]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
e1000e: add support for hardware timestamping on some devices
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
6e861326 4 Copyright(c) 2007-2012 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
9d5c8243
AK
60#include "igb.h"
61
200e5fd5 62#define MAJ 4
6699938b
CW
63#define MIN 1
64#define BUILD 2
0d1fe82d 65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 66__stringify(BUILD) "-k"
9d5c8243
AK
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
6e861326 71static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
9d5c8243 72
9d5c8243
AK
73static const struct e1000_info *igb_info_tbl[] = {
74 [board_82575] = &e1000_82575_info,
75};
76
a3aa1884 77static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
f96a8a0b
CW
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
d2ba2ed8
AD
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108 /* required last entry */
109 {0, }
110};
111
112MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114void igb_reset(struct igb_adapter *);
115static int igb_setup_all_tx_resources(struct igb_adapter *);
116static int igb_setup_all_rx_resources(struct igb_adapter *);
117static void igb_free_all_tx_resources(struct igb_adapter *);
118static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 119static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 120static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 121static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
122static int igb_sw_init(struct igb_adapter *);
123static int igb_open(struct net_device *);
124static int igb_close(struct net_device *);
53c7d064 125static void igb_configure(struct igb_adapter *);
9d5c8243
AK
126static void igb_configure_tx(struct igb_adapter *);
127static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
128static void igb_clean_all_tx_rings(struct igb_adapter *);
129static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
130static void igb_clean_tx_ring(struct igb_ring *);
131static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 132static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
133static void igb_update_phy_info(unsigned long);
134static void igb_watchdog(unsigned long);
135static void igb_watchdog_task(struct work_struct *);
cd392f5c 136static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
137static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
138 struct rtnl_link_stats64 *stats);
9d5c8243
AK
139static int igb_change_mtu(struct net_device *, int);
140static int igb_set_mac(struct net_device *, void *);
68d480c4 141static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
142static irqreturn_t igb_intr(int irq, void *);
143static irqreturn_t igb_intr_msi(int irq, void *);
144static irqreturn_t igb_msix_other(int irq, void *);
047e0030 145static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 146#ifdef CONFIG_IGB_DCA
047e0030 147static void igb_update_dca(struct igb_q_vector *);
fe4506b6 148static void igb_setup_dca(struct igb_adapter *);
421e02f0 149#endif /* CONFIG_IGB_DCA */
661086df 150static int igb_poll(struct napi_struct *, int);
13fde97a 151static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 152static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
153static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
154static void igb_tx_timeout(struct net_device *);
155static void igb_reset_task(struct work_struct *);
c8f44aff 156static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
8e586137
JP
157static int igb_vlan_rx_add_vid(struct net_device *, u16);
158static int igb_vlan_rx_kill_vid(struct net_device *, u16);
9d5c8243 159static void igb_restore_vlan(struct igb_adapter *);
26ad9178 160static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
161static void igb_ping_all_vfs(struct igb_adapter *);
162static void igb_msg_task(struct igb_adapter *);
4ae196df 163static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 164static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 165static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
166static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
167static int igb_ndo_set_vf_vlan(struct net_device *netdev,
168 int vf, u16 vlan, u8 qos);
169static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
17dc566c 172static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
173
174#ifdef CONFIG_PCI_IOV
0224d663 175static int igb_vf_configure(struct igb_adapter *adapter, int vf);
f557147c 176static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
46a01698 177#endif
9d5c8243 178
9d5c8243 179#ifdef CONFIG_PM
d9dd966d 180#ifdef CONFIG_PM_SLEEP
749ab2cd 181static int igb_suspend(struct device *);
d9dd966d 182#endif
749ab2cd
YZ
183static int igb_resume(struct device *);
184#ifdef CONFIG_PM_RUNTIME
185static int igb_runtime_suspend(struct device *dev);
186static int igb_runtime_resume(struct device *dev);
187static int igb_runtime_idle(struct device *dev);
188#endif
189static const struct dev_pm_ops igb_pm_ops = {
190 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
191 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
192 igb_runtime_idle)
193};
9d5c8243
AK
194#endif
195static void igb_shutdown(struct pci_dev *);
421e02f0 196#ifdef CONFIG_IGB_DCA
fe4506b6
JC
197static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
198static struct notifier_block dca_notifier = {
199 .notifier_call = igb_notify_dca,
200 .next = NULL,
201 .priority = 0
202};
203#endif
9d5c8243
AK
204#ifdef CONFIG_NET_POLL_CONTROLLER
205/* for netdump / net console */
206static void igb_netpoll(struct net_device *);
207#endif
37680117 208#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
209static unsigned int max_vfs = 0;
210module_param(max_vfs, uint, 0);
211MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
212 "per physical function");
213#endif /* CONFIG_PCI_IOV */
214
9d5c8243
AK
215static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
216 pci_channel_state_t);
217static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
218static void igb_io_resume(struct pci_dev *);
219
3646f0e5 220static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
221 .error_detected = igb_io_error_detected,
222 .slot_reset = igb_io_slot_reset,
223 .resume = igb_io_resume,
224};
225
b6e0c419 226static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
227
228static struct pci_driver igb_driver = {
229 .name = igb_driver_name,
230 .id_table = igb_pci_tbl,
231 .probe = igb_probe,
9f9a12f8 232 .remove = igb_remove,
9d5c8243 233#ifdef CONFIG_PM
749ab2cd 234 .driver.pm = &igb_pm_ops,
9d5c8243
AK
235#endif
236 .shutdown = igb_shutdown,
237 .err_handler = &igb_err_handler
238};
239
240MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242MODULE_LICENSE("GPL");
243MODULE_VERSION(DRV_VERSION);
244
b3f4d599 245#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246static int debug = -1;
247module_param(debug, int, 0);
248MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
c97ec42a
TI
250struct igb_reg_info {
251 u32 ofs;
252 char *name;
253};
254
255static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
261
262 /* Interrupt Registers */
263 {E1000_ICR, "ICR"},
264
265 /* RX Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
273
274 /* TX Registers */
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
286
287 /* List Terminator */
288 {}
289};
290
291/*
292 * igb_regdump - register printout routine
293 */
294static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
295{
296 int n = 0;
297 char rname[16];
298 u32 regs[8];
299
300 switch (reginfo->ofs) {
301 case E1000_RDLEN(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDLEN(n));
304 break;
305 case E1000_RDH(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDH(n));
308 break;
309 case E1000_RDT(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDT(n));
312 break;
313 case E1000_RXDCTL(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RXDCTL(n));
316 break;
317 case E1000_RDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDBAL(n));
320 break;
321 case E1000_RDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAH(n));
324 break;
325 case E1000_TDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_TDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDBAH(n));
332 break;
333 case E1000_TDLEN(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDLEN(n));
336 break;
337 case E1000_TDH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDH(n));
340 break;
341 case E1000_TDT(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDT(n));
344 break;
345 case E1000_TXDCTL(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TXDCTL(n));
348 break;
349 default:
876d2d6f 350 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
351 return;
352 }
353
354 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
355 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
356 regs[2], regs[3]);
c97ec42a
TI
357}
358
359/*
360 * igb_dump - Print registers, tx-rings and rx-rings
361 */
362static void igb_dump(struct igb_adapter *adapter)
363{
364 struct net_device *netdev = adapter->netdev;
365 struct e1000_hw *hw = &adapter->hw;
366 struct igb_reg_info *reginfo;
c97ec42a
TI
367 struct igb_ring *tx_ring;
368 union e1000_adv_tx_desc *tx_desc;
369 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
370 struct igb_ring *rx_ring;
371 union e1000_adv_rx_desc *rx_desc;
372 u32 staterr;
6ad4edfc 373 u16 i, n;
c97ec42a
TI
374
375 if (!netif_msg_hw(adapter))
376 return;
377
378 /* Print netdevice Info */
379 if (netdev) {
380 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
381 pr_info("Device Name state trans_start "
382 "last_rx\n");
383 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
384 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
385 }
386
387 /* Print Registers */
388 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 389 pr_info(" Register Name Value\n");
c97ec42a
TI
390 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
391 reginfo->name; reginfo++) {
392 igb_regdump(hw, reginfo);
393 }
394
395 /* Print TX Ring Summary */
396 if (!netdev || !netif_running(netdev))
397 goto exit;
398
399 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 400 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 401 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 402 struct igb_tx_buffer *buffer_info;
c97ec42a 403 tx_ring = adapter->tx_ring[n];
06034649 404 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
405 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
406 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
407 (u64)dma_unmap_addr(buffer_info, dma),
408 dma_unmap_len(buffer_info, len),
876d2d6f
JK
409 buffer_info->next_to_watch,
410 (u64)buffer_info->time_stamp);
c97ec42a
TI
411 }
412
413 /* Print TX Rings */
414 if (!netif_msg_tx_done(adapter))
415 goto rx_ring_summary;
416
417 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
418
419 /* Transmit Descriptor Formats
420 *
421 * Advanced Transmit Descriptor
422 * +--------------------------------------------------------------+
423 * 0 | Buffer Address [63:0] |
424 * +--------------------------------------------------------------+
425 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
426 * +--------------------------------------------------------------+
427 * 63 46 45 40 39 38 36 35 32 31 24 15 0
428 */
429
430 for (n = 0; n < adapter->num_tx_queues; n++) {
431 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
432 pr_info("------------------------------------\n");
433 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
434 pr_info("------------------------------------\n");
435 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
436 "[bi->dma ] leng ntw timestamp "
437 "bi->skb\n");
c97ec42a
TI
438
439 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 440 const char *next_desc;
06034649 441 struct igb_tx_buffer *buffer_info;
60136906 442 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 443 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 444 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
445 if (i == tx_ring->next_to_use &&
446 i == tx_ring->next_to_clean)
447 next_desc = " NTC/U";
448 else if (i == tx_ring->next_to_use)
449 next_desc = " NTU";
450 else if (i == tx_ring->next_to_clean)
451 next_desc = " NTC";
452 else
453 next_desc = "";
454
455 pr_info("T [0x%03X] %016llX %016llX %016llX"
456 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
457 le64_to_cpu(u0->a),
458 le64_to_cpu(u0->b),
c9f14bf3
AD
459 (u64)dma_unmap_addr(buffer_info, dma),
460 dma_unmap_len(buffer_info, len),
c97ec42a
TI
461 buffer_info->next_to_watch,
462 (u64)buffer_info->time_stamp,
876d2d6f 463 buffer_info->skb, next_desc);
c97ec42a 464
b669588a 465 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
466 print_hex_dump(KERN_INFO, "",
467 DUMP_PREFIX_ADDRESS,
b669588a 468 16, 1, buffer_info->skb->data,
c9f14bf3
AD
469 dma_unmap_len(buffer_info, len),
470 true);
c97ec42a
TI
471 }
472 }
473
474 /* Print RX Rings Summary */
475rx_ring_summary:
476 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 477 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
478 for (n = 0; n < adapter->num_rx_queues; n++) {
479 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
480 pr_info(" %5d %5X %5X\n",
481 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
482 }
483
484 /* Print RX Rings */
485 if (!netif_msg_rx_status(adapter))
486 goto exit;
487
488 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
489
490 /* Advanced Receive Descriptor (Read) Format
491 * 63 1 0
492 * +-----------------------------------------------------+
493 * 0 | Packet Buffer Address [63:1] |A0/NSE|
494 * +----------------------------------------------+------+
495 * 8 | Header Buffer Address [63:1] | DD |
496 * +-----------------------------------------------------+
497 *
498 *
499 * Advanced Receive Descriptor (Write-Back) Format
500 *
501 * 63 48 47 32 31 30 21 20 17 16 4 3 0
502 * +------------------------------------------------------+
503 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
504 * | Checksum Ident | | | | Type | Type |
505 * +------------------------------------------------------+
506 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
507 * +------------------------------------------------------+
508 * 63 48 47 32 31 20 19 0
509 */
510
511 for (n = 0; n < adapter->num_rx_queues; n++) {
512 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
513 pr_info("------------------------------------\n");
514 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
515 pr_info("------------------------------------\n");
516 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
517 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
518 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
519 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
520
521 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 522 const char *next_desc;
06034649
AD
523 struct igb_rx_buffer *buffer_info;
524 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 525 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
526 u0 = (struct my_u0 *)rx_desc;
527 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
528
529 if (i == rx_ring->next_to_use)
530 next_desc = " NTU";
531 else if (i == rx_ring->next_to_clean)
532 next_desc = " NTC";
533 else
534 next_desc = "";
535
c97ec42a
TI
536 if (staterr & E1000_RXD_STAT_DD) {
537 /* Descriptor Done */
1a1c225b
AD
538 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
539 "RWB", i,
c97ec42a
TI
540 le64_to_cpu(u0->a),
541 le64_to_cpu(u0->b),
1a1c225b 542 next_desc);
c97ec42a 543 } else {
1a1c225b
AD
544 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
545 "R ", i,
c97ec42a
TI
546 le64_to_cpu(u0->a),
547 le64_to_cpu(u0->b),
548 (u64)buffer_info->dma,
1a1c225b 549 next_desc);
c97ec42a 550
b669588a 551 if (netif_msg_pktdata(adapter) &&
1a1c225b 552 buffer_info->dma && buffer_info->page) {
44390ca6
AD
553 print_hex_dump(KERN_INFO, "",
554 DUMP_PREFIX_ADDRESS,
555 16, 1,
b669588a
ET
556 page_address(buffer_info->page) +
557 buffer_info->page_offset,
de78d1f9 558 IGB_RX_BUFSZ, true);
c97ec42a
TI
559 }
560 }
c97ec42a
TI
561 }
562 }
563
564exit:
565 return;
566}
567
9d5c8243 568/**
c041076a 569 * igb_get_hw_dev - return device
9d5c8243
AK
570 * used by hardware layer to print debugging information
571 **/
c041076a 572struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
573{
574 struct igb_adapter *adapter = hw->back;
c041076a 575 return adapter->netdev;
9d5c8243 576}
38c845c7 577
9d5c8243
AK
578/**
579 * igb_init_module - Driver Registration Routine
580 *
581 * igb_init_module is the first routine called when the driver is
582 * loaded. All it does is register with the PCI subsystem.
583 **/
584static int __init igb_init_module(void)
585{
586 int ret;
876d2d6f 587 pr_info("%s - version %s\n",
9d5c8243
AK
588 igb_driver_string, igb_driver_version);
589
876d2d6f 590 pr_info("%s\n", igb_copyright);
9d5c8243 591
421e02f0 592#ifdef CONFIG_IGB_DCA
fe4506b6
JC
593 dca_register_notify(&dca_notifier);
594#endif
bbd98fe4 595 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
596 return ret;
597}
598
599module_init(igb_init_module);
600
601/**
602 * igb_exit_module - Driver Exit Cleanup Routine
603 *
604 * igb_exit_module is called just before the driver is removed
605 * from memory.
606 **/
607static void __exit igb_exit_module(void)
608{
421e02f0 609#ifdef CONFIG_IGB_DCA
fe4506b6
JC
610 dca_unregister_notify(&dca_notifier);
611#endif
9d5c8243
AK
612 pci_unregister_driver(&igb_driver);
613}
614
615module_exit(igb_exit_module);
616
26bc19ec
AD
617#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
618/**
619 * igb_cache_ring_register - Descriptor ring to register mapping
620 * @adapter: board private structure to initialize
621 *
622 * Once we know the feature-set enabled for the device, we'll cache
623 * the register offset the descriptor ring is assigned to.
624 **/
625static void igb_cache_ring_register(struct igb_adapter *adapter)
626{
ee1b9f06 627 int i = 0, j = 0;
047e0030 628 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
629
630 switch (adapter->hw.mac.type) {
631 case e1000_82576:
632 /* The queues are allocated for virtualization such that VF 0
633 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
634 * In order to avoid collision we start at the first free queue
635 * and continue consuming queues in the same sequence
636 */
ee1b9f06 637 if (adapter->vfs_allocated_count) {
a99955fc 638 for (; i < adapter->rss_queues; i++)
3025a446
AD
639 adapter->rx_ring[i]->reg_idx = rbase_offset +
640 Q_IDX_82576(i);
ee1b9f06 641 }
26bc19ec 642 case e1000_82575:
55cac248 643 case e1000_82580:
d2ba2ed8 644 case e1000_i350:
f96a8a0b
CW
645 case e1000_i210:
646 case e1000_i211:
26bc19ec 647 default:
ee1b9f06 648 for (; i < adapter->num_rx_queues; i++)
3025a446 649 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 650 for (; j < adapter->num_tx_queues; j++)
3025a446 651 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
652 break;
653 }
654}
655
4be000c8
AD
656/**
657 * igb_write_ivar - configure ivar for given MSI-X vector
658 * @hw: pointer to the HW structure
659 * @msix_vector: vector number we are allocating to a given ring
660 * @index: row index of IVAR register to write within IVAR table
661 * @offset: column offset of in IVAR, should be multiple of 8
662 *
663 * This function is intended to handle the writing of the IVAR register
664 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
665 * each containing an cause allocation for an Rx and Tx ring, and a
666 * variable number of rows depending on the number of queues supported.
667 **/
668static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
669 int index, int offset)
670{
671 u32 ivar = array_rd32(E1000_IVAR0, index);
672
673 /* clear any bits that are currently set */
674 ivar &= ~((u32)0xFF << offset);
675
676 /* write vector and valid bit */
677 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
678
679 array_wr32(E1000_IVAR0, index, ivar);
680}
681
9d5c8243 682#define IGB_N0_QUEUE -1
047e0030 683static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 684{
047e0030 685 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 686 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
687 int rx_queue = IGB_N0_QUEUE;
688 int tx_queue = IGB_N0_QUEUE;
4be000c8 689 u32 msixbm = 0;
047e0030 690
0ba82994
AD
691 if (q_vector->rx.ring)
692 rx_queue = q_vector->rx.ring->reg_idx;
693 if (q_vector->tx.ring)
694 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
695
696 switch (hw->mac.type) {
697 case e1000_82575:
9d5c8243
AK
698 /* The 82575 assigns vectors using a bitmask, which matches the
699 bitmask for the EICR/EIMS/EIMC registers. To assign one
700 or more queues to a vector, we write the appropriate bits
701 into the MSIXBM register for that vector. */
047e0030 702 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 703 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 704 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 705 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
706 if (!adapter->msix_entries && msix_vector == 0)
707 msixbm |= E1000_EIMS_OTHER;
9d5c8243 708 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 709 q_vector->eims_value = msixbm;
2d064c06
AD
710 break;
711 case e1000_82576:
4be000c8
AD
712 /*
713 * 82576 uses a table that essentially consists of 2 columns
714 * with 8 rows. The ordering is column-major so we use the
715 * lower 3 bits as the row index, and the 4th bit as the
716 * column offset.
717 */
718 if (rx_queue > IGB_N0_QUEUE)
719 igb_write_ivar(hw, msix_vector,
720 rx_queue & 0x7,
721 (rx_queue & 0x8) << 1);
722 if (tx_queue > IGB_N0_QUEUE)
723 igb_write_ivar(hw, msix_vector,
724 tx_queue & 0x7,
725 ((tx_queue & 0x8) << 1) + 8);
047e0030 726 q_vector->eims_value = 1 << msix_vector;
2d064c06 727 break;
55cac248 728 case e1000_82580:
d2ba2ed8 729 case e1000_i350:
f96a8a0b
CW
730 case e1000_i210:
731 case e1000_i211:
4be000c8
AD
732 /*
733 * On 82580 and newer adapters the scheme is similar to 82576
734 * however instead of ordering column-major we have things
735 * ordered row-major. So we traverse the table by using
736 * bit 0 as the column offset, and the remaining bits as the
737 * row index.
738 */
739 if (rx_queue > IGB_N0_QUEUE)
740 igb_write_ivar(hw, msix_vector,
741 rx_queue >> 1,
742 (rx_queue & 0x1) << 4);
743 if (tx_queue > IGB_N0_QUEUE)
744 igb_write_ivar(hw, msix_vector,
745 tx_queue >> 1,
746 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
747 q_vector->eims_value = 1 << msix_vector;
748 break;
2d064c06
AD
749 default:
750 BUG();
751 break;
752 }
26b39276
AD
753
754 /* add q_vector eims value to global eims_enable_mask */
755 adapter->eims_enable_mask |= q_vector->eims_value;
756
757 /* configure q_vector to set itr on first interrupt */
758 q_vector->set_itr = 1;
9d5c8243
AK
759}
760
761/**
762 * igb_configure_msix - Configure MSI-X hardware
763 *
764 * igb_configure_msix sets up the hardware to properly
765 * generate MSI-X interrupts.
766 **/
767static void igb_configure_msix(struct igb_adapter *adapter)
768{
769 u32 tmp;
770 int i, vector = 0;
771 struct e1000_hw *hw = &adapter->hw;
772
773 adapter->eims_enable_mask = 0;
9d5c8243
AK
774
775 /* set vector for other causes, i.e. link changes */
2d064c06
AD
776 switch (hw->mac.type) {
777 case e1000_82575:
9d5c8243
AK
778 tmp = rd32(E1000_CTRL_EXT);
779 /* enable MSI-X PBA support*/
780 tmp |= E1000_CTRL_EXT_PBA_CLR;
781
782 /* Auto-Mask interrupts upon ICR read. */
783 tmp |= E1000_CTRL_EXT_EIAME;
784 tmp |= E1000_CTRL_EXT_IRCA;
785
786 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
787
788 /* enable msix_other interrupt */
789 array_wr32(E1000_MSIXBM(0), vector++,
790 E1000_EIMS_OTHER);
844290e5 791 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 792
2d064c06
AD
793 break;
794
795 case e1000_82576:
55cac248 796 case e1000_82580:
d2ba2ed8 797 case e1000_i350:
f96a8a0b
CW
798 case e1000_i210:
799 case e1000_i211:
047e0030
AD
800 /* Turn on MSI-X capability first, or our settings
801 * won't stick. And it will take days to debug. */
802 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
803 E1000_GPIE_PBA | E1000_GPIE_EIAME |
804 E1000_GPIE_NSICR);
805
806 /* enable msix_other interrupt */
807 adapter->eims_other = 1 << vector;
2d064c06 808 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 809
047e0030 810 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
811 break;
812 default:
813 /* do nothing, since nothing else supports MSI-X */
814 break;
815 } /* switch (hw->mac.type) */
047e0030
AD
816
817 adapter->eims_enable_mask |= adapter->eims_other;
818
26b39276
AD
819 for (i = 0; i < adapter->num_q_vectors; i++)
820 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 821
9d5c8243
AK
822 wrfl();
823}
824
825/**
826 * igb_request_msix - Initialize MSI-X interrupts
827 *
828 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
829 * kernel.
830 **/
831static int igb_request_msix(struct igb_adapter *adapter)
832{
833 struct net_device *netdev = adapter->netdev;
047e0030 834 struct e1000_hw *hw = &adapter->hw;
52285b76 835 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 836
047e0030 837 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 838 igb_msix_other, 0, netdev->name, adapter);
047e0030 839 if (err)
52285b76 840 goto err_out;
047e0030
AD
841
842 for (i = 0; i < adapter->num_q_vectors; i++) {
843 struct igb_q_vector *q_vector = adapter->q_vector[i];
844
52285b76
SA
845 vector++;
846
047e0030
AD
847 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
848
0ba82994 849 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 850 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
851 q_vector->rx.ring->queue_index);
852 else if (q_vector->tx.ring)
047e0030 853 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
854 q_vector->tx.ring->queue_index);
855 else if (q_vector->rx.ring)
047e0030 856 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 857 q_vector->rx.ring->queue_index);
9d5c8243 858 else
047e0030
AD
859 sprintf(q_vector->name, "%s-unused", netdev->name);
860
9d5c8243 861 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 862 igb_msix_ring, 0, q_vector->name,
047e0030 863 q_vector);
9d5c8243 864 if (err)
52285b76 865 goto err_free;
9d5c8243
AK
866 }
867
9d5c8243
AK
868 igb_configure_msix(adapter);
869 return 0;
52285b76
SA
870
871err_free:
872 /* free already assigned IRQs */
873 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
874
875 vector--;
876 for (i = 0; i < vector; i++) {
877 free_irq(adapter->msix_entries[free_vector++].vector,
878 adapter->q_vector[i]);
879 }
880err_out:
9d5c8243
AK
881 return err;
882}
883
884static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
885{
886 if (adapter->msix_entries) {
887 pci_disable_msix(adapter->pdev);
888 kfree(adapter->msix_entries);
889 adapter->msix_entries = NULL;
047e0030 890 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 891 pci_disable_msi(adapter->pdev);
047e0030 892 }
9d5c8243
AK
893}
894
5536d210
AD
895/**
896 * igb_free_q_vector - Free memory allocated for specific interrupt vector
897 * @adapter: board private structure to initialize
898 * @v_idx: Index of vector to be freed
899 *
900 * This function frees the memory allocated to the q_vector. In addition if
901 * NAPI is enabled it will delete any references to the NAPI struct prior
902 * to freeing the q_vector.
903 **/
904static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
905{
906 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
907
908 if (q_vector->tx.ring)
909 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
910
911 if (q_vector->rx.ring)
912 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
913
914 adapter->q_vector[v_idx] = NULL;
915 netif_napi_del(&q_vector->napi);
916
917 /*
918 * ixgbe_get_stats64() might access the rings on this vector,
919 * we must wait a grace period before freeing it.
920 */
921 kfree_rcu(q_vector, rcu);
922}
923
047e0030
AD
924/**
925 * igb_free_q_vectors - Free memory allocated for interrupt vectors
926 * @adapter: board private structure to initialize
927 *
928 * This function frees the memory allocated to the q_vectors. In addition if
929 * NAPI is enabled it will delete any references to the NAPI struct prior
930 * to freeing the q_vector.
931 **/
932static void igb_free_q_vectors(struct igb_adapter *adapter)
933{
5536d210
AD
934 int v_idx = adapter->num_q_vectors;
935
936 adapter->num_tx_queues = 0;
937 adapter->num_rx_queues = 0;
047e0030 938 adapter->num_q_vectors = 0;
5536d210
AD
939
940 while (v_idx--)
941 igb_free_q_vector(adapter, v_idx);
047e0030
AD
942}
943
944/**
945 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
946 *
947 * This function resets the device so that it has 0 rx queues, tx queues, and
948 * MSI-X interrupts allocated.
949 */
950static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
951{
047e0030
AD
952 igb_free_q_vectors(adapter);
953 igb_reset_interrupt_capability(adapter);
954}
9d5c8243
AK
955
956/**
957 * igb_set_interrupt_capability - set MSI or MSI-X if supported
958 *
959 * Attempt to configure interrupts using the best available
960 * capabilities of the hardware and kernel.
961 **/
53c7d064 962static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
963{
964 int err;
965 int numvecs, i;
966
53c7d064
SA
967 if (!msix)
968 goto msi_only;
969
83b7180d 970 /* Number of supported queues. */
a99955fc 971 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
972 if (adapter->vfs_allocated_count)
973 adapter->num_tx_queues = 1;
974 else
975 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 976
047e0030
AD
977 /* start with one vector for every rx queue */
978 numvecs = adapter->num_rx_queues;
979
3ad2f3fb 980 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
981 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
982 numvecs += adapter->num_tx_queues;
047e0030
AD
983
984 /* store the number of vectors reserved for queues */
985 adapter->num_q_vectors = numvecs;
986
987 /* add 1 vector for link status interrupts */
988 numvecs++;
9d5c8243
AK
989 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
990 GFP_KERNEL);
f96a8a0b 991
9d5c8243
AK
992 if (!adapter->msix_entries)
993 goto msi_only;
994
995 for (i = 0; i < numvecs; i++)
996 adapter->msix_entries[i].entry = i;
997
998 err = pci_enable_msix(adapter->pdev,
999 adapter->msix_entries,
1000 numvecs);
1001 if (err == 0)
0c2cc02e 1002 return;
9d5c8243
AK
1003
1004 igb_reset_interrupt_capability(adapter);
1005
1006 /* If we can't do MSI-X, try MSI */
1007msi_only:
2a3abf6d
AD
1008#ifdef CONFIG_PCI_IOV
1009 /* disable SR-IOV for non MSI-X configurations */
1010 if (adapter->vf_data) {
1011 struct e1000_hw *hw = &adapter->hw;
1012 /* disable iov and allow time for transactions to clear */
1013 pci_disable_sriov(adapter->pdev);
1014 msleep(500);
1015
1016 kfree(adapter->vf_data);
1017 adapter->vf_data = NULL;
1018 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1019 wrfl();
2a3abf6d
AD
1020 msleep(100);
1021 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1022 }
1023#endif
4fc82adf 1024 adapter->vfs_allocated_count = 0;
a99955fc 1025 adapter->rss_queues = 1;
4fc82adf 1026 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1027 adapter->num_rx_queues = 1;
661086df 1028 adapter->num_tx_queues = 1;
047e0030 1029 adapter->num_q_vectors = 1;
9d5c8243 1030 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1031 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1032}
1033
5536d210
AD
1034static void igb_add_ring(struct igb_ring *ring,
1035 struct igb_ring_container *head)
1036{
1037 head->ring = ring;
1038 head->count++;
1039}
1040
047e0030 1041/**
5536d210 1042 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
047e0030 1043 * @adapter: board private structure to initialize
5536d210
AD
1044 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1045 * @v_idx: index of vector in adapter struct
1046 * @txr_count: total number of Tx rings to allocate
1047 * @txr_idx: index of first Tx ring to allocate
1048 * @rxr_count: total number of Rx rings to allocate
1049 * @rxr_idx: index of first Rx ring to allocate
047e0030 1050 *
5536d210 1051 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1052 **/
5536d210
AD
1053static int igb_alloc_q_vector(struct igb_adapter *adapter,
1054 int v_count, int v_idx,
1055 int txr_count, int txr_idx,
1056 int rxr_count, int rxr_idx)
047e0030
AD
1057{
1058 struct igb_q_vector *q_vector;
5536d210
AD
1059 struct igb_ring *ring;
1060 int ring_count, size;
047e0030 1061
5536d210
AD
1062 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1063 if (txr_count > 1 || rxr_count > 1)
1064 return -ENOMEM;
1065
1066 ring_count = txr_count + rxr_count;
1067 size = sizeof(struct igb_q_vector) +
1068 (sizeof(struct igb_ring) * ring_count);
1069
1070 /* allocate q_vector and rings */
1071 q_vector = kzalloc(size, GFP_KERNEL);
1072 if (!q_vector)
1073 return -ENOMEM;
1074
1075 /* initialize NAPI */
1076 netif_napi_add(adapter->netdev, &q_vector->napi,
1077 igb_poll, 64);
1078
1079 /* tie q_vector and adapter together */
1080 adapter->q_vector[v_idx] = q_vector;
1081 q_vector->adapter = adapter;
1082
1083 /* initialize work limits */
1084 q_vector->tx.work_limit = adapter->tx_work_limit;
1085
1086 /* initialize ITR configuration */
1087 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1088 q_vector->itr_val = IGB_START_ITR;
1089
1090 /* initialize pointer to rings */
1091 ring = q_vector->ring;
1092
1093 if (txr_count) {
1094 /* assign generic ring traits */
1095 ring->dev = &adapter->pdev->dev;
1096 ring->netdev = adapter->netdev;
1097
1098 /* configure backlink on ring */
1099 ring->q_vector = q_vector;
1100
1101 /* update q_vector Tx values */
1102 igb_add_ring(ring, &q_vector->tx);
1103
1104 /* For 82575, context index must be unique per ring. */
1105 if (adapter->hw.mac.type == e1000_82575)
1106 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1107
1108 /* apply Tx specific ring traits */
1109 ring->count = adapter->tx_ring_count;
1110 ring->queue_index = txr_idx;
1111
1112 /* assign ring to adapter */
1113 adapter->tx_ring[txr_idx] = ring;
1114
1115 /* push pointer to next ring */
1116 ring++;
047e0030 1117 }
81c2fc22 1118
5536d210
AD
1119 if (rxr_count) {
1120 /* assign generic ring traits */
1121 ring->dev = &adapter->pdev->dev;
1122 ring->netdev = adapter->netdev;
047e0030 1123
5536d210
AD
1124 /* configure backlink on ring */
1125 ring->q_vector = q_vector;
047e0030 1126
5536d210
AD
1127 /* update q_vector Rx values */
1128 igb_add_ring(ring, &q_vector->rx);
047e0030 1129
5536d210
AD
1130 /* set flag indicating ring supports SCTP checksum offload */
1131 if (adapter->hw.mac.type >= e1000_82576)
1132 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1133
5536d210
AD
1134 /*
1135 * On i350, i210, and i211, loopback VLAN packets
1136 * have the tag byte-swapped.
1137 * */
1138 if (adapter->hw.mac.type >= e1000_i350)
1139 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1140
5536d210
AD
1141 /* apply Rx specific ring traits */
1142 ring->count = adapter->rx_ring_count;
1143 ring->queue_index = rxr_idx;
1144
1145 /* assign ring to adapter */
1146 adapter->rx_ring[rxr_idx] = ring;
1147 }
1148
1149 return 0;
047e0030
AD
1150}
1151
5536d210 1152
047e0030 1153/**
5536d210
AD
1154 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1155 * @adapter: board private structure to initialize
047e0030 1156 *
5536d210
AD
1157 * We allocate one q_vector per queue interrupt. If allocation fails we
1158 * return -ENOMEM.
047e0030 1159 **/
5536d210 1160static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1161{
5536d210
AD
1162 int q_vectors = adapter->num_q_vectors;
1163 int rxr_remaining = adapter->num_rx_queues;
1164 int txr_remaining = adapter->num_tx_queues;
1165 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1166 int err;
047e0030 1167
5536d210
AD
1168 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1169 for (; rxr_remaining; v_idx++) {
1170 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1171 0, 0, 1, rxr_idx);
047e0030 1172
5536d210
AD
1173 if (err)
1174 goto err_out;
1175
1176 /* update counts and index */
1177 rxr_remaining--;
1178 rxr_idx++;
047e0030 1179 }
047e0030 1180 }
5536d210
AD
1181
1182 for (; v_idx < q_vectors; v_idx++) {
1183 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1184 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1185 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1186 tqpv, txr_idx, rqpv, rxr_idx);
1187
1188 if (err)
1189 goto err_out;
1190
1191 /* update counts and index */
1192 rxr_remaining -= rqpv;
1193 txr_remaining -= tqpv;
1194 rxr_idx++;
1195 txr_idx++;
1196 }
1197
047e0030 1198 return 0;
5536d210
AD
1199
1200err_out:
1201 adapter->num_tx_queues = 0;
1202 adapter->num_rx_queues = 0;
1203 adapter->num_q_vectors = 0;
1204
1205 while (v_idx--)
1206 igb_free_q_vector(adapter, v_idx);
1207
1208 return -ENOMEM;
047e0030
AD
1209}
1210
1211/**
1212 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1213 *
1214 * This function initializes the interrupts and allocates all of the queues.
1215 **/
53c7d064 1216static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1217{
1218 struct pci_dev *pdev = adapter->pdev;
1219 int err;
1220
53c7d064 1221 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1222
1223 err = igb_alloc_q_vectors(adapter);
1224 if (err) {
1225 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1226 goto err_alloc_q_vectors;
1227 }
1228
5536d210 1229 igb_cache_ring_register(adapter);
047e0030
AD
1230
1231 return 0;
5536d210 1232
047e0030
AD
1233err_alloc_q_vectors:
1234 igb_reset_interrupt_capability(adapter);
1235 return err;
1236}
1237
9d5c8243
AK
1238/**
1239 * igb_request_irq - initialize interrupts
1240 *
1241 * Attempts to configure interrupts using the best available
1242 * capabilities of the hardware and kernel.
1243 **/
1244static int igb_request_irq(struct igb_adapter *adapter)
1245{
1246 struct net_device *netdev = adapter->netdev;
047e0030 1247 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1248 int err = 0;
1249
1250 if (adapter->msix_entries) {
1251 err = igb_request_msix(adapter);
844290e5 1252 if (!err)
9d5c8243 1253 goto request_done;
9d5c8243 1254 /* fall back to MSI */
5536d210
AD
1255 igb_free_all_tx_resources(adapter);
1256 igb_free_all_rx_resources(adapter);
53c7d064 1257
047e0030 1258 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1259 err = igb_init_interrupt_scheme(adapter, false);
1260 if (err)
047e0030 1261 goto request_done;
53c7d064 1262
047e0030
AD
1263 igb_setup_all_tx_resources(adapter);
1264 igb_setup_all_rx_resources(adapter);
53c7d064 1265 igb_configure(adapter);
9d5c8243 1266 }
844290e5 1267
c74d588e
AD
1268 igb_assign_vector(adapter->q_vector[0], 0);
1269
7dfc16fa 1270 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1271 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1272 netdev->name, adapter);
9d5c8243
AK
1273 if (!err)
1274 goto request_done;
047e0030 1275
9d5c8243
AK
1276 /* fall back to legacy interrupts */
1277 igb_reset_interrupt_capability(adapter);
7dfc16fa 1278 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1279 }
1280
c74d588e 1281 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1282 netdev->name, adapter);
9d5c8243 1283
6cb5e577 1284 if (err)
c74d588e 1285 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1286 err);
9d5c8243
AK
1287
1288request_done:
1289 return err;
1290}
1291
1292static void igb_free_irq(struct igb_adapter *adapter)
1293{
9d5c8243
AK
1294 if (adapter->msix_entries) {
1295 int vector = 0, i;
1296
047e0030 1297 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1298
0d1ae7f4 1299 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1300 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1301 adapter->q_vector[i]);
047e0030
AD
1302 } else {
1303 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1304 }
9d5c8243
AK
1305}
1306
1307/**
1308 * igb_irq_disable - Mask off interrupt generation on the NIC
1309 * @adapter: board private structure
1310 **/
1311static void igb_irq_disable(struct igb_adapter *adapter)
1312{
1313 struct e1000_hw *hw = &adapter->hw;
1314
25568a53
AD
1315 /*
1316 * we need to be careful when disabling interrupts. The VFs are also
1317 * mapped into these registers and so clearing the bits can cause
1318 * issues on the VF drivers so we only need to clear what we set
1319 */
9d5c8243 1320 if (adapter->msix_entries) {
2dfd1212
AD
1321 u32 regval = rd32(E1000_EIAM);
1322 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1323 wr32(E1000_EIMC, adapter->eims_enable_mask);
1324 regval = rd32(E1000_EIAC);
1325 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1326 }
844290e5
PW
1327
1328 wr32(E1000_IAM, 0);
9d5c8243
AK
1329 wr32(E1000_IMC, ~0);
1330 wrfl();
81a61859
ET
1331 if (adapter->msix_entries) {
1332 int i;
1333 for (i = 0; i < adapter->num_q_vectors; i++)
1334 synchronize_irq(adapter->msix_entries[i].vector);
1335 } else {
1336 synchronize_irq(adapter->pdev->irq);
1337 }
9d5c8243
AK
1338}
1339
1340/**
1341 * igb_irq_enable - Enable default interrupt generation settings
1342 * @adapter: board private structure
1343 **/
1344static void igb_irq_enable(struct igb_adapter *adapter)
1345{
1346 struct e1000_hw *hw = &adapter->hw;
1347
1348 if (adapter->msix_entries) {
06218a8d 1349 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1350 u32 regval = rd32(E1000_EIAC);
1351 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1352 regval = rd32(E1000_EIAM);
1353 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1354 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1355 if (adapter->vfs_allocated_count) {
4ae196df 1356 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1357 ims |= E1000_IMS_VMMB;
1358 }
1359 wr32(E1000_IMS, ims);
844290e5 1360 } else {
55cac248
AD
1361 wr32(E1000_IMS, IMS_ENABLE_MASK |
1362 E1000_IMS_DRSTA);
1363 wr32(E1000_IAM, IMS_ENABLE_MASK |
1364 E1000_IMS_DRSTA);
844290e5 1365 }
9d5c8243
AK
1366}
1367
1368static void igb_update_mng_vlan(struct igb_adapter *adapter)
1369{
51466239 1370 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1371 u16 vid = adapter->hw.mng_cookie.vlan_id;
1372 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1373
1374 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1375 /* add VID to filter table */
1376 igb_vfta_set(hw, vid, true);
1377 adapter->mng_vlan_id = vid;
1378 } else {
1379 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1380 }
1381
1382 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1383 (vid != old_vid) &&
b2cb09b1 1384 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1385 /* remove VID from filter table */
1386 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1387 }
1388}
1389
1390/**
1391 * igb_release_hw_control - release control of the h/w to f/w
1392 * @adapter: address of board private structure
1393 *
1394 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1395 * For ASF and Pass Through versions of f/w this means that the
1396 * driver is no longer loaded.
1397 *
1398 **/
1399static void igb_release_hw_control(struct igb_adapter *adapter)
1400{
1401 struct e1000_hw *hw = &adapter->hw;
1402 u32 ctrl_ext;
1403
1404 /* Let firmware take over control of h/w */
1405 ctrl_ext = rd32(E1000_CTRL_EXT);
1406 wr32(E1000_CTRL_EXT,
1407 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1408}
1409
9d5c8243
AK
1410/**
1411 * igb_get_hw_control - get control of the h/w from f/w
1412 * @adapter: address of board private structure
1413 *
1414 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1415 * For ASF and Pass Through versions of f/w this means that
1416 * the driver is loaded.
1417 *
1418 **/
1419static void igb_get_hw_control(struct igb_adapter *adapter)
1420{
1421 struct e1000_hw *hw = &adapter->hw;
1422 u32 ctrl_ext;
1423
1424 /* Let firmware know the driver has taken over */
1425 ctrl_ext = rd32(E1000_CTRL_EXT);
1426 wr32(E1000_CTRL_EXT,
1427 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1428}
1429
9d5c8243
AK
1430/**
1431 * igb_configure - configure the hardware for RX and TX
1432 * @adapter: private board structure
1433 **/
1434static void igb_configure(struct igb_adapter *adapter)
1435{
1436 struct net_device *netdev = adapter->netdev;
1437 int i;
1438
1439 igb_get_hw_control(adapter);
ff41f8dc 1440 igb_set_rx_mode(netdev);
9d5c8243
AK
1441
1442 igb_restore_vlan(adapter);
9d5c8243 1443
85b430b4 1444 igb_setup_tctl(adapter);
06cf2666 1445 igb_setup_mrqc(adapter);
9d5c8243 1446 igb_setup_rctl(adapter);
85b430b4
AD
1447
1448 igb_configure_tx(adapter);
9d5c8243 1449 igb_configure_rx(adapter);
662d7205
AD
1450
1451 igb_rx_fifo_flush_82575(&adapter->hw);
1452
c493ea45 1453 /* call igb_desc_unused which always leaves
9d5c8243
AK
1454 * at least 1 descriptor unused to make sure
1455 * next_to_use != next_to_clean */
1456 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1457 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1458 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1459 }
9d5c8243
AK
1460}
1461
88a268c1
NN
1462/**
1463 * igb_power_up_link - Power up the phy/serdes link
1464 * @adapter: address of board private structure
1465 **/
1466void igb_power_up_link(struct igb_adapter *adapter)
1467{
76886596
AA
1468 igb_reset_phy(&adapter->hw);
1469
88a268c1
NN
1470 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1471 igb_power_up_phy_copper(&adapter->hw);
1472 else
1473 igb_power_up_serdes_link_82575(&adapter->hw);
1474}
1475
1476/**
1477 * igb_power_down_link - Power down the phy/serdes link
1478 * @adapter: address of board private structure
1479 */
1480static void igb_power_down_link(struct igb_adapter *adapter)
1481{
1482 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1483 igb_power_down_phy_copper_82575(&adapter->hw);
1484 else
1485 igb_shutdown_serdes_link_82575(&adapter->hw);
1486}
9d5c8243
AK
1487
1488/**
1489 * igb_up - Open the interface and prepare it to handle traffic
1490 * @adapter: board private structure
1491 **/
9d5c8243
AK
1492int igb_up(struct igb_adapter *adapter)
1493{
1494 struct e1000_hw *hw = &adapter->hw;
1495 int i;
1496
1497 /* hardware has been reset, we need to reload some things */
1498 igb_configure(adapter);
1499
1500 clear_bit(__IGB_DOWN, &adapter->state);
1501
0d1ae7f4
AD
1502 for (i = 0; i < adapter->num_q_vectors; i++)
1503 napi_enable(&(adapter->q_vector[i]->napi));
1504
844290e5 1505 if (adapter->msix_entries)
9d5c8243 1506 igb_configure_msix(adapter);
feeb2721
AD
1507 else
1508 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1509
1510 /* Clear any pending interrupts. */
1511 rd32(E1000_ICR);
1512 igb_irq_enable(adapter);
1513
d4960307
AD
1514 /* notify VFs that reset has been completed */
1515 if (adapter->vfs_allocated_count) {
1516 u32 reg_data = rd32(E1000_CTRL_EXT);
1517 reg_data |= E1000_CTRL_EXT_PFRSTD;
1518 wr32(E1000_CTRL_EXT, reg_data);
1519 }
1520
4cb9be7a
JB
1521 netif_tx_start_all_queues(adapter->netdev);
1522
25568a53
AD
1523 /* start the watchdog. */
1524 hw->mac.get_link_status = 1;
1525 schedule_work(&adapter->watchdog_task);
1526
9d5c8243
AK
1527 return 0;
1528}
1529
1530void igb_down(struct igb_adapter *adapter)
1531{
9d5c8243 1532 struct net_device *netdev = adapter->netdev;
330a6d6a 1533 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1534 u32 tctl, rctl;
1535 int i;
1536
1537 /* signal that we're down so the interrupt handler does not
1538 * reschedule our watchdog timer */
1539 set_bit(__IGB_DOWN, &adapter->state);
1540
1541 /* disable receives in the hardware */
1542 rctl = rd32(E1000_RCTL);
1543 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1544 /* flush and sleep below */
1545
fd2ea0a7 1546 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1547
1548 /* disable transmits in the hardware */
1549 tctl = rd32(E1000_TCTL);
1550 tctl &= ~E1000_TCTL_EN;
1551 wr32(E1000_TCTL, tctl);
1552 /* flush both disables and wait for them to finish */
1553 wrfl();
1554 msleep(10);
1555
0d1ae7f4
AD
1556 for (i = 0; i < adapter->num_q_vectors; i++)
1557 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1558
9d5c8243
AK
1559 igb_irq_disable(adapter);
1560
1561 del_timer_sync(&adapter->watchdog_timer);
1562 del_timer_sync(&adapter->phy_info_timer);
1563
9d5c8243 1564 netif_carrier_off(netdev);
04fe6358
AD
1565
1566 /* record the stats before reset*/
12dcd86b
ED
1567 spin_lock(&adapter->stats64_lock);
1568 igb_update_stats(adapter, &adapter->stats64);
1569 spin_unlock(&adapter->stats64_lock);
04fe6358 1570
9d5c8243
AK
1571 adapter->link_speed = 0;
1572 adapter->link_duplex = 0;
1573
3023682e
JK
1574 if (!pci_channel_offline(adapter->pdev))
1575 igb_reset(adapter);
9d5c8243
AK
1576 igb_clean_all_tx_rings(adapter);
1577 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1578#ifdef CONFIG_IGB_DCA
1579
1580 /* since we reset the hardware DCA settings were cleared */
1581 igb_setup_dca(adapter);
1582#endif
9d5c8243
AK
1583}
1584
1585void igb_reinit_locked(struct igb_adapter *adapter)
1586{
1587 WARN_ON(in_interrupt());
1588 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1589 msleep(1);
1590 igb_down(adapter);
1591 igb_up(adapter);
1592 clear_bit(__IGB_RESETTING, &adapter->state);
1593}
1594
1595void igb_reset(struct igb_adapter *adapter)
1596{
090b1795 1597 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1598 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1599 struct e1000_mac_info *mac = &hw->mac;
1600 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1601 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1602
1603 /* Repartition Pba for greater than 9k mtu
1604 * To take effect CTRL.RST is required.
1605 */
fa4dfae0 1606 switch (mac->type) {
d2ba2ed8 1607 case e1000_i350:
55cac248
AD
1608 case e1000_82580:
1609 pba = rd32(E1000_RXPBS);
1610 pba = igb_rxpbs_adjust_82580(pba);
1611 break;
fa4dfae0 1612 case e1000_82576:
d249be54
AD
1613 pba = rd32(E1000_RXPBS);
1614 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1615 break;
1616 case e1000_82575:
f96a8a0b
CW
1617 case e1000_i210:
1618 case e1000_i211:
fa4dfae0
AD
1619 default:
1620 pba = E1000_PBA_34K;
1621 break;
2d064c06 1622 }
9d5c8243 1623
2d064c06
AD
1624 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1625 (mac->type < e1000_82576)) {
9d5c8243
AK
1626 /* adjust PBA for jumbo frames */
1627 wr32(E1000_PBA, pba);
1628
1629 /* To maintain wire speed transmits, the Tx FIFO should be
1630 * large enough to accommodate two full transmit packets,
1631 * rounded up to the next 1KB and expressed in KB. Likewise,
1632 * the Rx FIFO should be large enough to accommodate at least
1633 * one full receive packet and is similarly rounded up and
1634 * expressed in KB. */
1635 pba = rd32(E1000_PBA);
1636 /* upper 16 bits has Tx packet buffer allocation size in KB */
1637 tx_space = pba >> 16;
1638 /* lower 16 bits has Rx packet buffer allocation size in KB */
1639 pba &= 0xffff;
1640 /* the tx fifo also stores 16 bytes of information about the tx
1641 * but don't include ethernet FCS because hardware appends it */
1642 min_tx_space = (adapter->max_frame_size +
85e8d004 1643 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1644 ETH_FCS_LEN) * 2;
1645 min_tx_space = ALIGN(min_tx_space, 1024);
1646 min_tx_space >>= 10;
1647 /* software strips receive CRC, so leave room for it */
1648 min_rx_space = adapter->max_frame_size;
1649 min_rx_space = ALIGN(min_rx_space, 1024);
1650 min_rx_space >>= 10;
1651
1652 /* If current Tx allocation is less than the min Tx FIFO size,
1653 * and the min Tx FIFO size is less than the current Rx FIFO
1654 * allocation, take space away from current Rx allocation */
1655 if (tx_space < min_tx_space &&
1656 ((min_tx_space - tx_space) < pba)) {
1657 pba = pba - (min_tx_space - tx_space);
1658
1659 /* if short on rx space, rx wins and must trump tx
1660 * adjustment */
1661 if (pba < min_rx_space)
1662 pba = min_rx_space;
1663 }
2d064c06 1664 wr32(E1000_PBA, pba);
9d5c8243 1665 }
9d5c8243
AK
1666
1667 /* flow control settings */
1668 /* The high water mark must be low enough to fit one full frame
1669 * (or the size used for early receive) above it in the Rx FIFO.
1670 * Set it to the lower of:
1671 * - 90% of the Rx FIFO size, or
1672 * - the full Rx FIFO size minus one full frame */
1673 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1674 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1675
d48507fe 1676 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1677 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1678 fc->pause_time = 0xFFFF;
1679 fc->send_xon = 1;
0cce119a 1680 fc->current_mode = fc->requested_mode;
9d5c8243 1681
4ae196df
AD
1682 /* disable receive for all VFs and wait one second */
1683 if (adapter->vfs_allocated_count) {
1684 int i;
1685 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1686 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1687
1688 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1689 igb_ping_all_vfs(adapter);
4ae196df
AD
1690
1691 /* disable transmits and receives */
1692 wr32(E1000_VFRE, 0);
1693 wr32(E1000_VFTE, 0);
1694 }
1695
9d5c8243 1696 /* Allow time for pending master requests to run */
330a6d6a 1697 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1698 wr32(E1000_WUC, 0);
1699
330a6d6a 1700 if (hw->mac.ops.init_hw(hw))
090b1795 1701 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1702
a27416bb
MV
1703 /*
1704 * Flow control settings reset on hardware reset, so guarantee flow
1705 * control is off when forcing speed.
1706 */
1707 if (!hw->mac.autoneg)
1708 igb_force_mac_fc(hw);
1709
b6e0c419 1710 igb_init_dmac(adapter, pba);
88a268c1
NN
1711 if (!netif_running(adapter->netdev))
1712 igb_power_down_link(adapter);
1713
9d5c8243
AK
1714 igb_update_mng_vlan(adapter);
1715
1716 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1717 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1718
1f6e8178
MV
1719 /* Re-enable PTP, where applicable. */
1720 igb_ptp_reset(adapter);
1f6e8178 1721
330a6d6a 1722 igb_get_phy_info(hw);
9d5c8243
AK
1723}
1724
c8f44aff
MM
1725static netdev_features_t igb_fix_features(struct net_device *netdev,
1726 netdev_features_t features)
b2cb09b1
JP
1727{
1728 /*
1729 * Since there is no support for separate rx/tx vlan accel
1730 * enable/disable make sure tx flag is always in same state as rx.
1731 */
1732 if (features & NETIF_F_HW_VLAN_RX)
1733 features |= NETIF_F_HW_VLAN_TX;
1734 else
1735 features &= ~NETIF_F_HW_VLAN_TX;
1736
1737 return features;
1738}
1739
c8f44aff
MM
1740static int igb_set_features(struct net_device *netdev,
1741 netdev_features_t features)
ac52caa3 1742{
c8f44aff 1743 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1744 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1745
b2cb09b1
JP
1746 if (changed & NETIF_F_HW_VLAN_RX)
1747 igb_vlan_mode(netdev, features);
1748
89eaefb6
BG
1749 if (!(changed & NETIF_F_RXALL))
1750 return 0;
1751
1752 netdev->features = features;
1753
1754 if (netif_running(netdev))
1755 igb_reinit_locked(adapter);
1756 else
1757 igb_reset(adapter);
1758
ac52caa3
MM
1759 return 0;
1760}
1761
2e5c6922 1762static const struct net_device_ops igb_netdev_ops = {
559e9c49 1763 .ndo_open = igb_open,
2e5c6922 1764 .ndo_stop = igb_close,
cd392f5c 1765 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1766 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1767 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1768 .ndo_set_mac_address = igb_set_mac,
1769 .ndo_change_mtu = igb_change_mtu,
1770 .ndo_do_ioctl = igb_ioctl,
1771 .ndo_tx_timeout = igb_tx_timeout,
1772 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1773 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1774 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1775 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1776 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1777 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1778 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1779#ifdef CONFIG_NET_POLL_CONTROLLER
1780 .ndo_poll_controller = igb_netpoll,
1781#endif
b2cb09b1
JP
1782 .ndo_fix_features = igb_fix_features,
1783 .ndo_set_features = igb_set_features,
2e5c6922
SH
1784};
1785
d67974f0
CW
1786/**
1787 * igb_set_fw_version - Configure version string for ethtool
1788 * @adapter: adapter struct
1789 *
1790 **/
1791void igb_set_fw_version(struct igb_adapter *adapter)
1792{
1793 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
1794 struct e1000_fw_version fw;
1795
1796 igb_get_fw_version(hw, &fw);
1797
1798 switch (hw->mac.type) {
1799 case e1000_i211:
d67974f0 1800 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
0b1a6f2e
CW
1801 "%2d.%2d-%d",
1802 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1803 break;
1804
1805 default:
1806 /* if option is rom valid, display its version too */
1807 if (fw.or_valid) {
1808 snprintf(adapter->fw_version,
1809 sizeof(adapter->fw_version),
1810 "%d.%d, 0x%08x, %d.%d.%d",
1811 fw.eep_major, fw.eep_minor, fw.etrack_id,
1812 fw.or_major, fw.or_build, fw.or_patch);
1813 /* no option rom */
1814 } else {
1815 snprintf(adapter->fw_version,
1816 sizeof(adapter->fw_version),
1817 "%d.%d, 0x%08x",
1818 fw.eep_major, fw.eep_minor, fw.etrack_id);
1819 }
1820 break;
d67974f0 1821 }
d67974f0
CW
1822 return;
1823}
1824
9d5c8243
AK
1825/**
1826 * igb_probe - Device Initialization Routine
1827 * @pdev: PCI device information struct
1828 * @ent: entry in igb_pci_tbl
1829 *
1830 * Returns 0 on success, negative on failure
1831 *
1832 * igb_probe initializes an adapter identified by a pci_dev structure.
1833 * The OS initialization, configuring of the adapter private structure,
1834 * and a hardware reset occur.
1835 **/
1dd06ae8 1836static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
1837{
1838 struct net_device *netdev;
1839 struct igb_adapter *adapter;
1840 struct e1000_hw *hw;
4337e993 1841 u16 eeprom_data = 0;
9835fd73 1842 s32 ret_val;
4337e993 1843 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1844 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1845 unsigned long mmio_start, mmio_len;
2d6a5e95 1846 int err, pci_using_dac;
9835fd73 1847 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1848
bded64a7
AG
1849 /* Catch broken hardware that put the wrong VF device ID in
1850 * the PCIe SR-IOV capability.
1851 */
1852 if (pdev->is_virtfn) {
1853 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 1854 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
1855 return -EINVAL;
1856 }
1857
aed5dec3 1858 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1859 if (err)
1860 return err;
1861
1862 pci_using_dac = 0;
59d71989 1863 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1864 if (!err) {
59d71989 1865 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1866 if (!err)
1867 pci_using_dac = 1;
1868 } else {
59d71989 1869 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1870 if (err) {
59d71989 1871 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1872 if (err) {
1873 dev_err(&pdev->dev, "No usable DMA "
1874 "configuration, aborting\n");
1875 goto err_dma;
1876 }
1877 }
1878 }
1879
aed5dec3
AD
1880 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1881 IORESOURCE_MEM),
1882 igb_driver_name);
9d5c8243
AK
1883 if (err)
1884 goto err_pci_reg;
1885
19d5afd4 1886 pci_enable_pcie_error_reporting(pdev);
40a914fa 1887
9d5c8243 1888 pci_set_master(pdev);
c682fc23 1889 pci_save_state(pdev);
9d5c8243
AK
1890
1891 err = -ENOMEM;
1bfaf07b 1892 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1893 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1894 if (!netdev)
1895 goto err_alloc_etherdev;
1896
1897 SET_NETDEV_DEV(netdev, &pdev->dev);
1898
1899 pci_set_drvdata(pdev, netdev);
1900 adapter = netdev_priv(netdev);
1901 adapter->netdev = netdev;
1902 adapter->pdev = pdev;
1903 hw = &adapter->hw;
1904 hw->back = adapter;
b3f4d599 1905 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243
AK
1906
1907 mmio_start = pci_resource_start(pdev, 0);
1908 mmio_len = pci_resource_len(pdev, 0);
1909
1910 err = -EIO;
28b0759c
AD
1911 hw->hw_addr = ioremap(mmio_start, mmio_len);
1912 if (!hw->hw_addr)
9d5c8243
AK
1913 goto err_ioremap;
1914
2e5c6922 1915 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1916 igb_set_ethtool_ops(netdev);
9d5c8243 1917 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1918
1919 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1920
1921 netdev->mem_start = mmio_start;
1922 netdev->mem_end = mmio_start + mmio_len;
1923
9d5c8243
AK
1924 /* PCI config space info */
1925 hw->vendor_id = pdev->vendor;
1926 hw->device_id = pdev->device;
1927 hw->revision_id = pdev->revision;
1928 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1929 hw->subsystem_device_id = pdev->subsystem_device;
1930
9d5c8243
AK
1931 /* Copy the default MAC, PHY and NVM function pointers */
1932 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1933 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1934 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1935 /* Initialize skew-specific constants */
1936 err = ei->get_invariants(hw);
1937 if (err)
450c87c8 1938 goto err_sw_init;
9d5c8243 1939
450c87c8 1940 /* setup the private structure */
9d5c8243
AK
1941 err = igb_sw_init(adapter);
1942 if (err)
1943 goto err_sw_init;
1944
1945 igb_get_bus_info_pcie(hw);
1946
1947 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1948
1949 /* Copper options */
1950 if (hw->phy.media_type == e1000_media_type_copper) {
1951 hw->phy.mdix = AUTO_ALL_MODES;
1952 hw->phy.disable_polarity_correction = false;
1953 hw->phy.ms_type = e1000_ms_hw_default;
1954 }
1955
1956 if (igb_check_reset_block(hw))
1957 dev_info(&pdev->dev,
1958 "PHY reset is blocked due to SOL/IDER session.\n");
1959
077887c3
AD
1960 /*
1961 * features is initialized to 0 in allocation, it might have bits
1962 * set by igb_sw_init so we should use an or instead of an
1963 * assignment.
1964 */
1965 netdev->features |= NETIF_F_SG |
1966 NETIF_F_IP_CSUM |
1967 NETIF_F_IPV6_CSUM |
1968 NETIF_F_TSO |
1969 NETIF_F_TSO6 |
1970 NETIF_F_RXHASH |
1971 NETIF_F_RXCSUM |
1972 NETIF_F_HW_VLAN_RX |
1973 NETIF_F_HW_VLAN_TX;
1974
1975 /* copy netdev features into list of user selectable features */
1976 netdev->hw_features |= netdev->features;
89eaefb6 1977 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
1978
1979 /* set this bit last since it cannot be part of hw_features */
1980 netdev->features |= NETIF_F_HW_VLAN_FILTER;
1981
1982 netdev->vlan_features |= NETIF_F_TSO |
1983 NETIF_F_TSO6 |
1984 NETIF_F_IP_CSUM |
1985 NETIF_F_IPV6_CSUM |
1986 NETIF_F_SG;
48f29ffc 1987
6b8f0922
BG
1988 netdev->priv_flags |= IFF_SUPP_NOFCS;
1989
7b872a55 1990 if (pci_using_dac) {
9d5c8243 1991 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1992 netdev->vlan_features |= NETIF_F_HIGHDMA;
1993 }
9d5c8243 1994
ac52caa3
MM
1995 if (hw->mac.type >= e1000_82576) {
1996 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1997 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1998 }
b9473560 1999
01789349
JP
2000 netdev->priv_flags |= IFF_UNICAST_FLT;
2001
330a6d6a 2002 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2003
2004 /* before reading the NVM, reset the controller to put the device in a
2005 * known good starting state */
2006 hw->mac.ops.reset_hw(hw);
2007
f96a8a0b
CW
2008 /*
2009 * make sure the NVM is good , i211 parts have special NVM that
2010 * doesn't contain a checksum
2011 */
2012 if (hw->mac.type != e1000_i211) {
2013 if (hw->nvm.ops.validate(hw) < 0) {
2014 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2015 err = -EIO;
2016 goto err_eeprom;
2017 }
9d5c8243
AK
2018 }
2019
2020 /* copy the MAC address out of the NVM */
2021 if (hw->mac.ops.read_mac_addr(hw))
2022 dev_err(&pdev->dev, "NVM Read Error\n");
2023
2024 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2025
aaeb6cdf 2026 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2027 dev_err(&pdev->dev, "Invalid MAC Address\n");
2028 err = -EIO;
2029 goto err_eeprom;
2030 }
2031
d67974f0
CW
2032 /* get firmware version for ethtool -i */
2033 igb_set_fw_version(adapter);
2034
c061b18d 2035 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2036 (unsigned long) adapter);
c061b18d 2037 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2038 (unsigned long) adapter);
9d5c8243
AK
2039
2040 INIT_WORK(&adapter->reset_task, igb_reset_task);
2041 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2042
450c87c8 2043 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2044 adapter->fc_autoneg = true;
2045 hw->mac.autoneg = true;
2046 hw->phy.autoneg_advertised = 0x2f;
2047
0cce119a
AD
2048 hw->fc.requested_mode = e1000_fc_default;
2049 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2050
9d5c8243
AK
2051 igb_validate_mdi_setting(hw);
2052
63d4a8f9 2053 /* By default, support wake on port A */
a2cf8b6c 2054 if (hw->bus.func == 0)
63d4a8f9
MV
2055 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2056
2057 /* Check the NVM for wake support on non-port A ports */
2058 if (hw->mac.type >= e1000_82580)
55cac248
AD
2059 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2060 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2061 &eeprom_data);
a2cf8b6c
AD
2062 else if (hw->bus.func == 1)
2063 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2064
63d4a8f9
MV
2065 if (eeprom_data & IGB_EEPROM_APME)
2066 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2067
2068 /* now that we have the eeprom settings, apply the special cases where
2069 * the eeprom may be wrong or the board simply won't support wake on
2070 * lan on a particular port */
2071 switch (pdev->device) {
2072 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2073 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2074 break;
2075 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2076 case E1000_DEV_ID_82576_FIBER:
2077 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2078 /* Wake events only supported on port A for dual fiber
2079 * regardless of eeprom setting */
2080 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2081 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2082 break;
c8ea5ea9 2083 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2084 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2085 /* if quad port adapter, disable WoL on all but port A */
2086 if (global_quad_port_a != 0)
63d4a8f9 2087 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2088 else
2089 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2090 /* Reset for multiple quad port adapters */
2091 if (++global_quad_port_a == 4)
2092 global_quad_port_a = 0;
2093 break;
63d4a8f9
MV
2094 default:
2095 /* If the device can't wake, don't set software support */
2096 if (!device_can_wakeup(&adapter->pdev->dev))
2097 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2098 }
2099
2100 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2101 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2102 adapter->wol |= E1000_WUFC_MAG;
2103
2104 /* Some vendors want WoL disabled by default, but still supported */
2105 if ((hw->mac.type == e1000_i350) &&
2106 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2107 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2108 adapter->wol = 0;
2109 }
2110
2111 device_set_wakeup_enable(&adapter->pdev->dev,
2112 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2113
2114 /* reset the hardware with the new settings */
2115 igb_reset(adapter);
2116
2117 /* let the f/w know that the h/w is now under the control of the
2118 * driver. */
2119 igb_get_hw_control(adapter);
2120
9d5c8243
AK
2121 strcpy(netdev->name, "eth%d");
2122 err = register_netdev(netdev);
2123 if (err)
2124 goto err_register;
2125
b168dfc5
JB
2126 /* carrier off reporting is important to ethtool even BEFORE open */
2127 netif_carrier_off(netdev);
2128
421e02f0 2129#ifdef CONFIG_IGB_DCA
bbd98fe4 2130 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2131 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2132 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2133 igb_setup_dca(adapter);
2134 }
fe4506b6 2135
38c845c7 2136#endif
3c89f6d0 2137
673b8b70 2138 /* do hw tstamp init after resetting */
7ebae817 2139 igb_ptp_init(adapter);
673b8b70 2140
9d5c8243
AK
2141 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2142 /* print bus type/speed/width info */
7c510e4b 2143 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2144 netdev->name,
559e9c49 2145 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2146 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2147 "unknown"),
59c3de89
AD
2148 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2149 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2150 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2151 "unknown"),
7c510e4b 2152 netdev->dev_addr);
9d5c8243 2153
9835fd73
CW
2154 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2155 if (ret_val)
2156 strcpy(part_str, "Unknown");
2157 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2158 dev_info(&pdev->dev,
2159 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2160 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2161 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2162 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2163 switch (hw->mac.type) {
2164 case e1000_i350:
f96a8a0b
CW
2165 case e1000_i210:
2166 case e1000_i211:
09b068d4
CW
2167 igb_set_eee_i350(hw);
2168 break;
2169 default:
2170 break;
2171 }
749ab2cd
YZ
2172
2173 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2174 return 0;
2175
2176err_register:
2177 igb_release_hw_control(adapter);
2178err_eeprom:
2179 if (!igb_check_reset_block(hw))
f5f4cf08 2180 igb_reset_phy(hw);
9d5c8243
AK
2181
2182 if (hw->flash_address)
2183 iounmap(hw->flash_address);
9d5c8243 2184err_sw_init:
047e0030 2185 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2186 iounmap(hw->hw_addr);
2187err_ioremap:
2188 free_netdev(netdev);
2189err_alloc_etherdev:
559e9c49
AD
2190 pci_release_selected_regions(pdev,
2191 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2192err_pci_reg:
2193err_dma:
2194 pci_disable_device(pdev);
2195 return err;
2196}
2197
2198/**
2199 * igb_remove - Device Removal Routine
2200 * @pdev: PCI device information struct
2201 *
2202 * igb_remove is called by the PCI subsystem to alert the driver
2203 * that it should release a PCI device. The could be caused by a
2204 * Hot-Plug event, or because the driver is going to be removed from
2205 * memory.
2206 **/
9f9a12f8 2207static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2208{
2209 struct net_device *netdev = pci_get_drvdata(pdev);
2210 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2211 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2212
749ab2cd 2213 pm_runtime_get_noresume(&pdev->dev);
a79f4f88 2214 igb_ptp_stop(adapter);
749ab2cd 2215
760141a5
TH
2216 /*
2217 * The watchdog timer may be rescheduled, so explicitly
2218 * disable watchdog from being rescheduled.
2219 */
9d5c8243
AK
2220 set_bit(__IGB_DOWN, &adapter->state);
2221 del_timer_sync(&adapter->watchdog_timer);
2222 del_timer_sync(&adapter->phy_info_timer);
2223
760141a5
TH
2224 cancel_work_sync(&adapter->reset_task);
2225 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2226
421e02f0 2227#ifdef CONFIG_IGB_DCA
7dfc16fa 2228 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2229 dev_info(&pdev->dev, "DCA disabled\n");
2230 dca_remove_requester(&pdev->dev);
7dfc16fa 2231 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2232 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2233 }
2234#endif
2235
9d5c8243
AK
2236 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2237 * would have already happened in close and is redundant. */
2238 igb_release_hw_control(adapter);
2239
2240 unregister_netdev(netdev);
2241
047e0030 2242 igb_clear_interrupt_scheme(adapter);
9d5c8243 2243
37680117
AD
2244#ifdef CONFIG_PCI_IOV
2245 /* reclaim resources allocated to VFs */
2246 if (adapter->vf_data) {
2247 /* disable iov and allow time for transactions to clear */
f557147c
SA
2248 if (igb_vfs_are_assigned(adapter)) {
2249 dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2250 } else {
0224d663
GR
2251 pci_disable_sriov(pdev);
2252 msleep(500);
0224d663 2253 }
37680117
AD
2254
2255 kfree(adapter->vf_data);
2256 adapter->vf_data = NULL;
2257 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2258 wrfl();
37680117
AD
2259 msleep(100);
2260 dev_info(&pdev->dev, "IOV Disabled\n");
2261 }
2262#endif
559e9c49 2263
28b0759c
AD
2264 iounmap(hw->hw_addr);
2265 if (hw->flash_address)
2266 iounmap(hw->flash_address);
559e9c49
AD
2267 pci_release_selected_regions(pdev,
2268 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2269
1128c756 2270 kfree(adapter->shadow_vfta);
9d5c8243
AK
2271 free_netdev(netdev);
2272
19d5afd4 2273 pci_disable_pcie_error_reporting(pdev);
40a914fa 2274
9d5c8243
AK
2275 pci_disable_device(pdev);
2276}
2277
a6b623e0
AD
2278/**
2279 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2280 * @adapter: board private structure to initialize
2281 *
2282 * This function initializes the vf specific data storage and then attempts to
2283 * allocate the VFs. The reason for ordering it this way is because it is much
2284 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2285 * the memory for the VFs.
2286 **/
9f9a12f8 2287static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2288{
2289#ifdef CONFIG_PCI_IOV
2290 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2291 struct e1000_hw *hw = &adapter->hw;
f557147c 2292 int old_vfs = pci_num_vf(adapter->pdev);
0224d663 2293 int i;
a6b623e0 2294
f96a8a0b
CW
2295 /* Virtualization features not supported on i210 family. */
2296 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2297 return;
2298
0224d663
GR
2299 if (old_vfs) {
2300 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2301 "max_vfs setting of %d\n", old_vfs, max_vfs);
2302 adapter->vfs_allocated_count = old_vfs;
a6b623e0
AD
2303 }
2304
0224d663
GR
2305 if (!adapter->vfs_allocated_count)
2306 return;
2307
2308 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2309 sizeof(struct vf_data_storage), GFP_KERNEL);
f96a8a0b 2310
0224d663
GR
2311 /* if allocation failed then we do not support SR-IOV */
2312 if (!adapter->vf_data) {
a6b623e0 2313 adapter->vfs_allocated_count = 0;
0224d663
GR
2314 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2315 "Data Storage\n");
2316 goto out;
a6b623e0 2317 }
0224d663
GR
2318
2319 if (!old_vfs) {
2320 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2321 goto err_out;
2322 }
2323 dev_info(&pdev->dev, "%d VFs allocated\n",
2324 adapter->vfs_allocated_count);
2325 for (i = 0; i < adapter->vfs_allocated_count; i++)
2326 igb_vf_configure(adapter, i);
2327
2328 /* DMA Coalescing is not supported in IOV mode. */
2329 adapter->flags &= ~IGB_FLAG_DMAC;
2330 goto out;
2331err_out:
2332 kfree(adapter->vf_data);
2333 adapter->vf_data = NULL;
2334 adapter->vfs_allocated_count = 0;
2335out:
2336 return;
a6b623e0
AD
2337#endif /* CONFIG_PCI_IOV */
2338}
2339
9d5c8243
AK
2340/**
2341 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2342 * @adapter: board private structure to initialize
2343 *
2344 * igb_sw_init initializes the Adapter private data structure.
2345 * Fields are initialized based on PCI device information and
2346 * OS network device settings (MTU size).
2347 **/
9f9a12f8 2348static int igb_sw_init(struct igb_adapter *adapter)
9d5c8243
AK
2349{
2350 struct e1000_hw *hw = &adapter->hw;
2351 struct net_device *netdev = adapter->netdev;
2352 struct pci_dev *pdev = adapter->pdev;
374a542d 2353 u32 max_rss_queues;
9d5c8243
AK
2354
2355 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2356
13fde97a 2357 /* set default ring sizes */
68fd9910
AD
2358 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2359 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2360
2361 /* set default ITR values */
4fc82adf
AD
2362 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2363 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2364
13fde97a
AD
2365 /* set default work limits */
2366 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2367
153285f9
AD
2368 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2369 VLAN_HLEN;
9d5c8243
AK
2370 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2371
12dcd86b 2372 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2373#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2374 switch (hw->mac.type) {
2375 case e1000_82576:
2376 case e1000_i350:
9b082d73
SA
2377 if (max_vfs > 7) {
2378 dev_warn(&pdev->dev,
2379 "Maximum of 7 VFs per PF, using max\n");
2380 adapter->vfs_allocated_count = 7;
2381 } else
2382 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2383 break;
2384 default:
2385 break;
2386 }
a6b623e0 2387#endif /* CONFIG_PCI_IOV */
374a542d
MV
2388
2389 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2390 switch (hw->mac.type) {
374a542d
MV
2391 case e1000_i211:
2392 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2393 break;
2394 case e1000_82575:
f96a8a0b 2395 case e1000_i210:
374a542d
MV
2396 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2397 break;
2398 case e1000_i350:
2399 /* I350 cannot do RSS and SR-IOV at the same time */
2400 if (!!adapter->vfs_allocated_count) {
2401 max_rss_queues = 1;
2402 break;
2403 }
2404 /* fall through */
2405 case e1000_82576:
2406 if (!!adapter->vfs_allocated_count) {
2407 max_rss_queues = 2;
2408 break;
2409 }
2410 /* fall through */
2411 case e1000_82580:
2412 default:
2413 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2414 break;
374a542d
MV
2415 }
2416
2417 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2418
2419 /* Determine if we need to pair queues. */
2420 switch (hw->mac.type) {
2421 case e1000_82575:
f96a8a0b 2422 case e1000_i211:
374a542d 2423 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2424 break;
374a542d
MV
2425 case e1000_82576:
2426 /*
2427 * If VFs are going to be allocated with RSS queues then we
2428 * should pair the queues in order to conserve interrupts due
2429 * to limited supply.
2430 */
2431 if ((adapter->rss_queues > 1) &&
2432 (adapter->vfs_allocated_count > 6))
2433 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2434 /* fall through */
2435 case e1000_82580:
2436 case e1000_i350:
2437 case e1000_i210:
f96a8a0b 2438 default:
374a542d
MV
2439 /*
2440 * If rss_queues > half of max_rss_queues, pair the queues in
2441 * order to conserve interrupts due to limited supply.
2442 */
2443 if (adapter->rss_queues > (max_rss_queues / 2))
2444 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2445 break;
2446 }
a99955fc 2447
1128c756
CW
2448 /* Setup and initialize a copy of the hw vlan table array */
2449 adapter->shadow_vfta = kzalloc(sizeof(u32) *
2450 E1000_VLAN_FILTER_TBL_SIZE,
2451 GFP_ATOMIC);
2452
a6b623e0 2453 /* This call may decrease the number of queues */
53c7d064 2454 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2455 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2456 return -ENOMEM;
2457 }
2458
a6b623e0
AD
2459 igb_probe_vfs(adapter);
2460
9d5c8243
AK
2461 /* Explicitly disable IRQ since the NIC can be in any state. */
2462 igb_irq_disable(adapter);
2463
f96a8a0b 2464 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2465 adapter->flags &= ~IGB_FLAG_DMAC;
2466
9d5c8243
AK
2467 set_bit(__IGB_DOWN, &adapter->state);
2468 return 0;
2469}
2470
2471/**
2472 * igb_open - Called when a network interface is made active
2473 * @netdev: network interface device structure
2474 *
2475 * Returns 0 on success, negative value on failure
2476 *
2477 * The open entry point is called when a network interface is made
2478 * active by the system (IFF_UP). At this point all resources needed
2479 * for transmit and receive operations are allocated, the interrupt
2480 * handler is registered with the OS, the watchdog timer is started,
2481 * and the stack is notified that the interface is ready.
2482 **/
749ab2cd 2483static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2484{
2485 struct igb_adapter *adapter = netdev_priv(netdev);
2486 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2487 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2488 int err;
2489 int i;
2490
2491 /* disallow open during test */
749ab2cd
YZ
2492 if (test_bit(__IGB_TESTING, &adapter->state)) {
2493 WARN_ON(resuming);
9d5c8243 2494 return -EBUSY;
749ab2cd
YZ
2495 }
2496
2497 if (!resuming)
2498 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2499
b168dfc5
JB
2500 netif_carrier_off(netdev);
2501
9d5c8243
AK
2502 /* allocate transmit descriptors */
2503 err = igb_setup_all_tx_resources(adapter);
2504 if (err)
2505 goto err_setup_tx;
2506
2507 /* allocate receive descriptors */
2508 err = igb_setup_all_rx_resources(adapter);
2509 if (err)
2510 goto err_setup_rx;
2511
88a268c1 2512 igb_power_up_link(adapter);
9d5c8243 2513
9d5c8243
AK
2514 /* before we allocate an interrupt, we must be ready to handle it.
2515 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2516 * as soon as we call pci_request_irq, so we have to setup our
2517 * clean_rx handler before we do so. */
2518 igb_configure(adapter);
2519
2520 err = igb_request_irq(adapter);
2521 if (err)
2522 goto err_req_irq;
2523
0c2cc02e
AD
2524 /* Notify the stack of the actual queue counts. */
2525 err = netif_set_real_num_tx_queues(adapter->netdev,
2526 adapter->num_tx_queues);
2527 if (err)
2528 goto err_set_queues;
2529
2530 err = netif_set_real_num_rx_queues(adapter->netdev,
2531 adapter->num_rx_queues);
2532 if (err)
2533 goto err_set_queues;
2534
9d5c8243
AK
2535 /* From here on the code is the same as igb_up() */
2536 clear_bit(__IGB_DOWN, &adapter->state);
2537
0d1ae7f4
AD
2538 for (i = 0; i < adapter->num_q_vectors; i++)
2539 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2540
2541 /* Clear any pending interrupts. */
2542 rd32(E1000_ICR);
844290e5
PW
2543
2544 igb_irq_enable(adapter);
2545
d4960307
AD
2546 /* notify VFs that reset has been completed */
2547 if (adapter->vfs_allocated_count) {
2548 u32 reg_data = rd32(E1000_CTRL_EXT);
2549 reg_data |= E1000_CTRL_EXT_PFRSTD;
2550 wr32(E1000_CTRL_EXT, reg_data);
2551 }
2552
d55b53ff
JK
2553 netif_tx_start_all_queues(netdev);
2554
749ab2cd
YZ
2555 if (!resuming)
2556 pm_runtime_put(&pdev->dev);
2557
25568a53
AD
2558 /* start the watchdog. */
2559 hw->mac.get_link_status = 1;
2560 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2561
2562 return 0;
2563
0c2cc02e
AD
2564err_set_queues:
2565 igb_free_irq(adapter);
9d5c8243
AK
2566err_req_irq:
2567 igb_release_hw_control(adapter);
88a268c1 2568 igb_power_down_link(adapter);
9d5c8243
AK
2569 igb_free_all_rx_resources(adapter);
2570err_setup_rx:
2571 igb_free_all_tx_resources(adapter);
2572err_setup_tx:
2573 igb_reset(adapter);
749ab2cd
YZ
2574 if (!resuming)
2575 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2576
2577 return err;
2578}
2579
749ab2cd
YZ
2580static int igb_open(struct net_device *netdev)
2581{
2582 return __igb_open(netdev, false);
2583}
2584
9d5c8243
AK
2585/**
2586 * igb_close - Disables a network interface
2587 * @netdev: network interface device structure
2588 *
2589 * Returns 0, this is not allowed to fail
2590 *
2591 * The close entry point is called when an interface is de-activated
2592 * by the OS. The hardware is still under the driver's control, but
2593 * needs to be disabled. A global MAC reset is issued to stop the
2594 * hardware, and all transmit and receive resources are freed.
2595 **/
749ab2cd 2596static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2597{
2598 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2599 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2600
2601 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2602
749ab2cd
YZ
2603 if (!suspending)
2604 pm_runtime_get_sync(&pdev->dev);
2605
2606 igb_down(adapter);
9d5c8243
AK
2607 igb_free_irq(adapter);
2608
2609 igb_free_all_tx_resources(adapter);
2610 igb_free_all_rx_resources(adapter);
2611
749ab2cd
YZ
2612 if (!suspending)
2613 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2614 return 0;
2615}
2616
749ab2cd
YZ
2617static int igb_close(struct net_device *netdev)
2618{
2619 return __igb_close(netdev, false);
2620}
2621
9d5c8243
AK
2622/**
2623 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2624 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2625 *
2626 * Return 0 on success, negative on failure
2627 **/
80785298 2628int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2629{
59d71989 2630 struct device *dev = tx_ring->dev;
9d5c8243
AK
2631 int size;
2632
06034649 2633 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
2634
2635 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2636 if (!tx_ring->tx_buffer_info)
9d5c8243 2637 goto err;
9d5c8243
AK
2638
2639 /* round up to nearest 4K */
85e8d004 2640 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2641 tx_ring->size = ALIGN(tx_ring->size, 4096);
2642
5536d210
AD
2643 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2644 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
2645 if (!tx_ring->desc)
2646 goto err;
2647
9d5c8243
AK
2648 tx_ring->next_to_use = 0;
2649 tx_ring->next_to_clean = 0;
81c2fc22 2650
9d5c8243
AK
2651 return 0;
2652
2653err:
06034649 2654 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
2655 tx_ring->tx_buffer_info = NULL;
2656 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
2657 return -ENOMEM;
2658}
2659
2660/**
2661 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2662 * (Descriptors) for all queues
2663 * @adapter: board private structure
2664 *
2665 * Return 0 on success, negative on failure
2666 **/
2667static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2668{
439705e1 2669 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2670 int i, err = 0;
2671
2672 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2673 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2674 if (err) {
439705e1 2675 dev_err(&pdev->dev,
9d5c8243
AK
2676 "Allocation for Tx Queue %u failed\n", i);
2677 for (i--; i >= 0; i--)
3025a446 2678 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2679 break;
2680 }
2681 }
2682
2683 return err;
2684}
2685
2686/**
85b430b4
AD
2687 * igb_setup_tctl - configure the transmit control registers
2688 * @adapter: Board private structure
9d5c8243 2689 **/
d7ee5b3a 2690void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2691{
9d5c8243
AK
2692 struct e1000_hw *hw = &adapter->hw;
2693 u32 tctl;
9d5c8243 2694
85b430b4
AD
2695 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2696 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2697
2698 /* Program the Transmit Control Register */
9d5c8243
AK
2699 tctl = rd32(E1000_TCTL);
2700 tctl &= ~E1000_TCTL_CT;
2701 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2702 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2703
2704 igb_config_collision_dist(hw);
2705
9d5c8243
AK
2706 /* Enable transmits */
2707 tctl |= E1000_TCTL_EN;
2708
2709 wr32(E1000_TCTL, tctl);
2710}
2711
85b430b4
AD
2712/**
2713 * igb_configure_tx_ring - Configure transmit ring after Reset
2714 * @adapter: board private structure
2715 * @ring: tx ring to configure
2716 *
2717 * Configure a transmit ring after a reset.
2718 **/
d7ee5b3a
AD
2719void igb_configure_tx_ring(struct igb_adapter *adapter,
2720 struct igb_ring *ring)
85b430b4
AD
2721{
2722 struct e1000_hw *hw = &adapter->hw;
a74420e0 2723 u32 txdctl = 0;
85b430b4
AD
2724 u64 tdba = ring->dma;
2725 int reg_idx = ring->reg_idx;
2726
2727 /* disable the queue */
a74420e0 2728 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2729 wrfl();
2730 mdelay(10);
2731
2732 wr32(E1000_TDLEN(reg_idx),
2733 ring->count * sizeof(union e1000_adv_tx_desc));
2734 wr32(E1000_TDBAL(reg_idx),
2735 tdba & 0x00000000ffffffffULL);
2736 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2737
fce99e34 2738 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2739 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2740 writel(0, ring->tail);
85b430b4
AD
2741
2742 txdctl |= IGB_TX_PTHRESH;
2743 txdctl |= IGB_TX_HTHRESH << 8;
2744 txdctl |= IGB_TX_WTHRESH << 16;
2745
2746 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2747 wr32(E1000_TXDCTL(reg_idx), txdctl);
2748}
2749
2750/**
2751 * igb_configure_tx - Configure transmit Unit after Reset
2752 * @adapter: board private structure
2753 *
2754 * Configure the Tx unit of the MAC after a reset.
2755 **/
2756static void igb_configure_tx(struct igb_adapter *adapter)
2757{
2758 int i;
2759
2760 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2761 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2762}
2763
9d5c8243
AK
2764/**
2765 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2766 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2767 *
2768 * Returns 0 on success, negative on failure
2769 **/
80785298 2770int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2771{
59d71989 2772 struct device *dev = rx_ring->dev;
f33005a6 2773 int size;
9d5c8243 2774
06034649 2775 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
2776
2777 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2778 if (!rx_ring->rx_buffer_info)
9d5c8243 2779 goto err;
9d5c8243 2780
9d5c8243 2781 /* Round up to nearest 4K */
f33005a6 2782 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
2783 rx_ring->size = ALIGN(rx_ring->size, 4096);
2784
5536d210
AD
2785 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2786 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
2787 if (!rx_ring->desc)
2788 goto err;
2789
cbc8e55f 2790 rx_ring->next_to_alloc = 0;
9d5c8243
AK
2791 rx_ring->next_to_clean = 0;
2792 rx_ring->next_to_use = 0;
9d5c8243 2793
9d5c8243
AK
2794 return 0;
2795
2796err:
06034649
AD
2797 vfree(rx_ring->rx_buffer_info);
2798 rx_ring->rx_buffer_info = NULL;
f33005a6 2799 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
2800 return -ENOMEM;
2801}
2802
2803/**
2804 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2805 * (Descriptors) for all queues
2806 * @adapter: board private structure
2807 *
2808 * Return 0 on success, negative on failure
2809 **/
2810static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2811{
439705e1 2812 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2813 int i, err = 0;
2814
2815 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2816 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2817 if (err) {
439705e1 2818 dev_err(&pdev->dev,
9d5c8243
AK
2819 "Allocation for Rx Queue %u failed\n", i);
2820 for (i--; i >= 0; i--)
3025a446 2821 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2822 break;
2823 }
2824 }
2825
2826 return err;
2827}
2828
06cf2666
AD
2829/**
2830 * igb_setup_mrqc - configure the multiple receive queue control registers
2831 * @adapter: Board private structure
2832 **/
2833static void igb_setup_mrqc(struct igb_adapter *adapter)
2834{
2835 struct e1000_hw *hw = &adapter->hw;
2836 u32 mrqc, rxcsum;
797fd4be 2837 u32 j, num_rx_queues, shift = 0;
a57fe23e
AD
2838 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2839 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2840 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2841 0xFA01ACBE };
06cf2666
AD
2842
2843 /* Fill out hash function seeds */
a57fe23e
AD
2844 for (j = 0; j < 10; j++)
2845 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 2846
a99955fc 2847 num_rx_queues = adapter->rss_queues;
06cf2666 2848
797fd4be
AD
2849 switch (hw->mac.type) {
2850 case e1000_82575:
2851 shift = 6;
2852 break;
2853 case e1000_82576:
2854 /* 82576 supports 2 RSS queues for SR-IOV */
2855 if (adapter->vfs_allocated_count) {
06cf2666
AD
2856 shift = 3;
2857 num_rx_queues = 2;
06cf2666 2858 }
797fd4be
AD
2859 break;
2860 default:
2861 break;
06cf2666
AD
2862 }
2863
797fd4be
AD
2864 /*
2865 * Populate the indirection table 4 entries at a time. To do this
2866 * we are generating the results for n and n+2 and then interleaving
2867 * those with the results with n+1 and n+3.
2868 */
2869 for (j = 0; j < 32; j++) {
2870 /* first pass generates n and n+2 */
2871 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2872 u32 reta = (base & 0x07800780) >> (7 - shift);
2873
2874 /* second pass generates n+1 and n+3 */
2875 base += 0x00010001 * num_rx_queues;
2876 reta |= (base & 0x07800780) << (1 + shift);
2877
2878 wr32(E1000_RETA(j), reta);
06cf2666
AD
2879 }
2880
2881 /*
2882 * Disable raw packet checksumming so that RSS hash is placed in
2883 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2884 * offloads as they are enabled by default
2885 */
2886 rxcsum = rd32(E1000_RXCSUM);
2887 rxcsum |= E1000_RXCSUM_PCSD;
2888
2889 if (adapter->hw.mac.type >= e1000_82576)
2890 /* Enable Receive Checksum Offload for SCTP */
2891 rxcsum |= E1000_RXCSUM_CRCOFL;
2892
2893 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2894 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 2895
039454a8
AA
2896 /* Generate RSS hash based on packet types, TCP/UDP
2897 * port numbers and/or IPv4/v6 src and dst addresses
2898 */
f96a8a0b
CW
2899 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2900 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2901 E1000_MRQC_RSS_FIELD_IPV6 |
2902 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2903 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 2904
039454a8
AA
2905 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2906 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2907 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2908 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2909
06cf2666
AD
2910 /* If VMDq is enabled then we set the appropriate mode for that, else
2911 * we default to RSS so that an RSS hash is calculated per packet even
2912 * if we are only using one queue */
2913 if (adapter->vfs_allocated_count) {
2914 if (hw->mac.type > e1000_82575) {
2915 /* Set the default pool for the PF's first queue */
2916 u32 vtctl = rd32(E1000_VT_CTL);
2917 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2918 E1000_VT_CTL_DISABLE_DEF_POOL);
2919 vtctl |= adapter->vfs_allocated_count <<
2920 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2921 wr32(E1000_VT_CTL, vtctl);
2922 }
a99955fc 2923 if (adapter->rss_queues > 1)
f96a8a0b 2924 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 2925 else
f96a8a0b 2926 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 2927 } else {
f96a8a0b
CW
2928 if (hw->mac.type != e1000_i211)
2929 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
2930 }
2931 igb_vmm_control(adapter);
2932
06cf2666
AD
2933 wr32(E1000_MRQC, mrqc);
2934}
2935
9d5c8243
AK
2936/**
2937 * igb_setup_rctl - configure the receive control registers
2938 * @adapter: Board private structure
2939 **/
d7ee5b3a 2940void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2941{
2942 struct e1000_hw *hw = &adapter->hw;
2943 u32 rctl;
9d5c8243
AK
2944
2945 rctl = rd32(E1000_RCTL);
2946
2947 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2948 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2949
69d728ba 2950 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2951 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2952
87cb7e8c
AK
2953 /*
2954 * enable stripping of CRC. It's unlikely this will break BMC
2955 * redirection as it did with e1000. Newer features require
2956 * that the HW strips the CRC.
73cd78f1 2957 */
87cb7e8c 2958 rctl |= E1000_RCTL_SECRC;
9d5c8243 2959
559e9c49 2960 /* disable store bad packets and clear size bits. */
ec54d7d6 2961 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2962
6ec43fe6
AD
2963 /* enable LPE to prevent packets larger than max_frame_size */
2964 rctl |= E1000_RCTL_LPE;
9d5c8243 2965
952f72a8
AD
2966 /* disable queue 0 to prevent tail write w/o re-config */
2967 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2968
e1739522
AD
2969 /* Attention!!! For SR-IOV PF driver operations you must enable
2970 * queue drop for all VF and PF queues to prevent head of line blocking
2971 * if an un-trusted VF does not provide descriptors to hardware.
2972 */
2973 if (adapter->vfs_allocated_count) {
e1739522
AD
2974 /* set all queue drop enable bits */
2975 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2976 }
2977
89eaefb6
BG
2978 /* This is useful for sniffing bad packets. */
2979 if (adapter->netdev->features & NETIF_F_RXALL) {
2980 /* UPE and MPE will be handled by normal PROMISC logic
2981 * in e1000e_set_rx_mode */
2982 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2983 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2984 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2985
2986 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2987 E1000_RCTL_DPF | /* Allow filtered pause */
2988 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2989 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2990 * and that breaks VLANs.
2991 */
2992 }
2993
9d5c8243
AK
2994 wr32(E1000_RCTL, rctl);
2995}
2996
7d5753f0
AD
2997static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2998 int vfn)
2999{
3000 struct e1000_hw *hw = &adapter->hw;
3001 u32 vmolr;
3002
3003 /* if it isn't the PF check to see if VFs are enabled and
3004 * increase the size to support vlan tags */
3005 if (vfn < adapter->vfs_allocated_count &&
3006 adapter->vf_data[vfn].vlans_enabled)
3007 size += VLAN_TAG_SIZE;
3008
3009 vmolr = rd32(E1000_VMOLR(vfn));
3010 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3011 vmolr |= size | E1000_VMOLR_LPE;
3012 wr32(E1000_VMOLR(vfn), vmolr);
3013
3014 return 0;
3015}
3016
e1739522
AD
3017/**
3018 * igb_rlpml_set - set maximum receive packet size
3019 * @adapter: board private structure
3020 *
3021 * Configure maximum receivable packet size.
3022 **/
3023static void igb_rlpml_set(struct igb_adapter *adapter)
3024{
153285f9 3025 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3026 struct e1000_hw *hw = &adapter->hw;
3027 u16 pf_id = adapter->vfs_allocated_count;
3028
e1739522
AD
3029 if (pf_id) {
3030 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3031 /*
3032 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3033 * to our max jumbo frame size, in case we need to enable
3034 * jumbo frames on one of the rings later.
3035 * This will not pass over-length frames into the default
3036 * queue because it's gated by the VMOLR.RLPML.
3037 */
7d5753f0 3038 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3039 }
3040
3041 wr32(E1000_RLPML, max_frame_size);
3042}
3043
8151d294
WM
3044static inline void igb_set_vmolr(struct igb_adapter *adapter,
3045 int vfn, bool aupe)
7d5753f0
AD
3046{
3047 struct e1000_hw *hw = &adapter->hw;
3048 u32 vmolr;
3049
3050 /*
3051 * This register exists only on 82576 and newer so if we are older then
3052 * we should exit and do nothing
3053 */
3054 if (hw->mac.type < e1000_82576)
3055 return;
3056
3057 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3058 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3059 if (aupe)
3060 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3061 else
3062 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3063
3064 /* clear all bits that might not be set */
3065 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3066
a99955fc 3067 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3068 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3069 /*
3070 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3071 * multicast packets
3072 */
3073 if (vfn <= adapter->vfs_allocated_count)
3074 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3075
3076 wr32(E1000_VMOLR(vfn), vmolr);
3077}
3078
85b430b4
AD
3079/**
3080 * igb_configure_rx_ring - Configure a receive ring after Reset
3081 * @adapter: board private structure
3082 * @ring: receive ring to be configured
3083 *
3084 * Configure the Rx unit of the MAC after a reset.
3085 **/
d7ee5b3a
AD
3086void igb_configure_rx_ring(struct igb_adapter *adapter,
3087 struct igb_ring *ring)
85b430b4
AD
3088{
3089 struct e1000_hw *hw = &adapter->hw;
3090 u64 rdba = ring->dma;
3091 int reg_idx = ring->reg_idx;
a74420e0 3092 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3093
3094 /* disable the queue */
a74420e0 3095 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3096
3097 /* Set DMA base address registers */
3098 wr32(E1000_RDBAL(reg_idx),
3099 rdba & 0x00000000ffffffffULL);
3100 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3101 wr32(E1000_RDLEN(reg_idx),
3102 ring->count * sizeof(union e1000_adv_rx_desc));
3103
3104 /* initialize head and tail */
fce99e34 3105 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3106 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3107 writel(0, ring->tail);
85b430b4 3108
952f72a8 3109 /* set descriptor configuration */
44390ca6 3110 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3111 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3112 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3113 if (hw->mac.type >= e1000_82580)
757b77e2 3114 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3115 /* Only set Drop Enable if we are supporting multiple queues */
3116 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3117 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3118
3119 wr32(E1000_SRRCTL(reg_idx), srrctl);
3120
7d5753f0 3121 /* set filtering for VMDQ pools */
8151d294 3122 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3123
85b430b4
AD
3124 rxdctl |= IGB_RX_PTHRESH;
3125 rxdctl |= IGB_RX_HTHRESH << 8;
3126 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3127
3128 /* enable receive descriptor fetching */
3129 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3130 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3131}
3132
9d5c8243
AK
3133/**
3134 * igb_configure_rx - Configure receive Unit after Reset
3135 * @adapter: board private structure
3136 *
3137 * Configure the Rx unit of the MAC after a reset.
3138 **/
3139static void igb_configure_rx(struct igb_adapter *adapter)
3140{
9107584e 3141 int i;
9d5c8243 3142
68d480c4
AD
3143 /* set UTA to appropriate mode */
3144 igb_set_uta(adapter);
3145
26ad9178
AD
3146 /* set the correct pool for the PF default MAC address in entry 0 */
3147 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3148 adapter->vfs_allocated_count);
3149
06cf2666
AD
3150 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3151 * the Base and Length of the Rx Descriptor Ring */
3152 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3153 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3154}
3155
3156/**
3157 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3158 * @tx_ring: Tx descriptor ring for a specific queue
3159 *
3160 * Free all transmit software resources
3161 **/
68fd9910 3162void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3163{
3b644cf6 3164 igb_clean_tx_ring(tx_ring);
9d5c8243 3165
06034649
AD
3166 vfree(tx_ring->tx_buffer_info);
3167 tx_ring->tx_buffer_info = NULL;
9d5c8243 3168
439705e1
AD
3169 /* if not set, then don't free */
3170 if (!tx_ring->desc)
3171 return;
3172
59d71989
AD
3173 dma_free_coherent(tx_ring->dev, tx_ring->size,
3174 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3175
3176 tx_ring->desc = NULL;
3177}
3178
3179/**
3180 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3181 * @adapter: board private structure
3182 *
3183 * Free all transmit software resources
3184 **/
3185static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3186{
3187 int i;
3188
3189 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3190 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3191}
3192
ebe42d16
AD
3193void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3194 struct igb_tx_buffer *tx_buffer)
3195{
3196 if (tx_buffer->skb) {
3197 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3198 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3199 dma_unmap_single(ring->dev,
c9f14bf3
AD
3200 dma_unmap_addr(tx_buffer, dma),
3201 dma_unmap_len(tx_buffer, len),
ebe42d16 3202 DMA_TO_DEVICE);
c9f14bf3 3203 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3204 dma_unmap_page(ring->dev,
c9f14bf3
AD
3205 dma_unmap_addr(tx_buffer, dma),
3206 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3207 DMA_TO_DEVICE);
3208 }
3209 tx_buffer->next_to_watch = NULL;
3210 tx_buffer->skb = NULL;
c9f14bf3 3211 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3212 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3213}
3214
3215/**
3216 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3217 * @tx_ring: ring to be cleaned
3218 **/
3b644cf6 3219static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3220{
06034649 3221 struct igb_tx_buffer *buffer_info;
9d5c8243 3222 unsigned long size;
6ad4edfc 3223 u16 i;
9d5c8243 3224
06034649 3225 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3226 return;
3227 /* Free all the Tx ring sk_buffs */
3228
3229 for (i = 0; i < tx_ring->count; i++) {
06034649 3230 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3231 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3232 }
3233
dad8a3b3
JF
3234 netdev_tx_reset_queue(txring_txq(tx_ring));
3235
06034649
AD
3236 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3237 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3238
3239 /* Zero out the descriptor ring */
9d5c8243
AK
3240 memset(tx_ring->desc, 0, tx_ring->size);
3241
3242 tx_ring->next_to_use = 0;
3243 tx_ring->next_to_clean = 0;
9d5c8243
AK
3244}
3245
3246/**
3247 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3248 * @adapter: board private structure
3249 **/
3250static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3251{
3252 int i;
3253
3254 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3255 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3256}
3257
3258/**
3259 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3260 * @rx_ring: ring to clean the resources from
3261 *
3262 * Free all receive software resources
3263 **/
68fd9910 3264void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3265{
3b644cf6 3266 igb_clean_rx_ring(rx_ring);
9d5c8243 3267
06034649
AD
3268 vfree(rx_ring->rx_buffer_info);
3269 rx_ring->rx_buffer_info = NULL;
9d5c8243 3270
439705e1
AD
3271 /* if not set, then don't free */
3272 if (!rx_ring->desc)
3273 return;
3274
59d71989
AD
3275 dma_free_coherent(rx_ring->dev, rx_ring->size,
3276 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3277
3278 rx_ring->desc = NULL;
3279}
3280
3281/**
3282 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3283 * @adapter: board private structure
3284 *
3285 * Free all receive software resources
3286 **/
3287static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3288{
3289 int i;
3290
3291 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3292 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3293}
3294
3295/**
3296 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3297 * @rx_ring: ring to free buffers from
3298 **/
3b644cf6 3299static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3300{
9d5c8243 3301 unsigned long size;
c023cd88 3302 u16 i;
9d5c8243 3303
1a1c225b
AD
3304 if (rx_ring->skb)
3305 dev_kfree_skb(rx_ring->skb);
3306 rx_ring->skb = NULL;
3307
06034649 3308 if (!rx_ring->rx_buffer_info)
9d5c8243 3309 return;
439705e1 3310
9d5c8243
AK
3311 /* Free all the Rx ring sk_buffs */
3312 for (i = 0; i < rx_ring->count; i++) {
06034649 3313 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3314
cbc8e55f
AD
3315 if (!buffer_info->page)
3316 continue;
3317
3318 dma_unmap_page(rx_ring->dev,
3319 buffer_info->dma,
3320 PAGE_SIZE,
3321 DMA_FROM_DEVICE);
3322 __free_page(buffer_info->page);
3323
1a1c225b 3324 buffer_info->page = NULL;
9d5c8243
AK
3325 }
3326
06034649
AD
3327 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3328 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3329
3330 /* Zero out the descriptor ring */
3331 memset(rx_ring->desc, 0, rx_ring->size);
3332
cbc8e55f 3333 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3334 rx_ring->next_to_clean = 0;
3335 rx_ring->next_to_use = 0;
9d5c8243
AK
3336}
3337
3338/**
3339 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3340 * @adapter: board private structure
3341 **/
3342static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3343{
3344 int i;
3345
3346 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3347 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3348}
3349
3350/**
3351 * igb_set_mac - Change the Ethernet Address of the NIC
3352 * @netdev: network interface device structure
3353 * @p: pointer to an address structure
3354 *
3355 * Returns 0 on success, negative on failure
3356 **/
3357static int igb_set_mac(struct net_device *netdev, void *p)
3358{
3359 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3360 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3361 struct sockaddr *addr = p;
3362
3363 if (!is_valid_ether_addr(addr->sa_data))
3364 return -EADDRNOTAVAIL;
3365
3366 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3367 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3368
26ad9178
AD
3369 /* set the correct pool for the new PF MAC address in entry 0 */
3370 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3371 adapter->vfs_allocated_count);
e1739522 3372
9d5c8243
AK
3373 return 0;
3374}
3375
3376/**
68d480c4 3377 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3378 * @netdev: network interface device structure
3379 *
68d480c4
AD
3380 * Writes multicast address list to the MTA hash table.
3381 * Returns: -ENOMEM on failure
3382 * 0 on no addresses written
3383 * X on writing X addresses to MTA
9d5c8243 3384 **/
68d480c4 3385static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3386{
3387 struct igb_adapter *adapter = netdev_priv(netdev);
3388 struct e1000_hw *hw = &adapter->hw;
22bedad3 3389 struct netdev_hw_addr *ha;
68d480c4 3390 u8 *mta_list;
9d5c8243
AK
3391 int i;
3392
4cd24eaf 3393 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3394 /* nothing to program, so clear mc list */
3395 igb_update_mc_addr_list(hw, NULL, 0);
3396 igb_restore_vf_multicasts(adapter);
3397 return 0;
3398 }
9d5c8243 3399
4cd24eaf 3400 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3401 if (!mta_list)
3402 return -ENOMEM;
ff41f8dc 3403
68d480c4 3404 /* The shared function expects a packed array of only addresses. */
48e2f183 3405 i = 0;
22bedad3
JP
3406 netdev_for_each_mc_addr(ha, netdev)
3407 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3408
68d480c4
AD
3409 igb_update_mc_addr_list(hw, mta_list, i);
3410 kfree(mta_list);
3411
4cd24eaf 3412 return netdev_mc_count(netdev);
68d480c4
AD
3413}
3414
3415/**
3416 * igb_write_uc_addr_list - write unicast addresses to RAR table
3417 * @netdev: network interface device structure
3418 *
3419 * Writes unicast address list to the RAR table.
3420 * Returns: -ENOMEM on failure/insufficient address space
3421 * 0 on no addresses written
3422 * X on writing X addresses to the RAR table
3423 **/
3424static int igb_write_uc_addr_list(struct net_device *netdev)
3425{
3426 struct igb_adapter *adapter = netdev_priv(netdev);
3427 struct e1000_hw *hw = &adapter->hw;
3428 unsigned int vfn = adapter->vfs_allocated_count;
3429 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3430 int count = 0;
3431
3432 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3433 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3434 return -ENOMEM;
9d5c8243 3435
32e7bfc4 3436 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3437 struct netdev_hw_addr *ha;
32e7bfc4
JP
3438
3439 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3440 if (!rar_entries)
3441 break;
26ad9178
AD
3442 igb_rar_set_qsel(adapter, ha->addr,
3443 rar_entries--,
68d480c4
AD
3444 vfn);
3445 count++;
ff41f8dc
AD
3446 }
3447 }
3448 /* write the addresses in reverse order to avoid write combining */
3449 for (; rar_entries > 0 ; rar_entries--) {
3450 wr32(E1000_RAH(rar_entries), 0);
3451 wr32(E1000_RAL(rar_entries), 0);
3452 }
3453 wrfl();
3454
68d480c4
AD
3455 return count;
3456}
3457
3458/**
3459 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3460 * @netdev: network interface device structure
3461 *
3462 * The set_rx_mode entry point is called whenever the unicast or multicast
3463 * address lists or the network interface flags are updated. This routine is
3464 * responsible for configuring the hardware for proper unicast, multicast,
3465 * promiscuous mode, and all-multi behavior.
3466 **/
3467static void igb_set_rx_mode(struct net_device *netdev)
3468{
3469 struct igb_adapter *adapter = netdev_priv(netdev);
3470 struct e1000_hw *hw = &adapter->hw;
3471 unsigned int vfn = adapter->vfs_allocated_count;
3472 u32 rctl, vmolr = 0;
3473 int count;
3474
3475 /* Check for Promiscuous and All Multicast modes */
3476 rctl = rd32(E1000_RCTL);
3477
3478 /* clear the effected bits */
3479 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3480
3481 if (netdev->flags & IFF_PROMISC) {
3482 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3483 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3484 } else {
3485 if (netdev->flags & IFF_ALLMULTI) {
3486 rctl |= E1000_RCTL_MPE;
3487 vmolr |= E1000_VMOLR_MPME;
3488 } else {
3489 /*
3490 * Write addresses to the MTA, if the attempt fails
25985edc 3491 * then we should just turn on promiscuous mode so
68d480c4
AD
3492 * that we can at least receive multicast traffic
3493 */
3494 count = igb_write_mc_addr_list(netdev);
3495 if (count < 0) {
3496 rctl |= E1000_RCTL_MPE;
3497 vmolr |= E1000_VMOLR_MPME;
3498 } else if (count) {
3499 vmolr |= E1000_VMOLR_ROMPE;
3500 }
3501 }
3502 /*
3503 * Write addresses to available RAR registers, if there is not
3504 * sufficient space to store all the addresses then enable
25985edc 3505 * unicast promiscuous mode
68d480c4
AD
3506 */
3507 count = igb_write_uc_addr_list(netdev);
3508 if (count < 0) {
3509 rctl |= E1000_RCTL_UPE;
3510 vmolr |= E1000_VMOLR_ROPE;
3511 }
3512 rctl |= E1000_RCTL_VFE;
28fc06f5 3513 }
68d480c4 3514 wr32(E1000_RCTL, rctl);
28fc06f5 3515
68d480c4
AD
3516 /*
3517 * In order to support SR-IOV and eventually VMDq it is necessary to set
3518 * the VMOLR to enable the appropriate modes. Without this workaround
3519 * we will have issues with VLAN tag stripping not being done for frames
3520 * that are only arriving because we are the default pool
3521 */
f96a8a0b 3522 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3523 return;
9d5c8243 3524
68d480c4
AD
3525 vmolr |= rd32(E1000_VMOLR(vfn)) &
3526 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3527 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3528 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3529}
3530
13800469
GR
3531static void igb_check_wvbr(struct igb_adapter *adapter)
3532{
3533 struct e1000_hw *hw = &adapter->hw;
3534 u32 wvbr = 0;
3535
3536 switch (hw->mac.type) {
3537 case e1000_82576:
3538 case e1000_i350:
3539 if (!(wvbr = rd32(E1000_WVBR)))
3540 return;
3541 break;
3542 default:
3543 break;
3544 }
3545
3546 adapter->wvbr |= wvbr;
3547}
3548
3549#define IGB_STAGGERED_QUEUE_OFFSET 8
3550
3551static void igb_spoof_check(struct igb_adapter *adapter)
3552{
3553 int j;
3554
3555 if (!adapter->wvbr)
3556 return;
3557
3558 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3559 if (adapter->wvbr & (1 << j) ||
3560 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3561 dev_warn(&adapter->pdev->dev,
3562 "Spoof event(s) detected on VF %d\n", j);
3563 adapter->wvbr &=
3564 ~((1 << j) |
3565 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3566 }
3567 }
3568}
3569
9d5c8243
AK
3570/* Need to wait a few seconds after link up to get diagnostic information from
3571 * the phy */
3572static void igb_update_phy_info(unsigned long data)
3573{
3574 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3575 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3576}
3577
4d6b725e
AD
3578/**
3579 * igb_has_link - check shared code for link and determine up/down
3580 * @adapter: pointer to driver private info
3581 **/
3145535a 3582bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3583{
3584 struct e1000_hw *hw = &adapter->hw;
3585 bool link_active = false;
3586 s32 ret_val = 0;
3587
3588 /* get_link_status is set on LSC (link status) interrupt or
3589 * rx sequence error interrupt. get_link_status will stay
3590 * false until the e1000_check_for_link establishes link
3591 * for copper adapters ONLY
3592 */
3593 switch (hw->phy.media_type) {
3594 case e1000_media_type_copper:
3595 if (hw->mac.get_link_status) {
3596 ret_val = hw->mac.ops.check_for_link(hw);
3597 link_active = !hw->mac.get_link_status;
3598 } else {
3599 link_active = true;
3600 }
3601 break;
4d6b725e
AD
3602 case e1000_media_type_internal_serdes:
3603 ret_val = hw->mac.ops.check_for_link(hw);
3604 link_active = hw->mac.serdes_has_link;
3605 break;
3606 default:
3607 case e1000_media_type_unknown:
3608 break;
3609 }
3610
3611 return link_active;
3612}
3613
563988dc
SA
3614static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3615{
3616 bool ret = false;
3617 u32 ctrl_ext, thstat;
3618
f96a8a0b 3619 /* check for thermal sensor event on i350 copper only */
563988dc
SA
3620 if (hw->mac.type == e1000_i350) {
3621 thstat = rd32(E1000_THSTAT);
3622 ctrl_ext = rd32(E1000_CTRL_EXT);
3623
3624 if ((hw->phy.media_type == e1000_media_type_copper) &&
3625 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3626 ret = !!(thstat & event);
3627 }
3628 }
3629
3630 return ret;
3631}
3632
9d5c8243
AK
3633/**
3634 * igb_watchdog - Timer Call-back
3635 * @data: pointer to adapter cast into an unsigned long
3636 **/
3637static void igb_watchdog(unsigned long data)
3638{
3639 struct igb_adapter *adapter = (struct igb_adapter *)data;
3640 /* Do the rest outside of interrupt context */
3641 schedule_work(&adapter->watchdog_task);
3642}
3643
3644static void igb_watchdog_task(struct work_struct *work)
3645{
3646 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3647 struct igb_adapter,
3648 watchdog_task);
9d5c8243 3649 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3650 struct net_device *netdev = adapter->netdev;
563988dc 3651 u32 link;
7a6ea550 3652 int i;
9d5c8243 3653
4d6b725e 3654 link = igb_has_link(adapter);
9d5c8243 3655 if (link) {
749ab2cd
YZ
3656 /* Cancel scheduled suspend requests. */
3657 pm_runtime_resume(netdev->dev.parent);
3658
9d5c8243
AK
3659 if (!netif_carrier_ok(netdev)) {
3660 u32 ctrl;
330a6d6a
AD
3661 hw->mac.ops.get_speed_and_duplex(hw,
3662 &adapter->link_speed,
3663 &adapter->link_duplex);
9d5c8243
AK
3664
3665 ctrl = rd32(E1000_CTRL);
527d47c1 3666 /* Links status message must follow this format */
876d2d6f
JK
3667 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3668 "Duplex, Flow Control: %s\n",
559e9c49
AD
3669 netdev->name,
3670 adapter->link_speed,
3671 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3672 "Full" : "Half",
3673 (ctrl & E1000_CTRL_TFCE) &&
3674 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3675 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3676 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3677
563988dc 3678 /* check for thermal sensor event */
876d2d6f
JK
3679 if (igb_thermal_sensor_event(hw,
3680 E1000_THSTAT_LINK_THROTTLE)) {
3681 netdev_info(netdev, "The network adapter link "
3682 "speed was downshifted because it "
3683 "overheated\n");
7ef5ed1c 3684 }
563988dc 3685
d07f3e37 3686 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3687 adapter->tx_timeout_factor = 1;
3688 switch (adapter->link_speed) {
3689 case SPEED_10:
9d5c8243
AK
3690 adapter->tx_timeout_factor = 14;
3691 break;
3692 case SPEED_100:
9d5c8243
AK
3693 /* maybe add some timeout factor ? */
3694 break;
3695 }
3696
3697 netif_carrier_on(netdev);
9d5c8243 3698
4ae196df 3699 igb_ping_all_vfs(adapter);
17dc566c 3700 igb_check_vf_rate_limit(adapter);
4ae196df 3701
4b1a9877 3702 /* link state has changed, schedule phy info update */
9d5c8243
AK
3703 if (!test_bit(__IGB_DOWN, &adapter->state))
3704 mod_timer(&adapter->phy_info_timer,
3705 round_jiffies(jiffies + 2 * HZ));
3706 }
3707 } else {
3708 if (netif_carrier_ok(netdev)) {
3709 adapter->link_speed = 0;
3710 adapter->link_duplex = 0;
563988dc
SA
3711
3712 /* check for thermal sensor event */
876d2d6f
JK
3713 if (igb_thermal_sensor_event(hw,
3714 E1000_THSTAT_PWR_DOWN)) {
3715 netdev_err(netdev, "The network adapter was "
3716 "stopped because it overheated\n");
7ef5ed1c 3717 }
563988dc 3718
527d47c1
AD
3719 /* Links status message must follow this format */
3720 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3721 netdev->name);
9d5c8243 3722 netif_carrier_off(netdev);
4b1a9877 3723
4ae196df
AD
3724 igb_ping_all_vfs(adapter);
3725
4b1a9877 3726 /* link state has changed, schedule phy info update */
9d5c8243
AK
3727 if (!test_bit(__IGB_DOWN, &adapter->state))
3728 mod_timer(&adapter->phy_info_timer,
3729 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3730
3731 pm_schedule_suspend(netdev->dev.parent,
3732 MSEC_PER_SEC * 5);
9d5c8243
AK
3733 }
3734 }
3735
12dcd86b
ED
3736 spin_lock(&adapter->stats64_lock);
3737 igb_update_stats(adapter, &adapter->stats64);
3738 spin_unlock(&adapter->stats64_lock);
9d5c8243 3739
dbabb065 3740 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3741 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3742 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3743 /* We've lost link, so the controller stops DMA,
3744 * but we've got queued Tx work that's never going
3745 * to get done, so reset controller to flush Tx.
3746 * (Do the reset outside of interrupt context). */
dbabb065
AD
3747 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3748 adapter->tx_timeout_count++;
3749 schedule_work(&adapter->reset_task);
3750 /* return immediately since reset is imminent */
3751 return;
3752 }
9d5c8243 3753 }
9d5c8243 3754
dbabb065 3755 /* Force detection of hung controller every watchdog period */
6d095fa8 3756 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3757 }
f7ba205e 3758
9d5c8243 3759 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3760 if (adapter->msix_entries) {
047e0030 3761 u32 eics = 0;
0d1ae7f4
AD
3762 for (i = 0; i < adapter->num_q_vectors; i++)
3763 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
3764 wr32(E1000_EICS, eics);
3765 } else {
3766 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3767 }
9d5c8243 3768
13800469
GR
3769 igb_spoof_check(adapter);
3770
9d5c8243
AK
3771 /* Reset the timer */
3772 if (!test_bit(__IGB_DOWN, &adapter->state))
3773 mod_timer(&adapter->watchdog_timer,
3774 round_jiffies(jiffies + 2 * HZ));
3775}
3776
3777enum latency_range {
3778 lowest_latency = 0,
3779 low_latency = 1,
3780 bulk_latency = 2,
3781 latency_invalid = 255
3782};
3783
6eb5a7f1
AD
3784/**
3785 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3786 *
3787 * Stores a new ITR value based on strictly on packet size. This
3788 * algorithm is less sophisticated than that used in igb_update_itr,
3789 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3790 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3791 * were determined based on theoretical maximum wire speed and testing
3792 * data, in order to minimize response time while increasing bulk
3793 * throughput.
3794 * This functionality is controlled by the InterruptThrottleRate module
3795 * parameter (see igb_param.c)
3796 * NOTE: This function is called only when operating in a multiqueue
3797 * receive environment.
047e0030 3798 * @q_vector: pointer to q_vector
6eb5a7f1 3799 **/
047e0030 3800static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3801{
047e0030 3802 int new_val = q_vector->itr_val;
6eb5a7f1 3803 int avg_wire_size = 0;
047e0030 3804 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3805 unsigned int packets;
9d5c8243 3806
6eb5a7f1
AD
3807 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3808 * ints/sec - ITR timer value of 120 ticks.
3809 */
3810 if (adapter->link_speed != SPEED_1000) {
0ba82994 3811 new_val = IGB_4K_ITR;
6eb5a7f1 3812 goto set_itr_val;
9d5c8243 3813 }
047e0030 3814
0ba82994
AD
3815 packets = q_vector->rx.total_packets;
3816 if (packets)
3817 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3818
0ba82994
AD
3819 packets = q_vector->tx.total_packets;
3820 if (packets)
3821 avg_wire_size = max_t(u32, avg_wire_size,
3822 q_vector->tx.total_bytes / packets);
047e0030
AD
3823
3824 /* if avg_wire_size isn't set no work was done */
3825 if (!avg_wire_size)
3826 goto clear_counts;
9d5c8243 3827
6eb5a7f1
AD
3828 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3829 avg_wire_size += 24;
3830
3831 /* Don't starve jumbo frames */
3832 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3833
6eb5a7f1
AD
3834 /* Give a little boost to mid-size frames */
3835 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3836 new_val = avg_wire_size / 3;
3837 else
3838 new_val = avg_wire_size / 2;
9d5c8243 3839
0ba82994
AD
3840 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3841 if (new_val < IGB_20K_ITR &&
3842 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3843 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3844 new_val = IGB_20K_ITR;
abe1c363 3845
6eb5a7f1 3846set_itr_val:
047e0030
AD
3847 if (new_val != q_vector->itr_val) {
3848 q_vector->itr_val = new_val;
3849 q_vector->set_itr = 1;
9d5c8243 3850 }
6eb5a7f1 3851clear_counts:
0ba82994
AD
3852 q_vector->rx.total_bytes = 0;
3853 q_vector->rx.total_packets = 0;
3854 q_vector->tx.total_bytes = 0;
3855 q_vector->tx.total_packets = 0;
9d5c8243
AK
3856}
3857
3858/**
3859 * igb_update_itr - update the dynamic ITR value based on statistics
3860 * Stores a new ITR value based on packets and byte
3861 * counts during the last interrupt. The advantage of per interrupt
3862 * computation is faster updates and more accurate ITR for the current
3863 * traffic pattern. Constants in this function were computed
3864 * based on theoretical maximum wire speed and thresholds were set based
3865 * on testing data as well as attempting to minimize response time
3866 * while increasing bulk throughput.
3867 * this functionality is controlled by the InterruptThrottleRate module
3868 * parameter (see igb_param.c)
3869 * NOTE: These calculations are only valid when operating in a single-
3870 * queue environment.
0ba82994
AD
3871 * @q_vector: pointer to q_vector
3872 * @ring_container: ring info to update the itr for
9d5c8243 3873 **/
0ba82994
AD
3874static void igb_update_itr(struct igb_q_vector *q_vector,
3875 struct igb_ring_container *ring_container)
9d5c8243 3876{
0ba82994
AD
3877 unsigned int packets = ring_container->total_packets;
3878 unsigned int bytes = ring_container->total_bytes;
3879 u8 itrval = ring_container->itr;
9d5c8243 3880
0ba82994 3881 /* no packets, exit with status unchanged */
9d5c8243 3882 if (packets == 0)
0ba82994 3883 return;
9d5c8243 3884
0ba82994 3885 switch (itrval) {
9d5c8243
AK
3886 case lowest_latency:
3887 /* handle TSO and jumbo frames */
3888 if (bytes/packets > 8000)
0ba82994 3889 itrval = bulk_latency;
9d5c8243 3890 else if ((packets < 5) && (bytes > 512))
0ba82994 3891 itrval = low_latency;
9d5c8243
AK
3892 break;
3893 case low_latency: /* 50 usec aka 20000 ints/s */
3894 if (bytes > 10000) {
3895 /* this if handles the TSO accounting */
3896 if (bytes/packets > 8000) {
0ba82994 3897 itrval = bulk_latency;
9d5c8243 3898 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3899 itrval = bulk_latency;
9d5c8243 3900 } else if ((packets > 35)) {
0ba82994 3901 itrval = lowest_latency;
9d5c8243
AK
3902 }
3903 } else if (bytes/packets > 2000) {
0ba82994 3904 itrval = bulk_latency;
9d5c8243 3905 } else if (packets <= 2 && bytes < 512) {
0ba82994 3906 itrval = lowest_latency;
9d5c8243
AK
3907 }
3908 break;
3909 case bulk_latency: /* 250 usec aka 4000 ints/s */
3910 if (bytes > 25000) {
3911 if (packets > 35)
0ba82994 3912 itrval = low_latency;
1e5c3d21 3913 } else if (bytes < 1500) {
0ba82994 3914 itrval = low_latency;
9d5c8243
AK
3915 }
3916 break;
3917 }
3918
0ba82994
AD
3919 /* clear work counters since we have the values we need */
3920 ring_container->total_bytes = 0;
3921 ring_container->total_packets = 0;
3922
3923 /* write updated itr to ring container */
3924 ring_container->itr = itrval;
9d5c8243
AK
3925}
3926
0ba82994 3927static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 3928{
0ba82994 3929 struct igb_adapter *adapter = q_vector->adapter;
047e0030 3930 u32 new_itr = q_vector->itr_val;
0ba82994 3931 u8 current_itr = 0;
9d5c8243
AK
3932
3933 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3934 if (adapter->link_speed != SPEED_1000) {
3935 current_itr = 0;
0ba82994 3936 new_itr = IGB_4K_ITR;
9d5c8243
AK
3937 goto set_itr_now;
3938 }
3939
0ba82994
AD
3940 igb_update_itr(q_vector, &q_vector->tx);
3941 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 3942
0ba82994 3943 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 3944
6eb5a7f1 3945 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
3946 if (current_itr == lowest_latency &&
3947 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3948 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
3949 current_itr = low_latency;
3950
9d5c8243
AK
3951 switch (current_itr) {
3952 /* counts and packets in update_itr are dependent on these numbers */
3953 case lowest_latency:
0ba82994 3954 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
3955 break;
3956 case low_latency:
0ba82994 3957 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
3958 break;
3959 case bulk_latency:
0ba82994 3960 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
3961 break;
3962 default:
3963 break;
3964 }
3965
3966set_itr_now:
047e0030 3967 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3968 /* this attempts to bias the interrupt rate towards Bulk
3969 * by adding intermediate steps when interrupt rate is
3970 * increasing */
047e0030
AD
3971 new_itr = new_itr > q_vector->itr_val ?
3972 max((new_itr * q_vector->itr_val) /
3973 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 3974 new_itr) :
9d5c8243
AK
3975 new_itr;
3976 /* Don't write the value here; it resets the adapter's
3977 * internal timer, and causes us to delay far longer than
3978 * we should between interrupts. Instead, we write the ITR
3979 * value at the beginning of the next interrupt so the timing
3980 * ends up being correct.
3981 */
047e0030
AD
3982 q_vector->itr_val = new_itr;
3983 q_vector->set_itr = 1;
9d5c8243 3984 }
9d5c8243
AK
3985}
3986
c50b52a0
SH
3987static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3988 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
3989{
3990 struct e1000_adv_tx_context_desc *context_desc;
3991 u16 i = tx_ring->next_to_use;
3992
3993 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3994
3995 i++;
3996 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3997
3998 /* set bits to identify this as an advanced context descriptor */
3999 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4000
4001 /* For 82575, context index must be unique per ring. */
866cff06 4002 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4003 mss_l4len_idx |= tx_ring->reg_idx << 4;
4004
4005 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4006 context_desc->seqnum_seed = 0;
4007 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4008 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4009}
4010
7af40ad9
AD
4011static int igb_tso(struct igb_ring *tx_ring,
4012 struct igb_tx_buffer *first,
4013 u8 *hdr_len)
9d5c8243 4014{
7af40ad9 4015 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4016 u32 vlan_macip_lens, type_tucmd;
4017 u32 mss_l4len_idx, l4len;
4018
ed6aa105
AD
4019 if (skb->ip_summed != CHECKSUM_PARTIAL)
4020 return 0;
4021
7d13a7d0
AD
4022 if (!skb_is_gso(skb))
4023 return 0;
9d5c8243
AK
4024
4025 if (skb_header_cloned(skb)) {
7af40ad9 4026 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4027 if (err)
4028 return err;
4029 }
4030
7d13a7d0
AD
4031 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4032 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4033
7af40ad9 4034 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4035 struct iphdr *iph = ip_hdr(skb);
4036 iph->tot_len = 0;
4037 iph->check = 0;
4038 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4039 iph->daddr, 0,
4040 IPPROTO_TCP,
4041 0);
7d13a7d0 4042 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4043 first->tx_flags |= IGB_TX_FLAGS_TSO |
4044 IGB_TX_FLAGS_CSUM |
4045 IGB_TX_FLAGS_IPV4;
8e1e8a47 4046 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4047 ipv6_hdr(skb)->payload_len = 0;
4048 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4049 &ipv6_hdr(skb)->daddr,
4050 0, IPPROTO_TCP, 0);
7af40ad9
AD
4051 first->tx_flags |= IGB_TX_FLAGS_TSO |
4052 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4053 }
4054
7af40ad9 4055 /* compute header lengths */
7d13a7d0
AD
4056 l4len = tcp_hdrlen(skb);
4057 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4058
7af40ad9
AD
4059 /* update gso size and bytecount with header size */
4060 first->gso_segs = skb_shinfo(skb)->gso_segs;
4061 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4062
9d5c8243 4063 /* MSS L4LEN IDX */
7d13a7d0
AD
4064 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4065 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4066
7d13a7d0
AD
4067 /* VLAN MACLEN IPLEN */
4068 vlan_macip_lens = skb_network_header_len(skb);
4069 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4070 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4071
7d13a7d0 4072 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4073
7d13a7d0 4074 return 1;
9d5c8243
AK
4075}
4076
7af40ad9 4077static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4078{
7af40ad9 4079 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4080 u32 vlan_macip_lens = 0;
4081 u32 mss_l4len_idx = 0;
4082 u32 type_tucmd = 0;
9d5c8243 4083
7d13a7d0 4084 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4085 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4086 return;
7d13a7d0
AD
4087 } else {
4088 u8 l4_hdr = 0;
7af40ad9 4089 switch (first->protocol) {
7d13a7d0
AD
4090 case __constant_htons(ETH_P_IP):
4091 vlan_macip_lens |= skb_network_header_len(skb);
4092 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4093 l4_hdr = ip_hdr(skb)->protocol;
4094 break;
4095 case __constant_htons(ETH_P_IPV6):
4096 vlan_macip_lens |= skb_network_header_len(skb);
4097 l4_hdr = ipv6_hdr(skb)->nexthdr;
4098 break;
4099 default:
4100 if (unlikely(net_ratelimit())) {
4101 dev_warn(tx_ring->dev,
4102 "partial checksum but proto=%x!\n",
7af40ad9 4103 first->protocol);
fa4a7ef3 4104 }
7d13a7d0
AD
4105 break;
4106 }
fa4a7ef3 4107
7d13a7d0
AD
4108 switch (l4_hdr) {
4109 case IPPROTO_TCP:
4110 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4111 mss_l4len_idx = tcp_hdrlen(skb) <<
4112 E1000_ADVTXD_L4LEN_SHIFT;
4113 break;
4114 case IPPROTO_SCTP:
4115 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4116 mss_l4len_idx = sizeof(struct sctphdr) <<
4117 E1000_ADVTXD_L4LEN_SHIFT;
4118 break;
4119 case IPPROTO_UDP:
4120 mss_l4len_idx = sizeof(struct udphdr) <<
4121 E1000_ADVTXD_L4LEN_SHIFT;
4122 break;
4123 default:
4124 if (unlikely(net_ratelimit())) {
4125 dev_warn(tx_ring->dev,
4126 "partial checksum but l4 proto=%x!\n",
4127 l4_hdr);
44b0cda3 4128 }
7d13a7d0 4129 break;
9d5c8243 4130 }
7af40ad9
AD
4131
4132 /* update TX checksum flag */
4133 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4134 }
9d5c8243 4135
7d13a7d0 4136 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4137 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4138
7d13a7d0 4139 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4140}
4141
1d9daf45
AD
4142#define IGB_SET_FLAG(_input, _flag, _result) \
4143 ((_flag <= _result) ? \
4144 ((u32)(_input & _flag) * (_result / _flag)) : \
4145 ((u32)(_input & _flag) / (_flag / _result)))
4146
4147static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4148{
4149 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4150 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4151 E1000_ADVTXD_DCMD_DEXT |
4152 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4153
4154 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4155 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4156 (E1000_ADVTXD_DCMD_VLE));
4157
4158 /* set segmentation bits for TSO */
4159 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4160 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4161
4162 /* set timestamp bit if present */
1d9daf45
AD
4163 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4164 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4165
1d9daf45
AD
4166 /* insert frame checksum */
4167 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4168
4169 return cmd_type;
4170}
4171
7af40ad9
AD
4172static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4173 union e1000_adv_tx_desc *tx_desc,
4174 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4175{
4176 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4177
1d9daf45
AD
4178 /* 82575 requires a unique index per ring */
4179 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4180 olinfo_status |= tx_ring->reg_idx << 4;
4181
4182 /* insert L4 checksum */
1d9daf45
AD
4183 olinfo_status |= IGB_SET_FLAG(tx_flags,
4184 IGB_TX_FLAGS_CSUM,
4185 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4186
1d9daf45
AD
4187 /* insert IPv4 checksum */
4188 olinfo_status |= IGB_SET_FLAG(tx_flags,
4189 IGB_TX_FLAGS_IPV4,
4190 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4191
7af40ad9 4192 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4193}
4194
ebe42d16
AD
4195/*
4196 * The largest size we can write to the descriptor is 65535. In order to
4197 * maintain a power of two alignment we have to limit ourselves to 32K.
4198 */
4199#define IGB_MAX_TXD_PWR 15
7af40ad9 4200#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4201
7af40ad9
AD
4202static void igb_tx_map(struct igb_ring *tx_ring,
4203 struct igb_tx_buffer *first,
ebe42d16 4204 const u8 hdr_len)
9d5c8243 4205{
7af40ad9 4206 struct sk_buff *skb = first->skb;
c9f14bf3 4207 struct igb_tx_buffer *tx_buffer;
ebe42d16 4208 union e1000_adv_tx_desc *tx_desc;
80d0759e 4209 struct skb_frag_struct *frag;
ebe42d16 4210 dma_addr_t dma;
80d0759e 4211 unsigned int data_len, size;
7af40ad9 4212 u32 tx_flags = first->tx_flags;
1d9daf45 4213 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4214 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4215
4216 tx_desc = IGB_TX_DESC(tx_ring, i);
4217
80d0759e
AD
4218 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4219
4220 size = skb_headlen(skb);
4221 data_len = skb->data_len;
ebe42d16
AD
4222
4223 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4224
80d0759e
AD
4225 tx_buffer = first;
4226
4227 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4228 if (dma_mapping_error(tx_ring->dev, dma))
4229 goto dma_error;
4230
4231 /* record length, and DMA address */
4232 dma_unmap_len_set(tx_buffer, len, size);
4233 dma_unmap_addr_set(tx_buffer, dma, dma);
4234
4235 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4236
ebe42d16
AD
4237 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4238 tx_desc->read.cmd_type_len =
1d9daf45 4239 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4240
4241 i++;
4242 tx_desc++;
4243 if (i == tx_ring->count) {
4244 tx_desc = IGB_TX_DESC(tx_ring, 0);
4245 i = 0;
4246 }
80d0759e 4247 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4248
4249 dma += IGB_MAX_DATA_PER_TXD;
4250 size -= IGB_MAX_DATA_PER_TXD;
4251
ebe42d16
AD
4252 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4253 }
4254
4255 if (likely(!data_len))
4256 break;
2bbfebe2 4257
1d9daf45 4258 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4259
65689fef 4260 i++;
ebe42d16
AD
4261 tx_desc++;
4262 if (i == tx_ring->count) {
4263 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4264 i = 0;
ebe42d16 4265 }
80d0759e 4266 tx_desc->read.olinfo_status = 0;
65689fef 4267
9e903e08 4268 size = skb_frag_size(frag);
ebe42d16
AD
4269 data_len -= size;
4270
4271 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4272 size, DMA_TO_DEVICE);
6366ad33 4273
c9f14bf3 4274 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4275 }
4276
ebe42d16 4277 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4278 cmd_type |= size | IGB_TXD_DCMD;
4279 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4280
80d0759e
AD
4281 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4282
8542db05
AD
4283 /* set the timestamp */
4284 first->time_stamp = jiffies;
4285
ebe42d16
AD
4286 /*
4287 * Force memory writes to complete before letting h/w know there
4288 * are new descriptors to fetch. (Only applicable for weak-ordered
4289 * memory model archs, such as IA-64).
4290 *
4291 * We also need this memory barrier to make certain all of the
4292 * status bits have been updated before next_to_watch is written.
4293 */
4294 wmb();
4295
8542db05 4296 /* set next_to_watch value indicating a packet is present */
ebe42d16 4297 first->next_to_watch = tx_desc;
9d5c8243 4298
ebe42d16
AD
4299 i++;
4300 if (i == tx_ring->count)
4301 i = 0;
6366ad33 4302
ebe42d16 4303 tx_ring->next_to_use = i;
6366ad33 4304
ebe42d16 4305 writel(i, tx_ring->tail);
6366ad33 4306
ebe42d16
AD
4307 /* we need this if more than one processor can write to our tail
4308 * at a time, it syncronizes IO on IA64/Altix systems */
4309 mmiowb();
4310
4311 return;
4312
4313dma_error:
4314 dev_err(tx_ring->dev, "TX DMA map failed\n");
4315
4316 /* clear dma mappings for failed tx_buffer_info map */
4317 for (;;) {
c9f14bf3
AD
4318 tx_buffer = &tx_ring->tx_buffer_info[i];
4319 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4320 if (tx_buffer == first)
ebe42d16 4321 break;
a77ff709
NN
4322 if (i == 0)
4323 i = tx_ring->count;
6366ad33 4324 i--;
6366ad33
AD
4325 }
4326
9d5c8243 4327 tx_ring->next_to_use = i;
9d5c8243
AK
4328}
4329
6ad4edfc 4330static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4331{
e694e964
AD
4332 struct net_device *netdev = tx_ring->netdev;
4333
661086df 4334 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4335
9d5c8243
AK
4336 /* Herbert's original patch had:
4337 * smp_mb__after_netif_stop_queue();
4338 * but since that doesn't exist yet, just open code it. */
4339 smp_mb();
4340
4341 /* We need to check again in a case another CPU has just
4342 * made room available. */
c493ea45 4343 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4344 return -EBUSY;
4345
4346 /* A reprieve! */
661086df 4347 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4348
4349 u64_stats_update_begin(&tx_ring->tx_syncp2);
4350 tx_ring->tx_stats.restart_queue2++;
4351 u64_stats_update_end(&tx_ring->tx_syncp2);
4352
9d5c8243
AK
4353 return 0;
4354}
4355
6ad4edfc 4356static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4357{
c493ea45 4358 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4359 return 0;
e694e964 4360 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4361}
4362
cd392f5c
AD
4363netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4364 struct igb_ring *tx_ring)
9d5c8243 4365{
1f6e8178 4366 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
8542db05 4367 struct igb_tx_buffer *first;
ebe42d16 4368 int tso;
91d4ee33 4369 u32 tx_flags = 0;
31f6adbb 4370 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4371 u8 hdr_len = 0;
9d5c8243 4372
9d5c8243
AK
4373 /* need: 1 descriptor per page,
4374 * + 2 desc gap to keep tail from touching head,
4375 * + 1 desc for skb->data,
4376 * + 1 desc for context descriptor,
4377 * otherwise try next time */
e694e964 4378 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4379 /* this is a hard error */
9d5c8243
AK
4380 return NETDEV_TX_BUSY;
4381 }
33af6bcc 4382
7af40ad9
AD
4383 /* record the location of the first descriptor for this packet */
4384 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4385 first->skb = skb;
4386 first->bytecount = skb->len;
4387 first->gso_segs = 1;
4388
1f6e8178
MV
4389 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4390 !(adapter->ptp_tx_skb))) {
2244d07b 4391 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4392 tx_flags |= IGB_TX_FLAGS_TSTAMP;
1f6e8178
MV
4393
4394 adapter->ptp_tx_skb = skb_get(skb);
4395 if (adapter->hw.mac.type == e1000_82576)
4396 schedule_work(&adapter->ptp_tx_work);
33af6bcc 4397 }
9d5c8243 4398
eab6d18d 4399 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4400 tx_flags |= IGB_TX_FLAGS_VLAN;
4401 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4402 }
4403
7af40ad9
AD
4404 /* record initial flags and protocol */
4405 first->tx_flags = tx_flags;
4406 first->protocol = protocol;
cdfd01fc 4407
7af40ad9
AD
4408 tso = igb_tso(tx_ring, first, &hdr_len);
4409 if (tso < 0)
7d13a7d0 4410 goto out_drop;
7af40ad9
AD
4411 else if (!tso)
4412 igb_tx_csum(tx_ring, first);
9d5c8243 4413
7af40ad9 4414 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4415
4416 /* Make sure there is space in the ring for the next send. */
e694e964 4417 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4418
9d5c8243 4419 return NETDEV_TX_OK;
7d13a7d0
AD
4420
4421out_drop:
7af40ad9
AD
4422 igb_unmap_and_free_tx_resource(tx_ring, first);
4423
7d13a7d0 4424 return NETDEV_TX_OK;
9d5c8243
AK
4425}
4426
1cc3bd87
AD
4427static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4428 struct sk_buff *skb)
4429{
4430 unsigned int r_idx = skb->queue_mapping;
4431
4432 if (r_idx >= adapter->num_tx_queues)
4433 r_idx = r_idx % adapter->num_tx_queues;
4434
4435 return adapter->tx_ring[r_idx];
4436}
4437
cd392f5c
AD
4438static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4439 struct net_device *netdev)
9d5c8243
AK
4440{
4441 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4442
4443 if (test_bit(__IGB_DOWN, &adapter->state)) {
4444 dev_kfree_skb_any(skb);
4445 return NETDEV_TX_OK;
4446 }
4447
4448 if (skb->len <= 0) {
4449 dev_kfree_skb_any(skb);
4450 return NETDEV_TX_OK;
4451 }
4452
1cc3bd87
AD
4453 /*
4454 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4455 * in order to meet this minimum size requirement.
4456 */
ea5ceeab
TD
4457 if (unlikely(skb->len < 17)) {
4458 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
4459 return NETDEV_TX_OK;
4460 skb->len = 17;
ea5ceeab 4461 skb_set_tail_pointer(skb, 17);
1cc3bd87 4462 }
9d5c8243 4463
1cc3bd87 4464 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4465}
4466
4467/**
4468 * igb_tx_timeout - Respond to a Tx Hang
4469 * @netdev: network interface device structure
4470 **/
4471static void igb_tx_timeout(struct net_device *netdev)
4472{
4473 struct igb_adapter *adapter = netdev_priv(netdev);
4474 struct e1000_hw *hw = &adapter->hw;
4475
4476 /* Do the reset outside of interrupt context */
4477 adapter->tx_timeout_count++;
f7ba205e 4478
06218a8d 4479 if (hw->mac.type >= e1000_82580)
55cac248
AD
4480 hw->dev_spec._82575.global_device_reset = true;
4481
9d5c8243 4482 schedule_work(&adapter->reset_task);
265de409
AD
4483 wr32(E1000_EICS,
4484 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4485}
4486
4487static void igb_reset_task(struct work_struct *work)
4488{
4489 struct igb_adapter *adapter;
4490 adapter = container_of(work, struct igb_adapter, reset_task);
4491
c97ec42a
TI
4492 igb_dump(adapter);
4493 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4494 igb_reinit_locked(adapter);
4495}
4496
4497/**
12dcd86b 4498 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4499 * @netdev: network interface device structure
12dcd86b 4500 * @stats: rtnl_link_stats64 pointer
9d5c8243 4501 *
9d5c8243 4502 **/
12dcd86b
ED
4503static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4504 struct rtnl_link_stats64 *stats)
9d5c8243 4505{
12dcd86b
ED
4506 struct igb_adapter *adapter = netdev_priv(netdev);
4507
4508 spin_lock(&adapter->stats64_lock);
4509 igb_update_stats(adapter, &adapter->stats64);
4510 memcpy(stats, &adapter->stats64, sizeof(*stats));
4511 spin_unlock(&adapter->stats64_lock);
4512
4513 return stats;
9d5c8243
AK
4514}
4515
4516/**
4517 * igb_change_mtu - Change the Maximum Transfer Unit
4518 * @netdev: network interface device structure
4519 * @new_mtu: new value for maximum frame size
4520 *
4521 * Returns 0 on success, negative on failure
4522 **/
4523static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4524{
4525 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4526 struct pci_dev *pdev = adapter->pdev;
153285f9 4527 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4528
c809d227 4529 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4530 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4531 return -EINVAL;
4532 }
4533
153285f9 4534#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4535 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4536 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4537 return -EINVAL;
4538 }
4539
4540 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4541 msleep(1);
73cd78f1 4542
9d5c8243
AK
4543 /* igb_down has a dependency on max_frame_size */
4544 adapter->max_frame_size = max_frame;
559e9c49 4545
4c844851
AD
4546 if (netif_running(netdev))
4547 igb_down(adapter);
9d5c8243 4548
090b1795 4549 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4550 netdev->mtu, new_mtu);
4551 netdev->mtu = new_mtu;
4552
4553 if (netif_running(netdev))
4554 igb_up(adapter);
4555 else
4556 igb_reset(adapter);
4557
4558 clear_bit(__IGB_RESETTING, &adapter->state);
4559
4560 return 0;
4561}
4562
4563/**
4564 * igb_update_stats - Update the board statistics counters
4565 * @adapter: board private structure
4566 **/
4567
12dcd86b
ED
4568void igb_update_stats(struct igb_adapter *adapter,
4569 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4570{
4571 struct e1000_hw *hw = &adapter->hw;
4572 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4573 u32 reg, mpc;
9d5c8243 4574 u16 phy_tmp;
3f9c0164
AD
4575 int i;
4576 u64 bytes, packets;
12dcd86b
ED
4577 unsigned int start;
4578 u64 _bytes, _packets;
9d5c8243
AK
4579
4580#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4581
4582 /*
4583 * Prevent stats update while adapter is being reset, or if the pci
4584 * connection is down.
4585 */
4586 if (adapter->link_speed == 0)
4587 return;
4588 if (pci_channel_offline(pdev))
4589 return;
4590
3f9c0164
AD
4591 bytes = 0;
4592 packets = 0;
4593 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 4594 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 4595 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4596
ae1c07a6
AD
4597 if (rqdpc) {
4598 ring->rx_stats.drops += rqdpc;
4599 net_stats->rx_fifo_errors += rqdpc;
4600 }
12dcd86b
ED
4601
4602 do {
4603 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4604 _bytes = ring->rx_stats.bytes;
4605 _packets = ring->rx_stats.packets;
4606 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4607 bytes += _bytes;
4608 packets += _packets;
3f9c0164
AD
4609 }
4610
128e45eb
AD
4611 net_stats->rx_bytes = bytes;
4612 net_stats->rx_packets = packets;
3f9c0164
AD
4613
4614 bytes = 0;
4615 packets = 0;
4616 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4617 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4618 do {
4619 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4620 _bytes = ring->tx_stats.bytes;
4621 _packets = ring->tx_stats.packets;
4622 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4623 bytes += _bytes;
4624 packets += _packets;
3f9c0164 4625 }
128e45eb
AD
4626 net_stats->tx_bytes = bytes;
4627 net_stats->tx_packets = packets;
3f9c0164
AD
4628
4629 /* read stats registers */
9d5c8243
AK
4630 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4631 adapter->stats.gprc += rd32(E1000_GPRC);
4632 adapter->stats.gorc += rd32(E1000_GORCL);
4633 rd32(E1000_GORCH); /* clear GORCL */
4634 adapter->stats.bprc += rd32(E1000_BPRC);
4635 adapter->stats.mprc += rd32(E1000_MPRC);
4636 adapter->stats.roc += rd32(E1000_ROC);
4637
4638 adapter->stats.prc64 += rd32(E1000_PRC64);
4639 adapter->stats.prc127 += rd32(E1000_PRC127);
4640 adapter->stats.prc255 += rd32(E1000_PRC255);
4641 adapter->stats.prc511 += rd32(E1000_PRC511);
4642 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4643 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4644 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4645 adapter->stats.sec += rd32(E1000_SEC);
4646
fa3d9a6d
MW
4647 mpc = rd32(E1000_MPC);
4648 adapter->stats.mpc += mpc;
4649 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4650 adapter->stats.scc += rd32(E1000_SCC);
4651 adapter->stats.ecol += rd32(E1000_ECOL);
4652 adapter->stats.mcc += rd32(E1000_MCC);
4653 adapter->stats.latecol += rd32(E1000_LATECOL);
4654 adapter->stats.dc += rd32(E1000_DC);
4655 adapter->stats.rlec += rd32(E1000_RLEC);
4656 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4657 adapter->stats.xontxc += rd32(E1000_XONTXC);
4658 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4659 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4660 adapter->stats.fcruc += rd32(E1000_FCRUC);
4661 adapter->stats.gptc += rd32(E1000_GPTC);
4662 adapter->stats.gotc += rd32(E1000_GOTCL);
4663 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4664 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4665 adapter->stats.ruc += rd32(E1000_RUC);
4666 adapter->stats.rfc += rd32(E1000_RFC);
4667 adapter->stats.rjc += rd32(E1000_RJC);
4668 adapter->stats.tor += rd32(E1000_TORH);
4669 adapter->stats.tot += rd32(E1000_TOTH);
4670 adapter->stats.tpr += rd32(E1000_TPR);
4671
4672 adapter->stats.ptc64 += rd32(E1000_PTC64);
4673 adapter->stats.ptc127 += rd32(E1000_PTC127);
4674 adapter->stats.ptc255 += rd32(E1000_PTC255);
4675 adapter->stats.ptc511 += rd32(E1000_PTC511);
4676 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4677 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4678
4679 adapter->stats.mptc += rd32(E1000_MPTC);
4680 adapter->stats.bptc += rd32(E1000_BPTC);
4681
2d0b0f69
NN
4682 adapter->stats.tpt += rd32(E1000_TPT);
4683 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4684
4685 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4686 /* read internal phy specific stats */
4687 reg = rd32(E1000_CTRL_EXT);
4688 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4689 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
4690
4691 /* this stat has invalid values on i210/i211 */
4692 if ((hw->mac.type != e1000_i210) &&
4693 (hw->mac.type != e1000_i211))
4694 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
4695 }
4696
9d5c8243
AK
4697 adapter->stats.tsctc += rd32(E1000_TSCTC);
4698 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4699
4700 adapter->stats.iac += rd32(E1000_IAC);
4701 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4702 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4703 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4704 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4705 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4706 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4707 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4708 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4709
4710 /* Fill out the OS statistics structure */
128e45eb
AD
4711 net_stats->multicast = adapter->stats.mprc;
4712 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4713
4714 /* Rx Errors */
4715
4716 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4717 * our own version based on RUC and ROC */
128e45eb 4718 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4719 adapter->stats.crcerrs + adapter->stats.algnerrc +
4720 adapter->stats.ruc + adapter->stats.roc +
4721 adapter->stats.cexterr;
128e45eb
AD
4722 net_stats->rx_length_errors = adapter->stats.ruc +
4723 adapter->stats.roc;
4724 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4725 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4726 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4727
4728 /* Tx Errors */
128e45eb
AD
4729 net_stats->tx_errors = adapter->stats.ecol +
4730 adapter->stats.latecol;
4731 net_stats->tx_aborted_errors = adapter->stats.ecol;
4732 net_stats->tx_window_errors = adapter->stats.latecol;
4733 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4734
4735 /* Tx Dropped needs to be maintained elsewhere */
4736
4737 /* Phy Stats */
4738 if (hw->phy.media_type == e1000_media_type_copper) {
4739 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4740 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4741 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4742 adapter->phy_stats.idle_errors += phy_tmp;
4743 }
4744 }
4745
4746 /* Management Stats */
4747 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4748 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4749 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4750
4751 /* OS2BMC Stats */
4752 reg = rd32(E1000_MANC);
4753 if (reg & E1000_MANC_EN_BMC2OS) {
4754 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4755 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4756 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4757 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4758 }
9d5c8243
AK
4759}
4760
9d5c8243
AK
4761static irqreturn_t igb_msix_other(int irq, void *data)
4762{
047e0030 4763 struct igb_adapter *adapter = data;
9d5c8243 4764 struct e1000_hw *hw = &adapter->hw;
844290e5 4765 u32 icr = rd32(E1000_ICR);
844290e5 4766 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4767
7f081d40
AD
4768 if (icr & E1000_ICR_DRSTA)
4769 schedule_work(&adapter->reset_task);
4770
047e0030 4771 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4772 /* HW is reporting DMA is out of sync */
4773 adapter->stats.doosync++;
13800469
GR
4774 /* The DMA Out of Sync is also indication of a spoof event
4775 * in IOV mode. Check the Wrong VM Behavior register to
4776 * see if it is really a spoof event. */
4777 igb_check_wvbr(adapter);
dda0e083 4778 }
eebbbdba 4779
4ae196df
AD
4780 /* Check for a mailbox event */
4781 if (icr & E1000_ICR_VMMB)
4782 igb_msg_task(adapter);
4783
4784 if (icr & E1000_ICR_LSC) {
4785 hw->mac.get_link_status = 1;
4786 /* guard against interrupt when we're going down */
4787 if (!test_bit(__IGB_DOWN, &adapter->state))
4788 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4789 }
4790
1f6e8178
MV
4791 if (icr & E1000_ICR_TS) {
4792 u32 tsicr = rd32(E1000_TSICR);
4793
4794 if (tsicr & E1000_TSICR_TXTS) {
4795 /* acknowledge the interrupt */
4796 wr32(E1000_TSICR, E1000_TSICR_TXTS);
4797 /* retrieve hardware timestamp */
4798 schedule_work(&adapter->ptp_tx_work);
4799 }
4800 }
1f6e8178 4801
844290e5 4802 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4803
4804 return IRQ_HANDLED;
4805}
4806
047e0030 4807static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4808{
26b39276 4809 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4810 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4811
047e0030
AD
4812 if (!q_vector->set_itr)
4813 return;
73cd78f1 4814
047e0030
AD
4815 if (!itr_val)
4816 itr_val = 0x4;
661086df 4817
26b39276
AD
4818 if (adapter->hw.mac.type == e1000_82575)
4819 itr_val |= itr_val << 16;
661086df 4820 else
0ba82994 4821 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4822
047e0030
AD
4823 writel(itr_val, q_vector->itr_register);
4824 q_vector->set_itr = 0;
6eb5a7f1
AD
4825}
4826
047e0030 4827static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4828{
047e0030 4829 struct igb_q_vector *q_vector = data;
9d5c8243 4830
047e0030
AD
4831 /* Write the ITR value calculated from the previous interrupt. */
4832 igb_write_itr(q_vector);
9d5c8243 4833
047e0030 4834 napi_schedule(&q_vector->napi);
844290e5 4835
047e0030 4836 return IRQ_HANDLED;
fe4506b6
JC
4837}
4838
421e02f0 4839#ifdef CONFIG_IGB_DCA
6a05004a
AD
4840static void igb_update_tx_dca(struct igb_adapter *adapter,
4841 struct igb_ring *tx_ring,
4842 int cpu)
4843{
4844 struct e1000_hw *hw = &adapter->hw;
4845 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
4846
4847 if (hw->mac.type != e1000_82575)
4848 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
4849
4850 /*
4851 * We can enable relaxed ordering for reads, but not writes when
4852 * DCA is enabled. This is due to a known issue in some chipsets
4853 * which will cause the DCA tag to be cleared.
4854 */
4855 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
4856 E1000_DCA_TXCTRL_DATA_RRO_EN |
4857 E1000_DCA_TXCTRL_DESC_DCA_EN;
4858
4859 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
4860}
4861
4862static void igb_update_rx_dca(struct igb_adapter *adapter,
4863 struct igb_ring *rx_ring,
4864 int cpu)
4865{
4866 struct e1000_hw *hw = &adapter->hw;
4867 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
4868
4869 if (hw->mac.type != e1000_82575)
4870 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
4871
4872 /*
4873 * We can enable relaxed ordering for reads, but not writes when
4874 * DCA is enabled. This is due to a known issue in some chipsets
4875 * which will cause the DCA tag to be cleared.
4876 */
4877 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
4878 E1000_DCA_RXCTRL_DESC_DCA_EN;
4879
4880 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
4881}
4882
047e0030 4883static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4884{
047e0030 4885 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 4886 int cpu = get_cpu();
fe4506b6 4887
047e0030
AD
4888 if (q_vector->cpu == cpu)
4889 goto out_no_update;
4890
6a05004a
AD
4891 if (q_vector->tx.ring)
4892 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
4893
4894 if (q_vector->rx.ring)
4895 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
4896
047e0030
AD
4897 q_vector->cpu = cpu;
4898out_no_update:
fe4506b6
JC
4899 put_cpu();
4900}
4901
4902static void igb_setup_dca(struct igb_adapter *adapter)
4903{
7e0e99ef 4904 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4905 int i;
4906
7dfc16fa 4907 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4908 return;
4909
7e0e99ef
AD
4910 /* Always use CB2 mode, difference is masked in the CB driver. */
4911 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4912
047e0030 4913 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4914 adapter->q_vector[i]->cpu = -1;
4915 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4916 }
4917}
4918
4919static int __igb_notify_dca(struct device *dev, void *data)
4920{
4921 struct net_device *netdev = dev_get_drvdata(dev);
4922 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4923 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4924 struct e1000_hw *hw = &adapter->hw;
4925 unsigned long event = *(unsigned long *)data;
4926
4927 switch (event) {
4928 case DCA_PROVIDER_ADD:
4929 /* if already enabled, don't do it again */
7dfc16fa 4930 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4931 break;
fe4506b6 4932 if (dca_add_requester(dev) == 0) {
bbd98fe4 4933 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4934 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4935 igb_setup_dca(adapter);
4936 break;
4937 }
4938 /* Fall Through since DCA is disabled. */
4939 case DCA_PROVIDER_REMOVE:
7dfc16fa 4940 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4941 /* without this a class_device is left
047e0030 4942 * hanging around in the sysfs model */
fe4506b6 4943 dca_remove_requester(dev);
090b1795 4944 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4945 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4946 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4947 }
4948 break;
4949 }
bbd98fe4 4950
fe4506b6 4951 return 0;
9d5c8243
AK
4952}
4953
fe4506b6
JC
4954static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4955 void *p)
4956{
4957 int ret_val;
4958
4959 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4960 __igb_notify_dca);
4961
4962 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4963}
421e02f0 4964#endif /* CONFIG_IGB_DCA */
9d5c8243 4965
0224d663
GR
4966#ifdef CONFIG_PCI_IOV
4967static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4968{
4969 unsigned char mac_addr[ETH_ALEN];
0224d663 4970
7efd26d0 4971 eth_random_addr(mac_addr);
0224d663
GR
4972 igb_set_vf_mac(adapter, vf, mac_addr);
4973
f557147c 4974 return 0;
0224d663
GR
4975}
4976
f557147c 4977static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
0224d663 4978{
0224d663 4979 struct pci_dev *pdev = adapter->pdev;
f557147c
SA
4980 struct pci_dev *vfdev;
4981 int dev_id;
0224d663
GR
4982
4983 switch (adapter->hw.mac.type) {
4984 case e1000_82576:
f557147c 4985 dev_id = IGB_82576_VF_DEV_ID;
0224d663
GR
4986 break;
4987 case e1000_i350:
f557147c 4988 dev_id = IGB_I350_VF_DEV_ID;
0224d663
GR
4989 break;
4990 default:
f557147c 4991 return false;
0224d663
GR
4992 }
4993
f557147c
SA
4994 /* loop through all the VFs to see if we own any that are assigned */
4995 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
4996 while (vfdev) {
4997 /* if we don't own it we don't care */
4998 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
4999 /* if it is assigned we cannot release it */
5000 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
0224d663
GR
5001 return true;
5002 }
f557147c
SA
5003
5004 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
0224d663 5005 }
f557147c 5006
0224d663
GR
5007 return false;
5008}
5009
5010#endif
4ae196df
AD
5011static void igb_ping_all_vfs(struct igb_adapter *adapter)
5012{
5013 struct e1000_hw *hw = &adapter->hw;
5014 u32 ping;
5015 int i;
5016
5017 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5018 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5019 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5020 ping |= E1000_VT_MSGTYPE_CTS;
5021 igb_write_mbx(hw, &ping, 1, i);
5022 }
5023}
5024
7d5753f0
AD
5025static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5026{
5027 struct e1000_hw *hw = &adapter->hw;
5028 u32 vmolr = rd32(E1000_VMOLR(vf));
5029 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5030
d85b9004 5031 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
5032 IGB_VF_FLAG_MULTI_PROMISC);
5033 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5034
5035 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5036 vmolr |= E1000_VMOLR_MPME;
d85b9004 5037 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5038 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5039 } else {
5040 /*
5041 * if we have hashes and we are clearing a multicast promisc
5042 * flag we need to write the hashes to the MTA as this step
5043 * was previously skipped
5044 */
5045 if (vf_data->num_vf_mc_hashes > 30) {
5046 vmolr |= E1000_VMOLR_MPME;
5047 } else if (vf_data->num_vf_mc_hashes) {
5048 int j;
5049 vmolr |= E1000_VMOLR_ROMPE;
5050 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5051 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5052 }
5053 }
5054
5055 wr32(E1000_VMOLR(vf), vmolr);
5056
5057 /* there are flags left unprocessed, likely not supported */
5058 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5059 return -EINVAL;
5060
5061 return 0;
5062
5063}
5064
4ae196df
AD
5065static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5066 u32 *msgbuf, u32 vf)
5067{
5068 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5069 u16 *hash_list = (u16 *)&msgbuf[1];
5070 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5071 int i;
5072
7d5753f0 5073 /* salt away the number of multicast addresses assigned
4ae196df
AD
5074 * to this VF for later use to restore when the PF multi cast
5075 * list changes
5076 */
5077 vf_data->num_vf_mc_hashes = n;
5078
7d5753f0
AD
5079 /* only up to 30 hash values supported */
5080 if (n > 30)
5081 n = 30;
5082
5083 /* store the hashes for later use */
4ae196df 5084 for (i = 0; i < n; i++)
a419aef8 5085 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5086
5087 /* Flush and reset the mta with the new values */
ff41f8dc 5088 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5089
5090 return 0;
5091}
5092
5093static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5094{
5095 struct e1000_hw *hw = &adapter->hw;
5096 struct vf_data_storage *vf_data;
5097 int i, j;
5098
5099 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5100 u32 vmolr = rd32(E1000_VMOLR(i));
5101 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5102
4ae196df 5103 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5104
5105 if ((vf_data->num_vf_mc_hashes > 30) ||
5106 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5107 vmolr |= E1000_VMOLR_MPME;
5108 } else if (vf_data->num_vf_mc_hashes) {
5109 vmolr |= E1000_VMOLR_ROMPE;
5110 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5111 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5112 }
5113 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5114 }
5115}
5116
5117static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5118{
5119 struct e1000_hw *hw = &adapter->hw;
5120 u32 pool_mask, reg, vid;
5121 int i;
5122
5123 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5124
5125 /* Find the vlan filter for this id */
5126 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5127 reg = rd32(E1000_VLVF(i));
5128
5129 /* remove the vf from the pool */
5130 reg &= ~pool_mask;
5131
5132 /* if pool is empty then remove entry from vfta */
5133 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5134 (reg & E1000_VLVF_VLANID_ENABLE)) {
5135 reg = 0;
5136 vid = reg & E1000_VLVF_VLANID_MASK;
5137 igb_vfta_set(hw, vid, false);
5138 }
5139
5140 wr32(E1000_VLVF(i), reg);
5141 }
ae641bdc
AD
5142
5143 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5144}
5145
5146static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5147{
5148 struct e1000_hw *hw = &adapter->hw;
5149 u32 reg, i;
5150
51466239
AD
5151 /* The vlvf table only exists on 82576 hardware and newer */
5152 if (hw->mac.type < e1000_82576)
5153 return -1;
5154
5155 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5156 if (!adapter->vfs_allocated_count)
5157 return -1;
5158
5159 /* Find the vlan filter for this id */
5160 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5161 reg = rd32(E1000_VLVF(i));
5162 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5163 vid == (reg & E1000_VLVF_VLANID_MASK))
5164 break;
5165 }
5166
5167 if (add) {
5168 if (i == E1000_VLVF_ARRAY_SIZE) {
5169 /* Did not find a matching VLAN ID entry that was
5170 * enabled. Search for a free filter entry, i.e.
5171 * one without the enable bit set
5172 */
5173 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5174 reg = rd32(E1000_VLVF(i));
5175 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5176 break;
5177 }
5178 }
5179 if (i < E1000_VLVF_ARRAY_SIZE) {
5180 /* Found an enabled/available entry */
5181 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5182
5183 /* if !enabled we need to set this up in vfta */
5184 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5185 /* add VID to filter table */
5186 igb_vfta_set(hw, vid, true);
4ae196df
AD
5187 reg |= E1000_VLVF_VLANID_ENABLE;
5188 }
cad6d05f
AD
5189 reg &= ~E1000_VLVF_VLANID_MASK;
5190 reg |= vid;
4ae196df 5191 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5192
5193 /* do not modify RLPML for PF devices */
5194 if (vf >= adapter->vfs_allocated_count)
5195 return 0;
5196
5197 if (!adapter->vf_data[vf].vlans_enabled) {
5198 u32 size;
5199 reg = rd32(E1000_VMOLR(vf));
5200 size = reg & E1000_VMOLR_RLPML_MASK;
5201 size += 4;
5202 reg &= ~E1000_VMOLR_RLPML_MASK;
5203 reg |= size;
5204 wr32(E1000_VMOLR(vf), reg);
5205 }
ae641bdc 5206
51466239 5207 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5208 }
5209 } else {
5210 if (i < E1000_VLVF_ARRAY_SIZE) {
5211 /* remove vf from the pool */
5212 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5213 /* if pool is empty then remove entry from vfta */
5214 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5215 reg = 0;
5216 igb_vfta_set(hw, vid, false);
5217 }
5218 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5219
5220 /* do not modify RLPML for PF devices */
5221 if (vf >= adapter->vfs_allocated_count)
5222 return 0;
5223
5224 adapter->vf_data[vf].vlans_enabled--;
5225 if (!adapter->vf_data[vf].vlans_enabled) {
5226 u32 size;
5227 reg = rd32(E1000_VMOLR(vf));
5228 size = reg & E1000_VMOLR_RLPML_MASK;
5229 size -= 4;
5230 reg &= ~E1000_VMOLR_RLPML_MASK;
5231 reg |= size;
5232 wr32(E1000_VMOLR(vf), reg);
5233 }
4ae196df
AD
5234 }
5235 }
8151d294
WM
5236 return 0;
5237}
5238
5239static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5240{
5241 struct e1000_hw *hw = &adapter->hw;
5242
5243 if (vid)
5244 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5245 else
5246 wr32(E1000_VMVIR(vf), 0);
5247}
5248
5249static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5250 int vf, u16 vlan, u8 qos)
5251{
5252 int err = 0;
5253 struct igb_adapter *adapter = netdev_priv(netdev);
5254
5255 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5256 return -EINVAL;
5257 if (vlan || qos) {
5258 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5259 if (err)
5260 goto out;
5261 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5262 igb_set_vmolr(adapter, vf, !vlan);
5263 adapter->vf_data[vf].pf_vlan = vlan;
5264 adapter->vf_data[vf].pf_qos = qos;
5265 dev_info(&adapter->pdev->dev,
5266 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5267 if (test_bit(__IGB_DOWN, &adapter->state)) {
5268 dev_warn(&adapter->pdev->dev,
5269 "The VF VLAN has been set,"
5270 " but the PF device is not up.\n");
5271 dev_warn(&adapter->pdev->dev,
5272 "Bring the PF device up before"
5273 " attempting to use the VF device.\n");
5274 }
5275 } else {
5276 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5277 false, vf);
5278 igb_set_vmvir(adapter, vlan, vf);
5279 igb_set_vmolr(adapter, vf, true);
5280 adapter->vf_data[vf].pf_vlan = 0;
5281 adapter->vf_data[vf].pf_qos = 0;
5282 }
5283out:
5284 return err;
4ae196df
AD
5285}
5286
5287static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5288{
5289 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5290 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5291
5292 return igb_vlvf_set(adapter, vid, add, vf);
5293}
5294
f2ca0dbe 5295static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5296{
8fa7e0f7
GR
5297 /* clear flags - except flag that indicates PF has set the MAC */
5298 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5299 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5300
5301 /* reset offloads to defaults */
8151d294 5302 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5303
5304 /* reset vlans for device */
5305 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5306 if (adapter->vf_data[vf].pf_vlan)
5307 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5308 adapter->vf_data[vf].pf_vlan,
5309 adapter->vf_data[vf].pf_qos);
5310 else
5311 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5312
5313 /* reset multicast table array for vf */
5314 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5315
5316 /* Flush and reset the mta with the new values */
ff41f8dc 5317 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5318}
5319
f2ca0dbe
AD
5320static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5321{
5322 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5323
5324 /* generate a new mac address as we were hotplug removed/added */
8151d294 5325 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7efd26d0 5326 eth_random_addr(vf_mac);
f2ca0dbe
AD
5327
5328 /* process remaining reset events */
5329 igb_vf_reset(adapter, vf);
5330}
5331
5332static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5333{
5334 struct e1000_hw *hw = &adapter->hw;
5335 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5336 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5337 u32 reg, msgbuf[3];
5338 u8 *addr = (u8 *)(&msgbuf[1]);
5339
5340 /* process all the same items cleared in a function level reset */
f2ca0dbe 5341 igb_vf_reset(adapter, vf);
4ae196df
AD
5342
5343 /* set vf mac address */
26ad9178 5344 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5345
5346 /* enable transmit and receive for vf */
5347 reg = rd32(E1000_VFTE);
5348 wr32(E1000_VFTE, reg | (1 << vf));
5349 reg = rd32(E1000_VFRE);
5350 wr32(E1000_VFRE, reg | (1 << vf));
5351
8fa7e0f7 5352 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5353
5354 /* reply to reset with ack and vf mac address */
5355 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5356 memcpy(addr, vf_mac, 6);
5357 igb_write_mbx(hw, msgbuf, 3, vf);
5358}
5359
5360static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5361{
de42edde
GR
5362 /*
5363 * The VF MAC Address is stored in a packed array of bytes
5364 * starting at the second 32 bit word of the msg array
5365 */
f2ca0dbe
AD
5366 unsigned char *addr = (char *)&msg[1];
5367 int err = -1;
4ae196df 5368
f2ca0dbe
AD
5369 if (is_valid_ether_addr(addr))
5370 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5371
f2ca0dbe 5372 return err;
4ae196df
AD
5373}
5374
5375static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5376{
5377 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5378 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5379 u32 msg = E1000_VT_MSGTYPE_NACK;
5380
5381 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5382 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5383 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5384 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5385 vf_data->last_nack = jiffies;
4ae196df
AD
5386 }
5387}
5388
f2ca0dbe 5389static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5390{
f2ca0dbe
AD
5391 struct pci_dev *pdev = adapter->pdev;
5392 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5393 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5394 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5395 s32 retval;
5396
f2ca0dbe 5397 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5398
fef45f4c
AD
5399 if (retval) {
5400 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5401 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5402 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5403 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5404 return;
5405 goto out;
5406 }
4ae196df
AD
5407
5408 /* this is a message we already processed, do nothing */
5409 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5410 return;
4ae196df
AD
5411
5412 /*
5413 * until the vf completes a reset it should not be
5414 * allowed to start any configuration.
5415 */
5416
5417 if (msgbuf[0] == E1000_VF_RESET) {
5418 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5419 return;
4ae196df
AD
5420 }
5421
f2ca0dbe 5422 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5423 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5424 return;
5425 retval = -1;
5426 goto out;
4ae196df
AD
5427 }
5428
5429 switch ((msgbuf[0] & 0xFFFF)) {
5430 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5431 retval = -EINVAL;
5432 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5433 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5434 else
5435 dev_warn(&pdev->dev,
5436 "VF %d attempted to override administratively "
5437 "set MAC address\nReload the VF driver to "
5438 "resume operations\n", vf);
4ae196df 5439 break;
7d5753f0
AD
5440 case E1000_VF_SET_PROMISC:
5441 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5442 break;
4ae196df
AD
5443 case E1000_VF_SET_MULTICAST:
5444 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5445 break;
5446 case E1000_VF_SET_LPE:
5447 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5448 break;
5449 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5450 retval = -1;
5451 if (vf_data->pf_vlan)
5452 dev_warn(&pdev->dev,
5453 "VF %d attempted to override administratively "
5454 "set VLAN tag\nReload the VF driver to "
5455 "resume operations\n", vf);
8151d294
WM
5456 else
5457 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5458 break;
5459 default:
090b1795 5460 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5461 retval = -1;
5462 break;
5463 }
5464
fef45f4c
AD
5465 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5466out:
4ae196df
AD
5467 /* notify the VF of the results of what it sent us */
5468 if (retval)
5469 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5470 else
5471 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5472
4ae196df 5473 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5474}
4ae196df 5475
f2ca0dbe
AD
5476static void igb_msg_task(struct igb_adapter *adapter)
5477{
5478 struct e1000_hw *hw = &adapter->hw;
5479 u32 vf;
5480
5481 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5482 /* process any reset requests */
5483 if (!igb_check_for_rst(hw, vf))
5484 igb_vf_reset_event(adapter, vf);
5485
5486 /* process any messages pending */
5487 if (!igb_check_for_msg(hw, vf))
5488 igb_rcv_msg_from_vf(adapter, vf);
5489
5490 /* process any acks */
5491 if (!igb_check_for_ack(hw, vf))
5492 igb_rcv_ack_from_vf(adapter, vf);
5493 }
4ae196df
AD
5494}
5495
68d480c4
AD
5496/**
5497 * igb_set_uta - Set unicast filter table address
5498 * @adapter: board private structure
5499 *
5500 * The unicast table address is a register array of 32-bit registers.
5501 * The table is meant to be used in a way similar to how the MTA is used
5502 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5503 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5504 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5505 **/
5506static void igb_set_uta(struct igb_adapter *adapter)
5507{
5508 struct e1000_hw *hw = &adapter->hw;
5509 int i;
5510
5511 /* The UTA table only exists on 82576 hardware and newer */
5512 if (hw->mac.type < e1000_82576)
5513 return;
5514
5515 /* we only need to do this if VMDq is enabled */
5516 if (!adapter->vfs_allocated_count)
5517 return;
5518
5519 for (i = 0; i < hw->mac.uta_reg_count; i++)
5520 array_wr32(E1000_UTA, i, ~0);
5521}
5522
9d5c8243
AK
5523/**
5524 * igb_intr_msi - Interrupt Handler
5525 * @irq: interrupt number
5526 * @data: pointer to a network interface device structure
5527 **/
5528static irqreturn_t igb_intr_msi(int irq, void *data)
5529{
047e0030
AD
5530 struct igb_adapter *adapter = data;
5531 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5532 struct e1000_hw *hw = &adapter->hw;
5533 /* read ICR disables interrupts using IAM */
5534 u32 icr = rd32(E1000_ICR);
5535
047e0030 5536 igb_write_itr(q_vector);
9d5c8243 5537
7f081d40
AD
5538 if (icr & E1000_ICR_DRSTA)
5539 schedule_work(&adapter->reset_task);
5540
047e0030 5541 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5542 /* HW is reporting DMA is out of sync */
5543 adapter->stats.doosync++;
5544 }
5545
9d5c8243
AK
5546 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5547 hw->mac.get_link_status = 1;
5548 if (!test_bit(__IGB_DOWN, &adapter->state))
5549 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5550 }
5551
1f6e8178
MV
5552 if (icr & E1000_ICR_TS) {
5553 u32 tsicr = rd32(E1000_TSICR);
5554
5555 if (tsicr & E1000_TSICR_TXTS) {
5556 /* acknowledge the interrupt */
5557 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5558 /* retrieve hardware timestamp */
5559 schedule_work(&adapter->ptp_tx_work);
5560 }
5561 }
1f6e8178 5562
047e0030 5563 napi_schedule(&q_vector->napi);
9d5c8243
AK
5564
5565 return IRQ_HANDLED;
5566}
5567
5568/**
4a3c6433 5569 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5570 * @irq: interrupt number
5571 * @data: pointer to a network interface device structure
5572 **/
5573static irqreturn_t igb_intr(int irq, void *data)
5574{
047e0030
AD
5575 struct igb_adapter *adapter = data;
5576 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5577 struct e1000_hw *hw = &adapter->hw;
5578 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5579 * need for the IMC write */
5580 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5581
5582 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5583 * not set, then the adapter didn't send an interrupt */
5584 if (!(icr & E1000_ICR_INT_ASSERTED))
5585 return IRQ_NONE;
5586
0ba82994
AD
5587 igb_write_itr(q_vector);
5588
7f081d40
AD
5589 if (icr & E1000_ICR_DRSTA)
5590 schedule_work(&adapter->reset_task);
5591
047e0030 5592 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5593 /* HW is reporting DMA is out of sync */
5594 adapter->stats.doosync++;
5595 }
5596
9d5c8243
AK
5597 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5598 hw->mac.get_link_status = 1;
5599 /* guard against interrupt when we're going down */
5600 if (!test_bit(__IGB_DOWN, &adapter->state))
5601 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5602 }
5603
1f6e8178
MV
5604 if (icr & E1000_ICR_TS) {
5605 u32 tsicr = rd32(E1000_TSICR);
5606
5607 if (tsicr & E1000_TSICR_TXTS) {
5608 /* acknowledge the interrupt */
5609 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5610 /* retrieve hardware timestamp */
5611 schedule_work(&adapter->ptp_tx_work);
5612 }
5613 }
1f6e8178 5614
047e0030 5615 napi_schedule(&q_vector->napi);
9d5c8243
AK
5616
5617 return IRQ_HANDLED;
5618}
5619
c50b52a0 5620static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5621{
047e0030 5622 struct igb_adapter *adapter = q_vector->adapter;
46544258 5623 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5624
0ba82994
AD
5625 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5626 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5627 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5628 igb_set_itr(q_vector);
46544258 5629 else
047e0030 5630 igb_update_ring_itr(q_vector);
9d5c8243
AK
5631 }
5632
46544258
AD
5633 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5634 if (adapter->msix_entries)
047e0030 5635 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5636 else
5637 igb_irq_enable(adapter);
5638 }
9d5c8243
AK
5639}
5640
46544258
AD
5641/**
5642 * igb_poll - NAPI Rx polling callback
5643 * @napi: napi polling structure
5644 * @budget: count of how many packets we should handle
5645 **/
5646static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5647{
047e0030
AD
5648 struct igb_q_vector *q_vector = container_of(napi,
5649 struct igb_q_vector,
5650 napi);
16eb8815 5651 bool clean_complete = true;
9d5c8243 5652
421e02f0 5653#ifdef CONFIG_IGB_DCA
047e0030
AD
5654 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5655 igb_update_dca(q_vector);
fe4506b6 5656#endif
0ba82994 5657 if (q_vector->tx.ring)
13fde97a 5658 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5659
0ba82994 5660 if (q_vector->rx.ring)
cd392f5c 5661 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5662
16eb8815
AD
5663 /* If all work not completed, return budget and keep polling */
5664 if (!clean_complete)
5665 return budget;
46544258 5666
9d5c8243 5667 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5668 napi_complete(napi);
5669 igb_ring_irq_enable(q_vector);
9d5c8243 5670
16eb8815 5671 return 0;
9d5c8243 5672}
6d8126f9 5673
9d5c8243
AK
5674/**
5675 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5676 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 5677 *
9d5c8243
AK
5678 * returns true if ring is completely cleaned
5679 **/
047e0030 5680static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5681{
047e0030 5682 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5683 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5684 struct igb_tx_buffer *tx_buffer;
f4128785 5685 union e1000_adv_tx_desc *tx_desc;
9d5c8243 5686 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5687 unsigned int budget = q_vector->tx.work_limit;
8542db05 5688 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5689
13fde97a
AD
5690 if (test_bit(__IGB_DOWN, &adapter->state))
5691 return true;
0e014cb1 5692
06034649 5693 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5694 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5695 i -= tx_ring->count;
9d5c8243 5696
f4128785
AD
5697 do {
5698 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
5699
5700 /* if next_to_watch is not set then there is no work pending */
5701 if (!eop_desc)
5702 break;
13fde97a 5703
f4128785
AD
5704 /* prevent any other reads prior to eop_desc */
5705 rmb();
5706
13fde97a
AD
5707 /* if DD is not set pending work has not been completed */
5708 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5709 break;
5710
8542db05
AD
5711 /* clear next_to_watch to prevent false hangs */
5712 tx_buffer->next_to_watch = NULL;
9d5c8243 5713
ebe42d16
AD
5714 /* update the statistics for this packet */
5715 total_bytes += tx_buffer->bytecount;
5716 total_packets += tx_buffer->gso_segs;
13fde97a 5717
ebe42d16
AD
5718 /* free the skb */
5719 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 5720
ebe42d16
AD
5721 /* unmap skb header data */
5722 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
5723 dma_unmap_addr(tx_buffer, dma),
5724 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
5725 DMA_TO_DEVICE);
5726
c9f14bf3
AD
5727 /* clear tx_buffer data */
5728 tx_buffer->skb = NULL;
5729 dma_unmap_len_set(tx_buffer, len, 0);
5730
ebe42d16
AD
5731 /* clear last DMA location and unmap remaining buffers */
5732 while (tx_desc != eop_desc) {
13fde97a
AD
5733 tx_buffer++;
5734 tx_desc++;
9d5c8243 5735 i++;
8542db05
AD
5736 if (unlikely(!i)) {
5737 i -= tx_ring->count;
06034649 5738 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5739 tx_desc = IGB_TX_DESC(tx_ring, 0);
5740 }
ebe42d16
AD
5741
5742 /* unmap any remaining paged data */
c9f14bf3 5743 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 5744 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
5745 dma_unmap_addr(tx_buffer, dma),
5746 dma_unmap_len(tx_buffer, len),
ebe42d16 5747 DMA_TO_DEVICE);
c9f14bf3 5748 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
5749 }
5750 }
5751
ebe42d16
AD
5752 /* move us one more past the eop_desc for start of next pkt */
5753 tx_buffer++;
5754 tx_desc++;
5755 i++;
5756 if (unlikely(!i)) {
5757 i -= tx_ring->count;
5758 tx_buffer = tx_ring->tx_buffer_info;
5759 tx_desc = IGB_TX_DESC(tx_ring, 0);
5760 }
f4128785
AD
5761
5762 /* issue prefetch for next Tx descriptor */
5763 prefetch(tx_desc);
5764
5765 /* update budget accounting */
5766 budget--;
5767 } while (likely(budget));
0e014cb1 5768
bdbc0631
ED
5769 netdev_tx_completed_queue(txring_txq(tx_ring),
5770 total_packets, total_bytes);
8542db05 5771 i += tx_ring->count;
9d5c8243 5772 tx_ring->next_to_clean = i;
13fde97a
AD
5773 u64_stats_update_begin(&tx_ring->tx_syncp);
5774 tx_ring->tx_stats.bytes += total_bytes;
5775 tx_ring->tx_stats.packets += total_packets;
5776 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5777 q_vector->tx.total_bytes += total_bytes;
5778 q_vector->tx.total_packets += total_packets;
9d5c8243 5779
6d095fa8 5780 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 5781 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5782
9d5c8243
AK
5783 /* Detect a transmit hang in hardware, this serializes the
5784 * check with the clearing of time_stamp and movement of i */
6d095fa8 5785 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 5786 if (tx_buffer->next_to_watch &&
8542db05 5787 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5788 (adapter->tx_timeout_factor * HZ)) &&
5789 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5790
9d5c8243 5791 /* detected Tx unit hang */
59d71989 5792 dev_err(tx_ring->dev,
9d5c8243 5793 "Detected Tx Unit Hang\n"
2d064c06 5794 " Tx Queue <%d>\n"
9d5c8243
AK
5795 " TDH <%x>\n"
5796 " TDT <%x>\n"
5797 " next_to_use <%x>\n"
5798 " next_to_clean <%x>\n"
9d5c8243
AK
5799 "buffer_info[next_to_clean]\n"
5800 " time_stamp <%lx>\n"
8542db05 5801 " next_to_watch <%p>\n"
9d5c8243
AK
5802 " jiffies <%lx>\n"
5803 " desc.status <%x>\n",
2d064c06 5804 tx_ring->queue_index,
238ac817 5805 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5806 readl(tx_ring->tail),
9d5c8243
AK
5807 tx_ring->next_to_use,
5808 tx_ring->next_to_clean,
8542db05 5809 tx_buffer->time_stamp,
f4128785 5810 tx_buffer->next_to_watch,
9d5c8243 5811 jiffies,
f4128785 5812 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
5813 netif_stop_subqueue(tx_ring->netdev,
5814 tx_ring->queue_index);
5815
5816 /* we are about to reset, no point in enabling stuff */
5817 return true;
9d5c8243
AK
5818 }
5819 }
13fde97a
AD
5820
5821 if (unlikely(total_packets &&
5822 netif_carrier_ok(tx_ring->netdev) &&
5823 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5824 /* Make sure that anybody stopping the queue after this
5825 * sees the new next_to_clean.
5826 */
5827 smp_mb();
5828 if (__netif_subqueue_stopped(tx_ring->netdev,
5829 tx_ring->queue_index) &&
5830 !(test_bit(__IGB_DOWN, &adapter->state))) {
5831 netif_wake_subqueue(tx_ring->netdev,
5832 tx_ring->queue_index);
5833
5834 u64_stats_update_begin(&tx_ring->tx_syncp);
5835 tx_ring->tx_stats.restart_queue++;
5836 u64_stats_update_end(&tx_ring->tx_syncp);
5837 }
5838 }
5839
5840 return !!budget;
9d5c8243
AK
5841}
5842
cbc8e55f
AD
5843/**
5844 * igb_reuse_rx_page - page flip buffer and store it back on the ring
5845 * @rx_ring: rx descriptor ring to store buffers on
5846 * @old_buff: donor buffer to have page reused
5847 *
5848 * Synchronizes page for reuse by the adapter
5849 **/
5850static void igb_reuse_rx_page(struct igb_ring *rx_ring,
5851 struct igb_rx_buffer *old_buff)
5852{
5853 struct igb_rx_buffer *new_buff;
5854 u16 nta = rx_ring->next_to_alloc;
5855
5856 new_buff = &rx_ring->rx_buffer_info[nta];
5857
5858 /* update, and store next to alloc */
5859 nta++;
5860 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
5861
5862 /* transfer page from old buffer to new buffer */
5863 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
5864
5865 /* sync the buffer for use by the device */
5866 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
5867 old_buff->page_offset,
de78d1f9 5868 IGB_RX_BUFSZ,
cbc8e55f
AD
5869 DMA_FROM_DEVICE);
5870}
5871
5872/**
5873 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5874 * @rx_ring: rx descriptor ring to transact packets on
5875 * @rx_buffer: buffer containing page to add
5876 * @rx_desc: descriptor containing length of buffer written by hardware
5877 * @skb: sk_buff to place the data into
5878 *
5879 * This function will add the data contained in rx_buffer->page to the skb.
5880 * This is done either through a direct copy if the data in the buffer is
5881 * less than the skb header size, otherwise it will just attach the page as
5882 * a frag to the skb.
5883 *
5884 * The function will then update the page offset if necessary and return
5885 * true if the buffer can be reused by the adapter.
5886 **/
5887static bool igb_add_rx_frag(struct igb_ring *rx_ring,
5888 struct igb_rx_buffer *rx_buffer,
5889 union e1000_adv_rx_desc *rx_desc,
5890 struct sk_buff *skb)
5891{
5892 struct page *page = rx_buffer->page;
5893 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
5894
5895 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
5896 unsigned char *va = page_address(page) + rx_buffer->page_offset;
5897
cbc8e55f
AD
5898 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5899 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
5900 va += IGB_TS_HDR_LEN;
5901 size -= IGB_TS_HDR_LEN;
5902 }
5903
cbc8e55f
AD
5904 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
5905
5906 /* we can reuse buffer as-is, just make sure it is local */
5907 if (likely(page_to_nid(page) == numa_node_id()))
5908 return true;
5909
5910 /* this page cannot be reused so discard it */
5911 put_page(page);
5912 return false;
5913 }
5914
5915 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
de78d1f9 5916 rx_buffer->page_offset, size, IGB_RX_BUFSZ);
cbc8e55f
AD
5917
5918 /* avoid re-using remote pages */
5919 if (unlikely(page_to_nid(page) != numa_node_id()))
5920 return false;
5921
de78d1f9 5922#if (PAGE_SIZE < 8192)
cbc8e55f
AD
5923 /* if we are only owner of page we can reuse it */
5924 if (unlikely(page_count(page) != 1))
5925 return false;
5926
5927 /* flip page offset to other buffer */
de78d1f9 5928 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
cbc8e55f
AD
5929
5930 /*
5931 * since we are the only owner of the page and we need to
5932 * increment it, just set the value to 2 in order to avoid
5933 * an unnecessary locked operation
5934 */
5935 atomic_set(&page->_count, 2);
de78d1f9
AD
5936#else
5937 /* move offset up to the next cache line */
5938 rx_buffer->page_offset += SKB_DATA_ALIGN(size);
5939
5940 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
5941 return false;
5942
5943 /* bump ref count on page before it is given to the stack */
5944 get_page(page);
5945#endif
cbc8e55f
AD
5946
5947 return true;
5948}
5949
2e334eee
AD
5950static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
5951 union e1000_adv_rx_desc *rx_desc,
5952 struct sk_buff *skb)
5953{
5954 struct igb_rx_buffer *rx_buffer;
5955 struct page *page;
5956
5957 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
5958
5959 /*
5960 * This memory barrier is needed to keep us from reading
5961 * any other fields out of the rx_desc until we know the
5962 * RXD_STAT_DD bit is set
5963 */
5964 rmb();
5965
5966 page = rx_buffer->page;
5967 prefetchw(page);
5968
5969 if (likely(!skb)) {
5970 void *page_addr = page_address(page) +
5971 rx_buffer->page_offset;
5972
5973 /* prefetch first cache line of first page */
5974 prefetch(page_addr);
5975#if L1_CACHE_BYTES < 128
5976 prefetch(page_addr + L1_CACHE_BYTES);
5977#endif
5978
5979 /* allocate a skb to store the frags */
5980 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5981 IGB_RX_HDR_LEN);
5982 if (unlikely(!skb)) {
5983 rx_ring->rx_stats.alloc_failed++;
5984 return NULL;
5985 }
5986
5987 /*
5988 * we will be copying header into skb->data in
5989 * pskb_may_pull so it is in our interest to prefetch
5990 * it now to avoid a possible cache miss
5991 */
5992 prefetchw(skb->data);
5993 }
5994
5995 /* we are reusing so sync this buffer for CPU use */
5996 dma_sync_single_range_for_cpu(rx_ring->dev,
5997 rx_buffer->dma,
5998 rx_buffer->page_offset,
de78d1f9 5999 IGB_RX_BUFSZ,
2e334eee
AD
6000 DMA_FROM_DEVICE);
6001
6002 /* pull page into skb */
6003 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6004 /* hand second half of page back to the ring */
6005 igb_reuse_rx_page(rx_ring, rx_buffer);
6006 } else {
6007 /* we are not reusing the buffer so unmap it */
6008 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6009 PAGE_SIZE, DMA_FROM_DEVICE);
6010 }
6011
6012 /* clear contents of rx_buffer */
6013 rx_buffer->page = NULL;
6014
6015 return skb;
6016}
6017
cd392f5c 6018static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6019 union e1000_adv_rx_desc *rx_desc,
6020 struct sk_buff *skb)
9d5c8243 6021{
bc8acf2c 6022 skb_checksum_none_assert(skb);
9d5c8243 6023
294e7d78 6024 /* Ignore Checksum bit is set */
3ceb90fd 6025 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6026 return;
6027
6028 /* Rx checksum disabled via ethtool */
6029 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6030 return;
85ad76b2 6031
9d5c8243 6032 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6033 if (igb_test_staterr(rx_desc,
6034 E1000_RXDEXT_STATERR_TCPE |
6035 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
6036 /*
6037 * work around errata with sctp packets where the TCPE aka
6038 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6039 * packets, (aka let the stack check the crc32c)
6040 */
866cff06
AD
6041 if (!((skb->len == 60) &&
6042 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6043 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6044 ring->rx_stats.csum_err++;
12dcd86b
ED
6045 u64_stats_update_end(&ring->rx_syncp);
6046 }
9d5c8243 6047 /* let the stack verify checksum errors */
9d5c8243
AK
6048 return;
6049 }
6050 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6051 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6052 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6053 skb->ip_summed = CHECKSUM_UNNECESSARY;
6054
3ceb90fd
AD
6055 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6056 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6057}
6058
077887c3
AD
6059static inline void igb_rx_hash(struct igb_ring *ring,
6060 union e1000_adv_rx_desc *rx_desc,
6061 struct sk_buff *skb)
6062{
6063 if (ring->netdev->features & NETIF_F_RXHASH)
6064 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6065}
6066
2e334eee
AD
6067/**
6068 * igb_is_non_eop - process handling of non-EOP buffers
6069 * @rx_ring: Rx ring being processed
6070 * @rx_desc: Rx descriptor for current buffer
6071 * @skb: current socket buffer containing buffer in progress
6072 *
6073 * This function updates next to clean. If the buffer is an EOP buffer
6074 * this function exits returning false, otherwise it will place the
6075 * sk_buff in the next buffer to be chained and return true indicating
6076 * that this is in fact a non-EOP buffer.
6077 **/
6078static bool igb_is_non_eop(struct igb_ring *rx_ring,
6079 union e1000_adv_rx_desc *rx_desc)
6080{
6081 u32 ntc = rx_ring->next_to_clean + 1;
6082
6083 /* fetch, update, and store next to clean */
6084 ntc = (ntc < rx_ring->count) ? ntc : 0;
6085 rx_ring->next_to_clean = ntc;
6086
6087 prefetch(IGB_RX_DESC(rx_ring, ntc));
6088
6089 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6090 return false;
6091
6092 return true;
6093}
6094
1a1c225b
AD
6095/**
6096 * igb_get_headlen - determine size of header for LRO/GRO
6097 * @data: pointer to the start of the headers
6098 * @max_len: total length of section to find headers in
6099 *
6100 * This function is meant to determine the length of headers that will
6101 * be recognized by hardware for LRO, and GRO offloads. The main
6102 * motivation of doing this is to only perform one pull for IPv4 TCP
6103 * packets so that we can do basic things like calculating the gso_size
6104 * based on the average data per packet.
6105 **/
6106static unsigned int igb_get_headlen(unsigned char *data,
6107 unsigned int max_len)
6108{
6109 union {
6110 unsigned char *network;
6111 /* l2 headers */
6112 struct ethhdr *eth;
6113 struct vlan_hdr *vlan;
6114 /* l3 headers */
6115 struct iphdr *ipv4;
6116 struct ipv6hdr *ipv6;
6117 } hdr;
6118 __be16 protocol;
6119 u8 nexthdr = 0; /* default to not TCP */
6120 u8 hlen;
6121
6122 /* this should never happen, but better safe than sorry */
6123 if (max_len < ETH_HLEN)
6124 return max_len;
6125
6126 /* initialize network frame pointer */
6127 hdr.network = data;
6128
6129 /* set first protocol and move network header forward */
6130 protocol = hdr.eth->h_proto;
6131 hdr.network += ETH_HLEN;
6132
6133 /* handle any vlan tag if present */
6134 if (protocol == __constant_htons(ETH_P_8021Q)) {
6135 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6136 return max_len;
6137
6138 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6139 hdr.network += VLAN_HLEN;
6140 }
6141
6142 /* handle L3 protocols */
6143 if (protocol == __constant_htons(ETH_P_IP)) {
6144 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6145 return max_len;
6146
6147 /* access ihl as a u8 to avoid unaligned access on ia64 */
6148 hlen = (hdr.network[0] & 0x0F) << 2;
6149
6150 /* verify hlen meets minimum size requirements */
6151 if (hlen < sizeof(struct iphdr))
6152 return hdr.network - data;
6153
f2fb4ab2
AD
6154 /* record next protocol if header is present */
6155 if (!hdr.ipv4->frag_off)
6156 nexthdr = hdr.ipv4->protocol;
1a1c225b
AD
6157 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6158 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6159 return max_len;
6160
6161 /* record next protocol */
6162 nexthdr = hdr.ipv6->nexthdr;
f2fb4ab2 6163 hlen = sizeof(struct ipv6hdr);
1a1c225b
AD
6164 } else {
6165 return hdr.network - data;
6166 }
6167
f2fb4ab2
AD
6168 /* relocate pointer to start of L4 header */
6169 hdr.network += hlen;
6170
1a1c225b
AD
6171 /* finally sort out TCP */
6172 if (nexthdr == IPPROTO_TCP) {
6173 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6174 return max_len;
6175
6176 /* access doff as a u8 to avoid unaligned access on ia64 */
6177 hlen = (hdr.network[12] & 0xF0) >> 2;
6178
6179 /* verify hlen meets minimum size requirements */
6180 if (hlen < sizeof(struct tcphdr))
6181 return hdr.network - data;
6182
6183 hdr.network += hlen;
6184 } else if (nexthdr == IPPROTO_UDP) {
6185 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6186 return max_len;
6187
6188 hdr.network += sizeof(struct udphdr);
6189 }
6190
6191 /*
6192 * If everything has gone correctly hdr.network should be the
6193 * data section of the packet and will be the end of the header.
6194 * If not then it probably represents the end of the last recognized
6195 * header.
6196 */
6197 if ((hdr.network - data) < max_len)
6198 return hdr.network - data;
6199 else
6200 return max_len;
6201}
6202
6203/**
6204 * igb_pull_tail - igb specific version of skb_pull_tail
6205 * @rx_ring: rx descriptor ring packet is being transacted on
cbc8e55f 6206 * @rx_desc: pointer to the EOP Rx descriptor
1a1c225b
AD
6207 * @skb: pointer to current skb being adjusted
6208 *
6209 * This function is an igb specific version of __pskb_pull_tail. The
6210 * main difference between this version and the original function is that
6211 * this function can make several assumptions about the state of things
6212 * that allow for significant optimizations versus the standard function.
6213 * As a result we can do things like drop a frag and maintain an accurate
6214 * truesize for the skb.
6215 */
6216static void igb_pull_tail(struct igb_ring *rx_ring,
6217 union e1000_adv_rx_desc *rx_desc,
6218 struct sk_buff *skb)
2d94d8ab 6219{
1a1c225b
AD
6220 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6221 unsigned char *va;
6222 unsigned int pull_len;
6223
6224 /*
6225 * it is valid to use page_address instead of kmap since we are
6226 * working with pages allocated out of the lomem pool per
6227 * alloc_page(GFP_ATOMIC)
2d94d8ab 6228 */
1a1c225b
AD
6229 va = skb_frag_address(frag);
6230
1a1c225b
AD
6231 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6232 /* retrieve timestamp from buffer */
6233 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6234
6235 /* update pointers to remove timestamp header */
6236 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6237 frag->page_offset += IGB_TS_HDR_LEN;
6238 skb->data_len -= IGB_TS_HDR_LEN;
6239 skb->len -= IGB_TS_HDR_LEN;
6240
6241 /* move va to start of packet data */
6242 va += IGB_TS_HDR_LEN;
6243 }
6244
1a1c225b
AD
6245 /*
6246 * we need the header to contain the greater of either ETH_HLEN or
6247 * 60 bytes if the skb->len is less than 60 for skb_pad.
6248 */
6249 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6250
6251 /* align pull length to size of long to optimize memcpy performance */
6252 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6253
6254 /* update all of the pointers */
6255 skb_frag_size_sub(frag, pull_len);
6256 frag->page_offset += pull_len;
6257 skb->data_len -= pull_len;
6258 skb->tail += pull_len;
6259}
6260
6261/**
6262 * igb_cleanup_headers - Correct corrupted or empty headers
6263 * @rx_ring: rx descriptor ring packet is being transacted on
6264 * @rx_desc: pointer to the EOP Rx descriptor
6265 * @skb: pointer to current skb being fixed
6266 *
6267 * Address the case where we are pulling data in on pages only
6268 * and as such no data is present in the skb header.
6269 *
6270 * In addition if skb is not at least 60 bytes we need to pad it so that
6271 * it is large enough to qualify as a valid Ethernet frame.
6272 *
6273 * Returns true if an error was encountered and skb was freed.
6274 **/
6275static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6276 union e1000_adv_rx_desc *rx_desc,
6277 struct sk_buff *skb)
6278{
6279
6280 if (unlikely((igb_test_staterr(rx_desc,
6281 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6282 struct net_device *netdev = rx_ring->netdev;
6283 if (!(netdev->features & NETIF_F_RXALL)) {
6284 dev_kfree_skb_any(skb);
6285 return true;
6286 }
6287 }
6288
6289 /* place header in linear portion of buffer */
6290 if (skb_is_nonlinear(skb))
6291 igb_pull_tail(rx_ring, rx_desc, skb);
6292
6293 /* if skb_pad returns an error the skb was freed */
6294 if (unlikely(skb->len < 60)) {
6295 int pad_len = 60 - skb->len;
6296
6297 if (skb_pad(skb, pad_len))
6298 return true;
6299 __skb_put(skb, pad_len);
6300 }
6301
6302 return false;
2d94d8ab
AD
6303}
6304
db2ee5bd
AD
6305/**
6306 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6307 * @rx_ring: rx descriptor ring packet is being transacted on
6308 * @rx_desc: pointer to the EOP Rx descriptor
6309 * @skb: pointer to current skb being populated
6310 *
6311 * This function checks the ring, descriptor, and packet information in
6312 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6313 * other fields within the skb.
6314 **/
6315static void igb_process_skb_fields(struct igb_ring *rx_ring,
6316 union e1000_adv_rx_desc *rx_desc,
6317 struct sk_buff *skb)
6318{
6319 struct net_device *dev = rx_ring->netdev;
6320
6321 igb_rx_hash(rx_ring, rx_desc, skb);
6322
6323 igb_rx_checksum(rx_ring, rx_desc, skb);
6324
db2ee5bd 6325 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
db2ee5bd
AD
6326
6327 if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6328 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6329 u16 vid;
6330 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6331 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6332 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6333 else
6334 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6335
6336 __vlan_hwaccel_put_tag(skb, vid);
6337 }
6338
6339 skb_record_rx_queue(skb, rx_ring->queue_index);
6340
6341 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6342}
6343
2e334eee 6344static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6345{
0ba82994 6346 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6347 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6348 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6349 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6350
2e334eee
AD
6351 do {
6352 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6353
2e334eee
AD
6354 /* return some buffers to hardware, one at a time is too slow */
6355 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6356 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6357 cleaned_count = 0;
6358 }
bf36c1a0 6359
2e334eee 6360 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6361
2e334eee
AD
6362 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6363 break;
9d5c8243 6364
2e334eee
AD
6365 /* retrieve a buffer from the ring */
6366 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 6367
2e334eee
AD
6368 /* exit if we failed to retrieve a buffer */
6369 if (!skb)
6370 break;
1a1c225b 6371
2e334eee 6372 cleaned_count++;
1a1c225b 6373
2e334eee
AD
6374 /* fetch next buffer in frame if non-eop */
6375 if (igb_is_non_eop(rx_ring, rx_desc))
6376 continue;
1a1c225b
AD
6377
6378 /* verify the packet layout is correct */
6379 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6380 skb = NULL;
6381 continue;
9d5c8243 6382 }
9d5c8243 6383
db2ee5bd 6384 /* probably a little skewed due to removing CRC */
3ceb90fd 6385 total_bytes += skb->len;
3ceb90fd 6386
db2ee5bd
AD
6387 /* populate checksum, timestamp, VLAN, and protocol */
6388 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 6389
b2cb09b1 6390 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6391
1a1c225b
AD
6392 /* reset skb pointer */
6393 skb = NULL;
6394
2e334eee
AD
6395 /* update budget accounting */
6396 total_packets++;
6397 } while (likely(total_packets < budget));
bf36c1a0 6398
1a1c225b
AD
6399 /* place incomplete frames back on ring for completion */
6400 rx_ring->skb = skb;
6401
12dcd86b 6402 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6403 rx_ring->rx_stats.packets += total_packets;
6404 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6405 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6406 q_vector->rx.total_packets += total_packets;
6407 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6408
6409 if (cleaned_count)
cd392f5c 6410 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6411
2e334eee 6412 return (total_packets < budget);
9d5c8243
AK
6413}
6414
c023cd88 6415static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6416 struct igb_rx_buffer *bi)
c023cd88
AD
6417{
6418 struct page *page = bi->page;
cbc8e55f 6419 dma_addr_t dma;
c023cd88 6420
cbc8e55f
AD
6421 /* since we are recycling buffers we should seldom need to alloc */
6422 if (likely(page))
c023cd88
AD
6423 return true;
6424
cbc8e55f
AD
6425 /* alloc new page for storage */
6426 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6427 if (unlikely(!page)) {
6428 rx_ring->rx_stats.alloc_failed++;
6429 return false;
c023cd88
AD
6430 }
6431
cbc8e55f
AD
6432 /* map page for use */
6433 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 6434
cbc8e55f
AD
6435 /*
6436 * if mapping failed free memory back to system since
6437 * there isn't much point in holding memory we can't use
6438 */
1a1c225b 6439 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
6440 __free_page(page);
6441
c023cd88
AD
6442 rx_ring->rx_stats.alloc_failed++;
6443 return false;
6444 }
6445
1a1c225b 6446 bi->dma = dma;
cbc8e55f
AD
6447 bi->page = page;
6448 bi->page_offset = 0;
1a1c225b 6449
c023cd88
AD
6450 return true;
6451}
6452
9d5c8243 6453/**
cd392f5c 6454 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6455 * @adapter: address of board private structure
6456 **/
cd392f5c 6457void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6458{
9d5c8243 6459 union e1000_adv_rx_desc *rx_desc;
06034649 6460 struct igb_rx_buffer *bi;
c023cd88 6461 u16 i = rx_ring->next_to_use;
9d5c8243 6462
cbc8e55f
AD
6463 /* nothing to do */
6464 if (!cleaned_count)
6465 return;
6466
60136906 6467 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6468 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6469 i -= rx_ring->count;
9d5c8243 6470
cbc8e55f 6471 do {
1a1c225b 6472 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 6473 break;
9d5c8243 6474
cbc8e55f
AD
6475 /*
6476 * Refresh the desc even if buffer_addrs didn't change
6477 * because each write-back erases this info.
6478 */
6479 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 6480
c023cd88
AD
6481 rx_desc++;
6482 bi++;
9d5c8243 6483 i++;
c023cd88 6484 if (unlikely(!i)) {
60136906 6485 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6486 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6487 i -= rx_ring->count;
6488 }
6489
6490 /* clear the hdr_addr for the next_to_use descriptor */
6491 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
6492
6493 cleaned_count--;
6494 } while (cleaned_count);
9d5c8243 6495
c023cd88
AD
6496 i += rx_ring->count;
6497
9d5c8243 6498 if (rx_ring->next_to_use != i) {
cbc8e55f 6499 /* record the next descriptor to use */
9d5c8243 6500 rx_ring->next_to_use = i;
9d5c8243 6501
cbc8e55f
AD
6502 /* update next to alloc since we have filled the ring */
6503 rx_ring->next_to_alloc = i;
6504
6505 /*
6506 * Force memory writes to complete before letting h/w
9d5c8243
AK
6507 * know there are new descriptors to fetch. (Only
6508 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
6509 * such as IA-64).
6510 */
9d5c8243 6511 wmb();
fce99e34 6512 writel(i, rx_ring->tail);
9d5c8243
AK
6513 }
6514}
6515
6516/**
6517 * igb_mii_ioctl -
6518 * @netdev:
6519 * @ifreq:
6520 * @cmd:
6521 **/
6522static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6523{
6524 struct igb_adapter *adapter = netdev_priv(netdev);
6525 struct mii_ioctl_data *data = if_mii(ifr);
6526
6527 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6528 return -EOPNOTSUPP;
6529
6530 switch (cmd) {
6531 case SIOCGMIIPHY:
6532 data->phy_id = adapter->hw.phy.addr;
6533 break;
6534 case SIOCGMIIREG:
f5f4cf08
AD
6535 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6536 &data->val_out))
9d5c8243
AK
6537 return -EIO;
6538 break;
6539 case SIOCSMIIREG:
6540 default:
6541 return -EOPNOTSUPP;
6542 }
6543 return 0;
6544}
6545
6546/**
6547 * igb_ioctl -
6548 * @netdev:
6549 * @ifreq:
6550 * @cmd:
6551 **/
6552static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6553{
6554 switch (cmd) {
6555 case SIOCGMIIPHY:
6556 case SIOCGMIIREG:
6557 case SIOCSMIIREG:
6558 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b 6559 case SIOCSHWTSTAMP:
a79f4f88 6560 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6561 default:
6562 return -EOPNOTSUPP;
6563 }
6564}
6565
009bc06e
AD
6566s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6567{
6568 struct igb_adapter *adapter = hw->back;
009bc06e 6569
23d028cc 6570 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
6571 return -E1000_ERR_CONFIG;
6572
009bc06e
AD
6573 return 0;
6574}
6575
6576s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6577{
6578 struct igb_adapter *adapter = hw->back;
009bc06e 6579
23d028cc 6580 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
6581 return -E1000_ERR_CONFIG;
6582
009bc06e
AD
6583 return 0;
6584}
6585
c8f44aff 6586static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6587{
6588 struct igb_adapter *adapter = netdev_priv(netdev);
6589 struct e1000_hw *hw = &adapter->hw;
6590 u32 ctrl, rctl;
5faf030c 6591 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6592
5faf030c 6593 if (enable) {
9d5c8243
AK
6594 /* enable VLAN tag insert/strip */
6595 ctrl = rd32(E1000_CTRL);
6596 ctrl |= E1000_CTRL_VME;
6597 wr32(E1000_CTRL, ctrl);
6598
51466239 6599 /* Disable CFI check */
9d5c8243 6600 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6601 rctl &= ~E1000_RCTL_CFIEN;
6602 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6603 } else {
6604 /* disable VLAN tag insert/strip */
6605 ctrl = rd32(E1000_CTRL);
6606 ctrl &= ~E1000_CTRL_VME;
6607 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6608 }
6609
e1739522 6610 igb_rlpml_set(adapter);
9d5c8243
AK
6611}
6612
8e586137 6613static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6614{
6615 struct igb_adapter *adapter = netdev_priv(netdev);
6616 struct e1000_hw *hw = &adapter->hw;
4ae196df 6617 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6618
51466239
AD
6619 /* attempt to add filter to vlvf array */
6620 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6621
51466239
AD
6622 /* add the filter since PF can receive vlans w/o entry in vlvf */
6623 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6624
6625 set_bit(vid, adapter->active_vlans);
8e586137
JP
6626
6627 return 0;
9d5c8243
AK
6628}
6629
8e586137 6630static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6631{
6632 struct igb_adapter *adapter = netdev_priv(netdev);
6633 struct e1000_hw *hw = &adapter->hw;
4ae196df 6634 int pf_id = adapter->vfs_allocated_count;
51466239 6635 s32 err;
9d5c8243 6636
51466239
AD
6637 /* remove vlan from VLVF table array */
6638 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6639
51466239
AD
6640 /* if vid was not present in VLVF just remove it from table */
6641 if (err)
4ae196df 6642 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6643
6644 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6645
6646 return 0;
9d5c8243
AK
6647}
6648
6649static void igb_restore_vlan(struct igb_adapter *adapter)
6650{
b2cb09b1 6651 u16 vid;
9d5c8243 6652
5faf030c
AD
6653 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6654
b2cb09b1
JP
6655 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6656 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6657}
6658
14ad2513 6659int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6660{
090b1795 6661 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6662 struct e1000_mac_info *mac = &adapter->hw.mac;
6663
6664 mac->autoneg = 0;
6665
14ad2513
DD
6666 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6667 * for the switch() below to work */
6668 if ((spd & 1) || (dplx & ~1))
6669 goto err_inval;
6670
cd2638a8
CW
6671 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6672 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6673 spd != SPEED_1000 &&
6674 dplx != DUPLEX_FULL)
6675 goto err_inval;
cd2638a8 6676
14ad2513 6677 switch (spd + dplx) {
9d5c8243
AK
6678 case SPEED_10 + DUPLEX_HALF:
6679 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6680 break;
6681 case SPEED_10 + DUPLEX_FULL:
6682 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6683 break;
6684 case SPEED_100 + DUPLEX_HALF:
6685 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6686 break;
6687 case SPEED_100 + DUPLEX_FULL:
6688 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6689 break;
6690 case SPEED_1000 + DUPLEX_FULL:
6691 mac->autoneg = 1;
6692 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6693 break;
6694 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6695 default:
14ad2513 6696 goto err_inval;
9d5c8243 6697 }
8376dad0
JB
6698
6699 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6700 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6701
9d5c8243 6702 return 0;
14ad2513
DD
6703
6704err_inval:
6705 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6706 return -EINVAL;
9d5c8243
AK
6707}
6708
749ab2cd
YZ
6709static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6710 bool runtime)
9d5c8243
AK
6711{
6712 struct net_device *netdev = pci_get_drvdata(pdev);
6713 struct igb_adapter *adapter = netdev_priv(netdev);
6714 struct e1000_hw *hw = &adapter->hw;
2d064c06 6715 u32 ctrl, rctl, status;
749ab2cd 6716 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
6717#ifdef CONFIG_PM
6718 int retval = 0;
6719#endif
6720
6721 netif_device_detach(netdev);
6722
a88f10ec 6723 if (netif_running(netdev))
749ab2cd 6724 __igb_close(netdev, true);
a88f10ec 6725
047e0030 6726 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6727
6728#ifdef CONFIG_PM
6729 retval = pci_save_state(pdev);
6730 if (retval)
6731 return retval;
6732#endif
6733
6734 status = rd32(E1000_STATUS);
6735 if (status & E1000_STATUS_LU)
6736 wufc &= ~E1000_WUFC_LNKC;
6737
6738 if (wufc) {
6739 igb_setup_rctl(adapter);
ff41f8dc 6740 igb_set_rx_mode(netdev);
9d5c8243
AK
6741
6742 /* turn on all-multi mode if wake on multicast is enabled */
6743 if (wufc & E1000_WUFC_MC) {
6744 rctl = rd32(E1000_RCTL);
6745 rctl |= E1000_RCTL_MPE;
6746 wr32(E1000_RCTL, rctl);
6747 }
6748
6749 ctrl = rd32(E1000_CTRL);
6750 /* advertise wake from D3Cold */
6751 #define E1000_CTRL_ADVD3WUC 0x00100000
6752 /* phy power management enable */
6753 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6754 ctrl |= E1000_CTRL_ADVD3WUC;
6755 wr32(E1000_CTRL, ctrl);
6756
9d5c8243 6757 /* Allow time for pending master requests to run */
330a6d6a 6758 igb_disable_pcie_master(hw);
9d5c8243
AK
6759
6760 wr32(E1000_WUC, E1000_WUC_PME_EN);
6761 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6762 } else {
6763 wr32(E1000_WUC, 0);
6764 wr32(E1000_WUFC, 0);
9d5c8243
AK
6765 }
6766
3fe7c4c9
RW
6767 *enable_wake = wufc || adapter->en_mng_pt;
6768 if (!*enable_wake)
88a268c1
NN
6769 igb_power_down_link(adapter);
6770 else
6771 igb_power_up_link(adapter);
9d5c8243
AK
6772
6773 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6774 * would have already happened in close and is redundant. */
6775 igb_release_hw_control(adapter);
6776
6777 pci_disable_device(pdev);
6778
9d5c8243
AK
6779 return 0;
6780}
6781
6782#ifdef CONFIG_PM
d9dd966d 6783#ifdef CONFIG_PM_SLEEP
749ab2cd 6784static int igb_suspend(struct device *dev)
3fe7c4c9
RW
6785{
6786 int retval;
6787 bool wake;
749ab2cd 6788 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 6789
749ab2cd 6790 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6791 if (retval)
6792 return retval;
6793
6794 if (wake) {
6795 pci_prepare_to_sleep(pdev);
6796 } else {
6797 pci_wake_from_d3(pdev, false);
6798 pci_set_power_state(pdev, PCI_D3hot);
6799 }
6800
6801 return 0;
6802}
d9dd966d 6803#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 6804
749ab2cd 6805static int igb_resume(struct device *dev)
9d5c8243 6806{
749ab2cd 6807 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
6808 struct net_device *netdev = pci_get_drvdata(pdev);
6809 struct igb_adapter *adapter = netdev_priv(netdev);
6810 struct e1000_hw *hw = &adapter->hw;
6811 u32 err;
6812
6813 pci_set_power_state(pdev, PCI_D0);
6814 pci_restore_state(pdev);
b94f2d77 6815 pci_save_state(pdev);
42bfd33a 6816
aed5dec3 6817 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6818 if (err) {
6819 dev_err(&pdev->dev,
6820 "igb: Cannot enable PCI device from suspend\n");
6821 return err;
6822 }
6823 pci_set_master(pdev);
6824
6825 pci_enable_wake(pdev, PCI_D3hot, 0);
6826 pci_enable_wake(pdev, PCI_D3cold, 0);
6827
53c7d064 6828 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
6829 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6830 return -ENOMEM;
9d5c8243
AK
6831 }
6832
9d5c8243 6833 igb_reset(adapter);
a8564f03
AD
6834
6835 /* let the f/w know that the h/w is now under the control of the
6836 * driver. */
6837 igb_get_hw_control(adapter);
6838
9d5c8243
AK
6839 wr32(E1000_WUS, ~0);
6840
749ab2cd 6841 if (netdev->flags & IFF_UP) {
0c2cc02e 6842 rtnl_lock();
749ab2cd 6843 err = __igb_open(netdev, true);
0c2cc02e 6844 rtnl_unlock();
a88f10ec
AD
6845 if (err)
6846 return err;
6847 }
9d5c8243
AK
6848
6849 netif_device_attach(netdev);
749ab2cd
YZ
6850 return 0;
6851}
6852
6853#ifdef CONFIG_PM_RUNTIME
6854static int igb_runtime_idle(struct device *dev)
6855{
6856 struct pci_dev *pdev = to_pci_dev(dev);
6857 struct net_device *netdev = pci_get_drvdata(pdev);
6858 struct igb_adapter *adapter = netdev_priv(netdev);
6859
6860 if (!igb_has_link(adapter))
6861 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6862
6863 return -EBUSY;
6864}
6865
6866static int igb_runtime_suspend(struct device *dev)
6867{
6868 struct pci_dev *pdev = to_pci_dev(dev);
6869 int retval;
6870 bool wake;
6871
6872 retval = __igb_shutdown(pdev, &wake, 1);
6873 if (retval)
6874 return retval;
6875
6876 if (wake) {
6877 pci_prepare_to_sleep(pdev);
6878 } else {
6879 pci_wake_from_d3(pdev, false);
6880 pci_set_power_state(pdev, PCI_D3hot);
6881 }
9d5c8243 6882
9d5c8243
AK
6883 return 0;
6884}
749ab2cd
YZ
6885
6886static int igb_runtime_resume(struct device *dev)
6887{
6888 return igb_resume(dev);
6889}
6890#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
6891#endif
6892
6893static void igb_shutdown(struct pci_dev *pdev)
6894{
3fe7c4c9
RW
6895 bool wake;
6896
749ab2cd 6897 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6898
6899 if (system_state == SYSTEM_POWER_OFF) {
6900 pci_wake_from_d3(pdev, wake);
6901 pci_set_power_state(pdev, PCI_D3hot);
6902 }
9d5c8243
AK
6903}
6904
6905#ifdef CONFIG_NET_POLL_CONTROLLER
6906/*
6907 * Polling 'interrupt' - used by things like netconsole to send skbs
6908 * without having to re-enable interrupts. It's not called while
6909 * the interrupt routine is executing.
6910 */
6911static void igb_netpoll(struct net_device *netdev)
6912{
6913 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6914 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 6915 struct igb_q_vector *q_vector;
9d5c8243 6916 int i;
9d5c8243 6917
047e0030 6918 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
6919 q_vector = adapter->q_vector[i];
6920 if (adapter->msix_entries)
6921 wr32(E1000_EIMC, q_vector->eims_value);
6922 else
6923 igb_irq_disable(adapter);
047e0030 6924 napi_schedule(&q_vector->napi);
eebbbdba 6925 }
9d5c8243
AK
6926}
6927#endif /* CONFIG_NET_POLL_CONTROLLER */
6928
6929/**
6930 * igb_io_error_detected - called when PCI error is detected
6931 * @pdev: Pointer to PCI device
6932 * @state: The current pci connection state
6933 *
6934 * This function is called after a PCI bus error affecting
6935 * this device has been detected.
6936 */
6937static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6938 pci_channel_state_t state)
6939{
6940 struct net_device *netdev = pci_get_drvdata(pdev);
6941 struct igb_adapter *adapter = netdev_priv(netdev);
6942
6943 netif_device_detach(netdev);
6944
59ed6eec
AD
6945 if (state == pci_channel_io_perm_failure)
6946 return PCI_ERS_RESULT_DISCONNECT;
6947
9d5c8243
AK
6948 if (netif_running(netdev))
6949 igb_down(adapter);
6950 pci_disable_device(pdev);
6951
6952 /* Request a slot slot reset. */
6953 return PCI_ERS_RESULT_NEED_RESET;
6954}
6955
6956/**
6957 * igb_io_slot_reset - called after the pci bus has been reset.
6958 * @pdev: Pointer to PCI device
6959 *
6960 * Restart the card from scratch, as if from a cold-boot. Implementation
6961 * resembles the first-half of the igb_resume routine.
6962 */
6963static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6964{
6965 struct net_device *netdev = pci_get_drvdata(pdev);
6966 struct igb_adapter *adapter = netdev_priv(netdev);
6967 struct e1000_hw *hw = &adapter->hw;
40a914fa 6968 pci_ers_result_t result;
42bfd33a 6969 int err;
9d5c8243 6970
aed5dec3 6971 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6972 dev_err(&pdev->dev,
6973 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6974 result = PCI_ERS_RESULT_DISCONNECT;
6975 } else {
6976 pci_set_master(pdev);
6977 pci_restore_state(pdev);
b94f2d77 6978 pci_save_state(pdev);
9d5c8243 6979
40a914fa
AD
6980 pci_enable_wake(pdev, PCI_D3hot, 0);
6981 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6982
40a914fa
AD
6983 igb_reset(adapter);
6984 wr32(E1000_WUS, ~0);
6985 result = PCI_ERS_RESULT_RECOVERED;
6986 }
9d5c8243 6987
ea943d41
JK
6988 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6989 if (err) {
6990 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6991 "failed 0x%0x\n", err);
6992 /* non-fatal, continue */
6993 }
40a914fa
AD
6994
6995 return result;
9d5c8243
AK
6996}
6997
6998/**
6999 * igb_io_resume - called when traffic can start flowing again.
7000 * @pdev: Pointer to PCI device
7001 *
7002 * This callback is called when the error recovery driver tells us that
7003 * its OK to resume normal operation. Implementation resembles the
7004 * second-half of the igb_resume routine.
7005 */
7006static void igb_io_resume(struct pci_dev *pdev)
7007{
7008 struct net_device *netdev = pci_get_drvdata(pdev);
7009 struct igb_adapter *adapter = netdev_priv(netdev);
7010
9d5c8243
AK
7011 if (netif_running(netdev)) {
7012 if (igb_up(adapter)) {
7013 dev_err(&pdev->dev, "igb_up failed after reset\n");
7014 return;
7015 }
7016 }
7017
7018 netif_device_attach(netdev);
7019
7020 /* let the f/w know that the h/w is now under the control of the
7021 * driver. */
7022 igb_get_hw_control(adapter);
9d5c8243
AK
7023}
7024
26ad9178
AD
7025static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7026 u8 qsel)
7027{
7028 u32 rar_low, rar_high;
7029 struct e1000_hw *hw = &adapter->hw;
7030
7031 /* HW expects these in little endian so we reverse the byte order
7032 * from network order (big endian) to little endian
7033 */
7034 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7035 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7036 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7037
7038 /* Indicate to hardware the Address is Valid. */
7039 rar_high |= E1000_RAH_AV;
7040
7041 if (hw->mac.type == e1000_82575)
7042 rar_high |= E1000_RAH_POOL_1 * qsel;
7043 else
7044 rar_high |= E1000_RAH_POOL_1 << qsel;
7045
7046 wr32(E1000_RAL(index), rar_low);
7047 wrfl();
7048 wr32(E1000_RAH(index), rar_high);
7049 wrfl();
7050}
7051
4ae196df
AD
7052static int igb_set_vf_mac(struct igb_adapter *adapter,
7053 int vf, unsigned char *mac_addr)
7054{
7055 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
7056 /* VF MAC addresses start at end of receive addresses and moves
7057 * torwards the first, as a result a collision should not be possible */
7058 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7059
37680117 7060 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7061
26ad9178 7062 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7063
7064 return 0;
7065}
7066
8151d294
WM
7067static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7068{
7069 struct igb_adapter *adapter = netdev_priv(netdev);
7070 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7071 return -EINVAL;
7072 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7073 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7074 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7075 " change effective.");
7076 if (test_bit(__IGB_DOWN, &adapter->state)) {
7077 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7078 " but the PF device is not up.\n");
7079 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7080 " attempting to use the VF device.\n");
7081 }
7082 return igb_set_vf_mac(adapter, vf, mac);
7083}
7084
17dc566c
LL
7085static int igb_link_mbps(int internal_link_speed)
7086{
7087 switch (internal_link_speed) {
7088 case SPEED_100:
7089 return 100;
7090 case SPEED_1000:
7091 return 1000;
7092 default:
7093 return 0;
7094 }
7095}
7096
7097static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7098 int link_speed)
7099{
7100 int rf_dec, rf_int;
7101 u32 bcnrc_val;
7102
7103 if (tx_rate != 0) {
7104 /* Calculate the rate factor values to set */
7105 rf_int = link_speed / tx_rate;
7106 rf_dec = (link_speed - (rf_int * tx_rate));
7107 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7108
7109 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7110 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7111 E1000_RTTBCNRC_RF_INT_MASK);
7112 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7113 } else {
7114 bcnrc_val = 0;
7115 }
7116
7117 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
f00b0da7
LL
7118 /*
7119 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7120 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7121 */
7122 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7123 wr32(E1000_RTTBCNRC, bcnrc_val);
7124}
7125
7126static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7127{
7128 int actual_link_speed, i;
7129 bool reset_rate = false;
7130
7131 /* VF TX rate limit was not set or not supported */
7132 if ((adapter->vf_rate_link_speed == 0) ||
7133 (adapter->hw.mac.type != e1000_82576))
7134 return;
7135
7136 actual_link_speed = igb_link_mbps(adapter->link_speed);
7137 if (actual_link_speed != adapter->vf_rate_link_speed) {
7138 reset_rate = true;
7139 adapter->vf_rate_link_speed = 0;
7140 dev_info(&adapter->pdev->dev,
7141 "Link speed has been changed. VF Transmit "
7142 "rate is disabled\n");
7143 }
7144
7145 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7146 if (reset_rate)
7147 adapter->vf_data[i].tx_rate = 0;
7148
7149 igb_set_vf_rate_limit(&adapter->hw, i,
7150 adapter->vf_data[i].tx_rate,
7151 actual_link_speed);
7152 }
7153}
7154
8151d294
WM
7155static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7156{
17dc566c
LL
7157 struct igb_adapter *adapter = netdev_priv(netdev);
7158 struct e1000_hw *hw = &adapter->hw;
7159 int actual_link_speed;
7160
7161 if (hw->mac.type != e1000_82576)
7162 return -EOPNOTSUPP;
7163
7164 actual_link_speed = igb_link_mbps(adapter->link_speed);
7165 if ((vf >= adapter->vfs_allocated_count) ||
7166 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7167 (tx_rate < 0) || (tx_rate > actual_link_speed))
7168 return -EINVAL;
7169
7170 adapter->vf_rate_link_speed = actual_link_speed;
7171 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7172 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7173
7174 return 0;
8151d294
WM
7175}
7176
7177static int igb_ndo_get_vf_config(struct net_device *netdev,
7178 int vf, struct ifla_vf_info *ivi)
7179{
7180 struct igb_adapter *adapter = netdev_priv(netdev);
7181 if (vf >= adapter->vfs_allocated_count)
7182 return -EINVAL;
7183 ivi->vf = vf;
7184 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7185 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7186 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7187 ivi->qos = adapter->vf_data[vf].pf_qos;
7188 return 0;
7189}
7190
4ae196df
AD
7191static void igb_vmm_control(struct igb_adapter *adapter)
7192{
7193 struct e1000_hw *hw = &adapter->hw;
10d8e907 7194 u32 reg;
4ae196df 7195
52a1dd4d
AD
7196 switch (hw->mac.type) {
7197 case e1000_82575:
f96a8a0b
CW
7198 case e1000_i210:
7199 case e1000_i211:
52a1dd4d
AD
7200 default:
7201 /* replication is not supported for 82575 */
4ae196df 7202 return;
52a1dd4d
AD
7203 case e1000_82576:
7204 /* notify HW that the MAC is adding vlan tags */
7205 reg = rd32(E1000_DTXCTL);
7206 reg |= E1000_DTXCTL_VLAN_ADDED;
7207 wr32(E1000_DTXCTL, reg);
7208 case e1000_82580:
7209 /* enable replication vlan tag stripping */
7210 reg = rd32(E1000_RPLOLR);
7211 reg |= E1000_RPLOLR_STRVLAN;
7212 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7213 case e1000_i350:
7214 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7215 break;
7216 }
10d8e907 7217
d4960307
AD
7218 if (adapter->vfs_allocated_count) {
7219 igb_vmdq_set_loopback_pf(hw, true);
7220 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
7221 igb_vmdq_set_anti_spoofing_pf(hw, true,
7222 adapter->vfs_allocated_count);
d4960307
AD
7223 } else {
7224 igb_vmdq_set_loopback_pf(hw, false);
7225 igb_vmdq_set_replication_pf(hw, false);
7226 }
4ae196df
AD
7227}
7228
b6e0c419
CW
7229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7230{
7231 struct e1000_hw *hw = &adapter->hw;
7232 u32 dmac_thr;
7233 u16 hwm;
7234
7235 if (hw->mac.type > e1000_82580) {
7236 if (adapter->flags & IGB_FLAG_DMAC) {
7237 u32 reg;
7238
7239 /* force threshold to 0. */
7240 wr32(E1000_DMCTXTH, 0);
7241
7242 /*
e8c626e9
MV
7243 * DMA Coalescing high water mark needs to be greater
7244 * than the Rx threshold. Set hwm to PBA - max frame
7245 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7246 */
e8c626e9
MV
7247 hwm = 64 * pba - adapter->max_frame_size / 16;
7248 if (hwm < 64 * (pba - 6))
7249 hwm = 64 * (pba - 6);
7250 reg = rd32(E1000_FCRTC);
7251 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7252 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7253 & E1000_FCRTC_RTH_COAL_MASK);
7254 wr32(E1000_FCRTC, reg);
7255
7256 /*
7257 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7258 * frame size, capping it at PBA - 10KB.
7259 */
7260 dmac_thr = pba - adapter->max_frame_size / 512;
7261 if (dmac_thr < pba - 10)
7262 dmac_thr = pba - 10;
b6e0c419
CW
7263 reg = rd32(E1000_DMACR);
7264 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7265 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7266 & E1000_DMACR_DMACTHR_MASK);
7267
7268 /* transition to L0x or L1 if available..*/
7269 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7270
7271 /* watchdog timer= +-1000 usec in 32usec intervals */
7272 reg |= (1000 >> 5);
0c02dd98
MV
7273
7274 /* Disable BMC-to-OS Watchdog Enable */
7275 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
b6e0c419
CW
7276 wr32(E1000_DMACR, reg);
7277
7278 /*
7279 * no lower threshold to disable
7280 * coalescing(smart fifb)-UTRESH=0
7281 */
7282 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7283
7284 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7285
7286 wr32(E1000_DMCTLX, reg);
7287
7288 /*
7289 * free space in tx packet buffer to wake from
7290 * DMA coal
7291 */
7292 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7293 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7294
7295 /*
7296 * make low power state decision controlled
7297 * by DMA coal
7298 */
7299 reg = rd32(E1000_PCIEMISC);
7300 reg &= ~E1000_PCIEMISC_LX_DECISION;
7301 wr32(E1000_PCIEMISC, reg);
7302 } /* endif adapter->dmac is not disabled */
7303 } else if (hw->mac.type == e1000_82580) {
7304 u32 reg = rd32(E1000_PCIEMISC);
7305 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7306 wr32(E1000_DMACR, 0);
7307 }
7308}
7309
9d5c8243 7310/* igb_main.c */