]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/linville...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
6e861326 4 Copyright(c) 2007-2012 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
9d5c8243
AK
60#include "igb.h"
61
200e5fd5
CW
62#define MAJ 4
63#define MIN 0
64#define BUILD 1
0d1fe82d 65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 66__stringify(BUILD) "-k"
9d5c8243
AK
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
6e861326 71static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
9d5c8243 72
9d5c8243
AK
73static const struct e1000_info *igb_info_tbl[] = {
74 [board_82575] = &e1000_82575_info,
75};
76
a3aa1884 77static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
f96a8a0b
CW
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
d2ba2ed8
AD
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108 /* required last entry */
109 {0, }
110};
111
112MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114void igb_reset(struct igb_adapter *);
115static int igb_setup_all_tx_resources(struct igb_adapter *);
116static int igb_setup_all_rx_resources(struct igb_adapter *);
117static void igb_free_all_tx_resources(struct igb_adapter *);
118static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 119static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
120static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121static void __devexit igb_remove(struct pci_dev *pdev);
122static int igb_sw_init(struct igb_adapter *);
123static int igb_open(struct net_device *);
124static int igb_close(struct net_device *);
125static void igb_configure_tx(struct igb_adapter *);
126static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
127static void igb_clean_all_tx_rings(struct igb_adapter *);
128static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
129static void igb_clean_tx_ring(struct igb_ring *);
130static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 131static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
132static void igb_update_phy_info(unsigned long);
133static void igb_watchdog(unsigned long);
134static void igb_watchdog_task(struct work_struct *);
cd392f5c 135static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
136static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137 struct rtnl_link_stats64 *stats);
9d5c8243
AK
138static int igb_change_mtu(struct net_device *, int);
139static int igb_set_mac(struct net_device *, void *);
68d480c4 140static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
141static irqreturn_t igb_intr(int irq, void *);
142static irqreturn_t igb_intr_msi(int irq, void *);
143static irqreturn_t igb_msix_other(int irq, void *);
047e0030 144static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 145#ifdef CONFIG_IGB_DCA
047e0030 146static void igb_update_dca(struct igb_q_vector *);
fe4506b6 147static void igb_setup_dca(struct igb_adapter *);
421e02f0 148#endif /* CONFIG_IGB_DCA */
661086df 149static int igb_poll(struct napi_struct *, int);
13fde97a 150static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 151static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
152static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153static void igb_tx_timeout(struct net_device *);
154static void igb_reset_task(struct work_struct *);
c8f44aff 155static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
8e586137
JP
156static int igb_vlan_rx_add_vid(struct net_device *, u16);
157static int igb_vlan_rx_kill_vid(struct net_device *, u16);
9d5c8243 158static void igb_restore_vlan(struct igb_adapter *);
26ad9178 159static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
160static void igb_ping_all_vfs(struct igb_adapter *);
161static void igb_msg_task(struct igb_adapter *);
4ae196df 162static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 163static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 164static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
165static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167 int vf, u16 vlan, u8 qos);
168static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170 struct ifla_vf_info *ivi);
17dc566c 171static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
172
173#ifdef CONFIG_PCI_IOV
0224d663
GR
174static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175static int igb_find_enabled_vfs(struct igb_adapter *adapter);
176static int igb_check_vf_assignment(struct igb_adapter *adapter);
46a01698 177#endif
9d5c8243 178
9d5c8243 179#ifdef CONFIG_PM
d9dd966d 180#ifdef CONFIG_PM_SLEEP
749ab2cd 181static int igb_suspend(struct device *);
d9dd966d 182#endif
749ab2cd
YZ
183static int igb_resume(struct device *);
184#ifdef CONFIG_PM_RUNTIME
185static int igb_runtime_suspend(struct device *dev);
186static int igb_runtime_resume(struct device *dev);
187static int igb_runtime_idle(struct device *dev);
188#endif
189static const struct dev_pm_ops igb_pm_ops = {
190 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
191 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
192 igb_runtime_idle)
193};
9d5c8243
AK
194#endif
195static void igb_shutdown(struct pci_dev *);
421e02f0 196#ifdef CONFIG_IGB_DCA
fe4506b6
JC
197static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
198static struct notifier_block dca_notifier = {
199 .notifier_call = igb_notify_dca,
200 .next = NULL,
201 .priority = 0
202};
203#endif
9d5c8243
AK
204#ifdef CONFIG_NET_POLL_CONTROLLER
205/* for netdump / net console */
206static void igb_netpoll(struct net_device *);
207#endif
37680117 208#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
209static unsigned int max_vfs = 0;
210module_param(max_vfs, uint, 0);
211MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
212 "per physical function");
213#endif /* CONFIG_PCI_IOV */
214
9d5c8243
AK
215static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
216 pci_channel_state_t);
217static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
218static void igb_io_resume(struct pci_dev *);
219
220static struct pci_error_handlers igb_err_handler = {
221 .error_detected = igb_io_error_detected,
222 .slot_reset = igb_io_slot_reset,
223 .resume = igb_io_resume,
224};
225
b6e0c419 226static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
227
228static struct pci_driver igb_driver = {
229 .name = igb_driver_name,
230 .id_table = igb_pci_tbl,
231 .probe = igb_probe,
232 .remove = __devexit_p(igb_remove),
233#ifdef CONFIG_PM
749ab2cd 234 .driver.pm = &igb_pm_ops,
9d5c8243
AK
235#endif
236 .shutdown = igb_shutdown,
237 .err_handler = &igb_err_handler
238};
239
240MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242MODULE_LICENSE("GPL");
243MODULE_VERSION(DRV_VERSION);
244
b3f4d599 245#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246static int debug = -1;
247module_param(debug, int, 0);
248MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
c97ec42a
TI
250struct igb_reg_info {
251 u32 ofs;
252 char *name;
253};
254
255static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
261
262 /* Interrupt Registers */
263 {E1000_ICR, "ICR"},
264
265 /* RX Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
273
274 /* TX Registers */
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
286
287 /* List Terminator */
288 {}
289};
290
291/*
292 * igb_regdump - register printout routine
293 */
294static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
295{
296 int n = 0;
297 char rname[16];
298 u32 regs[8];
299
300 switch (reginfo->ofs) {
301 case E1000_RDLEN(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDLEN(n));
304 break;
305 case E1000_RDH(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDH(n));
308 break;
309 case E1000_RDT(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDT(n));
312 break;
313 case E1000_RXDCTL(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RXDCTL(n));
316 break;
317 case E1000_RDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDBAL(n));
320 break;
321 case E1000_RDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAH(n));
324 break;
325 case E1000_TDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_TDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDBAH(n));
332 break;
333 case E1000_TDLEN(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDLEN(n));
336 break;
337 case E1000_TDH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDH(n));
340 break;
341 case E1000_TDT(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDT(n));
344 break;
345 case E1000_TXDCTL(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TXDCTL(n));
348 break;
349 default:
876d2d6f 350 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
351 return;
352 }
353
354 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
355 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
356 regs[2], regs[3]);
c97ec42a
TI
357}
358
359/*
360 * igb_dump - Print registers, tx-rings and rx-rings
361 */
362static void igb_dump(struct igb_adapter *adapter)
363{
364 struct net_device *netdev = adapter->netdev;
365 struct e1000_hw *hw = &adapter->hw;
366 struct igb_reg_info *reginfo;
c97ec42a
TI
367 struct igb_ring *tx_ring;
368 union e1000_adv_tx_desc *tx_desc;
369 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
370 struct igb_ring *rx_ring;
371 union e1000_adv_rx_desc *rx_desc;
372 u32 staterr;
6ad4edfc 373 u16 i, n;
c97ec42a
TI
374
375 if (!netif_msg_hw(adapter))
376 return;
377
378 /* Print netdevice Info */
379 if (netdev) {
380 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
381 pr_info("Device Name state trans_start "
382 "last_rx\n");
383 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
384 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
385 }
386
387 /* Print Registers */
388 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 389 pr_info(" Register Name Value\n");
c97ec42a
TI
390 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
391 reginfo->name; reginfo++) {
392 igb_regdump(hw, reginfo);
393 }
394
395 /* Print TX Ring Summary */
396 if (!netdev || !netif_running(netdev))
397 goto exit;
398
399 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 400 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 401 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 402 struct igb_tx_buffer *buffer_info;
c97ec42a 403 tx_ring = adapter->tx_ring[n];
06034649 404 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
405 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
406 n, tx_ring->next_to_use, tx_ring->next_to_clean,
407 (u64)buffer_info->dma,
408 buffer_info->length,
409 buffer_info->next_to_watch,
410 (u64)buffer_info->time_stamp);
c97ec42a
TI
411 }
412
413 /* Print TX Rings */
414 if (!netif_msg_tx_done(adapter))
415 goto rx_ring_summary;
416
417 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
418
419 /* Transmit Descriptor Formats
420 *
421 * Advanced Transmit Descriptor
422 * +--------------------------------------------------------------+
423 * 0 | Buffer Address [63:0] |
424 * +--------------------------------------------------------------+
425 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
426 * +--------------------------------------------------------------+
427 * 63 46 45 40 39 38 36 35 32 31 24 15 0
428 */
429
430 for (n = 0; n < adapter->num_tx_queues; n++) {
431 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
432 pr_info("------------------------------------\n");
433 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
434 pr_info("------------------------------------\n");
435 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
436 "[bi->dma ] leng ntw timestamp "
437 "bi->skb\n");
c97ec42a
TI
438
439 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 440 const char *next_desc;
06034649 441 struct igb_tx_buffer *buffer_info;
60136906 442 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 443 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 444 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
445 if (i == tx_ring->next_to_use &&
446 i == tx_ring->next_to_clean)
447 next_desc = " NTC/U";
448 else if (i == tx_ring->next_to_use)
449 next_desc = " NTU";
450 else if (i == tx_ring->next_to_clean)
451 next_desc = " NTC";
452 else
453 next_desc = "";
454
455 pr_info("T [0x%03X] %016llX %016llX %016llX"
456 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
457 le64_to_cpu(u0->a),
458 le64_to_cpu(u0->b),
459 (u64)buffer_info->dma,
460 buffer_info->length,
461 buffer_info->next_to_watch,
462 (u64)buffer_info->time_stamp,
876d2d6f 463 buffer_info->skb, next_desc);
c97ec42a 464
b669588a 465 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
466 print_hex_dump(KERN_INFO, "",
467 DUMP_PREFIX_ADDRESS,
b669588a 468 16, 1, buffer_info->skb->data,
c97ec42a
TI
469 buffer_info->length, true);
470 }
471 }
472
473 /* Print RX Rings Summary */
474rx_ring_summary:
475 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 476 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
477 for (n = 0; n < adapter->num_rx_queues; n++) {
478 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
479 pr_info(" %5d %5X %5X\n",
480 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
481 }
482
483 /* Print RX Rings */
484 if (!netif_msg_rx_status(adapter))
485 goto exit;
486
487 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489 /* Advanced Receive Descriptor (Read) Format
490 * 63 1 0
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
496 *
497 *
498 * Advanced Receive Descriptor (Write-Back) Format
499 *
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
508 */
509
510 for (n = 0; n < adapter->num_rx_queues; n++) {
511 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
516 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
517 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
519
520 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 521 const char *next_desc;
06034649
AD
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 524 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
c97ec42a
TI
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
876d2d6f
JK
537 pr_info("%s[0x%03X] %016llX %016llX -------"
538 "--------- %p%s\n", "RWB", i,
c97ec42a
TI
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
876d2d6f 541 buffer_info->skb, next_desc);
c97ec42a 542 } else {
876d2d6f
JK
543 pr_info("%s[0x%03X] %016llX %016llX %016llX"
544 " %p%s\n", "R ", i,
c97ec42a
TI
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
876d2d6f 548 buffer_info->skb, next_desc);
c97ec42a 549
b669588a
ET
550 if (netif_msg_pktdata(adapter) &&
551 buffer_info->dma && buffer_info->skb) {
c97ec42a 552 print_hex_dump(KERN_INFO, "",
b669588a
ET
553 DUMP_PREFIX_ADDRESS,
554 16, 1, buffer_info->skb->data,
555 IGB_RX_HDR_LEN, true);
44390ca6
AD
556 print_hex_dump(KERN_INFO, "",
557 DUMP_PREFIX_ADDRESS,
558 16, 1,
b669588a
ET
559 page_address(buffer_info->page) +
560 buffer_info->page_offset,
44390ca6 561 PAGE_SIZE/2, true);
c97ec42a
TI
562 }
563 }
c97ec42a
TI
564 }
565 }
566
567exit:
568 return;
569}
570
9d5c8243 571/**
c041076a 572 * igb_get_hw_dev - return device
9d5c8243
AK
573 * used by hardware layer to print debugging information
574 **/
c041076a 575struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
576{
577 struct igb_adapter *adapter = hw->back;
c041076a 578 return adapter->netdev;
9d5c8243 579}
38c845c7 580
9d5c8243
AK
581/**
582 * igb_init_module - Driver Registration Routine
583 *
584 * igb_init_module is the first routine called when the driver is
585 * loaded. All it does is register with the PCI subsystem.
586 **/
587static int __init igb_init_module(void)
588{
589 int ret;
876d2d6f 590 pr_info("%s - version %s\n",
9d5c8243
AK
591 igb_driver_string, igb_driver_version);
592
876d2d6f 593 pr_info("%s\n", igb_copyright);
9d5c8243 594
421e02f0 595#ifdef CONFIG_IGB_DCA
fe4506b6
JC
596 dca_register_notify(&dca_notifier);
597#endif
bbd98fe4 598 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
599 return ret;
600}
601
602module_init(igb_init_module);
603
604/**
605 * igb_exit_module - Driver Exit Cleanup Routine
606 *
607 * igb_exit_module is called just before the driver is removed
608 * from memory.
609 **/
610static void __exit igb_exit_module(void)
611{
421e02f0 612#ifdef CONFIG_IGB_DCA
fe4506b6
JC
613 dca_unregister_notify(&dca_notifier);
614#endif
9d5c8243
AK
615 pci_unregister_driver(&igb_driver);
616}
617
618module_exit(igb_exit_module);
619
26bc19ec
AD
620#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
621/**
622 * igb_cache_ring_register - Descriptor ring to register mapping
623 * @adapter: board private structure to initialize
624 *
625 * Once we know the feature-set enabled for the device, we'll cache
626 * the register offset the descriptor ring is assigned to.
627 **/
628static void igb_cache_ring_register(struct igb_adapter *adapter)
629{
ee1b9f06 630 int i = 0, j = 0;
047e0030 631 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
632
633 switch (adapter->hw.mac.type) {
634 case e1000_82576:
635 /* The queues are allocated for virtualization such that VF 0
636 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
637 * In order to avoid collision we start at the first free queue
638 * and continue consuming queues in the same sequence
639 */
ee1b9f06 640 if (adapter->vfs_allocated_count) {
a99955fc 641 for (; i < adapter->rss_queues; i++)
3025a446
AD
642 adapter->rx_ring[i]->reg_idx = rbase_offset +
643 Q_IDX_82576(i);
ee1b9f06 644 }
26bc19ec 645 case e1000_82575:
55cac248 646 case e1000_82580:
d2ba2ed8 647 case e1000_i350:
f96a8a0b
CW
648 case e1000_i210:
649 case e1000_i211:
26bc19ec 650 default:
ee1b9f06 651 for (; i < adapter->num_rx_queues; i++)
3025a446 652 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 653 for (; j < adapter->num_tx_queues; j++)
3025a446 654 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
655 break;
656 }
657}
658
047e0030
AD
659static void igb_free_queues(struct igb_adapter *adapter)
660{
3025a446 661 int i;
047e0030 662
3025a446
AD
663 for (i = 0; i < adapter->num_tx_queues; i++) {
664 kfree(adapter->tx_ring[i]);
665 adapter->tx_ring[i] = NULL;
666 }
667 for (i = 0; i < adapter->num_rx_queues; i++) {
668 kfree(adapter->rx_ring[i]);
669 adapter->rx_ring[i] = NULL;
670 }
047e0030
AD
671 adapter->num_rx_queues = 0;
672 adapter->num_tx_queues = 0;
673}
674
9d5c8243
AK
675/**
676 * igb_alloc_queues - Allocate memory for all rings
677 * @adapter: board private structure to initialize
678 *
679 * We allocate one ring per queue at run-time since we don't know the
680 * number of queues at compile-time.
681 **/
682static int igb_alloc_queues(struct igb_adapter *adapter)
683{
3025a446 684 struct igb_ring *ring;
9d5c8243 685 int i;
81c2fc22 686 int orig_node = adapter->node;
9d5c8243 687
661086df 688 for (i = 0; i < adapter->num_tx_queues; i++) {
81c2fc22
AD
689 if (orig_node == -1) {
690 int cur_node = next_online_node(adapter->node);
691 if (cur_node == MAX_NUMNODES)
692 cur_node = first_online_node;
693 adapter->node = cur_node;
694 }
695 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
696 adapter->node);
697 if (!ring)
698 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
699 if (!ring)
700 goto err;
68fd9910 701 ring->count = adapter->tx_ring_count;
661086df 702 ring->queue_index = i;
59d71989 703 ring->dev = &adapter->pdev->dev;
e694e964 704 ring->netdev = adapter->netdev;
81c2fc22 705 ring->numa_node = adapter->node;
85ad76b2
AD
706 /* For 82575, context index must be unique per ring. */
707 if (adapter->hw.mac.type == e1000_82575)
866cff06 708 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
3025a446 709 adapter->tx_ring[i] = ring;
661086df 710 }
81c2fc22
AD
711 /* Restore the adapter's original node */
712 adapter->node = orig_node;
85ad76b2 713
9d5c8243 714 for (i = 0; i < adapter->num_rx_queues; i++) {
81c2fc22
AD
715 if (orig_node == -1) {
716 int cur_node = next_online_node(adapter->node);
717 if (cur_node == MAX_NUMNODES)
718 cur_node = first_online_node;
719 adapter->node = cur_node;
720 }
721 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
722 adapter->node);
723 if (!ring)
724 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
3025a446
AD
725 if (!ring)
726 goto err;
68fd9910 727 ring->count = adapter->rx_ring_count;
844290e5 728 ring->queue_index = i;
59d71989 729 ring->dev = &adapter->pdev->dev;
e694e964 730 ring->netdev = adapter->netdev;
81c2fc22 731 ring->numa_node = adapter->node;
85ad76b2
AD
732 /* set flag indicating ring supports SCTP checksum offload */
733 if (adapter->hw.mac.type >= e1000_82576)
866cff06 734 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
8be10e91 735
f96a8a0b
CW
736 /*
737 * On i350, i210, and i211, loopback VLAN packets
738 * have the tag byte-swapped.
739 * */
740 if (adapter->hw.mac.type >= e1000_i350)
8be10e91
AD
741 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
742
3025a446 743 adapter->rx_ring[i] = ring;
9d5c8243 744 }
81c2fc22
AD
745 /* Restore the adapter's original node */
746 adapter->node = orig_node;
26bc19ec
AD
747
748 igb_cache_ring_register(adapter);
9d5c8243 749
047e0030 750 return 0;
a88f10ec 751
047e0030 752err:
81c2fc22
AD
753 /* Restore the adapter's original node */
754 adapter->node = orig_node;
047e0030 755 igb_free_queues(adapter);
d1a8c9e1 756
047e0030 757 return -ENOMEM;
a88f10ec
AD
758}
759
4be000c8
AD
760/**
761 * igb_write_ivar - configure ivar for given MSI-X vector
762 * @hw: pointer to the HW structure
763 * @msix_vector: vector number we are allocating to a given ring
764 * @index: row index of IVAR register to write within IVAR table
765 * @offset: column offset of in IVAR, should be multiple of 8
766 *
767 * This function is intended to handle the writing of the IVAR register
768 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
769 * each containing an cause allocation for an Rx and Tx ring, and a
770 * variable number of rows depending on the number of queues supported.
771 **/
772static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
773 int index, int offset)
774{
775 u32 ivar = array_rd32(E1000_IVAR0, index);
776
777 /* clear any bits that are currently set */
778 ivar &= ~((u32)0xFF << offset);
779
780 /* write vector and valid bit */
781 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
782
783 array_wr32(E1000_IVAR0, index, ivar);
784}
785
9d5c8243 786#define IGB_N0_QUEUE -1
047e0030 787static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 788{
047e0030 789 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 790 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
791 int rx_queue = IGB_N0_QUEUE;
792 int tx_queue = IGB_N0_QUEUE;
4be000c8 793 u32 msixbm = 0;
047e0030 794
0ba82994
AD
795 if (q_vector->rx.ring)
796 rx_queue = q_vector->rx.ring->reg_idx;
797 if (q_vector->tx.ring)
798 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
799
800 switch (hw->mac.type) {
801 case e1000_82575:
9d5c8243
AK
802 /* The 82575 assigns vectors using a bitmask, which matches the
803 bitmask for the EICR/EIMS/EIMC registers. To assign one
804 or more queues to a vector, we write the appropriate bits
805 into the MSIXBM register for that vector. */
047e0030 806 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 807 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 808 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 809 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
810 if (!adapter->msix_entries && msix_vector == 0)
811 msixbm |= E1000_EIMS_OTHER;
9d5c8243 812 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 813 q_vector->eims_value = msixbm;
2d064c06
AD
814 break;
815 case e1000_82576:
4be000c8
AD
816 /*
817 * 82576 uses a table that essentially consists of 2 columns
818 * with 8 rows. The ordering is column-major so we use the
819 * lower 3 bits as the row index, and the 4th bit as the
820 * column offset.
821 */
822 if (rx_queue > IGB_N0_QUEUE)
823 igb_write_ivar(hw, msix_vector,
824 rx_queue & 0x7,
825 (rx_queue & 0x8) << 1);
826 if (tx_queue > IGB_N0_QUEUE)
827 igb_write_ivar(hw, msix_vector,
828 tx_queue & 0x7,
829 ((tx_queue & 0x8) << 1) + 8);
047e0030 830 q_vector->eims_value = 1 << msix_vector;
2d064c06 831 break;
55cac248 832 case e1000_82580:
d2ba2ed8 833 case e1000_i350:
f96a8a0b
CW
834 case e1000_i210:
835 case e1000_i211:
4be000c8
AD
836 /*
837 * On 82580 and newer adapters the scheme is similar to 82576
838 * however instead of ordering column-major we have things
839 * ordered row-major. So we traverse the table by using
840 * bit 0 as the column offset, and the remaining bits as the
841 * row index.
842 */
843 if (rx_queue > IGB_N0_QUEUE)
844 igb_write_ivar(hw, msix_vector,
845 rx_queue >> 1,
846 (rx_queue & 0x1) << 4);
847 if (tx_queue > IGB_N0_QUEUE)
848 igb_write_ivar(hw, msix_vector,
849 tx_queue >> 1,
850 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
851 q_vector->eims_value = 1 << msix_vector;
852 break;
2d064c06
AD
853 default:
854 BUG();
855 break;
856 }
26b39276
AD
857
858 /* add q_vector eims value to global eims_enable_mask */
859 adapter->eims_enable_mask |= q_vector->eims_value;
860
861 /* configure q_vector to set itr on first interrupt */
862 q_vector->set_itr = 1;
9d5c8243
AK
863}
864
865/**
866 * igb_configure_msix - Configure MSI-X hardware
867 *
868 * igb_configure_msix sets up the hardware to properly
869 * generate MSI-X interrupts.
870 **/
871static void igb_configure_msix(struct igb_adapter *adapter)
872{
873 u32 tmp;
874 int i, vector = 0;
875 struct e1000_hw *hw = &adapter->hw;
876
877 adapter->eims_enable_mask = 0;
9d5c8243
AK
878
879 /* set vector for other causes, i.e. link changes */
2d064c06
AD
880 switch (hw->mac.type) {
881 case e1000_82575:
9d5c8243
AK
882 tmp = rd32(E1000_CTRL_EXT);
883 /* enable MSI-X PBA support*/
884 tmp |= E1000_CTRL_EXT_PBA_CLR;
885
886 /* Auto-Mask interrupts upon ICR read. */
887 tmp |= E1000_CTRL_EXT_EIAME;
888 tmp |= E1000_CTRL_EXT_IRCA;
889
890 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
891
892 /* enable msix_other interrupt */
893 array_wr32(E1000_MSIXBM(0), vector++,
894 E1000_EIMS_OTHER);
844290e5 895 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 896
2d064c06
AD
897 break;
898
899 case e1000_82576:
55cac248 900 case e1000_82580:
d2ba2ed8 901 case e1000_i350:
f96a8a0b
CW
902 case e1000_i210:
903 case e1000_i211:
047e0030
AD
904 /* Turn on MSI-X capability first, or our settings
905 * won't stick. And it will take days to debug. */
906 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
907 E1000_GPIE_PBA | E1000_GPIE_EIAME |
908 E1000_GPIE_NSICR);
909
910 /* enable msix_other interrupt */
911 adapter->eims_other = 1 << vector;
2d064c06 912 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 913
047e0030 914 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
915 break;
916 default:
917 /* do nothing, since nothing else supports MSI-X */
918 break;
919 } /* switch (hw->mac.type) */
047e0030
AD
920
921 adapter->eims_enable_mask |= adapter->eims_other;
922
26b39276
AD
923 for (i = 0; i < adapter->num_q_vectors; i++)
924 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 925
9d5c8243
AK
926 wrfl();
927}
928
929/**
930 * igb_request_msix - Initialize MSI-X interrupts
931 *
932 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
933 * kernel.
934 **/
935static int igb_request_msix(struct igb_adapter *adapter)
936{
937 struct net_device *netdev = adapter->netdev;
047e0030 938 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
939 int i, err = 0, vector = 0;
940
047e0030 941 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 942 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
943 if (err)
944 goto out;
945 vector++;
946
947 for (i = 0; i < adapter->num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
951
0ba82994 952 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 953 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
954 q_vector->rx.ring->queue_index);
955 else if (q_vector->tx.ring)
047e0030 956 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
957 q_vector->tx.ring->queue_index);
958 else if (q_vector->rx.ring)
047e0030 959 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 960 q_vector->rx.ring->queue_index);
9d5c8243 961 else
047e0030
AD
962 sprintf(q_vector->name, "%s-unused", netdev->name);
963
9d5c8243 964 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 965 igb_msix_ring, 0, q_vector->name,
047e0030 966 q_vector);
9d5c8243
AK
967 if (err)
968 goto out;
9d5c8243
AK
969 vector++;
970 }
971
9d5c8243
AK
972 igb_configure_msix(adapter);
973 return 0;
974out:
975 return err;
976}
977
978static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
979{
980 if (adapter->msix_entries) {
981 pci_disable_msix(adapter->pdev);
982 kfree(adapter->msix_entries);
983 adapter->msix_entries = NULL;
047e0030 984 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 985 pci_disable_msi(adapter->pdev);
047e0030 986 }
9d5c8243
AK
987}
988
047e0030
AD
989/**
990 * igb_free_q_vectors - Free memory allocated for interrupt vectors
991 * @adapter: board private structure to initialize
992 *
993 * This function frees the memory allocated to the q_vectors. In addition if
994 * NAPI is enabled it will delete any references to the NAPI struct prior
995 * to freeing the q_vector.
996 **/
997static void igb_free_q_vectors(struct igb_adapter *adapter)
998{
999 int v_idx;
1000
1001 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1002 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1003 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
1004 if (!q_vector)
1005 continue;
047e0030
AD
1006 netif_napi_del(&q_vector->napi);
1007 kfree(q_vector);
1008 }
1009 adapter->num_q_vectors = 0;
1010}
1011
1012/**
1013 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1014 *
1015 * This function resets the device so that it has 0 rx queues, tx queues, and
1016 * MSI-X interrupts allocated.
1017 */
1018static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1019{
1020 igb_free_queues(adapter);
1021 igb_free_q_vectors(adapter);
1022 igb_reset_interrupt_capability(adapter);
1023}
9d5c8243
AK
1024
1025/**
1026 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1027 *
1028 * Attempt to configure interrupts using the best available
1029 * capabilities of the hardware and kernel.
1030 **/
21adef3e 1031static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1032{
1033 int err;
1034 int numvecs, i;
1035
83b7180d 1036 /* Number of supported queues. */
a99955fc 1037 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1038 if (adapter->vfs_allocated_count)
1039 adapter->num_tx_queues = 1;
1040 else
1041 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1042
047e0030
AD
1043 /* start with one vector for every rx queue */
1044 numvecs = adapter->num_rx_queues;
1045
3ad2f3fb 1046 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1047 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1048 numvecs += adapter->num_tx_queues;
047e0030
AD
1049
1050 /* store the number of vectors reserved for queues */
1051 adapter->num_q_vectors = numvecs;
1052
1053 /* add 1 vector for link status interrupts */
1054 numvecs++;
9d5c8243
AK
1055 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1056 GFP_KERNEL);
f96a8a0b 1057
9d5c8243
AK
1058 if (!adapter->msix_entries)
1059 goto msi_only;
1060
1061 for (i = 0; i < numvecs; i++)
1062 adapter->msix_entries[i].entry = i;
1063
1064 err = pci_enable_msix(adapter->pdev,
1065 adapter->msix_entries,
1066 numvecs);
1067 if (err == 0)
34a20e89 1068 goto out;
9d5c8243
AK
1069
1070 igb_reset_interrupt_capability(adapter);
1071
1072 /* If we can't do MSI-X, try MSI */
1073msi_only:
2a3abf6d
AD
1074#ifdef CONFIG_PCI_IOV
1075 /* disable SR-IOV for non MSI-X configurations */
1076 if (adapter->vf_data) {
1077 struct e1000_hw *hw = &adapter->hw;
1078 /* disable iov and allow time for transactions to clear */
1079 pci_disable_sriov(adapter->pdev);
1080 msleep(500);
1081
1082 kfree(adapter->vf_data);
1083 adapter->vf_data = NULL;
1084 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1085 wrfl();
2a3abf6d
AD
1086 msleep(100);
1087 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1088 }
1089#endif
4fc82adf 1090 adapter->vfs_allocated_count = 0;
a99955fc 1091 adapter->rss_queues = 1;
4fc82adf 1092 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1093 adapter->num_rx_queues = 1;
661086df 1094 adapter->num_tx_queues = 1;
047e0030 1095 adapter->num_q_vectors = 1;
9d5c8243 1096 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1097 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1098out:
21adef3e 1099 /* Notify the stack of the (possibly) reduced queue counts. */
cfb8c3aa 1100 rtnl_lock();
21adef3e 1101 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
cfb8c3aa
BP
1102 err = netif_set_real_num_rx_queues(adapter->netdev,
1103 adapter->num_rx_queues);
1104 rtnl_unlock();
1105 return err;
9d5c8243
AK
1106}
1107
047e0030
AD
1108/**
1109 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1110 * @adapter: board private structure to initialize
1111 *
1112 * We allocate one q_vector per queue interrupt. If allocation fails we
1113 * return -ENOMEM.
1114 **/
1115static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1116{
1117 struct igb_q_vector *q_vector;
1118 struct e1000_hw *hw = &adapter->hw;
1119 int v_idx;
81c2fc22 1120 int orig_node = adapter->node;
047e0030
AD
1121
1122 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
81c2fc22
AD
1123 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1124 adapter->num_tx_queues)) &&
1125 (adapter->num_rx_queues == v_idx))
1126 adapter->node = orig_node;
1127 if (orig_node == -1) {
1128 int cur_node = next_online_node(adapter->node);
1129 if (cur_node == MAX_NUMNODES)
1130 cur_node = first_online_node;
1131 adapter->node = cur_node;
1132 }
1133 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1134 adapter->node);
1135 if (!q_vector)
1136 q_vector = kzalloc(sizeof(struct igb_q_vector),
1137 GFP_KERNEL);
047e0030
AD
1138 if (!q_vector)
1139 goto err_out;
1140 q_vector->adapter = adapter;
047e0030
AD
1141 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1142 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1143 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1144 adapter->q_vector[v_idx] = q_vector;
1145 }
81c2fc22
AD
1146 /* Restore the adapter's original node */
1147 adapter->node = orig_node;
1148
047e0030
AD
1149 return 0;
1150
1151err_out:
81c2fc22
AD
1152 /* Restore the adapter's original node */
1153 adapter->node = orig_node;
fe0592b4 1154 igb_free_q_vectors(adapter);
047e0030
AD
1155 return -ENOMEM;
1156}
1157
1158static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1159 int ring_idx, int v_idx)
1160{
3025a446 1161 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1162
0ba82994
AD
1163 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1164 q_vector->rx.ring->q_vector = q_vector;
1165 q_vector->rx.count++;
4fc82adf
AD
1166 q_vector->itr_val = adapter->rx_itr_setting;
1167 if (q_vector->itr_val && q_vector->itr_val <= 3)
1168 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1169}
1170
1171static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1172 int ring_idx, int v_idx)
1173{
3025a446 1174 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1175
0ba82994
AD
1176 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1177 q_vector->tx.ring->q_vector = q_vector;
1178 q_vector->tx.count++;
4fc82adf 1179 q_vector->itr_val = adapter->tx_itr_setting;
0ba82994 1180 q_vector->tx.work_limit = adapter->tx_work_limit;
4fc82adf
AD
1181 if (q_vector->itr_val && q_vector->itr_val <= 3)
1182 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1183}
1184
1185/**
1186 * igb_map_ring_to_vector - maps allocated queues to vectors
1187 *
1188 * This function maps the recently allocated queues to vectors.
1189 **/
1190static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1191{
1192 int i;
1193 int v_idx = 0;
1194
1195 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1196 (adapter->num_q_vectors < adapter->num_tx_queues))
1197 return -ENOMEM;
1198
1199 if (adapter->num_q_vectors >=
1200 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1201 for (i = 0; i < adapter->num_rx_queues; i++)
1202 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1203 for (i = 0; i < adapter->num_tx_queues; i++)
1204 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1205 } else {
1206 for (i = 0; i < adapter->num_rx_queues; i++) {
1207 if (i < adapter->num_tx_queues)
1208 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1209 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1210 }
1211 for (; i < adapter->num_tx_queues; i++)
1212 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1213 }
1214 return 0;
1215}
1216
1217/**
1218 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1219 *
1220 * This function initializes the interrupts and allocates all of the queues.
1221 **/
1222static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1223{
1224 struct pci_dev *pdev = adapter->pdev;
1225 int err;
1226
21adef3e
BH
1227 err = igb_set_interrupt_capability(adapter);
1228 if (err)
1229 return err;
047e0030
AD
1230
1231 err = igb_alloc_q_vectors(adapter);
1232 if (err) {
1233 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1234 goto err_alloc_q_vectors;
1235 }
1236
1237 err = igb_alloc_queues(adapter);
1238 if (err) {
1239 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1240 goto err_alloc_queues;
1241 }
1242
1243 err = igb_map_ring_to_vector(adapter);
1244 if (err) {
1245 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1246 goto err_map_queues;
1247 }
1248
1249
1250 return 0;
1251err_map_queues:
1252 igb_free_queues(adapter);
1253err_alloc_queues:
1254 igb_free_q_vectors(adapter);
1255err_alloc_q_vectors:
1256 igb_reset_interrupt_capability(adapter);
1257 return err;
1258}
1259
9d5c8243
AK
1260/**
1261 * igb_request_irq - initialize interrupts
1262 *
1263 * Attempts to configure interrupts using the best available
1264 * capabilities of the hardware and kernel.
1265 **/
1266static int igb_request_irq(struct igb_adapter *adapter)
1267{
1268 struct net_device *netdev = adapter->netdev;
047e0030 1269 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1270 int err = 0;
1271
1272 if (adapter->msix_entries) {
1273 err = igb_request_msix(adapter);
844290e5 1274 if (!err)
9d5c8243 1275 goto request_done;
9d5c8243 1276 /* fall back to MSI */
047e0030 1277 igb_clear_interrupt_scheme(adapter);
c74d588e 1278 if (!pci_enable_msi(pdev))
7dfc16fa 1279 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1280 igb_free_all_tx_resources(adapter);
1281 igb_free_all_rx_resources(adapter);
047e0030 1282 adapter->num_tx_queues = 1;
9d5c8243 1283 adapter->num_rx_queues = 1;
047e0030
AD
1284 adapter->num_q_vectors = 1;
1285 err = igb_alloc_q_vectors(adapter);
1286 if (err) {
1287 dev_err(&pdev->dev,
1288 "Unable to allocate memory for vectors\n");
1289 goto request_done;
1290 }
1291 err = igb_alloc_queues(adapter);
1292 if (err) {
1293 dev_err(&pdev->dev,
1294 "Unable to allocate memory for queues\n");
1295 igb_free_q_vectors(adapter);
1296 goto request_done;
1297 }
1298 igb_setup_all_tx_resources(adapter);
1299 igb_setup_all_rx_resources(adapter);
9d5c8243 1300 }
844290e5 1301
c74d588e
AD
1302 igb_assign_vector(adapter->q_vector[0], 0);
1303
7dfc16fa 1304 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1305 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1306 netdev->name, adapter);
9d5c8243
AK
1307 if (!err)
1308 goto request_done;
047e0030 1309
9d5c8243
AK
1310 /* fall back to legacy interrupts */
1311 igb_reset_interrupt_capability(adapter);
7dfc16fa 1312 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1313 }
1314
c74d588e 1315 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1316 netdev->name, adapter);
9d5c8243 1317
6cb5e577 1318 if (err)
c74d588e 1319 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1320 err);
9d5c8243
AK
1321
1322request_done:
1323 return err;
1324}
1325
1326static void igb_free_irq(struct igb_adapter *adapter)
1327{
9d5c8243
AK
1328 if (adapter->msix_entries) {
1329 int vector = 0, i;
1330
047e0030 1331 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1332
0d1ae7f4 1333 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1334 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1335 adapter->q_vector[i]);
047e0030
AD
1336 } else {
1337 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1338 }
9d5c8243
AK
1339}
1340
1341/**
1342 * igb_irq_disable - Mask off interrupt generation on the NIC
1343 * @adapter: board private structure
1344 **/
1345static void igb_irq_disable(struct igb_adapter *adapter)
1346{
1347 struct e1000_hw *hw = &adapter->hw;
1348
25568a53
AD
1349 /*
1350 * we need to be careful when disabling interrupts. The VFs are also
1351 * mapped into these registers and so clearing the bits can cause
1352 * issues on the VF drivers so we only need to clear what we set
1353 */
9d5c8243 1354 if (adapter->msix_entries) {
2dfd1212
AD
1355 u32 regval = rd32(E1000_EIAM);
1356 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1357 wr32(E1000_EIMC, adapter->eims_enable_mask);
1358 regval = rd32(E1000_EIAC);
1359 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1360 }
844290e5
PW
1361
1362 wr32(E1000_IAM, 0);
9d5c8243
AK
1363 wr32(E1000_IMC, ~0);
1364 wrfl();
81a61859
ET
1365 if (adapter->msix_entries) {
1366 int i;
1367 for (i = 0; i < adapter->num_q_vectors; i++)
1368 synchronize_irq(adapter->msix_entries[i].vector);
1369 } else {
1370 synchronize_irq(adapter->pdev->irq);
1371 }
9d5c8243
AK
1372}
1373
1374/**
1375 * igb_irq_enable - Enable default interrupt generation settings
1376 * @adapter: board private structure
1377 **/
1378static void igb_irq_enable(struct igb_adapter *adapter)
1379{
1380 struct e1000_hw *hw = &adapter->hw;
1381
1382 if (adapter->msix_entries) {
06218a8d 1383 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1384 u32 regval = rd32(E1000_EIAC);
1385 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1386 regval = rd32(E1000_EIAM);
1387 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1388 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1389 if (adapter->vfs_allocated_count) {
4ae196df 1390 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1391 ims |= E1000_IMS_VMMB;
1392 }
1393 wr32(E1000_IMS, ims);
844290e5 1394 } else {
55cac248
AD
1395 wr32(E1000_IMS, IMS_ENABLE_MASK |
1396 E1000_IMS_DRSTA);
1397 wr32(E1000_IAM, IMS_ENABLE_MASK |
1398 E1000_IMS_DRSTA);
844290e5 1399 }
9d5c8243
AK
1400}
1401
1402static void igb_update_mng_vlan(struct igb_adapter *adapter)
1403{
51466239 1404 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1405 u16 vid = adapter->hw.mng_cookie.vlan_id;
1406 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1407
1408 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1409 /* add VID to filter table */
1410 igb_vfta_set(hw, vid, true);
1411 adapter->mng_vlan_id = vid;
1412 } else {
1413 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1414 }
1415
1416 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1417 (vid != old_vid) &&
b2cb09b1 1418 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1419 /* remove VID from filter table */
1420 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1421 }
1422}
1423
1424/**
1425 * igb_release_hw_control - release control of the h/w to f/w
1426 * @adapter: address of board private structure
1427 *
1428 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1429 * For ASF and Pass Through versions of f/w this means that the
1430 * driver is no longer loaded.
1431 *
1432 **/
1433static void igb_release_hw_control(struct igb_adapter *adapter)
1434{
1435 struct e1000_hw *hw = &adapter->hw;
1436 u32 ctrl_ext;
1437
1438 /* Let firmware take over control of h/w */
1439 ctrl_ext = rd32(E1000_CTRL_EXT);
1440 wr32(E1000_CTRL_EXT,
1441 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1442}
1443
9d5c8243
AK
1444/**
1445 * igb_get_hw_control - get control of the h/w from f/w
1446 * @adapter: address of board private structure
1447 *
1448 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1449 * For ASF and Pass Through versions of f/w this means that
1450 * the driver is loaded.
1451 *
1452 **/
1453static void igb_get_hw_control(struct igb_adapter *adapter)
1454{
1455 struct e1000_hw *hw = &adapter->hw;
1456 u32 ctrl_ext;
1457
1458 /* Let firmware know the driver has taken over */
1459 ctrl_ext = rd32(E1000_CTRL_EXT);
1460 wr32(E1000_CTRL_EXT,
1461 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1462}
1463
9d5c8243
AK
1464/**
1465 * igb_configure - configure the hardware for RX and TX
1466 * @adapter: private board structure
1467 **/
1468static void igb_configure(struct igb_adapter *adapter)
1469{
1470 struct net_device *netdev = adapter->netdev;
1471 int i;
1472
1473 igb_get_hw_control(adapter);
ff41f8dc 1474 igb_set_rx_mode(netdev);
9d5c8243
AK
1475
1476 igb_restore_vlan(adapter);
9d5c8243 1477
85b430b4 1478 igb_setup_tctl(adapter);
06cf2666 1479 igb_setup_mrqc(adapter);
9d5c8243 1480 igb_setup_rctl(adapter);
85b430b4
AD
1481
1482 igb_configure_tx(adapter);
9d5c8243 1483 igb_configure_rx(adapter);
662d7205
AD
1484
1485 igb_rx_fifo_flush_82575(&adapter->hw);
1486
c493ea45 1487 /* call igb_desc_unused which always leaves
9d5c8243
AK
1488 * at least 1 descriptor unused to make sure
1489 * next_to_use != next_to_clean */
1490 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1491 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1492 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1493 }
9d5c8243
AK
1494}
1495
88a268c1
NN
1496/**
1497 * igb_power_up_link - Power up the phy/serdes link
1498 * @adapter: address of board private structure
1499 **/
1500void igb_power_up_link(struct igb_adapter *adapter)
1501{
76886596
AA
1502 igb_reset_phy(&adapter->hw);
1503
88a268c1
NN
1504 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1505 igb_power_up_phy_copper(&adapter->hw);
1506 else
1507 igb_power_up_serdes_link_82575(&adapter->hw);
1508}
1509
1510/**
1511 * igb_power_down_link - Power down the phy/serdes link
1512 * @adapter: address of board private structure
1513 */
1514static void igb_power_down_link(struct igb_adapter *adapter)
1515{
1516 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1517 igb_power_down_phy_copper_82575(&adapter->hw);
1518 else
1519 igb_shutdown_serdes_link_82575(&adapter->hw);
1520}
9d5c8243
AK
1521
1522/**
1523 * igb_up - Open the interface and prepare it to handle traffic
1524 * @adapter: board private structure
1525 **/
9d5c8243
AK
1526int igb_up(struct igb_adapter *adapter)
1527{
1528 struct e1000_hw *hw = &adapter->hw;
1529 int i;
1530
1531 /* hardware has been reset, we need to reload some things */
1532 igb_configure(adapter);
1533
1534 clear_bit(__IGB_DOWN, &adapter->state);
1535
0d1ae7f4
AD
1536 for (i = 0; i < adapter->num_q_vectors; i++)
1537 napi_enable(&(adapter->q_vector[i]->napi));
1538
844290e5 1539 if (adapter->msix_entries)
9d5c8243 1540 igb_configure_msix(adapter);
feeb2721
AD
1541 else
1542 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1543
1544 /* Clear any pending interrupts. */
1545 rd32(E1000_ICR);
1546 igb_irq_enable(adapter);
1547
d4960307
AD
1548 /* notify VFs that reset has been completed */
1549 if (adapter->vfs_allocated_count) {
1550 u32 reg_data = rd32(E1000_CTRL_EXT);
1551 reg_data |= E1000_CTRL_EXT_PFRSTD;
1552 wr32(E1000_CTRL_EXT, reg_data);
1553 }
1554
4cb9be7a
JB
1555 netif_tx_start_all_queues(adapter->netdev);
1556
25568a53
AD
1557 /* start the watchdog. */
1558 hw->mac.get_link_status = 1;
1559 schedule_work(&adapter->watchdog_task);
1560
9d5c8243
AK
1561 return 0;
1562}
1563
1564void igb_down(struct igb_adapter *adapter)
1565{
9d5c8243 1566 struct net_device *netdev = adapter->netdev;
330a6d6a 1567 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1568 u32 tctl, rctl;
1569 int i;
1570
1571 /* signal that we're down so the interrupt handler does not
1572 * reschedule our watchdog timer */
1573 set_bit(__IGB_DOWN, &adapter->state);
1574
1575 /* disable receives in the hardware */
1576 rctl = rd32(E1000_RCTL);
1577 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1578 /* flush and sleep below */
1579
fd2ea0a7 1580 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1581
1582 /* disable transmits in the hardware */
1583 tctl = rd32(E1000_TCTL);
1584 tctl &= ~E1000_TCTL_EN;
1585 wr32(E1000_TCTL, tctl);
1586 /* flush both disables and wait for them to finish */
1587 wrfl();
1588 msleep(10);
1589
0d1ae7f4
AD
1590 for (i = 0; i < adapter->num_q_vectors; i++)
1591 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1592
9d5c8243
AK
1593 igb_irq_disable(adapter);
1594
1595 del_timer_sync(&adapter->watchdog_timer);
1596 del_timer_sync(&adapter->phy_info_timer);
1597
9d5c8243 1598 netif_carrier_off(netdev);
04fe6358
AD
1599
1600 /* record the stats before reset*/
12dcd86b
ED
1601 spin_lock(&adapter->stats64_lock);
1602 igb_update_stats(adapter, &adapter->stats64);
1603 spin_unlock(&adapter->stats64_lock);
04fe6358 1604
9d5c8243
AK
1605 adapter->link_speed = 0;
1606 adapter->link_duplex = 0;
1607
3023682e
JK
1608 if (!pci_channel_offline(adapter->pdev))
1609 igb_reset(adapter);
9d5c8243
AK
1610 igb_clean_all_tx_rings(adapter);
1611 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1612#ifdef CONFIG_IGB_DCA
1613
1614 /* since we reset the hardware DCA settings were cleared */
1615 igb_setup_dca(adapter);
1616#endif
9d5c8243
AK
1617}
1618
1619void igb_reinit_locked(struct igb_adapter *adapter)
1620{
1621 WARN_ON(in_interrupt());
1622 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1623 msleep(1);
1624 igb_down(adapter);
1625 igb_up(adapter);
1626 clear_bit(__IGB_RESETTING, &adapter->state);
1627}
1628
1629void igb_reset(struct igb_adapter *adapter)
1630{
090b1795 1631 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1632 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1633 struct e1000_mac_info *mac = &hw->mac;
1634 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1635 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1636 u16 hwm;
1637
1638 /* Repartition Pba for greater than 9k mtu
1639 * To take effect CTRL.RST is required.
1640 */
fa4dfae0 1641 switch (mac->type) {
d2ba2ed8 1642 case e1000_i350:
55cac248
AD
1643 case e1000_82580:
1644 pba = rd32(E1000_RXPBS);
1645 pba = igb_rxpbs_adjust_82580(pba);
1646 break;
fa4dfae0 1647 case e1000_82576:
d249be54
AD
1648 pba = rd32(E1000_RXPBS);
1649 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1650 break;
1651 case e1000_82575:
f96a8a0b
CW
1652 case e1000_i210:
1653 case e1000_i211:
fa4dfae0
AD
1654 default:
1655 pba = E1000_PBA_34K;
1656 break;
2d064c06 1657 }
9d5c8243 1658
2d064c06
AD
1659 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1660 (mac->type < e1000_82576)) {
9d5c8243
AK
1661 /* adjust PBA for jumbo frames */
1662 wr32(E1000_PBA, pba);
1663
1664 /* To maintain wire speed transmits, the Tx FIFO should be
1665 * large enough to accommodate two full transmit packets,
1666 * rounded up to the next 1KB and expressed in KB. Likewise,
1667 * the Rx FIFO should be large enough to accommodate at least
1668 * one full receive packet and is similarly rounded up and
1669 * expressed in KB. */
1670 pba = rd32(E1000_PBA);
1671 /* upper 16 bits has Tx packet buffer allocation size in KB */
1672 tx_space = pba >> 16;
1673 /* lower 16 bits has Rx packet buffer allocation size in KB */
1674 pba &= 0xffff;
1675 /* the tx fifo also stores 16 bytes of information about the tx
1676 * but don't include ethernet FCS because hardware appends it */
1677 min_tx_space = (adapter->max_frame_size +
85e8d004 1678 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1679 ETH_FCS_LEN) * 2;
1680 min_tx_space = ALIGN(min_tx_space, 1024);
1681 min_tx_space >>= 10;
1682 /* software strips receive CRC, so leave room for it */
1683 min_rx_space = adapter->max_frame_size;
1684 min_rx_space = ALIGN(min_rx_space, 1024);
1685 min_rx_space >>= 10;
1686
1687 /* If current Tx allocation is less than the min Tx FIFO size,
1688 * and the min Tx FIFO size is less than the current Rx FIFO
1689 * allocation, take space away from current Rx allocation */
1690 if (tx_space < min_tx_space &&
1691 ((min_tx_space - tx_space) < pba)) {
1692 pba = pba - (min_tx_space - tx_space);
1693
1694 /* if short on rx space, rx wins and must trump tx
1695 * adjustment */
1696 if (pba < min_rx_space)
1697 pba = min_rx_space;
1698 }
2d064c06 1699 wr32(E1000_PBA, pba);
9d5c8243 1700 }
9d5c8243
AK
1701
1702 /* flow control settings */
1703 /* The high water mark must be low enough to fit one full frame
1704 * (or the size used for early receive) above it in the Rx FIFO.
1705 * Set it to the lower of:
1706 * - 90% of the Rx FIFO size, or
1707 * - the full Rx FIFO size minus one full frame */
1708 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1709 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1710
d405ea3e
AD
1711 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1712 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1713 fc->pause_time = 0xFFFF;
1714 fc->send_xon = 1;
0cce119a 1715 fc->current_mode = fc->requested_mode;
9d5c8243 1716
4ae196df
AD
1717 /* disable receive for all VFs and wait one second */
1718 if (adapter->vfs_allocated_count) {
1719 int i;
1720 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1721 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1722
1723 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1724 igb_ping_all_vfs(adapter);
4ae196df
AD
1725
1726 /* disable transmits and receives */
1727 wr32(E1000_VFRE, 0);
1728 wr32(E1000_VFTE, 0);
1729 }
1730
9d5c8243 1731 /* Allow time for pending master requests to run */
330a6d6a 1732 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1733 wr32(E1000_WUC, 0);
1734
330a6d6a 1735 if (hw->mac.ops.init_hw(hw))
090b1795 1736 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1737
a27416bb
MV
1738 /*
1739 * Flow control settings reset on hardware reset, so guarantee flow
1740 * control is off when forcing speed.
1741 */
1742 if (!hw->mac.autoneg)
1743 igb_force_mac_fc(hw);
1744
b6e0c419 1745 igb_init_dmac(adapter, pba);
88a268c1
NN
1746 if (!netif_running(adapter->netdev))
1747 igb_power_down_link(adapter);
1748
9d5c8243
AK
1749 igb_update_mng_vlan(adapter);
1750
1751 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1752 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1753
330a6d6a 1754 igb_get_phy_info(hw);
9d5c8243
AK
1755}
1756
c8f44aff
MM
1757static netdev_features_t igb_fix_features(struct net_device *netdev,
1758 netdev_features_t features)
b2cb09b1
JP
1759{
1760 /*
1761 * Since there is no support for separate rx/tx vlan accel
1762 * enable/disable make sure tx flag is always in same state as rx.
1763 */
1764 if (features & NETIF_F_HW_VLAN_RX)
1765 features |= NETIF_F_HW_VLAN_TX;
1766 else
1767 features &= ~NETIF_F_HW_VLAN_TX;
1768
1769 return features;
1770}
1771
c8f44aff
MM
1772static int igb_set_features(struct net_device *netdev,
1773 netdev_features_t features)
ac52caa3 1774{
c8f44aff 1775 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1776 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1777
b2cb09b1
JP
1778 if (changed & NETIF_F_HW_VLAN_RX)
1779 igb_vlan_mode(netdev, features);
1780
89eaefb6
BG
1781 if (!(changed & NETIF_F_RXALL))
1782 return 0;
1783
1784 netdev->features = features;
1785
1786 if (netif_running(netdev))
1787 igb_reinit_locked(adapter);
1788 else
1789 igb_reset(adapter);
1790
ac52caa3
MM
1791 return 0;
1792}
1793
2e5c6922 1794static const struct net_device_ops igb_netdev_ops = {
559e9c49 1795 .ndo_open = igb_open,
2e5c6922 1796 .ndo_stop = igb_close,
cd392f5c 1797 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1798 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1799 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1800 .ndo_set_mac_address = igb_set_mac,
1801 .ndo_change_mtu = igb_change_mtu,
1802 .ndo_do_ioctl = igb_ioctl,
1803 .ndo_tx_timeout = igb_tx_timeout,
1804 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1805 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1806 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1807 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1808 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1809 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1810 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1811#ifdef CONFIG_NET_POLL_CONTROLLER
1812 .ndo_poll_controller = igb_netpoll,
1813#endif
b2cb09b1
JP
1814 .ndo_fix_features = igb_fix_features,
1815 .ndo_set_features = igb_set_features,
2e5c6922
SH
1816};
1817
d67974f0
CW
1818/**
1819 * igb_set_fw_version - Configure version string for ethtool
1820 * @adapter: adapter struct
1821 *
1822 **/
1823void igb_set_fw_version(struct igb_adapter *adapter)
1824{
1825 struct e1000_hw *hw = &adapter->hw;
1826 u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
1827 u16 major, build, patch, fw_version;
1828 u32 etrack_id;
1829
1830 hw->nvm.ops.read(hw, 5, 1, &fw_version);
1831 if (adapter->hw.mac.type != e1000_i211) {
1832 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1833 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1834 etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;
1835
1836 /* combo image version needs to be found */
1837 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1838 if ((comb_offset != 0x0) &&
1839 (comb_offset != IGB_NVM_VER_INVALID)) {
1840 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1841 + 1), 1, &comb_verh);
1842 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1843 1, &comb_verl);
1844
1845 /* Only display Option Rom if it exists and is valid */
1846 if ((comb_verh && comb_verl) &&
1847 ((comb_verh != IGB_NVM_VER_INVALID) &&
1848 (comb_verl != IGB_NVM_VER_INVALID))) {
1849 major = comb_verl >> IGB_COMB_VER_SHFT;
1850 build = (comb_verl << IGB_COMB_VER_SHFT) |
1851 (comb_verh >> IGB_COMB_VER_SHFT);
1852 patch = comb_verh & IGB_COMB_VER_MASK;
1853 snprintf(adapter->fw_version,
1854 sizeof(adapter->fw_version),
1855 "%d.%d%d, 0x%08x, %d.%d.%d",
1856 (fw_version & IGB_MAJOR_MASK) >>
1857 IGB_MAJOR_SHIFT,
1858 (fw_version & IGB_MINOR_MASK) >>
1859 IGB_MINOR_SHIFT,
1860 (fw_version & IGB_BUILD_MASK),
1861 etrack_id, major, build, patch);
1862 goto out;
1863 }
1864 }
1865 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1866 "%d.%d%d, 0x%08x",
1867 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1868 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1869 (fw_version & IGB_BUILD_MASK), etrack_id);
1870 } else {
1871 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1872 "%d.%d%d",
1873 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1874 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1875 (fw_version & IGB_BUILD_MASK));
1876 }
1877out:
1878 return;
1879}
1880
9d5c8243
AK
1881/**
1882 * igb_probe - Device Initialization Routine
1883 * @pdev: PCI device information struct
1884 * @ent: entry in igb_pci_tbl
1885 *
1886 * Returns 0 on success, negative on failure
1887 *
1888 * igb_probe initializes an adapter identified by a pci_dev structure.
1889 * The OS initialization, configuring of the adapter private structure,
1890 * and a hardware reset occur.
1891 **/
1892static int __devinit igb_probe(struct pci_dev *pdev,
1893 const struct pci_device_id *ent)
1894{
1895 struct net_device *netdev;
1896 struct igb_adapter *adapter;
1897 struct e1000_hw *hw;
4337e993 1898 u16 eeprom_data = 0;
9835fd73 1899 s32 ret_val;
4337e993 1900 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1901 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1902 unsigned long mmio_start, mmio_len;
2d6a5e95 1903 int err, pci_using_dac;
9d5c8243 1904 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1905 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1906
bded64a7
AG
1907 /* Catch broken hardware that put the wrong VF device ID in
1908 * the PCIe SR-IOV capability.
1909 */
1910 if (pdev->is_virtfn) {
1911 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 1912 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
1913 return -EINVAL;
1914 }
1915
aed5dec3 1916 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1917 if (err)
1918 return err;
1919
1920 pci_using_dac = 0;
59d71989 1921 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1922 if (!err) {
59d71989 1923 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1924 if (!err)
1925 pci_using_dac = 1;
1926 } else {
59d71989 1927 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1928 if (err) {
59d71989 1929 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1930 if (err) {
1931 dev_err(&pdev->dev, "No usable DMA "
1932 "configuration, aborting\n");
1933 goto err_dma;
1934 }
1935 }
1936 }
1937
aed5dec3
AD
1938 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1939 IORESOURCE_MEM),
1940 igb_driver_name);
9d5c8243
AK
1941 if (err)
1942 goto err_pci_reg;
1943
19d5afd4 1944 pci_enable_pcie_error_reporting(pdev);
40a914fa 1945
9d5c8243 1946 pci_set_master(pdev);
c682fc23 1947 pci_save_state(pdev);
9d5c8243
AK
1948
1949 err = -ENOMEM;
1bfaf07b 1950 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1951 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1952 if (!netdev)
1953 goto err_alloc_etherdev;
1954
1955 SET_NETDEV_DEV(netdev, &pdev->dev);
1956
1957 pci_set_drvdata(pdev, netdev);
1958 adapter = netdev_priv(netdev);
1959 adapter->netdev = netdev;
1960 adapter->pdev = pdev;
1961 hw = &adapter->hw;
1962 hw->back = adapter;
b3f4d599 1963 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243
AK
1964
1965 mmio_start = pci_resource_start(pdev, 0);
1966 mmio_len = pci_resource_len(pdev, 0);
1967
1968 err = -EIO;
28b0759c
AD
1969 hw->hw_addr = ioremap(mmio_start, mmio_len);
1970 if (!hw->hw_addr)
9d5c8243
AK
1971 goto err_ioremap;
1972
2e5c6922 1973 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1974 igb_set_ethtool_ops(netdev);
9d5c8243 1975 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1976
1977 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1978
1979 netdev->mem_start = mmio_start;
1980 netdev->mem_end = mmio_start + mmio_len;
1981
9d5c8243
AK
1982 /* PCI config space info */
1983 hw->vendor_id = pdev->vendor;
1984 hw->device_id = pdev->device;
1985 hw->revision_id = pdev->revision;
1986 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1987 hw->subsystem_device_id = pdev->subsystem_device;
1988
9d5c8243
AK
1989 /* Copy the default MAC, PHY and NVM function pointers */
1990 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1991 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1992 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1993 /* Initialize skew-specific constants */
1994 err = ei->get_invariants(hw);
1995 if (err)
450c87c8 1996 goto err_sw_init;
9d5c8243 1997
450c87c8 1998 /* setup the private structure */
9d5c8243
AK
1999 err = igb_sw_init(adapter);
2000 if (err)
2001 goto err_sw_init;
2002
2003 igb_get_bus_info_pcie(hw);
2004
2005 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2006
2007 /* Copper options */
2008 if (hw->phy.media_type == e1000_media_type_copper) {
2009 hw->phy.mdix = AUTO_ALL_MODES;
2010 hw->phy.disable_polarity_correction = false;
2011 hw->phy.ms_type = e1000_ms_hw_default;
2012 }
2013
2014 if (igb_check_reset_block(hw))
2015 dev_info(&pdev->dev,
2016 "PHY reset is blocked due to SOL/IDER session.\n");
2017
077887c3
AD
2018 /*
2019 * features is initialized to 0 in allocation, it might have bits
2020 * set by igb_sw_init so we should use an or instead of an
2021 * assignment.
2022 */
2023 netdev->features |= NETIF_F_SG |
2024 NETIF_F_IP_CSUM |
2025 NETIF_F_IPV6_CSUM |
2026 NETIF_F_TSO |
2027 NETIF_F_TSO6 |
2028 NETIF_F_RXHASH |
2029 NETIF_F_RXCSUM |
2030 NETIF_F_HW_VLAN_RX |
2031 NETIF_F_HW_VLAN_TX;
2032
2033 /* copy netdev features into list of user selectable features */
2034 netdev->hw_features |= netdev->features;
89eaefb6 2035 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2036
2037 /* set this bit last since it cannot be part of hw_features */
2038 netdev->features |= NETIF_F_HW_VLAN_FILTER;
2039
2040 netdev->vlan_features |= NETIF_F_TSO |
2041 NETIF_F_TSO6 |
2042 NETIF_F_IP_CSUM |
2043 NETIF_F_IPV6_CSUM |
2044 NETIF_F_SG;
48f29ffc 2045
6b8f0922
BG
2046 netdev->priv_flags |= IFF_SUPP_NOFCS;
2047
7b872a55 2048 if (pci_using_dac) {
9d5c8243 2049 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2050 netdev->vlan_features |= NETIF_F_HIGHDMA;
2051 }
9d5c8243 2052
ac52caa3
MM
2053 if (hw->mac.type >= e1000_82576) {
2054 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2055 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2056 }
b9473560 2057
01789349
JP
2058 netdev->priv_flags |= IFF_UNICAST_FLT;
2059
330a6d6a 2060 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2061
2062 /* before reading the NVM, reset the controller to put the device in a
2063 * known good starting state */
2064 hw->mac.ops.reset_hw(hw);
2065
f96a8a0b
CW
2066 /*
2067 * make sure the NVM is good , i211 parts have special NVM that
2068 * doesn't contain a checksum
2069 */
2070 if (hw->mac.type != e1000_i211) {
2071 if (hw->nvm.ops.validate(hw) < 0) {
2072 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2073 err = -EIO;
2074 goto err_eeprom;
2075 }
9d5c8243
AK
2076 }
2077
2078 /* copy the MAC address out of the NVM */
2079 if (hw->mac.ops.read_mac_addr(hw))
2080 dev_err(&pdev->dev, "NVM Read Error\n");
2081
2082 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2083 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2084
2085 if (!is_valid_ether_addr(netdev->perm_addr)) {
2086 dev_err(&pdev->dev, "Invalid MAC Address\n");
2087 err = -EIO;
2088 goto err_eeprom;
2089 }
2090
d67974f0
CW
2091 /* get firmware version for ethtool -i */
2092 igb_set_fw_version(adapter);
2093
c061b18d 2094 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2095 (unsigned long) adapter);
c061b18d 2096 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2097 (unsigned long) adapter);
9d5c8243
AK
2098
2099 INIT_WORK(&adapter->reset_task, igb_reset_task);
2100 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2101
450c87c8 2102 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2103 adapter->fc_autoneg = true;
2104 hw->mac.autoneg = true;
2105 hw->phy.autoneg_advertised = 0x2f;
2106
0cce119a
AD
2107 hw->fc.requested_mode = e1000_fc_default;
2108 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2109
9d5c8243
AK
2110 igb_validate_mdi_setting(hw);
2111
9d5c8243
AK
2112 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2113 * enable the ACPI Magic Packet filter
2114 */
2115
a2cf8b6c 2116 if (hw->bus.func == 0)
312c75ae 2117 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2118 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2119 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2120 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2121 &eeprom_data);
a2cf8b6c
AD
2122 else if (hw->bus.func == 1)
2123 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2124
2125 if (eeprom_data & eeprom_apme_mask)
2126 adapter->eeprom_wol |= E1000_WUFC_MAG;
2127
2128 /* now that we have the eeprom settings, apply the special cases where
2129 * the eeprom may be wrong or the board simply won't support wake on
2130 * lan on a particular port */
2131 switch (pdev->device) {
2132 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2133 adapter->eeprom_wol = 0;
2134 break;
2135 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2136 case E1000_DEV_ID_82576_FIBER:
2137 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2138 /* Wake events only supported on port A for dual fiber
2139 * regardless of eeprom setting */
2140 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2141 adapter->eeprom_wol = 0;
2142 break;
c8ea5ea9 2143 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2144 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2145 /* if quad port adapter, disable WoL on all but port A */
2146 if (global_quad_port_a != 0)
2147 adapter->eeprom_wol = 0;
2148 else
2149 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2150 /* Reset for multiple quad port adapters */
2151 if (++global_quad_port_a == 4)
2152 global_quad_port_a = 0;
2153 break;
9d5c8243
AK
2154 }
2155
2156 /* initialize the wol settings based on the eeprom settings */
2157 adapter->wol = adapter->eeprom_wol;
e1b86d84 2158 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2159
2160 /* reset the hardware with the new settings */
2161 igb_reset(adapter);
2162
2163 /* let the f/w know that the h/w is now under the control of the
2164 * driver. */
2165 igb_get_hw_control(adapter);
2166
9d5c8243
AK
2167 strcpy(netdev->name, "eth%d");
2168 err = register_netdev(netdev);
2169 if (err)
2170 goto err_register;
2171
b168dfc5
JB
2172 /* carrier off reporting is important to ethtool even BEFORE open */
2173 netif_carrier_off(netdev);
2174
421e02f0 2175#ifdef CONFIG_IGB_DCA
bbd98fe4 2176 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2177 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2178 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2179 igb_setup_dca(adapter);
2180 }
fe4506b6 2181
38c845c7 2182#endif
7ebae817 2183#ifdef CONFIG_IGB_PTP
673b8b70 2184 /* do hw tstamp init after resetting */
7ebae817 2185 igb_ptp_init(adapter);
673b8b70 2186
7ebae817 2187#endif
9d5c8243
AK
2188 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2189 /* print bus type/speed/width info */
7c510e4b 2190 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2191 netdev->name,
559e9c49 2192 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2193 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2194 "unknown"),
59c3de89
AD
2195 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2196 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2197 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2198 "unknown"),
7c510e4b 2199 netdev->dev_addr);
9d5c8243 2200
9835fd73
CW
2201 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2202 if (ret_val)
2203 strcpy(part_str, "Unknown");
2204 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2205 dev_info(&pdev->dev,
2206 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2207 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2208 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2209 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2210 switch (hw->mac.type) {
2211 case e1000_i350:
f96a8a0b
CW
2212 case e1000_i210:
2213 case e1000_i211:
09b068d4
CW
2214 igb_set_eee_i350(hw);
2215 break;
2216 default:
2217 break;
2218 }
749ab2cd
YZ
2219
2220 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2221 return 0;
2222
2223err_register:
2224 igb_release_hw_control(adapter);
2225err_eeprom:
2226 if (!igb_check_reset_block(hw))
f5f4cf08 2227 igb_reset_phy(hw);
9d5c8243
AK
2228
2229 if (hw->flash_address)
2230 iounmap(hw->flash_address);
9d5c8243 2231err_sw_init:
047e0030 2232 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2233 iounmap(hw->hw_addr);
2234err_ioremap:
2235 free_netdev(netdev);
2236err_alloc_etherdev:
559e9c49
AD
2237 pci_release_selected_regions(pdev,
2238 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2239err_pci_reg:
2240err_dma:
2241 pci_disable_device(pdev);
2242 return err;
2243}
2244
2245/**
2246 * igb_remove - Device Removal Routine
2247 * @pdev: PCI device information struct
2248 *
2249 * igb_remove is called by the PCI subsystem to alert the driver
2250 * that it should release a PCI device. The could be caused by a
2251 * Hot-Plug event, or because the driver is going to be removed from
2252 * memory.
2253 **/
2254static void __devexit igb_remove(struct pci_dev *pdev)
2255{
2256 struct net_device *netdev = pci_get_drvdata(pdev);
2257 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2258 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2259
749ab2cd 2260 pm_runtime_get_noresume(&pdev->dev);
7ebae817
RC
2261#ifdef CONFIG_IGB_PTP
2262 igb_ptp_remove(adapter);
749ab2cd 2263
7ebae817 2264#endif
760141a5
TH
2265 /*
2266 * The watchdog timer may be rescheduled, so explicitly
2267 * disable watchdog from being rescheduled.
2268 */
9d5c8243
AK
2269 set_bit(__IGB_DOWN, &adapter->state);
2270 del_timer_sync(&adapter->watchdog_timer);
2271 del_timer_sync(&adapter->phy_info_timer);
2272
760141a5
TH
2273 cancel_work_sync(&adapter->reset_task);
2274 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2275
421e02f0 2276#ifdef CONFIG_IGB_DCA
7dfc16fa 2277 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2278 dev_info(&pdev->dev, "DCA disabled\n");
2279 dca_remove_requester(&pdev->dev);
7dfc16fa 2280 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2281 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2282 }
2283#endif
2284
9d5c8243
AK
2285 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2286 * would have already happened in close and is redundant. */
2287 igb_release_hw_control(adapter);
2288
2289 unregister_netdev(netdev);
2290
047e0030 2291 igb_clear_interrupt_scheme(adapter);
9d5c8243 2292
37680117
AD
2293#ifdef CONFIG_PCI_IOV
2294 /* reclaim resources allocated to VFs */
2295 if (adapter->vf_data) {
2296 /* disable iov and allow time for transactions to clear */
0224d663
GR
2297 if (!igb_check_vf_assignment(adapter)) {
2298 pci_disable_sriov(pdev);
2299 msleep(500);
2300 } else {
2301 dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
2302 }
37680117
AD
2303
2304 kfree(adapter->vf_data);
2305 adapter->vf_data = NULL;
2306 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2307 wrfl();
37680117
AD
2308 msleep(100);
2309 dev_info(&pdev->dev, "IOV Disabled\n");
2310 }
2311#endif
559e9c49 2312
28b0759c
AD
2313 iounmap(hw->hw_addr);
2314 if (hw->flash_address)
2315 iounmap(hw->flash_address);
559e9c49
AD
2316 pci_release_selected_regions(pdev,
2317 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2318
1128c756 2319 kfree(adapter->shadow_vfta);
9d5c8243
AK
2320 free_netdev(netdev);
2321
19d5afd4 2322 pci_disable_pcie_error_reporting(pdev);
40a914fa 2323
9d5c8243
AK
2324 pci_disable_device(pdev);
2325}
2326
a6b623e0
AD
2327/**
2328 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2329 * @adapter: board private structure to initialize
2330 *
2331 * This function initializes the vf specific data storage and then attempts to
2332 * allocate the VFs. The reason for ordering it this way is because it is much
2333 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2334 * the memory for the VFs.
2335 **/
2336static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2337{
2338#ifdef CONFIG_PCI_IOV
2339 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2340 struct e1000_hw *hw = &adapter->hw;
0224d663
GR
2341 int old_vfs = igb_find_enabled_vfs(adapter);
2342 int i;
a6b623e0 2343
f96a8a0b
CW
2344 /* Virtualization features not supported on i210 family. */
2345 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2346 return;
2347
0224d663
GR
2348 if (old_vfs) {
2349 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2350 "max_vfs setting of %d\n", old_vfs, max_vfs);
2351 adapter->vfs_allocated_count = old_vfs;
a6b623e0
AD
2352 }
2353
0224d663
GR
2354 if (!adapter->vfs_allocated_count)
2355 return;
2356
2357 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2358 sizeof(struct vf_data_storage), GFP_KERNEL);
f96a8a0b 2359
0224d663
GR
2360 /* if allocation failed then we do not support SR-IOV */
2361 if (!adapter->vf_data) {
a6b623e0 2362 adapter->vfs_allocated_count = 0;
0224d663
GR
2363 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2364 "Data Storage\n");
2365 goto out;
a6b623e0 2366 }
0224d663
GR
2367
2368 if (!old_vfs) {
2369 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2370 goto err_out;
2371 }
2372 dev_info(&pdev->dev, "%d VFs allocated\n",
2373 adapter->vfs_allocated_count);
2374 for (i = 0; i < adapter->vfs_allocated_count; i++)
2375 igb_vf_configure(adapter, i);
2376
2377 /* DMA Coalescing is not supported in IOV mode. */
2378 adapter->flags &= ~IGB_FLAG_DMAC;
2379 goto out;
2380err_out:
2381 kfree(adapter->vf_data);
2382 adapter->vf_data = NULL;
2383 adapter->vfs_allocated_count = 0;
2384out:
2385 return;
a6b623e0
AD
2386#endif /* CONFIG_PCI_IOV */
2387}
2388
9d5c8243
AK
2389/**
2390 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2391 * @adapter: board private structure to initialize
2392 *
2393 * igb_sw_init initializes the Adapter private data structure.
2394 * Fields are initialized based on PCI device information and
2395 * OS network device settings (MTU size).
2396 **/
2397static int __devinit igb_sw_init(struct igb_adapter *adapter)
2398{
2399 struct e1000_hw *hw = &adapter->hw;
2400 struct net_device *netdev = adapter->netdev;
2401 struct pci_dev *pdev = adapter->pdev;
374a542d 2402 u32 max_rss_queues;
9d5c8243
AK
2403
2404 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2405
13fde97a 2406 /* set default ring sizes */
68fd9910
AD
2407 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2408 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2409
2410 /* set default ITR values */
4fc82adf
AD
2411 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2412 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2413
13fde97a
AD
2414 /* set default work limits */
2415 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2416
153285f9
AD
2417 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2418 VLAN_HLEN;
9d5c8243
AK
2419 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2420
81c2fc22
AD
2421 adapter->node = -1;
2422
12dcd86b 2423 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2424#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2425 switch (hw->mac.type) {
2426 case e1000_82576:
2427 case e1000_i350:
9b082d73
SA
2428 if (max_vfs > 7) {
2429 dev_warn(&pdev->dev,
2430 "Maximum of 7 VFs per PF, using max\n");
2431 adapter->vfs_allocated_count = 7;
2432 } else
2433 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2434 break;
2435 default:
2436 break;
2437 }
a6b623e0 2438#endif /* CONFIG_PCI_IOV */
374a542d
MV
2439
2440 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2441 switch (hw->mac.type) {
374a542d
MV
2442 case e1000_i211:
2443 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2444 break;
2445 case e1000_82575:
f96a8a0b 2446 case e1000_i210:
374a542d
MV
2447 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2448 break;
2449 case e1000_i350:
2450 /* I350 cannot do RSS and SR-IOV at the same time */
2451 if (!!adapter->vfs_allocated_count) {
2452 max_rss_queues = 1;
2453 break;
2454 }
2455 /* fall through */
2456 case e1000_82576:
2457 if (!!adapter->vfs_allocated_count) {
2458 max_rss_queues = 2;
2459 break;
2460 }
2461 /* fall through */
2462 case e1000_82580:
2463 default:
2464 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2465 break;
374a542d
MV
2466 }
2467
2468 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2469
2470 /* Determine if we need to pair queues. */
2471 switch (hw->mac.type) {
2472 case e1000_82575:
f96a8a0b 2473 case e1000_i211:
374a542d 2474 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2475 break;
374a542d
MV
2476 case e1000_82576:
2477 /*
2478 * If VFs are going to be allocated with RSS queues then we
2479 * should pair the queues in order to conserve interrupts due
2480 * to limited supply.
2481 */
2482 if ((adapter->rss_queues > 1) &&
2483 (adapter->vfs_allocated_count > 6))
2484 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2485 /* fall through */
2486 case e1000_82580:
2487 case e1000_i350:
2488 case e1000_i210:
f96a8a0b 2489 default:
374a542d
MV
2490 /*
2491 * If rss_queues > half of max_rss_queues, pair the queues in
2492 * order to conserve interrupts due to limited supply.
2493 */
2494 if (adapter->rss_queues > (max_rss_queues / 2))
2495 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2496 break;
2497 }
a99955fc 2498
1128c756
CW
2499 /* Setup and initialize a copy of the hw vlan table array */
2500 adapter->shadow_vfta = kzalloc(sizeof(u32) *
2501 E1000_VLAN_FILTER_TBL_SIZE,
2502 GFP_ATOMIC);
2503
a6b623e0 2504 /* This call may decrease the number of queues */
047e0030 2505 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2506 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2507 return -ENOMEM;
2508 }
2509
a6b623e0
AD
2510 igb_probe_vfs(adapter);
2511
9d5c8243
AK
2512 /* Explicitly disable IRQ since the NIC can be in any state. */
2513 igb_irq_disable(adapter);
2514
f96a8a0b 2515 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2516 adapter->flags &= ~IGB_FLAG_DMAC;
2517
9d5c8243
AK
2518 set_bit(__IGB_DOWN, &adapter->state);
2519 return 0;
2520}
2521
2522/**
2523 * igb_open - Called when a network interface is made active
2524 * @netdev: network interface device structure
2525 *
2526 * Returns 0 on success, negative value on failure
2527 *
2528 * The open entry point is called when a network interface is made
2529 * active by the system (IFF_UP). At this point all resources needed
2530 * for transmit and receive operations are allocated, the interrupt
2531 * handler is registered with the OS, the watchdog timer is started,
2532 * and the stack is notified that the interface is ready.
2533 **/
749ab2cd 2534static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2535{
2536 struct igb_adapter *adapter = netdev_priv(netdev);
2537 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2538 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2539 int err;
2540 int i;
2541
2542 /* disallow open during test */
749ab2cd
YZ
2543 if (test_bit(__IGB_TESTING, &adapter->state)) {
2544 WARN_ON(resuming);
9d5c8243 2545 return -EBUSY;
749ab2cd
YZ
2546 }
2547
2548 if (!resuming)
2549 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2550
b168dfc5
JB
2551 netif_carrier_off(netdev);
2552
9d5c8243
AK
2553 /* allocate transmit descriptors */
2554 err = igb_setup_all_tx_resources(adapter);
2555 if (err)
2556 goto err_setup_tx;
2557
2558 /* allocate receive descriptors */
2559 err = igb_setup_all_rx_resources(adapter);
2560 if (err)
2561 goto err_setup_rx;
2562
88a268c1 2563 igb_power_up_link(adapter);
9d5c8243 2564
9d5c8243
AK
2565 /* before we allocate an interrupt, we must be ready to handle it.
2566 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2567 * as soon as we call pci_request_irq, so we have to setup our
2568 * clean_rx handler before we do so. */
2569 igb_configure(adapter);
2570
2571 err = igb_request_irq(adapter);
2572 if (err)
2573 goto err_req_irq;
2574
2575 /* From here on the code is the same as igb_up() */
2576 clear_bit(__IGB_DOWN, &adapter->state);
2577
0d1ae7f4
AD
2578 for (i = 0; i < adapter->num_q_vectors; i++)
2579 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2580
2581 /* Clear any pending interrupts. */
2582 rd32(E1000_ICR);
844290e5
PW
2583
2584 igb_irq_enable(adapter);
2585
d4960307
AD
2586 /* notify VFs that reset has been completed */
2587 if (adapter->vfs_allocated_count) {
2588 u32 reg_data = rd32(E1000_CTRL_EXT);
2589 reg_data |= E1000_CTRL_EXT_PFRSTD;
2590 wr32(E1000_CTRL_EXT, reg_data);
2591 }
2592
d55b53ff
JK
2593 netif_tx_start_all_queues(netdev);
2594
749ab2cd
YZ
2595 if (!resuming)
2596 pm_runtime_put(&pdev->dev);
2597
25568a53
AD
2598 /* start the watchdog. */
2599 hw->mac.get_link_status = 1;
2600 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2601
2602 return 0;
2603
2604err_req_irq:
2605 igb_release_hw_control(adapter);
88a268c1 2606 igb_power_down_link(adapter);
9d5c8243
AK
2607 igb_free_all_rx_resources(adapter);
2608err_setup_rx:
2609 igb_free_all_tx_resources(adapter);
2610err_setup_tx:
2611 igb_reset(adapter);
749ab2cd
YZ
2612 if (!resuming)
2613 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2614
2615 return err;
2616}
2617
749ab2cd
YZ
2618static int igb_open(struct net_device *netdev)
2619{
2620 return __igb_open(netdev, false);
2621}
2622
9d5c8243
AK
2623/**
2624 * igb_close - Disables a network interface
2625 * @netdev: network interface device structure
2626 *
2627 * Returns 0, this is not allowed to fail
2628 *
2629 * The close entry point is called when an interface is de-activated
2630 * by the OS. The hardware is still under the driver's control, but
2631 * needs to be disabled. A global MAC reset is issued to stop the
2632 * hardware, and all transmit and receive resources are freed.
2633 **/
749ab2cd 2634static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2635{
2636 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2637 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2638
2639 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2640
749ab2cd
YZ
2641 if (!suspending)
2642 pm_runtime_get_sync(&pdev->dev);
2643
2644 igb_down(adapter);
9d5c8243
AK
2645 igb_free_irq(adapter);
2646
2647 igb_free_all_tx_resources(adapter);
2648 igb_free_all_rx_resources(adapter);
2649
749ab2cd
YZ
2650 if (!suspending)
2651 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2652 return 0;
2653}
2654
749ab2cd
YZ
2655static int igb_close(struct net_device *netdev)
2656{
2657 return __igb_close(netdev, false);
2658}
2659
9d5c8243
AK
2660/**
2661 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2662 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2663 *
2664 * Return 0 on success, negative on failure
2665 **/
80785298 2666int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2667{
59d71989 2668 struct device *dev = tx_ring->dev;
81c2fc22 2669 int orig_node = dev_to_node(dev);
9d5c8243
AK
2670 int size;
2671
06034649 2672 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
81c2fc22
AD
2673 tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2674 if (!tx_ring->tx_buffer_info)
2675 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2676 if (!tx_ring->tx_buffer_info)
9d5c8243 2677 goto err;
9d5c8243
AK
2678
2679 /* round up to nearest 4K */
85e8d004 2680 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2681 tx_ring->size = ALIGN(tx_ring->size, 4096);
2682
81c2fc22 2683 set_dev_node(dev, tx_ring->numa_node);
59d71989
AD
2684 tx_ring->desc = dma_alloc_coherent(dev,
2685 tx_ring->size,
2686 &tx_ring->dma,
2687 GFP_KERNEL);
81c2fc22
AD
2688 set_dev_node(dev, orig_node);
2689 if (!tx_ring->desc)
2690 tx_ring->desc = dma_alloc_coherent(dev,
2691 tx_ring->size,
2692 &tx_ring->dma,
2693 GFP_KERNEL);
9d5c8243
AK
2694
2695 if (!tx_ring->desc)
2696 goto err;
2697
9d5c8243
AK
2698 tx_ring->next_to_use = 0;
2699 tx_ring->next_to_clean = 0;
81c2fc22 2700
9d5c8243
AK
2701 return 0;
2702
2703err:
06034649 2704 vfree(tx_ring->tx_buffer_info);
59d71989 2705 dev_err(dev,
9d5c8243
AK
2706 "Unable to allocate memory for the transmit descriptor ring\n");
2707 return -ENOMEM;
2708}
2709
2710/**
2711 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2712 * (Descriptors) for all queues
2713 * @adapter: board private structure
2714 *
2715 * Return 0 on success, negative on failure
2716 **/
2717static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2718{
439705e1 2719 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2720 int i, err = 0;
2721
2722 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2723 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2724 if (err) {
439705e1 2725 dev_err(&pdev->dev,
9d5c8243
AK
2726 "Allocation for Tx Queue %u failed\n", i);
2727 for (i--; i >= 0; i--)
3025a446 2728 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2729 break;
2730 }
2731 }
2732
2733 return err;
2734}
2735
2736/**
85b430b4
AD
2737 * igb_setup_tctl - configure the transmit control registers
2738 * @adapter: Board private structure
9d5c8243 2739 **/
d7ee5b3a 2740void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2741{
9d5c8243
AK
2742 struct e1000_hw *hw = &adapter->hw;
2743 u32 tctl;
9d5c8243 2744
85b430b4
AD
2745 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2746 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2747
2748 /* Program the Transmit Control Register */
9d5c8243
AK
2749 tctl = rd32(E1000_TCTL);
2750 tctl &= ~E1000_TCTL_CT;
2751 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2752 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2753
2754 igb_config_collision_dist(hw);
2755
9d5c8243
AK
2756 /* Enable transmits */
2757 tctl |= E1000_TCTL_EN;
2758
2759 wr32(E1000_TCTL, tctl);
2760}
2761
85b430b4
AD
2762/**
2763 * igb_configure_tx_ring - Configure transmit ring after Reset
2764 * @adapter: board private structure
2765 * @ring: tx ring to configure
2766 *
2767 * Configure a transmit ring after a reset.
2768 **/
d7ee5b3a
AD
2769void igb_configure_tx_ring(struct igb_adapter *adapter,
2770 struct igb_ring *ring)
85b430b4
AD
2771{
2772 struct e1000_hw *hw = &adapter->hw;
a74420e0 2773 u32 txdctl = 0;
85b430b4
AD
2774 u64 tdba = ring->dma;
2775 int reg_idx = ring->reg_idx;
2776
2777 /* disable the queue */
a74420e0 2778 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2779 wrfl();
2780 mdelay(10);
2781
2782 wr32(E1000_TDLEN(reg_idx),
2783 ring->count * sizeof(union e1000_adv_tx_desc));
2784 wr32(E1000_TDBAL(reg_idx),
2785 tdba & 0x00000000ffffffffULL);
2786 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2787
fce99e34 2788 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2789 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2790 writel(0, ring->tail);
85b430b4
AD
2791
2792 txdctl |= IGB_TX_PTHRESH;
2793 txdctl |= IGB_TX_HTHRESH << 8;
2794 txdctl |= IGB_TX_WTHRESH << 16;
2795
2796 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2797 wr32(E1000_TXDCTL(reg_idx), txdctl);
2798}
2799
2800/**
2801 * igb_configure_tx - Configure transmit Unit after Reset
2802 * @adapter: board private structure
2803 *
2804 * Configure the Tx unit of the MAC after a reset.
2805 **/
2806static void igb_configure_tx(struct igb_adapter *adapter)
2807{
2808 int i;
2809
2810 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2811 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2812}
2813
9d5c8243
AK
2814/**
2815 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2816 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2817 *
2818 * Returns 0 on success, negative on failure
2819 **/
80785298 2820int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2821{
59d71989 2822 struct device *dev = rx_ring->dev;
81c2fc22 2823 int orig_node = dev_to_node(dev);
9d5c8243
AK
2824 int size, desc_len;
2825
06034649 2826 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
81c2fc22
AD
2827 rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2828 if (!rx_ring->rx_buffer_info)
2829 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2830 if (!rx_ring->rx_buffer_info)
9d5c8243 2831 goto err;
9d5c8243
AK
2832
2833 desc_len = sizeof(union e1000_adv_rx_desc);
2834
2835 /* Round up to nearest 4K */
2836 rx_ring->size = rx_ring->count * desc_len;
2837 rx_ring->size = ALIGN(rx_ring->size, 4096);
2838
81c2fc22 2839 set_dev_node(dev, rx_ring->numa_node);
59d71989
AD
2840 rx_ring->desc = dma_alloc_coherent(dev,
2841 rx_ring->size,
2842 &rx_ring->dma,
2843 GFP_KERNEL);
81c2fc22
AD
2844 set_dev_node(dev, orig_node);
2845 if (!rx_ring->desc)
2846 rx_ring->desc = dma_alloc_coherent(dev,
2847 rx_ring->size,
2848 &rx_ring->dma,
2849 GFP_KERNEL);
9d5c8243
AK
2850
2851 if (!rx_ring->desc)
2852 goto err;
2853
2854 rx_ring->next_to_clean = 0;
2855 rx_ring->next_to_use = 0;
9d5c8243 2856
9d5c8243
AK
2857 return 0;
2858
2859err:
06034649
AD
2860 vfree(rx_ring->rx_buffer_info);
2861 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2862 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2863 " ring\n");
9d5c8243
AK
2864 return -ENOMEM;
2865}
2866
2867/**
2868 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2869 * (Descriptors) for all queues
2870 * @adapter: board private structure
2871 *
2872 * Return 0 on success, negative on failure
2873 **/
2874static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2875{
439705e1 2876 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2877 int i, err = 0;
2878
2879 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2880 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2881 if (err) {
439705e1 2882 dev_err(&pdev->dev,
9d5c8243
AK
2883 "Allocation for Rx Queue %u failed\n", i);
2884 for (i--; i >= 0; i--)
3025a446 2885 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2886 break;
2887 }
2888 }
2889
2890 return err;
2891}
2892
06cf2666
AD
2893/**
2894 * igb_setup_mrqc - configure the multiple receive queue control registers
2895 * @adapter: Board private structure
2896 **/
2897static void igb_setup_mrqc(struct igb_adapter *adapter)
2898{
2899 struct e1000_hw *hw = &adapter->hw;
2900 u32 mrqc, rxcsum;
2901 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2902 union e1000_reta {
2903 u32 dword;
2904 u8 bytes[4];
2905 } reta;
2906 static const u8 rsshash[40] = {
2907 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2908 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2909 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2910 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2911
2912 /* Fill out hash function seeds */
2913 for (j = 0; j < 10; j++) {
2914 u32 rsskey = rsshash[(j * 4)];
2915 rsskey |= rsshash[(j * 4) + 1] << 8;
2916 rsskey |= rsshash[(j * 4) + 2] << 16;
2917 rsskey |= rsshash[(j * 4) + 3] << 24;
2918 array_wr32(E1000_RSSRK(0), j, rsskey);
2919 }
2920
a99955fc 2921 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2922
2923 if (adapter->vfs_allocated_count) {
2924 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2925 switch (hw->mac.type) {
d2ba2ed8 2926 case e1000_i350:
55cac248
AD
2927 case e1000_82580:
2928 num_rx_queues = 1;
2929 shift = 0;
2930 break;
06cf2666
AD
2931 case e1000_82576:
2932 shift = 3;
2933 num_rx_queues = 2;
2934 break;
2935 case e1000_82575:
2936 shift = 2;
2937 shift2 = 6;
2938 default:
2939 break;
2940 }
2941 } else {
2942 if (hw->mac.type == e1000_82575)
2943 shift = 6;
2944 }
2945
2946 for (j = 0; j < (32 * 4); j++) {
2947 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2948 if (shift2)
2949 reta.bytes[j & 3] |= num_rx_queues << shift2;
2950 if ((j & 3) == 3)
2951 wr32(E1000_RETA(j >> 2), reta.dword);
2952 }
2953
2954 /*
2955 * Disable raw packet checksumming so that RSS hash is placed in
2956 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2957 * offloads as they are enabled by default
2958 */
2959 rxcsum = rd32(E1000_RXCSUM);
2960 rxcsum |= E1000_RXCSUM_PCSD;
2961
2962 if (adapter->hw.mac.type >= e1000_82576)
2963 /* Enable Receive Checksum Offload for SCTP */
2964 rxcsum |= E1000_RXCSUM_CRCOFL;
2965
2966 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2967 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b
CW
2968 /*
2969 * Generate RSS hash based on TCP port numbers and/or
2970 * IPv4/v6 src and dst addresses since UDP cannot be
2971 * hashed reliably due to IP fragmentation
2972 */
2973
2974 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2975 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2976 E1000_MRQC_RSS_FIELD_IPV6 |
2977 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2978 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2979
2980 /* If VMDq is enabled then we set the appropriate mode for that, else
2981 * we default to RSS so that an RSS hash is calculated per packet even
2982 * if we are only using one queue */
2983 if (adapter->vfs_allocated_count) {
2984 if (hw->mac.type > e1000_82575) {
2985 /* Set the default pool for the PF's first queue */
2986 u32 vtctl = rd32(E1000_VT_CTL);
2987 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2988 E1000_VT_CTL_DISABLE_DEF_POOL);
2989 vtctl |= adapter->vfs_allocated_count <<
2990 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2991 wr32(E1000_VT_CTL, vtctl);
2992 }
a99955fc 2993 if (adapter->rss_queues > 1)
f96a8a0b 2994 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 2995 else
f96a8a0b 2996 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 2997 } else {
f96a8a0b
CW
2998 if (hw->mac.type != e1000_i211)
2999 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3000 }
3001 igb_vmm_control(adapter);
3002
06cf2666
AD
3003 wr32(E1000_MRQC, mrqc);
3004}
3005
9d5c8243
AK
3006/**
3007 * igb_setup_rctl - configure the receive control registers
3008 * @adapter: Board private structure
3009 **/
d7ee5b3a 3010void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3011{
3012 struct e1000_hw *hw = &adapter->hw;
3013 u32 rctl;
9d5c8243
AK
3014
3015 rctl = rd32(E1000_RCTL);
3016
3017 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3018 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3019
69d728ba 3020 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3021 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3022
87cb7e8c
AK
3023 /*
3024 * enable stripping of CRC. It's unlikely this will break BMC
3025 * redirection as it did with e1000. Newer features require
3026 * that the HW strips the CRC.
73cd78f1 3027 */
87cb7e8c 3028 rctl |= E1000_RCTL_SECRC;
9d5c8243 3029
559e9c49 3030 /* disable store bad packets and clear size bits. */
ec54d7d6 3031 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3032
6ec43fe6
AD
3033 /* enable LPE to prevent packets larger than max_frame_size */
3034 rctl |= E1000_RCTL_LPE;
9d5c8243 3035
952f72a8
AD
3036 /* disable queue 0 to prevent tail write w/o re-config */
3037 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3038
e1739522
AD
3039 /* Attention!!! For SR-IOV PF driver operations you must enable
3040 * queue drop for all VF and PF queues to prevent head of line blocking
3041 * if an un-trusted VF does not provide descriptors to hardware.
3042 */
3043 if (adapter->vfs_allocated_count) {
e1739522
AD
3044 /* set all queue drop enable bits */
3045 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3046 }
3047
89eaefb6
BG
3048 /* This is useful for sniffing bad packets. */
3049 if (adapter->netdev->features & NETIF_F_RXALL) {
3050 /* UPE and MPE will be handled by normal PROMISC logic
3051 * in e1000e_set_rx_mode */
3052 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3053 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3054 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3055
3056 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3057 E1000_RCTL_DPF | /* Allow filtered pause */
3058 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3059 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3060 * and that breaks VLANs.
3061 */
3062 }
3063
9d5c8243
AK
3064 wr32(E1000_RCTL, rctl);
3065}
3066
7d5753f0
AD
3067static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3068 int vfn)
3069{
3070 struct e1000_hw *hw = &adapter->hw;
3071 u32 vmolr;
3072
3073 /* if it isn't the PF check to see if VFs are enabled and
3074 * increase the size to support vlan tags */
3075 if (vfn < adapter->vfs_allocated_count &&
3076 adapter->vf_data[vfn].vlans_enabled)
3077 size += VLAN_TAG_SIZE;
3078
3079 vmolr = rd32(E1000_VMOLR(vfn));
3080 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3081 vmolr |= size | E1000_VMOLR_LPE;
3082 wr32(E1000_VMOLR(vfn), vmolr);
3083
3084 return 0;
3085}
3086
e1739522
AD
3087/**
3088 * igb_rlpml_set - set maximum receive packet size
3089 * @adapter: board private structure
3090 *
3091 * Configure maximum receivable packet size.
3092 **/
3093static void igb_rlpml_set(struct igb_adapter *adapter)
3094{
153285f9 3095 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3096 struct e1000_hw *hw = &adapter->hw;
3097 u16 pf_id = adapter->vfs_allocated_count;
3098
e1739522
AD
3099 if (pf_id) {
3100 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3101 /*
3102 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3103 * to our max jumbo frame size, in case we need to enable
3104 * jumbo frames on one of the rings later.
3105 * This will not pass over-length frames into the default
3106 * queue because it's gated by the VMOLR.RLPML.
3107 */
7d5753f0 3108 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3109 }
3110
3111 wr32(E1000_RLPML, max_frame_size);
3112}
3113
8151d294
WM
3114static inline void igb_set_vmolr(struct igb_adapter *adapter,
3115 int vfn, bool aupe)
7d5753f0
AD
3116{
3117 struct e1000_hw *hw = &adapter->hw;
3118 u32 vmolr;
3119
3120 /*
3121 * This register exists only on 82576 and newer so if we are older then
3122 * we should exit and do nothing
3123 */
3124 if (hw->mac.type < e1000_82576)
3125 return;
3126
3127 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3128 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3129 if (aupe)
3130 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3131 else
3132 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3133
3134 /* clear all bits that might not be set */
3135 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3136
a99955fc 3137 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3138 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3139 /*
3140 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3141 * multicast packets
3142 */
3143 if (vfn <= adapter->vfs_allocated_count)
3144 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3145
3146 wr32(E1000_VMOLR(vfn), vmolr);
3147}
3148
85b430b4
AD
3149/**
3150 * igb_configure_rx_ring - Configure a receive ring after Reset
3151 * @adapter: board private structure
3152 * @ring: receive ring to be configured
3153 *
3154 * Configure the Rx unit of the MAC after a reset.
3155 **/
d7ee5b3a
AD
3156void igb_configure_rx_ring(struct igb_adapter *adapter,
3157 struct igb_ring *ring)
85b430b4
AD
3158{
3159 struct e1000_hw *hw = &adapter->hw;
3160 u64 rdba = ring->dma;
3161 int reg_idx = ring->reg_idx;
a74420e0 3162 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3163
3164 /* disable the queue */
a74420e0 3165 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3166
3167 /* Set DMA base address registers */
3168 wr32(E1000_RDBAL(reg_idx),
3169 rdba & 0x00000000ffffffffULL);
3170 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3171 wr32(E1000_RDLEN(reg_idx),
3172 ring->count * sizeof(union e1000_adv_rx_desc));
3173
3174 /* initialize head and tail */
fce99e34 3175 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3176 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3177 writel(0, ring->tail);
85b430b4 3178
952f72a8 3179 /* set descriptor configuration */
44390ca6 3180 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3181#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3182 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3183#else
44390ca6 3184 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3185#endif
44390ca6 3186 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
06218a8d 3187 if (hw->mac.type >= e1000_82580)
757b77e2 3188 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3189 /* Only set Drop Enable if we are supporting multiple queues */
3190 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3191 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3192
3193 wr32(E1000_SRRCTL(reg_idx), srrctl);
3194
7d5753f0 3195 /* set filtering for VMDQ pools */
8151d294 3196 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3197
85b430b4
AD
3198 rxdctl |= IGB_RX_PTHRESH;
3199 rxdctl |= IGB_RX_HTHRESH << 8;
3200 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3201
3202 /* enable receive descriptor fetching */
3203 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3204 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3205}
3206
9d5c8243
AK
3207/**
3208 * igb_configure_rx - Configure receive Unit after Reset
3209 * @adapter: board private structure
3210 *
3211 * Configure the Rx unit of the MAC after a reset.
3212 **/
3213static void igb_configure_rx(struct igb_adapter *adapter)
3214{
9107584e 3215 int i;
9d5c8243 3216
68d480c4
AD
3217 /* set UTA to appropriate mode */
3218 igb_set_uta(adapter);
3219
26ad9178
AD
3220 /* set the correct pool for the PF default MAC address in entry 0 */
3221 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3222 adapter->vfs_allocated_count);
3223
06cf2666
AD
3224 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3225 * the Base and Length of the Rx Descriptor Ring */
3226 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3227 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3228}
3229
3230/**
3231 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3232 * @tx_ring: Tx descriptor ring for a specific queue
3233 *
3234 * Free all transmit software resources
3235 **/
68fd9910 3236void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3237{
3b644cf6 3238 igb_clean_tx_ring(tx_ring);
9d5c8243 3239
06034649
AD
3240 vfree(tx_ring->tx_buffer_info);
3241 tx_ring->tx_buffer_info = NULL;
9d5c8243 3242
439705e1
AD
3243 /* if not set, then don't free */
3244 if (!tx_ring->desc)
3245 return;
3246
59d71989
AD
3247 dma_free_coherent(tx_ring->dev, tx_ring->size,
3248 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3249
3250 tx_ring->desc = NULL;
3251}
3252
3253/**
3254 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3255 * @adapter: board private structure
3256 *
3257 * Free all transmit software resources
3258 **/
3259static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3260{
3261 int i;
3262
3263 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3264 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3265}
3266
ebe42d16
AD
3267void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3268 struct igb_tx_buffer *tx_buffer)
3269{
3270 if (tx_buffer->skb) {
3271 dev_kfree_skb_any(tx_buffer->skb);
3272 if (tx_buffer->dma)
3273 dma_unmap_single(ring->dev,
3274 tx_buffer->dma,
3275 tx_buffer->length,
3276 DMA_TO_DEVICE);
3277 } else if (tx_buffer->dma) {
3278 dma_unmap_page(ring->dev,
3279 tx_buffer->dma,
3280 tx_buffer->length,
3281 DMA_TO_DEVICE);
3282 }
3283 tx_buffer->next_to_watch = NULL;
3284 tx_buffer->skb = NULL;
3285 tx_buffer->dma = 0;
3286 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3287}
3288
3289/**
3290 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3291 * @tx_ring: ring to be cleaned
3292 **/
3b644cf6 3293static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3294{
06034649 3295 struct igb_tx_buffer *buffer_info;
9d5c8243 3296 unsigned long size;
6ad4edfc 3297 u16 i;
9d5c8243 3298
06034649 3299 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3300 return;
3301 /* Free all the Tx ring sk_buffs */
3302
3303 for (i = 0; i < tx_ring->count; i++) {
06034649 3304 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3305 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3306 }
3307
dad8a3b3
JF
3308 netdev_tx_reset_queue(txring_txq(tx_ring));
3309
06034649
AD
3310 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3311 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3312
3313 /* Zero out the descriptor ring */
9d5c8243
AK
3314 memset(tx_ring->desc, 0, tx_ring->size);
3315
3316 tx_ring->next_to_use = 0;
3317 tx_ring->next_to_clean = 0;
9d5c8243
AK
3318}
3319
3320/**
3321 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3322 * @adapter: board private structure
3323 **/
3324static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3325{
3326 int i;
3327
3328 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3329 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3330}
3331
3332/**
3333 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3334 * @rx_ring: ring to clean the resources from
3335 *
3336 * Free all receive software resources
3337 **/
68fd9910 3338void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3339{
3b644cf6 3340 igb_clean_rx_ring(rx_ring);
9d5c8243 3341
06034649
AD
3342 vfree(rx_ring->rx_buffer_info);
3343 rx_ring->rx_buffer_info = NULL;
9d5c8243 3344
439705e1
AD
3345 /* if not set, then don't free */
3346 if (!rx_ring->desc)
3347 return;
3348
59d71989
AD
3349 dma_free_coherent(rx_ring->dev, rx_ring->size,
3350 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3351
3352 rx_ring->desc = NULL;
3353}
3354
3355/**
3356 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3357 * @adapter: board private structure
3358 *
3359 * Free all receive software resources
3360 **/
3361static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3362{
3363 int i;
3364
3365 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3366 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3367}
3368
3369/**
3370 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3371 * @rx_ring: ring to free buffers from
3372 **/
3b644cf6 3373static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3374{
9d5c8243 3375 unsigned long size;
c023cd88 3376 u16 i;
9d5c8243 3377
06034649 3378 if (!rx_ring->rx_buffer_info)
9d5c8243 3379 return;
439705e1 3380
9d5c8243
AK
3381 /* Free all the Rx ring sk_buffs */
3382 for (i = 0; i < rx_ring->count; i++) {
06034649 3383 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3384 if (buffer_info->dma) {
59d71989 3385 dma_unmap_single(rx_ring->dev,
80785298 3386 buffer_info->dma,
44390ca6 3387 IGB_RX_HDR_LEN,
59d71989 3388 DMA_FROM_DEVICE);
9d5c8243
AK
3389 buffer_info->dma = 0;
3390 }
3391
3392 if (buffer_info->skb) {
3393 dev_kfree_skb(buffer_info->skb);
3394 buffer_info->skb = NULL;
3395 }
6ec43fe6 3396 if (buffer_info->page_dma) {
59d71989 3397 dma_unmap_page(rx_ring->dev,
80785298 3398 buffer_info->page_dma,
6ec43fe6 3399 PAGE_SIZE / 2,
59d71989 3400 DMA_FROM_DEVICE);
6ec43fe6
AD
3401 buffer_info->page_dma = 0;
3402 }
9d5c8243 3403 if (buffer_info->page) {
9d5c8243
AK
3404 put_page(buffer_info->page);
3405 buffer_info->page = NULL;
bf36c1a0 3406 buffer_info->page_offset = 0;
9d5c8243
AK
3407 }
3408 }
3409
06034649
AD
3410 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3411 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3412
3413 /* Zero out the descriptor ring */
3414 memset(rx_ring->desc, 0, rx_ring->size);
3415
3416 rx_ring->next_to_clean = 0;
3417 rx_ring->next_to_use = 0;
9d5c8243
AK
3418}
3419
3420/**
3421 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3422 * @adapter: board private structure
3423 **/
3424static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3425{
3426 int i;
3427
3428 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3429 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3430}
3431
3432/**
3433 * igb_set_mac - Change the Ethernet Address of the NIC
3434 * @netdev: network interface device structure
3435 * @p: pointer to an address structure
3436 *
3437 * Returns 0 on success, negative on failure
3438 **/
3439static int igb_set_mac(struct net_device *netdev, void *p)
3440{
3441 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3442 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3443 struct sockaddr *addr = p;
3444
3445 if (!is_valid_ether_addr(addr->sa_data))
3446 return -EADDRNOTAVAIL;
3447
3448 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3449 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3450
26ad9178
AD
3451 /* set the correct pool for the new PF MAC address in entry 0 */
3452 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3453 adapter->vfs_allocated_count);
e1739522 3454
9d5c8243
AK
3455 return 0;
3456}
3457
3458/**
68d480c4 3459 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3460 * @netdev: network interface device structure
3461 *
68d480c4
AD
3462 * Writes multicast address list to the MTA hash table.
3463 * Returns: -ENOMEM on failure
3464 * 0 on no addresses written
3465 * X on writing X addresses to MTA
9d5c8243 3466 **/
68d480c4 3467static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3468{
3469 struct igb_adapter *adapter = netdev_priv(netdev);
3470 struct e1000_hw *hw = &adapter->hw;
22bedad3 3471 struct netdev_hw_addr *ha;
68d480c4 3472 u8 *mta_list;
9d5c8243
AK
3473 int i;
3474
4cd24eaf 3475 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3476 /* nothing to program, so clear mc list */
3477 igb_update_mc_addr_list(hw, NULL, 0);
3478 igb_restore_vf_multicasts(adapter);
3479 return 0;
3480 }
9d5c8243 3481
4cd24eaf 3482 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3483 if (!mta_list)
3484 return -ENOMEM;
ff41f8dc 3485
68d480c4 3486 /* The shared function expects a packed array of only addresses. */
48e2f183 3487 i = 0;
22bedad3
JP
3488 netdev_for_each_mc_addr(ha, netdev)
3489 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3490
68d480c4
AD
3491 igb_update_mc_addr_list(hw, mta_list, i);
3492 kfree(mta_list);
3493
4cd24eaf 3494 return netdev_mc_count(netdev);
68d480c4
AD
3495}
3496
3497/**
3498 * igb_write_uc_addr_list - write unicast addresses to RAR table
3499 * @netdev: network interface device structure
3500 *
3501 * Writes unicast address list to the RAR table.
3502 * Returns: -ENOMEM on failure/insufficient address space
3503 * 0 on no addresses written
3504 * X on writing X addresses to the RAR table
3505 **/
3506static int igb_write_uc_addr_list(struct net_device *netdev)
3507{
3508 struct igb_adapter *adapter = netdev_priv(netdev);
3509 struct e1000_hw *hw = &adapter->hw;
3510 unsigned int vfn = adapter->vfs_allocated_count;
3511 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3512 int count = 0;
3513
3514 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3515 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3516 return -ENOMEM;
9d5c8243 3517
32e7bfc4 3518 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3519 struct netdev_hw_addr *ha;
32e7bfc4
JP
3520
3521 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3522 if (!rar_entries)
3523 break;
26ad9178
AD
3524 igb_rar_set_qsel(adapter, ha->addr,
3525 rar_entries--,
68d480c4
AD
3526 vfn);
3527 count++;
ff41f8dc
AD
3528 }
3529 }
3530 /* write the addresses in reverse order to avoid write combining */
3531 for (; rar_entries > 0 ; rar_entries--) {
3532 wr32(E1000_RAH(rar_entries), 0);
3533 wr32(E1000_RAL(rar_entries), 0);
3534 }
3535 wrfl();
3536
68d480c4
AD
3537 return count;
3538}
3539
3540/**
3541 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3542 * @netdev: network interface device structure
3543 *
3544 * The set_rx_mode entry point is called whenever the unicast or multicast
3545 * address lists or the network interface flags are updated. This routine is
3546 * responsible for configuring the hardware for proper unicast, multicast,
3547 * promiscuous mode, and all-multi behavior.
3548 **/
3549static void igb_set_rx_mode(struct net_device *netdev)
3550{
3551 struct igb_adapter *adapter = netdev_priv(netdev);
3552 struct e1000_hw *hw = &adapter->hw;
3553 unsigned int vfn = adapter->vfs_allocated_count;
3554 u32 rctl, vmolr = 0;
3555 int count;
3556
3557 /* Check for Promiscuous and All Multicast modes */
3558 rctl = rd32(E1000_RCTL);
3559
3560 /* clear the effected bits */
3561 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3562
3563 if (netdev->flags & IFF_PROMISC) {
3564 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3565 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3566 } else {
3567 if (netdev->flags & IFF_ALLMULTI) {
3568 rctl |= E1000_RCTL_MPE;
3569 vmolr |= E1000_VMOLR_MPME;
3570 } else {
3571 /*
3572 * Write addresses to the MTA, if the attempt fails
25985edc 3573 * then we should just turn on promiscuous mode so
68d480c4
AD
3574 * that we can at least receive multicast traffic
3575 */
3576 count = igb_write_mc_addr_list(netdev);
3577 if (count < 0) {
3578 rctl |= E1000_RCTL_MPE;
3579 vmolr |= E1000_VMOLR_MPME;
3580 } else if (count) {
3581 vmolr |= E1000_VMOLR_ROMPE;
3582 }
3583 }
3584 /*
3585 * Write addresses to available RAR registers, if there is not
3586 * sufficient space to store all the addresses then enable
25985edc 3587 * unicast promiscuous mode
68d480c4
AD
3588 */
3589 count = igb_write_uc_addr_list(netdev);
3590 if (count < 0) {
3591 rctl |= E1000_RCTL_UPE;
3592 vmolr |= E1000_VMOLR_ROPE;
3593 }
3594 rctl |= E1000_RCTL_VFE;
28fc06f5 3595 }
68d480c4 3596 wr32(E1000_RCTL, rctl);
28fc06f5 3597
68d480c4
AD
3598 /*
3599 * In order to support SR-IOV and eventually VMDq it is necessary to set
3600 * the VMOLR to enable the appropriate modes. Without this workaround
3601 * we will have issues with VLAN tag stripping not being done for frames
3602 * that are only arriving because we are the default pool
3603 */
f96a8a0b 3604 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3605 return;
9d5c8243 3606
68d480c4
AD
3607 vmolr |= rd32(E1000_VMOLR(vfn)) &
3608 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3609 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3610 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3611}
3612
13800469
GR
3613static void igb_check_wvbr(struct igb_adapter *adapter)
3614{
3615 struct e1000_hw *hw = &adapter->hw;
3616 u32 wvbr = 0;
3617
3618 switch (hw->mac.type) {
3619 case e1000_82576:
3620 case e1000_i350:
3621 if (!(wvbr = rd32(E1000_WVBR)))
3622 return;
3623 break;
3624 default:
3625 break;
3626 }
3627
3628 adapter->wvbr |= wvbr;
3629}
3630
3631#define IGB_STAGGERED_QUEUE_OFFSET 8
3632
3633static void igb_spoof_check(struct igb_adapter *adapter)
3634{
3635 int j;
3636
3637 if (!adapter->wvbr)
3638 return;
3639
3640 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3641 if (adapter->wvbr & (1 << j) ||
3642 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3643 dev_warn(&adapter->pdev->dev,
3644 "Spoof event(s) detected on VF %d\n", j);
3645 adapter->wvbr &=
3646 ~((1 << j) |
3647 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3648 }
3649 }
3650}
3651
9d5c8243
AK
3652/* Need to wait a few seconds after link up to get diagnostic information from
3653 * the phy */
3654static void igb_update_phy_info(unsigned long data)
3655{
3656 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3657 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3658}
3659
4d6b725e
AD
3660/**
3661 * igb_has_link - check shared code for link and determine up/down
3662 * @adapter: pointer to driver private info
3663 **/
3145535a 3664bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3665{
3666 struct e1000_hw *hw = &adapter->hw;
3667 bool link_active = false;
3668 s32 ret_val = 0;
3669
3670 /* get_link_status is set on LSC (link status) interrupt or
3671 * rx sequence error interrupt. get_link_status will stay
3672 * false until the e1000_check_for_link establishes link
3673 * for copper adapters ONLY
3674 */
3675 switch (hw->phy.media_type) {
3676 case e1000_media_type_copper:
3677 if (hw->mac.get_link_status) {
3678 ret_val = hw->mac.ops.check_for_link(hw);
3679 link_active = !hw->mac.get_link_status;
3680 } else {
3681 link_active = true;
3682 }
3683 break;
4d6b725e
AD
3684 case e1000_media_type_internal_serdes:
3685 ret_val = hw->mac.ops.check_for_link(hw);
3686 link_active = hw->mac.serdes_has_link;
3687 break;
3688 default:
3689 case e1000_media_type_unknown:
3690 break;
3691 }
3692
3693 return link_active;
3694}
3695
563988dc
SA
3696static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3697{
3698 bool ret = false;
3699 u32 ctrl_ext, thstat;
3700
f96a8a0b 3701 /* check for thermal sensor event on i350 copper only */
563988dc
SA
3702 if (hw->mac.type == e1000_i350) {
3703 thstat = rd32(E1000_THSTAT);
3704 ctrl_ext = rd32(E1000_CTRL_EXT);
3705
3706 if ((hw->phy.media_type == e1000_media_type_copper) &&
3707 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3708 ret = !!(thstat & event);
3709 }
3710 }
3711
3712 return ret;
3713}
3714
9d5c8243
AK
3715/**
3716 * igb_watchdog - Timer Call-back
3717 * @data: pointer to adapter cast into an unsigned long
3718 **/
3719static void igb_watchdog(unsigned long data)
3720{
3721 struct igb_adapter *adapter = (struct igb_adapter *)data;
3722 /* Do the rest outside of interrupt context */
3723 schedule_work(&adapter->watchdog_task);
3724}
3725
3726static void igb_watchdog_task(struct work_struct *work)
3727{
3728 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3729 struct igb_adapter,
3730 watchdog_task);
9d5c8243 3731 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3732 struct net_device *netdev = adapter->netdev;
563988dc 3733 u32 link;
7a6ea550 3734 int i;
9d5c8243 3735
4d6b725e 3736 link = igb_has_link(adapter);
9d5c8243 3737 if (link) {
749ab2cd
YZ
3738 /* Cancel scheduled suspend requests. */
3739 pm_runtime_resume(netdev->dev.parent);
3740
9d5c8243
AK
3741 if (!netif_carrier_ok(netdev)) {
3742 u32 ctrl;
330a6d6a
AD
3743 hw->mac.ops.get_speed_and_duplex(hw,
3744 &adapter->link_speed,
3745 &adapter->link_duplex);
9d5c8243
AK
3746
3747 ctrl = rd32(E1000_CTRL);
527d47c1 3748 /* Links status message must follow this format */
876d2d6f
JK
3749 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3750 "Duplex, Flow Control: %s\n",
559e9c49
AD
3751 netdev->name,
3752 adapter->link_speed,
3753 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3754 "Full" : "Half",
3755 (ctrl & E1000_CTRL_TFCE) &&
3756 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3757 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3758 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3759
563988dc 3760 /* check for thermal sensor event */
876d2d6f
JK
3761 if (igb_thermal_sensor_event(hw,
3762 E1000_THSTAT_LINK_THROTTLE)) {
3763 netdev_info(netdev, "The network adapter link "
3764 "speed was downshifted because it "
3765 "overheated\n");
7ef5ed1c 3766 }
563988dc 3767
d07f3e37 3768 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3769 adapter->tx_timeout_factor = 1;
3770 switch (adapter->link_speed) {
3771 case SPEED_10:
9d5c8243
AK
3772 adapter->tx_timeout_factor = 14;
3773 break;
3774 case SPEED_100:
9d5c8243
AK
3775 /* maybe add some timeout factor ? */
3776 break;
3777 }
3778
3779 netif_carrier_on(netdev);
9d5c8243 3780
4ae196df 3781 igb_ping_all_vfs(adapter);
17dc566c 3782 igb_check_vf_rate_limit(adapter);
4ae196df 3783
4b1a9877 3784 /* link state has changed, schedule phy info update */
9d5c8243
AK
3785 if (!test_bit(__IGB_DOWN, &adapter->state))
3786 mod_timer(&adapter->phy_info_timer,
3787 round_jiffies(jiffies + 2 * HZ));
3788 }
3789 } else {
3790 if (netif_carrier_ok(netdev)) {
3791 adapter->link_speed = 0;
3792 adapter->link_duplex = 0;
563988dc
SA
3793
3794 /* check for thermal sensor event */
876d2d6f
JK
3795 if (igb_thermal_sensor_event(hw,
3796 E1000_THSTAT_PWR_DOWN)) {
3797 netdev_err(netdev, "The network adapter was "
3798 "stopped because it overheated\n");
7ef5ed1c 3799 }
563988dc 3800
527d47c1
AD
3801 /* Links status message must follow this format */
3802 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3803 netdev->name);
9d5c8243 3804 netif_carrier_off(netdev);
4b1a9877 3805
4ae196df
AD
3806 igb_ping_all_vfs(adapter);
3807
4b1a9877 3808 /* link state has changed, schedule phy info update */
9d5c8243
AK
3809 if (!test_bit(__IGB_DOWN, &adapter->state))
3810 mod_timer(&adapter->phy_info_timer,
3811 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3812
3813 pm_schedule_suspend(netdev->dev.parent,
3814 MSEC_PER_SEC * 5);
9d5c8243
AK
3815 }
3816 }
3817
12dcd86b
ED
3818 spin_lock(&adapter->stats64_lock);
3819 igb_update_stats(adapter, &adapter->stats64);
3820 spin_unlock(&adapter->stats64_lock);
9d5c8243 3821
dbabb065 3822 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3823 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3824 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3825 /* We've lost link, so the controller stops DMA,
3826 * but we've got queued Tx work that's never going
3827 * to get done, so reset controller to flush Tx.
3828 * (Do the reset outside of interrupt context). */
dbabb065
AD
3829 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3830 adapter->tx_timeout_count++;
3831 schedule_work(&adapter->reset_task);
3832 /* return immediately since reset is imminent */
3833 return;
3834 }
9d5c8243 3835 }
9d5c8243 3836
dbabb065 3837 /* Force detection of hung controller every watchdog period */
6d095fa8 3838 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3839 }
f7ba205e 3840
9d5c8243 3841 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3842 if (adapter->msix_entries) {
047e0030 3843 u32 eics = 0;
0d1ae7f4
AD
3844 for (i = 0; i < adapter->num_q_vectors; i++)
3845 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
3846 wr32(E1000_EICS, eics);
3847 } else {
3848 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3849 }
9d5c8243 3850
13800469
GR
3851 igb_spoof_check(adapter);
3852
9d5c8243
AK
3853 /* Reset the timer */
3854 if (!test_bit(__IGB_DOWN, &adapter->state))
3855 mod_timer(&adapter->watchdog_timer,
3856 round_jiffies(jiffies + 2 * HZ));
3857}
3858
3859enum latency_range {
3860 lowest_latency = 0,
3861 low_latency = 1,
3862 bulk_latency = 2,
3863 latency_invalid = 255
3864};
3865
6eb5a7f1
AD
3866/**
3867 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3868 *
3869 * Stores a new ITR value based on strictly on packet size. This
3870 * algorithm is less sophisticated than that used in igb_update_itr,
3871 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3872 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3873 * were determined based on theoretical maximum wire speed and testing
3874 * data, in order to minimize response time while increasing bulk
3875 * throughput.
3876 * This functionality is controlled by the InterruptThrottleRate module
3877 * parameter (see igb_param.c)
3878 * NOTE: This function is called only when operating in a multiqueue
3879 * receive environment.
047e0030 3880 * @q_vector: pointer to q_vector
6eb5a7f1 3881 **/
047e0030 3882static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3883{
047e0030 3884 int new_val = q_vector->itr_val;
6eb5a7f1 3885 int avg_wire_size = 0;
047e0030 3886 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 3887 unsigned int packets;
9d5c8243 3888
6eb5a7f1
AD
3889 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3890 * ints/sec - ITR timer value of 120 ticks.
3891 */
3892 if (adapter->link_speed != SPEED_1000) {
0ba82994 3893 new_val = IGB_4K_ITR;
6eb5a7f1 3894 goto set_itr_val;
9d5c8243 3895 }
047e0030 3896
0ba82994
AD
3897 packets = q_vector->rx.total_packets;
3898 if (packets)
3899 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 3900
0ba82994
AD
3901 packets = q_vector->tx.total_packets;
3902 if (packets)
3903 avg_wire_size = max_t(u32, avg_wire_size,
3904 q_vector->tx.total_bytes / packets);
047e0030
AD
3905
3906 /* if avg_wire_size isn't set no work was done */
3907 if (!avg_wire_size)
3908 goto clear_counts;
9d5c8243 3909
6eb5a7f1
AD
3910 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3911 avg_wire_size += 24;
3912
3913 /* Don't starve jumbo frames */
3914 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3915
6eb5a7f1
AD
3916 /* Give a little boost to mid-size frames */
3917 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3918 new_val = avg_wire_size / 3;
3919 else
3920 new_val = avg_wire_size / 2;
9d5c8243 3921
0ba82994
AD
3922 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3923 if (new_val < IGB_20K_ITR &&
3924 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3925 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3926 new_val = IGB_20K_ITR;
abe1c363 3927
6eb5a7f1 3928set_itr_val:
047e0030
AD
3929 if (new_val != q_vector->itr_val) {
3930 q_vector->itr_val = new_val;
3931 q_vector->set_itr = 1;
9d5c8243 3932 }
6eb5a7f1 3933clear_counts:
0ba82994
AD
3934 q_vector->rx.total_bytes = 0;
3935 q_vector->rx.total_packets = 0;
3936 q_vector->tx.total_bytes = 0;
3937 q_vector->tx.total_packets = 0;
9d5c8243
AK
3938}
3939
3940/**
3941 * igb_update_itr - update the dynamic ITR value based on statistics
3942 * Stores a new ITR value based on packets and byte
3943 * counts during the last interrupt. The advantage of per interrupt
3944 * computation is faster updates and more accurate ITR for the current
3945 * traffic pattern. Constants in this function were computed
3946 * based on theoretical maximum wire speed and thresholds were set based
3947 * on testing data as well as attempting to minimize response time
3948 * while increasing bulk throughput.
3949 * this functionality is controlled by the InterruptThrottleRate module
3950 * parameter (see igb_param.c)
3951 * NOTE: These calculations are only valid when operating in a single-
3952 * queue environment.
0ba82994
AD
3953 * @q_vector: pointer to q_vector
3954 * @ring_container: ring info to update the itr for
9d5c8243 3955 **/
0ba82994
AD
3956static void igb_update_itr(struct igb_q_vector *q_vector,
3957 struct igb_ring_container *ring_container)
9d5c8243 3958{
0ba82994
AD
3959 unsigned int packets = ring_container->total_packets;
3960 unsigned int bytes = ring_container->total_bytes;
3961 u8 itrval = ring_container->itr;
9d5c8243 3962
0ba82994 3963 /* no packets, exit with status unchanged */
9d5c8243 3964 if (packets == 0)
0ba82994 3965 return;
9d5c8243 3966
0ba82994 3967 switch (itrval) {
9d5c8243
AK
3968 case lowest_latency:
3969 /* handle TSO and jumbo frames */
3970 if (bytes/packets > 8000)
0ba82994 3971 itrval = bulk_latency;
9d5c8243 3972 else if ((packets < 5) && (bytes > 512))
0ba82994 3973 itrval = low_latency;
9d5c8243
AK
3974 break;
3975 case low_latency: /* 50 usec aka 20000 ints/s */
3976 if (bytes > 10000) {
3977 /* this if handles the TSO accounting */
3978 if (bytes/packets > 8000) {
0ba82994 3979 itrval = bulk_latency;
9d5c8243 3980 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 3981 itrval = bulk_latency;
9d5c8243 3982 } else if ((packets > 35)) {
0ba82994 3983 itrval = lowest_latency;
9d5c8243
AK
3984 }
3985 } else if (bytes/packets > 2000) {
0ba82994 3986 itrval = bulk_latency;
9d5c8243 3987 } else if (packets <= 2 && bytes < 512) {
0ba82994 3988 itrval = lowest_latency;
9d5c8243
AK
3989 }
3990 break;
3991 case bulk_latency: /* 250 usec aka 4000 ints/s */
3992 if (bytes > 25000) {
3993 if (packets > 35)
0ba82994 3994 itrval = low_latency;
1e5c3d21 3995 } else if (bytes < 1500) {
0ba82994 3996 itrval = low_latency;
9d5c8243
AK
3997 }
3998 break;
3999 }
4000
0ba82994
AD
4001 /* clear work counters since we have the values we need */
4002 ring_container->total_bytes = 0;
4003 ring_container->total_packets = 0;
4004
4005 /* write updated itr to ring container */
4006 ring_container->itr = itrval;
9d5c8243
AK
4007}
4008
0ba82994 4009static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4010{
0ba82994 4011 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4012 u32 new_itr = q_vector->itr_val;
0ba82994 4013 u8 current_itr = 0;
9d5c8243
AK
4014
4015 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4016 if (adapter->link_speed != SPEED_1000) {
4017 current_itr = 0;
0ba82994 4018 new_itr = IGB_4K_ITR;
9d5c8243
AK
4019 goto set_itr_now;
4020 }
4021
0ba82994
AD
4022 igb_update_itr(q_vector, &q_vector->tx);
4023 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4024
0ba82994 4025 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4026
6eb5a7f1 4027 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4028 if (current_itr == lowest_latency &&
4029 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4030 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4031 current_itr = low_latency;
4032
9d5c8243
AK
4033 switch (current_itr) {
4034 /* counts and packets in update_itr are dependent on these numbers */
4035 case lowest_latency:
0ba82994 4036 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4037 break;
4038 case low_latency:
0ba82994 4039 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4040 break;
4041 case bulk_latency:
0ba82994 4042 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4043 break;
4044 default:
4045 break;
4046 }
4047
4048set_itr_now:
047e0030 4049 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4050 /* this attempts to bias the interrupt rate towards Bulk
4051 * by adding intermediate steps when interrupt rate is
4052 * increasing */
047e0030
AD
4053 new_itr = new_itr > q_vector->itr_val ?
4054 max((new_itr * q_vector->itr_val) /
4055 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 4056 new_itr) :
9d5c8243
AK
4057 new_itr;
4058 /* Don't write the value here; it resets the adapter's
4059 * internal timer, and causes us to delay far longer than
4060 * we should between interrupts. Instead, we write the ITR
4061 * value at the beginning of the next interrupt so the timing
4062 * ends up being correct.
4063 */
047e0030
AD
4064 q_vector->itr_val = new_itr;
4065 q_vector->set_itr = 1;
9d5c8243 4066 }
9d5c8243
AK
4067}
4068
c50b52a0
SH
4069static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4070 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4071{
4072 struct e1000_adv_tx_context_desc *context_desc;
4073 u16 i = tx_ring->next_to_use;
4074
4075 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4076
4077 i++;
4078 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4079
4080 /* set bits to identify this as an advanced context descriptor */
4081 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4082
4083 /* For 82575, context index must be unique per ring. */
866cff06 4084 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4085 mss_l4len_idx |= tx_ring->reg_idx << 4;
4086
4087 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4088 context_desc->seqnum_seed = 0;
4089 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4090 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4091}
4092
7af40ad9
AD
4093static int igb_tso(struct igb_ring *tx_ring,
4094 struct igb_tx_buffer *first,
4095 u8 *hdr_len)
9d5c8243 4096{
7af40ad9 4097 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4098 u32 vlan_macip_lens, type_tucmd;
4099 u32 mss_l4len_idx, l4len;
4100
4101 if (!skb_is_gso(skb))
4102 return 0;
9d5c8243
AK
4103
4104 if (skb_header_cloned(skb)) {
7af40ad9 4105 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4106 if (err)
4107 return err;
4108 }
4109
7d13a7d0
AD
4110 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4111 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4112
7af40ad9 4113 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4114 struct iphdr *iph = ip_hdr(skb);
4115 iph->tot_len = 0;
4116 iph->check = 0;
4117 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4118 iph->daddr, 0,
4119 IPPROTO_TCP,
4120 0);
7d13a7d0 4121 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4122 first->tx_flags |= IGB_TX_FLAGS_TSO |
4123 IGB_TX_FLAGS_CSUM |
4124 IGB_TX_FLAGS_IPV4;
8e1e8a47 4125 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4126 ipv6_hdr(skb)->payload_len = 0;
4127 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4128 &ipv6_hdr(skb)->daddr,
4129 0, IPPROTO_TCP, 0);
7af40ad9
AD
4130 first->tx_flags |= IGB_TX_FLAGS_TSO |
4131 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4132 }
4133
7af40ad9 4134 /* compute header lengths */
7d13a7d0
AD
4135 l4len = tcp_hdrlen(skb);
4136 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4137
7af40ad9
AD
4138 /* update gso size and bytecount with header size */
4139 first->gso_segs = skb_shinfo(skb)->gso_segs;
4140 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4141
9d5c8243 4142 /* MSS L4LEN IDX */
7d13a7d0
AD
4143 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4144 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4145
7d13a7d0
AD
4146 /* VLAN MACLEN IPLEN */
4147 vlan_macip_lens = skb_network_header_len(skb);
4148 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4149 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4150
7d13a7d0 4151 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4152
7d13a7d0 4153 return 1;
9d5c8243
AK
4154}
4155
7af40ad9 4156static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4157{
7af40ad9 4158 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4159 u32 vlan_macip_lens = 0;
4160 u32 mss_l4len_idx = 0;
4161 u32 type_tucmd = 0;
9d5c8243 4162
7d13a7d0 4163 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4164 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4165 return;
7d13a7d0
AD
4166 } else {
4167 u8 l4_hdr = 0;
7af40ad9 4168 switch (first->protocol) {
7d13a7d0
AD
4169 case __constant_htons(ETH_P_IP):
4170 vlan_macip_lens |= skb_network_header_len(skb);
4171 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4172 l4_hdr = ip_hdr(skb)->protocol;
4173 break;
4174 case __constant_htons(ETH_P_IPV6):
4175 vlan_macip_lens |= skb_network_header_len(skb);
4176 l4_hdr = ipv6_hdr(skb)->nexthdr;
4177 break;
4178 default:
4179 if (unlikely(net_ratelimit())) {
4180 dev_warn(tx_ring->dev,
4181 "partial checksum but proto=%x!\n",
7af40ad9 4182 first->protocol);
fa4a7ef3 4183 }
7d13a7d0
AD
4184 break;
4185 }
fa4a7ef3 4186
7d13a7d0
AD
4187 switch (l4_hdr) {
4188 case IPPROTO_TCP:
4189 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4190 mss_l4len_idx = tcp_hdrlen(skb) <<
4191 E1000_ADVTXD_L4LEN_SHIFT;
4192 break;
4193 case IPPROTO_SCTP:
4194 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4195 mss_l4len_idx = sizeof(struct sctphdr) <<
4196 E1000_ADVTXD_L4LEN_SHIFT;
4197 break;
4198 case IPPROTO_UDP:
4199 mss_l4len_idx = sizeof(struct udphdr) <<
4200 E1000_ADVTXD_L4LEN_SHIFT;
4201 break;
4202 default:
4203 if (unlikely(net_ratelimit())) {
4204 dev_warn(tx_ring->dev,
4205 "partial checksum but l4 proto=%x!\n",
4206 l4_hdr);
44b0cda3 4207 }
7d13a7d0 4208 break;
9d5c8243 4209 }
7af40ad9
AD
4210
4211 /* update TX checksum flag */
4212 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4213 }
9d5c8243 4214
7d13a7d0 4215 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4216 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4217
7d13a7d0 4218 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4219}
4220
e032afc8
AD
4221static __le32 igb_tx_cmd_type(u32 tx_flags)
4222{
4223 /* set type for advanced descriptor with frame checksum insertion */
4224 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4225 E1000_ADVTXD_DCMD_IFCS |
4226 E1000_ADVTXD_DCMD_DEXT);
4227
4228 /* set HW vlan bit if vlan is present */
4229 if (tx_flags & IGB_TX_FLAGS_VLAN)
4230 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4231
4232 /* set timestamp bit if present */
4233 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4234 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4235
4236 /* set segmentation bits for TSO */
4237 if (tx_flags & IGB_TX_FLAGS_TSO)
4238 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4239
4240 return cmd_type;
4241}
4242
7af40ad9
AD
4243static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4244 union e1000_adv_tx_desc *tx_desc,
4245 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4246{
4247 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4248
4249 /* 82575 requires a unique index per ring if any offload is enabled */
4250 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
866cff06 4251 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4252 olinfo_status |= tx_ring->reg_idx << 4;
4253
4254 /* insert L4 checksum */
4255 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4256 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4257
4258 /* insert IPv4 checksum */
4259 if (tx_flags & IGB_TX_FLAGS_IPV4)
4260 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4261 }
4262
7af40ad9 4263 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4264}
4265
ebe42d16
AD
4266/*
4267 * The largest size we can write to the descriptor is 65535. In order to
4268 * maintain a power of two alignment we have to limit ourselves to 32K.
4269 */
4270#define IGB_MAX_TXD_PWR 15
7af40ad9 4271#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
9d5c8243 4272
7af40ad9
AD
4273static void igb_tx_map(struct igb_ring *tx_ring,
4274 struct igb_tx_buffer *first,
ebe42d16 4275 const u8 hdr_len)
9d5c8243 4276{
7af40ad9 4277 struct sk_buff *skb = first->skb;
ebe42d16
AD
4278 struct igb_tx_buffer *tx_buffer_info;
4279 union e1000_adv_tx_desc *tx_desc;
4280 dma_addr_t dma;
4281 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4282 unsigned int data_len = skb->data_len;
4283 unsigned int size = skb_headlen(skb);
4284 unsigned int paylen = skb->len - hdr_len;
4285 __le32 cmd_type;
7af40ad9 4286 u32 tx_flags = first->tx_flags;
ebe42d16 4287 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4288
4289 tx_desc = IGB_TX_DESC(tx_ring, i);
4290
7af40ad9 4291 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
ebe42d16
AD
4292 cmd_type = igb_tx_cmd_type(tx_flags);
4293
4294 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4295 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4296 goto dma_error;
9d5c8243 4297
ebe42d16
AD
4298 /* record length, and DMA address */
4299 first->length = size;
4300 first->dma = dma;
ebe42d16
AD
4301 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4302
4303 for (;;) {
4304 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4305 tx_desc->read.cmd_type_len =
4306 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4307
4308 i++;
4309 tx_desc++;
4310 if (i == tx_ring->count) {
4311 tx_desc = IGB_TX_DESC(tx_ring, 0);
4312 i = 0;
4313 }
4314
4315 dma += IGB_MAX_DATA_PER_TXD;
4316 size -= IGB_MAX_DATA_PER_TXD;
4317
4318 tx_desc->read.olinfo_status = 0;
4319 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4320 }
4321
4322 if (likely(!data_len))
4323 break;
2bbfebe2 4324
ebe42d16 4325 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4326
65689fef 4327 i++;
ebe42d16
AD
4328 tx_desc++;
4329 if (i == tx_ring->count) {
4330 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4331 i = 0;
ebe42d16 4332 }
65689fef 4333
9e903e08 4334 size = skb_frag_size(frag);
ebe42d16
AD
4335 data_len -= size;
4336
4337 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4338 size, DMA_TO_DEVICE);
4339 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4340 goto dma_error;
4341
ebe42d16
AD
4342 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4343 tx_buffer_info->length = size;
4344 tx_buffer_info->dma = dma;
4345
4346 tx_desc->read.olinfo_status = 0;
4347 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4348
4349 frag++;
9d5c8243
AK
4350 }
4351
bdbc0631
ED
4352 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4353
ebe42d16
AD
4354 /* write last descriptor with RS and EOP bits */
4355 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
6b8f0922
BG
4356 if (unlikely(skb->no_fcs))
4357 cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
ebe42d16 4358 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4359
4360 /* set the timestamp */
4361 first->time_stamp = jiffies;
4362
ebe42d16
AD
4363 /*
4364 * Force memory writes to complete before letting h/w know there
4365 * are new descriptors to fetch. (Only applicable for weak-ordered
4366 * memory model archs, such as IA-64).
4367 *
4368 * We also need this memory barrier to make certain all of the
4369 * status bits have been updated before next_to_watch is written.
4370 */
4371 wmb();
4372
8542db05 4373 /* set next_to_watch value indicating a packet is present */
ebe42d16 4374 first->next_to_watch = tx_desc;
9d5c8243 4375
ebe42d16
AD
4376 i++;
4377 if (i == tx_ring->count)
4378 i = 0;
6366ad33 4379
ebe42d16 4380 tx_ring->next_to_use = i;
6366ad33 4381
ebe42d16 4382 writel(i, tx_ring->tail);
6366ad33 4383
ebe42d16
AD
4384 /* we need this if more than one processor can write to our tail
4385 * at a time, it syncronizes IO on IA64/Altix systems */
4386 mmiowb();
4387
4388 return;
4389
4390dma_error:
4391 dev_err(tx_ring->dev, "TX DMA map failed\n");
4392
4393 /* clear dma mappings for failed tx_buffer_info map */
4394 for (;;) {
4395 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4396 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4397 if (tx_buffer_info == first)
4398 break;
a77ff709
NN
4399 if (i == 0)
4400 i = tx_ring->count;
6366ad33 4401 i--;
6366ad33
AD
4402 }
4403
9d5c8243 4404 tx_ring->next_to_use = i;
9d5c8243
AK
4405}
4406
6ad4edfc 4407static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4408{
e694e964
AD
4409 struct net_device *netdev = tx_ring->netdev;
4410
661086df 4411 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4412
9d5c8243
AK
4413 /* Herbert's original patch had:
4414 * smp_mb__after_netif_stop_queue();
4415 * but since that doesn't exist yet, just open code it. */
4416 smp_mb();
4417
4418 /* We need to check again in a case another CPU has just
4419 * made room available. */
c493ea45 4420 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4421 return -EBUSY;
4422
4423 /* A reprieve! */
661086df 4424 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4425
4426 u64_stats_update_begin(&tx_ring->tx_syncp2);
4427 tx_ring->tx_stats.restart_queue2++;
4428 u64_stats_update_end(&tx_ring->tx_syncp2);
4429
9d5c8243
AK
4430 return 0;
4431}
4432
6ad4edfc 4433static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4434{
c493ea45 4435 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4436 return 0;
e694e964 4437 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4438}
4439
cd392f5c
AD
4440netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4441 struct igb_ring *tx_ring)
9d5c8243 4442{
8542db05 4443 struct igb_tx_buffer *first;
ebe42d16 4444 int tso;
91d4ee33 4445 u32 tx_flags = 0;
31f6adbb 4446 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4447 u8 hdr_len = 0;
9d5c8243 4448
9d5c8243
AK
4449 /* need: 1 descriptor per page,
4450 * + 2 desc gap to keep tail from touching head,
4451 * + 1 desc for skb->data,
4452 * + 1 desc for context descriptor,
4453 * otherwise try next time */
e694e964 4454 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4455 /* this is a hard error */
9d5c8243
AK
4456 return NETDEV_TX_BUSY;
4457 }
33af6bcc 4458
7af40ad9
AD
4459 /* record the location of the first descriptor for this packet */
4460 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4461 first->skb = skb;
4462 first->bytecount = skb->len;
4463 first->gso_segs = 1;
4464
2244d07b
OH
4465 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4466 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4467 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4468 }
9d5c8243 4469
eab6d18d 4470 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4471 tx_flags |= IGB_TX_FLAGS_VLAN;
4472 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4473 }
4474
7af40ad9
AD
4475 /* record initial flags and protocol */
4476 first->tx_flags = tx_flags;
4477 first->protocol = protocol;
cdfd01fc 4478
7af40ad9
AD
4479 tso = igb_tso(tx_ring, first, &hdr_len);
4480 if (tso < 0)
7d13a7d0 4481 goto out_drop;
7af40ad9
AD
4482 else if (!tso)
4483 igb_tx_csum(tx_ring, first);
9d5c8243 4484
7af40ad9 4485 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4486
4487 /* Make sure there is space in the ring for the next send. */
e694e964 4488 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4489
9d5c8243 4490 return NETDEV_TX_OK;
7d13a7d0
AD
4491
4492out_drop:
7af40ad9
AD
4493 igb_unmap_and_free_tx_resource(tx_ring, first);
4494
7d13a7d0 4495 return NETDEV_TX_OK;
9d5c8243
AK
4496}
4497
1cc3bd87
AD
4498static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4499 struct sk_buff *skb)
4500{
4501 unsigned int r_idx = skb->queue_mapping;
4502
4503 if (r_idx >= adapter->num_tx_queues)
4504 r_idx = r_idx % adapter->num_tx_queues;
4505
4506 return adapter->tx_ring[r_idx];
4507}
4508
cd392f5c
AD
4509static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4510 struct net_device *netdev)
9d5c8243
AK
4511{
4512 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4513
4514 if (test_bit(__IGB_DOWN, &adapter->state)) {
4515 dev_kfree_skb_any(skb);
4516 return NETDEV_TX_OK;
4517 }
4518
4519 if (skb->len <= 0) {
4520 dev_kfree_skb_any(skb);
4521 return NETDEV_TX_OK;
4522 }
4523
1cc3bd87
AD
4524 /*
4525 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4526 * in order to meet this minimum size requirement.
4527 */
4528 if (skb->len < 17) {
4529 if (skb_padto(skb, 17))
4530 return NETDEV_TX_OK;
4531 skb->len = 17;
4532 }
9d5c8243 4533
1cc3bd87 4534 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4535}
4536
4537/**
4538 * igb_tx_timeout - Respond to a Tx Hang
4539 * @netdev: network interface device structure
4540 **/
4541static void igb_tx_timeout(struct net_device *netdev)
4542{
4543 struct igb_adapter *adapter = netdev_priv(netdev);
4544 struct e1000_hw *hw = &adapter->hw;
4545
4546 /* Do the reset outside of interrupt context */
4547 adapter->tx_timeout_count++;
f7ba205e 4548
06218a8d 4549 if (hw->mac.type >= e1000_82580)
55cac248
AD
4550 hw->dev_spec._82575.global_device_reset = true;
4551
9d5c8243 4552 schedule_work(&adapter->reset_task);
265de409
AD
4553 wr32(E1000_EICS,
4554 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4555}
4556
4557static void igb_reset_task(struct work_struct *work)
4558{
4559 struct igb_adapter *adapter;
4560 adapter = container_of(work, struct igb_adapter, reset_task);
4561
c97ec42a
TI
4562 igb_dump(adapter);
4563 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4564 igb_reinit_locked(adapter);
4565}
4566
4567/**
12dcd86b 4568 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4569 * @netdev: network interface device structure
12dcd86b 4570 * @stats: rtnl_link_stats64 pointer
9d5c8243 4571 *
9d5c8243 4572 **/
12dcd86b
ED
4573static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4574 struct rtnl_link_stats64 *stats)
9d5c8243 4575{
12dcd86b
ED
4576 struct igb_adapter *adapter = netdev_priv(netdev);
4577
4578 spin_lock(&adapter->stats64_lock);
4579 igb_update_stats(adapter, &adapter->stats64);
4580 memcpy(stats, &adapter->stats64, sizeof(*stats));
4581 spin_unlock(&adapter->stats64_lock);
4582
4583 return stats;
9d5c8243
AK
4584}
4585
4586/**
4587 * igb_change_mtu - Change the Maximum Transfer Unit
4588 * @netdev: network interface device structure
4589 * @new_mtu: new value for maximum frame size
4590 *
4591 * Returns 0 on success, negative on failure
4592 **/
4593static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4594{
4595 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4596 struct pci_dev *pdev = adapter->pdev;
153285f9 4597 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4598
c809d227 4599 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4600 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4601 return -EINVAL;
4602 }
4603
153285f9 4604#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4605 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4606 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4607 return -EINVAL;
4608 }
4609
4610 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4611 msleep(1);
73cd78f1 4612
9d5c8243
AK
4613 /* igb_down has a dependency on max_frame_size */
4614 adapter->max_frame_size = max_frame;
559e9c49 4615
4c844851
AD
4616 if (netif_running(netdev))
4617 igb_down(adapter);
9d5c8243 4618
090b1795 4619 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4620 netdev->mtu, new_mtu);
4621 netdev->mtu = new_mtu;
4622
4623 if (netif_running(netdev))
4624 igb_up(adapter);
4625 else
4626 igb_reset(adapter);
4627
4628 clear_bit(__IGB_RESETTING, &adapter->state);
4629
4630 return 0;
4631}
4632
4633/**
4634 * igb_update_stats - Update the board statistics counters
4635 * @adapter: board private structure
4636 **/
4637
12dcd86b
ED
4638void igb_update_stats(struct igb_adapter *adapter,
4639 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4640{
4641 struct e1000_hw *hw = &adapter->hw;
4642 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4643 u32 reg, mpc;
9d5c8243 4644 u16 phy_tmp;
3f9c0164
AD
4645 int i;
4646 u64 bytes, packets;
12dcd86b
ED
4647 unsigned int start;
4648 u64 _bytes, _packets;
9d5c8243
AK
4649
4650#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4651
4652 /*
4653 * Prevent stats update while adapter is being reset, or if the pci
4654 * connection is down.
4655 */
4656 if (adapter->link_speed == 0)
4657 return;
4658 if (pci_channel_offline(pdev))
4659 return;
4660
3f9c0164
AD
4661 bytes = 0;
4662 packets = 0;
4663 for (i = 0; i < adapter->num_rx_queues; i++) {
4664 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4665 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4666
3025a446 4667 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4668 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4669
4670 do {
4671 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4672 _bytes = ring->rx_stats.bytes;
4673 _packets = ring->rx_stats.packets;
4674 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4675 bytes += _bytes;
4676 packets += _packets;
3f9c0164
AD
4677 }
4678
128e45eb
AD
4679 net_stats->rx_bytes = bytes;
4680 net_stats->rx_packets = packets;
3f9c0164
AD
4681
4682 bytes = 0;
4683 packets = 0;
4684 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4685 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4686 do {
4687 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4688 _bytes = ring->tx_stats.bytes;
4689 _packets = ring->tx_stats.packets;
4690 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4691 bytes += _bytes;
4692 packets += _packets;
3f9c0164 4693 }
128e45eb
AD
4694 net_stats->tx_bytes = bytes;
4695 net_stats->tx_packets = packets;
3f9c0164
AD
4696
4697 /* read stats registers */
9d5c8243
AK
4698 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4699 adapter->stats.gprc += rd32(E1000_GPRC);
4700 adapter->stats.gorc += rd32(E1000_GORCL);
4701 rd32(E1000_GORCH); /* clear GORCL */
4702 adapter->stats.bprc += rd32(E1000_BPRC);
4703 adapter->stats.mprc += rd32(E1000_MPRC);
4704 adapter->stats.roc += rd32(E1000_ROC);
4705
4706 adapter->stats.prc64 += rd32(E1000_PRC64);
4707 adapter->stats.prc127 += rd32(E1000_PRC127);
4708 adapter->stats.prc255 += rd32(E1000_PRC255);
4709 adapter->stats.prc511 += rd32(E1000_PRC511);
4710 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4711 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4712 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4713 adapter->stats.sec += rd32(E1000_SEC);
4714
fa3d9a6d
MW
4715 mpc = rd32(E1000_MPC);
4716 adapter->stats.mpc += mpc;
4717 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4718 adapter->stats.scc += rd32(E1000_SCC);
4719 adapter->stats.ecol += rd32(E1000_ECOL);
4720 adapter->stats.mcc += rd32(E1000_MCC);
4721 adapter->stats.latecol += rd32(E1000_LATECOL);
4722 adapter->stats.dc += rd32(E1000_DC);
4723 adapter->stats.rlec += rd32(E1000_RLEC);
4724 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4725 adapter->stats.xontxc += rd32(E1000_XONTXC);
4726 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4727 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4728 adapter->stats.fcruc += rd32(E1000_FCRUC);
4729 adapter->stats.gptc += rd32(E1000_GPTC);
4730 adapter->stats.gotc += rd32(E1000_GOTCL);
4731 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4732 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4733 adapter->stats.ruc += rd32(E1000_RUC);
4734 adapter->stats.rfc += rd32(E1000_RFC);
4735 adapter->stats.rjc += rd32(E1000_RJC);
4736 adapter->stats.tor += rd32(E1000_TORH);
4737 adapter->stats.tot += rd32(E1000_TOTH);
4738 adapter->stats.tpr += rd32(E1000_TPR);
4739
4740 adapter->stats.ptc64 += rd32(E1000_PTC64);
4741 adapter->stats.ptc127 += rd32(E1000_PTC127);
4742 adapter->stats.ptc255 += rd32(E1000_PTC255);
4743 adapter->stats.ptc511 += rd32(E1000_PTC511);
4744 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4745 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4746
4747 adapter->stats.mptc += rd32(E1000_MPTC);
4748 adapter->stats.bptc += rd32(E1000_BPTC);
4749
2d0b0f69
NN
4750 adapter->stats.tpt += rd32(E1000_TPT);
4751 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4752
4753 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4754 /* read internal phy specific stats */
4755 reg = rd32(E1000_CTRL_EXT);
4756 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4757 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4758 adapter->stats.tncrs += rd32(E1000_TNCRS);
4759 }
4760
9d5c8243
AK
4761 adapter->stats.tsctc += rd32(E1000_TSCTC);
4762 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4763
4764 adapter->stats.iac += rd32(E1000_IAC);
4765 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4766 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4767 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4768 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4769 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4770 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4771 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4772 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4773
4774 /* Fill out the OS statistics structure */
128e45eb
AD
4775 net_stats->multicast = adapter->stats.mprc;
4776 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4777
4778 /* Rx Errors */
4779
4780 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4781 * our own version based on RUC and ROC */
128e45eb 4782 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4783 adapter->stats.crcerrs + adapter->stats.algnerrc +
4784 adapter->stats.ruc + adapter->stats.roc +
4785 adapter->stats.cexterr;
128e45eb
AD
4786 net_stats->rx_length_errors = adapter->stats.ruc +
4787 adapter->stats.roc;
4788 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4789 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4790 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4791
4792 /* Tx Errors */
128e45eb
AD
4793 net_stats->tx_errors = adapter->stats.ecol +
4794 adapter->stats.latecol;
4795 net_stats->tx_aborted_errors = adapter->stats.ecol;
4796 net_stats->tx_window_errors = adapter->stats.latecol;
4797 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4798
4799 /* Tx Dropped needs to be maintained elsewhere */
4800
4801 /* Phy Stats */
4802 if (hw->phy.media_type == e1000_media_type_copper) {
4803 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4804 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4805 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4806 adapter->phy_stats.idle_errors += phy_tmp;
4807 }
4808 }
4809
4810 /* Management Stats */
4811 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4812 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4813 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4814
4815 /* OS2BMC Stats */
4816 reg = rd32(E1000_MANC);
4817 if (reg & E1000_MANC_EN_BMC2OS) {
4818 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4819 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4820 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4821 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4822 }
9d5c8243
AK
4823}
4824
9d5c8243
AK
4825static irqreturn_t igb_msix_other(int irq, void *data)
4826{
047e0030 4827 struct igb_adapter *adapter = data;
9d5c8243 4828 struct e1000_hw *hw = &adapter->hw;
844290e5 4829 u32 icr = rd32(E1000_ICR);
844290e5 4830 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4831
7f081d40
AD
4832 if (icr & E1000_ICR_DRSTA)
4833 schedule_work(&adapter->reset_task);
4834
047e0030 4835 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4836 /* HW is reporting DMA is out of sync */
4837 adapter->stats.doosync++;
13800469
GR
4838 /* The DMA Out of Sync is also indication of a spoof event
4839 * in IOV mode. Check the Wrong VM Behavior register to
4840 * see if it is really a spoof event. */
4841 igb_check_wvbr(adapter);
dda0e083 4842 }
eebbbdba 4843
4ae196df
AD
4844 /* Check for a mailbox event */
4845 if (icr & E1000_ICR_VMMB)
4846 igb_msg_task(adapter);
4847
4848 if (icr & E1000_ICR_LSC) {
4849 hw->mac.get_link_status = 1;
4850 /* guard against interrupt when we're going down */
4851 if (!test_bit(__IGB_DOWN, &adapter->state))
4852 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4853 }
4854
844290e5 4855 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4856
4857 return IRQ_HANDLED;
4858}
4859
047e0030 4860static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4861{
26b39276 4862 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4863 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4864
047e0030
AD
4865 if (!q_vector->set_itr)
4866 return;
73cd78f1 4867
047e0030
AD
4868 if (!itr_val)
4869 itr_val = 0x4;
661086df 4870
26b39276
AD
4871 if (adapter->hw.mac.type == e1000_82575)
4872 itr_val |= itr_val << 16;
661086df 4873 else
0ba82994 4874 itr_val |= E1000_EITR_CNT_IGNR;
661086df 4875
047e0030
AD
4876 writel(itr_val, q_vector->itr_register);
4877 q_vector->set_itr = 0;
6eb5a7f1
AD
4878}
4879
047e0030 4880static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4881{
047e0030 4882 struct igb_q_vector *q_vector = data;
9d5c8243 4883
047e0030
AD
4884 /* Write the ITR value calculated from the previous interrupt. */
4885 igb_write_itr(q_vector);
9d5c8243 4886
047e0030 4887 napi_schedule(&q_vector->napi);
844290e5 4888
047e0030 4889 return IRQ_HANDLED;
fe4506b6
JC
4890}
4891
421e02f0 4892#ifdef CONFIG_IGB_DCA
047e0030 4893static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4894{
047e0030 4895 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4896 struct e1000_hw *hw = &adapter->hw;
4897 int cpu = get_cpu();
fe4506b6 4898
047e0030
AD
4899 if (q_vector->cpu == cpu)
4900 goto out_no_update;
4901
0ba82994
AD
4902 if (q_vector->tx.ring) {
4903 int q = q_vector->tx.ring->reg_idx;
047e0030
AD
4904 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4905 if (hw->mac.type == e1000_82575) {
4906 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4907 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4908 } else {
047e0030
AD
4909 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4910 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4911 E1000_DCA_TXCTRL_CPUID_SHIFT;
4912 }
4913 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4914 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4915 }
0ba82994
AD
4916 if (q_vector->rx.ring) {
4917 int q = q_vector->rx.ring->reg_idx;
047e0030
AD
4918 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4919 if (hw->mac.type == e1000_82575) {
2d064c06 4920 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4921 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4922 } else {
4923 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4924 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4925 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4926 }
fe4506b6
JC
4927 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4928 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4929 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4930 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4931 }
047e0030
AD
4932 q_vector->cpu = cpu;
4933out_no_update:
fe4506b6
JC
4934 put_cpu();
4935}
4936
4937static void igb_setup_dca(struct igb_adapter *adapter)
4938{
7e0e99ef 4939 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4940 int i;
4941
7dfc16fa 4942 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4943 return;
4944
7e0e99ef
AD
4945 /* Always use CB2 mode, difference is masked in the CB driver. */
4946 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4947
047e0030 4948 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4949 adapter->q_vector[i]->cpu = -1;
4950 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4951 }
4952}
4953
4954static int __igb_notify_dca(struct device *dev, void *data)
4955{
4956 struct net_device *netdev = dev_get_drvdata(dev);
4957 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4958 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4959 struct e1000_hw *hw = &adapter->hw;
4960 unsigned long event = *(unsigned long *)data;
4961
4962 switch (event) {
4963 case DCA_PROVIDER_ADD:
4964 /* if already enabled, don't do it again */
7dfc16fa 4965 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4966 break;
fe4506b6 4967 if (dca_add_requester(dev) == 0) {
bbd98fe4 4968 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4969 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4970 igb_setup_dca(adapter);
4971 break;
4972 }
4973 /* Fall Through since DCA is disabled. */
4974 case DCA_PROVIDER_REMOVE:
7dfc16fa 4975 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4976 /* without this a class_device is left
047e0030 4977 * hanging around in the sysfs model */
fe4506b6 4978 dca_remove_requester(dev);
090b1795 4979 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4980 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4981 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4982 }
4983 break;
4984 }
bbd98fe4 4985
fe4506b6 4986 return 0;
9d5c8243
AK
4987}
4988
fe4506b6
JC
4989static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4990 void *p)
4991{
4992 int ret_val;
4993
4994 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4995 __igb_notify_dca);
4996
4997 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4998}
421e02f0 4999#endif /* CONFIG_IGB_DCA */
9d5c8243 5000
0224d663
GR
5001#ifdef CONFIG_PCI_IOV
5002static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5003{
5004 unsigned char mac_addr[ETH_ALEN];
5005 struct pci_dev *pdev = adapter->pdev;
5006 struct e1000_hw *hw = &adapter->hw;
5007 struct pci_dev *pvfdev;
5008 unsigned int device_id;
5009 u16 thisvf_devfn;
5010
7efd26d0 5011 eth_random_addr(mac_addr);
0224d663
GR
5012 igb_set_vf_mac(adapter, vf, mac_addr);
5013
5014 switch (adapter->hw.mac.type) {
5015 case e1000_82576:
5016 device_id = IGB_82576_VF_DEV_ID;
5017 /* VF Stride for 82576 is 2 */
5018 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
5019 (pdev->devfn & 1);
5020 break;
5021 case e1000_i350:
5022 device_id = IGB_I350_VF_DEV_ID;
5023 /* VF Stride for I350 is 4 */
5024 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
5025 (pdev->devfn & 3);
5026 break;
5027 default:
5028 device_id = 0;
5029 thisvf_devfn = 0;
5030 break;
5031 }
5032
5033 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
5034 while (pvfdev) {
5035 if (pvfdev->devfn == thisvf_devfn)
5036 break;
5037 pvfdev = pci_get_device(hw->vendor_id,
5038 device_id, pvfdev);
5039 }
5040
5041 if (pvfdev)
5042 adapter->vf_data[vf].vfdev = pvfdev;
5043 else
5044 dev_err(&pdev->dev,
5045 "Couldn't find pci dev ptr for VF %4.4x\n",
5046 thisvf_devfn);
5047 return pvfdev != NULL;
5048}
5049
5050static int igb_find_enabled_vfs(struct igb_adapter *adapter)
5051{
5052 struct e1000_hw *hw = &adapter->hw;
5053 struct pci_dev *pdev = adapter->pdev;
5054 struct pci_dev *pvfdev;
5055 u16 vf_devfn = 0;
5056 u16 vf_stride;
5057 unsigned int device_id;
5058 int vfs_found = 0;
5059
5060 switch (adapter->hw.mac.type) {
5061 case e1000_82576:
5062 device_id = IGB_82576_VF_DEV_ID;
5063 /* VF Stride for 82576 is 2 */
5064 vf_stride = 2;
5065 break;
5066 case e1000_i350:
5067 device_id = IGB_I350_VF_DEV_ID;
5068 /* VF Stride for I350 is 4 */
5069 vf_stride = 4;
5070 break;
5071 default:
5072 device_id = 0;
5073 vf_stride = 0;
5074 break;
5075 }
5076
5077 vf_devfn = pdev->devfn + 0x80;
5078 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
5079 while (pvfdev) {
06292921
GR
5080 if (pvfdev->devfn == vf_devfn &&
5081 (pvfdev->bus->number >= pdev->bus->number))
0224d663
GR
5082 vfs_found++;
5083 vf_devfn += vf_stride;
5084 pvfdev = pci_get_device(hw->vendor_id,
5085 device_id, pvfdev);
5086 }
5087
5088 return vfs_found;
5089}
5090
5091static int igb_check_vf_assignment(struct igb_adapter *adapter)
5092{
5093 int i;
5094 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5095 if (adapter->vf_data[i].vfdev) {
5096 if (adapter->vf_data[i].vfdev->dev_flags &
5097 PCI_DEV_FLAGS_ASSIGNED)
5098 return true;
5099 }
5100 }
5101 return false;
5102}
5103
5104#endif
4ae196df
AD
5105static void igb_ping_all_vfs(struct igb_adapter *adapter)
5106{
5107 struct e1000_hw *hw = &adapter->hw;
5108 u32 ping;
5109 int i;
5110
5111 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5112 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5113 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5114 ping |= E1000_VT_MSGTYPE_CTS;
5115 igb_write_mbx(hw, &ping, 1, i);
5116 }
5117}
5118
7d5753f0
AD
5119static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5120{
5121 struct e1000_hw *hw = &adapter->hw;
5122 u32 vmolr = rd32(E1000_VMOLR(vf));
5123 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5124
d85b9004 5125 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
5126 IGB_VF_FLAG_MULTI_PROMISC);
5127 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5128
5129 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5130 vmolr |= E1000_VMOLR_MPME;
d85b9004 5131 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5132 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5133 } else {
5134 /*
5135 * if we have hashes and we are clearing a multicast promisc
5136 * flag we need to write the hashes to the MTA as this step
5137 * was previously skipped
5138 */
5139 if (vf_data->num_vf_mc_hashes > 30) {
5140 vmolr |= E1000_VMOLR_MPME;
5141 } else if (vf_data->num_vf_mc_hashes) {
5142 int j;
5143 vmolr |= E1000_VMOLR_ROMPE;
5144 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5145 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5146 }
5147 }
5148
5149 wr32(E1000_VMOLR(vf), vmolr);
5150
5151 /* there are flags left unprocessed, likely not supported */
5152 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5153 return -EINVAL;
5154
5155 return 0;
5156
5157}
5158
4ae196df
AD
5159static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5160 u32 *msgbuf, u32 vf)
5161{
5162 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5163 u16 *hash_list = (u16 *)&msgbuf[1];
5164 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5165 int i;
5166
7d5753f0 5167 /* salt away the number of multicast addresses assigned
4ae196df
AD
5168 * to this VF for later use to restore when the PF multi cast
5169 * list changes
5170 */
5171 vf_data->num_vf_mc_hashes = n;
5172
7d5753f0
AD
5173 /* only up to 30 hash values supported */
5174 if (n > 30)
5175 n = 30;
5176
5177 /* store the hashes for later use */
4ae196df 5178 for (i = 0; i < n; i++)
a419aef8 5179 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5180
5181 /* Flush and reset the mta with the new values */
ff41f8dc 5182 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5183
5184 return 0;
5185}
5186
5187static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5188{
5189 struct e1000_hw *hw = &adapter->hw;
5190 struct vf_data_storage *vf_data;
5191 int i, j;
5192
5193 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5194 u32 vmolr = rd32(E1000_VMOLR(i));
5195 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5196
4ae196df 5197 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5198
5199 if ((vf_data->num_vf_mc_hashes > 30) ||
5200 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5201 vmolr |= E1000_VMOLR_MPME;
5202 } else if (vf_data->num_vf_mc_hashes) {
5203 vmolr |= E1000_VMOLR_ROMPE;
5204 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5205 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5206 }
5207 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5208 }
5209}
5210
5211static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5212{
5213 struct e1000_hw *hw = &adapter->hw;
5214 u32 pool_mask, reg, vid;
5215 int i;
5216
5217 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5218
5219 /* Find the vlan filter for this id */
5220 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5221 reg = rd32(E1000_VLVF(i));
5222
5223 /* remove the vf from the pool */
5224 reg &= ~pool_mask;
5225
5226 /* if pool is empty then remove entry from vfta */
5227 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5228 (reg & E1000_VLVF_VLANID_ENABLE)) {
5229 reg = 0;
5230 vid = reg & E1000_VLVF_VLANID_MASK;
5231 igb_vfta_set(hw, vid, false);
5232 }
5233
5234 wr32(E1000_VLVF(i), reg);
5235 }
ae641bdc
AD
5236
5237 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5238}
5239
5240static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5241{
5242 struct e1000_hw *hw = &adapter->hw;
5243 u32 reg, i;
5244
51466239
AD
5245 /* The vlvf table only exists on 82576 hardware and newer */
5246 if (hw->mac.type < e1000_82576)
5247 return -1;
5248
5249 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5250 if (!adapter->vfs_allocated_count)
5251 return -1;
5252
5253 /* Find the vlan filter for this id */
5254 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5255 reg = rd32(E1000_VLVF(i));
5256 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5257 vid == (reg & E1000_VLVF_VLANID_MASK))
5258 break;
5259 }
5260
5261 if (add) {
5262 if (i == E1000_VLVF_ARRAY_SIZE) {
5263 /* Did not find a matching VLAN ID entry that was
5264 * enabled. Search for a free filter entry, i.e.
5265 * one without the enable bit set
5266 */
5267 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5268 reg = rd32(E1000_VLVF(i));
5269 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5270 break;
5271 }
5272 }
5273 if (i < E1000_VLVF_ARRAY_SIZE) {
5274 /* Found an enabled/available entry */
5275 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5276
5277 /* if !enabled we need to set this up in vfta */
5278 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5279 /* add VID to filter table */
5280 igb_vfta_set(hw, vid, true);
4ae196df
AD
5281 reg |= E1000_VLVF_VLANID_ENABLE;
5282 }
cad6d05f
AD
5283 reg &= ~E1000_VLVF_VLANID_MASK;
5284 reg |= vid;
4ae196df 5285 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5286
5287 /* do not modify RLPML for PF devices */
5288 if (vf >= adapter->vfs_allocated_count)
5289 return 0;
5290
5291 if (!adapter->vf_data[vf].vlans_enabled) {
5292 u32 size;
5293 reg = rd32(E1000_VMOLR(vf));
5294 size = reg & E1000_VMOLR_RLPML_MASK;
5295 size += 4;
5296 reg &= ~E1000_VMOLR_RLPML_MASK;
5297 reg |= size;
5298 wr32(E1000_VMOLR(vf), reg);
5299 }
ae641bdc 5300
51466239 5301 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5302 }
5303 } else {
5304 if (i < E1000_VLVF_ARRAY_SIZE) {
5305 /* remove vf from the pool */
5306 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5307 /* if pool is empty then remove entry from vfta */
5308 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5309 reg = 0;
5310 igb_vfta_set(hw, vid, false);
5311 }
5312 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5313
5314 /* do not modify RLPML for PF devices */
5315 if (vf >= adapter->vfs_allocated_count)
5316 return 0;
5317
5318 adapter->vf_data[vf].vlans_enabled--;
5319 if (!adapter->vf_data[vf].vlans_enabled) {
5320 u32 size;
5321 reg = rd32(E1000_VMOLR(vf));
5322 size = reg & E1000_VMOLR_RLPML_MASK;
5323 size -= 4;
5324 reg &= ~E1000_VMOLR_RLPML_MASK;
5325 reg |= size;
5326 wr32(E1000_VMOLR(vf), reg);
5327 }
4ae196df
AD
5328 }
5329 }
8151d294
WM
5330 return 0;
5331}
5332
5333static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5334{
5335 struct e1000_hw *hw = &adapter->hw;
5336
5337 if (vid)
5338 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5339 else
5340 wr32(E1000_VMVIR(vf), 0);
5341}
5342
5343static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5344 int vf, u16 vlan, u8 qos)
5345{
5346 int err = 0;
5347 struct igb_adapter *adapter = netdev_priv(netdev);
5348
5349 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5350 return -EINVAL;
5351 if (vlan || qos) {
5352 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5353 if (err)
5354 goto out;
5355 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5356 igb_set_vmolr(adapter, vf, !vlan);
5357 adapter->vf_data[vf].pf_vlan = vlan;
5358 adapter->vf_data[vf].pf_qos = qos;
5359 dev_info(&adapter->pdev->dev,
5360 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5361 if (test_bit(__IGB_DOWN, &adapter->state)) {
5362 dev_warn(&adapter->pdev->dev,
5363 "The VF VLAN has been set,"
5364 " but the PF device is not up.\n");
5365 dev_warn(&adapter->pdev->dev,
5366 "Bring the PF device up before"
5367 " attempting to use the VF device.\n");
5368 }
5369 } else {
5370 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5371 false, vf);
5372 igb_set_vmvir(adapter, vlan, vf);
5373 igb_set_vmolr(adapter, vf, true);
5374 adapter->vf_data[vf].pf_vlan = 0;
5375 adapter->vf_data[vf].pf_qos = 0;
5376 }
5377out:
5378 return err;
4ae196df
AD
5379}
5380
5381static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5382{
5383 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5384 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5385
5386 return igb_vlvf_set(adapter, vid, add, vf);
5387}
5388
f2ca0dbe 5389static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5390{
8fa7e0f7
GR
5391 /* clear flags - except flag that indicates PF has set the MAC */
5392 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5393 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5394
5395 /* reset offloads to defaults */
8151d294 5396 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5397
5398 /* reset vlans for device */
5399 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5400 if (adapter->vf_data[vf].pf_vlan)
5401 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5402 adapter->vf_data[vf].pf_vlan,
5403 adapter->vf_data[vf].pf_qos);
5404 else
5405 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5406
5407 /* reset multicast table array for vf */
5408 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5409
5410 /* Flush and reset the mta with the new values */
ff41f8dc 5411 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5412}
5413
f2ca0dbe
AD
5414static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5415{
5416 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5417
5418 /* generate a new mac address as we were hotplug removed/added */
8151d294 5419 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7efd26d0 5420 eth_random_addr(vf_mac);
f2ca0dbe
AD
5421
5422 /* process remaining reset events */
5423 igb_vf_reset(adapter, vf);
5424}
5425
5426static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5427{
5428 struct e1000_hw *hw = &adapter->hw;
5429 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5430 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5431 u32 reg, msgbuf[3];
5432 u8 *addr = (u8 *)(&msgbuf[1]);
5433
5434 /* process all the same items cleared in a function level reset */
f2ca0dbe 5435 igb_vf_reset(adapter, vf);
4ae196df
AD
5436
5437 /* set vf mac address */
26ad9178 5438 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5439
5440 /* enable transmit and receive for vf */
5441 reg = rd32(E1000_VFTE);
5442 wr32(E1000_VFTE, reg | (1 << vf));
5443 reg = rd32(E1000_VFRE);
5444 wr32(E1000_VFRE, reg | (1 << vf));
5445
8fa7e0f7 5446 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5447
5448 /* reply to reset with ack and vf mac address */
5449 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5450 memcpy(addr, vf_mac, 6);
5451 igb_write_mbx(hw, msgbuf, 3, vf);
5452}
5453
5454static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5455{
de42edde
GR
5456 /*
5457 * The VF MAC Address is stored in a packed array of bytes
5458 * starting at the second 32 bit word of the msg array
5459 */
f2ca0dbe
AD
5460 unsigned char *addr = (char *)&msg[1];
5461 int err = -1;
4ae196df 5462
f2ca0dbe
AD
5463 if (is_valid_ether_addr(addr))
5464 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5465
f2ca0dbe 5466 return err;
4ae196df
AD
5467}
5468
5469static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5470{
5471 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5472 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5473 u32 msg = E1000_VT_MSGTYPE_NACK;
5474
5475 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5476 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5477 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5478 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5479 vf_data->last_nack = jiffies;
4ae196df
AD
5480 }
5481}
5482
f2ca0dbe 5483static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5484{
f2ca0dbe
AD
5485 struct pci_dev *pdev = adapter->pdev;
5486 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5487 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5488 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5489 s32 retval;
5490
f2ca0dbe 5491 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5492
fef45f4c
AD
5493 if (retval) {
5494 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5495 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5496 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5497 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5498 return;
5499 goto out;
5500 }
4ae196df
AD
5501
5502 /* this is a message we already processed, do nothing */
5503 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5504 return;
4ae196df
AD
5505
5506 /*
5507 * until the vf completes a reset it should not be
5508 * allowed to start any configuration.
5509 */
5510
5511 if (msgbuf[0] == E1000_VF_RESET) {
5512 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5513 return;
4ae196df
AD
5514 }
5515
f2ca0dbe 5516 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5517 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5518 return;
5519 retval = -1;
5520 goto out;
4ae196df
AD
5521 }
5522
5523 switch ((msgbuf[0] & 0xFFFF)) {
5524 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5525 retval = -EINVAL;
5526 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5527 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5528 else
5529 dev_warn(&pdev->dev,
5530 "VF %d attempted to override administratively "
5531 "set MAC address\nReload the VF driver to "
5532 "resume operations\n", vf);
4ae196df 5533 break;
7d5753f0
AD
5534 case E1000_VF_SET_PROMISC:
5535 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5536 break;
4ae196df
AD
5537 case E1000_VF_SET_MULTICAST:
5538 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5539 break;
5540 case E1000_VF_SET_LPE:
5541 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5542 break;
5543 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5544 retval = -1;
5545 if (vf_data->pf_vlan)
5546 dev_warn(&pdev->dev,
5547 "VF %d attempted to override administratively "
5548 "set VLAN tag\nReload the VF driver to "
5549 "resume operations\n", vf);
8151d294
WM
5550 else
5551 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5552 break;
5553 default:
090b1795 5554 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5555 retval = -1;
5556 break;
5557 }
5558
fef45f4c
AD
5559 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5560out:
4ae196df
AD
5561 /* notify the VF of the results of what it sent us */
5562 if (retval)
5563 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5564 else
5565 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5566
4ae196df 5567 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5568}
4ae196df 5569
f2ca0dbe
AD
5570static void igb_msg_task(struct igb_adapter *adapter)
5571{
5572 struct e1000_hw *hw = &adapter->hw;
5573 u32 vf;
5574
5575 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5576 /* process any reset requests */
5577 if (!igb_check_for_rst(hw, vf))
5578 igb_vf_reset_event(adapter, vf);
5579
5580 /* process any messages pending */
5581 if (!igb_check_for_msg(hw, vf))
5582 igb_rcv_msg_from_vf(adapter, vf);
5583
5584 /* process any acks */
5585 if (!igb_check_for_ack(hw, vf))
5586 igb_rcv_ack_from_vf(adapter, vf);
5587 }
4ae196df
AD
5588}
5589
68d480c4
AD
5590/**
5591 * igb_set_uta - Set unicast filter table address
5592 * @adapter: board private structure
5593 *
5594 * The unicast table address is a register array of 32-bit registers.
5595 * The table is meant to be used in a way similar to how the MTA is used
5596 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5597 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5598 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5599 **/
5600static void igb_set_uta(struct igb_adapter *adapter)
5601{
5602 struct e1000_hw *hw = &adapter->hw;
5603 int i;
5604
5605 /* The UTA table only exists on 82576 hardware and newer */
5606 if (hw->mac.type < e1000_82576)
5607 return;
5608
5609 /* we only need to do this if VMDq is enabled */
5610 if (!adapter->vfs_allocated_count)
5611 return;
5612
5613 for (i = 0; i < hw->mac.uta_reg_count; i++)
5614 array_wr32(E1000_UTA, i, ~0);
5615}
5616
9d5c8243
AK
5617/**
5618 * igb_intr_msi - Interrupt Handler
5619 * @irq: interrupt number
5620 * @data: pointer to a network interface device structure
5621 **/
5622static irqreturn_t igb_intr_msi(int irq, void *data)
5623{
047e0030
AD
5624 struct igb_adapter *adapter = data;
5625 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5626 struct e1000_hw *hw = &adapter->hw;
5627 /* read ICR disables interrupts using IAM */
5628 u32 icr = rd32(E1000_ICR);
5629
047e0030 5630 igb_write_itr(q_vector);
9d5c8243 5631
7f081d40
AD
5632 if (icr & E1000_ICR_DRSTA)
5633 schedule_work(&adapter->reset_task);
5634
047e0030 5635 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5636 /* HW is reporting DMA is out of sync */
5637 adapter->stats.doosync++;
5638 }
5639
9d5c8243
AK
5640 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5641 hw->mac.get_link_status = 1;
5642 if (!test_bit(__IGB_DOWN, &adapter->state))
5643 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5644 }
5645
047e0030 5646 napi_schedule(&q_vector->napi);
9d5c8243
AK
5647
5648 return IRQ_HANDLED;
5649}
5650
5651/**
4a3c6433 5652 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5653 * @irq: interrupt number
5654 * @data: pointer to a network interface device structure
5655 **/
5656static irqreturn_t igb_intr(int irq, void *data)
5657{
047e0030
AD
5658 struct igb_adapter *adapter = data;
5659 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5660 struct e1000_hw *hw = &adapter->hw;
5661 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5662 * need for the IMC write */
5663 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5664
5665 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5666 * not set, then the adapter didn't send an interrupt */
5667 if (!(icr & E1000_ICR_INT_ASSERTED))
5668 return IRQ_NONE;
5669
0ba82994
AD
5670 igb_write_itr(q_vector);
5671
7f081d40
AD
5672 if (icr & E1000_ICR_DRSTA)
5673 schedule_work(&adapter->reset_task);
5674
047e0030 5675 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5676 /* HW is reporting DMA is out of sync */
5677 adapter->stats.doosync++;
5678 }
5679
9d5c8243
AK
5680 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5681 hw->mac.get_link_status = 1;
5682 /* guard against interrupt when we're going down */
5683 if (!test_bit(__IGB_DOWN, &adapter->state))
5684 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5685 }
5686
047e0030 5687 napi_schedule(&q_vector->napi);
9d5c8243
AK
5688
5689 return IRQ_HANDLED;
5690}
5691
c50b52a0 5692static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5693{
047e0030 5694 struct igb_adapter *adapter = q_vector->adapter;
46544258 5695 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5696
0ba82994
AD
5697 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5698 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5699 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5700 igb_set_itr(q_vector);
46544258 5701 else
047e0030 5702 igb_update_ring_itr(q_vector);
9d5c8243
AK
5703 }
5704
46544258
AD
5705 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5706 if (adapter->msix_entries)
047e0030 5707 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5708 else
5709 igb_irq_enable(adapter);
5710 }
9d5c8243
AK
5711}
5712
46544258
AD
5713/**
5714 * igb_poll - NAPI Rx polling callback
5715 * @napi: napi polling structure
5716 * @budget: count of how many packets we should handle
5717 **/
5718static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5719{
047e0030
AD
5720 struct igb_q_vector *q_vector = container_of(napi,
5721 struct igb_q_vector,
5722 napi);
16eb8815 5723 bool clean_complete = true;
9d5c8243 5724
421e02f0 5725#ifdef CONFIG_IGB_DCA
047e0030
AD
5726 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5727 igb_update_dca(q_vector);
fe4506b6 5728#endif
0ba82994 5729 if (q_vector->tx.ring)
13fde97a 5730 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5731
0ba82994 5732 if (q_vector->rx.ring)
cd392f5c 5733 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5734
16eb8815
AD
5735 /* If all work not completed, return budget and keep polling */
5736 if (!clean_complete)
5737 return budget;
46544258 5738
9d5c8243 5739 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5740 napi_complete(napi);
5741 igb_ring_irq_enable(q_vector);
9d5c8243 5742
16eb8815 5743 return 0;
9d5c8243 5744}
6d8126f9 5745
7ebae817 5746#ifdef CONFIG_IGB_PTP
c5b9bd5e
AD
5747/**
5748 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5749 * @q_vector: pointer to q_vector containing needed info
06034649 5750 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5751 *
5752 * If we were asked to do hardware stamping and such a time stamp is
5753 * available, then it must have been for this skb here because we only
5754 * allow only one such packet into the queue.
5755 */
06034649
AD
5756static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5757 struct igb_tx_buffer *buffer_info)
33af6bcc 5758{
c5b9bd5e 5759 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5760 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5761 struct skb_shared_hwtstamps shhwtstamps;
5762 u64 regval;
33af6bcc 5763
c5b9bd5e 5764 /* if skb does not support hw timestamp or TX stamp not valid exit */
2bbfebe2 5765 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
c5b9bd5e
AD
5766 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5767 return;
5768
5769 regval = rd32(E1000_TXSTMPL);
5770 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5771
5772 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5773 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5774}
5775
7ebae817 5776#endif
9d5c8243
AK
5777/**
5778 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5779 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 5780 *
9d5c8243
AK
5781 * returns true if ring is completely cleaned
5782 **/
047e0030 5783static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5784{
047e0030 5785 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5786 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5787 struct igb_tx_buffer *tx_buffer;
8542db05 5788 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5789 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5790 unsigned int budget = q_vector->tx.work_limit;
8542db05 5791 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5792
13fde97a
AD
5793 if (test_bit(__IGB_DOWN, &adapter->state))
5794 return true;
0e014cb1 5795
06034649 5796 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5797 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5798 i -= tx_ring->count;
9d5c8243 5799
13fde97a 5800 for (; budget; budget--) {
8542db05 5801 eop_desc = tx_buffer->next_to_watch;
13fde97a 5802
8542db05
AD
5803 /* prevent any other reads prior to eop_desc */
5804 rmb();
5805
5806 /* if next_to_watch is not set then there is no work pending */
5807 if (!eop_desc)
5808 break;
13fde97a
AD
5809
5810 /* if DD is not set pending work has not been completed */
5811 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5812 break;
5813
8542db05
AD
5814 /* clear next_to_watch to prevent false hangs */
5815 tx_buffer->next_to_watch = NULL;
9d5c8243 5816
ebe42d16
AD
5817 /* update the statistics for this packet */
5818 total_bytes += tx_buffer->bytecount;
5819 total_packets += tx_buffer->gso_segs;
13fde97a 5820
7ebae817 5821#ifdef CONFIG_IGB_PTP
ebe42d16
AD
5822 /* retrieve hardware timestamp */
5823 igb_tx_hwtstamp(q_vector, tx_buffer);
5824
7ebae817 5825#endif
ebe42d16
AD
5826 /* free the skb */
5827 dev_kfree_skb_any(tx_buffer->skb);
5828 tx_buffer->skb = NULL;
13fde97a 5829
ebe42d16
AD
5830 /* unmap skb header data */
5831 dma_unmap_single(tx_ring->dev,
5832 tx_buffer->dma,
5833 tx_buffer->length,
5834 DMA_TO_DEVICE);
5835
5836 /* clear last DMA location and unmap remaining buffers */
5837 while (tx_desc != eop_desc) {
5838 tx_buffer->dma = 0;
9d5c8243 5839
13fde97a
AD
5840 tx_buffer++;
5841 tx_desc++;
9d5c8243 5842 i++;
8542db05
AD
5843 if (unlikely(!i)) {
5844 i -= tx_ring->count;
06034649 5845 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5846 tx_desc = IGB_TX_DESC(tx_ring, 0);
5847 }
ebe42d16
AD
5848
5849 /* unmap any remaining paged data */
5850 if (tx_buffer->dma) {
5851 dma_unmap_page(tx_ring->dev,
5852 tx_buffer->dma,
5853 tx_buffer->length,
5854 DMA_TO_DEVICE);
5855 }
5856 }
5857
5858 /* clear last DMA location */
5859 tx_buffer->dma = 0;
5860
5861 /* move us one more past the eop_desc for start of next pkt */
5862 tx_buffer++;
5863 tx_desc++;
5864 i++;
5865 if (unlikely(!i)) {
5866 i -= tx_ring->count;
5867 tx_buffer = tx_ring->tx_buffer_info;
5868 tx_desc = IGB_TX_DESC(tx_ring, 0);
5869 }
0e014cb1
AD
5870 }
5871
bdbc0631
ED
5872 netdev_tx_completed_queue(txring_txq(tx_ring),
5873 total_packets, total_bytes);
8542db05 5874 i += tx_ring->count;
9d5c8243 5875 tx_ring->next_to_clean = i;
13fde97a
AD
5876 u64_stats_update_begin(&tx_ring->tx_syncp);
5877 tx_ring->tx_stats.bytes += total_bytes;
5878 tx_ring->tx_stats.packets += total_packets;
5879 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
5880 q_vector->tx.total_bytes += total_bytes;
5881 q_vector->tx.total_packets += total_packets;
9d5c8243 5882
6d095fa8 5883 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 5884 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5885
8542db05 5886 eop_desc = tx_buffer->next_to_watch;
9d5c8243 5887
9d5c8243
AK
5888 /* Detect a transmit hang in hardware, this serializes the
5889 * check with the clearing of time_stamp and movement of i */
6d095fa8 5890 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8542db05
AD
5891 if (eop_desc &&
5892 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5893 (adapter->tx_timeout_factor * HZ)) &&
5894 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5895
9d5c8243 5896 /* detected Tx unit hang */
59d71989 5897 dev_err(tx_ring->dev,
9d5c8243 5898 "Detected Tx Unit Hang\n"
2d064c06 5899 " Tx Queue <%d>\n"
9d5c8243
AK
5900 " TDH <%x>\n"
5901 " TDT <%x>\n"
5902 " next_to_use <%x>\n"
5903 " next_to_clean <%x>\n"
9d5c8243
AK
5904 "buffer_info[next_to_clean]\n"
5905 " time_stamp <%lx>\n"
8542db05 5906 " next_to_watch <%p>\n"
9d5c8243
AK
5907 " jiffies <%lx>\n"
5908 " desc.status <%x>\n",
2d064c06 5909 tx_ring->queue_index,
238ac817 5910 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5911 readl(tx_ring->tail),
9d5c8243
AK
5912 tx_ring->next_to_use,
5913 tx_ring->next_to_clean,
8542db05
AD
5914 tx_buffer->time_stamp,
5915 eop_desc,
9d5c8243 5916 jiffies,
0e014cb1 5917 eop_desc->wb.status);
13fde97a
AD
5918 netif_stop_subqueue(tx_ring->netdev,
5919 tx_ring->queue_index);
5920
5921 /* we are about to reset, no point in enabling stuff */
5922 return true;
9d5c8243
AK
5923 }
5924 }
13fde97a
AD
5925
5926 if (unlikely(total_packets &&
5927 netif_carrier_ok(tx_ring->netdev) &&
5928 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5929 /* Make sure that anybody stopping the queue after this
5930 * sees the new next_to_clean.
5931 */
5932 smp_mb();
5933 if (__netif_subqueue_stopped(tx_ring->netdev,
5934 tx_ring->queue_index) &&
5935 !(test_bit(__IGB_DOWN, &adapter->state))) {
5936 netif_wake_subqueue(tx_ring->netdev,
5937 tx_ring->queue_index);
5938
5939 u64_stats_update_begin(&tx_ring->tx_syncp);
5940 tx_ring->tx_stats.restart_queue++;
5941 u64_stats_update_end(&tx_ring->tx_syncp);
5942 }
5943 }
5944
5945 return !!budget;
9d5c8243
AK
5946}
5947
cd392f5c 5948static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
5949 union e1000_adv_rx_desc *rx_desc,
5950 struct sk_buff *skb)
9d5c8243 5951{
bc8acf2c 5952 skb_checksum_none_assert(skb);
9d5c8243 5953
294e7d78 5954 /* Ignore Checksum bit is set */
3ceb90fd 5955 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
5956 return;
5957
5958 /* Rx checksum disabled via ethtool */
5959 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 5960 return;
85ad76b2 5961
9d5c8243 5962 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
5963 if (igb_test_staterr(rx_desc,
5964 E1000_RXDEXT_STATERR_TCPE |
5965 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5966 /*
5967 * work around errata with sctp packets where the TCPE aka
5968 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5969 * packets, (aka let the stack check the crc32c)
5970 */
866cff06
AD
5971 if (!((skb->len == 60) &&
5972 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 5973 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5974 ring->rx_stats.csum_err++;
12dcd86b
ED
5975 u64_stats_update_end(&ring->rx_syncp);
5976 }
9d5c8243 5977 /* let the stack verify checksum errors */
9d5c8243
AK
5978 return;
5979 }
5980 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
5981 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5982 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
5983 skb->ip_summed = CHECKSUM_UNNECESSARY;
5984
3ceb90fd
AD
5985 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5986 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
5987}
5988
077887c3
AD
5989static inline void igb_rx_hash(struct igb_ring *ring,
5990 union e1000_adv_rx_desc *rx_desc,
5991 struct sk_buff *skb)
5992{
5993 if (ring->netdev->features & NETIF_F_RXHASH)
5994 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5995}
5996
7ebae817 5997#ifdef CONFIG_IGB_PTP
3ceb90fd
AD
5998static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5999 union e1000_adv_rx_desc *rx_desc,
6000 struct sk_buff *skb)
c5b9bd5e
AD
6001{
6002 struct igb_adapter *adapter = q_vector->adapter;
6003 struct e1000_hw *hw = &adapter->hw;
6004 u64 regval;
6005
3ceb90fd
AD
6006 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
6007 E1000_RXDADV_STAT_TS))
6008 return;
6009
c5b9bd5e
AD
6010 /*
6011 * If this bit is set, then the RX registers contain the time stamp. No
6012 * other packet will be time stamped until we read these registers, so
6013 * read the registers to make them available again. Because only one
6014 * packet can be time stamped at a time, we know that the register
6015 * values must belong to this one here and therefore we don't need to
6016 * compare any of the additional attributes stored for it.
6017 *
2244d07b 6018 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
6019 * can turn into a skb_shared_hwtstamps.
6020 */
3ceb90fd 6021 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
757b77e2
NN
6022 u32 *stamp = (u32 *)skb->data;
6023 regval = le32_to_cpu(*(stamp + 2));
6024 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
6025 skb_pull(skb, IGB_TS_HDR_LEN);
6026 } else {
6027 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
6028 return;
c5b9bd5e 6029
757b77e2
NN
6030 regval = rd32(E1000_RXSTMPL);
6031 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
6032 }
c5b9bd5e
AD
6033
6034 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
6035}
8be10e91 6036
7ebae817 6037#endif
8be10e91
AD
6038static void igb_rx_vlan(struct igb_ring *ring,
6039 union e1000_adv_rx_desc *rx_desc,
6040 struct sk_buff *skb)
6041{
6042 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6043 u16 vid;
6044 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6045 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
6046 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6047 else
6048 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6049
6050 __vlan_hwaccel_put_tag(skb, vid);
6051 }
6052}
6053
44390ca6 6054static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
6055{
6056 /* HW will not DMA in data larger than the given buffer, even if it
6057 * parses the (NFS, of course) header to be larger. In that case, it
6058 * fills the header buffer and spills the rest into the page.
6059 */
6060 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
6061 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
6062 if (hlen > IGB_RX_HDR_LEN)
6063 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
6064 return hlen;
6065}
6066
cd392f5c 6067static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 6068{
0ba82994 6069 struct igb_ring *rx_ring = q_vector->rx.ring;
16eb8815
AD
6070 union e1000_adv_rx_desc *rx_desc;
6071 const int current_node = numa_node_id();
9d5c8243 6072 unsigned int total_bytes = 0, total_packets = 0;
16eb8815
AD
6073 u16 cleaned_count = igb_desc_unused(rx_ring);
6074 u16 i = rx_ring->next_to_clean;
9d5c8243 6075
60136906 6076 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243 6077
3ceb90fd 6078 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
06034649 6079 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
6080 struct sk_buff *skb = buffer_info->skb;
6081 union e1000_adv_rx_desc *next_rxd;
9d5c8243 6082
69d3ca53 6083 buffer_info->skb = NULL;
16eb8815 6084 prefetch(skb->data);
69d3ca53
AD
6085
6086 i++;
6087 if (i == rx_ring->count)
6088 i = 0;
42d0781a 6089
60136906 6090 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 6091 prefetch(next_rxd);
9d5c8243 6092
16eb8815
AD
6093 /*
6094 * This memory barrier is needed to keep us from reading
6095 * any other fields out of the rx_desc until we know the
6096 * RXD_STAT_DD bit is set
6097 */
6098 rmb();
9d5c8243 6099
16eb8815
AD
6100 if (!skb_is_nonlinear(skb)) {
6101 __skb_put(skb, igb_get_hlen(rx_desc));
6102 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 6103 IGB_RX_HDR_LEN,
59d71989 6104 DMA_FROM_DEVICE);
91615f76 6105 buffer_info->dma = 0;
bf36c1a0
AD
6106 }
6107
16eb8815
AD
6108 if (rx_desc->wb.upper.length) {
6109 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 6110
aa913403 6111 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
6112 buffer_info->page,
6113 buffer_info->page_offset,
6114 length);
6115
16eb8815
AD
6116 skb->len += length;
6117 skb->data_len += length;
95b9c1df 6118 skb->truesize += PAGE_SIZE / 2;
16eb8815 6119
d1eff350
AD
6120 if ((page_count(buffer_info->page) != 1) ||
6121 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
6122 buffer_info->page = NULL;
6123 else
6124 get_page(buffer_info->page);
9d5c8243 6125
16eb8815
AD
6126 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
6127 PAGE_SIZE / 2, DMA_FROM_DEVICE);
6128 buffer_info->page_dma = 0;
9d5c8243 6129 }
9d5c8243 6130
3ceb90fd 6131 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
06034649
AD
6132 struct igb_rx_buffer *next_buffer;
6133 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
6134 buffer_info->skb = next_buffer->skb;
6135 buffer_info->dma = next_buffer->dma;
6136 next_buffer->skb = skb;
6137 next_buffer->dma = 0;
bf36c1a0
AD
6138 goto next_desc;
6139 }
44390ca6 6140
89eaefb6
BG
6141 if (unlikely((igb_test_staterr(rx_desc,
6142 E1000_RXDEXT_ERR_FRAME_ERR_MASK))
6143 && !(rx_ring->netdev->features & NETIF_F_RXALL))) {
16eb8815 6144 dev_kfree_skb_any(skb);
9d5c8243
AK
6145 goto next_desc;
6146 }
9d5c8243 6147
7ebae817 6148#ifdef CONFIG_IGB_PTP
3ceb90fd 6149 igb_rx_hwtstamp(q_vector, rx_desc, skb);
7ebae817 6150#endif
077887c3 6151 igb_rx_hash(rx_ring, rx_desc, skb);
3ceb90fd 6152 igb_rx_checksum(rx_ring, rx_desc, skb);
8be10e91 6153 igb_rx_vlan(rx_ring, rx_desc, skb);
3ceb90fd
AD
6154
6155 total_bytes += skb->len;
6156 total_packets++;
6157
6158 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6159
b2cb09b1 6160 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6161
16eb8815 6162 budget--;
9d5c8243 6163next_desc:
16eb8815
AD
6164 if (!budget)
6165 break;
6166
6167 cleaned_count++;
9d5c8243
AK
6168 /* return some buffers to hardware, one at a time is too slow */
6169 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 6170 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
6171 cleaned_count = 0;
6172 }
6173
6174 /* use prefetched values */
6175 rx_desc = next_rxd;
9d5c8243 6176 }
bf36c1a0 6177
9d5c8243 6178 rx_ring->next_to_clean = i;
12dcd86b 6179 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6180 rx_ring->rx_stats.packets += total_packets;
6181 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6182 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6183 q_vector->rx.total_packets += total_packets;
6184 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6185
6186 if (cleaned_count)
cd392f5c 6187 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6188
16eb8815 6189 return !!budget;
9d5c8243
AK
6190}
6191
c023cd88 6192static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 6193 struct igb_rx_buffer *bi)
c023cd88
AD
6194{
6195 struct sk_buff *skb = bi->skb;
6196 dma_addr_t dma = bi->dma;
6197
6198 if (dma)
6199 return true;
6200
6201 if (likely(!skb)) {
6202 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6203 IGB_RX_HDR_LEN);
6204 bi->skb = skb;
6205 if (!skb) {
6206 rx_ring->rx_stats.alloc_failed++;
6207 return false;
6208 }
6209
6210 /* initialize skb for ring */
6211 skb_record_rx_queue(skb, rx_ring->queue_index);
6212 }
6213
6214 dma = dma_map_single(rx_ring->dev, skb->data,
6215 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6216
6217 if (dma_mapping_error(rx_ring->dev, dma)) {
6218 rx_ring->rx_stats.alloc_failed++;
6219 return false;
6220 }
6221
6222 bi->dma = dma;
6223 return true;
6224}
6225
6226static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6227 struct igb_rx_buffer *bi)
c023cd88
AD
6228{
6229 struct page *page = bi->page;
6230 dma_addr_t page_dma = bi->page_dma;
6231 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6232
6233 if (page_dma)
6234 return true;
6235
6236 if (!page) {
0614002b 6237 page = __skb_alloc_page(GFP_ATOMIC, bi->skb);
c023cd88
AD
6238 bi->page = page;
6239 if (unlikely(!page)) {
6240 rx_ring->rx_stats.alloc_failed++;
6241 return false;
6242 }
6243 }
6244
6245 page_dma = dma_map_page(rx_ring->dev, page,
6246 page_offset, PAGE_SIZE / 2,
6247 DMA_FROM_DEVICE);
6248
6249 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6250 rx_ring->rx_stats.alloc_failed++;
6251 return false;
6252 }
6253
6254 bi->page_dma = page_dma;
6255 bi->page_offset = page_offset;
6256 return true;
6257}
6258
9d5c8243 6259/**
cd392f5c 6260 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6261 * @adapter: address of board private structure
6262 **/
cd392f5c 6263void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6264{
9d5c8243 6265 union e1000_adv_rx_desc *rx_desc;
06034649 6266 struct igb_rx_buffer *bi;
c023cd88 6267 u16 i = rx_ring->next_to_use;
9d5c8243 6268
60136906 6269 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6270 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6271 i -= rx_ring->count;
9d5c8243
AK
6272
6273 while (cleaned_count--) {
c023cd88
AD
6274 if (!igb_alloc_mapped_skb(rx_ring, bi))
6275 break;
9d5c8243 6276
c023cd88
AD
6277 /* Refresh the desc even if buffer_addrs didn't change
6278 * because each write-back erases this info. */
6279 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6280
c023cd88
AD
6281 if (!igb_alloc_mapped_page(rx_ring, bi))
6282 break;
6283
6284 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6285
c023cd88
AD
6286 rx_desc++;
6287 bi++;
9d5c8243 6288 i++;
c023cd88 6289 if (unlikely(!i)) {
60136906 6290 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6291 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6292 i -= rx_ring->count;
6293 }
6294
6295 /* clear the hdr_addr for the next_to_use descriptor */
6296 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6297 }
6298
c023cd88
AD
6299 i += rx_ring->count;
6300
9d5c8243
AK
6301 if (rx_ring->next_to_use != i) {
6302 rx_ring->next_to_use = i;
9d5c8243
AK
6303
6304 /* Force memory writes to complete before letting h/w
6305 * know there are new descriptors to fetch. (Only
6306 * applicable for weak-ordered memory model archs,
6307 * such as IA-64). */
6308 wmb();
fce99e34 6309 writel(i, rx_ring->tail);
9d5c8243
AK
6310 }
6311}
6312
6313/**
6314 * igb_mii_ioctl -
6315 * @netdev:
6316 * @ifreq:
6317 * @cmd:
6318 **/
6319static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6320{
6321 struct igb_adapter *adapter = netdev_priv(netdev);
6322 struct mii_ioctl_data *data = if_mii(ifr);
6323
6324 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6325 return -EOPNOTSUPP;
6326
6327 switch (cmd) {
6328 case SIOCGMIIPHY:
6329 data->phy_id = adapter->hw.phy.addr;
6330 break;
6331 case SIOCGMIIREG:
f5f4cf08
AD
6332 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6333 &data->val_out))
9d5c8243
AK
6334 return -EIO;
6335 break;
6336 case SIOCSMIIREG:
6337 default:
6338 return -EOPNOTSUPP;
6339 }
6340 return 0;
6341}
6342
c6cb090b
PO
6343/**
6344 * igb_hwtstamp_ioctl - control hardware time stamping
6345 * @netdev:
6346 * @ifreq:
6347 * @cmd:
6348 *
33af6bcc
PO
6349 * Outgoing time stamping can be enabled and disabled. Play nice and
6350 * disable it when requested, although it shouldn't case any overhead
6351 * when no packet needs it. At most one packet in the queue may be
6352 * marked for time stamping, otherwise it would be impossible to tell
6353 * for sure to which packet the hardware time stamp belongs.
6354 *
6355 * Incoming time stamping has to be configured via the hardware
6356 * filters. Not all combinations are supported, in particular event
6357 * type has to be specified. Matching the kind of event packet is
6358 * not supported, with the exception of "all V2 events regardless of
6359 * level 2 or 4".
6360 *
c6cb090b
PO
6361 **/
6362static int igb_hwtstamp_ioctl(struct net_device *netdev,
6363 struct ifreq *ifr, int cmd)
6364{
33af6bcc
PO
6365 struct igb_adapter *adapter = netdev_priv(netdev);
6366 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6367 struct hwtstamp_config config;
c5b9bd5e
AD
6368 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6369 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6370 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6371 bool is_l4 = false;
6372 bool is_l2 = false;
33af6bcc 6373 u32 regval;
c6cb090b
PO
6374
6375 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6376 return -EFAULT;
6377
6378 /* reserved for future extensions */
6379 if (config.flags)
6380 return -EINVAL;
6381
33af6bcc
PO
6382 switch (config.tx_type) {
6383 case HWTSTAMP_TX_OFF:
c5b9bd5e 6384 tsync_tx_ctl = 0;
33af6bcc 6385 case HWTSTAMP_TX_ON:
33af6bcc
PO
6386 break;
6387 default:
6388 return -ERANGE;
6389 }
6390
6391 switch (config.rx_filter) {
6392 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6393 tsync_rx_ctl = 0;
33af6bcc
PO
6394 break;
6395 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6396 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6397 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6398 case HWTSTAMP_FILTER_ALL:
6399 /*
6400 * register TSYNCRXCFG must be set, therefore it is not
6401 * possible to time stamp both Sync and Delay_Req messages
6402 * => fall back to time stamping all packets
6403 */
c5b9bd5e 6404 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6405 config.rx_filter = HWTSTAMP_FILTER_ALL;
6406 break;
6407 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6408 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6409 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6410 is_l4 = true;
33af6bcc
PO
6411 break;
6412 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6413 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6414 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6415 is_l4 = true;
33af6bcc
PO
6416 break;
6417 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6418 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6419 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6420 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6421 is_l2 = true;
6422 is_l4 = true;
33af6bcc
PO
6423 config.rx_filter = HWTSTAMP_FILTER_SOME;
6424 break;
6425 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6426 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6427 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6428 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6429 is_l2 = true;
6430 is_l4 = true;
33af6bcc
PO
6431 config.rx_filter = HWTSTAMP_FILTER_SOME;
6432 break;
6433 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6434 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6435 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6436 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6437 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6438 is_l2 = true;
11ba69e8 6439 is_l4 = true;
33af6bcc
PO
6440 break;
6441 default:
6442 return -ERANGE;
6443 }
6444
c5b9bd5e
AD
6445 if (hw->mac.type == e1000_82575) {
6446 if (tsync_rx_ctl | tsync_tx_ctl)
6447 return -EINVAL;
6448 return 0;
6449 }
6450
757b77e2
NN
6451 /*
6452 * Per-packet timestamping only works if all packets are
6453 * timestamped, so enable timestamping in all packets as
6454 * long as one rx filter was configured.
6455 */
06218a8d 6456 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
757b77e2
NN
6457 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6458 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6459 }
6460
33af6bcc
PO
6461 /* enable/disable TX */
6462 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6463 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6464 regval |= tsync_tx_ctl;
33af6bcc
PO
6465 wr32(E1000_TSYNCTXCTL, regval);
6466
c5b9bd5e 6467 /* enable/disable RX */
33af6bcc 6468 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6469 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6470 regval |= tsync_rx_ctl;
33af6bcc 6471 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6472
c5b9bd5e
AD
6473 /* define which PTP packets are time stamped */
6474 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6475
c5b9bd5e
AD
6476 /* define ethertype filter for timestamped packets */
6477 if (is_l2)
6478 wr32(E1000_ETQF(3),
6479 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6480 E1000_ETQF_1588 | /* enable timestamping */
6481 ETH_P_1588)); /* 1588 eth protocol type */
6482 else
6483 wr32(E1000_ETQF(3), 0);
6484
6485#define PTP_PORT 319
6486 /* L4 Queue Filter[3]: filter by destination port and protocol */
6487 if (is_l4) {
6488 u32 ftqf = (IPPROTO_UDP /* UDP */
6489 | E1000_FTQF_VF_BP /* VF not compared */
6490 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6491 | E1000_FTQF_MASK); /* mask all inputs */
6492 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6493
6494 wr32(E1000_IMIR(3), htons(PTP_PORT));
6495 wr32(E1000_IMIREXT(3),
6496 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6497 if (hw->mac.type == e1000_82576) {
6498 /* enable source port check */
6499 wr32(E1000_SPQF(3), htons(PTP_PORT));
6500 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6501 }
6502 wr32(E1000_FTQF(3), ftqf);
6503 } else {
6504 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6505 }
33af6bcc
PO
6506 wrfl();
6507
6508 adapter->hwtstamp_config = config;
6509
6510 /* clear TX/RX time stamp registers, just to be sure */
6511 regval = rd32(E1000_TXSTMPH);
6512 regval = rd32(E1000_RXSTMPH);
c6cb090b 6513
33af6bcc
PO
6514 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6515 -EFAULT : 0;
c6cb090b
PO
6516}
6517
9d5c8243
AK
6518/**
6519 * igb_ioctl -
6520 * @netdev:
6521 * @ifreq:
6522 * @cmd:
6523 **/
6524static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6525{
6526 switch (cmd) {
6527 case SIOCGMIIPHY:
6528 case SIOCGMIIREG:
6529 case SIOCSMIIREG:
6530 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6531 case SIOCSHWTSTAMP:
6532 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6533 default:
6534 return -EOPNOTSUPP;
6535 }
6536}
6537
009bc06e
AD
6538s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6539{
6540 struct igb_adapter *adapter = hw->back;
6541 u16 cap_offset;
6542
bdaae04c 6543 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6544 if (!cap_offset)
6545 return -E1000_ERR_CONFIG;
6546
6547 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6548
6549 return 0;
6550}
6551
6552s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6553{
6554 struct igb_adapter *adapter = hw->back;
6555 u16 cap_offset;
6556
bdaae04c 6557 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6558 if (!cap_offset)
6559 return -E1000_ERR_CONFIG;
6560
6561 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6562
6563 return 0;
6564}
6565
c8f44aff 6566static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6567{
6568 struct igb_adapter *adapter = netdev_priv(netdev);
6569 struct e1000_hw *hw = &adapter->hw;
6570 u32 ctrl, rctl;
5faf030c 6571 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6572
5faf030c 6573 if (enable) {
9d5c8243
AK
6574 /* enable VLAN tag insert/strip */
6575 ctrl = rd32(E1000_CTRL);
6576 ctrl |= E1000_CTRL_VME;
6577 wr32(E1000_CTRL, ctrl);
6578
51466239 6579 /* Disable CFI check */
9d5c8243 6580 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6581 rctl &= ~E1000_RCTL_CFIEN;
6582 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6583 } else {
6584 /* disable VLAN tag insert/strip */
6585 ctrl = rd32(E1000_CTRL);
6586 ctrl &= ~E1000_CTRL_VME;
6587 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6588 }
6589
e1739522 6590 igb_rlpml_set(adapter);
9d5c8243
AK
6591}
6592
8e586137 6593static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6594{
6595 struct igb_adapter *adapter = netdev_priv(netdev);
6596 struct e1000_hw *hw = &adapter->hw;
4ae196df 6597 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6598
51466239
AD
6599 /* attempt to add filter to vlvf array */
6600 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6601
51466239
AD
6602 /* add the filter since PF can receive vlans w/o entry in vlvf */
6603 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6604
6605 set_bit(vid, adapter->active_vlans);
8e586137
JP
6606
6607 return 0;
9d5c8243
AK
6608}
6609
8e586137 6610static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6611{
6612 struct igb_adapter *adapter = netdev_priv(netdev);
6613 struct e1000_hw *hw = &adapter->hw;
4ae196df 6614 int pf_id = adapter->vfs_allocated_count;
51466239 6615 s32 err;
9d5c8243 6616
51466239
AD
6617 /* remove vlan from VLVF table array */
6618 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6619
51466239
AD
6620 /* if vid was not present in VLVF just remove it from table */
6621 if (err)
4ae196df 6622 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6623
6624 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6625
6626 return 0;
9d5c8243
AK
6627}
6628
6629static void igb_restore_vlan(struct igb_adapter *adapter)
6630{
b2cb09b1 6631 u16 vid;
9d5c8243 6632
5faf030c
AD
6633 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6634
b2cb09b1
JP
6635 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6636 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6637}
6638
14ad2513 6639int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6640{
090b1795 6641 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6642 struct e1000_mac_info *mac = &adapter->hw.mac;
6643
6644 mac->autoneg = 0;
6645
14ad2513
DD
6646 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6647 * for the switch() below to work */
6648 if ((spd & 1) || (dplx & ~1))
6649 goto err_inval;
6650
cd2638a8
CW
6651 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6652 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6653 spd != SPEED_1000 &&
6654 dplx != DUPLEX_FULL)
6655 goto err_inval;
cd2638a8 6656
14ad2513 6657 switch (spd + dplx) {
9d5c8243
AK
6658 case SPEED_10 + DUPLEX_HALF:
6659 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6660 break;
6661 case SPEED_10 + DUPLEX_FULL:
6662 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6663 break;
6664 case SPEED_100 + DUPLEX_HALF:
6665 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6666 break;
6667 case SPEED_100 + DUPLEX_FULL:
6668 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6669 break;
6670 case SPEED_1000 + DUPLEX_FULL:
6671 mac->autoneg = 1;
6672 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6673 break;
6674 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6675 default:
14ad2513 6676 goto err_inval;
9d5c8243 6677 }
8376dad0
JB
6678
6679 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6680 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6681
9d5c8243 6682 return 0;
14ad2513
DD
6683
6684err_inval:
6685 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6686 return -EINVAL;
9d5c8243
AK
6687}
6688
749ab2cd
YZ
6689static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6690 bool runtime)
9d5c8243
AK
6691{
6692 struct net_device *netdev = pci_get_drvdata(pdev);
6693 struct igb_adapter *adapter = netdev_priv(netdev);
6694 struct e1000_hw *hw = &adapter->hw;
2d064c06 6695 u32 ctrl, rctl, status;
749ab2cd 6696 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
6697#ifdef CONFIG_PM
6698 int retval = 0;
6699#endif
6700
6701 netif_device_detach(netdev);
6702
a88f10ec 6703 if (netif_running(netdev))
749ab2cd 6704 __igb_close(netdev, true);
a88f10ec 6705
047e0030 6706 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6707
6708#ifdef CONFIG_PM
6709 retval = pci_save_state(pdev);
6710 if (retval)
6711 return retval;
6712#endif
6713
6714 status = rd32(E1000_STATUS);
6715 if (status & E1000_STATUS_LU)
6716 wufc &= ~E1000_WUFC_LNKC;
6717
6718 if (wufc) {
6719 igb_setup_rctl(adapter);
ff41f8dc 6720 igb_set_rx_mode(netdev);
9d5c8243
AK
6721
6722 /* turn on all-multi mode if wake on multicast is enabled */
6723 if (wufc & E1000_WUFC_MC) {
6724 rctl = rd32(E1000_RCTL);
6725 rctl |= E1000_RCTL_MPE;
6726 wr32(E1000_RCTL, rctl);
6727 }
6728
6729 ctrl = rd32(E1000_CTRL);
6730 /* advertise wake from D3Cold */
6731 #define E1000_CTRL_ADVD3WUC 0x00100000
6732 /* phy power management enable */
6733 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6734 ctrl |= E1000_CTRL_ADVD3WUC;
6735 wr32(E1000_CTRL, ctrl);
6736
9d5c8243 6737 /* Allow time for pending master requests to run */
330a6d6a 6738 igb_disable_pcie_master(hw);
9d5c8243
AK
6739
6740 wr32(E1000_WUC, E1000_WUC_PME_EN);
6741 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6742 } else {
6743 wr32(E1000_WUC, 0);
6744 wr32(E1000_WUFC, 0);
9d5c8243
AK
6745 }
6746
3fe7c4c9
RW
6747 *enable_wake = wufc || adapter->en_mng_pt;
6748 if (!*enable_wake)
88a268c1
NN
6749 igb_power_down_link(adapter);
6750 else
6751 igb_power_up_link(adapter);
9d5c8243
AK
6752
6753 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6754 * would have already happened in close and is redundant. */
6755 igb_release_hw_control(adapter);
6756
6757 pci_disable_device(pdev);
6758
9d5c8243
AK
6759 return 0;
6760}
6761
6762#ifdef CONFIG_PM
d9dd966d 6763#ifdef CONFIG_PM_SLEEP
749ab2cd 6764static int igb_suspend(struct device *dev)
3fe7c4c9
RW
6765{
6766 int retval;
6767 bool wake;
749ab2cd 6768 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 6769
749ab2cd 6770 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6771 if (retval)
6772 return retval;
6773
6774 if (wake) {
6775 pci_prepare_to_sleep(pdev);
6776 } else {
6777 pci_wake_from_d3(pdev, false);
6778 pci_set_power_state(pdev, PCI_D3hot);
6779 }
6780
6781 return 0;
6782}
d9dd966d 6783#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 6784
749ab2cd 6785static int igb_resume(struct device *dev)
9d5c8243 6786{
749ab2cd 6787 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
6788 struct net_device *netdev = pci_get_drvdata(pdev);
6789 struct igb_adapter *adapter = netdev_priv(netdev);
6790 struct e1000_hw *hw = &adapter->hw;
6791 u32 err;
6792
6793 pci_set_power_state(pdev, PCI_D0);
6794 pci_restore_state(pdev);
b94f2d77 6795 pci_save_state(pdev);
42bfd33a 6796
aed5dec3 6797 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6798 if (err) {
6799 dev_err(&pdev->dev,
6800 "igb: Cannot enable PCI device from suspend\n");
6801 return err;
6802 }
6803 pci_set_master(pdev);
6804
6805 pci_enable_wake(pdev, PCI_D3hot, 0);
6806 pci_enable_wake(pdev, PCI_D3cold, 0);
6807
cfb8c3aa 6808 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6809 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6810 return -ENOMEM;
9d5c8243
AK
6811 }
6812
9d5c8243 6813 igb_reset(adapter);
a8564f03
AD
6814
6815 /* let the f/w know that the h/w is now under the control of the
6816 * driver. */
6817 igb_get_hw_control(adapter);
6818
9d5c8243
AK
6819 wr32(E1000_WUS, ~0);
6820
749ab2cd
YZ
6821 if (netdev->flags & IFF_UP) {
6822 err = __igb_open(netdev, true);
a88f10ec
AD
6823 if (err)
6824 return err;
6825 }
9d5c8243
AK
6826
6827 netif_device_attach(netdev);
749ab2cd
YZ
6828 return 0;
6829}
6830
6831#ifdef CONFIG_PM_RUNTIME
6832static int igb_runtime_idle(struct device *dev)
6833{
6834 struct pci_dev *pdev = to_pci_dev(dev);
6835 struct net_device *netdev = pci_get_drvdata(pdev);
6836 struct igb_adapter *adapter = netdev_priv(netdev);
6837
6838 if (!igb_has_link(adapter))
6839 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6840
6841 return -EBUSY;
6842}
6843
6844static int igb_runtime_suspend(struct device *dev)
6845{
6846 struct pci_dev *pdev = to_pci_dev(dev);
6847 int retval;
6848 bool wake;
6849
6850 retval = __igb_shutdown(pdev, &wake, 1);
6851 if (retval)
6852 return retval;
6853
6854 if (wake) {
6855 pci_prepare_to_sleep(pdev);
6856 } else {
6857 pci_wake_from_d3(pdev, false);
6858 pci_set_power_state(pdev, PCI_D3hot);
6859 }
9d5c8243 6860
9d5c8243
AK
6861 return 0;
6862}
749ab2cd
YZ
6863
6864static int igb_runtime_resume(struct device *dev)
6865{
6866 return igb_resume(dev);
6867}
6868#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
6869#endif
6870
6871static void igb_shutdown(struct pci_dev *pdev)
6872{
3fe7c4c9
RW
6873 bool wake;
6874
749ab2cd 6875 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
6876
6877 if (system_state == SYSTEM_POWER_OFF) {
6878 pci_wake_from_d3(pdev, wake);
6879 pci_set_power_state(pdev, PCI_D3hot);
6880 }
9d5c8243
AK
6881}
6882
6883#ifdef CONFIG_NET_POLL_CONTROLLER
6884/*
6885 * Polling 'interrupt' - used by things like netconsole to send skbs
6886 * without having to re-enable interrupts. It's not called while
6887 * the interrupt routine is executing.
6888 */
6889static void igb_netpoll(struct net_device *netdev)
6890{
6891 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6892 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 6893 struct igb_q_vector *q_vector;
9d5c8243 6894 int i;
9d5c8243 6895
047e0030 6896 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
6897 q_vector = adapter->q_vector[i];
6898 if (adapter->msix_entries)
6899 wr32(E1000_EIMC, q_vector->eims_value);
6900 else
6901 igb_irq_disable(adapter);
047e0030 6902 napi_schedule(&q_vector->napi);
eebbbdba 6903 }
9d5c8243
AK
6904}
6905#endif /* CONFIG_NET_POLL_CONTROLLER */
6906
6907/**
6908 * igb_io_error_detected - called when PCI error is detected
6909 * @pdev: Pointer to PCI device
6910 * @state: The current pci connection state
6911 *
6912 * This function is called after a PCI bus error affecting
6913 * this device has been detected.
6914 */
6915static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6916 pci_channel_state_t state)
6917{
6918 struct net_device *netdev = pci_get_drvdata(pdev);
6919 struct igb_adapter *adapter = netdev_priv(netdev);
6920
6921 netif_device_detach(netdev);
6922
59ed6eec
AD
6923 if (state == pci_channel_io_perm_failure)
6924 return PCI_ERS_RESULT_DISCONNECT;
6925
9d5c8243
AK
6926 if (netif_running(netdev))
6927 igb_down(adapter);
6928 pci_disable_device(pdev);
6929
6930 /* Request a slot slot reset. */
6931 return PCI_ERS_RESULT_NEED_RESET;
6932}
6933
6934/**
6935 * igb_io_slot_reset - called after the pci bus has been reset.
6936 * @pdev: Pointer to PCI device
6937 *
6938 * Restart the card from scratch, as if from a cold-boot. Implementation
6939 * resembles the first-half of the igb_resume routine.
6940 */
6941static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6942{
6943 struct net_device *netdev = pci_get_drvdata(pdev);
6944 struct igb_adapter *adapter = netdev_priv(netdev);
6945 struct e1000_hw *hw = &adapter->hw;
40a914fa 6946 pci_ers_result_t result;
42bfd33a 6947 int err;
9d5c8243 6948
aed5dec3 6949 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6950 dev_err(&pdev->dev,
6951 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6952 result = PCI_ERS_RESULT_DISCONNECT;
6953 } else {
6954 pci_set_master(pdev);
6955 pci_restore_state(pdev);
b94f2d77 6956 pci_save_state(pdev);
9d5c8243 6957
40a914fa
AD
6958 pci_enable_wake(pdev, PCI_D3hot, 0);
6959 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6960
40a914fa
AD
6961 igb_reset(adapter);
6962 wr32(E1000_WUS, ~0);
6963 result = PCI_ERS_RESULT_RECOVERED;
6964 }
9d5c8243 6965
ea943d41
JK
6966 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6967 if (err) {
6968 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6969 "failed 0x%0x\n", err);
6970 /* non-fatal, continue */
6971 }
40a914fa
AD
6972
6973 return result;
9d5c8243
AK
6974}
6975
6976/**
6977 * igb_io_resume - called when traffic can start flowing again.
6978 * @pdev: Pointer to PCI device
6979 *
6980 * This callback is called when the error recovery driver tells us that
6981 * its OK to resume normal operation. Implementation resembles the
6982 * second-half of the igb_resume routine.
6983 */
6984static void igb_io_resume(struct pci_dev *pdev)
6985{
6986 struct net_device *netdev = pci_get_drvdata(pdev);
6987 struct igb_adapter *adapter = netdev_priv(netdev);
6988
9d5c8243
AK
6989 if (netif_running(netdev)) {
6990 if (igb_up(adapter)) {
6991 dev_err(&pdev->dev, "igb_up failed after reset\n");
6992 return;
6993 }
6994 }
6995
6996 netif_device_attach(netdev);
6997
6998 /* let the f/w know that the h/w is now under the control of the
6999 * driver. */
7000 igb_get_hw_control(adapter);
9d5c8243
AK
7001}
7002
26ad9178
AD
7003static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7004 u8 qsel)
7005{
7006 u32 rar_low, rar_high;
7007 struct e1000_hw *hw = &adapter->hw;
7008
7009 /* HW expects these in little endian so we reverse the byte order
7010 * from network order (big endian) to little endian
7011 */
7012 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7013 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7014 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7015
7016 /* Indicate to hardware the Address is Valid. */
7017 rar_high |= E1000_RAH_AV;
7018
7019 if (hw->mac.type == e1000_82575)
7020 rar_high |= E1000_RAH_POOL_1 * qsel;
7021 else
7022 rar_high |= E1000_RAH_POOL_1 << qsel;
7023
7024 wr32(E1000_RAL(index), rar_low);
7025 wrfl();
7026 wr32(E1000_RAH(index), rar_high);
7027 wrfl();
7028}
7029
4ae196df
AD
7030static int igb_set_vf_mac(struct igb_adapter *adapter,
7031 int vf, unsigned char *mac_addr)
7032{
7033 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
7034 /* VF MAC addresses start at end of receive addresses and moves
7035 * torwards the first, as a result a collision should not be possible */
7036 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7037
37680117 7038 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7039
26ad9178 7040 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7041
7042 return 0;
7043}
7044
8151d294
WM
7045static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7046{
7047 struct igb_adapter *adapter = netdev_priv(netdev);
7048 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7049 return -EINVAL;
7050 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7051 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7052 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7053 " change effective.");
7054 if (test_bit(__IGB_DOWN, &adapter->state)) {
7055 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7056 " but the PF device is not up.\n");
7057 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7058 " attempting to use the VF device.\n");
7059 }
7060 return igb_set_vf_mac(adapter, vf, mac);
7061}
7062
17dc566c
LL
7063static int igb_link_mbps(int internal_link_speed)
7064{
7065 switch (internal_link_speed) {
7066 case SPEED_100:
7067 return 100;
7068 case SPEED_1000:
7069 return 1000;
7070 default:
7071 return 0;
7072 }
7073}
7074
7075static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7076 int link_speed)
7077{
7078 int rf_dec, rf_int;
7079 u32 bcnrc_val;
7080
7081 if (tx_rate != 0) {
7082 /* Calculate the rate factor values to set */
7083 rf_int = link_speed / tx_rate;
7084 rf_dec = (link_speed - (rf_int * tx_rate));
7085 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7086
7087 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7088 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7089 E1000_RTTBCNRC_RF_INT_MASK);
7090 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7091 } else {
7092 bcnrc_val = 0;
7093 }
7094
7095 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
f00b0da7
LL
7096 /*
7097 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7098 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7099 */
7100 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7101 wr32(E1000_RTTBCNRC, bcnrc_val);
7102}
7103
7104static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7105{
7106 int actual_link_speed, i;
7107 bool reset_rate = false;
7108
7109 /* VF TX rate limit was not set or not supported */
7110 if ((adapter->vf_rate_link_speed == 0) ||
7111 (adapter->hw.mac.type != e1000_82576))
7112 return;
7113
7114 actual_link_speed = igb_link_mbps(adapter->link_speed);
7115 if (actual_link_speed != adapter->vf_rate_link_speed) {
7116 reset_rate = true;
7117 adapter->vf_rate_link_speed = 0;
7118 dev_info(&adapter->pdev->dev,
7119 "Link speed has been changed. VF Transmit "
7120 "rate is disabled\n");
7121 }
7122
7123 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7124 if (reset_rate)
7125 adapter->vf_data[i].tx_rate = 0;
7126
7127 igb_set_vf_rate_limit(&adapter->hw, i,
7128 adapter->vf_data[i].tx_rate,
7129 actual_link_speed);
7130 }
7131}
7132
8151d294
WM
7133static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7134{
17dc566c
LL
7135 struct igb_adapter *adapter = netdev_priv(netdev);
7136 struct e1000_hw *hw = &adapter->hw;
7137 int actual_link_speed;
7138
7139 if (hw->mac.type != e1000_82576)
7140 return -EOPNOTSUPP;
7141
7142 actual_link_speed = igb_link_mbps(adapter->link_speed);
7143 if ((vf >= adapter->vfs_allocated_count) ||
7144 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7145 (tx_rate < 0) || (tx_rate > actual_link_speed))
7146 return -EINVAL;
7147
7148 adapter->vf_rate_link_speed = actual_link_speed;
7149 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7150 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7151
7152 return 0;
8151d294
WM
7153}
7154
7155static int igb_ndo_get_vf_config(struct net_device *netdev,
7156 int vf, struct ifla_vf_info *ivi)
7157{
7158 struct igb_adapter *adapter = netdev_priv(netdev);
7159 if (vf >= adapter->vfs_allocated_count)
7160 return -EINVAL;
7161 ivi->vf = vf;
7162 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7163 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7164 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7165 ivi->qos = adapter->vf_data[vf].pf_qos;
7166 return 0;
7167}
7168
4ae196df
AD
7169static void igb_vmm_control(struct igb_adapter *adapter)
7170{
7171 struct e1000_hw *hw = &adapter->hw;
10d8e907 7172 u32 reg;
4ae196df 7173
52a1dd4d
AD
7174 switch (hw->mac.type) {
7175 case e1000_82575:
f96a8a0b
CW
7176 case e1000_i210:
7177 case e1000_i211:
52a1dd4d
AD
7178 default:
7179 /* replication is not supported for 82575 */
4ae196df 7180 return;
52a1dd4d
AD
7181 case e1000_82576:
7182 /* notify HW that the MAC is adding vlan tags */
7183 reg = rd32(E1000_DTXCTL);
7184 reg |= E1000_DTXCTL_VLAN_ADDED;
7185 wr32(E1000_DTXCTL, reg);
7186 case e1000_82580:
7187 /* enable replication vlan tag stripping */
7188 reg = rd32(E1000_RPLOLR);
7189 reg |= E1000_RPLOLR_STRVLAN;
7190 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7191 case e1000_i350:
7192 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7193 break;
7194 }
10d8e907 7195
d4960307
AD
7196 if (adapter->vfs_allocated_count) {
7197 igb_vmdq_set_loopback_pf(hw, true);
7198 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
7199 igb_vmdq_set_anti_spoofing_pf(hw, true,
7200 adapter->vfs_allocated_count);
d4960307
AD
7201 } else {
7202 igb_vmdq_set_loopback_pf(hw, false);
7203 igb_vmdq_set_replication_pf(hw, false);
7204 }
4ae196df
AD
7205}
7206
b6e0c419
CW
7207static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7208{
7209 struct e1000_hw *hw = &adapter->hw;
7210 u32 dmac_thr;
7211 u16 hwm;
7212
7213 if (hw->mac.type > e1000_82580) {
7214 if (adapter->flags & IGB_FLAG_DMAC) {
7215 u32 reg;
7216
7217 /* force threshold to 0. */
7218 wr32(E1000_DMCTXTH, 0);
7219
7220 /*
e8c626e9
MV
7221 * DMA Coalescing high water mark needs to be greater
7222 * than the Rx threshold. Set hwm to PBA - max frame
7223 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7224 */
e8c626e9
MV
7225 hwm = 64 * pba - adapter->max_frame_size / 16;
7226 if (hwm < 64 * (pba - 6))
7227 hwm = 64 * (pba - 6);
7228 reg = rd32(E1000_FCRTC);
7229 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7230 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7231 & E1000_FCRTC_RTH_COAL_MASK);
7232 wr32(E1000_FCRTC, reg);
7233
7234 /*
7235 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7236 * frame size, capping it at PBA - 10KB.
7237 */
7238 dmac_thr = pba - adapter->max_frame_size / 512;
7239 if (dmac_thr < pba - 10)
7240 dmac_thr = pba - 10;
b6e0c419
CW
7241 reg = rd32(E1000_DMACR);
7242 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7243 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7244 & E1000_DMACR_DMACTHR_MASK);
7245
7246 /* transition to L0x or L1 if available..*/
7247 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7248
7249 /* watchdog timer= +-1000 usec in 32usec intervals */
7250 reg |= (1000 >> 5);
0c02dd98
MV
7251
7252 /* Disable BMC-to-OS Watchdog Enable */
7253 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
b6e0c419
CW
7254 wr32(E1000_DMACR, reg);
7255
7256 /*
7257 * no lower threshold to disable
7258 * coalescing(smart fifb)-UTRESH=0
7259 */
7260 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7261
7262 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7263
7264 wr32(E1000_DMCTLX, reg);
7265
7266 /*
7267 * free space in tx packet buffer to wake from
7268 * DMA coal
7269 */
7270 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7271 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7272
7273 /*
7274 * make low power state decision controlled
7275 * by DMA coal
7276 */
7277 reg = rd32(E1000_PCIEMISC);
7278 reg &= ~E1000_PCIEMISC_LX_DECISION;
7279 wr32(E1000_PCIEMISC, reg);
7280 } /* endif adapter->dmac is not disabled */
7281 } else if (hw->mac.type == e1000_82580) {
7282 u32 reg = rd32(E1000_PCIEMISC);
7283 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7284 wr32(E1000_DMACR, 0);
7285 }
7286}
7287
9d5c8243 7288/* igb_main.c */