267 /* reply to reset with ack and vf mac address */
5268 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5269 memcpy(addr, vf_mac, 6);
5270 igb_write_mbx(hw, msgbuf, 3, vf);
5271}
5272
5273static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5274{
de42edde
GR
5275 /*
5276 * The VF MAC Address is stored in a packed array of bytes
5277 * starting at the second 32 bit word of the msg array
5278 */
f2ca0dbe
AD
5279 unsigned char *addr = (char *)&msg[1];
5280 int err = -1;
4ae196df 5281
f2ca0dbe
AD
5282 if (is_valid_ether_addr(addr))
5283 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5284
f2ca0dbe 5285 return err;
4ae196df
AD
5286}
5287
5288static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5289{
5290 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5291 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5292 u32 msg = E1000_VT_MSGTYPE_NACK;
5293
5294 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5295 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5296 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5297 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5298 vf_data->last_nack = jiffies;
4ae196df
AD
5299 }
5300}
5301
f2ca0dbe 5302static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5303{
f2ca0dbe
AD
5304 struct pci_dev *pdev = adapter->pdev;
5305 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5306 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5307 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5308 s32 retval;
5309
f2ca0dbe 5310 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5311
fef45f4c
AD
5312 if (retval) {
5313 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5314 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5315 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5316 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5317 return;
5318 goto out;
5319 }
4ae196df
AD
5320
5321 /* this is a message we already processed, do nothing */
5322 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5323 return;
4ae196df
AD
5324
5325 /*
5326 * until the vf completes a reset it should not be
5327 * allowed to start any configuration.
5328 */
5329
5330 if (msgbuf[0] == E1000_VF_RESET) {
5331 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5332 return;
4ae196df
AD
5333 }
5334
f2ca0dbe 5335 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5336 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5337 return;
5338 retval = -1;
5339 goto out;
4ae196df
AD
5340 }
5341
5342 switch ((msgbuf[0] & 0xFFFF)) {
5343 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5344 retval = -EINVAL;
5345 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5346 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5347 else
5348 dev_warn(&pdev->dev,
5349 "VF %d attempted to override administratively "
5350 "set MAC address\nReload the VF driver to "
5351 "resume operations\n", vf);
4ae196df 5352 break;
7d5753f0
AD
5353 case E1000_VF_SET_PROMISC:
5354 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5355 break;
4ae196df
AD
5356 case E1000_VF_SET_MULTICAST:
5357 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5358 break;
5359 case E1000_VF_SET_LPE:
5360 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5361 break;
5362 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5363 retval = -1;
5364 if (vf_data->pf_vlan)
5365 dev_warn(&pdev->dev,
5366 "VF %d attempted to override administratively "
5367 "set VLAN tag\nReload the VF driver to "
5368 "resume operations\n", vf);
8151d294
WM
5369 else
5370 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5371 break;
5372 default:
090b1795 5373 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5374 retval = -1;
5375 break;
5376 }
5377
fef45f4c
AD
5378 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5379out:
4ae196df
AD
5380 /* notify the VF of the results of what it sent us */
5381 if (retval)
5382 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5383 else
5384 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5385
4ae196df 5386 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5387}
4ae196df 5388
f2ca0dbe
AD
5389static void igb_msg_task(struct igb_adapter *adapter)
5390{
5391 struct e1000_hw *hw = &adapter->hw;
5392 u32 vf;
5393
5394 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5395 /* process any reset requests */
5396 if (!igb_check_for_rst(hw, vf))
5397 igb_vf_reset_event(adapter, vf);
5398
5399 /* process any messages pending */
5400 if (!igb_check_for_msg(hw, vf))
5401 igb_rcv_msg_from_vf(adapter, vf);
5402
5403 /* process any acks */
5404 if (!igb_check_for_ack(hw, vf))
5405 igb_rcv_ack_from_vf(adapter, vf);
5406 }
4ae196df
AD
5407}
5408
68d480c4
AD
5409/**
5410 * igb_set_uta - Set unicast filter table address
5411 * @adapter: board private structure
5412 *
5413 * The unicast table address is a register array of 32-bit registers.
5414 * The table is meant to be used in a way similar to how the MTA is used
5415 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5416 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5417 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5418 **/
5419static void igb_set_uta(struct igb_adapter *adapter)
5420{
5421 struct e1000_hw *hw = &adapter->hw;
5422 int i;
5423
5424 /* The UTA table only exists on 82576 hardware and newer */
5425 if (hw->mac.type < e1000_82576)
5426 return;
5427
5428 /* we only need to do this if VMDq is enabled */
5429 if (!adapter->vfs_allocated_count)
5430 return;
5431
5432 for (i = 0; i < hw->mac.uta_reg_count; i++)
5433 array_wr32(E1000_UTA, i, ~0);
5434}
5435
9d5c8243
AK
5436/**
5437 * igb_intr_msi - Interrupt Handler
5438 * @irq: interrupt number
5439 * @data: pointer to a network interface device structure
5440 **/
5441static irqreturn_t igb_intr_msi(int irq, void *data)
5442{
047e0030
AD
5443 struct igb_adapter *adapter = data;
5444 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5445 struct e1000_hw *hw = &adapter->hw;
5446 /* read ICR disables interrupts using IAM */
5447 u32 icr = rd32(E1000_ICR);
5448
047e0030 5449 igb_write_itr(q_vector);
9d5c8243 5450
7f081d40
AD
5451 if (icr & E1000_ICR_DRSTA)
5452 schedule_work(&adapter->reset_task);
5453
047e0030 5454 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5455 /* HW is reporting DMA is out of sync */
5456 adapter->stats.doosync++;
5457 }
5458
9d5c8243
AK
5459 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5460 hw->mac.get_link_status = 1;
5461 if (!test_bit(__IGB_DOWN, &adapter->state))
5462 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5463 }
5464
047e0030 5465 napi_schedule(&q_vector->napi);
9d5c8243
AK
5466
5467 return IRQ_HANDLED;
5468}
5469
5470/**
4a3c6433 5471 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5472 * @irq: interrupt number
5473 * @data: pointer to a network interface device structure
5474 **/
5475static irqreturn_t igb_intr(int irq, void *data)
5476{
047e0030
AD
5477 struct igb_adapter *adapter = data;
5478 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5479 struct e1000_hw *hw = &adapter->hw;
5480 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5481 * need for the IMC write */
5482 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5483
5484 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5485 * not set, then the adapter didn't send an interrupt */
5486 if (!(icr & E1000_ICR_INT_ASSERTED))
5487 return IRQ_NONE;
5488
0ba82994
AD
5489 igb_write_itr(q_vector);
5490
7f081d40
AD
5491 if (icr & E1000_ICR_DRSTA)
5492 schedule_work(&adapter->reset_task);
5493
047e0030 5494 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5495 /* HW is reporting DMA is out of sync */
5496 adapter->stats.doosync++;
5497 }
5498
9d5c8243
AK
5499 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5500 hw->mac.get_link_status = 1;
5501 /* guard against interrupt when we're going down */
5502 if (!test_bit(__IGB_DOWN, &adapter->state))
5503 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5504 }
5505
047e0030 5506 napi_schedule(&q_vector->napi);
9d5c8243
AK
5507
5508 return IRQ_HANDLED;
5509}
5510
0ba82994 5511void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5512{
047e0030 5513 struct igb_adapter *adapter = q_vector->adapter;
46544258 5514 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5515
0ba82994
AD
5516 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5517 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5518 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5519 igb_set_itr(q_vector);
46544258 5520 else
047e0030 5521 igb_update_ring_itr(q_vector);
9d5c8243
AK
5522 }
5523
46544258
AD
5524 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5525 if (adapter->msix_entries)
047e0030 5526 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5527 else
5528 igb_irq_enable(adapter);
5529 }
9d5c8243
AK
5530}
5531
46544258
AD
5532/**
5533 * igb_poll - NAPI Rx polling callback
5534 * @napi: napi polling structure
5535 * @budget: count of how many packets we should handle
5536 **/
5537static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5538{
047e0030
AD
5539 struct igb_q_vector *q_vector = container_of(napi,
5540 struct igb_q_vector,
5541 napi);
16eb8815 5542 bool clean_complete = true;
9d5c8243 5543
421e02f0 5544#ifdef CONFIG_IGB_DCA
047e0030
AD
5545 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5546 igb_update_dca(q_vector);
fe4506b6 5547#endif
0ba82994 5548 if (q_vector->tx.ring)
13fde97a 5549 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5550
0ba82994 5551 if (q_vector->rx.ring)
cd392f5c 5552 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5553
16eb8815
AD
5554 /* If all work not completed, return budget and keep polling */
5555 if (!clean_complete)
5556 return budget;
46544258 5557
9d5c8243 5558 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5559 napi_complete(napi);
5560 igb_ring_irq_enable(q_vector);
9d5c8243 5561
16eb8815 5562 return 0;
9d5c8243 5563}
6d8126f9 5564
33af6bcc 5565/**
c5b9bd5e 5566 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5567 * @adapter: board private structure
c5b9bd5e
AD
5568 * @shhwtstamps: timestamp structure to update
5569 * @regval: unsigned 64bit system time value.
5570 *
5571 * We need to convert the system time value stored in the RX/TXSTMP registers
5572 * into a hwtstamp which can be used by the upper level timestamping functions
5573 */
5574static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5575 struct skb_shared_hwtstamps *shhwtstamps,
5576 u64 regval)
5577{
5578 u64 ns;
5579
55cac248
AD
5580 /*
5581 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5582 * 24 to match clock shift we setup earlier.
5583 */
5584 if (adapter->hw.mac.type == e1000_82580)
5585 regval <<= IGB_82580_TSYNC_SHIFT;
5586
c5b9bd5e
AD
5587 ns = timecounter_cyc2time(&adapter->clock, regval);
5588 timecompare_update(&adapter->compare, ns);
5589 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5590 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5591 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5592}
5593
5594/**
5595 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5596 * @q_vector: pointer to q_vector containing needed info
06034649 5597 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5598 *
5599 * If we were asked to do hardware stamping and such a time stamp is
5600 * available, then it must have been for this skb here because we only
5601 * allow only one such packet into the queue.
5602 */
06034649
AD
5603static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5604 struct igb_tx_buffer *buffer_info)
33af6bcc 5605{
c5b9bd5e 5606 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5607 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5608 struct skb_shared_hwtstamps shhwtstamps;
5609 u64 regval;
33af6bcc 5610
c5b9bd5e 5611 /* if skb does not support hw timestamp or TX stamp not valid exit */
2bbfebe2 5612 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
c5b9bd5e
AD
5613 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5614 return;
5615
5616 regval = rd32(E1000_TXSTMPL);
5617 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5618
5619 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5620 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5621}
5622
9d5c8243
AK
5623/**
5624 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5625 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5626 * returns true if ring is completely cleaned
5627 **/
047e0030 5628static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5629{
047e0030 5630 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5631 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5632 struct igb_tx_buffer *tx_buffer;
8542db05 5633 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5634 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5635 unsigned int budget = q_vector->tx.work_limit;
8542db05 5636 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5637
13fde97a
AD
5638 if (test_bit(__IGB_DOWN, &adapter->state))
5639 return true;
0e014cb1 5640
06034649 5641 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5642 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5643 i -= tx_ring->count;
9d5c8243 5644
13fde97a 5645 for (; budget; budget--) {
8542db05 5646 eop_desc = tx_buffer->next_to_watch;
13fde97a 5647
8542db05
AD
5648 /* prevent any other reads prior to eop_desc */
5649 rmb();
5650
5651 /* if next_to_watch is not set then there is no work pending */
5652 if (!eop_desc)
5653 break;
13fde97a
AD
5654
5655 /* if DD is not set pending work has not been completed */
5656 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5657 break;
5658
8542db05
AD
5659 /* clear next_to_watch to prevent false hangs */
5660 tx_buffer->next_to_watch = NULL;
9d5c8243 5661
ebe42d16
AD
5662 /* update the statistics for this packet */
5663 total_bytes += tx_buffer->bytecount;
5664 total_packets += tx_buffer->gso_segs;
13fde97a 5665
ebe42d16
AD
5666 /* retrieve hardware timestamp */
5667 igb_tx_hwtstamp(q_vector, tx_buffer);
5668
5669 /* free the skb */
5670 dev_kfree_skb_any(tx_buffer->skb);
5671 tx_buffer->skb = NULL;
13fde97a 5672
ebe42d16
AD
5673 /* unmap skb header data */
5674 dma_unmap_single(tx_ring->dev,
5675 tx_buffer->dma,
5676 tx_buffer->length,
5677 DMA_TO_DEVICE);
5678
5679 /* clear last DMA location and unmap remaining buffers */
5680 while (tx_desc != eop_desc) {
5681 tx_buffer->dma = 0;
9d5c8243 5682
13fde97a
AD
5683 tx_buffer++;
5684 tx_desc++;
9d5c8243 5685 i++;
8542db05
AD
5686 if (unlikely(!i)) {
5687 i -= tx_ring->count;
06034649 5688 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5689 tx_desc = IGB_TX_DESC(tx_ring, 0);
5690 }
ebe42d16
AD
5691
5692 /* unmap any remaining paged data */
5693 if (tx_buffer->dma) {
5694 dma_unmap_page(tx_ring->dev,
5695 tx_buffer->dma,
5696 tx_buffer->length,
5697 DMA_TO_DEVICE);
5698 }
5699 }
5700
5701 /* clear last DMA location */
5702 tx_buffer->dma = 0;
5703
5704 /* move us one more past the eop_desc for start of next pkt */
5705 tx_buffer++;
5706 tx_desc++;
5707 i++;
5708 if (unlikely(!i)) {
5709 i -= tx_ring->count;
5710 tx_buffer = tx_ring->tx_buffer_info;
5711 tx_desc = IGB_TX_DESC(tx_ring, 0);
5712 }
0e014cb1
AD
5713 }
5714
8542db05 5715 i += tx_ring->count;
9d5c8243 5716 tx_ring->next_to_clean = i;
13fde97a
AD
5717 u64_stats_update_begin(&tx_ring->tx_syncp);
5718 tx_ring->tx_stats.bytes += total_bytes;
5719 tx_ring->tx_stats.packets += total_packets;
5720 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5721 q_vector->tx.total_bytes += total_bytes;
5722 q_vector->tx.total_packets += total_packets;
9d5c8243 5723
13fde97a
AD
5724 if (tx_ring->detect_tx_hung) {
5725 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5726
8542db05 5727 eop_desc = tx_buffer->next_to_watch;
9d5c8243 5728
9d5c8243
AK
5729 /* Detect a transmit hang in hardware, this serializes the
5730 * check with the clearing of time_stamp and movement of i */
5731 tx_ring->detect_tx_hung = false;
8542db05
AD
5732 if (eop_desc &&
5733 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5734 (adapter->tx_timeout_factor * HZ)) &&
5735 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5736
9d5c8243 5737 /* detected Tx unit hang */
59d71989 5738 dev_err(tx_ring->dev,
9d5c8243 5739 "Detected Tx Unit Hang\n"
2d064c06 5740 " Tx Queue <%d>\n"
9d5c8243
AK
5741 " TDH <%x>\n"
5742 " TDT <%x>\n"
5743 " next_to_use <%x>\n"
5744 " next_to_clean <%x>\n"
9d5c8243
AK
5745 "buffer_info[next_to_clean]\n"
5746 " time_stamp <%lx>\n"
8542db05 5747 " next_to_watch <%p>\n"
9d5c8243
AK
5748 " jiffies <%lx>\n"
5749 " desc.status <%x>\n",
2d064c06 5750 tx_ring->queue_index,
238ac817 5751 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5752 readl(tx_ring->tail),
9d5c8243
AK
5753 tx_ring->next_to_use,
5754 tx_ring->next_to_clean,
8542db05
AD
5755 tx_buffer->time_stamp,
5756 eop_desc,
9d5c8243 5757 jiffies,
0e014cb1 5758 eop_desc->wb.status);
13fde97a
AD
5759 netif_stop_subqueue(tx_ring->netdev,
5760 tx_ring->queue_index);
5761
5762 /* we are about to reset, no point in enabling stuff */
5763 return true;
9d5c8243
AK
5764 }
5765 }
13fde97a
AD
5766
5767 if (unlikely(total_packets &&
5768 netif_carrier_ok(tx_ring->netdev) &&
5769 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5770 /* Make sure that anybody stopping the queue after this
5771 * sees the new next_to_clean.
5772 */
5773 smp_mb();
5774 if (__netif_subqueue_stopped(tx_ring->netdev,
5775 tx_ring->queue_index) &&
5776 !(test_bit(__IGB_DOWN, &adapter->state))) {
5777 netif_wake_subqueue(tx_ring->netdev,
5778 tx_ring->queue_index);
5779
5780 u64_stats_update_begin(&tx_ring->tx_syncp);
5781 tx_ring->tx_stats.restart_queue++;
5782 u64_stats_update_end(&tx_ring->tx_syncp);
5783 }
5784 }
5785
5786 return !!budget;
9d5c8243
AK
5787}
5788
cd392f5c 5789static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
5790 union e1000_adv_rx_desc *rx_desc,
5791 struct sk_buff *skb)
9d5c8243 5792{
bc8acf2c 5793 skb_checksum_none_assert(skb);
9d5c8243 5794
294e7d78 5795 /* Ignore Checksum bit is set */
3ceb90fd 5796 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
5797 return;
5798
5799 /* Rx checksum disabled via ethtool */
5800 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 5801 return;
85ad76b2 5802
9d5c8243 5803 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
5804 if (igb_test_staterr(rx_desc,
5805 E1000_RXDEXT_STATERR_TCPE |
5806 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5807 /*
5808 * work around errata with sctp packets where the TCPE aka
5809 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5810 * packets, (aka let the stack check the crc32c)
5811 */
866cff06
AD
5812 if (!((skb->len == 60) &&
5813 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 5814 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5815 ring->rx_stats.csum_err++;
12dcd86b
ED
5816 u64_stats_update_end(&ring->rx_syncp);
5817 }
9d5c8243 5818 /* let the stack verify checksum errors */
9d5c8243
AK
5819 return;
5820 }
5821 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
5822 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5823 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
5824 skb->ip_summed = CHECKSUM_UNNECESSARY;
5825
3ceb90fd
AD
5826 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5827 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
5828}
5829
3ceb90fd
AD
5830static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5831 union e1000_adv_rx_desc *rx_desc,
5832 struct sk_buff *skb)
c5b9bd5e
AD
5833{
5834 struct igb_adapter *adapter = q_vector->adapter;
5835 struct e1000_hw *hw = &adapter->hw;
5836 u64 regval;
5837
3ceb90fd
AD
5838 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
5839 E1000_RXDADV_STAT_TS))
5840 return;
5841
c5b9bd5e
AD
5842 /*
5843 * If this bit is set, then the RX registers contain the time stamp. No
5844 * other packet will be time stamped until we read these registers, so
5845 * read the registers to make them available again. Because only one
5846 * packet can be time stamped at a time, we know that the register
5847 * values must belong to this one here and therefore we don't need to
5848 * compare any of the additional attributes stored for it.
5849 *
2244d07b 5850 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5851 * can turn into a skb_shared_hwtstamps.
5852 */
3ceb90fd 5853 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
757b77e2
NN
5854 u32 *stamp = (u32 *)skb->data;
5855 regval = le32_to_cpu(*(stamp + 2));
5856 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5857 skb_pull(skb, IGB_TS_HDR_LEN);
5858 } else {
5859 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5860 return;
c5b9bd5e 5861
757b77e2
NN
5862 regval = rd32(E1000_RXSTMPL);
5863 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5864 }
c5b9bd5e
AD
5865
5866 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5867}
44390ca6 5868static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5869{
5870 /* HW will not DMA in data larger than the given buffer, even if it
5871 * parses the (NFS, of course) header to be larger. In that case, it
5872 * fills the header buffer and spills the rest into the page.
5873 */
5874 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5875 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5876 if (hlen > IGB_RX_HDR_LEN)
5877 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5878 return hlen;
5879}
5880
cd392f5c 5881static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5882{
0ba82994 5883 struct igb_ring *rx_ring = q_vector->rx.ring;
16eb8815
AD
5884 union e1000_adv_rx_desc *rx_desc;
5885 const int current_node = numa_node_id();
9d5c8243 5886 unsigned int total_bytes = 0, total_packets = 0;
16eb8815
AD
5887 u16 cleaned_count = igb_desc_unused(rx_ring);
5888 u16 i = rx_ring->next_to_clean;
9d5c8243 5889
60136906 5890 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243 5891
3ceb90fd 5892 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
06034649 5893 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
5894 struct sk_buff *skb = buffer_info->skb;
5895 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5896
69d3ca53 5897 buffer_info->skb = NULL;
16eb8815 5898 prefetch(skb->data);
69d3ca53
AD
5899
5900 i++;
5901 if (i == rx_ring->count)
5902 i = 0;
42d0781a 5903
60136906 5904 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5905 prefetch(next_rxd);
9d5c8243 5906
16eb8815
AD
5907 /*
5908 * This memory barrier is needed to keep us from reading
5909 * any other fields out of the rx_desc until we know the
5910 * RXD_STAT_DD bit is set
5911 */
5912 rmb();
9d5c8243 5913
16eb8815
AD
5914 if (!skb_is_nonlinear(skb)) {
5915 __skb_put(skb, igb_get_hlen(rx_desc));
5916 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 5917 IGB_RX_HDR_LEN,
59d71989 5918 DMA_FROM_DEVICE);
91615f76 5919 buffer_info->dma = 0;
bf36c1a0
AD
5920 }
5921
16eb8815
AD
5922 if (rx_desc->wb.upper.length) {
5923 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 5924
aa913403 5925 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5926 buffer_info->page,
5927 buffer_info->page_offset,
5928 length);
5929
16eb8815
AD
5930 skb->len += length;
5931 skb->data_len += length;
5932 skb->truesize += length;
5933
d1eff350
AD
5934 if ((page_count(buffer_info->page) != 1) ||
5935 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5936 buffer_info->page = NULL;
5937 else
5938 get_page(buffer_info->page);
9d5c8243 5939
16eb8815
AD
5940 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5941 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5942 buffer_info->page_dma = 0;
9d5c8243 5943 }
9d5c8243 5944
3ceb90fd 5945 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
06034649
AD
5946 struct igb_rx_buffer *next_buffer;
5947 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
5948 buffer_info->skb = next_buffer->skb;
5949 buffer_info->dma = next_buffer->dma;
5950 next_buffer->skb = skb;
5951 next_buffer->dma = 0;
bf36c1a0
AD
5952 goto next_desc;
5953 }
44390ca6 5954
3ceb90fd
AD
5955 if (igb_test_staterr(rx_desc,
5956 E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
16eb8815 5957 dev_kfree_skb_any(skb);
9d5c8243
AK
5958 goto next_desc;
5959 }
9d5c8243 5960
3ceb90fd
AD
5961 igb_rx_hwtstamp(q_vector, rx_desc, skb);
5962 igb_rx_checksum(rx_ring, rx_desc, skb);
047e0030 5963
3ceb90fd 5964 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
b2cb09b1 5965 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
9d5c8243 5966
b2cb09b1
JP
5967 __vlan_hwaccel_put_tag(skb, vid);
5968 }
3ceb90fd
AD
5969
5970 total_bytes += skb->len;
5971 total_packets++;
5972
5973 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
5974
b2cb09b1 5975 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 5976
16eb8815 5977 budget--;
9d5c8243 5978next_desc:
16eb8815
AD
5979 if (!budget)
5980 break;
5981
5982 cleaned_count++;
9d5c8243
AK
5983 /* return some buffers to hardware, one at a time is too slow */
5984 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 5985 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
5986 cleaned_count = 0;
5987 }
5988
5989 /* use prefetched values */
5990 rx_desc = next_rxd;
9d5c8243 5991 }
bf36c1a0 5992
9d5c8243 5993 rx_ring->next_to_clean = i;
12dcd86b 5994 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5995 rx_ring->rx_stats.packets += total_packets;
5996 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5997 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
5998 q_vector->rx.total_packets += total_packets;
5999 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6000
6001 if (cleaned_count)
cd392f5c 6002 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6003
16eb8815 6004 return !!budget;
9d5c8243
AK
6005}
6006
c023cd88 6007static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 6008 struct igb_rx_buffer *bi)
c023cd88
AD
6009{
6010 struct sk_buff *skb = bi->skb;
6011 dma_addr_t dma = bi->dma;
6012
6013 if (dma)
6014 return true;
6015
6016 if (likely(!skb)) {
6017 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6018 IGB_RX_HDR_LEN);
6019 bi->skb = skb;
6020 if (!skb) {
6021 rx_ring->rx_stats.alloc_failed++;
6022 return false;
6023 }
6024
6025 /* initialize skb for ring */
6026 skb_record_rx_queue(skb, rx_ring->queue_index);
6027 }
6028
6029 dma = dma_map_single(rx_ring->dev, skb->data,
6030 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6031
6032 if (dma_mapping_error(rx_ring->dev, dma)) {
6033 rx_ring->rx_stats.alloc_failed++;
6034 return false;
6035 }
6036
6037 bi->dma = dma;
6038 return true;
6039}
6040
6041static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6042 struct igb_rx_buffer *bi)
c023cd88
AD
6043{
6044 struct page *page = bi->page;
6045 dma_addr_t page_dma = bi->page_dma;
6046 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6047
6048 if (page_dma)
6049 return true;
6050
6051 if (!page) {
6052 page = netdev_alloc_page(rx_ring->netdev);
6053 bi->page = page;
6054 if (unlikely(!page)) {
6055 rx_ring->rx_stats.alloc_failed++;
6056 return false;
6057 }
6058 }
6059
6060 page_dma = dma_map_page(rx_ring->dev, page,
6061 page_offset, PAGE_SIZE / 2,
6062 DMA_FROM_DEVICE);
6063
6064 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6065 rx_ring->rx_stats.alloc_failed++;
6066 return false;
6067 }
6068
6069 bi->page_dma = page_dma;
6070 bi->page_offset = page_offset;
6071 return true;
6072}
6073
9d5c8243 6074/**
cd392f5c 6075 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6076 * @adapter: address of board private structure
6077 **/
cd392f5c 6078void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6079{
9d5c8243 6080 union e1000_adv_rx_desc *rx_desc;
06034649 6081 struct igb_rx_buffer *bi;
c023cd88 6082 u16 i = rx_ring->next_to_use;
9d5c8243 6083
60136906 6084 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6085 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6086 i -= rx_ring->count;
9d5c8243
AK
6087
6088 while (cleaned_count--) {
c023cd88
AD
6089 if (!igb_alloc_mapped_skb(rx_ring, bi))
6090 break;
9d5c8243 6091
c023cd88
AD
6092 /* Refresh the desc even if buffer_addrs didn't change
6093 * because each write-back erases this info. */
6094 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6095
c023cd88
AD
6096 if (!igb_alloc_mapped_page(rx_ring, bi))
6097 break;
6098
6099 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6100
c023cd88
AD
6101 rx_desc++;
6102 bi++;
9d5c8243 6103 i++;
c023cd88 6104 if (unlikely(!i)) {
60136906 6105 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6106 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6107 i -= rx_ring->count;
6108 }
6109
6110 /* clear the hdr_addr for the next_to_use descriptor */
6111 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6112 }
6113
c023cd88
AD
6114 i += rx_ring->count;
6115
9d5c8243
AK
6116 if (rx_ring->next_to_use != i) {
6117 rx_ring->next_to_use = i;
9d5c8243
AK
6118
6119 /* Force memory writes to complete before letting h/w
6120 * know there are new descriptors to fetch. (Only
6121 * applicable for weak-ordered memory model archs,
6122 * such as IA-64). */
6123 wmb();
fce99e34 6124 writel(i, rx_ring->tail);
9d5c8243
AK
6125 }
6126}
6127
6128/**
6129 * igb_mii_ioctl -
6130 * @netdev:
6131 * @ifreq:
6132 * @cmd:
6133 **/
6134static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6135{
6136 struct igb_adapter *adapter = netdev_priv(netdev);
6137 struct mii_ioctl_data *data = if_mii(ifr);
6138
6139 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6140 return -EOPNOTSUPP;
6141
6142 switch (cmd) {
6143 case SIOCGMIIPHY:
6144 data->phy_id = adapter->hw.phy.addr;
6145 break;
6146 case SIOCGMIIREG:
f5f4cf08
AD
6147 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6148 &data->val_out))
9d5c8243
AK
6149 return -EIO;
6150 break;
6151 case SIOCSMIIREG:
6152 default:
6153 return -EOPNOTSUPP;
6154 }
6155 return 0;
6156}
6157
c6cb090b
PO
6158/**
6159 * igb_hwtstamp_ioctl - control hardware time stamping
6160 * @netdev:
6161 * @ifreq:
6162 * @cmd:
6163 *
33af6bcc
PO
6164 * Outgoing time stamping can be enabled and disabled. Play nice and
6165 * disable it when requested, although it shouldn't case any overhead
6166 * when no packet needs it. At most one packet in the queue may be
6167 * marked for time stamping, otherwise it would be impossible to tell
6168 * for sure to which packet the hardware time stamp belongs.
6169 *
6170 * Incoming time stamping has to be configured via the hardware
6171 * filters. Not all combinations are supported, in particular event
6172 * type has to be specified. Matching the kind of event packet is
6173 * not supported, with the exception of "all V2 events regardless of
6174 * level 2 or 4".
6175 *
c6cb090b
PO
6176 **/
6177static int igb_hwtstamp_ioctl(struct net_device *netdev,
6178 struct ifreq *ifr, int cmd)
6179{
33af6bcc
PO
6180 struct igb_adapter *adapter = netdev_priv(netdev);
6181 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6182 struct hwtstamp_config config;
c5b9bd5e
AD
6183 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6184 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6185 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6186 bool is_l4 = false;
6187 bool is_l2 = false;
33af6bcc 6188 u32 regval;
c6cb090b
PO
6189
6190 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6191 return -EFAULT;
6192
6193 /* reserved for future extensions */
6194 if (config.flags)
6195 return -EINVAL;
6196
33af6bcc
PO
6197 switch (config.tx_type) {
6198 case HWTSTAMP_TX_OFF:
c5b9bd5e 6199 tsync_tx_ctl = 0;
33af6bcc 6200 case HWTSTAMP_TX_ON:
33af6bcc
PO
6201 break;
6202 default:
6203 return -ERANGE;
6204 }
6205
6206 switch (config.rx_filter) {
6207 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6208 tsync_rx_ctl = 0;
33af6bcc
PO
6209 break;
6210 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6211 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6212 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6213 case HWTSTAMP_FILTER_ALL:
6214 /*
6215 * register TSYNCRXCFG must be set, therefore it is not
6216 * possible to time stamp both Sync and Delay_Req messages
6217 * => fall back to time stamping all packets
6218 */
c5b9bd5e 6219 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6220 config.rx_filter = HWTSTAMP_FILTER_ALL;
6221 break;
6222 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6223 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6224 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6225 is_l4 = true;
33af6bcc
PO
6226 break;
6227 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6228 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6229 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6230 is_l4 = true;
33af6bcc
PO
6231 break;
6232 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6233 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6234 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6235 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6236 is_l2 = true;
6237 is_l4 = true;
33af6bcc
PO
6238 config.rx_filter = HWTSTAMP_FILTER_SOME;
6239 break;
6240 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6241 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6242 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6243 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6244 is_l2 = true;
6245 is_l4 = true;
33af6bcc
PO
6246 config.rx_filter = HWTSTAMP_FILTER_SOME;
6247 break;
6248 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6249 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6250 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6251 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6252 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6253 is_l2 = true;
33af6bcc
PO
6254 break;
6255 default:
6256 return -ERANGE;
6257 }
6258
c5b9bd5e
AD
6259 if (hw->mac.type == e1000_82575) {
6260 if (tsync_rx_ctl | tsync_tx_ctl)
6261 return -EINVAL;
6262 return 0;
6263 }
6264
757b77e2
NN
6265 /*
6266 * Per-packet timestamping only works if all packets are
6267 * timestamped, so enable timestamping in all packets as
6268 * long as one rx filter was configured.
6269 */
6270 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6271 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6272 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6273 }
6274
33af6bcc
PO
6275 /* enable/disable TX */
6276 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6277 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6278 regval |= tsync_tx_ctl;
33af6bcc
PO
6279 wr32(E1000_TSYNCTXCTL, regval);
6280
c5b9bd5e 6281 /* enable/disable RX */
33af6bcc 6282 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6283 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6284 regval |= tsync_rx_ctl;
33af6bcc 6285 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6286
c5b9bd5e
AD
6287 /* define which PTP packets are time stamped */
6288 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6289
c5b9bd5e
AD
6290 /* define ethertype filter for timestamped packets */
6291 if (is_l2)
6292 wr32(E1000_ETQF(3),
6293 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6294 E1000_ETQF_1588 | /* enable timestamping */
6295 ETH_P_1588)); /* 1588 eth protocol type */
6296 else
6297 wr32(E1000_ETQF(3), 0);
6298
6299#define PTP_PORT 319
6300 /* L4 Queue Filter[3]: filter by destination port and protocol */
6301 if (is_l4) {
6302 u32 ftqf = (IPPROTO_UDP /* UDP */
6303 | E1000_FTQF_VF_BP /* VF not compared */
6304 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6305 | E1000_FTQF_MASK); /* mask all inputs */
6306 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6307
6308 wr32(E1000_IMIR(3), htons(PTP_PORT));
6309 wr32(E1000_IMIREXT(3),
6310 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6311 if (hw->mac.type == e1000_82576) {
6312 /* enable source port check */
6313 wr32(E1000_SPQF(3), htons(PTP_PORT));
6314 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6315 }
6316 wr32(E1000_FTQF(3), ftqf);
6317 } else {
6318 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6319 }
33af6bcc
PO
6320 wrfl();
6321
6322 adapter->hwtstamp_config = config;
6323
6324 /* clear TX/RX time stamp registers, just to be sure */
6325 regval = rd32(E1000_TXSTMPH);
6326 regval = rd32(E1000_RXSTMPH);
c6cb090b 6327
33af6bcc
PO
6328 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6329 -EFAULT : 0;
c6cb090b
PO
6330}
6331
9d5c8243
AK
6332/**
6333 * igb_ioctl -
6334 * @netdev:
6335 * @ifreq:
6336 * @cmd:
6337 **/
6338static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6339{
6340 switch (cmd) {
6341 case SIOCGMIIPHY:
6342 case SIOCGMIIREG:
6343 case SIOCSMIIREG:
6344 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6345 case SIOCSHWTSTAMP:
6346 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6347 default:
6348 return -EOPNOTSUPP;
6349 }
6350}
6351
009bc06e
AD
6352s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6353{
6354 struct igb_adapter *adapter = hw->back;
6355 u16 cap_offset;
6356
bdaae04c 6357 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6358 if (!cap_offset)
6359 return -E1000_ERR_CONFIG;
6360
6361 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6362
6363 return 0;
6364}
6365
6366s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6367{
6368 struct igb_adapter *adapter = hw->back;
6369 u16 cap_offset;
6370
bdaae04c 6371 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6372 if (!cap_offset)
6373 return -E1000_ERR_CONFIG;
6374
6375 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6376
6377 return 0;
6378}
6379
b2cb09b1 6380static void igb_vlan_mode(struct net_device *netdev, u32 features)
9d5c8243
AK
6381{
6382 struct igb_adapter *adapter = netdev_priv(netdev);
6383 struct e1000_hw *hw = &adapter->hw;
6384 u32 ctrl, rctl;
5faf030c 6385 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6386
5faf030c 6387 if (enable) {
9d5c8243
AK
6388 /* enable VLAN tag insert/strip */
6389 ctrl = rd32(E1000_CTRL);
6390 ctrl |= E1000_CTRL_VME;
6391 wr32(E1000_CTRL, ctrl);
6392
51466239 6393 /* Disable CFI check */
9d5c8243 6394 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6395 rctl &= ~E1000_RCTL_CFIEN;
6396 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6397 } else {
6398 /* disable VLAN tag insert/strip */
6399 ctrl = rd32(E1000_CTRL);
6400 ctrl &= ~E1000_CTRL_VME;
6401 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6402 }
6403
e1739522 6404 igb_rlpml_set(adapter);
9d5c8243
AK
6405}
6406
6407static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6408{
6409 struct igb_adapter *adapter = netdev_priv(netdev);
6410 struct e1000_hw *hw = &adapter->hw;
4ae196df 6411 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6412
51466239
AD
6413 /* attempt to add filter to vlvf array */
6414 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6415
51466239
AD
6416 /* add the filter since PF can receive vlans w/o entry in vlvf */
6417 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6418
6419 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6420}
6421
6422static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6423{
6424 struct igb_adapter *adapter = netdev_priv(netdev);
6425 struct e1000_hw *hw = &adapter->hw;
4ae196df 6426 int pf_id = adapter->vfs_allocated_count;
51466239 6427 s32 err;
9d5c8243 6428
51466239
AD
6429 /* remove vlan from VLVF table array */
6430 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6431
51466239
AD
6432 /* if vid was not present in VLVF just remove it from table */
6433 if (err)
4ae196df 6434 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6435
6436 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6437}
6438
6439static void igb_restore_vlan(struct igb_adapter *adapter)
6440{
b2cb09b1 6441 u16 vid;
9d5c8243 6442
5faf030c
AD
6443 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6444
b2cb09b1
JP
6445 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6446 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6447}
6448
14ad2513 6449int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6450{
090b1795 6451 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6452 struct e1000_mac_info *mac = &adapter->hw.mac;
6453
6454 mac->autoneg = 0;
6455
14ad2513
DD
6456 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6457 * for the switch() below to work */
6458 if ((spd & 1) || (dplx & ~1))
6459 goto err_inval;
6460
cd2638a8
CW
6461 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6462 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6463 spd != SPEED_1000 &&
6464 dplx != DUPLEX_FULL)
6465 goto err_inval;
cd2638a8 6466
14ad2513 6467 switch (spd + dplx) {
9d5c8243
AK
6468 case SPEED_10 + DUPLEX_HALF:
6469 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6470 break;
6471 case SPEED_10 + DUPLEX_FULL:
6472 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6473 break;
6474 case SPEED_100 + DUPLEX_HALF:
6475 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6476 break;
6477 case SPEED_100 + DUPLEX_FULL:
6478 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6479 break;
6480 case SPEED_1000 + DUPLEX_FULL:
6481 mac->autoneg = 1;
6482 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6483 break;
6484 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6485 default:
14ad2513 6486 goto err_inval;
9d5c8243
AK
6487 }
6488 return 0;
14ad2513
DD
6489
6490err_inval:
6491 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6492 return -EINVAL;
9d5c8243
AK
6493}
6494
3fe7c4c9 6495static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6496{
6497 struct net_device *netdev = pci_get_drvdata(pdev);
6498 struct igb_adapter *adapter = netdev_priv(netdev);
6499 struct e1000_hw *hw = &adapter->hw;
2d064c06 6500 u32 ctrl, rctl, status;
9d5c8243
AK
6501 u32 wufc = adapter->wol;
6502#ifdef CONFIG_PM
6503 int retval = 0;
6504#endif
6505
6506 netif_device_detach(netdev);
6507
a88f10ec
AD
6508 if (netif_running(netdev))
6509 igb_close(netdev);
6510
047e0030 6511 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6512
6513#ifdef CONFIG_PM
6514 retval = pci_save_state(pdev);
6515 if (retval)
6516 return retval;
6517#endif
6518
6519 status = rd32(E1000_STATUS);
6520 if (status & E1000_STATUS_LU)
6521 wufc &= ~E1000_WUFC_LNKC;
6522
6523 if (wufc) {
6524 igb_setup_rctl(adapter);
ff41f8dc 6525 igb_set_rx_mode(netdev);
9d5c8243
AK
6526
6527 /* turn on all-multi mode if wake on multicast is enabled */
6528 if (wufc & E1000_WUFC_MC) {
6529 rctl = rd32(E1000_RCTL);
6530 rctl |= E1000_RCTL_MPE;
6531 wr32(E1000_RCTL, rctl);
6532 }
6533
6534 ctrl = rd32(E1000_CTRL);
6535 /* advertise wake from D3Cold */
6536 #define E1000_CTRL_ADVD3WUC 0x00100000
6537 /* phy power management enable */
6538 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6539 ctrl |= E1000_CTRL_ADVD3WUC;
6540 wr32(E1000_CTRL, ctrl);
6541
9d5c8243 6542 /* Allow time for pending master requests to run */
330a6d6a 6543 igb_disable_pcie_master(hw);
9d5c8243
AK
6544
6545 wr32(E1000_WUC, E1000_WUC_PME_EN);
6546 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6547 } else {
6548 wr32(E1000_WUC, 0);
6549 wr32(E1000_WUFC, 0);
9d5c8243
AK
6550 }
6551
3fe7c4c9
RW
6552 *enable_wake = wufc || adapter->en_mng_pt;
6553 if (!*enable_wake)
88a268c1
NN
6554 igb_power_down_link(adapter);
6555 else
6556 igb_power_up_link(adapter);
9d5c8243
AK
6557
6558 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6559 * would have already happened in close and is redundant. */
6560 igb_release_hw_control(adapter);
6561
6562 pci_disable_device(pdev);
6563
9d5c8243
AK
6564 return 0;
6565}
6566
6567#ifdef CONFIG_PM
3fe7c4c9
RW
6568static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6569{
6570 int retval;
6571 bool wake;
6572
6573 retval = __igb_shutdown(pdev, &wake);
6574 if (retval)
6575 return retval;
6576
6577 if (wake) {
6578 pci_prepare_to_sleep(pdev);
6579 } else {
6580 pci_wake_from_d3(pdev, false);
6581 pci_set_power_state(pdev, PCI_D3hot);
6582 }
6583
6584 return 0;
6585}
6586
9d5c8243
AK
6587static int igb_resume(struct pci_dev *pdev)
6588{
6589 struct net_device *netdev = pci_get_drvdata(pdev);
6590 struct igb_adapter *adapter = netdev_priv(netdev);
6591 struct e1000_hw *hw = &adapter->hw;
6592 u32 err;
6593
6594 pci_set_power_state(pdev, PCI_D0);
6595 pci_restore_state(pdev);
b94f2d77 6596 pci_save_state(pdev);
42bfd33a 6597
aed5dec3 6598 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6599 if (err) {
6600 dev_err(&pdev->dev,
6601 "igb: Cannot enable PCI device from suspend\n");
6602 return err;
6603 }
6604 pci_set_master(pdev);
6605
6606 pci_enable_wake(pdev, PCI_D3hot, 0);
6607 pci_enable_wake(pdev, PCI_D3cold, 0);
6608
047e0030 6609 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6610 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6611 return -ENOMEM;
9d5c8243
AK
6612 }
6613
9d5c8243 6614 igb_reset(adapter);
a8564f03
AD
6615
6616 /* let the f/w know that the h/w is now under the control of the
6617 * driver. */
6618 igb_get_hw_control(adapter);
6619
9d5c8243
AK
6620 wr32(E1000_WUS, ~0);
6621
a88f10ec
AD
6622 if (netif_running(netdev)) {
6623 err = igb_open(netdev);
6624 if (err)
6625 return err;
6626 }
9d5c8243
AK
6627
6628 netif_device_attach(netdev);
6629
9d5c8243
AK
6630 return 0;
6631}
6632#endif
6633
6634static void igb_shutdown(struct pci_dev *pdev)
6635{
3fe7c4c9
RW
6636 bool wake;
6637
6638 __igb_shutdown(pdev, &wake);
6639
6640 if (system_state == SYSTEM_POWER_OFF) {
6641 pci_wake_from_d3(pdev, wake);
6642 pci_set_power_state(pdev, PCI_D3hot);
6643 }
9d5c8243
AK
6644}
6645
6646#ifdef CONFIG_NET_POLL_CONTROLLER
6647/*
6648 * Polling 'interrupt' - used by things like netconsole to send skbs
6649 * without having to re-enable interrupts. It's not called while
6650 * the interrupt routine is executing.
6651 */
6652static void igb_netpoll(struct net_device *netdev)
6653{
6654 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6655 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6656 int i;
9d5c8243 6657
eebbbdba 6658 if (!adapter->msix_entries) {
047e0030 6659 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6660 igb_irq_disable(adapter);
047e0030 6661 napi_schedule(&q_vector->napi);
eebbbdba
AD
6662 return;
6663 }
9d5c8243 6664
047e0030
AD
6665 for (i = 0; i < adapter->num_q_vectors; i++) {
6666 struct igb_q_vector *q_vector = adapter->q_vector[i];
6667 wr32(E1000_EIMC, q_vector->eims_value);
6668 napi_schedule(&q_vector->napi);
eebbbdba 6669 }
9d5c8243
AK
6670}
6671#endif /* CONFIG_NET_POLL_CONTROLLER */
6672
6673/**
6674 * igb_io_error_detected - called when PCI error is detected
6675 * @pdev: Pointer to PCI device
6676 * @state: The current pci connection state
6677 *
6678 * This function is called after a PCI bus error affecting
6679 * this device has been detected.
6680 */
6681static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6682 pci_channel_state_t state)
6683{
6684 struct net_device *netdev = pci_get_drvdata(pdev);
6685 struct igb_adapter *adapter = netdev_priv(netdev);
6686
6687 netif_device_detach(netdev);
6688
59ed6eec
AD
6689 if (state == pci_channel_io_perm_failure)
6690 return PCI_ERS_RESULT_DISCONNECT;
6691
9d5c8243
AK
6692 if (netif_running(netdev))
6693 igb_down(adapter);
6694 pci_disable_device(pdev);
6695
6696 /* Request a slot slot reset. */
6697 return PCI_ERS_RESULT_NEED_RESET;
6698}
6699
6700/**
6701 * igb_io_slot_reset - called after the pci bus has been reset.
6702 * @pdev: Pointer to PCI device
6703 *
6704 * Restart the card from scratch, as if from a cold-boot. Implementation
6705 * resembles the first-half of the igb_resume routine.
6706 */
6707static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6708{
6709 struct net_device *netdev = pci_get_drvdata(pdev);
6710 struct igb_adapter *adapter = netdev_priv(netdev);
6711 struct e1000_hw *hw = &adapter->hw;
40a914fa 6712 pci_ers_result_t result;
42bfd33a 6713 int err;
9d5c8243 6714
aed5dec3 6715 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6716 dev_err(&pdev->dev,
6717 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6718 result = PCI_ERS_RESULT_DISCONNECT;
6719 } else {
6720 pci_set_master(pdev);
6721 pci_restore_state(pdev);
b94f2d77 6722 pci_save_state(pdev);
9d5c8243 6723
40a914fa
AD
6724 pci_enable_wake(pdev, PCI_D3hot, 0);
6725 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6726
40a914fa
AD
6727 igb_reset(adapter);
6728 wr32(E1000_WUS, ~0);
6729 result = PCI_ERS_RESULT_RECOVERED;
6730 }
9d5c8243 6731
ea943d41
JK
6732 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6733 if (err) {
6734 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6735 "failed 0x%0x\n", err);
6736 /* non-fatal, continue */
6737 }
40a914fa
AD
6738
6739 return result;
9d5c8243
AK
6740}
6741
6742/**
6743 * igb_io_resume - called when traffic can start flowing again.
6744 * @pdev: Pointer to PCI device
6745 *
6746 * This callback is called when the error recovery driver tells us that
6747 * its OK to resume normal operation. Implementation resembles the
6748 * second-half of the igb_resume routine.
6749 */
6750static void igb_io_resume(struct pci_dev *pdev)
6751{
6752 struct net_device *netdev = pci_get_drvdata(pdev);
6753 struct igb_adapter *adapter = netdev_priv(netdev);
6754
9d5c8243
AK
6755 if (netif_running(netdev)) {
6756 if (igb_up(adapter)) {
6757 dev_err(&pdev->dev, "igb_up failed after reset\n");
6758 return;
6759 }
6760 }
6761
6762 netif_device_attach(netdev);
6763
6764 /* let the f/w know that the h/w is now under the control of the
6765 * driver. */
6766 igb_get_hw_control(adapter);
9d5c8243
AK
6767}
6768
26ad9178
AD
6769static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6770 u8 qsel)
6771{
6772 u32 rar_low, rar_high;
6773 struct e1000_hw *hw = &adapter->hw;
6774
6775 /* HW expects these in little endian so we reverse the byte order
6776 * from network order (big endian) to little endian
6777 */
6778 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6779 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6780 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6781
6782 /* Indicate to hardware the Address is Valid. */
6783 rar_high |= E1000_RAH_AV;
6784
6785 if (hw->mac.type == e1000_82575)
6786 rar_high |= E1000_RAH_POOL_1 * qsel;
6787 else
6788 rar_high |= E1000_RAH_POOL_1 << qsel;
6789
6790 wr32(E1000_RAL(index), rar_low);
6791 wrfl();
6792 wr32(E1000_RAH(index), rar_high);
6793 wrfl();
6794}
6795
4ae196df
AD
6796static int igb_set_vf_mac(struct igb_adapter *adapter,
6797 int vf, unsigned char *mac_addr)
6798{
6799 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6800 /* VF MAC addresses start at end of receive addresses and moves
6801 * torwards the first, as a result a collision should not be possible */
6802 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6803
37680117 6804 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6805
26ad9178 6806 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6807
6808 return 0;
6809}
6810
8151d294
WM
6811static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6812{
6813 struct igb_adapter *adapter = netdev_priv(netdev);
6814 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6815 return -EINVAL;
6816 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6817 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6818 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6819 " change effective.");
6820 if (test_bit(__IGB_DOWN, &adapter->state)) {
6821 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6822 " but the PF device is not up.\n");
6823 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6824 " attempting to use the VF device.\n");
6825 }
6826 return igb_set_vf_mac(adapter, vf, mac);
6827}
6828
17dc566c
LL
6829static int igb_link_mbps(int internal_link_speed)
6830{
6831 switch (internal_link_speed) {
6832 case SPEED_100:
6833 return 100;
6834 case SPEED_1000:
6835 return 1000;
6836 default:
6837 return 0;
6838 }
6839}
6840
6841static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6842 int link_speed)
6843{
6844 int rf_dec, rf_int;
6845 u32 bcnrc_val;
6846
6847 if (tx_rate != 0) {
6848 /* Calculate the rate factor values to set */
6849 rf_int = link_speed / tx_rate;
6850 rf_dec = (link_speed - (rf_int * tx_rate));
6851 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6852
6853 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6854 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6855 E1000_RTTBCNRC_RF_INT_MASK);
6856 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6857 } else {
6858 bcnrc_val = 0;
6859 }
6860
6861 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6862 wr32(E1000_RTTBCNRC, bcnrc_val);
6863}
6864
6865static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6866{
6867 int actual_link_speed, i;
6868 bool reset_rate = false;
6869
6870 /* VF TX rate limit was not set or not supported */
6871 if ((adapter->vf_rate_link_speed == 0) ||
6872 (adapter->hw.mac.type != e1000_82576))
6873 return;
6874
6875 actual_link_speed = igb_link_mbps(adapter->link_speed);
6876 if (actual_link_speed != adapter->vf_rate_link_speed) {
6877 reset_rate = true;
6878 adapter->vf_rate_link_speed = 0;
6879 dev_info(&adapter->pdev->dev,
6880 "Link speed has been changed. VF Transmit "
6881 "rate is disabled\n");
6882 }
6883
6884 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6885 if (reset_rate)
6886 adapter->vf_data[i].tx_rate = 0;
6887
6888 igb_set_vf_rate_limit(&adapter->hw, i,
6889 adapter->vf_data[i].tx_rate,
6890 actual_link_speed);
6891 }
6892}
6893
8151d294
WM
6894static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6895{
17dc566c
LL
6896 struct igb_adapter *adapter = netdev_priv(netdev);
6897 struct e1000_hw *hw = &adapter->hw;
6898 int actual_link_speed;
6899
6900 if (hw->mac.type != e1000_82576)
6901 return -EOPNOTSUPP;
6902
6903 actual_link_speed = igb_link_mbps(adapter->link_speed);
6904 if ((vf >= adapter->vfs_allocated_count) ||
6905 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6906 (tx_rate < 0) || (tx_rate > actual_link_speed))
6907 return -EINVAL;
6908
6909 adapter->vf_rate_link_speed = actual_link_speed;
6910 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6911 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6912
6913 return 0;
8151d294
WM
6914}
6915
6916static int igb_ndo_get_vf_config(struct net_device *netdev,
6917 int vf, struct ifla_vf_info *ivi)
6918{
6919 struct igb_adapter *adapter = netdev_priv(netdev);
6920 if (vf >= adapter->vfs_allocated_count)
6921 return -EINVAL;
6922 ivi->vf = vf;
6923 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6924 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6925 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6926 ivi->qos = adapter->vf_data[vf].pf_qos;
6927 return 0;
6928}
6929
4ae196df
AD
6930static void igb_vmm_control(struct igb_adapter *adapter)
6931{
6932 struct e1000_hw *hw = &adapter->hw;
10d8e907 6933 u32 reg;
4ae196df 6934
52a1dd4d
AD
6935 switch (hw->mac.type) {
6936 case e1000_82575:
6937 default:
6938 /* replication is not supported for 82575 */
4ae196df 6939 return;
52a1dd4d
AD
6940 case e1000_82576:
6941 /* notify HW that the MAC is adding vlan tags */
6942 reg = rd32(E1000_DTXCTL);
6943 reg |= E1000_DTXCTL_VLAN_ADDED;
6944 wr32(E1000_DTXCTL, reg);
6945 case e1000_82580:
6946 /* enable replication vlan tag stripping */
6947 reg = rd32(E1000_RPLOLR);
6948 reg |= E1000_RPLOLR_STRVLAN;
6949 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6950 case e1000_i350:
6951 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6952 break;
6953 }
10d8e907 6954
d4960307
AD
6955 if (adapter->vfs_allocated_count) {
6956 igb_vmdq_set_loopback_pf(hw, true);
6957 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6958 igb_vmdq_set_anti_spoofing_pf(hw, true,
6959 adapter->vfs_allocated_count);
d4960307
AD
6960 } else {
6961 igb_vmdq_set_loopback_pf(hw, false);
6962 igb_vmdq_set_replication_pf(hw, false);
6963 }
4ae196df
AD
6964}
6965
9d5c8243 6966/* igb_main.c */