]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
Merge tag 'pinctrl-v4.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
e52c0f96
CW
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
9d5c8243 23
876d2d6f
JK
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
9d5c8243
AK
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
b2cb09b1 29#include <linux/bitops.h>
9d5c8243
AK
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
9d5c8243 33#include <linux/ipv6.h>
5a0e3ad6 34#include <linux/slab.h>
9d5c8243
AK
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
01789349 40#include <linux/if.h>
9d5c8243
AK
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
7d13a7d0
AD
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
9d5c8243 49#include <linux/if_ether.h>
40a914fa 50#include <linux/aer.h>
70c71606 51#include <linux/prefetch.h>
749ab2cd 52#include <linux/pm_runtime.h>
806ffb1d 53#include <linux/etherdevice.h>
421e02f0 54#ifdef CONFIG_IGB_DCA
fe4506b6
JC
55#include <linux/dca.h>
56#endif
441fc6fd 57#include <linux/i2c.h>
9d5c8243
AK
58#include "igb.h"
59
67b1b903 60#define MAJ 5
0742337c 61#define MIN 4
6fb46902 62#define BUILD 0
0d1fe82d 63#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 64__stringify(BUILD) "-k"
9d5c8243
AK
65char igb_driver_name[] = "igb";
66char igb_driver_version[] = DRV_VERSION;
67static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462 69static const char igb_copyright[] =
74cfb2e1 70 "Copyright (c) 2007-2014 Intel Corporation.";
9d5c8243 71
9d5c8243
AK
72static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74};
75
cd1631ce 76static const struct pci_device_id igb_pci_tbl[] = {
ceb5f13b
CW
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
53b87ce3
CW
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
d2ba2ed8
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114};
115
116MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
9d5c8243
AK
118static int igb_setup_all_tx_resources(struct igb_adapter *);
119static int igb_setup_all_rx_resources(struct igb_adapter *);
120static void igb_free_all_tx_resources(struct igb_adapter *);
121static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 122static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 123static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 124static void igb_remove(struct pci_dev *pdev);
9d5c8243 125static int igb_sw_init(struct igb_adapter *);
46eafa59
SA
126int igb_open(struct net_device *);
127int igb_close(struct net_device *);
53c7d064 128static void igb_configure(struct igb_adapter *);
9d5c8243
AK
129static void igb_configure_tx(struct igb_adapter *);
130static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
131static void igb_clean_all_tx_rings(struct igb_adapter *);
132static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
133static void igb_clean_tx_ring(struct igb_ring *);
134static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 135static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
136static void igb_update_phy_info(unsigned long);
137static void igb_watchdog(unsigned long);
138static void igb_watchdog_task(struct work_struct *);
cd392f5c 139static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b 140static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
c502ea2e 141 struct rtnl_link_stats64 *stats);
9d5c8243
AK
142static int igb_change_mtu(struct net_device *, int);
143static int igb_set_mac(struct net_device *, void *);
bf456abb 144static void igb_set_uta(struct igb_adapter *adapter, bool set);
9d5c8243
AK
145static irqreturn_t igb_intr(int irq, void *);
146static irqreturn_t igb_intr_msi(int irq, void *);
147static irqreturn_t igb_msix_other(int irq, void *);
047e0030 148static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 149#ifdef CONFIG_IGB_DCA
047e0030 150static void igb_update_dca(struct igb_q_vector *);
fe4506b6 151static void igb_setup_dca(struct igb_adapter *);
421e02f0 152#endif /* CONFIG_IGB_DCA */
661086df 153static int igb_poll(struct napi_struct *, int);
7f0ba845 154static bool igb_clean_tx_irq(struct igb_q_vector *, int);
32b3e08f 155static int igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
156static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157static void igb_tx_timeout(struct net_device *);
158static void igb_reset_task(struct work_struct *);
c502ea2e
CW
159static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
80d5c368
PM
161static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 163static void igb_restore_vlan(struct igb_adapter *);
26ad9178 164static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
165static void igb_ping_all_vfs(struct igb_adapter *);
166static void igb_msg_task(struct igb_adapter *);
4ae196df 167static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 168static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 169static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
170static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171static int igb_ndo_set_vf_vlan(struct net_device *netdev,
79aab093 172 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
ed616689 173static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
70ea4783
LL
174static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
8151d294
WM
176static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
17dc566c 178static void igb_check_vf_rate_limit(struct igb_adapter *);
0e71def2
GH
179static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180static void igb_nfc_filter_restore(struct igb_adapter *adapter);
46a01698
RL
181
182#ifdef CONFIG_PCI_IOV
0224d663 183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
781798a1 184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
ceee3450
TF
185static int igb_disable_sriov(struct pci_dev *dev);
186static int igb_pci_disable_sriov(struct pci_dev *dev);
46a01698 187#endif
9d5c8243 188
9d5c8243 189#ifdef CONFIG_PM
d9dd966d 190#ifdef CONFIG_PM_SLEEP
749ab2cd 191static int igb_suspend(struct device *);
d9dd966d 192#endif
749ab2cd 193static int igb_resume(struct device *);
749ab2cd
YZ
194static int igb_runtime_suspend(struct device *dev);
195static int igb_runtime_resume(struct device *dev);
196static int igb_runtime_idle(struct device *dev);
749ab2cd
YZ
197static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201};
9d5c8243
AK
202#endif
203static void igb_shutdown(struct pci_dev *);
fa44f2f1 204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 205#ifdef CONFIG_IGB_DCA
fe4506b6
JC
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211};
212#endif
9d5c8243
AK
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
37680117 217#ifdef CONFIG_PCI_IOV
6dd6d2b7 218static unsigned int max_vfs;
2a3abf6d 219module_param(max_vfs, uint, 0);
c75c4edf 220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
2a3abf6d
AD
221#endif /* CONFIG_PCI_IOV */
222
9d5c8243
AK
223static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 pci_channel_state_t);
225static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226static void igb_io_resume(struct pci_dev *);
227
3646f0e5 228static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
229 .error_detected = igb_io_error_detected,
230 .slot_reset = igb_io_slot_reset,
231 .resume = igb_io_resume,
232};
233
b6e0c419 234static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
235
236static struct pci_driver igb_driver = {
237 .name = igb_driver_name,
238 .id_table = igb_pci_tbl,
239 .probe = igb_probe,
9f9a12f8 240 .remove = igb_remove,
9d5c8243 241#ifdef CONFIG_PM
749ab2cd 242 .driver.pm = &igb_pm_ops,
9d5c8243
AK
243#endif
244 .shutdown = igb_shutdown,
fa44f2f1 245 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
246 .err_handler = &igb_err_handler
247};
248
249MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251MODULE_LICENSE("GPL");
252MODULE_VERSION(DRV_VERSION);
253
b3f4d599 254#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255static int debug = -1;
256module_param(debug, int, 0);
257MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
c97ec42a
TI
259struct igb_reg_info {
260 u32 ofs;
261 char *name;
262};
263
264static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266 /* General Registers */
267 {E1000_CTRL, "CTRL"},
268 {E1000_STATUS, "STATUS"},
269 {E1000_CTRL_EXT, "CTRL_EXT"},
270
271 /* Interrupt Registers */
272 {E1000_ICR, "ICR"},
273
274 /* RX Registers */
275 {E1000_RCTL, "RCTL"},
276 {E1000_RDLEN(0), "RDLEN"},
277 {E1000_RDH(0), "RDH"},
278 {E1000_RDT(0), "RDT"},
279 {E1000_RXDCTL(0), "RXDCTL"},
280 {E1000_RDBAL(0), "RDBAL"},
281 {E1000_RDBAH(0), "RDBAH"},
282
283 /* TX Registers */
284 {E1000_TCTL, "TCTL"},
285 {E1000_TDBAL(0), "TDBAL"},
286 {E1000_TDBAH(0), "TDBAH"},
287 {E1000_TDLEN(0), "TDLEN"},
288 {E1000_TDH(0), "TDH"},
289 {E1000_TDT(0), "TDT"},
290 {E1000_TXDCTL(0), "TXDCTL"},
291 {E1000_TDFH, "TDFH"},
292 {E1000_TDFT, "TDFT"},
293 {E1000_TDFHS, "TDFHS"},
294 {E1000_TDFPC, "TDFPC"},
295
296 /* List Terminator */
297 {}
298};
299
b980ac18 300/* igb_regdump - register printout routine */
c97ec42a
TI
301static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302{
303 int n = 0;
304 char rname[16];
305 u32 regs[8];
306
307 switch (reginfo->ofs) {
308 case E1000_RDLEN(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDLEN(n));
311 break;
312 case E1000_RDH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDH(n));
315 break;
316 case E1000_RDT(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDT(n));
319 break;
320 case E1000_RXDCTL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RXDCTL(n));
323 break;
324 case E1000_RDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_RDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAH(n));
331 break;
332 case E1000_TDBAL(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDBAL(n));
335 break;
336 case E1000_TDBAH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDBAH(n));
339 break;
340 case E1000_TDLEN(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDLEN(n));
343 break;
344 case E1000_TDH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDH(n));
347 break;
348 case E1000_TDT(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TDT(n));
351 break;
352 case E1000_TXDCTL(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TXDCTL(n));
355 break;
356 default:
876d2d6f 357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
358 return;
359 }
360
361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 regs[2], regs[3]);
c97ec42a
TI
364}
365
b980ac18 366/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
367static void igb_dump(struct igb_adapter *adapter)
368{
369 struct net_device *netdev = adapter->netdev;
370 struct e1000_hw *hw = &adapter->hw;
371 struct igb_reg_info *reginfo;
c97ec42a
TI
372 struct igb_ring *tx_ring;
373 union e1000_adv_tx_desc *tx_desc;
374 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
375 struct igb_ring *rx_ring;
376 union e1000_adv_rx_desc *rx_desc;
377 u32 staterr;
6ad4edfc 378 u16 i, n;
c97ec42a
TI
379
380 if (!netif_msg_hw(adapter))
381 return;
382
383 /* Print netdevice Info */
384 if (netdev) {
385 dev_info(&adapter->pdev->dev, "Net device Info\n");
c75c4edf 386 pr_info("Device Name state trans_start last_rx\n");
876d2d6f 387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
4d0e9657 388 netdev->state, dev_trans_start(netdev), netdev->last_rx);
c97ec42a
TI
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 393 pr_info(" Register Name Value\n");
c97ec42a
TI
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 405 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 406 struct igb_tx_buffer *buffer_info;
c97ec42a 407 tx_ring = adapter->tx_ring[n];
06034649 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
876d2d6f
JK
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
c97ec42a
TI
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
c75c4edf 439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
c97ec42a
TI
440
441 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 442 const char *next_desc;
06034649 443 struct igb_tx_buffer *buffer_info;
60136906 444 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 445 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 446 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
447 if (i == tx_ring->next_to_use &&
448 i == tx_ring->next_to_clean)
449 next_desc = " NTC/U";
450 else if (i == tx_ring->next_to_use)
451 next_desc = " NTU";
452 else if (i == tx_ring->next_to_clean)
453 next_desc = " NTC";
454 else
455 next_desc = "";
456
c75c4edf
CW
457 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
458 i, le64_to_cpu(u0->a),
c97ec42a 459 le64_to_cpu(u0->b),
c9f14bf3
AD
460 (u64)dma_unmap_addr(buffer_info, dma),
461 dma_unmap_len(buffer_info, len),
c97ec42a
TI
462 buffer_info->next_to_watch,
463 (u64)buffer_info->time_stamp,
876d2d6f 464 buffer_info->skb, next_desc);
c97ec42a 465
b669588a 466 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
467 print_hex_dump(KERN_INFO, "",
468 DUMP_PREFIX_ADDRESS,
b669588a 469 16, 1, buffer_info->skb->data,
c9f14bf3
AD
470 dma_unmap_len(buffer_info, len),
471 true);
c97ec42a
TI
472 }
473 }
474
475 /* Print RX Rings Summary */
476rx_ring_summary:
477 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 478 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
479 for (n = 0; n < adapter->num_rx_queues; n++) {
480 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
481 pr_info(" %5d %5X %5X\n",
482 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
483 }
484
485 /* Print RX Rings */
486 if (!netif_msg_rx_status(adapter))
487 goto exit;
488
489 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491 /* Advanced Receive Descriptor (Read) Format
492 * 63 1 0
493 * +-----------------------------------------------------+
494 * 0 | Packet Buffer Address [63:1] |A0/NSE|
495 * +----------------------------------------------+------+
496 * 8 | Header Buffer Address [63:1] | DD |
497 * +-----------------------------------------------------+
498 *
499 *
500 * Advanced Receive Descriptor (Write-Back) Format
501 *
502 * 63 48 47 32 31 30 21 20 17 16 4 3 0
503 * +------------------------------------------------------+
504 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
505 * | Checksum Ident | | | | Type | Type |
506 * +------------------------------------------------------+
507 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 * +------------------------------------------------------+
509 * 63 48 47 32 31 20 19 0
510 */
511
512 for (n = 0; n < adapter->num_rx_queues; n++) {
513 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
514 pr_info("------------------------------------\n");
515 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 pr_info("------------------------------------\n");
c75c4edf
CW
517 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
518 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
519
520 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 521 const char *next_desc;
06034649
AD
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 524 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
c97ec42a
TI
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
1a1c225b
AD
537 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
538 "RWB", i,
c97ec42a
TI
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
1a1c225b 541 next_desc);
c97ec42a 542 } else {
1a1c225b
AD
543 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
544 "R ", i,
c97ec42a
TI
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
1a1c225b 548 next_desc);
c97ec42a 549
b669588a 550 if (netif_msg_pktdata(adapter) &&
1a1c225b 551 buffer_info->dma && buffer_info->page) {
44390ca6
AD
552 print_hex_dump(KERN_INFO, "",
553 DUMP_PREFIX_ADDRESS,
554 16, 1,
b669588a
ET
555 page_address(buffer_info->page) +
556 buffer_info->page_offset,
de78d1f9 557 IGB_RX_BUFSZ, true);
c97ec42a
TI
558 }
559 }
c97ec42a
TI
560 }
561 }
562
563exit:
564 return;
565}
566
b980ac18
JK
567/**
568 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
569 * @hw: pointer to hardware structure
570 * @i2cctl: Current value of I2CCTL register
571 *
572 * Returns the I2C data bit value
b980ac18 573 **/
441fc6fd
CW
574static int igb_get_i2c_data(void *data)
575{
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
da1f1dfe 580 return !!(i2cctl & E1000_I2C_DATA_IN);
441fc6fd
CW
581}
582
b980ac18
JK
583/**
584 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
585 * @data: pointer to hardware structure
586 * @state: I2C data value (0 or 1) to set
587 *
588 * Sets the I2C data bit
b980ac18 589 **/
441fc6fd
CW
590static void igb_set_i2c_data(void *data, int state)
591{
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596 if (state)
597 i2cctl |= E1000_I2C_DATA_OUT;
598 else
599 i2cctl &= ~E1000_I2C_DATA_OUT;
600
601 i2cctl &= ~E1000_I2C_DATA_OE_N;
602 i2cctl |= E1000_I2C_CLK_OE_N;
603 wr32(E1000_I2CPARAMS, i2cctl);
604 wrfl();
605
606}
607
b980ac18
JK
608/**
609 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
610 * @data: pointer to hardware structure
611 * @state: state to set clock
612 *
613 * Sets the I2C clock line to state
b980ac18 614 **/
441fc6fd
CW
615static void igb_set_i2c_clk(void *data, int state)
616{
617 struct igb_adapter *adapter = (struct igb_adapter *)data;
618 struct e1000_hw *hw = &adapter->hw;
619 s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621 if (state) {
622 i2cctl |= E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 } else {
625 i2cctl &= ~E1000_I2C_CLK_OUT;
626 i2cctl &= ~E1000_I2C_CLK_OE_N;
627 }
628 wr32(E1000_I2CPARAMS, i2cctl);
629 wrfl();
630}
631
b980ac18
JK
632/**
633 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
634 * @data: pointer to hardware structure
635 *
636 * Gets the I2C clock state
b980ac18 637 **/
441fc6fd
CW
638static int igb_get_i2c_clk(void *data)
639{
640 struct igb_adapter *adapter = (struct igb_adapter *)data;
641 struct e1000_hw *hw = &adapter->hw;
642 s32 i2cctl = rd32(E1000_I2CPARAMS);
643
da1f1dfe 644 return !!(i2cctl & E1000_I2C_CLK_IN);
441fc6fd
CW
645}
646
647static const struct i2c_algo_bit_data igb_i2c_algo = {
648 .setsda = igb_set_i2c_data,
649 .setscl = igb_set_i2c_clk,
650 .getsda = igb_get_i2c_data,
651 .getscl = igb_get_i2c_clk,
652 .udelay = 5,
653 .timeout = 20,
654};
655
9d5c8243 656/**
b980ac18
JK
657 * igb_get_hw_dev - return device
658 * @hw: pointer to hardware structure
659 *
660 * used by hardware layer to print debugging information
9d5c8243 661 **/
c041076a 662struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
663{
664 struct igb_adapter *adapter = hw->back;
c041076a 665 return adapter->netdev;
9d5c8243 666}
38c845c7 667
9d5c8243 668/**
b980ac18 669 * igb_init_module - Driver Registration Routine
9d5c8243 670 *
b980ac18
JK
671 * igb_init_module is the first routine called when the driver is
672 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
673 **/
674static int __init igb_init_module(void)
675{
676 int ret;
9005df38 677
876d2d6f 678 pr_info("%s - version %s\n",
9d5c8243 679 igb_driver_string, igb_driver_version);
876d2d6f 680 pr_info("%s\n", igb_copyright);
9d5c8243 681
421e02f0 682#ifdef CONFIG_IGB_DCA
fe4506b6
JC
683 dca_register_notify(&dca_notifier);
684#endif
bbd98fe4 685 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
686 return ret;
687}
688
689module_init(igb_init_module);
690
691/**
b980ac18 692 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 693 *
b980ac18
JK
694 * igb_exit_module is called just before the driver is removed
695 * from memory.
9d5c8243
AK
696 **/
697static void __exit igb_exit_module(void)
698{
421e02f0 699#ifdef CONFIG_IGB_DCA
fe4506b6
JC
700 dca_unregister_notify(&dca_notifier);
701#endif
9d5c8243
AK
702 pci_unregister_driver(&igb_driver);
703}
704
705module_exit(igb_exit_module);
706
26bc19ec
AD
707#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708/**
b980ac18
JK
709 * igb_cache_ring_register - Descriptor ring to register mapping
710 * @adapter: board private structure to initialize
26bc19ec 711 *
b980ac18
JK
712 * Once we know the feature-set enabled for the device, we'll cache
713 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
714 **/
715static void igb_cache_ring_register(struct igb_adapter *adapter)
716{
ee1b9f06 717 int i = 0, j = 0;
047e0030 718 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
719
720 switch (adapter->hw.mac.type) {
721 case e1000_82576:
722 /* The queues are allocated for virtualization such that VF 0
723 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 * In order to avoid collision we start at the first free queue
725 * and continue consuming queues in the same sequence
726 */
ee1b9f06 727 if (adapter->vfs_allocated_count) {
a99955fc 728 for (; i < adapter->rss_queues; i++)
3025a446 729 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 730 Q_IDX_82576(i);
ee1b9f06 731 }
b26141d4 732 /* Fall through */
26bc19ec 733 case e1000_82575:
55cac248 734 case e1000_82580:
d2ba2ed8 735 case e1000_i350:
ceb5f13b 736 case e1000_i354:
f96a8a0b
CW
737 case e1000_i210:
738 case e1000_i211:
b26141d4 739 /* Fall through */
26bc19ec 740 default:
ee1b9f06 741 for (; i < adapter->num_rx_queues; i++)
3025a446 742 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 743 for (; j < adapter->num_tx_queues; j++)
3025a446 744 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
745 break;
746 }
747}
748
22a8b291
FT
749u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750{
751 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753 u32 value = 0;
754
755 if (E1000_REMOVED(hw_addr))
756 return ~value;
757
758 value = readl(&hw_addr[reg]);
759
760 /* reads should not return all F's */
761 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762 struct net_device *netdev = igb->netdev;
763 hw->hw_addr = NULL;
764 netif_device_detach(netdev);
765 netdev_err(netdev, "PCIe link lost, device now detached\n");
766 }
767
768 return value;
769}
770
4be000c8
AD
771/**
772 * igb_write_ivar - configure ivar for given MSI-X vector
773 * @hw: pointer to the HW structure
774 * @msix_vector: vector number we are allocating to a given ring
775 * @index: row index of IVAR register to write within IVAR table
776 * @offset: column offset of in IVAR, should be multiple of 8
777 *
778 * This function is intended to handle the writing of the IVAR register
779 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
780 * each containing an cause allocation for an Rx and Tx ring, and a
781 * variable number of rows depending on the number of queues supported.
782 **/
783static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784 int index, int offset)
785{
786 u32 ivar = array_rd32(E1000_IVAR0, index);
787
788 /* clear any bits that are currently set */
789 ivar &= ~((u32)0xFF << offset);
790
791 /* write vector and valid bit */
792 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793
794 array_wr32(E1000_IVAR0, index, ivar);
795}
796
9d5c8243 797#define IGB_N0_QUEUE -1
047e0030 798static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 799{
047e0030 800 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 801 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
802 int rx_queue = IGB_N0_QUEUE;
803 int tx_queue = IGB_N0_QUEUE;
4be000c8 804 u32 msixbm = 0;
047e0030 805
0ba82994
AD
806 if (q_vector->rx.ring)
807 rx_queue = q_vector->rx.ring->reg_idx;
808 if (q_vector->tx.ring)
809 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
810
811 switch (hw->mac.type) {
812 case e1000_82575:
9d5c8243 813 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
814 * bitmask for the EICR/EIMS/EIMC registers. To assign one
815 * or more queues to a vector, we write the appropriate bits
816 * into the MSIXBM register for that vector.
817 */
047e0030 818 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 819 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 820 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 821 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
cd14ef54 822 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
feeb2721 823 msixbm |= E1000_EIMS_OTHER;
9d5c8243 824 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 825 q_vector->eims_value = msixbm;
2d064c06
AD
826 break;
827 case e1000_82576:
b980ac18 828 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
829 * with 8 rows. The ordering is column-major so we use the
830 * lower 3 bits as the row index, and the 4th bit as the
831 * column offset.
832 */
833 if (rx_queue > IGB_N0_QUEUE)
834 igb_write_ivar(hw, msix_vector,
835 rx_queue & 0x7,
836 (rx_queue & 0x8) << 1);
837 if (tx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 tx_queue & 0x7,
840 ((tx_queue & 0x8) << 1) + 8);
a51d8c21 841 q_vector->eims_value = BIT(msix_vector);
2d064c06 842 break;
55cac248 843 case e1000_82580:
d2ba2ed8 844 case e1000_i350:
ceb5f13b 845 case e1000_i354:
f96a8a0b
CW
846 case e1000_i210:
847 case e1000_i211:
b980ac18 848 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
849 * however instead of ordering column-major we have things
850 * ordered row-major. So we traverse the table by using
851 * bit 0 as the column offset, and the remaining bits as the
852 * row index.
853 */
854 if (rx_queue > IGB_N0_QUEUE)
855 igb_write_ivar(hw, msix_vector,
856 rx_queue >> 1,
857 (rx_queue & 0x1) << 4);
858 if (tx_queue > IGB_N0_QUEUE)
859 igb_write_ivar(hw, msix_vector,
860 tx_queue >> 1,
861 ((tx_queue & 0x1) << 4) + 8);
a51d8c21 862 q_vector->eims_value = BIT(msix_vector);
55cac248 863 break;
2d064c06
AD
864 default:
865 BUG();
866 break;
867 }
26b39276
AD
868
869 /* add q_vector eims value to global eims_enable_mask */
870 adapter->eims_enable_mask |= q_vector->eims_value;
871
872 /* configure q_vector to set itr on first interrupt */
873 q_vector->set_itr = 1;
9d5c8243
AK
874}
875
876/**
b980ac18
JK
877 * igb_configure_msix - Configure MSI-X hardware
878 * @adapter: board private structure to initialize
9d5c8243 879 *
b980ac18
JK
880 * igb_configure_msix sets up the hardware to properly
881 * generate MSI-X interrupts.
9d5c8243
AK
882 **/
883static void igb_configure_msix(struct igb_adapter *adapter)
884{
885 u32 tmp;
886 int i, vector = 0;
887 struct e1000_hw *hw = &adapter->hw;
888
889 adapter->eims_enable_mask = 0;
9d5c8243
AK
890
891 /* set vector for other causes, i.e. link changes */
2d064c06
AD
892 switch (hw->mac.type) {
893 case e1000_82575:
9d5c8243
AK
894 tmp = rd32(E1000_CTRL_EXT);
895 /* enable MSI-X PBA support*/
896 tmp |= E1000_CTRL_EXT_PBA_CLR;
897
898 /* Auto-Mask interrupts upon ICR read. */
899 tmp |= E1000_CTRL_EXT_EIAME;
900 tmp |= E1000_CTRL_EXT_IRCA;
901
902 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
903
904 /* enable msix_other interrupt */
b980ac18 905 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 906 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 907
2d064c06
AD
908 break;
909
910 case e1000_82576:
55cac248 911 case e1000_82580:
d2ba2ed8 912 case e1000_i350:
ceb5f13b 913 case e1000_i354:
f96a8a0b
CW
914 case e1000_i210:
915 case e1000_i211:
047e0030 916 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
917 * won't stick. And it will take days to debug.
918 */
047e0030 919 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
920 E1000_GPIE_PBA | E1000_GPIE_EIAME |
921 E1000_GPIE_NSICR);
047e0030
AD
922
923 /* enable msix_other interrupt */
a51d8c21 924 adapter->eims_other = BIT(vector);
2d064c06 925 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 926
047e0030 927 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
928 break;
929 default:
930 /* do nothing, since nothing else supports MSI-X */
931 break;
932 } /* switch (hw->mac.type) */
047e0030
AD
933
934 adapter->eims_enable_mask |= adapter->eims_other;
935
26b39276
AD
936 for (i = 0; i < adapter->num_q_vectors; i++)
937 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 938
9d5c8243
AK
939 wrfl();
940}
941
942/**
b980ac18
JK
943 * igb_request_msix - Initialize MSI-X interrupts
944 * @adapter: board private structure to initialize
9d5c8243 945 *
b980ac18
JK
946 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
947 * kernel.
9d5c8243
AK
948 **/
949static int igb_request_msix(struct igb_adapter *adapter)
950{
951 struct net_device *netdev = adapter->netdev;
52285b76 952 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 953
047e0030 954 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 955 igb_msix_other, 0, netdev->name, adapter);
047e0030 956 if (err)
52285b76 957 goto err_out;
047e0030
AD
958
959 for (i = 0; i < adapter->num_q_vectors; i++) {
960 struct igb_q_vector *q_vector = adapter->q_vector[i];
961
52285b76
SA
962 vector++;
963
7b06a690 964 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
047e0030 965
0ba82994 966 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 967 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
968 q_vector->rx.ring->queue_index);
969 else if (q_vector->tx.ring)
047e0030 970 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
971 q_vector->tx.ring->queue_index);
972 else if (q_vector->rx.ring)
047e0030 973 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 974 q_vector->rx.ring->queue_index);
9d5c8243 975 else
047e0030
AD
976 sprintf(q_vector->name, "%s-unused", netdev->name);
977
9d5c8243 978 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
979 igb_msix_ring, 0, q_vector->name,
980 q_vector);
9d5c8243 981 if (err)
52285b76 982 goto err_free;
9d5c8243
AK
983 }
984
9d5c8243
AK
985 igb_configure_msix(adapter);
986 return 0;
52285b76
SA
987
988err_free:
989 /* free already assigned IRQs */
990 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991
992 vector--;
993 for (i = 0; i < vector; i++) {
994 free_irq(adapter->msix_entries[free_vector++].vector,
995 adapter->q_vector[i]);
996 }
997err_out:
9d5c8243
AK
998 return err;
999}
1000
5536d210 1001/**
b980ac18
JK
1002 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1003 * @adapter: board private structure to initialize
1004 * @v_idx: Index of vector to be freed
5536d210 1005 *
02ef6e1d 1006 * This function frees the memory allocated to the q_vector.
5536d210
AD
1007 **/
1008static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009{
1010 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011
02ef6e1d
CW
1012 adapter->q_vector[v_idx] = NULL;
1013
1014 /* igb_get_stats64() might access the rings on this vector,
1015 * we must wait a grace period before freeing it.
1016 */
17a402a0
CW
1017 if (q_vector)
1018 kfree_rcu(q_vector, rcu);
02ef6e1d
CW
1019}
1020
1021/**
1022 * igb_reset_q_vector - Reset config for interrupt vector
1023 * @adapter: board private structure to initialize
1024 * @v_idx: Index of vector to be reset
1025 *
1026 * If NAPI is enabled it will delete any references to the
1027 * NAPI struct. This is preparation for igb_free_q_vector.
1028 **/
1029static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030{
1031 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032
cb06d102
CP
1033 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1034 * allocated. So, q_vector is NULL so we should stop here.
1035 */
1036 if (!q_vector)
1037 return;
1038
5536d210
AD
1039 if (q_vector->tx.ring)
1040 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041
1042 if (q_vector->rx.ring)
2439fc4d 1043 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
5536d210 1044
5536d210
AD
1045 netif_napi_del(&q_vector->napi);
1046
02ef6e1d
CW
1047}
1048
1049static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050{
1051 int v_idx = adapter->num_q_vectors;
1052
cd14ef54 1053 if (adapter->flags & IGB_FLAG_HAS_MSIX)
02ef6e1d 1054 pci_disable_msix(adapter->pdev);
cd14ef54 1055 else if (adapter->flags & IGB_FLAG_HAS_MSI)
02ef6e1d 1056 pci_disable_msi(adapter->pdev);
02ef6e1d
CW
1057
1058 while (v_idx--)
1059 igb_reset_q_vector(adapter, v_idx);
5536d210
AD
1060}
1061
047e0030 1062/**
b980ac18
JK
1063 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1064 * @adapter: board private structure to initialize
047e0030 1065 *
b980ac18
JK
1066 * This function frees the memory allocated to the q_vectors. In addition if
1067 * NAPI is enabled it will delete any references to the NAPI struct prior
1068 * to freeing the q_vector.
047e0030
AD
1069 **/
1070static void igb_free_q_vectors(struct igb_adapter *adapter)
1071{
5536d210
AD
1072 int v_idx = adapter->num_q_vectors;
1073
1074 adapter->num_tx_queues = 0;
1075 adapter->num_rx_queues = 0;
047e0030 1076 adapter->num_q_vectors = 0;
5536d210 1077
02ef6e1d
CW
1078 while (v_idx--) {
1079 igb_reset_q_vector(adapter, v_idx);
5536d210 1080 igb_free_q_vector(adapter, v_idx);
02ef6e1d 1081 }
047e0030
AD
1082}
1083
1084/**
b980ac18
JK
1085 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086 * @adapter: board private structure to initialize
047e0030 1087 *
b980ac18
JK
1088 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1089 * MSI-X interrupts allocated.
047e0030
AD
1090 */
1091static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092{
047e0030
AD
1093 igb_free_q_vectors(adapter);
1094 igb_reset_interrupt_capability(adapter);
1095}
9d5c8243
AK
1096
1097/**
b980ac18
JK
1098 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1099 * @adapter: board private structure to initialize
1100 * @msix: boolean value of MSIX capability
9d5c8243 1101 *
b980ac18
JK
1102 * Attempt to configure interrupts using the best available
1103 * capabilities of the hardware and kernel.
9d5c8243 1104 **/
53c7d064 1105static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1106{
1107 int err;
1108 int numvecs, i;
1109
53c7d064
SA
1110 if (!msix)
1111 goto msi_only;
cd14ef54 1112 adapter->flags |= IGB_FLAG_HAS_MSIX;
53c7d064 1113
83b7180d 1114 /* Number of supported queues. */
a99955fc 1115 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1116 if (adapter->vfs_allocated_count)
1117 adapter->num_tx_queues = 1;
1118 else
1119 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1120
b980ac18 1121 /* start with one vector for every Rx queue */
047e0030
AD
1122 numvecs = adapter->num_rx_queues;
1123
b980ac18 1124 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1125 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126 numvecs += adapter->num_tx_queues;
047e0030
AD
1127
1128 /* store the number of vectors reserved for queues */
1129 adapter->num_q_vectors = numvecs;
1130
1131 /* add 1 vector for link status interrupts */
1132 numvecs++;
9d5c8243
AK
1133 for (i = 0; i < numvecs; i++)
1134 adapter->msix_entries[i].entry = i;
1135
479d02df
AG
1136 err = pci_enable_msix_range(adapter->pdev,
1137 adapter->msix_entries,
1138 numvecs,
1139 numvecs);
1140 if (err > 0)
0c2cc02e 1141 return;
9d5c8243
AK
1142
1143 igb_reset_interrupt_capability(adapter);
1144
1145 /* If we can't do MSI-X, try MSI */
1146msi_only:
b709323d 1147 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
2a3abf6d
AD
1148#ifdef CONFIG_PCI_IOV
1149 /* disable SR-IOV for non MSI-X configurations */
1150 if (adapter->vf_data) {
1151 struct e1000_hw *hw = &adapter->hw;
1152 /* disable iov and allow time for transactions to clear */
1153 pci_disable_sriov(adapter->pdev);
1154 msleep(500);
1155
1156 kfree(adapter->vf_data);
1157 adapter->vf_data = NULL;
1158 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1159 wrfl();
2a3abf6d
AD
1160 msleep(100);
1161 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162 }
1163#endif
4fc82adf 1164 adapter->vfs_allocated_count = 0;
a99955fc 1165 adapter->rss_queues = 1;
4fc82adf 1166 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1167 adapter->num_rx_queues = 1;
661086df 1168 adapter->num_tx_queues = 1;
047e0030 1169 adapter->num_q_vectors = 1;
9d5c8243 1170 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1171 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1172}
1173
5536d210
AD
1174static void igb_add_ring(struct igb_ring *ring,
1175 struct igb_ring_container *head)
1176{
1177 head->ring = ring;
1178 head->count++;
1179}
1180
047e0030 1181/**
b980ac18
JK
1182 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183 * @adapter: board private structure to initialize
1184 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1185 * @v_idx: index of vector in adapter struct
1186 * @txr_count: total number of Tx rings to allocate
1187 * @txr_idx: index of first Tx ring to allocate
1188 * @rxr_count: total number of Rx rings to allocate
1189 * @rxr_idx: index of first Rx ring to allocate
047e0030 1190 *
b980ac18 1191 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1192 **/
5536d210
AD
1193static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194 int v_count, int v_idx,
1195 int txr_count, int txr_idx,
1196 int rxr_count, int rxr_idx)
047e0030
AD
1197{
1198 struct igb_q_vector *q_vector;
5536d210
AD
1199 struct igb_ring *ring;
1200 int ring_count, size;
047e0030 1201
5536d210
AD
1202 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203 if (txr_count > 1 || rxr_count > 1)
1204 return -ENOMEM;
1205
1206 ring_count = txr_count + rxr_count;
1207 size = sizeof(struct igb_q_vector) +
1208 (sizeof(struct igb_ring) * ring_count);
1209
1210 /* allocate q_vector and rings */
02ef6e1d 1211 q_vector = adapter->q_vector[v_idx];
72ddef05 1212 if (!q_vector) {
02ef6e1d 1213 q_vector = kzalloc(size, GFP_KERNEL);
72ddef05
SS
1214 } else if (size > ksize(q_vector)) {
1215 kfree_rcu(q_vector, rcu);
1216 q_vector = kzalloc(size, GFP_KERNEL);
1217 } else {
c0a06ee1 1218 memset(q_vector, 0, size);
72ddef05 1219 }
5536d210
AD
1220 if (!q_vector)
1221 return -ENOMEM;
1222
1223 /* initialize NAPI */
1224 netif_napi_add(adapter->netdev, &q_vector->napi,
1225 igb_poll, 64);
1226
1227 /* tie q_vector and adapter together */
1228 adapter->q_vector[v_idx] = q_vector;
1229 q_vector->adapter = adapter;
1230
1231 /* initialize work limits */
1232 q_vector->tx.work_limit = adapter->tx_work_limit;
1233
1234 /* initialize ITR configuration */
7b06a690 1235 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
5536d210
AD
1236 q_vector->itr_val = IGB_START_ITR;
1237
1238 /* initialize pointer to rings */
1239 ring = q_vector->ring;
1240
4e227667
AD
1241 /* intialize ITR */
1242 if (rxr_count) {
1243 /* rx or rx/tx vector */
1244 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245 q_vector->itr_val = adapter->rx_itr_setting;
1246 } else {
1247 /* tx only vector */
1248 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249 q_vector->itr_val = adapter->tx_itr_setting;
1250 }
1251
5536d210
AD
1252 if (txr_count) {
1253 /* assign generic ring traits */
1254 ring->dev = &adapter->pdev->dev;
1255 ring->netdev = adapter->netdev;
1256
1257 /* configure backlink on ring */
1258 ring->q_vector = q_vector;
1259
1260 /* update q_vector Tx values */
1261 igb_add_ring(ring, &q_vector->tx);
1262
1263 /* For 82575, context index must be unique per ring. */
1264 if (adapter->hw.mac.type == e1000_82575)
1265 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266
1267 /* apply Tx specific ring traits */
1268 ring->count = adapter->tx_ring_count;
1269 ring->queue_index = txr_idx;
1270
827da44c
JS
1271 u64_stats_init(&ring->tx_syncp);
1272 u64_stats_init(&ring->tx_syncp2);
1273
5536d210
AD
1274 /* assign ring to adapter */
1275 adapter->tx_ring[txr_idx] = ring;
1276
1277 /* push pointer to next ring */
1278 ring++;
047e0030 1279 }
81c2fc22 1280
5536d210
AD
1281 if (rxr_count) {
1282 /* assign generic ring traits */
1283 ring->dev = &adapter->pdev->dev;
1284 ring->netdev = adapter->netdev;
047e0030 1285
5536d210
AD
1286 /* configure backlink on ring */
1287 ring->q_vector = q_vector;
047e0030 1288
5536d210
AD
1289 /* update q_vector Rx values */
1290 igb_add_ring(ring, &q_vector->rx);
047e0030 1291
5536d210
AD
1292 /* set flag indicating ring supports SCTP checksum offload */
1293 if (adapter->hw.mac.type >= e1000_82576)
1294 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1295
e52c0f96 1296 /* On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1297 * have the tag byte-swapped.
b980ac18 1298 */
5536d210
AD
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1301
5536d210
AD
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1305
827da44c
JS
1306 u64_stats_init(&ring->rx_syncp);
1307
5536d210
AD
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1310 }
1311
1312 return 0;
047e0030
AD
1313}
1314
5536d210 1315
047e0030 1316/**
b980ac18
JK
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
047e0030 1319 *
b980ac18
JK
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
047e0030 1322 **/
5536d210 1323static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1324{
5536d210
AD
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 int err;
047e0030 1330
5536d210
AD
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 0, 0, 1, rxr_idx);
047e0030 1335
5536d210
AD
1336 if (err)
1337 goto err_out;
1338
1339 /* update counts and index */
1340 rxr_remaining--;
1341 rxr_idx++;
047e0030 1342 }
047e0030 1343 }
5536d210
AD
1344
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
9005df38 1348
5536d210
AD
1349 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 tqpv, txr_idx, rqpv, rxr_idx);
1351
1352 if (err)
1353 goto err_out;
1354
1355 /* update counts and index */
1356 rxr_remaining -= rqpv;
1357 txr_remaining -= tqpv;
1358 rxr_idx++;
1359 txr_idx++;
1360 }
1361
047e0030 1362 return 0;
5536d210
AD
1363
1364err_out:
1365 adapter->num_tx_queues = 0;
1366 adapter->num_rx_queues = 0;
1367 adapter->num_q_vectors = 0;
1368
1369 while (v_idx--)
1370 igb_free_q_vector(adapter, v_idx);
1371
1372 return -ENOMEM;
047e0030
AD
1373}
1374
1375/**
b980ac18
JK
1376 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 * @adapter: board private structure to initialize
1378 * @msix: boolean value of MSIX capability
047e0030 1379 *
b980ac18 1380 * This function initializes the interrupts and allocates all of the queues.
047e0030 1381 **/
53c7d064 1382static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1383{
1384 struct pci_dev *pdev = adapter->pdev;
1385 int err;
1386
53c7d064 1387 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1388
1389 err = igb_alloc_q_vectors(adapter);
1390 if (err) {
1391 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 goto err_alloc_q_vectors;
1393 }
1394
5536d210 1395 igb_cache_ring_register(adapter);
047e0030
AD
1396
1397 return 0;
5536d210 1398
047e0030
AD
1399err_alloc_q_vectors:
1400 igb_reset_interrupt_capability(adapter);
1401 return err;
1402}
1403
9d5c8243 1404/**
b980ac18
JK
1405 * igb_request_irq - initialize interrupts
1406 * @adapter: board private structure to initialize
9d5c8243 1407 *
b980ac18
JK
1408 * Attempts to configure interrupts using the best available
1409 * capabilities of the hardware and kernel.
9d5c8243
AK
1410 **/
1411static int igb_request_irq(struct igb_adapter *adapter)
1412{
1413 struct net_device *netdev = adapter->netdev;
047e0030 1414 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1415 int err = 0;
1416
cd14ef54 1417 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243 1418 err = igb_request_msix(adapter);
844290e5 1419 if (!err)
9d5c8243 1420 goto request_done;
9d5c8243 1421 /* fall back to MSI */
5536d210
AD
1422 igb_free_all_tx_resources(adapter);
1423 igb_free_all_rx_resources(adapter);
53c7d064 1424
047e0030 1425 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1426 err = igb_init_interrupt_scheme(adapter, false);
1427 if (err)
047e0030 1428 goto request_done;
53c7d064 1429
047e0030
AD
1430 igb_setup_all_tx_resources(adapter);
1431 igb_setup_all_rx_resources(adapter);
53c7d064 1432 igb_configure(adapter);
9d5c8243 1433 }
844290e5 1434
c74d588e
AD
1435 igb_assign_vector(adapter->q_vector[0], 0);
1436
7dfc16fa 1437 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1438 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1439 netdev->name, adapter);
9d5c8243
AK
1440 if (!err)
1441 goto request_done;
047e0030 1442
9d5c8243
AK
1443 /* fall back to legacy interrupts */
1444 igb_reset_interrupt_capability(adapter);
7dfc16fa 1445 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1446 }
1447
c74d588e 1448 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1449 netdev->name, adapter);
9d5c8243 1450
6cb5e577 1451 if (err)
c74d588e 1452 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1453 err);
9d5c8243
AK
1454
1455request_done:
1456 return err;
1457}
1458
1459static void igb_free_irq(struct igb_adapter *adapter)
1460{
cd14ef54 1461 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243
AK
1462 int vector = 0, i;
1463
047e0030 1464 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1465
0d1ae7f4 1466 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1467 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1468 adapter->q_vector[i]);
047e0030
AD
1469 } else {
1470 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1471 }
9d5c8243
AK
1472}
1473
1474/**
b980ac18
JK
1475 * igb_irq_disable - Mask off interrupt generation on the NIC
1476 * @adapter: board private structure
9d5c8243
AK
1477 **/
1478static void igb_irq_disable(struct igb_adapter *adapter)
1479{
1480 struct e1000_hw *hw = &adapter->hw;
1481
b980ac18 1482 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1483 * mapped into these registers and so clearing the bits can cause
1484 * issues on the VF drivers so we only need to clear what we set
1485 */
cd14ef54 1486 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2dfd1212 1487 u32 regval = rd32(E1000_EIAM);
9005df38 1488
2dfd1212
AD
1489 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 regval = rd32(E1000_EIAC);
1492 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1493 }
844290e5
PW
1494
1495 wr32(E1000_IAM, 0);
9d5c8243
AK
1496 wr32(E1000_IMC, ~0);
1497 wrfl();
cd14ef54 1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
81a61859 1499 int i;
9005df38 1500
81a61859
ET
1501 for (i = 0; i < adapter->num_q_vectors; i++)
1502 synchronize_irq(adapter->msix_entries[i].vector);
1503 } else {
1504 synchronize_irq(adapter->pdev->irq);
1505 }
9d5c8243
AK
1506}
1507
1508/**
b980ac18
JK
1509 * igb_irq_enable - Enable default interrupt generation settings
1510 * @adapter: board private structure
9d5c8243
AK
1511 **/
1512static void igb_irq_enable(struct igb_adapter *adapter)
1513{
1514 struct e1000_hw *hw = &adapter->hw;
1515
cd14ef54 1516 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
06218a8d 1517 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212 1518 u32 regval = rd32(E1000_EIAC);
9005df38 1519
2dfd1212
AD
1520 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 regval = rd32(E1000_EIAM);
1522 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1523 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1524 if (adapter->vfs_allocated_count) {
4ae196df 1525 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1526 ims |= E1000_IMS_VMMB;
1527 }
1528 wr32(E1000_IMS, ims);
844290e5 1529 } else {
55cac248
AD
1530 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 E1000_IMS_DRSTA);
844290e5 1534 }
9d5c8243
AK
1535}
1536
1537static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538{
51466239 1539 struct e1000_hw *hw = &adapter->hw;
8b77c6b2 1540 u16 pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
1541 u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1543
1544 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 /* add VID to filter table */
8b77c6b2 1546 igb_vfta_set(hw, vid, pf_id, true, true);
51466239
AD
1547 adapter->mng_vlan_id = vid;
1548 } else {
1549 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 }
1551
1552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 (vid != old_vid) &&
b2cb09b1 1554 !test_bit(old_vid, adapter->active_vlans)) {
51466239 1555 /* remove VID from filter table */
8b77c6b2 1556 igb_vfta_set(hw, vid, pf_id, false, true);
9d5c8243
AK
1557 }
1558}
1559
1560/**
b980ac18
JK
1561 * igb_release_hw_control - release control of the h/w to f/w
1562 * @adapter: address of board private structure
9d5c8243 1563 *
b980ac18
JK
1564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 * For ASF and Pass Through versions of f/w this means that the
1566 * driver is no longer loaded.
9d5c8243
AK
1567 **/
1568static void igb_release_hw_control(struct igb_adapter *adapter)
1569{
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 ctrl_ext;
1572
1573 /* Let firmware take over control of h/w */
1574 ctrl_ext = rd32(E1000_CTRL_EXT);
1575 wr32(E1000_CTRL_EXT,
1576 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577}
1578
9d5c8243 1579/**
b980ac18
JK
1580 * igb_get_hw_control - get control of the h/w from f/w
1581 * @adapter: address of board private structure
9d5c8243 1582 *
b980ac18
JK
1583 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 * For ASF and Pass Through versions of f/w this means that
1585 * the driver is loaded.
9d5c8243
AK
1586 **/
1587static void igb_get_hw_control(struct igb_adapter *adapter)
1588{
1589 struct e1000_hw *hw = &adapter->hw;
1590 u32 ctrl_ext;
1591
1592 /* Let firmware know the driver has taken over */
1593 ctrl_ext = rd32(E1000_CTRL_EXT);
1594 wr32(E1000_CTRL_EXT,
1595 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596}
1597
9d5c8243 1598/**
b980ac18
JK
1599 * igb_configure - configure the hardware for RX and TX
1600 * @adapter: private board structure
9d5c8243
AK
1601 **/
1602static void igb_configure(struct igb_adapter *adapter)
1603{
1604 struct net_device *netdev = adapter->netdev;
1605 int i;
1606
1607 igb_get_hw_control(adapter);
ff41f8dc 1608 igb_set_rx_mode(netdev);
9d5c8243
AK
1609
1610 igb_restore_vlan(adapter);
9d5c8243 1611
85b430b4 1612 igb_setup_tctl(adapter);
06cf2666 1613 igb_setup_mrqc(adapter);
9d5c8243 1614 igb_setup_rctl(adapter);
85b430b4 1615
0e71def2 1616 igb_nfc_filter_restore(adapter);
85b430b4 1617 igb_configure_tx(adapter);
9d5c8243 1618 igb_configure_rx(adapter);
662d7205
AD
1619
1620 igb_rx_fifo_flush_82575(&adapter->hw);
1621
c493ea45 1622 /* call igb_desc_unused which always leaves
9d5c8243 1623 * at least 1 descriptor unused to make sure
b980ac18
JK
1624 * next_to_use != next_to_clean
1625 */
9d5c8243 1626 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1627 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1628 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1629 }
9d5c8243
AK
1630}
1631
88a268c1 1632/**
b980ac18
JK
1633 * igb_power_up_link - Power up the phy/serdes link
1634 * @adapter: address of board private structure
88a268c1
NN
1635 **/
1636void igb_power_up_link(struct igb_adapter *adapter)
1637{
76886596
AA
1638 igb_reset_phy(&adapter->hw);
1639
88a268c1
NN
1640 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641 igb_power_up_phy_copper(&adapter->hw);
1642 else
1643 igb_power_up_serdes_link_82575(&adapter->hw);
aec653c4
TF
1644
1645 igb_setup_link(&adapter->hw);
88a268c1
NN
1646}
1647
1648/**
b980ac18
JK
1649 * igb_power_down_link - Power down the phy/serdes link
1650 * @adapter: address of board private structure
88a268c1
NN
1651 */
1652static void igb_power_down_link(struct igb_adapter *adapter)
1653{
1654 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655 igb_power_down_phy_copper_82575(&adapter->hw);
1656 else
1657 igb_shutdown_serdes_link_82575(&adapter->hw);
1658}
9d5c8243 1659
56cec249
CW
1660/**
1661 * Detect and switch function for Media Auto Sense
1662 * @adapter: address of the board private structure
1663 **/
1664static void igb_check_swap_media(struct igb_adapter *adapter)
1665{
1666 struct e1000_hw *hw = &adapter->hw;
1667 u32 ctrl_ext, connsw;
1668 bool swap_now = false;
1669
1670 ctrl_ext = rd32(E1000_CTRL_EXT);
1671 connsw = rd32(E1000_CONNSW);
1672
1673 /* need to live swap if current media is copper and we have fiber/serdes
1674 * to go to.
1675 */
1676
1677 if ((hw->phy.media_type == e1000_media_type_copper) &&
1678 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679 swap_now = true;
1680 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681 /* copper signal takes time to appear */
1682 if (adapter->copper_tries < 4) {
1683 adapter->copper_tries++;
1684 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685 wr32(E1000_CONNSW, connsw);
1686 return;
1687 } else {
1688 adapter->copper_tries = 0;
1689 if ((connsw & E1000_CONNSW_PHYSD) &&
1690 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691 swap_now = true;
1692 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693 wr32(E1000_CONNSW, connsw);
1694 }
1695 }
1696 }
1697
1698 if (!swap_now)
1699 return;
1700
1701 switch (hw->phy.media_type) {
1702 case e1000_media_type_copper:
1703 netdev_info(adapter->netdev,
1704 "MAS: changing media to fiber/serdes\n");
1705 ctrl_ext |=
1706 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708 adapter->copper_tries = 0;
1709 break;
1710 case e1000_media_type_internal_serdes:
1711 case e1000_media_type_fiber:
1712 netdev_info(adapter->netdev,
1713 "MAS: changing media to copper\n");
1714 ctrl_ext &=
1715 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717 break;
1718 default:
1719 /* shouldn't get here during regular operation */
1720 netdev_err(adapter->netdev,
1721 "AMS: Invalid media type found, returning\n");
1722 break;
1723 }
1724 wr32(E1000_CTRL_EXT, ctrl_ext);
1725}
1726
9d5c8243 1727/**
b980ac18
JK
1728 * igb_up - Open the interface and prepare it to handle traffic
1729 * @adapter: board private structure
9d5c8243 1730 **/
9d5c8243
AK
1731int igb_up(struct igb_adapter *adapter)
1732{
1733 struct e1000_hw *hw = &adapter->hw;
1734 int i;
1735
1736 /* hardware has been reset, we need to reload some things */
1737 igb_configure(adapter);
1738
1739 clear_bit(__IGB_DOWN, &adapter->state);
1740
0d1ae7f4
AD
1741 for (i = 0; i < adapter->num_q_vectors; i++)
1742 napi_enable(&(adapter->q_vector[i]->napi));
1743
cd14ef54 1744 if (adapter->flags & IGB_FLAG_HAS_MSIX)
9d5c8243 1745 igb_configure_msix(adapter);
feeb2721
AD
1746 else
1747 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1748
1749 /* Clear any pending interrupts. */
1750 rd32(E1000_ICR);
1751 igb_irq_enable(adapter);
1752
d4960307
AD
1753 /* notify VFs that reset has been completed */
1754 if (adapter->vfs_allocated_count) {
1755 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 1756
d4960307
AD
1757 reg_data |= E1000_CTRL_EXT_PFRSTD;
1758 wr32(E1000_CTRL_EXT, reg_data);
1759 }
1760
4cb9be7a
JB
1761 netif_tx_start_all_queues(adapter->netdev);
1762
25568a53
AD
1763 /* start the watchdog. */
1764 hw->mac.get_link_status = 1;
1765 schedule_work(&adapter->watchdog_task);
1766
f4c01e96
CW
1767 if ((adapter->flags & IGB_FLAG_EEE) &&
1768 (!hw->dev_spec._82575.eee_disable))
1769 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770
9d5c8243
AK
1771 return 0;
1772}
1773
1774void igb_down(struct igb_adapter *adapter)
1775{
9d5c8243 1776 struct net_device *netdev = adapter->netdev;
330a6d6a 1777 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1778 u32 tctl, rctl;
1779 int i;
1780
1781 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1782 * reschedule our watchdog timer
1783 */
9d5c8243
AK
1784 set_bit(__IGB_DOWN, &adapter->state);
1785
1786 /* disable receives in the hardware */
1787 rctl = rd32(E1000_RCTL);
1788 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789 /* flush and sleep below */
1790
f28ea083 1791 netif_carrier_off(netdev);
fd2ea0a7 1792 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1793
1794 /* disable transmits in the hardware */
1795 tctl = rd32(E1000_TCTL);
1796 tctl &= ~E1000_TCTL_EN;
1797 wr32(E1000_TCTL, tctl);
1798 /* flush both disables and wait for them to finish */
1799 wrfl();
0d451e79 1800 usleep_range(10000, 11000);
9d5c8243 1801
41f149a2
CW
1802 igb_irq_disable(adapter);
1803
aa9b8cc4
AA
1804 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805
41f149a2 1806 for (i = 0; i < adapter->num_q_vectors; i++) {
17a402a0
CW
1807 if (adapter->q_vector[i]) {
1808 napi_synchronize(&adapter->q_vector[i]->napi);
1809 napi_disable(&adapter->q_vector[i]->napi);
1810 }
41f149a2 1811 }
9d5c8243 1812
9d5c8243
AK
1813 del_timer_sync(&adapter->watchdog_timer);
1814 del_timer_sync(&adapter->phy_info_timer);
1815
04fe6358 1816 /* record the stats before reset*/
12dcd86b
ED
1817 spin_lock(&adapter->stats64_lock);
1818 igb_update_stats(adapter, &adapter->stats64);
1819 spin_unlock(&adapter->stats64_lock);
04fe6358 1820
9d5c8243
AK
1821 adapter->link_speed = 0;
1822 adapter->link_duplex = 0;
1823
3023682e
JK
1824 if (!pci_channel_offline(adapter->pdev))
1825 igb_reset(adapter);
16903caa
AD
1826
1827 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1828 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829
9d5c8243
AK
1830 igb_clean_all_tx_rings(adapter);
1831 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1832#ifdef CONFIG_IGB_DCA
1833
1834 /* since we reset the hardware DCA settings were cleared */
1835 igb_setup_dca(adapter);
1836#endif
9d5c8243
AK
1837}
1838
1839void igb_reinit_locked(struct igb_adapter *adapter)
1840{
1841 WARN_ON(in_interrupt());
1842 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 1843 usleep_range(1000, 2000);
9d5c8243
AK
1844 igb_down(adapter);
1845 igb_up(adapter);
1846 clear_bit(__IGB_RESETTING, &adapter->state);
1847}
1848
56cec249
CW
1849/** igb_enable_mas - Media Autosense re-enable after swap
1850 *
1851 * @adapter: adapter struct
1852 **/
8cfb879d 1853static void igb_enable_mas(struct igb_adapter *adapter)
56cec249
CW
1854{
1855 struct e1000_hw *hw = &adapter->hw;
8cfb879d 1856 u32 connsw = rd32(E1000_CONNSW);
56cec249
CW
1857
1858 /* configure for SerDes media detect */
8cfb879d
TF
1859 if ((hw->phy.media_type == e1000_media_type_copper) &&
1860 (!(connsw & E1000_CONNSW_SERDESD))) {
56cec249
CW
1861 connsw |= E1000_CONNSW_ENRGSRC;
1862 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863 wr32(E1000_CONNSW, connsw);
1864 wrfl();
56cec249 1865 }
56cec249
CW
1866}
1867
9d5c8243
AK
1868void igb_reset(struct igb_adapter *adapter)
1869{
090b1795 1870 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1871 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1872 struct e1000_mac_info *mac = &hw->mac;
1873 struct e1000_fc_info *fc = &hw->fc;
45693bcb 1874 u32 pba, hwm;
9d5c8243
AK
1875
1876 /* Repartition Pba for greater than 9k mtu
1877 * To take effect CTRL.RST is required.
1878 */
fa4dfae0 1879 switch (mac->type) {
d2ba2ed8 1880 case e1000_i350:
ceb5f13b 1881 case e1000_i354:
55cac248
AD
1882 case e1000_82580:
1883 pba = rd32(E1000_RXPBS);
1884 pba = igb_rxpbs_adjust_82580(pba);
1885 break;
fa4dfae0 1886 case e1000_82576:
d249be54
AD
1887 pba = rd32(E1000_RXPBS);
1888 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1889 break;
1890 case e1000_82575:
f96a8a0b
CW
1891 case e1000_i210:
1892 case e1000_i211:
fa4dfae0
AD
1893 default:
1894 pba = E1000_PBA_34K;
1895 break;
2d064c06 1896 }
9d5c8243 1897
45693bcb
AD
1898 if (mac->type == e1000_82575) {
1899 u32 min_rx_space, min_tx_space, needed_tx_space;
1900
1901 /* write Rx PBA so that hardware can report correct Tx PBA */
9d5c8243
AK
1902 wr32(E1000_PBA, pba);
1903
1904 /* To maintain wire speed transmits, the Tx FIFO should be
1905 * large enough to accommodate two full transmit packets,
1906 * rounded up to the next 1KB and expressed in KB. Likewise,
1907 * the Rx FIFO should be large enough to accommodate at least
1908 * one full receive packet and is similarly rounded up and
b980ac18
JK
1909 * expressed in KB.
1910 */
45693bcb
AD
1911 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912
1913 /* The Tx FIFO also stores 16 bytes of information about the Tx
1914 * but don't include Ethernet FCS because hardware appends it.
1915 * We only need to round down to the nearest 512 byte block
1916 * count since the value we care about is 2 frames, not 1.
b980ac18 1917 */
45693bcb
AD
1918 min_tx_space = adapter->max_frame_size;
1919 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921
1922 /* upper 16 bits has Tx packet buffer allocation size in KB */
1923 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
9d5c8243
AK
1924
1925 /* If current Tx allocation is less than the min Tx FIFO size,
1926 * and the min Tx FIFO size is less than the current Rx FIFO
45693bcb 1927 * allocation, take space away from current Rx allocation.
b980ac18 1928 */
45693bcb
AD
1929 if (needed_tx_space < pba) {
1930 pba -= needed_tx_space;
9d5c8243 1931
b980ac18
JK
1932 /* if short on Rx space, Rx wins and must trump Tx
1933 * adjustment
1934 */
9d5c8243
AK
1935 if (pba < min_rx_space)
1936 pba = min_rx_space;
1937 }
45693bcb
AD
1938
1939 /* adjust PBA for jumbo frames */
2d064c06 1940 wr32(E1000_PBA, pba);
9d5c8243 1941 }
9d5c8243 1942
45693bcb
AD
1943 /* flow control settings
1944 * The high water mark must be low enough to fit one full frame
1945 * after transmitting the pause frame. As such we must have enough
1946 * space to allow for us to complete our current transmit and then
1947 * receive the frame that is in progress from the link partner.
1948 * Set it to:
1949 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
b980ac18 1950 */
45693bcb 1951 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
9d5c8243 1952
d48507fe 1953 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1954 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1955 fc->pause_time = 0xFFFF;
1956 fc->send_xon = 1;
0cce119a 1957 fc->current_mode = fc->requested_mode;
9d5c8243 1958
4ae196df
AD
1959 /* disable receive for all VFs and wait one second */
1960 if (adapter->vfs_allocated_count) {
1961 int i;
9005df38 1962
4ae196df 1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1965
1966 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1967 igb_ping_all_vfs(adapter);
4ae196df
AD
1968
1969 /* disable transmits and receives */
1970 wr32(E1000_VFRE, 0);
1971 wr32(E1000_VFTE, 0);
1972 }
1973
9d5c8243 1974 /* Allow time for pending master requests to run */
330a6d6a 1975 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1976 wr32(E1000_WUC, 0);
1977
56cec249
CW
1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 /* need to resetup here after media swap */
1980 adapter->ei.get_invariants(hw);
1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 }
8cfb879d
TF
1983 if ((mac->type == e1000_82575) &&
1984 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985 igb_enable_mas(adapter);
56cec249 1986 }
330a6d6a 1987 if (hw->mac.ops.init_hw(hw))
090b1795 1988 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1989
b980ac18 1990 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1991 * control is off when forcing speed.
1992 */
1993 if (!hw->mac.autoneg)
1994 igb_force_mac_fc(hw);
1995
b6e0c419 1996 igb_init_dmac(adapter, pba);
e428893b
CW
1997#ifdef CONFIG_IGB_HWMON
1998 /* Re-initialize the thermal sensor on i350 devices. */
1999 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 /* If present, re-initialize the external thermal sensor
2002 * interface.
2003 */
2004 if (adapter->ets)
2005 mac->ops.init_thermal_sensor_thresh(hw);
2006 }
2007 }
2008#endif
b936136d 2009 /* Re-establish EEE setting */
f4c01e96
CW
2010 if (hw->phy.media_type == e1000_media_type_copper) {
2011 switch (mac->type) {
2012 case e1000_i350:
2013 case e1000_i210:
2014 case e1000_i211:
c4c112f1 2015 igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2016 break;
2017 case e1000_i354:
c4c112f1 2018 igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2019 break;
2020 default:
2021 break;
2022 }
2023 }
88a268c1
NN
2024 if (!netif_running(adapter->netdev))
2025 igb_power_down_link(adapter);
2026
9d5c8243
AK
2027 igb_update_mng_vlan(adapter);
2028
2029 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
1f6e8178 2032 /* Re-enable PTP, where applicable. */
4f3ce71b
JK
2033 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034 igb_ptp_reset(adapter);
1f6e8178 2035
330a6d6a 2036 igb_get_phy_info(hw);
9d5c8243
AK
2037}
2038
c8f44aff
MM
2039static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 netdev_features_t features)
b2cb09b1 2041{
b980ac18
JK
2042 /* Since there is no support for separate Rx/Tx vlan accel
2043 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 2044 */
f646968f
PM
2045 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 2047 else
f646968f 2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
2049
2050 return features;
2051}
2052
c8f44aff
MM
2053static int igb_set_features(struct net_device *netdev,
2054 netdev_features_t features)
ac52caa3 2055{
c8f44aff 2056 netdev_features_t changed = netdev->features ^ features;
89eaefb6 2057 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 2058
f646968f 2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
2060 igb_vlan_mode(netdev, features);
2061
16903caa 2062 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
89eaefb6
BG
2063 return 0;
2064
0e71def2
GH
2065 if (!(features & NETIF_F_NTUPLE)) {
2066 struct hlist_node *node2;
2067 struct igb_nfc_filter *rule;
2068
2069 spin_lock(&adapter->nfc_lock);
2070 hlist_for_each_entry_safe(rule, node2,
2071 &adapter->nfc_filter_list, nfc_node) {
2072 igb_erase_filter(adapter, rule);
2073 hlist_del(&rule->nfc_node);
2074 kfree(rule);
2075 }
2076 spin_unlock(&adapter->nfc_lock);
2077 adapter->nfc_filter_count = 0;
2078 }
2079
89eaefb6
BG
2080 netdev->features = features;
2081
2082 if (netif_running(netdev))
2083 igb_reinit_locked(adapter);
2084 else
2085 igb_reset(adapter);
2086
ac52caa3
MM
2087 return 0;
2088}
2089
268f9d33
AD
2090static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091 struct net_device *dev,
2092 const unsigned char *addr, u16 vid,
2093 u16 flags)
2094{
2095 /* guarantee we can provide a unique filter for the unicast address */
2096 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097 struct igb_adapter *adapter = netdev_priv(dev);
2098 struct e1000_hw *hw = &adapter->hw;
2099 int vfn = adapter->vfs_allocated_count;
2100 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101
2102 if (netdev_uc_count(dev) >= rar_entries)
2103 return -ENOMEM;
2104 }
2105
2106 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107}
2108
e10715d3
AD
2109#define IGB_MAX_MAC_HDR_LEN 127
2110#define IGB_MAX_NETWORK_HDR_LEN 511
2111
2112static netdev_features_t
2113igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114 netdev_features_t features)
2115{
2116 unsigned int network_hdr_len, mac_hdr_len;
2117
2118 /* Make certain the headers can be described by a context descriptor */
2119 mac_hdr_len = skb_network_header(skb) - skb->data;
2120 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121 return features & ~(NETIF_F_HW_CSUM |
2122 NETIF_F_SCTP_CRC |
2123 NETIF_F_HW_VLAN_CTAG_TX |
2124 NETIF_F_TSO |
2125 NETIF_F_TSO6);
2126
2127 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2129 return features & ~(NETIF_F_HW_CSUM |
2130 NETIF_F_SCTP_CRC |
2131 NETIF_F_TSO |
2132 NETIF_F_TSO6);
2133
2134 /* We can only support IPV4 TSO in tunnels if we can mangle the
2135 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136 */
2137 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138 features &= ~NETIF_F_TSO;
2139
2140 return features;
2141}
2142
2e5c6922 2143static const struct net_device_ops igb_netdev_ops = {
559e9c49 2144 .ndo_open = igb_open,
2e5c6922 2145 .ndo_stop = igb_close,
cd392f5c 2146 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 2147 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 2148 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
2149 .ndo_set_mac_address = igb_set_mac,
2150 .ndo_change_mtu = igb_change_mtu,
2151 .ndo_do_ioctl = igb_ioctl,
2152 .ndo_tx_timeout = igb_tx_timeout,
2153 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
2154 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2155 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
2156 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2157 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
ed616689 2158 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
70ea4783 2159 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 2160 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
2161#ifdef CONFIG_NET_POLL_CONTROLLER
2162 .ndo_poll_controller = igb_netpoll,
2163#endif
b2cb09b1
JP
2164 .ndo_fix_features = igb_fix_features,
2165 .ndo_set_features = igb_set_features,
268f9d33 2166 .ndo_fdb_add = igb_ndo_fdb_add,
e10715d3 2167 .ndo_features_check = igb_features_check,
2e5c6922
SH
2168};
2169
d67974f0
CW
2170/**
2171 * igb_set_fw_version - Configure version string for ethtool
2172 * @adapter: adapter struct
d67974f0
CW
2173 **/
2174void igb_set_fw_version(struct igb_adapter *adapter)
2175{
2176 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
2177 struct e1000_fw_version fw;
2178
2179 igb_get_fw_version(hw, &fw);
2180
2181 switch (hw->mac.type) {
7dc98a62 2182 case e1000_i210:
0b1a6f2e 2183 case e1000_i211:
7dc98a62
CW
2184 if (!(igb_get_flash_presence_i210(hw))) {
2185 snprintf(adapter->fw_version,
2186 sizeof(adapter->fw_version),
2187 "%2d.%2d-%d",
2188 fw.invm_major, fw.invm_minor,
2189 fw.invm_img_type);
2190 break;
2191 }
2192 /* fall through */
0b1a6f2e
CW
2193 default:
2194 /* if option is rom valid, display its version too */
2195 if (fw.or_valid) {
2196 snprintf(adapter->fw_version,
2197 sizeof(adapter->fw_version),
2198 "%d.%d, 0x%08x, %d.%d.%d",
2199 fw.eep_major, fw.eep_minor, fw.etrack_id,
2200 fw.or_major, fw.or_build, fw.or_patch);
2201 /* no option rom */
7dc98a62 2202 } else if (fw.etrack_id != 0X0000) {
0b1a6f2e 2203 snprintf(adapter->fw_version,
7dc98a62
CW
2204 sizeof(adapter->fw_version),
2205 "%d.%d, 0x%08x",
2206 fw.eep_major, fw.eep_minor, fw.etrack_id);
2207 } else {
2208 snprintf(adapter->fw_version,
2209 sizeof(adapter->fw_version),
2210 "%d.%d.%d",
2211 fw.eep_major, fw.eep_minor, fw.eep_build);
0b1a6f2e
CW
2212 }
2213 break;
d67974f0 2214 }
d67974f0
CW
2215}
2216
56cec249
CW
2217/**
2218 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219 *
2220 * @adapter: adapter struct
2221 **/
2222static void igb_init_mas(struct igb_adapter *adapter)
2223{
2224 struct e1000_hw *hw = &adapter->hw;
2225 u16 eeprom_data;
2226
2227 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228 switch (hw->bus.func) {
2229 case E1000_FUNC_0:
2230 if (eeprom_data & IGB_MAS_ENABLE_0) {
2231 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232 netdev_info(adapter->netdev,
2233 "MAS: Enabling Media Autosense for port %d\n",
2234 hw->bus.func);
2235 }
2236 break;
2237 case E1000_FUNC_1:
2238 if (eeprom_data & IGB_MAS_ENABLE_1) {
2239 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240 netdev_info(adapter->netdev,
2241 "MAS: Enabling Media Autosense for port %d\n",
2242 hw->bus.func);
2243 }
2244 break;
2245 case E1000_FUNC_2:
2246 if (eeprom_data & IGB_MAS_ENABLE_2) {
2247 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248 netdev_info(adapter->netdev,
2249 "MAS: Enabling Media Autosense for port %d\n",
2250 hw->bus.func);
2251 }
2252 break;
2253 case E1000_FUNC_3:
2254 if (eeprom_data & IGB_MAS_ENABLE_3) {
2255 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256 netdev_info(adapter->netdev,
2257 "MAS: Enabling Media Autosense for port %d\n",
2258 hw->bus.func);
2259 }
2260 break;
2261 default:
2262 /* Shouldn't get here */
2263 netdev_err(adapter->netdev,
2264 "MAS: Invalid port configuration, returning\n");
2265 break;
2266 }
2267}
2268
b980ac18
JK
2269/**
2270 * igb_init_i2c - Init I2C interface
441fc6fd 2271 * @adapter: pointer to adapter structure
b980ac18 2272 **/
441fc6fd
CW
2273static s32 igb_init_i2c(struct igb_adapter *adapter)
2274{
23d87824 2275 s32 status = 0;
441fc6fd
CW
2276
2277 /* I2C interface supported on i350 devices */
2278 if (adapter->hw.mac.type != e1000_i350)
23d87824 2279 return 0;
441fc6fd
CW
2280
2281 /* Initialize the i2c bus which is controlled by the registers.
2282 * This bus will use the i2c_algo_bit structue that implements
2283 * the protocol through toggling of the 4 bits in the register.
2284 */
2285 adapter->i2c_adap.owner = THIS_MODULE;
2286 adapter->i2c_algo = igb_i2c_algo;
2287 adapter->i2c_algo.data = adapter;
2288 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290 strlcpy(adapter->i2c_adap.name, "igb BB",
2291 sizeof(adapter->i2c_adap.name));
2292 status = i2c_bit_add_bus(&adapter->i2c_adap);
2293 return status;
2294}
2295
9d5c8243 2296/**
b980ac18
JK
2297 * igb_probe - Device Initialization Routine
2298 * @pdev: PCI device information struct
2299 * @ent: entry in igb_pci_tbl
9d5c8243 2300 *
b980ac18 2301 * Returns 0 on success, negative on failure
9d5c8243 2302 *
b980ac18
JK
2303 * igb_probe initializes an adapter identified by a pci_dev structure.
2304 * The OS initialization, configuring of the adapter private structure,
2305 * and a hardware reset occur.
9d5c8243 2306 **/
1dd06ae8 2307static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
2308{
2309 struct net_device *netdev;
2310 struct igb_adapter *adapter;
2311 struct e1000_hw *hw;
4337e993 2312 u16 eeprom_data = 0;
9835fd73 2313 s32 ret_val;
4337e993 2314 static int global_quad_port_a; /* global quad port a indication */
9d5c8243 2315 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2d6a5e95 2316 int err, pci_using_dac;
9835fd73 2317 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2318
bded64a7
AG
2319 /* Catch broken hardware that put the wrong VF device ID in
2320 * the PCIe SR-IOV capability.
2321 */
2322 if (pdev->is_virtfn) {
2323 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2324 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2325 return -EINVAL;
2326 }
2327
aed5dec3 2328 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2329 if (err)
2330 return err;
2331
2332 pci_using_dac = 0;
dc4ff9bb 2333 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2334 if (!err) {
dc4ff9bb 2335 pci_using_dac = 1;
9d5c8243 2336 } else {
dc4ff9bb 2337 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2338 if (err) {
dc4ff9bb
RK
2339 dev_err(&pdev->dev,
2340 "No usable DMA configuration, aborting\n");
2341 goto err_dma;
9d5c8243
AK
2342 }
2343 }
2344
56d766d6 2345 err = pci_request_mem_regions(pdev, igb_driver_name);
9d5c8243
AK
2346 if (err)
2347 goto err_pci_reg;
2348
19d5afd4 2349 pci_enable_pcie_error_reporting(pdev);
40a914fa 2350
9d5c8243 2351 pci_set_master(pdev);
c682fc23 2352 pci_save_state(pdev);
9d5c8243
AK
2353
2354 err = -ENOMEM;
1bfaf07b 2355 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2356 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2357 if (!netdev)
2358 goto err_alloc_etherdev;
2359
2360 SET_NETDEV_DEV(netdev, &pdev->dev);
2361
2362 pci_set_drvdata(pdev, netdev);
2363 adapter = netdev_priv(netdev);
2364 adapter->netdev = netdev;
2365 adapter->pdev = pdev;
2366 hw = &adapter->hw;
2367 hw->back = adapter;
b3f4d599 2368 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243 2369
9d5c8243 2370 err = -EIO;
73bf8048
JW
2371 adapter->io_addr = pci_iomap(pdev, 0, 0);
2372 if (!adapter->io_addr)
9d5c8243 2373 goto err_ioremap;
73bf8048
JW
2374 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375 hw->hw_addr = adapter->io_addr;
9d5c8243 2376
2e5c6922 2377 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2378 igb_set_ethtool_ops(netdev);
9d5c8243 2379 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2380
2381 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382
89dbefb2
AS
2383 netdev->mem_start = pci_resource_start(pdev, 0);
2384 netdev->mem_end = pci_resource_end(pdev, 0);
9d5c8243 2385
9d5c8243
AK
2386 /* PCI config space info */
2387 hw->vendor_id = pdev->vendor;
2388 hw->device_id = pdev->device;
2389 hw->revision_id = pdev->revision;
2390 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391 hw->subsystem_device_id = pdev->subsystem_device;
2392
9d5c8243
AK
2393 /* Copy the default MAC, PHY and NVM function pointers */
2394 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397 /* Initialize skew-specific constants */
2398 err = ei->get_invariants(hw);
2399 if (err)
450c87c8 2400 goto err_sw_init;
9d5c8243 2401
450c87c8 2402 /* setup the private structure */
9d5c8243
AK
2403 err = igb_sw_init(adapter);
2404 if (err)
2405 goto err_sw_init;
2406
2407 igb_get_bus_info_pcie(hw);
2408
2409 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2410
2411 /* Copper options */
2412 if (hw->phy.media_type == e1000_media_type_copper) {
2413 hw->phy.mdix = AUTO_ALL_MODES;
2414 hw->phy.disable_polarity_correction = false;
2415 hw->phy.ms_type = e1000_ms_hw_default;
2416 }
2417
2418 if (igb_check_reset_block(hw))
2419 dev_info(&pdev->dev,
2420 "PHY reset is blocked due to SOL/IDER session.\n");
2421
b980ac18 2422 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2423 * set by igb_sw_init so we should use an or instead of an
2424 * assignment.
2425 */
2426 netdev->features |= NETIF_F_SG |
077887c3
AD
2427 NETIF_F_TSO |
2428 NETIF_F_TSO6 |
2429 NETIF_F_RXHASH |
2430 NETIF_F_RXCSUM |
e10715d3 2431 NETIF_F_HW_CSUM;
077887c3 2432
6e033700
AD
2433 if (hw->mac.type >= e1000_82576)
2434 netdev->features |= NETIF_F_SCTP_CRC;
2435
e10715d3
AD
2436#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437 NETIF_F_GSO_GRE_CSUM | \
7e13318d 2438 NETIF_F_GSO_IPXIP4 | \
bf2d1df3 2439 NETIF_F_GSO_IPXIP6 | \
e10715d3
AD
2440 NETIF_F_GSO_UDP_TUNNEL | \
2441 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442
2443 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445
077887c3 2446 /* copy netdev features into list of user selectable features */
e10715d3
AD
2447 netdev->hw_features |= netdev->features |
2448 NETIF_F_HW_VLAN_CTAG_RX |
2449 NETIF_F_HW_VLAN_CTAG_TX |
2450 NETIF_F_RXALL;
077887c3 2451
6e033700
AD
2452 if (hw->mac.type >= e1000_i350)
2453 netdev->hw_features |= NETIF_F_NTUPLE;
2454
e10715d3
AD
2455 if (pci_using_dac)
2456 netdev->features |= NETIF_F_HIGHDMA;
6e033700 2457
e10715d3 2458 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6e033700 2459 netdev->mpls_features |= NETIF_F_HW_CSUM;
e10715d3 2460 netdev->hw_enc_features |= netdev->vlan_features;
48f29ffc 2461
e10715d3
AD
2462 /* set this bit last since it cannot be part of vlan_features */
2463 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464 NETIF_F_HW_VLAN_CTAG_RX |
2465 NETIF_F_HW_VLAN_CTAG_TX;
6b8f0922 2466
e10715d3 2467 netdev->priv_flags |= IFF_SUPP_NOFCS;
9d5c8243 2468
01789349
JP
2469 netdev->priv_flags |= IFF_UNICAST_FLT;
2470
91c527a5
JW
2471 /* MTU range: 68 - 9216 */
2472 netdev->min_mtu = ETH_MIN_MTU;
2473 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2474
330a6d6a 2475 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2476
2477 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2478 * known good starting state
2479 */
9d5c8243
AK
2480 hw->mac.ops.reset_hw(hw);
2481
ef3a0092
CW
2482 /* make sure the NVM is good , i211/i210 parts can have special NVM
2483 * that doesn't contain a checksum
f96a8a0b 2484 */
ef3a0092
CW
2485 switch (hw->mac.type) {
2486 case e1000_i210:
2487 case e1000_i211:
2488 if (igb_get_flash_presence_i210(hw)) {
2489 if (hw->nvm.ops.validate(hw) < 0) {
2490 dev_err(&pdev->dev,
2491 "The NVM Checksum Is Not Valid\n");
2492 err = -EIO;
2493 goto err_eeprom;
2494 }
2495 }
2496 break;
2497 default:
f96a8a0b
CW
2498 if (hw->nvm.ops.validate(hw) < 0) {
2499 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2500 err = -EIO;
2501 goto err_eeprom;
2502 }
ef3a0092 2503 break;
9d5c8243
AK
2504 }
2505
806ffb1d
JH
2506 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2507 /* copy the MAC address out of the NVM */
2508 if (hw->mac.ops.read_mac_addr(hw))
2509 dev_err(&pdev->dev, "NVM Read Error\n");
2510 }
9d5c8243
AK
2511
2512 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2513
aaeb6cdf 2514 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2515 dev_err(&pdev->dev, "Invalid MAC Address\n");
2516 err = -EIO;
2517 goto err_eeprom;
2518 }
2519
d67974f0
CW
2520 /* get firmware version for ethtool -i */
2521 igb_set_fw_version(adapter);
2522
27dff8b2
TF
2523 /* configure RXPBSIZE and TXPBSIZE */
2524 if (hw->mac.type == e1000_i210) {
2525 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2526 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2527 }
2528
c061b18d 2529 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2530 (unsigned long) adapter);
c061b18d 2531 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2532 (unsigned long) adapter);
9d5c8243
AK
2533
2534 INIT_WORK(&adapter->reset_task, igb_reset_task);
2535 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2536
450c87c8 2537 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2538 adapter->fc_autoneg = true;
2539 hw->mac.autoneg = true;
2540 hw->phy.autoneg_advertised = 0x2f;
2541
0cce119a
AD
2542 hw->fc.requested_mode = e1000_fc_default;
2543 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2544
9d5c8243
AK
2545 igb_validate_mdi_setting(hw);
2546
63d4a8f9 2547 /* By default, support wake on port A */
a2cf8b6c 2548 if (hw->bus.func == 0)
63d4a8f9
MV
2549 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2550
2551 /* Check the NVM for wake support on non-port A ports */
2552 if (hw->mac.type >= e1000_82580)
55cac248 2553 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2554 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2555 &eeprom_data);
a2cf8b6c
AD
2556 else if (hw->bus.func == 1)
2557 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2558
63d4a8f9
MV
2559 if (eeprom_data & IGB_EEPROM_APME)
2560 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2561
2562 /* now that we have the eeprom settings, apply the special cases where
2563 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2564 * lan on a particular port
2565 */
9d5c8243
AK
2566 switch (pdev->device) {
2567 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2568 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2569 break;
2570 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2571 case E1000_DEV_ID_82576_FIBER:
2572 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2573 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2574 * regardless of eeprom setting
2575 */
9d5c8243 2576 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2577 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2578 break;
c8ea5ea9 2579 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2580 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2581 /* if quad port adapter, disable WoL on all but port A */
2582 if (global_quad_port_a != 0)
63d4a8f9 2583 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2584 else
2585 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2586 /* Reset for multiple quad port adapters */
2587 if (++global_quad_port_a == 4)
2588 global_quad_port_a = 0;
2589 break;
63d4a8f9
MV
2590 default:
2591 /* If the device can't wake, don't set software support */
2592 if (!device_can_wakeup(&adapter->pdev->dev))
2593 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2594 }
2595
2596 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2597 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2598 adapter->wol |= E1000_WUFC_MAG;
2599
2600 /* Some vendors want WoL disabled by default, but still supported */
2601 if ((hw->mac.type == e1000_i350) &&
2602 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2603 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604 adapter->wol = 0;
2605 }
2606
5e350b92
TF
2607 /* Some vendors want the ability to Use the EEPROM setting as
2608 * enable/disable only, and not for capability
2609 */
2610 if (((hw->mac.type == e1000_i350) ||
2611 (hw->mac.type == e1000_i354)) &&
2612 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2613 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2614 adapter->wol = 0;
2615 }
2616 if (hw->mac.type == e1000_i350) {
2617 if (((pdev->subsystem_device == 0x5001) ||
2618 (pdev->subsystem_device == 0x5002)) &&
2619 (hw->bus.func == 0)) {
2620 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621 adapter->wol = 0;
2622 }
2623 if (pdev->subsystem_device == 0x1F52)
2624 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2625 }
2626
63d4a8f9
MV
2627 device_set_wakeup_enable(&adapter->pdev->dev,
2628 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2629
2630 /* reset the hardware with the new settings */
2631 igb_reset(adapter);
2632
441fc6fd
CW
2633 /* Init the I2C interface */
2634 err = igb_init_i2c(adapter);
2635 if (err) {
2636 dev_err(&pdev->dev, "failed to init i2c interface\n");
2637 goto err_eeprom;
2638 }
2639
9d5c8243 2640 /* let the f/w know that the h/w is now under the control of the
e52c0f96
CW
2641 * driver.
2642 */
9d5c8243
AK
2643 igb_get_hw_control(adapter);
2644
9d5c8243
AK
2645 strcpy(netdev->name, "eth%d");
2646 err = register_netdev(netdev);
2647 if (err)
2648 goto err_register;
2649
b168dfc5
JB
2650 /* carrier off reporting is important to ethtool even BEFORE open */
2651 netif_carrier_off(netdev);
2652
421e02f0 2653#ifdef CONFIG_IGB_DCA
bbd98fe4 2654 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2655 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2656 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2657 igb_setup_dca(adapter);
2658 }
fe4506b6 2659
38c845c7 2660#endif
e428893b
CW
2661#ifdef CONFIG_IGB_HWMON
2662 /* Initialize the thermal sensor on i350 devices. */
2663 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2664 u16 ets_word;
3c89f6d0 2665
b980ac18 2666 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2667 * external thermal sensor.
2668 */
2669 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2670 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2671 adapter->ets = true;
2672 else
2673 adapter->ets = false;
2674 if (igb_sysfs_init(adapter))
2675 dev_err(&pdev->dev,
2676 "failed to allocate sysfs resources\n");
2677 } else {
2678 adapter->ets = false;
2679 }
2680#endif
56cec249
CW
2681 /* Check if Media Autosense is enabled */
2682 adapter->ei = *ei;
2683 if (hw->dev_spec._82575.mas_capable)
2684 igb_init_mas(adapter);
2685
673b8b70 2686 /* do hw tstamp init after resetting */
7ebae817 2687 igb_ptp_init(adapter);
673b8b70 2688
9d5c8243 2689 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2690 /* print bus type/speed/width info, not applicable to i354 */
2691 if (hw->mac.type != e1000_i354) {
2692 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2693 netdev->name,
2694 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2695 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2696 "unknown"),
2697 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2698 "Width x4" :
2699 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2700 "Width x2" :
2701 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2702 "Width x1" : "unknown"), netdev->dev_addr);
2703 }
9d5c8243 2704
53ea6c7e
TF
2705 if ((hw->mac.type >= e1000_i210 ||
2706 igb_get_flash_presence_i210(hw))) {
2707 ret_val = igb_read_part_string(hw, part_str,
2708 E1000_PBANUM_LENGTH);
2709 } else {
2710 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2711 }
2712
9835fd73
CW
2713 if (ret_val)
2714 strcpy(part_str, "Unknown");
2715 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2716 dev_info(&pdev->dev,
2717 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
cd14ef54 2718 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
7dfc16fa 2719 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2720 adapter->num_rx_queues, adapter->num_tx_queues);
f4c01e96
CW
2721 if (hw->phy.media_type == e1000_media_type_copper) {
2722 switch (hw->mac.type) {
2723 case e1000_i350:
2724 case e1000_i210:
2725 case e1000_i211:
2726 /* Enable EEE for internal copper PHY devices */
c4c112f1 2727 err = igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2728 if ((!err) &&
2729 (!hw->dev_spec._82575.eee_disable)) {
2730 adapter->eee_advert =
2731 MDIO_EEE_100TX | MDIO_EEE_1000T;
2732 adapter->flags |= IGB_FLAG_EEE;
2733 }
2734 break;
2735 case e1000_i354:
ceb5f13b 2736 if ((rd32(E1000_CTRL_EXT) &
f4c01e96 2737 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
c4c112f1 2738 err = igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2739 if ((!err) &&
2740 (!hw->dev_spec._82575.eee_disable)) {
2741 adapter->eee_advert =
2742 MDIO_EEE_100TX | MDIO_EEE_1000T;
2743 adapter->flags |= IGB_FLAG_EEE;
2744 }
2745 }
2746 break;
2747 default:
2748 break;
ceb5f13b 2749 }
09b068d4 2750 }
749ab2cd 2751 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2752 return 0;
2753
2754err_register:
2755 igb_release_hw_control(adapter);
441fc6fd 2756 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2757err_eeprom:
2758 if (!igb_check_reset_block(hw))
f5f4cf08 2759 igb_reset_phy(hw);
9d5c8243
AK
2760
2761 if (hw->flash_address)
2762 iounmap(hw->flash_address);
9d5c8243 2763err_sw_init:
42ad1a03 2764 kfree(adapter->shadow_vfta);
047e0030 2765 igb_clear_interrupt_scheme(adapter);
ceee3450
TF
2766#ifdef CONFIG_PCI_IOV
2767 igb_disable_sriov(pdev);
2768#endif
73bf8048 2769 pci_iounmap(pdev, adapter->io_addr);
9d5c8243
AK
2770err_ioremap:
2771 free_netdev(netdev);
2772err_alloc_etherdev:
56d766d6 2773 pci_release_mem_regions(pdev);
9d5c8243
AK
2774err_pci_reg:
2775err_dma:
2776 pci_disable_device(pdev);
2777 return err;
2778}
2779
fa44f2f1 2780#ifdef CONFIG_PCI_IOV
781798a1 2781static int igb_disable_sriov(struct pci_dev *pdev)
fa44f2f1
GR
2782{
2783 struct net_device *netdev = pci_get_drvdata(pdev);
2784 struct igb_adapter *adapter = netdev_priv(netdev);
2785 struct e1000_hw *hw = &adapter->hw;
2786
2787 /* reclaim resources allocated to VFs */
2788 if (adapter->vf_data) {
2789 /* disable iov and allow time for transactions to clear */
b09186d2 2790 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
2791 dev_warn(&pdev->dev,
2792 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2793 return -EPERM;
2794 } else {
2795 pci_disable_sriov(pdev);
2796 msleep(500);
2797 }
2798
2799 kfree(adapter->vf_data);
2800 adapter->vf_data = NULL;
2801 adapter->vfs_allocated_count = 0;
2802 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2803 wrfl();
2804 msleep(100);
2805 dev_info(&pdev->dev, "IOV Disabled\n");
2806
2807 /* Re-enable DMA Coalescing flag since IOV is turned off */
2808 adapter->flags |= IGB_FLAG_DMAC;
2809 }
2810
2811 return 0;
2812}
2813
2814static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2815{
2816 struct net_device *netdev = pci_get_drvdata(pdev);
2817 struct igb_adapter *adapter = netdev_priv(netdev);
2818 int old_vfs = pci_num_vf(pdev);
2819 int err = 0;
2820 int i;
2821
cd14ef54 2822 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
50267196
MW
2823 err = -EPERM;
2824 goto out;
2825 }
fa44f2f1
GR
2826 if (!num_vfs)
2827 goto out;
fa44f2f1 2828
781798a1
SA
2829 if (old_vfs) {
2830 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2831 old_vfs, max_vfs);
2832 adapter->vfs_allocated_count = old_vfs;
2833 } else
2834 adapter->vfs_allocated_count = num_vfs;
fa44f2f1
GR
2835
2836 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2837 sizeof(struct vf_data_storage), GFP_KERNEL);
2838
2839 /* if allocation failed then we do not support SR-IOV */
2840 if (!adapter->vf_data) {
2841 adapter->vfs_allocated_count = 0;
2842 dev_err(&pdev->dev,
2843 "Unable to allocate memory for VF Data Storage\n");
2844 err = -ENOMEM;
2845 goto out;
2846 }
2847
781798a1
SA
2848 /* only call pci_enable_sriov() if no VFs are allocated already */
2849 if (!old_vfs) {
2850 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2851 if (err)
2852 goto err_out;
2853 }
fa44f2f1
GR
2854 dev_info(&pdev->dev, "%d VFs allocated\n",
2855 adapter->vfs_allocated_count);
2856 for (i = 0; i < adapter->vfs_allocated_count; i++)
2857 igb_vf_configure(adapter, i);
2858
2859 /* DMA Coalescing is not supported in IOV mode. */
2860 adapter->flags &= ~IGB_FLAG_DMAC;
2861 goto out;
2862
2863err_out:
2864 kfree(adapter->vf_data);
2865 adapter->vf_data = NULL;
2866 adapter->vfs_allocated_count = 0;
2867out:
2868 return err;
2869}
2870
2871#endif
b980ac18 2872/**
441fc6fd
CW
2873 * igb_remove_i2c - Cleanup I2C interface
2874 * @adapter: pointer to adapter structure
b980ac18 2875 **/
441fc6fd
CW
2876static void igb_remove_i2c(struct igb_adapter *adapter)
2877{
441fc6fd
CW
2878 /* free the adapter bus structure */
2879 i2c_del_adapter(&adapter->i2c_adap);
2880}
2881
9d5c8243 2882/**
b980ac18
JK
2883 * igb_remove - Device Removal Routine
2884 * @pdev: PCI device information struct
9d5c8243 2885 *
b980ac18
JK
2886 * igb_remove is called by the PCI subsystem to alert the driver
2887 * that it should release a PCI device. The could be caused by a
2888 * Hot-Plug event, or because the driver is going to be removed from
2889 * memory.
9d5c8243 2890 **/
9f9a12f8 2891static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2892{
2893 struct net_device *netdev = pci_get_drvdata(pdev);
2894 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2895 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2896
749ab2cd 2897 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2898#ifdef CONFIG_IGB_HWMON
2899 igb_sysfs_exit(adapter);
2900#endif
441fc6fd 2901 igb_remove_i2c(adapter);
a79f4f88 2902 igb_ptp_stop(adapter);
b980ac18 2903 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2904 * disable watchdog from being rescheduled.
2905 */
9d5c8243
AK
2906 set_bit(__IGB_DOWN, &adapter->state);
2907 del_timer_sync(&adapter->watchdog_timer);
2908 del_timer_sync(&adapter->phy_info_timer);
2909
760141a5
TH
2910 cancel_work_sync(&adapter->reset_task);
2911 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2912
421e02f0 2913#ifdef CONFIG_IGB_DCA
7dfc16fa 2914 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2915 dev_info(&pdev->dev, "DCA disabled\n");
2916 dca_remove_requester(&pdev->dev);
7dfc16fa 2917 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2918 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2919 }
2920#endif
2921
9d5c8243 2922 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2923 * would have already happened in close and is redundant.
2924 */
9d5c8243
AK
2925 igb_release_hw_control(adapter);
2926
37680117 2927#ifdef CONFIG_PCI_IOV
fa44f2f1 2928 igb_disable_sriov(pdev);
37680117 2929#endif
559e9c49 2930
c23d92b8
AW
2931 unregister_netdev(netdev);
2932
2933 igb_clear_interrupt_scheme(adapter);
2934
73bf8048 2935 pci_iounmap(pdev, adapter->io_addr);
28b0759c
AD
2936 if (hw->flash_address)
2937 iounmap(hw->flash_address);
56d766d6 2938 pci_release_mem_regions(pdev);
9d5c8243 2939
1128c756 2940 kfree(adapter->shadow_vfta);
9d5c8243
AK
2941 free_netdev(netdev);
2942
19d5afd4 2943 pci_disable_pcie_error_reporting(pdev);
40a914fa 2944
9d5c8243
AK
2945 pci_disable_device(pdev);
2946}
2947
a6b623e0 2948/**
b980ac18
JK
2949 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2950 * @adapter: board private structure to initialize
a6b623e0 2951 *
b980ac18
JK
2952 * This function initializes the vf specific data storage and then attempts to
2953 * allocate the VFs. The reason for ordering it this way is because it is much
2954 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2955 * the memory for the VFs.
a6b623e0 2956 **/
9f9a12f8 2957static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2958{
2959#ifdef CONFIG_PCI_IOV
2960 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2961 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2962
f96a8a0b
CW
2963 /* Virtualization features not supported on i210 family. */
2964 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2965 return;
2966
be06998f
JB
2967 /* Of the below we really only want the effect of getting
2968 * IGB_FLAG_HAS_MSIX set (if available), without which
2969 * igb_enable_sriov() has no effect.
2970 */
2971 igb_set_interrupt_capability(adapter, true);
2972 igb_reset_interrupt_capability(adapter);
2973
fa44f2f1 2974 pci_sriov_set_totalvfs(pdev, 7);
6423fc34 2975 igb_enable_sriov(pdev, max_vfs);
0224d663 2976
a6b623e0
AD
2977#endif /* CONFIG_PCI_IOV */
2978}
2979
fa44f2f1 2980static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2981{
2982 struct e1000_hw *hw = &adapter->hw;
374a542d 2983 u32 max_rss_queues;
9d5c8243 2984
374a542d 2985 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2986 switch (hw->mac.type) {
374a542d
MV
2987 case e1000_i211:
2988 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2989 break;
2990 case e1000_82575:
f96a8a0b 2991 case e1000_i210:
374a542d
MV
2992 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2993 break;
2994 case e1000_i350:
2995 /* I350 cannot do RSS and SR-IOV at the same time */
2996 if (!!adapter->vfs_allocated_count) {
2997 max_rss_queues = 1;
2998 break;
2999 }
3000 /* fall through */
3001 case e1000_82576:
3002 if (!!adapter->vfs_allocated_count) {
3003 max_rss_queues = 2;
3004 break;
3005 }
3006 /* fall through */
3007 case e1000_82580:
ceb5f13b 3008 case e1000_i354:
374a542d
MV
3009 default:
3010 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 3011 break;
374a542d
MV
3012 }
3013
3014 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3015
72ddef05
SS
3016 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3017}
3018
3019void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3020 const u32 max_rss_queues)
3021{
3022 struct e1000_hw *hw = &adapter->hw;
3023
374a542d
MV
3024 /* Determine if we need to pair queues. */
3025 switch (hw->mac.type) {
3026 case e1000_82575:
f96a8a0b 3027 case e1000_i211:
374a542d 3028 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 3029 break;
374a542d 3030 case e1000_82576:
374a542d
MV
3031 case e1000_82580:
3032 case e1000_i350:
ceb5f13b 3033 case e1000_i354:
374a542d 3034 case e1000_i210:
f96a8a0b 3035 default:
b980ac18 3036 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
3037 * order to conserve interrupts due to limited supply.
3038 */
3039 if (adapter->rss_queues > (max_rss_queues / 2))
3040 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
37a5d163
SS
3041 else
3042 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
3043 break;
3044 }
fa44f2f1
GR
3045}
3046
3047/**
b980ac18
JK
3048 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3049 * @adapter: board private structure to initialize
fa44f2f1 3050 *
b980ac18
JK
3051 * igb_sw_init initializes the Adapter private data structure.
3052 * Fields are initialized based on PCI device information and
3053 * OS network device settings (MTU size).
fa44f2f1
GR
3054 **/
3055static int igb_sw_init(struct igb_adapter *adapter)
3056{
3057 struct e1000_hw *hw = &adapter->hw;
3058 struct net_device *netdev = adapter->netdev;
3059 struct pci_dev *pdev = adapter->pdev;
3060
3061 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3062
3063 /* set default ring sizes */
3064 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3065 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3066
3067 /* set default ITR values */
3068 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3069 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3070
3071 /* set default work limits */
3072 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3073
3074 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3075 VLAN_HLEN;
3076 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3077
0e71def2 3078 spin_lock_init(&adapter->nfc_lock);
fa44f2f1
GR
3079 spin_lock_init(&adapter->stats64_lock);
3080#ifdef CONFIG_PCI_IOV
3081 switch (hw->mac.type) {
3082 case e1000_82576:
3083 case e1000_i350:
3084 if (max_vfs > 7) {
3085 dev_warn(&pdev->dev,
3086 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 3087 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
3088 } else
3089 adapter->vfs_allocated_count = max_vfs;
3090 if (adapter->vfs_allocated_count)
3091 dev_warn(&pdev->dev,
3092 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3093 break;
3094 default:
3095 break;
3096 }
3097#endif /* CONFIG_PCI_IOV */
3098
cbfe360a
SA
3099 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3100 adapter->flags |= IGB_FLAG_HAS_MSIX;
3101
ceee3450
TF
3102 igb_probe_vfs(adapter);
3103
fa44f2f1 3104 igb_init_queue_configuration(adapter);
a99955fc 3105
1128c756 3106 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
3107 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3108 GFP_ATOMIC);
1128c756 3109
a6b623e0 3110 /* This call may decrease the number of queues */
53c7d064 3111 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
3112 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3113 return -ENOMEM;
3114 }
3115
3116 /* Explicitly disable IRQ since the NIC can be in any state. */
3117 igb_irq_disable(adapter);
3118
f96a8a0b 3119 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
3120 adapter->flags &= ~IGB_FLAG_DMAC;
3121
9d5c8243
AK
3122 set_bit(__IGB_DOWN, &adapter->state);
3123 return 0;
3124}
3125
3126/**
b980ac18
JK
3127 * igb_open - Called when a network interface is made active
3128 * @netdev: network interface device structure
9d5c8243 3129 *
b980ac18 3130 * Returns 0 on success, negative value on failure
9d5c8243 3131 *
b980ac18
JK
3132 * The open entry point is called when a network interface is made
3133 * active by the system (IFF_UP). At this point all resources needed
3134 * for transmit and receive operations are allocated, the interrupt
3135 * handler is registered with the OS, the watchdog timer is started,
3136 * and the stack is notified that the interface is ready.
9d5c8243 3137 **/
749ab2cd 3138static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
3139{
3140 struct igb_adapter *adapter = netdev_priv(netdev);
3141 struct e1000_hw *hw = &adapter->hw;
749ab2cd 3142 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3143 int err;
3144 int i;
3145
3146 /* disallow open during test */
749ab2cd
YZ
3147 if (test_bit(__IGB_TESTING, &adapter->state)) {
3148 WARN_ON(resuming);
9d5c8243 3149 return -EBUSY;
749ab2cd
YZ
3150 }
3151
3152 if (!resuming)
3153 pm_runtime_get_sync(&pdev->dev);
9d5c8243 3154
b168dfc5
JB
3155 netif_carrier_off(netdev);
3156
9d5c8243
AK
3157 /* allocate transmit descriptors */
3158 err = igb_setup_all_tx_resources(adapter);
3159 if (err)
3160 goto err_setup_tx;
3161
3162 /* allocate receive descriptors */
3163 err = igb_setup_all_rx_resources(adapter);
3164 if (err)
3165 goto err_setup_rx;
3166
88a268c1 3167 igb_power_up_link(adapter);
9d5c8243 3168
9d5c8243
AK
3169 /* before we allocate an interrupt, we must be ready to handle it.
3170 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3171 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
3172 * clean_rx handler before we do so.
3173 */
9d5c8243
AK
3174 igb_configure(adapter);
3175
3176 err = igb_request_irq(adapter);
3177 if (err)
3178 goto err_req_irq;
3179
0c2cc02e
AD
3180 /* Notify the stack of the actual queue counts. */
3181 err = netif_set_real_num_tx_queues(adapter->netdev,
3182 adapter->num_tx_queues);
3183 if (err)
3184 goto err_set_queues;
3185
3186 err = netif_set_real_num_rx_queues(adapter->netdev,
3187 adapter->num_rx_queues);
3188 if (err)
3189 goto err_set_queues;
3190
9d5c8243
AK
3191 /* From here on the code is the same as igb_up() */
3192 clear_bit(__IGB_DOWN, &adapter->state);
3193
0d1ae7f4
AD
3194 for (i = 0; i < adapter->num_q_vectors; i++)
3195 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
3196
3197 /* Clear any pending interrupts. */
3198 rd32(E1000_ICR);
844290e5
PW
3199
3200 igb_irq_enable(adapter);
3201
d4960307
AD
3202 /* notify VFs that reset has been completed */
3203 if (adapter->vfs_allocated_count) {
3204 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 3205
d4960307
AD
3206 reg_data |= E1000_CTRL_EXT_PFRSTD;
3207 wr32(E1000_CTRL_EXT, reg_data);
3208 }
3209
d55b53ff
JK
3210 netif_tx_start_all_queues(netdev);
3211
749ab2cd
YZ
3212 if (!resuming)
3213 pm_runtime_put(&pdev->dev);
3214
25568a53
AD
3215 /* start the watchdog. */
3216 hw->mac.get_link_status = 1;
3217 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
3218
3219 return 0;
3220
0c2cc02e
AD
3221err_set_queues:
3222 igb_free_irq(adapter);
9d5c8243
AK
3223err_req_irq:
3224 igb_release_hw_control(adapter);
88a268c1 3225 igb_power_down_link(adapter);
9d5c8243
AK
3226 igb_free_all_rx_resources(adapter);
3227err_setup_rx:
3228 igb_free_all_tx_resources(adapter);
3229err_setup_tx:
3230 igb_reset(adapter);
749ab2cd
YZ
3231 if (!resuming)
3232 pm_runtime_put(&pdev->dev);
9d5c8243
AK
3233
3234 return err;
3235}
3236
46eafa59 3237int igb_open(struct net_device *netdev)
749ab2cd
YZ
3238{
3239 return __igb_open(netdev, false);
3240}
3241
9d5c8243 3242/**
b980ac18
JK
3243 * igb_close - Disables a network interface
3244 * @netdev: network interface device structure
9d5c8243 3245 *
b980ac18 3246 * Returns 0, this is not allowed to fail
9d5c8243 3247 *
b980ac18
JK
3248 * The close entry point is called when an interface is de-activated
3249 * by the OS. The hardware is still under the driver's control, but
3250 * needs to be disabled. A global MAC reset is issued to stop the
3251 * hardware, and all transmit and receive resources are freed.
9d5c8243 3252 **/
749ab2cd 3253static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
3254{
3255 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 3256 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3257
3258 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 3259
749ab2cd
YZ
3260 if (!suspending)
3261 pm_runtime_get_sync(&pdev->dev);
3262
3263 igb_down(adapter);
9d5c8243
AK
3264 igb_free_irq(adapter);
3265
0e71def2
GH
3266 igb_nfc_filter_exit(adapter);
3267
9d5c8243
AK
3268 igb_free_all_tx_resources(adapter);
3269 igb_free_all_rx_resources(adapter);
3270
749ab2cd
YZ
3271 if (!suspending)
3272 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
3273 return 0;
3274}
3275
46eafa59 3276int igb_close(struct net_device *netdev)
749ab2cd
YZ
3277{
3278 return __igb_close(netdev, false);
3279}
3280
9d5c8243 3281/**
b980ac18
JK
3282 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3283 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 3284 *
b980ac18 3285 * Return 0 on success, negative on failure
9d5c8243 3286 **/
80785298 3287int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3288{
59d71989 3289 struct device *dev = tx_ring->dev;
9d5c8243
AK
3290 int size;
3291
06034649 3292 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
3293
3294 tx_ring->tx_buffer_info = vzalloc(size);
06034649 3295 if (!tx_ring->tx_buffer_info)
9d5c8243 3296 goto err;
9d5c8243
AK
3297
3298 /* round up to nearest 4K */
85e8d004 3299 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
3300 tx_ring->size = ALIGN(tx_ring->size, 4096);
3301
5536d210
AD
3302 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3303 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3304 if (!tx_ring->desc)
3305 goto err;
3306
9d5c8243
AK
3307 tx_ring->next_to_use = 0;
3308 tx_ring->next_to_clean = 0;
81c2fc22 3309
9d5c8243
AK
3310 return 0;
3311
3312err:
06034649 3313 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
3314 tx_ring->tx_buffer_info = NULL;
3315 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
3316 return -ENOMEM;
3317}
3318
3319/**
b980ac18
JK
3320 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3321 * (Descriptors) for all queues
3322 * @adapter: board private structure
9d5c8243 3323 *
b980ac18 3324 * Return 0 on success, negative on failure
9d5c8243
AK
3325 **/
3326static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3327{
439705e1 3328 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3329 int i, err = 0;
3330
3331 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3332 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 3333 if (err) {
439705e1 3334 dev_err(&pdev->dev,
9d5c8243
AK
3335 "Allocation for Tx Queue %u failed\n", i);
3336 for (i--; i >= 0; i--)
3025a446 3337 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3338 break;
3339 }
3340 }
3341
3342 return err;
3343}
3344
3345/**
b980ac18
JK
3346 * igb_setup_tctl - configure the transmit control registers
3347 * @adapter: Board private structure
9d5c8243 3348 **/
d7ee5b3a 3349void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 3350{
9d5c8243
AK
3351 struct e1000_hw *hw = &adapter->hw;
3352 u32 tctl;
9d5c8243 3353
85b430b4
AD
3354 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3355 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
3356
3357 /* Program the Transmit Control Register */
9d5c8243
AK
3358 tctl = rd32(E1000_TCTL);
3359 tctl &= ~E1000_TCTL_CT;
3360 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3361 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3362
3363 igb_config_collision_dist(hw);
3364
9d5c8243
AK
3365 /* Enable transmits */
3366 tctl |= E1000_TCTL_EN;
3367
3368 wr32(E1000_TCTL, tctl);
3369}
3370
85b430b4 3371/**
b980ac18
JK
3372 * igb_configure_tx_ring - Configure transmit ring after Reset
3373 * @adapter: board private structure
3374 * @ring: tx ring to configure
85b430b4 3375 *
b980ac18 3376 * Configure a transmit ring after a reset.
85b430b4 3377 **/
d7ee5b3a 3378void igb_configure_tx_ring(struct igb_adapter *adapter,
9005df38 3379 struct igb_ring *ring)
85b430b4
AD
3380{
3381 struct e1000_hw *hw = &adapter->hw;
a74420e0 3382 u32 txdctl = 0;
85b430b4
AD
3383 u64 tdba = ring->dma;
3384 int reg_idx = ring->reg_idx;
3385
3386 /* disable the queue */
a74420e0 3387 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
3388 wrfl();
3389 mdelay(10);
3390
3391 wr32(E1000_TDLEN(reg_idx),
b980ac18 3392 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 3393 wr32(E1000_TDBAL(reg_idx),
b980ac18 3394 tdba & 0x00000000ffffffffULL);
85b430b4
AD
3395 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3396
fce99e34 3397 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 3398 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3399 writel(0, ring->tail);
85b430b4
AD
3400
3401 txdctl |= IGB_TX_PTHRESH;
3402 txdctl |= IGB_TX_HTHRESH << 8;
3403 txdctl |= IGB_TX_WTHRESH << 16;
3404
3405 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3406 wr32(E1000_TXDCTL(reg_idx), txdctl);
3407}
3408
3409/**
b980ac18
JK
3410 * igb_configure_tx - Configure transmit Unit after Reset
3411 * @adapter: board private structure
85b430b4 3412 *
b980ac18 3413 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3414 **/
3415static void igb_configure_tx(struct igb_adapter *adapter)
3416{
3417 int i;
3418
3419 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3420 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3421}
3422
9d5c8243 3423/**
b980ac18
JK
3424 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3425 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3426 *
b980ac18 3427 * Returns 0 on success, negative on failure
9d5c8243 3428 **/
80785298 3429int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3430{
59d71989 3431 struct device *dev = rx_ring->dev;
f33005a6 3432 int size;
9d5c8243 3433
06034649 3434 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3435
3436 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3437 if (!rx_ring->rx_buffer_info)
9d5c8243 3438 goto err;
9d5c8243 3439
9d5c8243 3440 /* Round up to nearest 4K */
f33005a6 3441 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3442 rx_ring->size = ALIGN(rx_ring->size, 4096);
3443
5536d210
AD
3444 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3445 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3446 if (!rx_ring->desc)
3447 goto err;
3448
cbc8e55f 3449 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3450 rx_ring->next_to_clean = 0;
3451 rx_ring->next_to_use = 0;
9d5c8243 3452
9d5c8243
AK
3453 return 0;
3454
3455err:
06034649
AD
3456 vfree(rx_ring->rx_buffer_info);
3457 rx_ring->rx_buffer_info = NULL;
f33005a6 3458 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3459 return -ENOMEM;
3460}
3461
3462/**
b980ac18
JK
3463 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3464 * (Descriptors) for all queues
3465 * @adapter: board private structure
9d5c8243 3466 *
b980ac18 3467 * Return 0 on success, negative on failure
9d5c8243
AK
3468 **/
3469static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3470{
439705e1 3471 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3472 int i, err = 0;
3473
3474 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3475 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3476 if (err) {
439705e1 3477 dev_err(&pdev->dev,
9d5c8243
AK
3478 "Allocation for Rx Queue %u failed\n", i);
3479 for (i--; i >= 0; i--)
3025a446 3480 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3481 break;
3482 }
3483 }
3484
3485 return err;
3486}
3487
06cf2666 3488/**
b980ac18
JK
3489 * igb_setup_mrqc - configure the multiple receive queue control registers
3490 * @adapter: Board private structure
06cf2666
AD
3491 **/
3492static void igb_setup_mrqc(struct igb_adapter *adapter)
3493{
3494 struct e1000_hw *hw = &adapter->hw;
3495 u32 mrqc, rxcsum;
ed12cc9a 3496 u32 j, num_rx_queues;
eb31f849 3497 u32 rss_key[10];
06cf2666 3498
eb31f849 3499 netdev_rss_key_fill(rss_key, sizeof(rss_key));
a57fe23e 3500 for (j = 0; j < 10; j++)
eb31f849 3501 wr32(E1000_RSSRK(j), rss_key[j]);
06cf2666 3502
a99955fc 3503 num_rx_queues = adapter->rss_queues;
06cf2666 3504
797fd4be 3505 switch (hw->mac.type) {
797fd4be
AD
3506 case e1000_82576:
3507 /* 82576 supports 2 RSS queues for SR-IOV */
ed12cc9a 3508 if (adapter->vfs_allocated_count)
06cf2666 3509 num_rx_queues = 2;
797fd4be
AD
3510 break;
3511 default:
3512 break;
06cf2666
AD
3513 }
3514
ed12cc9a
LMV
3515 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3516 for (j = 0; j < IGB_RETA_SIZE; j++)
c502ea2e
CW
3517 adapter->rss_indir_tbl[j] =
3518 (j * num_rx_queues) / IGB_RETA_SIZE;
ed12cc9a 3519 adapter->rss_indir_tbl_init = num_rx_queues;
06cf2666 3520 }
ed12cc9a 3521 igb_write_rss_indir_tbl(adapter);
06cf2666 3522
b980ac18 3523 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3524 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3525 * offloads as they are enabled by default
3526 */
3527 rxcsum = rd32(E1000_RXCSUM);
3528 rxcsum |= E1000_RXCSUM_PCSD;
3529
3530 if (adapter->hw.mac.type >= e1000_82576)
3531 /* Enable Receive Checksum Offload for SCTP */
3532 rxcsum |= E1000_RXCSUM_CRCOFL;
3533
3534 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3535 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3536
039454a8
AA
3537 /* Generate RSS hash based on packet types, TCP/UDP
3538 * port numbers and/or IPv4/v6 src and dst addresses
3539 */
f96a8a0b
CW
3540 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3541 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3542 E1000_MRQC_RSS_FIELD_IPV6 |
3543 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3544 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3545
039454a8
AA
3546 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3547 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3548 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3549 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3550
06cf2666
AD
3551 /* If VMDq is enabled then we set the appropriate mode for that, else
3552 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3553 * if we are only using one queue
3554 */
06cf2666
AD
3555 if (adapter->vfs_allocated_count) {
3556 if (hw->mac.type > e1000_82575) {
3557 /* Set the default pool for the PF's first queue */
3558 u32 vtctl = rd32(E1000_VT_CTL);
9005df38 3559
06cf2666
AD
3560 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3561 E1000_VT_CTL_DISABLE_DEF_POOL);
3562 vtctl |= adapter->vfs_allocated_count <<
3563 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3564 wr32(E1000_VT_CTL, vtctl);
3565 }
a99955fc 3566 if (adapter->rss_queues > 1)
c883de9f 3567 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
06cf2666 3568 else
f96a8a0b 3569 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3570 } else {
f96a8a0b 3571 if (hw->mac.type != e1000_i211)
c883de9f 3572 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
06cf2666
AD
3573 }
3574 igb_vmm_control(adapter);
3575
06cf2666
AD
3576 wr32(E1000_MRQC, mrqc);
3577}
3578
9d5c8243 3579/**
b980ac18
JK
3580 * igb_setup_rctl - configure the receive control registers
3581 * @adapter: Board private structure
9d5c8243 3582 **/
d7ee5b3a 3583void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3584{
3585 struct e1000_hw *hw = &adapter->hw;
3586 u32 rctl;
9d5c8243
AK
3587
3588 rctl = rd32(E1000_RCTL);
3589
3590 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3591 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3592
69d728ba 3593 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3594 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3595
b980ac18 3596 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3597 * redirection as it did with e1000. Newer features require
3598 * that the HW strips the CRC.
73cd78f1 3599 */
87cb7e8c 3600 rctl |= E1000_RCTL_SECRC;
9d5c8243 3601
559e9c49 3602 /* disable store bad packets and clear size bits. */
ec54d7d6 3603 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3604
45693bcb 3605 /* enable LPE to allow for reception of jumbo frames */
6ec43fe6 3606 rctl |= E1000_RCTL_LPE;
9d5c8243 3607
952f72a8
AD
3608 /* disable queue 0 to prevent tail write w/o re-config */
3609 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3610
e1739522
AD
3611 /* Attention!!! For SR-IOV PF driver operations you must enable
3612 * queue drop for all VF and PF queues to prevent head of line blocking
3613 * if an un-trusted VF does not provide descriptors to hardware.
3614 */
3615 if (adapter->vfs_allocated_count) {
e1739522
AD
3616 /* set all queue drop enable bits */
3617 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3618 }
3619
89eaefb6
BG
3620 /* This is useful for sniffing bad packets. */
3621 if (adapter->netdev->features & NETIF_F_RXALL) {
3622 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3623 * in e1000e_set_rx_mode
3624 */
89eaefb6
BG
3625 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3626 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3627 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3628
16903caa 3629 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
89eaefb6
BG
3630 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3631 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3632 * and that breaks VLANs.
3633 */
3634 }
3635
9d5c8243
AK
3636 wr32(E1000_RCTL, rctl);
3637}
3638
7d5753f0 3639static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
9005df38 3640 int vfn)
7d5753f0
AD
3641{
3642 struct e1000_hw *hw = &adapter->hw;
3643 u32 vmolr;
3644
d3836f8e
AD
3645 if (size > MAX_JUMBO_FRAME_SIZE)
3646 size = MAX_JUMBO_FRAME_SIZE;
7d5753f0
AD
3647
3648 vmolr = rd32(E1000_VMOLR(vfn));
3649 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3650 vmolr |= size | E1000_VMOLR_LPE;
3651 wr32(E1000_VMOLR(vfn), vmolr);
3652
3653 return 0;
3654}
3655
030f9f52
CV
3656static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3657 int vfn, bool enable)
e1739522 3658{
e1739522 3659 struct e1000_hw *hw = &adapter->hw;
030f9f52 3660 u32 val, reg;
e1739522 3661
030f9f52
CV
3662 if (hw->mac.type < e1000_82576)
3663 return;
e1739522 3664
030f9f52
CV
3665 if (hw->mac.type == e1000_i350)
3666 reg = E1000_DVMOLR(vfn);
3667 else
3668 reg = E1000_VMOLR(vfn);
3669
3670 val = rd32(reg);
3671 if (enable)
3672 val |= E1000_VMOLR_STRVLAN;
3673 else
3674 val &= ~(E1000_VMOLR_STRVLAN);
3675 wr32(reg, val);
e1739522
AD
3676}
3677
8151d294
WM
3678static inline void igb_set_vmolr(struct igb_adapter *adapter,
3679 int vfn, bool aupe)
7d5753f0
AD
3680{
3681 struct e1000_hw *hw = &adapter->hw;
3682 u32 vmolr;
3683
b980ac18 3684 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3685 * we should exit and do nothing
3686 */
3687 if (hw->mac.type < e1000_82576)
3688 return;
3689
3690 vmolr = rd32(E1000_VMOLR(vfn));
8151d294 3691 if (aupe)
b980ac18 3692 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3693 else
3694 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3695
3696 /* clear all bits that might not be set */
3697 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3698
a99955fc 3699 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3700 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3701 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3702 * multicast packets
3703 */
3704 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3705 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3706
3707 wr32(E1000_VMOLR(vfn), vmolr);
3708}
3709
85b430b4 3710/**
b980ac18
JK
3711 * igb_configure_rx_ring - Configure a receive ring after Reset
3712 * @adapter: board private structure
3713 * @ring: receive ring to be configured
85b430b4 3714 *
b980ac18 3715 * Configure the Rx unit of the MAC after a reset.
85b430b4 3716 **/
d7ee5b3a 3717void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3718 struct igb_ring *ring)
85b430b4
AD
3719{
3720 struct e1000_hw *hw = &adapter->hw;
3721 u64 rdba = ring->dma;
3722 int reg_idx = ring->reg_idx;
a74420e0 3723 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3724
3725 /* disable the queue */
a74420e0 3726 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3727
3728 /* Set DMA base address registers */
3729 wr32(E1000_RDBAL(reg_idx),
3730 rdba & 0x00000000ffffffffULL);
3731 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3732 wr32(E1000_RDLEN(reg_idx),
b980ac18 3733 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3734
3735 /* initialize head and tail */
fce99e34 3736 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3737 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3738 writel(0, ring->tail);
85b430b4 3739
952f72a8 3740 /* set descriptor configuration */
44390ca6 3741 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3742 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3743 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3744 if (hw->mac.type >= e1000_82580)
757b77e2 3745 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3746 /* Only set Drop Enable if we are supporting multiple queues */
3747 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3748 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3749
3750 wr32(E1000_SRRCTL(reg_idx), srrctl);
3751
7d5753f0 3752 /* set filtering for VMDQ pools */
8151d294 3753 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3754
85b430b4
AD
3755 rxdctl |= IGB_RX_PTHRESH;
3756 rxdctl |= IGB_RX_HTHRESH << 8;
3757 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3758
3759 /* enable receive descriptor fetching */
3760 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3761 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3762}
3763
9d5c8243 3764/**
b980ac18
JK
3765 * igb_configure_rx - Configure receive Unit after Reset
3766 * @adapter: board private structure
9d5c8243 3767 *
b980ac18 3768 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3769 **/
3770static void igb_configure_rx(struct igb_adapter *adapter)
3771{
9107584e 3772 int i;
9d5c8243 3773
26ad9178
AD
3774 /* set the correct pool for the PF default MAC address in entry 0 */
3775 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3776 adapter->vfs_allocated_count);
26ad9178 3777
06cf2666 3778 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3779 * the Base and Length of the Rx Descriptor Ring
3780 */
f9d40f6a
AD
3781 for (i = 0; i < adapter->num_rx_queues; i++)
3782 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3783}
3784
3785/**
b980ac18
JK
3786 * igb_free_tx_resources - Free Tx Resources per Queue
3787 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3788 *
b980ac18 3789 * Free all transmit software resources
9d5c8243 3790 **/
68fd9910 3791void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3792{
3b644cf6 3793 igb_clean_tx_ring(tx_ring);
9d5c8243 3794
06034649
AD
3795 vfree(tx_ring->tx_buffer_info);
3796 tx_ring->tx_buffer_info = NULL;
9d5c8243 3797
439705e1
AD
3798 /* if not set, then don't free */
3799 if (!tx_ring->desc)
3800 return;
3801
59d71989
AD
3802 dma_free_coherent(tx_ring->dev, tx_ring->size,
3803 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3804
3805 tx_ring->desc = NULL;
3806}
3807
3808/**
b980ac18
JK
3809 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3810 * @adapter: board private structure
9d5c8243 3811 *
b980ac18 3812 * Free all transmit software resources
9d5c8243
AK
3813 **/
3814static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3815{
3816 int i;
3817
3818 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3819 if (adapter->tx_ring[i])
3820 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3821}
3822
ebe42d16
AD
3823void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3824 struct igb_tx_buffer *tx_buffer)
3825{
3826 if (tx_buffer->skb) {
3827 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3828 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3829 dma_unmap_single(ring->dev,
c9f14bf3
AD
3830 dma_unmap_addr(tx_buffer, dma),
3831 dma_unmap_len(tx_buffer, len),
ebe42d16 3832 DMA_TO_DEVICE);
c9f14bf3 3833 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3834 dma_unmap_page(ring->dev,
c9f14bf3
AD
3835 dma_unmap_addr(tx_buffer, dma),
3836 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3837 DMA_TO_DEVICE);
3838 }
3839 tx_buffer->next_to_watch = NULL;
3840 tx_buffer->skb = NULL;
c9f14bf3 3841 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3842 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3843}
3844
3845/**
b980ac18
JK
3846 * igb_clean_tx_ring - Free Tx Buffers
3847 * @tx_ring: ring to be cleaned
9d5c8243 3848 **/
3b644cf6 3849static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3850{
06034649 3851 struct igb_tx_buffer *buffer_info;
9d5c8243 3852 unsigned long size;
6ad4edfc 3853 u16 i;
9d5c8243 3854
06034649 3855 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3856 return;
3857 /* Free all the Tx ring sk_buffs */
3858
3859 for (i = 0; i < tx_ring->count; i++) {
06034649 3860 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3861 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3862 }
3863
dad8a3b3
JF
3864 netdev_tx_reset_queue(txring_txq(tx_ring));
3865
06034649
AD
3866 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3867 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3868
3869 /* Zero out the descriptor ring */
9d5c8243
AK
3870 memset(tx_ring->desc, 0, tx_ring->size);
3871
3872 tx_ring->next_to_use = 0;
3873 tx_ring->next_to_clean = 0;
9d5c8243
AK
3874}
3875
3876/**
b980ac18
JK
3877 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3878 * @adapter: board private structure
9d5c8243
AK
3879 **/
3880static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3881{
3882 int i;
3883
3884 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3885 if (adapter->tx_ring[i])
3886 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3887}
3888
3889/**
b980ac18
JK
3890 * igb_free_rx_resources - Free Rx Resources
3891 * @rx_ring: ring to clean the resources from
9d5c8243 3892 *
b980ac18 3893 * Free all receive software resources
9d5c8243 3894 **/
68fd9910 3895void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3896{
3b644cf6 3897 igb_clean_rx_ring(rx_ring);
9d5c8243 3898
06034649
AD
3899 vfree(rx_ring->rx_buffer_info);
3900 rx_ring->rx_buffer_info = NULL;
9d5c8243 3901
439705e1
AD
3902 /* if not set, then don't free */
3903 if (!rx_ring->desc)
3904 return;
3905
59d71989
AD
3906 dma_free_coherent(rx_ring->dev, rx_ring->size,
3907 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3908
3909 rx_ring->desc = NULL;
3910}
3911
3912/**
b980ac18
JK
3913 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3914 * @adapter: board private structure
9d5c8243 3915 *
b980ac18 3916 * Free all receive software resources
9d5c8243
AK
3917 **/
3918static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3919{
3920 int i;
3921
3922 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3923 if (adapter->rx_ring[i])
3924 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3925}
3926
3927/**
b980ac18
JK
3928 * igb_clean_rx_ring - Free Rx Buffers per Queue
3929 * @rx_ring: ring to free buffers from
9d5c8243 3930 **/
3b644cf6 3931static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3932{
9d5c8243 3933 unsigned long size;
c023cd88 3934 u16 i;
9d5c8243 3935
1a1c225b
AD
3936 if (rx_ring->skb)
3937 dev_kfree_skb(rx_ring->skb);
3938 rx_ring->skb = NULL;
3939
06034649 3940 if (!rx_ring->rx_buffer_info)
9d5c8243 3941 return;
439705e1 3942
9d5c8243
AK
3943 /* Free all the Rx ring sk_buffs */
3944 for (i = 0; i < rx_ring->count; i++) {
06034649 3945 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3946
cbc8e55f
AD
3947 if (!buffer_info->page)
3948 continue;
3949
5be59554
AD
3950 /* Invalidate cache lines that may have been written to by
3951 * device so that we avoid corrupting memory.
3952 */
3953 dma_sync_single_range_for_cpu(rx_ring->dev,
3954 buffer_info->dma,
3955 buffer_info->page_offset,
3956 IGB_RX_BUFSZ,
3957 DMA_FROM_DEVICE);
3958
3959 /* free resources associated with mapping */
3960 dma_unmap_page_attrs(rx_ring->dev,
3961 buffer_info->dma,
3962 PAGE_SIZE,
3963 DMA_FROM_DEVICE,
3964 DMA_ATTR_SKIP_CPU_SYNC);
2976db80
AD
3965 __page_frag_cache_drain(buffer_info->page,
3966 buffer_info->pagecnt_bias);
cbc8e55f 3967
1a1c225b 3968 buffer_info->page = NULL;
9d5c8243
AK
3969 }
3970
06034649
AD
3971 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3972 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3973
3974 /* Zero out the descriptor ring */
3975 memset(rx_ring->desc, 0, rx_ring->size);
3976
cbc8e55f 3977 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3978 rx_ring->next_to_clean = 0;
3979 rx_ring->next_to_use = 0;
9d5c8243
AK
3980}
3981
3982/**
b980ac18
JK
3983 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3984 * @adapter: board private structure
9d5c8243
AK
3985 **/
3986static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3987{
3988 int i;
3989
3990 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3991 if (adapter->rx_ring[i])
3992 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3993}
3994
3995/**
b980ac18
JK
3996 * igb_set_mac - Change the Ethernet Address of the NIC
3997 * @netdev: network interface device structure
3998 * @p: pointer to an address structure
9d5c8243 3999 *
b980ac18 4000 * Returns 0 on success, negative on failure
9d5c8243
AK
4001 **/
4002static int igb_set_mac(struct net_device *netdev, void *p)
4003{
4004 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 4005 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4006 struct sockaddr *addr = p;
4007
4008 if (!is_valid_ether_addr(addr->sa_data))
4009 return -EADDRNOTAVAIL;
4010
4011 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 4012 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 4013
26ad9178
AD
4014 /* set the correct pool for the new PF MAC address in entry 0 */
4015 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 4016 adapter->vfs_allocated_count);
e1739522 4017
9d5c8243
AK
4018 return 0;
4019}
4020
4021/**
b980ac18
JK
4022 * igb_write_mc_addr_list - write multicast addresses to MTA
4023 * @netdev: network interface device structure
9d5c8243 4024 *
b980ac18
JK
4025 * Writes multicast address list to the MTA hash table.
4026 * Returns: -ENOMEM on failure
4027 * 0 on no addresses written
4028 * X on writing X addresses to MTA
9d5c8243 4029 **/
68d480c4 4030static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
4031{
4032 struct igb_adapter *adapter = netdev_priv(netdev);
4033 struct e1000_hw *hw = &adapter->hw;
22bedad3 4034 struct netdev_hw_addr *ha;
68d480c4 4035 u8 *mta_list;
9d5c8243
AK
4036 int i;
4037
4cd24eaf 4038 if (netdev_mc_empty(netdev)) {
68d480c4
AD
4039 /* nothing to program, so clear mc list */
4040 igb_update_mc_addr_list(hw, NULL, 0);
4041 igb_restore_vf_multicasts(adapter);
4042 return 0;
4043 }
9d5c8243 4044
4cd24eaf 4045 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
4046 if (!mta_list)
4047 return -ENOMEM;
ff41f8dc 4048
68d480c4 4049 /* The shared function expects a packed array of only addresses. */
48e2f183 4050 i = 0;
22bedad3
JP
4051 netdev_for_each_mc_addr(ha, netdev)
4052 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 4053
68d480c4
AD
4054 igb_update_mc_addr_list(hw, mta_list, i);
4055 kfree(mta_list);
4056
4cd24eaf 4057 return netdev_mc_count(netdev);
68d480c4
AD
4058}
4059
4060/**
b980ac18
JK
4061 * igb_write_uc_addr_list - write unicast addresses to RAR table
4062 * @netdev: network interface device structure
68d480c4 4063 *
b980ac18
JK
4064 * Writes unicast address list to the RAR table.
4065 * Returns: -ENOMEM on failure/insufficient address space
4066 * 0 on no addresses written
4067 * X on writing X addresses to the RAR table
68d480c4
AD
4068 **/
4069static int igb_write_uc_addr_list(struct net_device *netdev)
4070{
4071 struct igb_adapter *adapter = netdev_priv(netdev);
4072 struct e1000_hw *hw = &adapter->hw;
4073 unsigned int vfn = adapter->vfs_allocated_count;
4074 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4075 int count = 0;
4076
4077 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 4078 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 4079 return -ENOMEM;
9d5c8243 4080
32e7bfc4 4081 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 4082 struct netdev_hw_addr *ha;
32e7bfc4
JP
4083
4084 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
4085 if (!rar_entries)
4086 break;
26ad9178 4087 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
4088 rar_entries--,
4089 vfn);
68d480c4 4090 count++;
ff41f8dc
AD
4091 }
4092 }
4093 /* write the addresses in reverse order to avoid write combining */
4094 for (; rar_entries > 0 ; rar_entries--) {
4095 wr32(E1000_RAH(rar_entries), 0);
4096 wr32(E1000_RAL(rar_entries), 0);
4097 }
4098 wrfl();
4099
68d480c4
AD
4100 return count;
4101}
4102
16903caa
AD
4103static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4104{
4105 struct e1000_hw *hw = &adapter->hw;
4106 u32 i, pf_id;
4107
4108 switch (hw->mac.type) {
4109 case e1000_i210:
4110 case e1000_i211:
4111 case e1000_i350:
4112 /* VLAN filtering needed for VLAN prio filter */
4113 if (adapter->netdev->features & NETIF_F_NTUPLE)
4114 break;
4115 /* fall through */
4116 case e1000_82576:
4117 case e1000_82580:
4118 case e1000_i354:
4119 /* VLAN filtering needed for pool filtering */
4120 if (adapter->vfs_allocated_count)
4121 break;
4122 /* fall through */
4123 default:
4124 return 1;
4125 }
4126
4127 /* We are already in VLAN promisc, nothing to do */
4128 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4129 return 0;
4130
4131 if (!adapter->vfs_allocated_count)
4132 goto set_vfta;
4133
4134 /* Add PF to all active pools */
4135 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4136
4137 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4138 u32 vlvf = rd32(E1000_VLVF(i));
4139
a51d8c21 4140 vlvf |= BIT(pf_id);
16903caa
AD
4141 wr32(E1000_VLVF(i), vlvf);
4142 }
4143
4144set_vfta:
4145 /* Set all bits in the VLAN filter table array */
4146 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4147 hw->mac.ops.write_vfta(hw, i, ~0U);
4148
4149 /* Set flag so we don't redo unnecessary work */
4150 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4151
4152 return 0;
4153}
4154
4155#define VFTA_BLOCK_SIZE 8
4156static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4157{
4158 struct e1000_hw *hw = &adapter->hw;
4159 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4160 u32 vid_start = vfta_offset * 32;
4161 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4162 u32 i, vid, word, bits, pf_id;
4163
4164 /* guarantee that we don't scrub out management VLAN */
4165 vid = adapter->mng_vlan_id;
4166 if (vid >= vid_start && vid < vid_end)
a51d8c21 4167 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
16903caa
AD
4168
4169 if (!adapter->vfs_allocated_count)
4170 goto set_vfta;
4171
4172 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4173
4174 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4175 u32 vlvf = rd32(E1000_VLVF(i));
4176
4177 /* pull VLAN ID from VLVF */
4178 vid = vlvf & VLAN_VID_MASK;
4179
4180 /* only concern ourselves with a certain range */
4181 if (vid < vid_start || vid >= vid_end)
4182 continue;
4183
4184 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4185 /* record VLAN ID in VFTA */
a51d8c21 4186 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
16903caa
AD
4187
4188 /* if PF is part of this then continue */
4189 if (test_bit(vid, adapter->active_vlans))
4190 continue;
4191 }
4192
4193 /* remove PF from the pool */
a51d8c21 4194 bits = ~BIT(pf_id);
16903caa
AD
4195 bits &= rd32(E1000_VLVF(i));
4196 wr32(E1000_VLVF(i), bits);
4197 }
4198
4199set_vfta:
4200 /* extract values from active_vlans and write back to VFTA */
4201 for (i = VFTA_BLOCK_SIZE; i--;) {
4202 vid = (vfta_offset + i) * 32;
4203 word = vid / BITS_PER_LONG;
4204 bits = vid % BITS_PER_LONG;
4205
4206 vfta[i] |= adapter->active_vlans[word] >> bits;
4207
4208 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4209 }
4210}
4211
4212static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4213{
4214 u32 i;
4215
4216 /* We are not in VLAN promisc, nothing to do */
4217 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4218 return;
4219
4220 /* Set flag so we don't redo unnecessary work */
4221 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4222
4223 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4224 igb_scrub_vfta(adapter, i);
4225}
4226
68d480c4 4227/**
b980ac18
JK
4228 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4229 * @netdev: network interface device structure
68d480c4 4230 *
b980ac18
JK
4231 * The set_rx_mode entry point is called whenever the unicast or multicast
4232 * address lists or the network interface flags are updated. This routine is
4233 * responsible for configuring the hardware for proper unicast, multicast,
4234 * promiscuous mode, and all-multi behavior.
68d480c4
AD
4235 **/
4236static void igb_set_rx_mode(struct net_device *netdev)
4237{
4238 struct igb_adapter *adapter = netdev_priv(netdev);
4239 struct e1000_hw *hw = &adapter->hw;
4240 unsigned int vfn = adapter->vfs_allocated_count;
16903caa 4241 u32 rctl = 0, vmolr = 0;
68d480c4
AD
4242 int count;
4243
4244 /* Check for Promiscuous and All Multicast modes */
68d480c4 4245 if (netdev->flags & IFF_PROMISC) {
16903caa 4246 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
bf456abb
AD
4247 vmolr |= E1000_VMOLR_MPME;
4248
4249 /* enable use of UTA filter to force packets to default pool */
4250 if (hw->mac.type == e1000_82576)
4251 vmolr |= E1000_VMOLR_ROPE;
68d480c4
AD
4252 } else {
4253 if (netdev->flags & IFF_ALLMULTI) {
4254 rctl |= E1000_RCTL_MPE;
4255 vmolr |= E1000_VMOLR_MPME;
4256 } else {
b980ac18 4257 /* Write addresses to the MTA, if the attempt fails
25985edc 4258 * then we should just turn on promiscuous mode so
68d480c4
AD
4259 * that we can at least receive multicast traffic
4260 */
4261 count = igb_write_mc_addr_list(netdev);
4262 if (count < 0) {
4263 rctl |= E1000_RCTL_MPE;
4264 vmolr |= E1000_VMOLR_MPME;
4265 } else if (count) {
4266 vmolr |= E1000_VMOLR_ROMPE;
4267 }
4268 }
28fc06f5 4269 }
268f9d33
AD
4270
4271 /* Write addresses to available RAR registers, if there is not
4272 * sufficient space to store all the addresses then enable
4273 * unicast promiscuous mode
4274 */
4275 count = igb_write_uc_addr_list(netdev);
4276 if (count < 0) {
4277 rctl |= E1000_RCTL_UPE;
4278 vmolr |= E1000_VMOLR_ROPE;
28fc06f5 4279 }
16903caa
AD
4280
4281 /* enable VLAN filtering by default */
4282 rctl |= E1000_RCTL_VFE;
4283
4284 /* disable VLAN filtering for modes that require it */
4285 if ((netdev->flags & IFF_PROMISC) ||
4286 (netdev->features & NETIF_F_RXALL)) {
4287 /* if we fail to set all rules then just clear VFE */
4288 if (igb_vlan_promisc_enable(adapter))
4289 rctl &= ~E1000_RCTL_VFE;
4290 } else {
4291 igb_vlan_promisc_disable(adapter);
4292 }
4293
4294 /* update state of unicast, multicast, and VLAN filtering modes */
4295 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4296 E1000_RCTL_VFE);
68d480c4 4297 wr32(E1000_RCTL, rctl);
28fc06f5 4298
b980ac18 4299 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
4300 * the VMOLR to enable the appropriate modes. Without this workaround
4301 * we will have issues with VLAN tag stripping not being done for frames
4302 * that are only arriving because we are the default pool
4303 */
f96a8a0b 4304 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 4305 return;
9d5c8243 4306
bf456abb
AD
4307 /* set UTA to appropriate mode */
4308 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4309
68d480c4 4310 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 4311 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
45693bcb
AD
4312
4313 /* enable Rx jumbo frames, no need for restriction */
4314 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4315 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4316
68d480c4 4317 wr32(E1000_VMOLR(vfn), vmolr);
45693bcb
AD
4318 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4319
28fc06f5 4320 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
4321}
4322
13800469
GR
4323static void igb_check_wvbr(struct igb_adapter *adapter)
4324{
4325 struct e1000_hw *hw = &adapter->hw;
4326 u32 wvbr = 0;
4327
4328 switch (hw->mac.type) {
4329 case e1000_82576:
4330 case e1000_i350:
81ad807b
CW
4331 wvbr = rd32(E1000_WVBR);
4332 if (!wvbr)
13800469
GR
4333 return;
4334 break;
4335 default:
4336 break;
4337 }
4338
4339 adapter->wvbr |= wvbr;
4340}
4341
4342#define IGB_STAGGERED_QUEUE_OFFSET 8
4343
4344static void igb_spoof_check(struct igb_adapter *adapter)
4345{
4346 int j;
4347
4348 if (!adapter->wvbr)
4349 return;
4350
9005df38 4351 for (j = 0; j < adapter->vfs_allocated_count; j++) {
a51d8c21
JK
4352 if (adapter->wvbr & BIT(j) ||
4353 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
13800469
GR
4354 dev_warn(&adapter->pdev->dev,
4355 "Spoof event(s) detected on VF %d\n", j);
4356 adapter->wvbr &=
a51d8c21
JK
4357 ~(BIT(j) |
4358 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
13800469
GR
4359 }
4360 }
4361}
4362
9d5c8243 4363/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
4364 * the phy
4365 */
9d5c8243
AK
4366static void igb_update_phy_info(unsigned long data)
4367{
4368 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 4369 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
4370}
4371
4d6b725e 4372/**
b980ac18
JK
4373 * igb_has_link - check shared code for link and determine up/down
4374 * @adapter: pointer to driver private info
4d6b725e 4375 **/
3145535a 4376bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
4377{
4378 struct e1000_hw *hw = &adapter->hw;
4379 bool link_active = false;
4d6b725e
AD
4380
4381 /* get_link_status is set on LSC (link status) interrupt or
4382 * rx sequence error interrupt. get_link_status will stay
4383 * false until the e1000_check_for_link establishes link
4384 * for copper adapters ONLY
4385 */
4386 switch (hw->phy.media_type) {
4387 case e1000_media_type_copper:
e5c3370f
AA
4388 if (!hw->mac.get_link_status)
4389 return true;
4d6b725e 4390 case e1000_media_type_internal_serdes:
e5c3370f
AA
4391 hw->mac.ops.check_for_link(hw);
4392 link_active = !hw->mac.get_link_status;
4d6b725e
AD
4393 break;
4394 default:
4395 case e1000_media_type_unknown:
4396 break;
4397 }
4398
aa9b8cc4
AA
4399 if (((hw->mac.type == e1000_i210) ||
4400 (hw->mac.type == e1000_i211)) &&
4401 (hw->phy.id == I210_I_PHY_ID)) {
4402 if (!netif_carrier_ok(adapter->netdev)) {
4403 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4404 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4405 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4406 adapter->link_check_timeout = jiffies;
4407 }
4408 }
4409
4d6b725e
AD
4410 return link_active;
4411}
4412
563988dc
SA
4413static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4414{
4415 bool ret = false;
4416 u32 ctrl_ext, thstat;
4417
f96a8a0b 4418 /* check for thermal sensor event on i350 copper only */
563988dc
SA
4419 if (hw->mac.type == e1000_i350) {
4420 thstat = rd32(E1000_THSTAT);
4421 ctrl_ext = rd32(E1000_CTRL_EXT);
4422
4423 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 4424 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 4425 ret = !!(thstat & event);
563988dc
SA
4426 }
4427
4428 return ret;
4429}
4430
1516f0a6
CW
4431/**
4432 * igb_check_lvmmc - check for malformed packets received
4433 * and indicated in LVMMC register
4434 * @adapter: pointer to adapter
4435 **/
4436static void igb_check_lvmmc(struct igb_adapter *adapter)
4437{
4438 struct e1000_hw *hw = &adapter->hw;
4439 u32 lvmmc;
4440
4441 lvmmc = rd32(E1000_LVMMC);
4442 if (lvmmc) {
4443 if (unlikely(net_ratelimit())) {
4444 netdev_warn(adapter->netdev,
4445 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4446 lvmmc);
4447 }
4448 }
4449}
4450
9d5c8243 4451/**
b980ac18
JK
4452 * igb_watchdog - Timer Call-back
4453 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
4454 **/
4455static void igb_watchdog(unsigned long data)
4456{
4457 struct igb_adapter *adapter = (struct igb_adapter *)data;
4458 /* Do the rest outside of interrupt context */
4459 schedule_work(&adapter->watchdog_task);
4460}
4461
4462static void igb_watchdog_task(struct work_struct *work)
4463{
4464 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
4465 struct igb_adapter,
4466 watchdog_task);
9d5c8243 4467 struct e1000_hw *hw = &adapter->hw;
c0ba4778 4468 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 4469 struct net_device *netdev = adapter->netdev;
563988dc 4470 u32 link;
7a6ea550 4471 int i;
56cec249 4472 u32 connsw;
b72f3f72 4473 u16 phy_data, retry_count = 20;
9d5c8243 4474
4d6b725e 4475 link = igb_has_link(adapter);
aa9b8cc4
AA
4476
4477 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4478 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4479 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4480 else
4481 link = false;
4482 }
4483
56cec249
CW
4484 /* Force link down if we have fiber to swap to */
4485 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4486 if (hw->phy.media_type == e1000_media_type_copper) {
4487 connsw = rd32(E1000_CONNSW);
4488 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4489 link = 0;
4490 }
4491 }
9d5c8243 4492 if (link) {
2bdfc4e2
CW
4493 /* Perform a reset if the media type changed. */
4494 if (hw->dev_spec._82575.media_changed) {
4495 hw->dev_spec._82575.media_changed = false;
4496 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4497 igb_reset(adapter);
4498 }
749ab2cd
YZ
4499 /* Cancel scheduled suspend requests. */
4500 pm_runtime_resume(netdev->dev.parent);
4501
9d5c8243
AK
4502 if (!netif_carrier_ok(netdev)) {
4503 u32 ctrl;
9005df38 4504
330a6d6a 4505 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
4506 &adapter->link_speed,
4507 &adapter->link_duplex);
9d5c8243
AK
4508
4509 ctrl = rd32(E1000_CTRL);
527d47c1 4510 /* Links status message must follow this format */
c75c4edf
CW
4511 netdev_info(netdev,
4512 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
559e9c49
AD
4513 netdev->name,
4514 adapter->link_speed,
4515 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
4516 "Full" : "Half",
4517 (ctrl & E1000_CTRL_TFCE) &&
4518 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4519 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4520 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 4521
f4c01e96
CW
4522 /* disable EEE if enabled */
4523 if ((adapter->flags & IGB_FLAG_EEE) &&
4524 (adapter->link_duplex == HALF_DUPLEX)) {
4525 dev_info(&adapter->pdev->dev,
4526 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4527 adapter->hw.dev_spec._82575.eee_disable = true;
4528 adapter->flags &= ~IGB_FLAG_EEE;
4529 }
4530
c0ba4778
KS
4531 /* check if SmartSpeed worked */
4532 igb_check_downshift(hw);
4533 if (phy->speed_downgraded)
4534 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4535
563988dc 4536 /* check for thermal sensor event */
876d2d6f 4537 if (igb_thermal_sensor_event(hw,
d34a15ab 4538 E1000_THSTAT_LINK_THROTTLE))
c75c4edf 4539 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
563988dc 4540
d07f3e37 4541 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
4542 adapter->tx_timeout_factor = 1;
4543 switch (adapter->link_speed) {
4544 case SPEED_10:
9d5c8243
AK
4545 adapter->tx_timeout_factor = 14;
4546 break;
4547 case SPEED_100:
9d5c8243
AK
4548 /* maybe add some timeout factor ? */
4549 break;
4550 }
4551
b72f3f72
TU
4552 if (adapter->link_speed != SPEED_1000)
4553 goto no_wait;
4554
4555 /* wait for Remote receiver status OK */
4556retry_read_status:
4557 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4558 &phy_data)) {
4559 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4560 retry_count) {
4561 msleep(100);
4562 retry_count--;
4563 goto retry_read_status;
4564 } else if (!retry_count) {
4565 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4566 }
4567 } else {
4568 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4569 }
4570no_wait:
9d5c8243 4571 netif_carrier_on(netdev);
9d5c8243 4572
4ae196df 4573 igb_ping_all_vfs(adapter);
17dc566c 4574 igb_check_vf_rate_limit(adapter);
4ae196df 4575
4b1a9877 4576 /* link state has changed, schedule phy info update */
9d5c8243
AK
4577 if (!test_bit(__IGB_DOWN, &adapter->state))
4578 mod_timer(&adapter->phy_info_timer,
4579 round_jiffies(jiffies + 2 * HZ));
4580 }
4581 } else {
4582 if (netif_carrier_ok(netdev)) {
4583 adapter->link_speed = 0;
4584 adapter->link_duplex = 0;
563988dc
SA
4585
4586 /* check for thermal sensor event */
876d2d6f
JK
4587 if (igb_thermal_sensor_event(hw,
4588 E1000_THSTAT_PWR_DOWN)) {
c75c4edf 4589 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
7ef5ed1c 4590 }
563988dc 4591
527d47c1 4592 /* Links status message must follow this format */
c75c4edf 4593 netdev_info(netdev, "igb: %s NIC Link is Down\n",
527d47c1 4594 netdev->name);
9d5c8243 4595 netif_carrier_off(netdev);
4b1a9877 4596
4ae196df
AD
4597 igb_ping_all_vfs(adapter);
4598
4b1a9877 4599 /* link state has changed, schedule phy info update */
9d5c8243
AK
4600 if (!test_bit(__IGB_DOWN, &adapter->state))
4601 mod_timer(&adapter->phy_info_timer,
4602 round_jiffies(jiffies + 2 * HZ));
749ab2cd 4603
56cec249
CW
4604 /* link is down, time to check for alternate media */
4605 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4606 igb_check_swap_media(adapter);
4607 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4608 schedule_work(&adapter->reset_task);
4609 /* return immediately */
4610 return;
4611 }
4612 }
749ab2cd
YZ
4613 pm_schedule_suspend(netdev->dev.parent,
4614 MSEC_PER_SEC * 5);
56cec249
CW
4615
4616 /* also check for alternate media here */
4617 } else if (!netif_carrier_ok(netdev) &&
4618 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4619 igb_check_swap_media(adapter);
4620 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4621 schedule_work(&adapter->reset_task);
4622 /* return immediately */
4623 return;
4624 }
9d5c8243
AK
4625 }
4626 }
4627
12dcd86b
ED
4628 spin_lock(&adapter->stats64_lock);
4629 igb_update_stats(adapter, &adapter->stats64);
4630 spin_unlock(&adapter->stats64_lock);
9d5c8243 4631
dbabb065 4632 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4633 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 4634 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
4635 /* We've lost link, so the controller stops DMA,
4636 * but we've got queued Tx work that's never going
4637 * to get done, so reset controller to flush Tx.
b980ac18
JK
4638 * (Do the reset outside of interrupt context).
4639 */
dbabb065
AD
4640 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4641 adapter->tx_timeout_count++;
4642 schedule_work(&adapter->reset_task);
4643 /* return immediately since reset is imminent */
4644 return;
4645 }
9d5c8243 4646 }
9d5c8243 4647
dbabb065 4648 /* Force detection of hung controller every watchdog period */
6d095fa8 4649 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4650 }
f7ba205e 4651
b980ac18 4652 /* Cause software interrupt to ensure Rx ring is cleaned */
cd14ef54 4653 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
047e0030 4654 u32 eics = 0;
9005df38 4655
0d1ae7f4
AD
4656 for (i = 0; i < adapter->num_q_vectors; i++)
4657 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4658 wr32(E1000_EICS, eics);
4659 } else {
4660 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4661 }
9d5c8243 4662
13800469 4663 igb_spoof_check(adapter);
fc580751 4664 igb_ptp_rx_hang(adapter);
13800469 4665
1516f0a6
CW
4666 /* Check LVMMC register on i350/i354 only */
4667 if ((adapter->hw.mac.type == e1000_i350) ||
4668 (adapter->hw.mac.type == e1000_i354))
4669 igb_check_lvmmc(adapter);
4670
9d5c8243 4671 /* Reset the timer */
aa9b8cc4
AA
4672 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4673 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4674 mod_timer(&adapter->watchdog_timer,
4675 round_jiffies(jiffies + HZ));
4676 else
4677 mod_timer(&adapter->watchdog_timer,
4678 round_jiffies(jiffies + 2 * HZ));
4679 }
9d5c8243
AK
4680}
4681
4682enum latency_range {
4683 lowest_latency = 0,
4684 low_latency = 1,
4685 bulk_latency = 2,
4686 latency_invalid = 255
4687};
4688
6eb5a7f1 4689/**
b980ac18
JK
4690 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4691 * @q_vector: pointer to q_vector
6eb5a7f1 4692 *
b980ac18
JK
4693 * Stores a new ITR value based on strictly on packet size. This
4694 * algorithm is less sophisticated than that used in igb_update_itr,
4695 * due to the difficulty of synchronizing statistics across multiple
4696 * receive rings. The divisors and thresholds used by this function
4697 * were determined based on theoretical maximum wire speed and testing
4698 * data, in order to minimize response time while increasing bulk
4699 * throughput.
406d4965 4700 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4701 * NOTE: This function is called only when operating in a multiqueue
4702 * receive environment.
6eb5a7f1 4703 **/
047e0030 4704static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4705{
047e0030 4706 int new_val = q_vector->itr_val;
6eb5a7f1 4707 int avg_wire_size = 0;
047e0030 4708 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4709 unsigned int packets;
9d5c8243 4710
6eb5a7f1
AD
4711 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4712 * ints/sec - ITR timer value of 120 ticks.
4713 */
4714 if (adapter->link_speed != SPEED_1000) {
0ba82994 4715 new_val = IGB_4K_ITR;
6eb5a7f1 4716 goto set_itr_val;
9d5c8243 4717 }
047e0030 4718
0ba82994
AD
4719 packets = q_vector->rx.total_packets;
4720 if (packets)
4721 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4722
0ba82994
AD
4723 packets = q_vector->tx.total_packets;
4724 if (packets)
4725 avg_wire_size = max_t(u32, avg_wire_size,
4726 q_vector->tx.total_bytes / packets);
047e0030
AD
4727
4728 /* if avg_wire_size isn't set no work was done */
4729 if (!avg_wire_size)
4730 goto clear_counts;
9d5c8243 4731
6eb5a7f1
AD
4732 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4733 avg_wire_size += 24;
4734
4735 /* Don't starve jumbo frames */
4736 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4737
6eb5a7f1
AD
4738 /* Give a little boost to mid-size frames */
4739 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4740 new_val = avg_wire_size / 3;
4741 else
4742 new_val = avg_wire_size / 2;
9d5c8243 4743
0ba82994
AD
4744 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4745 if (new_val < IGB_20K_ITR &&
4746 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4747 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4748 new_val = IGB_20K_ITR;
abe1c363 4749
6eb5a7f1 4750set_itr_val:
047e0030
AD
4751 if (new_val != q_vector->itr_val) {
4752 q_vector->itr_val = new_val;
4753 q_vector->set_itr = 1;
9d5c8243 4754 }
6eb5a7f1 4755clear_counts:
0ba82994
AD
4756 q_vector->rx.total_bytes = 0;
4757 q_vector->rx.total_packets = 0;
4758 q_vector->tx.total_bytes = 0;
4759 q_vector->tx.total_packets = 0;
9d5c8243
AK
4760}
4761
4762/**
b980ac18
JK
4763 * igb_update_itr - update the dynamic ITR value based on statistics
4764 * @q_vector: pointer to q_vector
4765 * @ring_container: ring info to update the itr for
4766 *
4767 * Stores a new ITR value based on packets and byte
4768 * counts during the last interrupt. The advantage of per interrupt
4769 * computation is faster updates and more accurate ITR for the current
4770 * traffic pattern. Constants in this function were computed
4771 * based on theoretical maximum wire speed and thresholds were set based
4772 * on testing data as well as attempting to minimize response time
4773 * while increasing bulk throughput.
406d4965 4774 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4775 * NOTE: These calculations are only valid when operating in a single-
4776 * queue environment.
9d5c8243 4777 **/
0ba82994
AD
4778static void igb_update_itr(struct igb_q_vector *q_vector,
4779 struct igb_ring_container *ring_container)
9d5c8243 4780{
0ba82994
AD
4781 unsigned int packets = ring_container->total_packets;
4782 unsigned int bytes = ring_container->total_bytes;
4783 u8 itrval = ring_container->itr;
9d5c8243 4784
0ba82994 4785 /* no packets, exit with status unchanged */
9d5c8243 4786 if (packets == 0)
0ba82994 4787 return;
9d5c8243 4788
0ba82994 4789 switch (itrval) {
9d5c8243
AK
4790 case lowest_latency:
4791 /* handle TSO and jumbo frames */
4792 if (bytes/packets > 8000)
0ba82994 4793 itrval = bulk_latency;
9d5c8243 4794 else if ((packets < 5) && (bytes > 512))
0ba82994 4795 itrval = low_latency;
9d5c8243
AK
4796 break;
4797 case low_latency: /* 50 usec aka 20000 ints/s */
4798 if (bytes > 10000) {
4799 /* this if handles the TSO accounting */
d34a15ab 4800 if (bytes/packets > 8000)
0ba82994 4801 itrval = bulk_latency;
d34a15ab 4802 else if ((packets < 10) || ((bytes/packets) > 1200))
0ba82994 4803 itrval = bulk_latency;
d34a15ab 4804 else if ((packets > 35))
0ba82994 4805 itrval = lowest_latency;
9d5c8243 4806 } else if (bytes/packets > 2000) {
0ba82994 4807 itrval = bulk_latency;
9d5c8243 4808 } else if (packets <= 2 && bytes < 512) {
0ba82994 4809 itrval = lowest_latency;
9d5c8243
AK
4810 }
4811 break;
4812 case bulk_latency: /* 250 usec aka 4000 ints/s */
4813 if (bytes > 25000) {
4814 if (packets > 35)
0ba82994 4815 itrval = low_latency;
1e5c3d21 4816 } else if (bytes < 1500) {
0ba82994 4817 itrval = low_latency;
9d5c8243
AK
4818 }
4819 break;
4820 }
4821
0ba82994
AD
4822 /* clear work counters since we have the values we need */
4823 ring_container->total_bytes = 0;
4824 ring_container->total_packets = 0;
4825
4826 /* write updated itr to ring container */
4827 ring_container->itr = itrval;
9d5c8243
AK
4828}
4829
0ba82994 4830static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4831{
0ba82994 4832 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4833 u32 new_itr = q_vector->itr_val;
0ba82994 4834 u8 current_itr = 0;
9d5c8243
AK
4835
4836 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4837 if (adapter->link_speed != SPEED_1000) {
4838 current_itr = 0;
0ba82994 4839 new_itr = IGB_4K_ITR;
9d5c8243
AK
4840 goto set_itr_now;
4841 }
4842
0ba82994
AD
4843 igb_update_itr(q_vector, &q_vector->tx);
4844 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4845
0ba82994 4846 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4847
6eb5a7f1 4848 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4849 if (current_itr == lowest_latency &&
4850 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4851 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4852 current_itr = low_latency;
4853
9d5c8243
AK
4854 switch (current_itr) {
4855 /* counts and packets in update_itr are dependent on these numbers */
4856 case lowest_latency:
0ba82994 4857 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4858 break;
4859 case low_latency:
0ba82994 4860 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4861 break;
4862 case bulk_latency:
0ba82994 4863 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4864 break;
4865 default:
4866 break;
4867 }
4868
4869set_itr_now:
047e0030 4870 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4871 /* this attempts to bias the interrupt rate towards Bulk
4872 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4873 * increasing
4874 */
047e0030 4875 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4876 max((new_itr * q_vector->itr_val) /
4877 (new_itr + (q_vector->itr_val >> 2)),
4878 new_itr) : new_itr;
9d5c8243
AK
4879 /* Don't write the value here; it resets the adapter's
4880 * internal timer, and causes us to delay far longer than
4881 * we should between interrupts. Instead, we write the ITR
4882 * value at the beginning of the next interrupt so the timing
4883 * ends up being correct.
4884 */
047e0030
AD
4885 q_vector->itr_val = new_itr;
4886 q_vector->set_itr = 1;
9d5c8243 4887 }
9d5c8243
AK
4888}
4889
c50b52a0
SH
4890static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4891 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4892{
4893 struct e1000_adv_tx_context_desc *context_desc;
4894 u16 i = tx_ring->next_to_use;
4895
4896 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4897
4898 i++;
4899 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4900
4901 /* set bits to identify this as an advanced context descriptor */
4902 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4903
4904 /* For 82575, context index must be unique per ring. */
866cff06 4905 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4906 mss_l4len_idx |= tx_ring->reg_idx << 4;
4907
4908 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4909 context_desc->seqnum_seed = 0;
4910 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4911 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4912}
4913
7af40ad9
AD
4914static int igb_tso(struct igb_ring *tx_ring,
4915 struct igb_tx_buffer *first,
4916 u8 *hdr_len)
9d5c8243 4917{
e10715d3 4918 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
7af40ad9 4919 struct sk_buff *skb = first->skb;
e10715d3
AD
4920 union {
4921 struct iphdr *v4;
4922 struct ipv6hdr *v6;
4923 unsigned char *hdr;
4924 } ip;
4925 union {
4926 struct tcphdr *tcp;
4927 unsigned char *hdr;
4928 } l4;
4929 u32 paylen, l4_offset;
06c14e5a 4930 int err;
7d13a7d0 4931
ed6aa105
AD
4932 if (skb->ip_summed != CHECKSUM_PARTIAL)
4933 return 0;
4934
7d13a7d0
AD
4935 if (!skb_is_gso(skb))
4936 return 0;
9d5c8243 4937
06c14e5a
FR
4938 err = skb_cow_head(skb, 0);
4939 if (err < 0)
4940 return err;
9d5c8243 4941
e10715d3
AD
4942 ip.hdr = skb_network_header(skb);
4943 l4.hdr = skb_checksum_start(skb);
4944
7d13a7d0
AD
4945 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4946 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4947
e10715d3
AD
4948 /* initialize outer IP header fields */
4949 if (ip.v4->version == 4) {
516165a1
AD
4950 unsigned char *csum_start = skb_checksum_start(skb);
4951 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
4952
e10715d3
AD
4953 /* IP header will have to cancel out any data that
4954 * is not a part of the outer IP header
4955 */
516165a1
AD
4956 ip.v4->check = csum_fold(csum_partial(trans_start,
4957 csum_start - trans_start,
4958 0));
7d13a7d0 4959 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
e10715d3
AD
4960
4961 ip.v4->tot_len = 0;
7af40ad9
AD
4962 first->tx_flags |= IGB_TX_FLAGS_TSO |
4963 IGB_TX_FLAGS_CSUM |
4964 IGB_TX_FLAGS_IPV4;
e10715d3
AD
4965 } else {
4966 ip.v6->payload_len = 0;
7af40ad9
AD
4967 first->tx_flags |= IGB_TX_FLAGS_TSO |
4968 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4969 }
4970
e10715d3
AD
4971 /* determine offset of inner transport header */
4972 l4_offset = l4.hdr - skb->data;
4973
4974 /* compute length of segmentation header */
4975 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4976
4977 /* remove payload length from inner checksum */
4978 paylen = skb->len - l4_offset;
4979 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
9d5c8243 4980
7af40ad9
AD
4981 /* update gso size and bytecount with header size */
4982 first->gso_segs = skb_shinfo(skb)->gso_segs;
4983 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4984
9d5c8243 4985 /* MSS L4LEN IDX */
e10715d3 4986 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
7d13a7d0 4987 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4988
7d13a7d0 4989 /* VLAN MACLEN IPLEN */
e10715d3
AD
4990 vlan_macip_lens = l4.hdr - ip.hdr;
4991 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4992 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4993
7d13a7d0 4994 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4995
7d13a7d0 4996 return 1;
9d5c8243
AK
4997}
4998
6e033700
AD
4999static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5000{
5001 unsigned int offset = 0;
5002
5003 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5004
5005 return offset == skb_checksum_start_offset(skb);
5006}
5007
7af40ad9 5008static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 5009{
7af40ad9 5010 struct sk_buff *skb = first->skb;
7d13a7d0 5011 u32 vlan_macip_lens = 0;
7d13a7d0 5012 u32 type_tucmd = 0;
9d5c8243 5013
7d13a7d0 5014 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6e033700 5015csum_failed:
7af40ad9
AD
5016 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5017 return;
6e033700
AD
5018 goto no_csum;
5019 }
fa4a7ef3 5020
6e033700
AD
5021 switch (skb->csum_offset) {
5022 case offsetof(struct tcphdr, check):
5023 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5024 /* fall through */
5025 case offsetof(struct udphdr, check):
5026 break;
5027 case offsetof(struct sctphdr, checksum):
5028 /* validate that this is actually an SCTP request */
5029 if (((first->protocol == htons(ETH_P_IP)) &&
5030 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5031 ((first->protocol == htons(ETH_P_IPV6)) &&
5032 igb_ipv6_csum_is_sctp(skb))) {
5033 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
7d13a7d0 5034 break;
9d5c8243 5035 }
6e033700
AD
5036 default:
5037 skb_checksum_help(skb);
5038 goto csum_failed;
7d13a7d0 5039 }
9d5c8243 5040
6e033700
AD
5041 /* update TX checksum flag */
5042 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5043 vlan_macip_lens = skb_checksum_start_offset(skb) -
5044 skb_network_offset(skb);
5045no_csum:
7d13a7d0 5046 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 5047 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 5048
6e033700 5049 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
9d5c8243
AK
5050}
5051
1d9daf45
AD
5052#define IGB_SET_FLAG(_input, _flag, _result) \
5053 ((_flag <= _result) ? \
5054 ((u32)(_input & _flag) * (_result / _flag)) : \
5055 ((u32)(_input & _flag) / (_flag / _result)))
5056
5057static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
5058{
5059 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
5060 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5061 E1000_ADVTXD_DCMD_DEXT |
5062 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
5063
5064 /* set HW vlan bit if vlan is present */
1d9daf45
AD
5065 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5066 (E1000_ADVTXD_DCMD_VLE));
5067
5068 /* set segmentation bits for TSO */
5069 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5070 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
5071
5072 /* set timestamp bit if present */
1d9daf45
AD
5073 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5074 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 5075
1d9daf45
AD
5076 /* insert frame checksum */
5077 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
5078
5079 return cmd_type;
5080}
5081
7af40ad9
AD
5082static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5083 union e1000_adv_tx_desc *tx_desc,
5084 u32 tx_flags, unsigned int paylen)
e032afc8
AD
5085{
5086 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5087
1d9daf45
AD
5088 /* 82575 requires a unique index per ring */
5089 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
5090 olinfo_status |= tx_ring->reg_idx << 4;
5091
5092 /* insert L4 checksum */
1d9daf45
AD
5093 olinfo_status |= IGB_SET_FLAG(tx_flags,
5094 IGB_TX_FLAGS_CSUM,
5095 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 5096
1d9daf45
AD
5097 /* insert IPv4 checksum */
5098 olinfo_status |= IGB_SET_FLAG(tx_flags,
5099 IGB_TX_FLAGS_IPV4,
5100 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 5101
7af40ad9 5102 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
5103}
5104
6f19e12f
DM
5105static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5106{
5107 struct net_device *netdev = tx_ring->netdev;
5108
5109 netif_stop_subqueue(netdev, tx_ring->queue_index);
5110
5111 /* Herbert's original patch had:
5112 * smp_mb__after_netif_stop_queue();
5113 * but since that doesn't exist yet, just open code it.
5114 */
5115 smp_mb();
5116
5117 /* We need to check again in a case another CPU has just
5118 * made room available.
5119 */
5120 if (igb_desc_unused(tx_ring) < size)
5121 return -EBUSY;
5122
5123 /* A reprieve! */
5124 netif_wake_subqueue(netdev, tx_ring->queue_index);
5125
5126 u64_stats_update_begin(&tx_ring->tx_syncp2);
5127 tx_ring->tx_stats.restart_queue2++;
5128 u64_stats_update_end(&tx_ring->tx_syncp2);
5129
5130 return 0;
5131}
5132
5133static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5134{
5135 if (igb_desc_unused(tx_ring) >= size)
5136 return 0;
5137 return __igb_maybe_stop_tx(tx_ring, size);
5138}
5139
7af40ad9
AD
5140static void igb_tx_map(struct igb_ring *tx_ring,
5141 struct igb_tx_buffer *first,
ebe42d16 5142 const u8 hdr_len)
9d5c8243 5143{
7af40ad9 5144 struct sk_buff *skb = first->skb;
c9f14bf3 5145 struct igb_tx_buffer *tx_buffer;
ebe42d16 5146 union e1000_adv_tx_desc *tx_desc;
80d0759e 5147 struct skb_frag_struct *frag;
ebe42d16 5148 dma_addr_t dma;
80d0759e 5149 unsigned int data_len, size;
7af40ad9 5150 u32 tx_flags = first->tx_flags;
1d9daf45 5151 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 5152 u16 i = tx_ring->next_to_use;
ebe42d16
AD
5153
5154 tx_desc = IGB_TX_DESC(tx_ring, i);
5155
80d0759e
AD
5156 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5157
5158 size = skb_headlen(skb);
5159 data_len = skb->data_len;
ebe42d16
AD
5160
5161 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 5162
80d0759e
AD
5163 tx_buffer = first;
5164
5165 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5166 if (dma_mapping_error(tx_ring->dev, dma))
5167 goto dma_error;
5168
5169 /* record length, and DMA address */
5170 dma_unmap_len_set(tx_buffer, len, size);
5171 dma_unmap_addr_set(tx_buffer, dma, dma);
5172
5173 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 5174
ebe42d16
AD
5175 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5176 tx_desc->read.cmd_type_len =
1d9daf45 5177 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
5178
5179 i++;
5180 tx_desc++;
5181 if (i == tx_ring->count) {
5182 tx_desc = IGB_TX_DESC(tx_ring, 0);
5183 i = 0;
5184 }
80d0759e 5185 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
5186
5187 dma += IGB_MAX_DATA_PER_TXD;
5188 size -= IGB_MAX_DATA_PER_TXD;
5189
ebe42d16
AD
5190 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5191 }
5192
5193 if (likely(!data_len))
5194 break;
2bbfebe2 5195
1d9daf45 5196 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 5197
65689fef 5198 i++;
ebe42d16
AD
5199 tx_desc++;
5200 if (i == tx_ring->count) {
5201 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 5202 i = 0;
ebe42d16 5203 }
80d0759e 5204 tx_desc->read.olinfo_status = 0;
65689fef 5205
9e903e08 5206 size = skb_frag_size(frag);
ebe42d16
AD
5207 data_len -= size;
5208
5209 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 5210 size, DMA_TO_DEVICE);
6366ad33 5211
c9f14bf3 5212 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
5213 }
5214
ebe42d16 5215 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
5216 cmd_type |= size | IGB_TXD_DCMD;
5217 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 5218
80d0759e
AD
5219 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5220
8542db05
AD
5221 /* set the timestamp */
5222 first->time_stamp = jiffies;
5223
b980ac18 5224 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
5225 * are new descriptors to fetch. (Only applicable for weak-ordered
5226 * memory model archs, such as IA-64).
5227 *
5228 * We also need this memory barrier to make certain all of the
5229 * status bits have been updated before next_to_watch is written.
5230 */
5231 wmb();
5232
8542db05 5233 /* set next_to_watch value indicating a packet is present */
ebe42d16 5234 first->next_to_watch = tx_desc;
9d5c8243 5235
ebe42d16
AD
5236 i++;
5237 if (i == tx_ring->count)
5238 i = 0;
6366ad33 5239
ebe42d16 5240 tx_ring->next_to_use = i;
6366ad33 5241
6f19e12f
DM
5242 /* Make sure there is space in the ring for the next send. */
5243 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5244
5245 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
0b725a2c
DM
5246 writel(i, tx_ring->tail);
5247
5248 /* we need this if more than one processor can write to our tail
5249 * at a time, it synchronizes IO on IA64/Altix systems
5250 */
5251 mmiowb();
5252 }
ebe42d16
AD
5253 return;
5254
5255dma_error:
5256 dev_err(tx_ring->dev, "TX DMA map failed\n");
5257
5258 /* clear dma mappings for failed tx_buffer_info map */
5259 for (;;) {
c9f14bf3
AD
5260 tx_buffer = &tx_ring->tx_buffer_info[i];
5261 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5262 if (tx_buffer == first)
ebe42d16 5263 break;
a77ff709
NN
5264 if (i == 0)
5265 i = tx_ring->count;
6366ad33 5266 i--;
6366ad33
AD
5267 }
5268
9d5c8243 5269 tx_ring->next_to_use = i;
9d5c8243
AK
5270}
5271
cd392f5c
AD
5272netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5273 struct igb_ring *tx_ring)
9d5c8243 5274{
8542db05 5275 struct igb_tx_buffer *first;
ebe42d16 5276 int tso;
91d4ee33 5277 u32 tx_flags = 0;
2ee52ad4 5278 unsigned short f;
21ba6fe1 5279 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 5280 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 5281 u8 hdr_len = 0;
9d5c8243 5282
21ba6fe1
AD
5283 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5284 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 5285 * + 2 desc gap to keep tail from touching head,
9d5c8243 5286 * + 1 desc for context descriptor,
21ba6fe1
AD
5287 * otherwise try next time
5288 */
2ee52ad4
AD
5289 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5290 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
21ba6fe1
AD
5291
5292 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 5293 /* this is a hard error */
9d5c8243
AK
5294 return NETDEV_TX_BUSY;
5295 }
33af6bcc 5296
7af40ad9
AD
5297 /* record the location of the first descriptor for this packet */
5298 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5299 first->skb = skb;
5300 first->bytecount = skb->len;
5301 first->gso_segs = 1;
5302
b646c22e
AD
5303 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5304 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 5305
ed4420a3
JK
5306 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5307 &adapter->state)) {
b646c22e
AD
5308 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5309 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5310
5311 adapter->ptp_tx_skb = skb_get(skb);
5312 adapter->ptp_tx_start = jiffies;
5313 if (adapter->hw.mac.type == e1000_82576)
5314 schedule_work(&adapter->ptp_tx_work);
5315 }
33af6bcc 5316 }
9d5c8243 5317
afc835d1
JK
5318 skb_tx_timestamp(skb);
5319
df8a39de 5320 if (skb_vlan_tag_present(skb)) {
9d5c8243 5321 tx_flags |= IGB_TX_FLAGS_VLAN;
df8a39de 5322 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
9d5c8243
AK
5323 }
5324
7af40ad9
AD
5325 /* record initial flags and protocol */
5326 first->tx_flags = tx_flags;
5327 first->protocol = protocol;
cdfd01fc 5328
7af40ad9
AD
5329 tso = igb_tso(tx_ring, first, &hdr_len);
5330 if (tso < 0)
7d13a7d0 5331 goto out_drop;
7af40ad9
AD
5332 else if (!tso)
5333 igb_tx_csum(tx_ring, first);
9d5c8243 5334
7af40ad9 5335 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2 5336
9d5c8243 5337 return NETDEV_TX_OK;
7d13a7d0
AD
5338
5339out_drop:
7af40ad9
AD
5340 igb_unmap_and_free_tx_resource(tx_ring, first);
5341
7d13a7d0 5342 return NETDEV_TX_OK;
9d5c8243
AK
5343}
5344
0b725a2c
DM
5345static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5346 struct sk_buff *skb)
1cc3bd87 5347{
0b725a2c
DM
5348 unsigned int r_idx = skb->queue_mapping;
5349
1cc3bd87
AD
5350 if (r_idx >= adapter->num_tx_queues)
5351 r_idx = r_idx % adapter->num_tx_queues;
5352
5353 return adapter->tx_ring[r_idx];
5354}
5355
cd392f5c
AD
5356static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5357 struct net_device *netdev)
9d5c8243
AK
5358{
5359 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3 5360
b980ac18 5361 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
5362 * in order to meet this minimum size requirement.
5363 */
a94d9e22
AD
5364 if (skb_put_padto(skb, 17))
5365 return NETDEV_TX_OK;
9d5c8243 5366
1cc3bd87 5367 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
5368}
5369
5370/**
b980ac18
JK
5371 * igb_tx_timeout - Respond to a Tx Hang
5372 * @netdev: network interface device structure
9d5c8243
AK
5373 **/
5374static void igb_tx_timeout(struct net_device *netdev)
5375{
5376 struct igb_adapter *adapter = netdev_priv(netdev);
5377 struct e1000_hw *hw = &adapter->hw;
5378
5379 /* Do the reset outside of interrupt context */
5380 adapter->tx_timeout_count++;
f7ba205e 5381
06218a8d 5382 if (hw->mac.type >= e1000_82580)
55cac248
AD
5383 hw->dev_spec._82575.global_device_reset = true;
5384
9d5c8243 5385 schedule_work(&adapter->reset_task);
265de409
AD
5386 wr32(E1000_EICS,
5387 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
5388}
5389
5390static void igb_reset_task(struct work_struct *work)
5391{
5392 struct igb_adapter *adapter;
5393 adapter = container_of(work, struct igb_adapter, reset_task);
5394
c97ec42a
TI
5395 igb_dump(adapter);
5396 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
5397 igb_reinit_locked(adapter);
5398}
5399
5400/**
b980ac18
JK
5401 * igb_get_stats64 - Get System Network Statistics
5402 * @netdev: network interface device structure
5403 * @stats: rtnl_link_stats64 pointer
9d5c8243 5404 **/
12dcd86b 5405static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 5406 struct rtnl_link_stats64 *stats)
9d5c8243 5407{
12dcd86b
ED
5408 struct igb_adapter *adapter = netdev_priv(netdev);
5409
5410 spin_lock(&adapter->stats64_lock);
5411 igb_update_stats(adapter, &adapter->stats64);
5412 memcpy(stats, &adapter->stats64, sizeof(*stats));
5413 spin_unlock(&adapter->stats64_lock);
5414
5415 return stats;
9d5c8243
AK
5416}
5417
5418/**
b980ac18
JK
5419 * igb_change_mtu - Change the Maximum Transfer Unit
5420 * @netdev: network interface device structure
5421 * @new_mtu: new value for maximum frame size
9d5c8243 5422 *
b980ac18 5423 * Returns 0 on success, negative on failure
9d5c8243
AK
5424 **/
5425static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5426{
5427 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5428 struct pci_dev *pdev = adapter->pdev;
153285f9 5429 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 5430
2ccd994c
AD
5431 /* adjust max frame to be at least the size of a standard frame */
5432 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5433 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5434
9d5c8243 5435 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 5436 usleep_range(1000, 2000);
73cd78f1 5437
9d5c8243
AK
5438 /* igb_down has a dependency on max_frame_size */
5439 adapter->max_frame_size = max_frame;
559e9c49 5440
4c844851
AD
5441 if (netif_running(netdev))
5442 igb_down(adapter);
9d5c8243 5443
090b1795 5444 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
5445 netdev->mtu, new_mtu);
5446 netdev->mtu = new_mtu;
5447
5448 if (netif_running(netdev))
5449 igb_up(adapter);
5450 else
5451 igb_reset(adapter);
5452
5453 clear_bit(__IGB_RESETTING, &adapter->state);
5454
5455 return 0;
5456}
5457
5458/**
b980ac18
JK
5459 * igb_update_stats - Update the board statistics counters
5460 * @adapter: board private structure
9d5c8243 5461 **/
12dcd86b
ED
5462void igb_update_stats(struct igb_adapter *adapter,
5463 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
5464{
5465 struct e1000_hw *hw = &adapter->hw;
5466 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 5467 u32 reg, mpc;
3f9c0164
AD
5468 int i;
5469 u64 bytes, packets;
12dcd86b
ED
5470 unsigned int start;
5471 u64 _bytes, _packets;
9d5c8243 5472
b980ac18 5473 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
5474 * connection is down.
5475 */
5476 if (adapter->link_speed == 0)
5477 return;
5478 if (pci_channel_offline(pdev))
5479 return;
5480
3f9c0164
AD
5481 bytes = 0;
5482 packets = 0;
7f90128e
AA
5483
5484 rcu_read_lock();
3f9c0164 5485 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 5486 struct igb_ring *ring = adapter->rx_ring[i];
e66c083a
TF
5487 u32 rqdpc = rd32(E1000_RQDPC(i));
5488 if (hw->mac.type >= e1000_i210)
5489 wr32(E1000_RQDPC(i), 0);
12dcd86b 5490
ae1c07a6
AD
5491 if (rqdpc) {
5492 ring->rx_stats.drops += rqdpc;
5493 net_stats->rx_fifo_errors += rqdpc;
5494 }
12dcd86b
ED
5495
5496 do {
57a7744e 5497 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
12dcd86b
ED
5498 _bytes = ring->rx_stats.bytes;
5499 _packets = ring->rx_stats.packets;
57a7744e 5500 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
12dcd86b
ED
5501 bytes += _bytes;
5502 packets += _packets;
3f9c0164
AD
5503 }
5504
128e45eb
AD
5505 net_stats->rx_bytes = bytes;
5506 net_stats->rx_packets = packets;
3f9c0164
AD
5507
5508 bytes = 0;
5509 packets = 0;
5510 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5511 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b 5512 do {
57a7744e 5513 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
12dcd86b
ED
5514 _bytes = ring->tx_stats.bytes;
5515 _packets = ring->tx_stats.packets;
57a7744e 5516 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
12dcd86b
ED
5517 bytes += _bytes;
5518 packets += _packets;
3f9c0164 5519 }
128e45eb
AD
5520 net_stats->tx_bytes = bytes;
5521 net_stats->tx_packets = packets;
7f90128e 5522 rcu_read_unlock();
3f9c0164
AD
5523
5524 /* read stats registers */
9d5c8243
AK
5525 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5526 adapter->stats.gprc += rd32(E1000_GPRC);
5527 adapter->stats.gorc += rd32(E1000_GORCL);
5528 rd32(E1000_GORCH); /* clear GORCL */
5529 adapter->stats.bprc += rd32(E1000_BPRC);
5530 adapter->stats.mprc += rd32(E1000_MPRC);
5531 adapter->stats.roc += rd32(E1000_ROC);
5532
5533 adapter->stats.prc64 += rd32(E1000_PRC64);
5534 adapter->stats.prc127 += rd32(E1000_PRC127);
5535 adapter->stats.prc255 += rd32(E1000_PRC255);
5536 adapter->stats.prc511 += rd32(E1000_PRC511);
5537 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5538 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5539 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5540 adapter->stats.sec += rd32(E1000_SEC);
5541
fa3d9a6d
MW
5542 mpc = rd32(E1000_MPC);
5543 adapter->stats.mpc += mpc;
5544 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
5545 adapter->stats.scc += rd32(E1000_SCC);
5546 adapter->stats.ecol += rd32(E1000_ECOL);
5547 adapter->stats.mcc += rd32(E1000_MCC);
5548 adapter->stats.latecol += rd32(E1000_LATECOL);
5549 adapter->stats.dc += rd32(E1000_DC);
5550 adapter->stats.rlec += rd32(E1000_RLEC);
5551 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5552 adapter->stats.xontxc += rd32(E1000_XONTXC);
5553 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5554 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5555 adapter->stats.fcruc += rd32(E1000_FCRUC);
5556 adapter->stats.gptc += rd32(E1000_GPTC);
5557 adapter->stats.gotc += rd32(E1000_GOTCL);
5558 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 5559 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
5560 adapter->stats.ruc += rd32(E1000_RUC);
5561 adapter->stats.rfc += rd32(E1000_RFC);
5562 adapter->stats.rjc += rd32(E1000_RJC);
5563 adapter->stats.tor += rd32(E1000_TORH);
5564 adapter->stats.tot += rd32(E1000_TOTH);
5565 adapter->stats.tpr += rd32(E1000_TPR);
5566
5567 adapter->stats.ptc64 += rd32(E1000_PTC64);
5568 adapter->stats.ptc127 += rd32(E1000_PTC127);
5569 adapter->stats.ptc255 += rd32(E1000_PTC255);
5570 adapter->stats.ptc511 += rd32(E1000_PTC511);
5571 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5572 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5573
5574 adapter->stats.mptc += rd32(E1000_MPTC);
5575 adapter->stats.bptc += rd32(E1000_BPTC);
5576
2d0b0f69
NN
5577 adapter->stats.tpt += rd32(E1000_TPT);
5578 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
5579
5580 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
5581 /* read internal phy specific stats */
5582 reg = rd32(E1000_CTRL_EXT);
5583 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5584 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
5585
5586 /* this stat has invalid values on i210/i211 */
5587 if ((hw->mac.type != e1000_i210) &&
5588 (hw->mac.type != e1000_i211))
5589 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
5590 }
5591
9d5c8243
AK
5592 adapter->stats.tsctc += rd32(E1000_TSCTC);
5593 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5594
5595 adapter->stats.iac += rd32(E1000_IAC);
5596 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5597 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5598 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5599 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5600 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5601 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5602 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5603 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5604
5605 /* Fill out the OS statistics structure */
128e45eb
AD
5606 net_stats->multicast = adapter->stats.mprc;
5607 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
5608
5609 /* Rx Errors */
5610
5611 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
5612 * our own version based on RUC and ROC
5613 */
128e45eb 5614 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
5615 adapter->stats.crcerrs + adapter->stats.algnerrc +
5616 adapter->stats.ruc + adapter->stats.roc +
5617 adapter->stats.cexterr;
128e45eb
AD
5618 net_stats->rx_length_errors = adapter->stats.ruc +
5619 adapter->stats.roc;
5620 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5621 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5622 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
5623
5624 /* Tx Errors */
128e45eb
AD
5625 net_stats->tx_errors = adapter->stats.ecol +
5626 adapter->stats.latecol;
5627 net_stats->tx_aborted_errors = adapter->stats.ecol;
5628 net_stats->tx_window_errors = adapter->stats.latecol;
5629 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
5630
5631 /* Tx Dropped needs to be maintained elsewhere */
5632
9d5c8243
AK
5633 /* Management Stats */
5634 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5635 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5636 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5637
5638 /* OS2BMC Stats */
5639 reg = rd32(E1000_MANC);
5640 if (reg & E1000_MANC_EN_BMC2OS) {
5641 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5642 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5643 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5644 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5645 }
9d5c8243
AK
5646}
5647
61d7f75f
RC
5648static void igb_tsync_interrupt(struct igb_adapter *adapter)
5649{
5650 struct e1000_hw *hw = &adapter->hw;
00c65578 5651 struct ptp_clock_event event;
40c9b079 5652 struct timespec64 ts;
720db4ff 5653 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
00c65578
RC
5654
5655 if (tsicr & TSINTR_SYS_WRAP) {
5656 event.type = PTP_CLOCK_PPS;
5657 if (adapter->ptp_caps.pps)
5658 ptp_clock_event(adapter->ptp_clock, &event);
5659 else
5660 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5661 ack |= TSINTR_SYS_WRAP;
5662 }
61d7f75f
RC
5663
5664 if (tsicr & E1000_TSICR_TXTS) {
61d7f75f
RC
5665 /* retrieve hardware timestamp */
5666 schedule_work(&adapter->ptp_tx_work);
00c65578 5667 ack |= E1000_TSICR_TXTS;
61d7f75f 5668 }
00c65578 5669
720db4ff
RC
5670 if (tsicr & TSINTR_TT0) {
5671 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
5672 ts = timespec64_add(adapter->perout[0].start,
5673 adapter->perout[0].period);
5674 /* u32 conversion of tv_sec is safe until y2106 */
720db4ff 5675 wr32(E1000_TRGTTIML0, ts.tv_nsec);
40c9b079 5676 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
720db4ff
RC
5677 tsauxc = rd32(E1000_TSAUXC);
5678 tsauxc |= TSAUXC_EN_TT0;
5679 wr32(E1000_TSAUXC, tsauxc);
5680 adapter->perout[0].start = ts;
5681 spin_unlock(&adapter->tmreg_lock);
5682 ack |= TSINTR_TT0;
5683 }
5684
5685 if (tsicr & TSINTR_TT1) {
5686 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
5687 ts = timespec64_add(adapter->perout[1].start,
5688 adapter->perout[1].period);
720db4ff 5689 wr32(E1000_TRGTTIML1, ts.tv_nsec);
40c9b079 5690 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
720db4ff
RC
5691 tsauxc = rd32(E1000_TSAUXC);
5692 tsauxc |= TSAUXC_EN_TT1;
5693 wr32(E1000_TSAUXC, tsauxc);
5694 adapter->perout[1].start = ts;
5695 spin_unlock(&adapter->tmreg_lock);
5696 ack |= TSINTR_TT1;
5697 }
5698
5699 if (tsicr & TSINTR_AUTT0) {
5700 nsec = rd32(E1000_AUXSTMPL0);
5701 sec = rd32(E1000_AUXSTMPH0);
5702 event.type = PTP_CLOCK_EXTTS;
5703 event.index = 0;
5704 event.timestamp = sec * 1000000000ULL + nsec;
5705 ptp_clock_event(adapter->ptp_clock, &event);
5706 ack |= TSINTR_AUTT0;
5707 }
5708
5709 if (tsicr & TSINTR_AUTT1) {
5710 nsec = rd32(E1000_AUXSTMPL1);
5711 sec = rd32(E1000_AUXSTMPH1);
5712 event.type = PTP_CLOCK_EXTTS;
5713 event.index = 1;
5714 event.timestamp = sec * 1000000000ULL + nsec;
5715 ptp_clock_event(adapter->ptp_clock, &event);
5716 ack |= TSINTR_AUTT1;
5717 }
5718
00c65578
RC
5719 /* acknowledge the interrupts */
5720 wr32(E1000_TSICR, ack);
61d7f75f
RC
5721}
5722
9d5c8243
AK
5723static irqreturn_t igb_msix_other(int irq, void *data)
5724{
047e0030 5725 struct igb_adapter *adapter = data;
9d5c8243 5726 struct e1000_hw *hw = &adapter->hw;
844290e5 5727 u32 icr = rd32(E1000_ICR);
844290e5 5728 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5729
7f081d40
AD
5730 if (icr & E1000_ICR_DRSTA)
5731 schedule_work(&adapter->reset_task);
5732
047e0030 5733 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5734 /* HW is reporting DMA is out of sync */
5735 adapter->stats.doosync++;
13800469
GR
5736 /* The DMA Out of Sync is also indication of a spoof event
5737 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5738 * see if it is really a spoof event.
5739 */
13800469 5740 igb_check_wvbr(adapter);
dda0e083 5741 }
eebbbdba 5742
4ae196df
AD
5743 /* Check for a mailbox event */
5744 if (icr & E1000_ICR_VMMB)
5745 igb_msg_task(adapter);
5746
5747 if (icr & E1000_ICR_LSC) {
5748 hw->mac.get_link_status = 1;
5749 /* guard against interrupt when we're going down */
5750 if (!test_bit(__IGB_DOWN, &adapter->state))
5751 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5752 }
5753
61d7f75f
RC
5754 if (icr & E1000_ICR_TS)
5755 igb_tsync_interrupt(adapter);
1f6e8178 5756
844290e5 5757 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5758
5759 return IRQ_HANDLED;
5760}
5761
047e0030 5762static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5763{
26b39276 5764 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5765 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5766
047e0030
AD
5767 if (!q_vector->set_itr)
5768 return;
73cd78f1 5769
047e0030
AD
5770 if (!itr_val)
5771 itr_val = 0x4;
661086df 5772
26b39276
AD
5773 if (adapter->hw.mac.type == e1000_82575)
5774 itr_val |= itr_val << 16;
661086df 5775 else
0ba82994 5776 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5777
047e0030
AD
5778 writel(itr_val, q_vector->itr_register);
5779 q_vector->set_itr = 0;
6eb5a7f1
AD
5780}
5781
047e0030 5782static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5783{
047e0030 5784 struct igb_q_vector *q_vector = data;
9d5c8243 5785
047e0030
AD
5786 /* Write the ITR value calculated from the previous interrupt. */
5787 igb_write_itr(q_vector);
9d5c8243 5788
047e0030 5789 napi_schedule(&q_vector->napi);
844290e5 5790
047e0030 5791 return IRQ_HANDLED;
fe4506b6
JC
5792}
5793
421e02f0 5794#ifdef CONFIG_IGB_DCA
6a05004a
AD
5795static void igb_update_tx_dca(struct igb_adapter *adapter,
5796 struct igb_ring *tx_ring,
5797 int cpu)
5798{
5799 struct e1000_hw *hw = &adapter->hw;
5800 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5801
5802 if (hw->mac.type != e1000_82575)
5803 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5804
b980ac18 5805 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5806 * DCA is enabled. This is due to a known issue in some chipsets
5807 * which will cause the DCA tag to be cleared.
5808 */
5809 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5810 E1000_DCA_TXCTRL_DATA_RRO_EN |
5811 E1000_DCA_TXCTRL_DESC_DCA_EN;
5812
5813 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5814}
5815
5816static void igb_update_rx_dca(struct igb_adapter *adapter,
5817 struct igb_ring *rx_ring,
5818 int cpu)
5819{
5820 struct e1000_hw *hw = &adapter->hw;
5821 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5822
5823 if (hw->mac.type != e1000_82575)
5824 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5825
b980ac18 5826 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5827 * DCA is enabled. This is due to a known issue in some chipsets
5828 * which will cause the DCA tag to be cleared.
5829 */
5830 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5831 E1000_DCA_RXCTRL_DESC_DCA_EN;
5832
5833 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5834}
5835
047e0030 5836static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5837{
047e0030 5838 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5839 int cpu = get_cpu();
fe4506b6 5840
047e0030
AD
5841 if (q_vector->cpu == cpu)
5842 goto out_no_update;
5843
6a05004a
AD
5844 if (q_vector->tx.ring)
5845 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5846
5847 if (q_vector->rx.ring)
5848 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5849
047e0030
AD
5850 q_vector->cpu = cpu;
5851out_no_update:
fe4506b6
JC
5852 put_cpu();
5853}
5854
5855static void igb_setup_dca(struct igb_adapter *adapter)
5856{
7e0e99ef 5857 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5858 int i;
5859
7dfc16fa 5860 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5861 return;
5862
7e0e99ef
AD
5863 /* Always use CB2 mode, difference is masked in the CB driver. */
5864 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5865
047e0030 5866 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5867 adapter->q_vector[i]->cpu = -1;
5868 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5869 }
5870}
5871
5872static int __igb_notify_dca(struct device *dev, void *data)
5873{
5874 struct net_device *netdev = dev_get_drvdata(dev);
5875 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5876 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5877 struct e1000_hw *hw = &adapter->hw;
5878 unsigned long event = *(unsigned long *)data;
5879
5880 switch (event) {
5881 case DCA_PROVIDER_ADD:
5882 /* if already enabled, don't do it again */
7dfc16fa 5883 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5884 break;
fe4506b6 5885 if (dca_add_requester(dev) == 0) {
bbd98fe4 5886 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5887 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5888 igb_setup_dca(adapter);
5889 break;
5890 }
5891 /* Fall Through since DCA is disabled. */
5892 case DCA_PROVIDER_REMOVE:
7dfc16fa 5893 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5894 /* without this a class_device is left
b980ac18
JK
5895 * hanging around in the sysfs model
5896 */
fe4506b6 5897 dca_remove_requester(dev);
090b1795 5898 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5899 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5900 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5901 }
5902 break;
5903 }
bbd98fe4 5904
fe4506b6 5905 return 0;
9d5c8243
AK
5906}
5907
fe4506b6 5908static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5909 void *p)
fe4506b6
JC
5910{
5911 int ret_val;
5912
5913 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5914 __igb_notify_dca);
fe4506b6
JC
5915
5916 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5917}
421e02f0 5918#endif /* CONFIG_IGB_DCA */
9d5c8243 5919
0224d663
GR
5920#ifdef CONFIG_PCI_IOV
5921static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5922{
5923 unsigned char mac_addr[ETH_ALEN];
0224d663 5924
5ac6f91d 5925 eth_zero_addr(mac_addr);
0224d663
GR
5926 igb_set_vf_mac(adapter, vf, mac_addr);
5927
70ea4783
LL
5928 /* By default spoof check is enabled for all VFs */
5929 adapter->vf_data[vf].spoofchk_enabled = true;
5930
f557147c 5931 return 0;
0224d663
GR
5932}
5933
0224d663 5934#endif
4ae196df
AD
5935static void igb_ping_all_vfs(struct igb_adapter *adapter)
5936{
5937 struct e1000_hw *hw = &adapter->hw;
5938 u32 ping;
5939 int i;
5940
5941 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5942 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5943 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5944 ping |= E1000_VT_MSGTYPE_CTS;
5945 igb_write_mbx(hw, &ping, 1, i);
5946 }
5947}
5948
7d5753f0
AD
5949static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5950{
5951 struct e1000_hw *hw = &adapter->hw;
5952 u32 vmolr = rd32(E1000_VMOLR(vf));
5953 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5954
d85b9004 5955 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5956 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5957 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5958
5959 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5960 vmolr |= E1000_VMOLR_MPME;
d85b9004 5961 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5962 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5963 } else {
b980ac18 5964 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5965 * flag we need to write the hashes to the MTA as this step
5966 * was previously skipped
5967 */
5968 if (vf_data->num_vf_mc_hashes > 30) {
5969 vmolr |= E1000_VMOLR_MPME;
5970 } else if (vf_data->num_vf_mc_hashes) {
5971 int j;
9005df38 5972
7d5753f0
AD
5973 vmolr |= E1000_VMOLR_ROMPE;
5974 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5975 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5976 }
5977 }
5978
5979 wr32(E1000_VMOLR(vf), vmolr);
5980
5981 /* there are flags left unprocessed, likely not supported */
5982 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5983 return -EINVAL;
5984
5985 return 0;
7d5753f0
AD
5986}
5987
4ae196df
AD
5988static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5989 u32 *msgbuf, u32 vf)
5990{
5991 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5992 u16 *hash_list = (u16 *)&msgbuf[1];
5993 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5994 int i;
5995
7d5753f0 5996 /* salt away the number of multicast addresses assigned
4ae196df
AD
5997 * to this VF for later use to restore when the PF multi cast
5998 * list changes
5999 */
6000 vf_data->num_vf_mc_hashes = n;
6001
7d5753f0
AD
6002 /* only up to 30 hash values supported */
6003 if (n > 30)
6004 n = 30;
6005
6006 /* store the hashes for later use */
4ae196df 6007 for (i = 0; i < n; i++)
a419aef8 6008 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
6009
6010 /* Flush and reset the mta with the new values */
ff41f8dc 6011 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
6012
6013 return 0;
6014}
6015
6016static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6017{
6018 struct e1000_hw *hw = &adapter->hw;
6019 struct vf_data_storage *vf_data;
6020 int i, j;
6021
6022 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0 6023 u32 vmolr = rd32(E1000_VMOLR(i));
9005df38 6024
7d5753f0
AD
6025 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6026
4ae196df 6027 vf_data = &adapter->vf_data[i];
7d5753f0
AD
6028
6029 if ((vf_data->num_vf_mc_hashes > 30) ||
6030 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6031 vmolr |= E1000_VMOLR_MPME;
6032 } else if (vf_data->num_vf_mc_hashes) {
6033 vmolr |= E1000_VMOLR_ROMPE;
6034 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6035 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6036 }
6037 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
6038 }
6039}
6040
6041static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6042{
6043 struct e1000_hw *hw = &adapter->hw;
16903caa 6044 u32 pool_mask, vlvf_mask, i;
4ae196df 6045
16903caa
AD
6046 /* create mask for VF and other pools */
6047 pool_mask = E1000_VLVF_POOLSEL_MASK;
a51d8c21 6048 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
16903caa
AD
6049
6050 /* drop PF from pool bits */
a51d8c21
JK
6051 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6052 adapter->vfs_allocated_count);
4ae196df
AD
6053
6054 /* Find the vlan filter for this id */
16903caa
AD
6055 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6056 u32 vlvf = rd32(E1000_VLVF(i));
6057 u32 vfta_mask, vid, vfta;
4ae196df
AD
6058
6059 /* remove the vf from the pool */
16903caa
AD
6060 if (!(vlvf & vlvf_mask))
6061 continue;
6062
6063 /* clear out bit from VLVF */
6064 vlvf ^= vlvf_mask;
6065
6066 /* if other pools are present, just remove ourselves */
6067 if (vlvf & pool_mask)
6068 goto update_vlvfb;
4ae196df 6069
16903caa
AD
6070 /* if PF is present, leave VFTA */
6071 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6072 goto update_vlvf;
4ae196df 6073
16903caa 6074 vid = vlvf & E1000_VLVF_VLANID_MASK;
a51d8c21 6075 vfta_mask = BIT(vid % 32);
16903caa
AD
6076
6077 /* clear bit from VFTA */
6078 vfta = adapter->shadow_vfta[vid / 32];
6079 if (vfta & vfta_mask)
6080 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6081update_vlvf:
6082 /* clear pool selection enable */
6083 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6084 vlvf &= E1000_VLVF_POOLSEL_MASK;
6085 else
6086 vlvf = 0;
6087update_vlvfb:
6088 /* clear pool bits */
6089 wr32(E1000_VLVF(i), vlvf);
4ae196df
AD
6090 }
6091}
ae641bdc 6092
16903caa 6093static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6f3dc319 6094{
16903caa
AD
6095 u32 vlvf;
6096 int idx;
6f3dc319 6097
16903caa
AD
6098 /* short cut the special case */
6099 if (vlan == 0)
6100 return 0;
6101
6102 /* Search for the VLAN id in the VLVF entries */
6103 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6104 vlvf = rd32(E1000_VLVF(idx));
6105 if ((vlvf & VLAN_VID_MASK) == vlan)
6f3dc319
GR
6106 break;
6107 }
6108
16903caa 6109 return idx;
4ae196df
AD
6110}
6111
8008f68c 6112static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
4ae196df
AD
6113{
6114 struct e1000_hw *hw = &adapter->hw;
16903caa
AD
6115 u32 bits, pf_id;
6116 int idx;
51466239 6117
16903caa
AD
6118 idx = igb_find_vlvf_entry(hw, vid);
6119 if (!idx)
6120 return;
4ae196df 6121
16903caa
AD
6122 /* See if any other pools are set for this VLAN filter
6123 * entry other than the PF.
6124 */
6125 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
a51d8c21 6126 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
16903caa
AD
6127 bits &= rd32(E1000_VLVF(idx));
6128
6129 /* Disable the filter so this falls into the default pool. */
6130 if (!bits) {
6131 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
a51d8c21 6132 wr32(E1000_VLVF(idx), BIT(pf_id));
16903caa
AD
6133 else
6134 wr32(E1000_VLVF(idx), 0);
4ae196df 6135 }
6f3dc319 6136}
4ae196df 6137
a15d9259
AD
6138static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6139 bool add, u32 vf)
4ae196df 6140{
a15d9259 6141 int pf_id = adapter->vfs_allocated_count;
6f3dc319 6142 struct e1000_hw *hw = &adapter->hw;
a15d9259 6143 int err;
ae641bdc 6144
a15d9259
AD
6145 /* If VLAN overlaps with one the PF is currently monitoring make
6146 * sure that we are able to allocate a VLVF entry. This may be
6147 * redundant but it guarantees PF will maintain visibility to
6148 * the VLAN.
6f3dc319 6149 */
16903caa 6150 if (add && test_bit(vid, adapter->active_vlans)) {
a15d9259
AD
6151 err = igb_vfta_set(hw, vid, pf_id, true, false);
6152 if (err)
6153 return err;
4ae196df 6154 }
6f3dc319 6155
a15d9259 6156 err = igb_vfta_set(hw, vid, vf, add, false);
6f3dc319 6157
16903caa
AD
6158 if (add && !err)
6159 return err;
6f3dc319 6160
16903caa
AD
6161 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6162 * we may need to drop the PF pool bit in order to allow us to free
6163 * up the VLVF resources.
6f3dc319 6164 */
16903caa
AD
6165 if (test_bit(vid, adapter->active_vlans) ||
6166 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6167 igb_update_pf_vlvf(adapter, vid);
6f3dc319 6168
6f3dc319 6169 return err;
8151d294
WM
6170}
6171
6172static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6173{
6174 struct e1000_hw *hw = &adapter->hw;
6175
6176 if (vid)
6177 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6178 else
6179 wr32(E1000_VMVIR(vf), 0);
6180}
6181
a15d9259
AD
6182static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6183 u16 vlan, u8 qos)
8151d294 6184{
a15d9259 6185 int err;
8151d294 6186
a15d9259
AD
6187 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6188 if (err)
6189 return err;
6190
6191 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6192 igb_set_vmolr(adapter, vf, !vlan);
6193
6194 /* revoke access to previous VLAN */
6195 if (vlan != adapter->vf_data[vf].pf_vlan)
6196 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6197 false, vf);
6198
6199 adapter->vf_data[vf].pf_vlan = vlan;
6200 adapter->vf_data[vf].pf_qos = qos;
030f9f52 6201 igb_set_vf_vlan_strip(adapter, vf, true);
a15d9259
AD
6202 dev_info(&adapter->pdev->dev,
6203 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6204 if (test_bit(__IGB_DOWN, &adapter->state)) {
6205 dev_warn(&adapter->pdev->dev,
6206 "The VF VLAN has been set, but the PF device is not up.\n");
6207 dev_warn(&adapter->pdev->dev,
6208 "Bring the PF device up before attempting to use the VF device.\n");
b980ac18 6209 }
a15d9259 6210
b980ac18 6211 return err;
4ae196df
AD
6212}
6213
a15d9259 6214static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6f3dc319 6215{
a15d9259
AD
6216 /* Restore tagless access via VLAN 0 */
6217 igb_set_vf_vlan(adapter, 0, true, vf);
6f3dc319 6218
a15d9259 6219 igb_set_vmvir(adapter, 0, vf);
8151d294 6220 igb_set_vmolr(adapter, vf, true);
4ae196df 6221
a15d9259
AD
6222 /* Remove any PF assigned VLAN */
6223 if (adapter->vf_data[vf].pf_vlan)
6224 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6225 false, vf);
6f3dc319 6226
a15d9259
AD
6227 adapter->vf_data[vf].pf_vlan = 0;
6228 adapter->vf_data[vf].pf_qos = 0;
030f9f52 6229 igb_set_vf_vlan_strip(adapter, vf, false);
6f3dc319 6230
a15d9259 6231 return 0;
6f3dc319
GR
6232}
6233
79aab093
MS
6234static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6235 u16 vlan, u8 qos, __be16 vlan_proto)
4ae196df 6236{
a15d9259 6237 struct igb_adapter *adapter = netdev_priv(netdev);
4ae196df 6238
a15d9259
AD
6239 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6240 return -EINVAL;
6f3dc319 6241
79aab093
MS
6242 if (vlan_proto != htons(ETH_P_8021Q))
6243 return -EPROTONOSUPPORT;
6244
a15d9259
AD
6245 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6246 igb_disable_port_vlan(adapter, vf);
6247}
6f3dc319 6248
a15d9259
AD
6249static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6250{
6251 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6252 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
030f9f52 6253 int ret;
6f3dc319 6254
a15d9259
AD
6255 if (adapter->vf_data[vf].pf_vlan)
6256 return -1;
6f3dc319 6257
a15d9259
AD
6258 /* VLAN 0 is a special case, don't allow it to be removed */
6259 if (!vid && !add)
6260 return 0;
6261
030f9f52
CV
6262 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6263 if (!ret)
6264 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6265 return ret;
4ae196df
AD
6266}
6267
f2ca0dbe 6268static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 6269{
a15d9259 6270 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df 6271
a15d9259
AD
6272 /* clear flags - except flag that indicates PF has set the MAC */
6273 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6274 vf_data->last_nack = jiffies;
4ae196df
AD
6275
6276 /* reset vlans for device */
6277 igb_clear_vf_vfta(adapter, vf);
a15d9259
AD
6278 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6279 igb_set_vmvir(adapter, vf_data->pf_vlan |
6280 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6281 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
030f9f52 6282 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
4ae196df
AD
6283
6284 /* reset multicast table array for vf */
6285 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6286
6287 /* Flush and reset the mta with the new values */
ff41f8dc 6288 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
6289}
6290
f2ca0dbe
AD
6291static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6292{
6293 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6294
5ac6f91d 6295 /* clear mac address as we were hotplug removed/added */
8151d294 6296 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 6297 eth_zero_addr(vf_mac);
f2ca0dbe
AD
6298
6299 /* process remaining reset events */
6300 igb_vf_reset(adapter, vf);
6301}
6302
6303static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
6304{
6305 struct e1000_hw *hw = &adapter->hw;
6306 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 6307 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
6308 u32 reg, msgbuf[3];
6309 u8 *addr = (u8 *)(&msgbuf[1]);
6310
6311 /* process all the same items cleared in a function level reset */
f2ca0dbe 6312 igb_vf_reset(adapter, vf);
4ae196df
AD
6313
6314 /* set vf mac address */
26ad9178 6315 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
6316
6317 /* enable transmit and receive for vf */
6318 reg = rd32(E1000_VFTE);
a51d8c21 6319 wr32(E1000_VFTE, reg | BIT(vf));
4ae196df 6320 reg = rd32(E1000_VFRE);
a51d8c21 6321 wr32(E1000_VFRE, reg | BIT(vf));
4ae196df 6322
8fa7e0f7 6323 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
6324
6325 /* reply to reset with ack and vf mac address */
6ddbc4cf
AG
6326 if (!is_zero_ether_addr(vf_mac)) {
6327 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6328 memcpy(addr, vf_mac, ETH_ALEN);
6329 } else {
6330 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6331 }
4ae196df
AD
6332 igb_write_mbx(hw, msgbuf, 3, vf);
6333}
6334
6335static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6336{
b980ac18 6337 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
6338 * starting at the second 32 bit word of the msg array
6339 */
f2ca0dbe
AD
6340 unsigned char *addr = (char *)&msg[1];
6341 int err = -1;
4ae196df 6342
f2ca0dbe
AD
6343 if (is_valid_ether_addr(addr))
6344 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 6345
f2ca0dbe 6346 return err;
4ae196df
AD
6347}
6348
6349static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6350{
6351 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6352 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6353 u32 msg = E1000_VT_MSGTYPE_NACK;
6354
6355 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
6356 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6357 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 6358 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 6359 vf_data->last_nack = jiffies;
4ae196df
AD
6360 }
6361}
6362
f2ca0dbe 6363static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 6364{
f2ca0dbe
AD
6365 struct pci_dev *pdev = adapter->pdev;
6366 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 6367 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6368 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6369 s32 retval;
6370
f2ca0dbe 6371 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 6372
fef45f4c
AD
6373 if (retval) {
6374 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 6375 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
6376 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6377 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6378 return;
6379 goto out;
6380 }
4ae196df
AD
6381
6382 /* this is a message we already processed, do nothing */
6383 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 6384 return;
4ae196df 6385
b980ac18 6386 /* until the vf completes a reset it should not be
4ae196df
AD
6387 * allowed to start any configuration.
6388 */
4ae196df
AD
6389 if (msgbuf[0] == E1000_VF_RESET) {
6390 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 6391 return;
4ae196df
AD
6392 }
6393
f2ca0dbe 6394 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
6395 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6396 return;
6397 retval = -1;
6398 goto out;
4ae196df
AD
6399 }
6400
6401 switch ((msgbuf[0] & 0xFFFF)) {
6402 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
6403 retval = -EINVAL;
6404 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6405 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6406 else
6407 dev_warn(&pdev->dev,
b980ac18
JK
6408 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6409 vf);
4ae196df 6410 break;
7d5753f0
AD
6411 case E1000_VF_SET_PROMISC:
6412 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6413 break;
4ae196df
AD
6414 case E1000_VF_SET_MULTICAST:
6415 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6416 break;
6417 case E1000_VF_SET_LPE:
6418 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6419 break;
6420 case E1000_VF_SET_VLAN:
a6b5ea35
GR
6421 retval = -1;
6422 if (vf_data->pf_vlan)
6423 dev_warn(&pdev->dev,
b980ac18
JK
6424 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6425 vf);
8151d294 6426 else
a15d9259 6427 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
4ae196df
AD
6428 break;
6429 default:
090b1795 6430 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
6431 retval = -1;
6432 break;
6433 }
6434
fef45f4c
AD
6435 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6436out:
4ae196df
AD
6437 /* notify the VF of the results of what it sent us */
6438 if (retval)
6439 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6440 else
6441 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6442
4ae196df 6443 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 6444}
4ae196df 6445
f2ca0dbe
AD
6446static void igb_msg_task(struct igb_adapter *adapter)
6447{
6448 struct e1000_hw *hw = &adapter->hw;
6449 u32 vf;
6450
6451 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6452 /* process any reset requests */
6453 if (!igb_check_for_rst(hw, vf))
6454 igb_vf_reset_event(adapter, vf);
6455
6456 /* process any messages pending */
6457 if (!igb_check_for_msg(hw, vf))
6458 igb_rcv_msg_from_vf(adapter, vf);
6459
6460 /* process any acks */
6461 if (!igb_check_for_ack(hw, vf))
6462 igb_rcv_ack_from_vf(adapter, vf);
6463 }
4ae196df
AD
6464}
6465
68d480c4
AD
6466/**
6467 * igb_set_uta - Set unicast filter table address
6468 * @adapter: board private structure
bf456abb 6469 * @set: boolean indicating if we are setting or clearing bits
68d480c4
AD
6470 *
6471 * The unicast table address is a register array of 32-bit registers.
6472 * The table is meant to be used in a way similar to how the MTA is used
6473 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
6474 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6475 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4 6476 **/
bf456abb 6477static void igb_set_uta(struct igb_adapter *adapter, bool set)
68d480c4
AD
6478{
6479 struct e1000_hw *hw = &adapter->hw;
bf456abb 6480 u32 uta = set ? ~0 : 0;
68d480c4
AD
6481 int i;
6482
68d480c4
AD
6483 /* we only need to do this if VMDq is enabled */
6484 if (!adapter->vfs_allocated_count)
6485 return;
6486
bf456abb
AD
6487 for (i = hw->mac.uta_reg_count; i--;)
6488 array_wr32(E1000_UTA, i, uta);
68d480c4
AD
6489}
6490
9d5c8243 6491/**
b980ac18
JK
6492 * igb_intr_msi - Interrupt Handler
6493 * @irq: interrupt number
6494 * @data: pointer to a network interface device structure
9d5c8243
AK
6495 **/
6496static irqreturn_t igb_intr_msi(int irq, void *data)
6497{
047e0030
AD
6498 struct igb_adapter *adapter = data;
6499 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6500 struct e1000_hw *hw = &adapter->hw;
6501 /* read ICR disables interrupts using IAM */
6502 u32 icr = rd32(E1000_ICR);
6503
047e0030 6504 igb_write_itr(q_vector);
9d5c8243 6505
7f081d40
AD
6506 if (icr & E1000_ICR_DRSTA)
6507 schedule_work(&adapter->reset_task);
6508
047e0030 6509 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6510 /* HW is reporting DMA is out of sync */
6511 adapter->stats.doosync++;
6512 }
6513
9d5c8243
AK
6514 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6515 hw->mac.get_link_status = 1;
6516 if (!test_bit(__IGB_DOWN, &adapter->state))
6517 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6518 }
6519
61d7f75f
RC
6520 if (icr & E1000_ICR_TS)
6521 igb_tsync_interrupt(adapter);
1f6e8178 6522
047e0030 6523 napi_schedule(&q_vector->napi);
9d5c8243
AK
6524
6525 return IRQ_HANDLED;
6526}
6527
6528/**
b980ac18
JK
6529 * igb_intr - Legacy Interrupt Handler
6530 * @irq: interrupt number
6531 * @data: pointer to a network interface device structure
9d5c8243
AK
6532 **/
6533static irqreturn_t igb_intr(int irq, void *data)
6534{
047e0030
AD
6535 struct igb_adapter *adapter = data;
6536 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6537 struct e1000_hw *hw = &adapter->hw;
6538 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
6539 * need for the IMC write
6540 */
9d5c8243 6541 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
6542
6543 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
6544 * not set, then the adapter didn't send an interrupt
6545 */
9d5c8243
AK
6546 if (!(icr & E1000_ICR_INT_ASSERTED))
6547 return IRQ_NONE;
6548
0ba82994
AD
6549 igb_write_itr(q_vector);
6550
7f081d40
AD
6551 if (icr & E1000_ICR_DRSTA)
6552 schedule_work(&adapter->reset_task);
6553
047e0030 6554 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6555 /* HW is reporting DMA is out of sync */
6556 adapter->stats.doosync++;
6557 }
6558
9d5c8243
AK
6559 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6560 hw->mac.get_link_status = 1;
6561 /* guard against interrupt when we're going down */
6562 if (!test_bit(__IGB_DOWN, &adapter->state))
6563 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6564 }
6565
61d7f75f
RC
6566 if (icr & E1000_ICR_TS)
6567 igb_tsync_interrupt(adapter);
1f6e8178 6568
047e0030 6569 napi_schedule(&q_vector->napi);
9d5c8243
AK
6570
6571 return IRQ_HANDLED;
6572}
6573
c50b52a0 6574static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 6575{
047e0030 6576 struct igb_adapter *adapter = q_vector->adapter;
46544258 6577 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6578
0ba82994
AD
6579 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6580 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6581 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6582 igb_set_itr(q_vector);
46544258 6583 else
047e0030 6584 igb_update_ring_itr(q_vector);
9d5c8243
AK
6585 }
6586
46544258 6587 if (!test_bit(__IGB_DOWN, &adapter->state)) {
cd14ef54 6588 if (adapter->flags & IGB_FLAG_HAS_MSIX)
047e0030 6589 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
6590 else
6591 igb_irq_enable(adapter);
6592 }
9d5c8243
AK
6593}
6594
46544258 6595/**
b980ac18
JK
6596 * igb_poll - NAPI Rx polling callback
6597 * @napi: napi polling structure
6598 * @budget: count of how many packets we should handle
46544258
AD
6599 **/
6600static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 6601{
047e0030 6602 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
6603 struct igb_q_vector,
6604 napi);
16eb8815 6605 bool clean_complete = true;
32b3e08f 6606 int work_done = 0;
9d5c8243 6607
421e02f0 6608#ifdef CONFIG_IGB_DCA
047e0030
AD
6609 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6610 igb_update_dca(q_vector);
fe4506b6 6611#endif
0ba82994 6612 if (q_vector->tx.ring)
7f0ba845 6613 clean_complete = igb_clean_tx_irq(q_vector, budget);
9d5c8243 6614
32b3e08f
JB
6615 if (q_vector->rx.ring) {
6616 int cleaned = igb_clean_rx_irq(q_vector, budget);
6617
6618 work_done += cleaned;
7f0ba845
AD
6619 if (cleaned >= budget)
6620 clean_complete = false;
32b3e08f 6621 }
047e0030 6622
16eb8815
AD
6623 /* If all work not completed, return budget and keep polling */
6624 if (!clean_complete)
6625 return budget;
46544258 6626
9d5c8243 6627 /* If not enough Rx work done, exit the polling mode */
32b3e08f 6628 napi_complete_done(napi, work_done);
16eb8815 6629 igb_ring_irq_enable(q_vector);
9d5c8243 6630
16eb8815 6631 return 0;
9d5c8243 6632}
6d8126f9 6633
9d5c8243 6634/**
b980ac18
JK
6635 * igb_clean_tx_irq - Reclaim resources after transmit completes
6636 * @q_vector: pointer to q_vector containing needed info
7f0ba845 6637 * @napi_budget: Used to determine if we are in netpoll
49ce9c2c 6638 *
b980ac18 6639 * returns true if ring is completely cleaned
9d5c8243 6640 **/
7f0ba845 6641static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
9d5c8243 6642{
047e0030 6643 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 6644 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 6645 struct igb_tx_buffer *tx_buffer;
f4128785 6646 union e1000_adv_tx_desc *tx_desc;
9d5c8243 6647 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 6648 unsigned int budget = q_vector->tx.work_limit;
8542db05 6649 unsigned int i = tx_ring->next_to_clean;
9d5c8243 6650
13fde97a
AD
6651 if (test_bit(__IGB_DOWN, &adapter->state))
6652 return true;
0e014cb1 6653
06034649 6654 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 6655 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 6656 i -= tx_ring->count;
9d5c8243 6657
f4128785
AD
6658 do {
6659 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
6660
6661 /* if next_to_watch is not set then there is no work pending */
6662 if (!eop_desc)
6663 break;
13fde97a 6664
f4128785 6665 /* prevent any other reads prior to eop_desc */
70d289bc 6666 read_barrier_depends();
f4128785 6667
13fde97a
AD
6668 /* if DD is not set pending work has not been completed */
6669 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6670 break;
6671
8542db05
AD
6672 /* clear next_to_watch to prevent false hangs */
6673 tx_buffer->next_to_watch = NULL;
9d5c8243 6674
ebe42d16
AD
6675 /* update the statistics for this packet */
6676 total_bytes += tx_buffer->bytecount;
6677 total_packets += tx_buffer->gso_segs;
13fde97a 6678
ebe42d16 6679 /* free the skb */
7f0ba845 6680 napi_consume_skb(tx_buffer->skb, napi_budget);
13fde97a 6681
ebe42d16
AD
6682 /* unmap skb header data */
6683 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
6684 dma_unmap_addr(tx_buffer, dma),
6685 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
6686 DMA_TO_DEVICE);
6687
c9f14bf3
AD
6688 /* clear tx_buffer data */
6689 tx_buffer->skb = NULL;
6690 dma_unmap_len_set(tx_buffer, len, 0);
6691
ebe42d16
AD
6692 /* clear last DMA location and unmap remaining buffers */
6693 while (tx_desc != eop_desc) {
13fde97a
AD
6694 tx_buffer++;
6695 tx_desc++;
9d5c8243 6696 i++;
8542db05
AD
6697 if (unlikely(!i)) {
6698 i -= tx_ring->count;
06034649 6699 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6700 tx_desc = IGB_TX_DESC(tx_ring, 0);
6701 }
ebe42d16
AD
6702
6703 /* unmap any remaining paged data */
c9f14bf3 6704 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6705 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6706 dma_unmap_addr(tx_buffer, dma),
6707 dma_unmap_len(tx_buffer, len),
ebe42d16 6708 DMA_TO_DEVICE);
c9f14bf3 6709 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6710 }
6711 }
6712
ebe42d16
AD
6713 /* move us one more past the eop_desc for start of next pkt */
6714 tx_buffer++;
6715 tx_desc++;
6716 i++;
6717 if (unlikely(!i)) {
6718 i -= tx_ring->count;
6719 tx_buffer = tx_ring->tx_buffer_info;
6720 tx_desc = IGB_TX_DESC(tx_ring, 0);
6721 }
f4128785
AD
6722
6723 /* issue prefetch for next Tx descriptor */
6724 prefetch(tx_desc);
6725
6726 /* update budget accounting */
6727 budget--;
6728 } while (likely(budget));
0e014cb1 6729
bdbc0631
ED
6730 netdev_tx_completed_queue(txring_txq(tx_ring),
6731 total_packets, total_bytes);
8542db05 6732 i += tx_ring->count;
9d5c8243 6733 tx_ring->next_to_clean = i;
13fde97a
AD
6734 u64_stats_update_begin(&tx_ring->tx_syncp);
6735 tx_ring->tx_stats.bytes += total_bytes;
6736 tx_ring->tx_stats.packets += total_packets;
6737 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6738 q_vector->tx.total_bytes += total_bytes;
6739 q_vector->tx.total_packets += total_packets;
9d5c8243 6740
6d095fa8 6741 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6742 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6743
9d5c8243 6744 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6745 * check with the clearing of time_stamp and movement of i
6746 */
6d095fa8 6747 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6748 if (tx_buffer->next_to_watch &&
8542db05 6749 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6750 (adapter->tx_timeout_factor * HZ)) &&
6751 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6752
9d5c8243 6753 /* detected Tx unit hang */
59d71989 6754 dev_err(tx_ring->dev,
9d5c8243 6755 "Detected Tx Unit Hang\n"
2d064c06 6756 " Tx Queue <%d>\n"
9d5c8243
AK
6757 " TDH <%x>\n"
6758 " TDT <%x>\n"
6759 " next_to_use <%x>\n"
6760 " next_to_clean <%x>\n"
9d5c8243
AK
6761 "buffer_info[next_to_clean]\n"
6762 " time_stamp <%lx>\n"
8542db05 6763 " next_to_watch <%p>\n"
9d5c8243
AK
6764 " jiffies <%lx>\n"
6765 " desc.status <%x>\n",
2d064c06 6766 tx_ring->queue_index,
238ac817 6767 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6768 readl(tx_ring->tail),
9d5c8243
AK
6769 tx_ring->next_to_use,
6770 tx_ring->next_to_clean,
8542db05 6771 tx_buffer->time_stamp,
f4128785 6772 tx_buffer->next_to_watch,
9d5c8243 6773 jiffies,
f4128785 6774 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6775 netif_stop_subqueue(tx_ring->netdev,
6776 tx_ring->queue_index);
6777
6778 /* we are about to reset, no point in enabling stuff */
6779 return true;
9d5c8243
AK
6780 }
6781 }
13fde97a 6782
21ba6fe1 6783#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6784 if (unlikely(total_packets &&
b980ac18
JK
6785 netif_carrier_ok(tx_ring->netdev) &&
6786 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6787 /* Make sure that anybody stopping the queue after this
6788 * sees the new next_to_clean.
6789 */
6790 smp_mb();
6791 if (__netif_subqueue_stopped(tx_ring->netdev,
6792 tx_ring->queue_index) &&
6793 !(test_bit(__IGB_DOWN, &adapter->state))) {
6794 netif_wake_subqueue(tx_ring->netdev,
6795 tx_ring->queue_index);
6796
6797 u64_stats_update_begin(&tx_ring->tx_syncp);
6798 tx_ring->tx_stats.restart_queue++;
6799 u64_stats_update_end(&tx_ring->tx_syncp);
6800 }
6801 }
6802
6803 return !!budget;
9d5c8243
AK
6804}
6805
cbc8e55f 6806/**
b980ac18
JK
6807 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6808 * @rx_ring: rx descriptor ring to store buffers on
6809 * @old_buff: donor buffer to have page reused
cbc8e55f 6810 *
b980ac18 6811 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6812 **/
6813static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6814 struct igb_rx_buffer *old_buff)
6815{
6816 struct igb_rx_buffer *new_buff;
6817 u16 nta = rx_ring->next_to_alloc;
6818
6819 new_buff = &rx_ring->rx_buffer_info[nta];
6820
6821 /* update, and store next to alloc */
6822 nta++;
6823 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6824
6825 /* transfer page from old buffer to new buffer */
a1f63473 6826 *new_buff = *old_buff;
cbc8e55f
AD
6827}
6828
95dd44b4
AD
6829static inline bool igb_page_is_reserved(struct page *page)
6830{
2f064f34 6831 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
95dd44b4
AD
6832}
6833
74e238ea
AD
6834static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6835 struct page *page,
6836 unsigned int truesize)
6837{
bd4171a5
AD
6838 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias--;
6839
74e238ea 6840 /* avoid re-using remote pages */
95dd44b4 6841 if (unlikely(igb_page_is_reserved(page)))
bc16e47f
RG
6842 return false;
6843
74e238ea
AD
6844#if (PAGE_SIZE < 8192)
6845 /* if we are only owner of page we can reuse it */
bd4171a5 6846 if (unlikely(page_ref_count(page) != pagecnt_bias))
74e238ea
AD
6847 return false;
6848
6849 /* flip page offset to other buffer */
6850 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
74e238ea
AD
6851#else
6852 /* move offset up to the next cache line */
6853 rx_buffer->page_offset += truesize;
6854
6855 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6856 return false;
74e238ea
AD
6857#endif
6858
bd4171a5
AD
6859 /* If we have drained the page fragment pool we need to update
6860 * the pagecnt_bias and page count so that we fully restock the
6861 * number of references the driver holds.
95dd44b4 6862 */
bd4171a5
AD
6863 if (unlikely(pagecnt_bias == 1)) {
6864 page_ref_add(page, USHRT_MAX);
6865 rx_buffer->pagecnt_bias = USHRT_MAX;
6866 }
95dd44b4 6867
74e238ea
AD
6868 return true;
6869}
6870
cbc8e55f 6871/**
b980ac18
JK
6872 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6873 * @rx_ring: rx descriptor ring to transact packets on
6874 * @rx_buffer: buffer containing page to add
6875 * @rx_desc: descriptor containing length of buffer written by hardware
6876 * @skb: sk_buff to place the data into
cbc8e55f 6877 *
b980ac18
JK
6878 * This function will add the data contained in rx_buffer->page to the skb.
6879 * This is done either through a direct copy if the data in the buffer is
6880 * less than the skb header size, otherwise it will just attach the page as
6881 * a frag to the skb.
cbc8e55f 6882 *
b980ac18
JK
6883 * The function will then update the page offset if necessary and return
6884 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6885 **/
6886static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6887 struct igb_rx_buffer *rx_buffer,
64f2525c 6888 unsigned int size,
cbc8e55f
AD
6889 union e1000_adv_rx_desc *rx_desc,
6890 struct sk_buff *skb)
6891{
6892 struct page *page = rx_buffer->page;
f56e7bba 6893 unsigned char *va = page_address(page) + rx_buffer->page_offset;
74e238ea
AD
6894#if (PAGE_SIZE < 8192)
6895 unsigned int truesize = IGB_RX_BUFSZ;
6896#else
f56e7bba 6897 unsigned int truesize = SKB_DATA_ALIGN(size);
74e238ea 6898#endif
f56e7bba 6899 unsigned int pull_len;
cbc8e55f 6900
f56e7bba
AD
6901 if (unlikely(skb_is_nonlinear(skb)))
6902 goto add_tail_frag;
cbc8e55f 6903
f56e7bba
AD
6904 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6905 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6906 va += IGB_TS_HDR_LEN;
6907 size -= IGB_TS_HDR_LEN;
6908 }
cbc8e55f 6909
f56e7bba 6910 if (likely(size <= IGB_RX_HDR_LEN)) {
cbc8e55f
AD
6911 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6912
95dd44b4
AD
6913 /* page is not reserved, we can reuse buffer as-is */
6914 if (likely(!igb_page_is_reserved(page)))
cbc8e55f
AD
6915 return true;
6916
6917 /* this page cannot be reused so discard it */
cbc8e55f
AD
6918 return false;
6919 }
6920
f56e7bba
AD
6921 /* we need the header to contain the greater of either ETH_HLEN or
6922 * 60 bytes if the skb->len is less than 60 for skb_pad.
6923 */
6924 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6925
6926 /* align pull length to size of long to optimize memcpy performance */
6927 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6928
6929 /* update all of the pointers */
6930 va += pull_len;
6931 size -= pull_len;
6932
6933add_tail_frag:
cbc8e55f 6934 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
f56e7bba 6935 (unsigned long)va & ~PAGE_MASK, size, truesize);
cbc8e55f 6936
74e238ea
AD
6937 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6938}
cbc8e55f 6939
2e334eee
AD
6940static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6941 union e1000_adv_rx_desc *rx_desc,
6942 struct sk_buff *skb)
6943{
64f2525c 6944 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
2e334eee
AD
6945 struct igb_rx_buffer *rx_buffer;
6946 struct page *page;
6947
6948 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
2e334eee
AD
6949 page = rx_buffer->page;
6950 prefetchw(page);
6951
5be59554
AD
6952 /* we are reusing so sync this buffer for CPU use */
6953 dma_sync_single_range_for_cpu(rx_ring->dev,
6954 rx_buffer->dma,
6955 rx_buffer->page_offset,
6956 size,
6957 DMA_FROM_DEVICE);
6958
2e334eee
AD
6959 if (likely(!skb)) {
6960 void *page_addr = page_address(page) +
6961 rx_buffer->page_offset;
6962
6963 /* prefetch first cache line of first page */
6964 prefetch(page_addr);
6965#if L1_CACHE_BYTES < 128
6966 prefetch(page_addr + L1_CACHE_BYTES);
6967#endif
6968
6969 /* allocate a skb to store the frags */
67fd893e 6970 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
2e334eee
AD
6971 if (unlikely(!skb)) {
6972 rx_ring->rx_stats.alloc_failed++;
6973 return NULL;
6974 }
6975
b980ac18 6976 /* we will be copying header into skb->data in
2e334eee
AD
6977 * pskb_may_pull so it is in our interest to prefetch
6978 * it now to avoid a possible cache miss
6979 */
6980 prefetchw(skb->data);
6981 }
6982
2e334eee 6983 /* pull page into skb */
64f2525c 6984 if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
2e334eee
AD
6985 /* hand second half of page back to the ring */
6986 igb_reuse_rx_page(rx_ring, rx_buffer);
6987 } else {
bd4171a5
AD
6988 /* We are not reusing the buffer so unmap it and free
6989 * any references we are holding to it
6990 */
5be59554
AD
6991 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
6992 PAGE_SIZE, DMA_FROM_DEVICE,
6993 DMA_ATTR_SKIP_CPU_SYNC);
2976db80 6994 __page_frag_cache_drain(page, rx_buffer->pagecnt_bias);
2e334eee
AD
6995 }
6996
6997 /* clear contents of rx_buffer */
6998 rx_buffer->page = NULL;
6999
7000 return skb;
7001}
7002
cd392f5c 7003static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
7004 union e1000_adv_rx_desc *rx_desc,
7005 struct sk_buff *skb)
9d5c8243 7006{
bc8acf2c 7007 skb_checksum_none_assert(skb);
9d5c8243 7008
294e7d78 7009 /* Ignore Checksum bit is set */
3ceb90fd 7010 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
7011 return;
7012
7013 /* Rx checksum disabled via ethtool */
7014 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 7015 return;
85ad76b2 7016
9d5c8243 7017 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
7018 if (igb_test_staterr(rx_desc,
7019 E1000_RXDEXT_STATERR_TCPE |
7020 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 7021 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
7022 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7023 * packets, (aka let the stack check the crc32c)
7024 */
866cff06
AD
7025 if (!((skb->len == 60) &&
7026 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 7027 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 7028 ring->rx_stats.csum_err++;
12dcd86b
ED
7029 u64_stats_update_end(&ring->rx_syncp);
7030 }
9d5c8243 7031 /* let the stack verify checksum errors */
9d5c8243
AK
7032 return;
7033 }
7034 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
7035 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7036 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
7037 skb->ip_summed = CHECKSUM_UNNECESSARY;
7038
3ceb90fd
AD
7039 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7040 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
7041}
7042
077887c3
AD
7043static inline void igb_rx_hash(struct igb_ring *ring,
7044 union e1000_adv_rx_desc *rx_desc,
7045 struct sk_buff *skb)
7046{
7047 if (ring->netdev->features & NETIF_F_RXHASH)
42bdf083
TH
7048 skb_set_hash(skb,
7049 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7050 PKT_HASH_TYPE_L3);
077887c3
AD
7051}
7052
2e334eee 7053/**
b980ac18
JK
7054 * igb_is_non_eop - process handling of non-EOP buffers
7055 * @rx_ring: Rx ring being processed
7056 * @rx_desc: Rx descriptor for current buffer
7057 * @skb: current socket buffer containing buffer in progress
2e334eee 7058 *
b980ac18
JK
7059 * This function updates next to clean. If the buffer is an EOP buffer
7060 * this function exits returning false, otherwise it will place the
7061 * sk_buff in the next buffer to be chained and return true indicating
7062 * that this is in fact a non-EOP buffer.
2e334eee
AD
7063 **/
7064static bool igb_is_non_eop(struct igb_ring *rx_ring,
7065 union e1000_adv_rx_desc *rx_desc)
7066{
7067 u32 ntc = rx_ring->next_to_clean + 1;
7068
7069 /* fetch, update, and store next to clean */
7070 ntc = (ntc < rx_ring->count) ? ntc : 0;
7071 rx_ring->next_to_clean = ntc;
7072
7073 prefetch(IGB_RX_DESC(rx_ring, ntc));
7074
7075 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7076 return false;
7077
7078 return true;
7079}
7080
1a1c225b 7081/**
b980ac18
JK
7082 * igb_cleanup_headers - Correct corrupted or empty headers
7083 * @rx_ring: rx descriptor ring packet is being transacted on
7084 * @rx_desc: pointer to the EOP Rx descriptor
7085 * @skb: pointer to current skb being fixed
1a1c225b 7086 *
b980ac18
JK
7087 * Address the case where we are pulling data in on pages only
7088 * and as such no data is present in the skb header.
1a1c225b 7089 *
b980ac18
JK
7090 * In addition if skb is not at least 60 bytes we need to pad it so that
7091 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 7092 *
b980ac18 7093 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
7094 **/
7095static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7096 union e1000_adv_rx_desc *rx_desc,
7097 struct sk_buff *skb)
7098{
1a1c225b
AD
7099 if (unlikely((igb_test_staterr(rx_desc,
7100 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7101 struct net_device *netdev = rx_ring->netdev;
7102 if (!(netdev->features & NETIF_F_RXALL)) {
7103 dev_kfree_skb_any(skb);
7104 return true;
7105 }
7106 }
7107
a94d9e22
AD
7108 /* if eth_skb_pad returns an error the skb was freed */
7109 if (eth_skb_pad(skb))
7110 return true;
1a1c225b
AD
7111
7112 return false;
2d94d8ab
AD
7113}
7114
db2ee5bd 7115/**
b980ac18
JK
7116 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7117 * @rx_ring: rx descriptor ring packet is being transacted on
7118 * @rx_desc: pointer to the EOP Rx descriptor
7119 * @skb: pointer to current skb being populated
db2ee5bd 7120 *
b980ac18
JK
7121 * This function checks the ring, descriptor, and packet information in
7122 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7123 * other fields within the skb.
db2ee5bd
AD
7124 **/
7125static void igb_process_skb_fields(struct igb_ring *rx_ring,
7126 union e1000_adv_rx_desc *rx_desc,
7127 struct sk_buff *skb)
7128{
7129 struct net_device *dev = rx_ring->netdev;
7130
7131 igb_rx_hash(rx_ring, rx_desc, skb);
7132
7133 igb_rx_checksum(rx_ring, rx_desc, skb);
7134
5499a968
JK
7135 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7136 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7137 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
db2ee5bd 7138
f646968f 7139 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
7140 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7141 u16 vid;
9005df38 7142
db2ee5bd
AD
7143 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7144 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7145 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7146 else
7147 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7148
86a9bad3 7149 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
7150 }
7151
7152 skb_record_rx_queue(skb, rx_ring->queue_index);
7153
7154 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7155}
7156
32b3e08f 7157static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 7158{
0ba82994 7159 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 7160 struct sk_buff *skb = rx_ring->skb;
9d5c8243 7161 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 7162 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 7163
57ba34c9 7164 while (likely(total_packets < budget)) {
2e334eee 7165 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 7166
2e334eee
AD
7167 /* return some buffers to hardware, one at a time is too slow */
7168 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7169 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7170 cleaned_count = 0;
7171 }
bf36c1a0 7172
2e334eee 7173 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 7174
124b74c1 7175 if (!rx_desc->wb.upper.status_error)
2e334eee 7176 break;
9d5c8243 7177
74e238ea
AD
7178 /* This memory barrier is needed to keep us from reading
7179 * any other fields out of the rx_desc until we know the
124b74c1 7180 * descriptor has been written back
74e238ea 7181 */
124b74c1 7182 dma_rmb();
74e238ea 7183
2e334eee 7184 /* retrieve a buffer from the ring */
f9d40f6a 7185 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 7186
2e334eee
AD
7187 /* exit if we failed to retrieve a buffer */
7188 if (!skb)
7189 break;
1a1c225b 7190
2e334eee 7191 cleaned_count++;
1a1c225b 7192
2e334eee
AD
7193 /* fetch next buffer in frame if non-eop */
7194 if (igb_is_non_eop(rx_ring, rx_desc))
7195 continue;
1a1c225b
AD
7196
7197 /* verify the packet layout is correct */
7198 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7199 skb = NULL;
7200 continue;
9d5c8243 7201 }
9d5c8243 7202
db2ee5bd 7203 /* probably a little skewed due to removing CRC */
3ceb90fd 7204 total_bytes += skb->len;
3ceb90fd 7205
db2ee5bd
AD
7206 /* populate checksum, timestamp, VLAN, and protocol */
7207 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 7208
b2cb09b1 7209 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 7210
1a1c225b
AD
7211 /* reset skb pointer */
7212 skb = NULL;
7213
2e334eee
AD
7214 /* update budget accounting */
7215 total_packets++;
57ba34c9 7216 }
bf36c1a0 7217
1a1c225b
AD
7218 /* place incomplete frames back on ring for completion */
7219 rx_ring->skb = skb;
7220
12dcd86b 7221 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
7222 rx_ring->rx_stats.packets += total_packets;
7223 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 7224 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
7225 q_vector->rx.total_packets += total_packets;
7226 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
7227
7228 if (cleaned_count)
cd392f5c 7229 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 7230
32b3e08f 7231 return total_packets;
9d5c8243
AK
7232}
7233
c023cd88 7234static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 7235 struct igb_rx_buffer *bi)
c023cd88
AD
7236{
7237 struct page *page = bi->page;
cbc8e55f 7238 dma_addr_t dma;
c023cd88 7239
cbc8e55f
AD
7240 /* since we are recycling buffers we should seldom need to alloc */
7241 if (likely(page))
c023cd88
AD
7242 return true;
7243
cbc8e55f 7244 /* alloc new page for storage */
42b17f09 7245 page = dev_alloc_page();
cbc8e55f
AD
7246 if (unlikely(!page)) {
7247 rx_ring->rx_stats.alloc_failed++;
7248 return false;
c023cd88
AD
7249 }
7250
cbc8e55f 7251 /* map page for use */
5be59554
AD
7252 dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
7253 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
c023cd88 7254
b980ac18 7255 /* if mapping failed free memory back to system since
cbc8e55f
AD
7256 * there isn't much point in holding memory we can't use
7257 */
1a1c225b 7258 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
7259 __free_page(page);
7260
c023cd88
AD
7261 rx_ring->rx_stats.alloc_failed++;
7262 return false;
7263 }
7264
1a1c225b 7265 bi->dma = dma;
cbc8e55f
AD
7266 bi->page = page;
7267 bi->page_offset = 0;
bd4171a5 7268 bi->pagecnt_bias = 1;
1a1c225b 7269
c023cd88
AD
7270 return true;
7271}
7272
9d5c8243 7273/**
b980ac18
JK
7274 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7275 * @adapter: address of board private structure
9d5c8243 7276 **/
cd392f5c 7277void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 7278{
9d5c8243 7279 union e1000_adv_rx_desc *rx_desc;
06034649 7280 struct igb_rx_buffer *bi;
c023cd88 7281 u16 i = rx_ring->next_to_use;
9d5c8243 7282
cbc8e55f
AD
7283 /* nothing to do */
7284 if (!cleaned_count)
7285 return;
7286
60136906 7287 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 7288 bi = &rx_ring->rx_buffer_info[i];
c023cd88 7289 i -= rx_ring->count;
9d5c8243 7290
cbc8e55f 7291 do {
1a1c225b 7292 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 7293 break;
9d5c8243 7294
5be59554
AD
7295 /* sync the buffer for use by the device */
7296 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
7297 bi->page_offset,
7298 IGB_RX_BUFSZ,
7299 DMA_FROM_DEVICE);
7300
b980ac18 7301 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
7302 * because each write-back erases this info.
7303 */
f9d40f6a 7304 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 7305
c023cd88
AD
7306 rx_desc++;
7307 bi++;
9d5c8243 7308 i++;
c023cd88 7309 if (unlikely(!i)) {
60136906 7310 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 7311 bi = rx_ring->rx_buffer_info;
c023cd88
AD
7312 i -= rx_ring->count;
7313 }
7314
95dd44b4
AD
7315 /* clear the status bits for the next_to_use descriptor */
7316 rx_desc->wb.upper.status_error = 0;
cbc8e55f
AD
7317
7318 cleaned_count--;
7319 } while (cleaned_count);
9d5c8243 7320
c023cd88
AD
7321 i += rx_ring->count;
7322
9d5c8243 7323 if (rx_ring->next_to_use != i) {
cbc8e55f 7324 /* record the next descriptor to use */
9d5c8243 7325 rx_ring->next_to_use = i;
9d5c8243 7326
cbc8e55f
AD
7327 /* update next to alloc since we have filled the ring */
7328 rx_ring->next_to_alloc = i;
7329
b980ac18 7330 /* Force memory writes to complete before letting h/w
9d5c8243
AK
7331 * know there are new descriptors to fetch. (Only
7332 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
7333 * such as IA-64).
7334 */
9d5c8243 7335 wmb();
fce99e34 7336 writel(i, rx_ring->tail);
9d5c8243
AK
7337 }
7338}
7339
7340/**
7341 * igb_mii_ioctl -
7342 * @netdev:
7343 * @ifreq:
7344 * @cmd:
7345 **/
7346static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7347{
7348 struct igb_adapter *adapter = netdev_priv(netdev);
7349 struct mii_ioctl_data *data = if_mii(ifr);
7350
7351 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7352 return -EOPNOTSUPP;
7353
7354 switch (cmd) {
7355 case SIOCGMIIPHY:
7356 data->phy_id = adapter->hw.phy.addr;
7357 break;
7358 case SIOCGMIIREG:
f5f4cf08 7359 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9005df38 7360 &data->val_out))
9d5c8243
AK
7361 return -EIO;
7362 break;
7363 case SIOCSMIIREG:
7364 default:
7365 return -EOPNOTSUPP;
7366 }
7367 return 0;
7368}
7369
7370/**
7371 * igb_ioctl -
7372 * @netdev:
7373 * @ifreq:
7374 * @cmd:
7375 **/
7376static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7377{
7378 switch (cmd) {
7379 case SIOCGMIIPHY:
7380 case SIOCGMIIREG:
7381 case SIOCSMIIREG:
7382 return igb_mii_ioctl(netdev, ifr, cmd);
6ab5f7b2
JK
7383 case SIOCGHWTSTAMP:
7384 return igb_ptp_get_ts_config(netdev, ifr);
c6cb090b 7385 case SIOCSHWTSTAMP:
6ab5f7b2 7386 return igb_ptp_set_ts_config(netdev, ifr);
9d5c8243
AK
7387 default:
7388 return -EOPNOTSUPP;
7389 }
7390}
7391
94826487
TF
7392void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7393{
7394 struct igb_adapter *adapter = hw->back;
7395
7396 pci_read_config_word(adapter->pdev, reg, value);
7397}
7398
7399void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7400{
7401 struct igb_adapter *adapter = hw->back;
7402
7403 pci_write_config_word(adapter->pdev, reg, *value);
7404}
7405
009bc06e
AD
7406s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7407{
7408 struct igb_adapter *adapter = hw->back;
009bc06e 7409
23d028cc 7410 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
7411 return -E1000_ERR_CONFIG;
7412
009bc06e
AD
7413 return 0;
7414}
7415
7416s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7417{
7418 struct igb_adapter *adapter = hw->back;
009bc06e 7419
23d028cc 7420 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
7421 return -E1000_ERR_CONFIG;
7422
009bc06e
AD
7423 return 0;
7424}
7425
c8f44aff 7426static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
7427{
7428 struct igb_adapter *adapter = netdev_priv(netdev);
7429 struct e1000_hw *hw = &adapter->hw;
7430 u32 ctrl, rctl;
f646968f 7431 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 7432
5faf030c 7433 if (enable) {
9d5c8243
AK
7434 /* enable VLAN tag insert/strip */
7435 ctrl = rd32(E1000_CTRL);
7436 ctrl |= E1000_CTRL_VME;
7437 wr32(E1000_CTRL, ctrl);
7438
51466239 7439 /* Disable CFI check */
9d5c8243 7440 rctl = rd32(E1000_RCTL);
9d5c8243
AK
7441 rctl &= ~E1000_RCTL_CFIEN;
7442 wr32(E1000_RCTL, rctl);
9d5c8243
AK
7443 } else {
7444 /* disable VLAN tag insert/strip */
7445 ctrl = rd32(E1000_CTRL);
7446 ctrl &= ~E1000_CTRL_VME;
7447 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
7448 }
7449
030f9f52 7450 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9d5c8243
AK
7451}
7452
80d5c368
PM
7453static int igb_vlan_rx_add_vid(struct net_device *netdev,
7454 __be16 proto, u16 vid)
9d5c8243
AK
7455{
7456 struct igb_adapter *adapter = netdev_priv(netdev);
7457 struct e1000_hw *hw = &adapter->hw;
4ae196df 7458 int pf_id = adapter->vfs_allocated_count;
9d5c8243 7459
51466239 7460 /* add the filter since PF can receive vlans w/o entry in vlvf */
16903caa
AD
7461 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7462 igb_vfta_set(hw, vid, pf_id, true, !!vid);
b2cb09b1
JP
7463
7464 set_bit(vid, adapter->active_vlans);
8e586137
JP
7465
7466 return 0;
9d5c8243
AK
7467}
7468
80d5c368
PM
7469static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7470 __be16 proto, u16 vid)
9d5c8243
AK
7471{
7472 struct igb_adapter *adapter = netdev_priv(netdev);
4ae196df 7473 int pf_id = adapter->vfs_allocated_count;
8b77c6b2 7474 struct e1000_hw *hw = &adapter->hw;
9d5c8243 7475
8b77c6b2 7476 /* remove VID from filter table */
16903caa
AD
7477 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7478 igb_vfta_set(hw, vid, pf_id, false, true);
b2cb09b1
JP
7479
7480 clear_bit(vid, adapter->active_vlans);
8e586137
JP
7481
7482 return 0;
9d5c8243
AK
7483}
7484
7485static void igb_restore_vlan(struct igb_adapter *adapter)
7486{
5982a556 7487 u16 vid = 1;
9d5c8243 7488
5faf030c 7489 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
5982a556 7490 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
5faf030c 7491
5982a556 7492 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 7493 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
7494}
7495
14ad2513 7496int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 7497{
090b1795 7498 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
7499 struct e1000_mac_info *mac = &adapter->hw.mac;
7500
7501 mac->autoneg = 0;
7502
14ad2513 7503 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
7504 * for the switch() below to work
7505 */
14ad2513
DD
7506 if ((spd & 1) || (dplx & ~1))
7507 goto err_inval;
7508
f502ef7d
AA
7509 /* Fiber NIC's only allow 1000 gbps Full duplex
7510 * and 100Mbps Full duplex for 100baseFx sfp
7511 */
7512 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7513 switch (spd + dplx) {
7514 case SPEED_10 + DUPLEX_HALF:
7515 case SPEED_10 + DUPLEX_FULL:
7516 case SPEED_100 + DUPLEX_HALF:
7517 goto err_inval;
7518 default:
7519 break;
7520 }
7521 }
cd2638a8 7522
14ad2513 7523 switch (spd + dplx) {
9d5c8243
AK
7524 case SPEED_10 + DUPLEX_HALF:
7525 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7526 break;
7527 case SPEED_10 + DUPLEX_FULL:
7528 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7529 break;
7530 case SPEED_100 + DUPLEX_HALF:
7531 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7532 break;
7533 case SPEED_100 + DUPLEX_FULL:
7534 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7535 break;
7536 case SPEED_1000 + DUPLEX_FULL:
7537 mac->autoneg = 1;
7538 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7539 break;
7540 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7541 default:
14ad2513 7542 goto err_inval;
9d5c8243 7543 }
8376dad0
JB
7544
7545 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7546 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7547
9d5c8243 7548 return 0;
14ad2513
DD
7549
7550err_inval:
7551 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7552 return -EINVAL;
9d5c8243
AK
7553}
7554
749ab2cd
YZ
7555static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7556 bool runtime)
9d5c8243
AK
7557{
7558 struct net_device *netdev = pci_get_drvdata(pdev);
7559 struct igb_adapter *adapter = netdev_priv(netdev);
7560 struct e1000_hw *hw = &adapter->hw;
2d064c06 7561 u32 ctrl, rctl, status;
749ab2cd 7562 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7563#ifdef CONFIG_PM
7564 int retval = 0;
7565#endif
7566
7567 netif_device_detach(netdev);
7568
a88f10ec 7569 if (netif_running(netdev))
749ab2cd 7570 __igb_close(netdev, true);
a88f10ec 7571
8646f7b4
JK
7572 igb_ptp_suspend(adapter);
7573
047e0030 7574 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7575
7576#ifdef CONFIG_PM
7577 retval = pci_save_state(pdev);
7578 if (retval)
7579 return retval;
7580#endif
7581
7582 status = rd32(E1000_STATUS);
7583 if (status & E1000_STATUS_LU)
7584 wufc &= ~E1000_WUFC_LNKC;
7585
7586 if (wufc) {
7587 igb_setup_rctl(adapter);
ff41f8dc 7588 igb_set_rx_mode(netdev);
9d5c8243
AK
7589
7590 /* turn on all-multi mode if wake on multicast is enabled */
7591 if (wufc & E1000_WUFC_MC) {
7592 rctl = rd32(E1000_RCTL);
7593 rctl |= E1000_RCTL_MPE;
7594 wr32(E1000_RCTL, rctl);
7595 }
7596
7597 ctrl = rd32(E1000_CTRL);
7598 /* advertise wake from D3Cold */
7599 #define E1000_CTRL_ADVD3WUC 0x00100000
7600 /* phy power management enable */
7601 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7602 ctrl |= E1000_CTRL_ADVD3WUC;
7603 wr32(E1000_CTRL, ctrl);
7604
9d5c8243 7605 /* Allow time for pending master requests to run */
330a6d6a 7606 igb_disable_pcie_master(hw);
9d5c8243
AK
7607
7608 wr32(E1000_WUC, E1000_WUC_PME_EN);
7609 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7610 } else {
7611 wr32(E1000_WUC, 0);
7612 wr32(E1000_WUFC, 0);
9d5c8243
AK
7613 }
7614
3fe7c4c9
RW
7615 *enable_wake = wufc || adapter->en_mng_pt;
7616 if (!*enable_wake)
88a268c1
NN
7617 igb_power_down_link(adapter);
7618 else
7619 igb_power_up_link(adapter);
9d5c8243
AK
7620
7621 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7622 * would have already happened in close and is redundant.
7623 */
9d5c8243
AK
7624 igb_release_hw_control(adapter);
7625
7626 pci_disable_device(pdev);
7627
9d5c8243
AK
7628 return 0;
7629}
7630
7631#ifdef CONFIG_PM
d9dd966d 7632#ifdef CONFIG_PM_SLEEP
749ab2cd 7633static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7634{
7635 int retval;
7636 bool wake;
749ab2cd 7637 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7638
749ab2cd 7639 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7640 if (retval)
7641 return retval;
7642
7643 if (wake) {
7644 pci_prepare_to_sleep(pdev);
7645 } else {
7646 pci_wake_from_d3(pdev, false);
7647 pci_set_power_state(pdev, PCI_D3hot);
7648 }
7649
7650 return 0;
7651}
d9dd966d 7652#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7653
749ab2cd 7654static int igb_resume(struct device *dev)
9d5c8243 7655{
749ab2cd 7656 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7657 struct net_device *netdev = pci_get_drvdata(pdev);
7658 struct igb_adapter *adapter = netdev_priv(netdev);
7659 struct e1000_hw *hw = &adapter->hw;
7660 u32 err;
7661
7662 pci_set_power_state(pdev, PCI_D0);
7663 pci_restore_state(pdev);
b94f2d77 7664 pci_save_state(pdev);
42bfd33a 7665
17a402a0
CW
7666 if (!pci_device_is_present(pdev))
7667 return -ENODEV;
aed5dec3 7668 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7669 if (err) {
7670 dev_err(&pdev->dev,
7671 "igb: Cannot enable PCI device from suspend\n");
7672 return err;
7673 }
7674 pci_set_master(pdev);
7675
7676 pci_enable_wake(pdev, PCI_D3hot, 0);
7677 pci_enable_wake(pdev, PCI_D3cold, 0);
7678
53c7d064 7679 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7680 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7681 return -ENOMEM;
9d5c8243
AK
7682 }
7683
9d5c8243 7684 igb_reset(adapter);
a8564f03
AD
7685
7686 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7687 * driver.
7688 */
a8564f03
AD
7689 igb_get_hw_control(adapter);
7690
9d5c8243
AK
7691 wr32(E1000_WUS, ~0);
7692
749ab2cd 7693 if (netdev->flags & IFF_UP) {
0c2cc02e 7694 rtnl_lock();
749ab2cd 7695 err = __igb_open(netdev, true);
0c2cc02e 7696 rtnl_unlock();
a88f10ec
AD
7697 if (err)
7698 return err;
7699 }
9d5c8243
AK
7700
7701 netif_device_attach(netdev);
749ab2cd
YZ
7702 return 0;
7703}
7704
749ab2cd
YZ
7705static int igb_runtime_idle(struct device *dev)
7706{
7707 struct pci_dev *pdev = to_pci_dev(dev);
7708 struct net_device *netdev = pci_get_drvdata(pdev);
7709 struct igb_adapter *adapter = netdev_priv(netdev);
7710
7711 if (!igb_has_link(adapter))
7712 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7713
7714 return -EBUSY;
7715}
7716
7717static int igb_runtime_suspend(struct device *dev)
7718{
7719 struct pci_dev *pdev = to_pci_dev(dev);
7720 int retval;
7721 bool wake;
7722
7723 retval = __igb_shutdown(pdev, &wake, 1);
7724 if (retval)
7725 return retval;
7726
7727 if (wake) {
7728 pci_prepare_to_sleep(pdev);
7729 } else {
7730 pci_wake_from_d3(pdev, false);
7731 pci_set_power_state(pdev, PCI_D3hot);
7732 }
9d5c8243 7733
9d5c8243
AK
7734 return 0;
7735}
749ab2cd
YZ
7736
7737static int igb_runtime_resume(struct device *dev)
7738{
7739 return igb_resume(dev);
7740}
d61c81cb 7741#endif /* CONFIG_PM */
9d5c8243
AK
7742
7743static void igb_shutdown(struct pci_dev *pdev)
7744{
3fe7c4c9
RW
7745 bool wake;
7746
749ab2cd 7747 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7748
7749 if (system_state == SYSTEM_POWER_OFF) {
7750 pci_wake_from_d3(pdev, wake);
7751 pci_set_power_state(pdev, PCI_D3hot);
7752 }
9d5c8243
AK
7753}
7754
fa44f2f1
GR
7755#ifdef CONFIG_PCI_IOV
7756static int igb_sriov_reinit(struct pci_dev *dev)
7757{
7758 struct net_device *netdev = pci_get_drvdata(dev);
7759 struct igb_adapter *adapter = netdev_priv(netdev);
7760 struct pci_dev *pdev = adapter->pdev;
7761
7762 rtnl_lock();
7763
7764 if (netif_running(netdev))
7765 igb_close(netdev);
76252723
SA
7766 else
7767 igb_reset(adapter);
fa44f2f1
GR
7768
7769 igb_clear_interrupt_scheme(adapter);
7770
7771 igb_init_queue_configuration(adapter);
7772
7773 if (igb_init_interrupt_scheme(adapter, true)) {
f468adc9 7774 rtnl_unlock();
fa44f2f1
GR
7775 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7776 return -ENOMEM;
7777 }
7778
7779 if (netif_running(netdev))
7780 igb_open(netdev);
7781
7782 rtnl_unlock();
7783
7784 return 0;
7785}
7786
7787static int igb_pci_disable_sriov(struct pci_dev *dev)
7788{
7789 int err = igb_disable_sriov(dev);
7790
7791 if (!err)
7792 err = igb_sriov_reinit(dev);
7793
7794 return err;
7795}
7796
7797static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7798{
7799 int err = igb_enable_sriov(dev, num_vfs);
7800
7801 if (err)
7802 goto out;
7803
7804 err = igb_sriov_reinit(dev);
7805 if (!err)
7806 return num_vfs;
7807
7808out:
7809 return err;
7810}
7811
7812#endif
7813static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7814{
7815#ifdef CONFIG_PCI_IOV
7816 if (num_vfs == 0)
7817 return igb_pci_disable_sriov(dev);
7818 else
7819 return igb_pci_enable_sriov(dev, num_vfs);
7820#endif
7821 return 0;
7822}
7823
9d5c8243 7824#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7825/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7826 * without having to re-enable interrupts. It's not called while
7827 * the interrupt routine is executing.
7828 */
7829static void igb_netpoll(struct net_device *netdev)
7830{
7831 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7832 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7833 struct igb_q_vector *q_vector;
9d5c8243 7834 int i;
9d5c8243 7835
047e0030 7836 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4 7837 q_vector = adapter->q_vector[i];
cd14ef54 7838 if (adapter->flags & IGB_FLAG_HAS_MSIX)
0d1ae7f4
AD
7839 wr32(E1000_EIMC, q_vector->eims_value);
7840 else
7841 igb_irq_disable(adapter);
047e0030 7842 napi_schedule(&q_vector->napi);
eebbbdba 7843 }
9d5c8243
AK
7844}
7845#endif /* CONFIG_NET_POLL_CONTROLLER */
7846
7847/**
b980ac18
JK
7848 * igb_io_error_detected - called when PCI error is detected
7849 * @pdev: Pointer to PCI device
7850 * @state: The current pci connection state
9d5c8243 7851 *
b980ac18
JK
7852 * This function is called after a PCI bus error affecting
7853 * this device has been detected.
7854 **/
9d5c8243
AK
7855static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7856 pci_channel_state_t state)
7857{
7858 struct net_device *netdev = pci_get_drvdata(pdev);
7859 struct igb_adapter *adapter = netdev_priv(netdev);
7860
7861 netif_device_detach(netdev);
7862
59ed6eec
AD
7863 if (state == pci_channel_io_perm_failure)
7864 return PCI_ERS_RESULT_DISCONNECT;
7865
9d5c8243
AK
7866 if (netif_running(netdev))
7867 igb_down(adapter);
7868 pci_disable_device(pdev);
7869
7870 /* Request a slot slot reset. */
7871 return PCI_ERS_RESULT_NEED_RESET;
7872}
7873
7874/**
b980ac18
JK
7875 * igb_io_slot_reset - called after the pci bus has been reset.
7876 * @pdev: Pointer to PCI device
9d5c8243 7877 *
b980ac18
JK
7878 * Restart the card from scratch, as if from a cold-boot. Implementation
7879 * resembles the first-half of the igb_resume routine.
7880 **/
9d5c8243
AK
7881static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7882{
7883 struct net_device *netdev = pci_get_drvdata(pdev);
7884 struct igb_adapter *adapter = netdev_priv(netdev);
7885 struct e1000_hw *hw = &adapter->hw;
40a914fa 7886 pci_ers_result_t result;
42bfd33a 7887 int err;
9d5c8243 7888
aed5dec3 7889 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7890 dev_err(&pdev->dev,
7891 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7892 result = PCI_ERS_RESULT_DISCONNECT;
7893 } else {
7894 pci_set_master(pdev);
7895 pci_restore_state(pdev);
b94f2d77 7896 pci_save_state(pdev);
9d5c8243 7897
40a914fa
AD
7898 pci_enable_wake(pdev, PCI_D3hot, 0);
7899 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7900
40a914fa
AD
7901 igb_reset(adapter);
7902 wr32(E1000_WUS, ~0);
7903 result = PCI_ERS_RESULT_RECOVERED;
7904 }
9d5c8243 7905
ea943d41
JK
7906 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7907 if (err) {
b980ac18
JK
7908 dev_err(&pdev->dev,
7909 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7910 err);
ea943d41
JK
7911 /* non-fatal, continue */
7912 }
40a914fa
AD
7913
7914 return result;
9d5c8243
AK
7915}
7916
7917/**
b980ac18
JK
7918 * igb_io_resume - called when traffic can start flowing again.
7919 * @pdev: Pointer to PCI device
9d5c8243 7920 *
b980ac18
JK
7921 * This callback is called when the error recovery driver tells us that
7922 * its OK to resume normal operation. Implementation resembles the
7923 * second-half of the igb_resume routine.
9d5c8243
AK
7924 */
7925static void igb_io_resume(struct pci_dev *pdev)
7926{
7927 struct net_device *netdev = pci_get_drvdata(pdev);
7928 struct igb_adapter *adapter = netdev_priv(netdev);
7929
9d5c8243
AK
7930 if (netif_running(netdev)) {
7931 if (igb_up(adapter)) {
7932 dev_err(&pdev->dev, "igb_up failed after reset\n");
7933 return;
7934 }
7935 }
7936
7937 netif_device_attach(netdev);
7938
7939 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7940 * driver.
7941 */
9d5c8243 7942 igb_get_hw_control(adapter);
9d5c8243
AK
7943}
7944
26ad9178 7945static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7946 u8 qsel)
26ad9178 7947{
26ad9178 7948 struct e1000_hw *hw = &adapter->hw;
c3278587 7949 u32 rar_low, rar_high;
26ad9178 7950
415cd2a6
AD
7951 /* HW expects these to be in network order when they are plugged
7952 * into the registers which are little endian. In order to guarantee
7953 * that ordering we need to do an leXX_to_cpup here in order to be
7954 * ready for the byteswap that occurs with writel
26ad9178 7955 */
415cd2a6
AD
7956 rar_low = le32_to_cpup((__le32 *)(addr));
7957 rar_high = le16_to_cpup((__le16 *)(addr + 4));
26ad9178
AD
7958
7959 /* Indicate to hardware the Address is Valid. */
7960 rar_high |= E1000_RAH_AV;
7961
7962 if (hw->mac.type == e1000_82575)
7963 rar_high |= E1000_RAH_POOL_1 * qsel;
7964 else
7965 rar_high |= E1000_RAH_POOL_1 << qsel;
7966
7967 wr32(E1000_RAL(index), rar_low);
7968 wrfl();
7969 wr32(E1000_RAH(index), rar_high);
7970 wrfl();
7971}
7972
4ae196df 7973static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7974 int vf, unsigned char *mac_addr)
4ae196df
AD
7975{
7976 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7977 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7978 * towards the first, as a result a collision should not be possible
7979 */
ff41f8dc 7980 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7981
37680117 7982 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7983
26ad9178 7984 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7985
7986 return 0;
7987}
7988
8151d294
WM
7989static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7990{
7991 struct igb_adapter *adapter = netdev_priv(netdev);
7992 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7993 return -EINVAL;
7994 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7995 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7996 dev_info(&adapter->pdev->dev,
7997 "Reload the VF driver to make this change effective.");
8151d294 7998 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7999 dev_warn(&adapter->pdev->dev,
8000 "The VF MAC address has been set, but the PF device is not up.\n");
8001 dev_warn(&adapter->pdev->dev,
8002 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
8003 }
8004 return igb_set_vf_mac(adapter, vf, mac);
8005}
8006
17dc566c
LL
8007static int igb_link_mbps(int internal_link_speed)
8008{
8009 switch (internal_link_speed) {
8010 case SPEED_100:
8011 return 100;
8012 case SPEED_1000:
8013 return 1000;
8014 default:
8015 return 0;
8016 }
8017}
8018
8019static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8020 int link_speed)
8021{
8022 int rf_dec, rf_int;
8023 u32 bcnrc_val;
8024
8025 if (tx_rate != 0) {
8026 /* Calculate the rate factor values to set */
8027 rf_int = link_speed / tx_rate;
8028 rf_dec = (link_speed - (rf_int * tx_rate));
a51d8c21 8029 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
b980ac18 8030 tx_rate;
17dc566c
LL
8031
8032 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
8033 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8034 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
8035 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8036 } else {
8037 bcnrc_val = 0;
8038 }
8039
8040 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 8041 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
8042 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8043 */
8044 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
8045 wr32(E1000_RTTBCNRC, bcnrc_val);
8046}
8047
8048static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8049{
8050 int actual_link_speed, i;
8051 bool reset_rate = false;
8052
8053 /* VF TX rate limit was not set or not supported */
8054 if ((adapter->vf_rate_link_speed == 0) ||
8055 (adapter->hw.mac.type != e1000_82576))
8056 return;
8057
8058 actual_link_speed = igb_link_mbps(adapter->link_speed);
8059 if (actual_link_speed != adapter->vf_rate_link_speed) {
8060 reset_rate = true;
8061 adapter->vf_rate_link_speed = 0;
8062 dev_info(&adapter->pdev->dev,
b980ac18 8063 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
8064 }
8065
8066 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8067 if (reset_rate)
8068 adapter->vf_data[i].tx_rate = 0;
8069
8070 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
8071 adapter->vf_data[i].tx_rate,
8072 actual_link_speed);
17dc566c
LL
8073 }
8074}
8075
ed616689
SC
8076static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8077 int min_tx_rate, int max_tx_rate)
8151d294 8078{
17dc566c
LL
8079 struct igb_adapter *adapter = netdev_priv(netdev);
8080 struct e1000_hw *hw = &adapter->hw;
8081 int actual_link_speed;
8082
8083 if (hw->mac.type != e1000_82576)
8084 return -EOPNOTSUPP;
8085
ed616689
SC
8086 if (min_tx_rate)
8087 return -EINVAL;
8088
17dc566c
LL
8089 actual_link_speed = igb_link_mbps(adapter->link_speed);
8090 if ((vf >= adapter->vfs_allocated_count) ||
8091 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
ed616689
SC
8092 (max_tx_rate < 0) ||
8093 (max_tx_rate > actual_link_speed))
17dc566c
LL
8094 return -EINVAL;
8095
8096 adapter->vf_rate_link_speed = actual_link_speed;
ed616689
SC
8097 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8098 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
17dc566c
LL
8099
8100 return 0;
8151d294
WM
8101}
8102
70ea4783
LL
8103static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8104 bool setting)
8105{
8106 struct igb_adapter *adapter = netdev_priv(netdev);
8107 struct e1000_hw *hw = &adapter->hw;
8108 u32 reg_val, reg_offset;
8109
8110 if (!adapter->vfs_allocated_count)
8111 return -EOPNOTSUPP;
8112
8113 if (vf >= adapter->vfs_allocated_count)
8114 return -EINVAL;
8115
8116 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8117 reg_val = rd32(reg_offset);
8118 if (setting)
a51d8c21
JK
8119 reg_val |= (BIT(vf) |
8120 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
70ea4783 8121 else
a51d8c21
JK
8122 reg_val &= ~(BIT(vf) |
8123 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
70ea4783
LL
8124 wr32(reg_offset, reg_val);
8125
8126 adapter->vf_data[vf].spoofchk_enabled = setting;
23d87824 8127 return 0;
70ea4783
LL
8128}
8129
8151d294
WM
8130static int igb_ndo_get_vf_config(struct net_device *netdev,
8131 int vf, struct ifla_vf_info *ivi)
8132{
8133 struct igb_adapter *adapter = netdev_priv(netdev);
8134 if (vf >= adapter->vfs_allocated_count)
8135 return -EINVAL;
8136 ivi->vf = vf;
8137 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ed616689
SC
8138 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8139 ivi->min_tx_rate = 0;
8151d294
WM
8140 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8141 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 8142 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
8143 return 0;
8144}
8145
4ae196df
AD
8146static void igb_vmm_control(struct igb_adapter *adapter)
8147{
8148 struct e1000_hw *hw = &adapter->hw;
10d8e907 8149 u32 reg;
4ae196df 8150
52a1dd4d
AD
8151 switch (hw->mac.type) {
8152 case e1000_82575:
f96a8a0b
CW
8153 case e1000_i210:
8154 case e1000_i211:
ceb5f13b 8155 case e1000_i354:
52a1dd4d
AD
8156 default:
8157 /* replication is not supported for 82575 */
4ae196df 8158 return;
52a1dd4d
AD
8159 case e1000_82576:
8160 /* notify HW that the MAC is adding vlan tags */
8161 reg = rd32(E1000_DTXCTL);
8162 reg |= E1000_DTXCTL_VLAN_ADDED;
8163 wr32(E1000_DTXCTL, reg);
b26141d4 8164 /* Fall through */
52a1dd4d
AD
8165 case e1000_82580:
8166 /* enable replication vlan tag stripping */
8167 reg = rd32(E1000_RPLOLR);
8168 reg |= E1000_RPLOLR_STRVLAN;
8169 wr32(E1000_RPLOLR, reg);
b26141d4 8170 /* Fall through */
d2ba2ed8
AD
8171 case e1000_i350:
8172 /* none of the above registers are supported by i350 */
52a1dd4d
AD
8173 break;
8174 }
10d8e907 8175
d4960307
AD
8176 if (adapter->vfs_allocated_count) {
8177 igb_vmdq_set_loopback_pf(hw, true);
8178 igb_vmdq_set_replication_pf(hw, true);
13800469 8179 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 8180 adapter->vfs_allocated_count);
d4960307
AD
8181 } else {
8182 igb_vmdq_set_loopback_pf(hw, false);
8183 igb_vmdq_set_replication_pf(hw, false);
8184 }
4ae196df
AD
8185}
8186
b6e0c419
CW
8187static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8188{
8189 struct e1000_hw *hw = &adapter->hw;
8190 u32 dmac_thr;
8191 u16 hwm;
8192
8193 if (hw->mac.type > e1000_82580) {
8194 if (adapter->flags & IGB_FLAG_DMAC) {
8195 u32 reg;
8196
8197 /* force threshold to 0. */
8198 wr32(E1000_DMCTXTH, 0);
8199
b980ac18 8200 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
8201 * than the Rx threshold. Set hwm to PBA - max frame
8202 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 8203 */
45693bcb 8204 hwm = 64 * (pba - 6);
e8c626e9
MV
8205 reg = rd32(E1000_FCRTC);
8206 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8207 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8208 & E1000_FCRTC_RTH_COAL_MASK);
8209 wr32(E1000_FCRTC, reg);
8210
b980ac18 8211 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
8212 * frame size, capping it at PBA - 10KB.
8213 */
45693bcb 8214 dmac_thr = pba - 10;
b6e0c419
CW
8215 reg = rd32(E1000_DMACR);
8216 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
8217 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8218 & E1000_DMACR_DMACTHR_MASK);
8219
8220 /* transition to L0x or L1 if available..*/
8221 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8222
8223 /* watchdog timer= +-1000 usec in 32usec intervals */
8224 reg |= (1000 >> 5);
0c02dd98
MV
8225
8226 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
8227 if (hw->mac.type != e1000_i354)
8228 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8229
b6e0c419
CW
8230 wr32(E1000_DMACR, reg);
8231
b980ac18 8232 /* no lower threshold to disable
b6e0c419
CW
8233 * coalescing(smart fifb)-UTRESH=0
8234 */
8235 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
8236
8237 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8238
8239 wr32(E1000_DMCTLX, reg);
8240
b980ac18 8241 /* free space in tx packet buffer to wake from
b6e0c419
CW
8242 * DMA coal
8243 */
8244 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8245 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8246
b980ac18 8247 /* make low power state decision controlled
b6e0c419
CW
8248 * by DMA coal
8249 */
8250 reg = rd32(E1000_PCIEMISC);
8251 reg &= ~E1000_PCIEMISC_LX_DECISION;
8252 wr32(E1000_PCIEMISC, reg);
8253 } /* endif adapter->dmac is not disabled */
8254 } else if (hw->mac.type == e1000_82580) {
8255 u32 reg = rd32(E1000_PCIEMISC);
9005df38 8256
b6e0c419
CW
8257 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8258 wr32(E1000_DMACR, 0);
8259 }
8260}
8261
b980ac18
JK
8262/**
8263 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
8264 * @hw: pointer to hardware structure
8265 * @byte_offset: byte offset to read
8266 * @dev_addr: device address
8267 * @data: value read
8268 *
8269 * Performs byte read operation over I2C interface at
8270 * a specified device address.
b980ac18 8271 **/
441fc6fd 8272s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8273 u8 dev_addr, u8 *data)
441fc6fd
CW
8274{
8275 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8276 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8277 s32 status;
8278 u16 swfw_mask = 0;
8279
8280 if (!this_client)
8281 return E1000_ERR_I2C;
8282
8283 swfw_mask = E1000_SWFW_PHY0_SM;
8284
23d87824 8285 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8286 return E1000_ERR_SWFW_SYNC;
8287
8288 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8289 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8290
8291 if (status < 0)
8292 return E1000_ERR_I2C;
8293 else {
8294 *data = status;
23d87824 8295 return 0;
441fc6fd
CW
8296 }
8297}
8298
b980ac18
JK
8299/**
8300 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
8301 * @hw: pointer to hardware structure
8302 * @byte_offset: byte offset to write
8303 * @dev_addr: device address
8304 * @data: value to write
8305 *
8306 * Performs byte write operation over I2C interface at
8307 * a specified device address.
b980ac18 8308 **/
441fc6fd 8309s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8310 u8 dev_addr, u8 data)
441fc6fd
CW
8311{
8312 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8313 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8314 s32 status;
8315 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8316
8317 if (!this_client)
8318 return E1000_ERR_I2C;
8319
23d87824 8320 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8321 return E1000_ERR_SWFW_SYNC;
8322 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8323 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8324
8325 if (status)
8326 return E1000_ERR_I2C;
8327 else
23d87824 8328 return 0;
441fc6fd
CW
8329
8330}
907b7835
LMV
8331
8332int igb_reinit_queues(struct igb_adapter *adapter)
8333{
8334 struct net_device *netdev = adapter->netdev;
8335 struct pci_dev *pdev = adapter->pdev;
8336 int err = 0;
8337
8338 if (netif_running(netdev))
8339 igb_close(netdev);
8340
02ef6e1d 8341 igb_reset_interrupt_capability(adapter);
907b7835
LMV
8342
8343 if (igb_init_interrupt_scheme(adapter, true)) {
8344 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8345 return -ENOMEM;
8346 }
8347
8348 if (netif_running(netdev))
8349 err = igb_open(netdev);
8350
8351 return err;
8352}
0e71def2
GH
8353
8354static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8355{
8356 struct igb_nfc_filter *rule;
8357
8358 spin_lock(&adapter->nfc_lock);
8359
8360 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8361 igb_erase_filter(adapter, rule);
8362
8363 spin_unlock(&adapter->nfc_lock);
8364}
8365
8366static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8367{
8368 struct igb_nfc_filter *rule;
8369
8370 spin_lock(&adapter->nfc_lock);
8371
8372 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8373 igb_add_filter(adapter, rule);
8374
8375 spin_unlock(&adapter->nfc_lock);
8376}
9d5c8243 8377/* igb_main.c */