]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
igb: Implement support to power sfp cage and turn on I2C
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4b9ea462 4 Copyright(c) 2007-2013 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
441fc6fd 60#include <linux/i2c.h>
9d5c8243
AK
61#include "igb.h"
62
200e5fd5 63#define MAJ 4
6699938b
CW
64#define MIN 1
65#define BUILD 2
0d1fe82d 66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 67__stringify(BUILD) "-k"
9d5c8243
AK
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462
AA
72static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
9d5c8243 74
9d5c8243
AK
75static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77};
78
a3aa1884 79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
f96a8a0b
CW
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
d2ba2ed8
AD
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110 /* required last entry */
111 {0, }
112};
113
114MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115
116void igb_reset(struct igb_adapter *);
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 121static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 123static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
53c7d064 127static void igb_configure(struct igb_adapter *);
9d5c8243
AK
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 134static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
cd392f5c 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
9d5c8243
AK
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
68d480c4 143static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
047e0030 147static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 148#ifdef CONFIG_IGB_DCA
047e0030 149static void igb_update_dca(struct igb_q_vector *);
fe4506b6 150static void igb_setup_dca(struct igb_adapter *);
421e02f0 151#endif /* CONFIG_IGB_DCA */
661086df 152static int igb_poll(struct napi_struct *, int);
13fde97a 153static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
c8f44aff 158static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
8e586137
JP
159static int igb_vlan_rx_add_vid(struct net_device *, u16);
160static int igb_vlan_rx_kill_vid(struct net_device *, u16);
9d5c8243 161static void igb_restore_vlan(struct igb_adapter *);
26ad9178 162static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
163static void igb_ping_all_vfs(struct igb_adapter *);
164static void igb_msg_task(struct igb_adapter *);
4ae196df 165static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 166static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 167static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
168static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170 int vf, u16 vlan, u8 qos);
171static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173 struct ifla_vf_info *ivi);
17dc566c 174static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
175
176#ifdef CONFIG_PCI_IOV
0224d663 177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
f557147c 178static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
46a01698 179#endif
9d5c8243 180
9d5c8243 181#ifdef CONFIG_PM
d9dd966d 182#ifdef CONFIG_PM_SLEEP
749ab2cd 183static int igb_suspend(struct device *);
d9dd966d 184#endif
749ab2cd
YZ
185static int igb_resume(struct device *);
186#ifdef CONFIG_PM_RUNTIME
187static int igb_runtime_suspend(struct device *dev);
188static int igb_runtime_resume(struct device *dev);
189static int igb_runtime_idle(struct device *dev);
190#endif
191static const struct dev_pm_ops igb_pm_ops = {
192 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194 igb_runtime_idle)
195};
9d5c8243
AK
196#endif
197static void igb_shutdown(struct pci_dev *);
fa44f2f1 198static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 199#ifdef CONFIG_IGB_DCA
fe4506b6
JC
200static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201static struct notifier_block dca_notifier = {
202 .notifier_call = igb_notify_dca,
203 .next = NULL,
204 .priority = 0
205};
206#endif
9d5c8243
AK
207#ifdef CONFIG_NET_POLL_CONTROLLER
208/* for netdump / net console */
209static void igb_netpoll(struct net_device *);
210#endif
37680117 211#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
212static unsigned int max_vfs = 0;
213module_param(max_vfs, uint, 0);
214MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215 "per physical function");
216#endif /* CONFIG_PCI_IOV */
217
9d5c8243
AK
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
3646f0e5 223static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
224 .error_detected = igb_io_error_detected,
225 .slot_reset = igb_io_slot_reset,
226 .resume = igb_io_resume,
227};
228
b6e0c419 229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
230
231static struct pci_driver igb_driver = {
232 .name = igb_driver_name,
233 .id_table = igb_pci_tbl,
234 .probe = igb_probe,
9f9a12f8 235 .remove = igb_remove,
9d5c8243 236#ifdef CONFIG_PM
749ab2cd 237 .driver.pm = &igb_pm_ops,
9d5c8243
AK
238#endif
239 .shutdown = igb_shutdown,
fa44f2f1 240 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
241 .err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
b3f4d599 249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
c97ec42a
TI
254struct igb_reg_info {
255 u32 ofs;
256 char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261 /* General Registers */
262 {E1000_CTRL, "CTRL"},
263 {E1000_STATUS, "STATUS"},
264 {E1000_CTRL_EXT, "CTRL_EXT"},
265
266 /* Interrupt Registers */
267 {E1000_ICR, "ICR"},
268
269 /* RX Registers */
270 {E1000_RCTL, "RCTL"},
271 {E1000_RDLEN(0), "RDLEN"},
272 {E1000_RDH(0), "RDH"},
273 {E1000_RDT(0), "RDT"},
274 {E1000_RXDCTL(0), "RXDCTL"},
275 {E1000_RDBAL(0), "RDBAL"},
276 {E1000_RDBAH(0), "RDBAH"},
277
278 /* TX Registers */
279 {E1000_TCTL, "TCTL"},
280 {E1000_TDBAL(0), "TDBAL"},
281 {E1000_TDBAH(0), "TDBAH"},
282 {E1000_TDLEN(0), "TDLEN"},
283 {E1000_TDH(0), "TDH"},
284 {E1000_TDT(0), "TDT"},
285 {E1000_TXDCTL(0), "TXDCTL"},
286 {E1000_TDFH, "TDFH"},
287 {E1000_TDFT, "TDFT"},
288 {E1000_TDFHS, "TDFHS"},
289 {E1000_TDFPC, "TDFPC"},
290
291 /* List Terminator */
292 {}
293};
294
295/*
296 * igb_regdump - register printout routine
297 */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
876d2d6f 354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
c97ec42a
TI
361}
362
363/*
364 * igb_dump - Print registers, tx-rings and rx-rings
365 */
366static void igb_dump(struct igb_adapter *adapter)
367{
368 struct net_device *netdev = adapter->netdev;
369 struct e1000_hw *hw = &adapter->hw;
370 struct igb_reg_info *reginfo;
c97ec42a
TI
371 struct igb_ring *tx_ring;
372 union e1000_adv_tx_desc *tx_desc;
373 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
374 struct igb_ring *rx_ring;
375 union e1000_adv_rx_desc *rx_desc;
376 u32 staterr;
6ad4edfc 377 u16 i, n;
c97ec42a
TI
378
379 if (!netif_msg_hw(adapter))
380 return;
381
382 /* Print netdevice Info */
383 if (netdev) {
384 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
385 pr_info("Device Name state trans_start "
386 "last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 393 pr_info(" Register Name Value\n");
c97ec42a
TI
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 405 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 406 struct igb_tx_buffer *buffer_info;
c97ec42a 407 tx_ring = adapter->tx_ring[n];
06034649 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
876d2d6f
JK
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
c97ec42a
TI
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
440 "[bi->dma ] leng ntw timestamp "
441 "bi->skb\n");
c97ec42a
TI
442
443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 444 const char *next_desc;
06034649 445 struct igb_tx_buffer *buffer_info;
60136906 446 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 447 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 448 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
449 if (i == tx_ring->next_to_use &&
450 i == tx_ring->next_to_clean)
451 next_desc = " NTC/U";
452 else if (i == tx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == tx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 pr_info("T [0x%03X] %016llX %016llX %016llX"
460 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
461 le64_to_cpu(u0->a),
462 le64_to_cpu(u0->b),
c9f14bf3
AD
463 (u64)dma_unmap_addr(buffer_info, dma),
464 dma_unmap_len(buffer_info, len),
c97ec42a
TI
465 buffer_info->next_to_watch,
466 (u64)buffer_info->time_stamp,
876d2d6f 467 buffer_info->skb, next_desc);
c97ec42a 468
b669588a 469 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
470 print_hex_dump(KERN_INFO, "",
471 DUMP_PREFIX_ADDRESS,
b669588a 472 16, 1, buffer_info->skb->data,
c9f14bf3
AD
473 dma_unmap_len(buffer_info, len),
474 true);
c97ec42a
TI
475 }
476 }
477
478 /* Print RX Rings Summary */
479rx_ring_summary:
480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 481 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
482 for (n = 0; n < adapter->num_rx_queues; n++) {
483 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
484 pr_info(" %5d %5X %5X\n",
485 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
486 }
487
488 /* Print RX Rings */
489 if (!netif_msg_rx_status(adapter))
490 goto exit;
491
492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494 /* Advanced Receive Descriptor (Read) Format
495 * 63 1 0
496 * +-----------------------------------------------------+
497 * 0 | Packet Buffer Address [63:1] |A0/NSE|
498 * +----------------------------------------------+------+
499 * 8 | Header Buffer Address [63:1] | DD |
500 * +-----------------------------------------------------+
501 *
502 *
503 * Advanced Receive Descriptor (Write-Back) Format
504 *
505 * 63 48 47 32 31 30 21 20 17 16 4 3 0
506 * +------------------------------------------------------+
507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
508 * | Checksum Ident | | | | Type | Type |
509 * +------------------------------------------------------+
510 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 * +------------------------------------------------------+
512 * 63 48 47 32 31 20 19 0
513 */
514
515 for (n = 0; n < adapter->num_rx_queues; n++) {
516 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
517 pr_info("------------------------------------\n");
518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 pr_info("------------------------------------\n");
520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
524
525 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 526 const char *next_desc;
06034649
AD
527 struct igb_rx_buffer *buffer_info;
528 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 529 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
530 u0 = (struct my_u0 *)rx_desc;
531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
532
533 if (i == rx_ring->next_to_use)
534 next_desc = " NTU";
535 else if (i == rx_ring->next_to_clean)
536 next_desc = " NTC";
537 else
538 next_desc = "";
539
c97ec42a
TI
540 if (staterr & E1000_RXD_STAT_DD) {
541 /* Descriptor Done */
1a1c225b
AD
542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
543 "RWB", i,
c97ec42a
TI
544 le64_to_cpu(u0->a),
545 le64_to_cpu(u0->b),
1a1c225b 546 next_desc);
c97ec42a 547 } else {
1a1c225b
AD
548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
549 "R ", i,
c97ec42a
TI
550 le64_to_cpu(u0->a),
551 le64_to_cpu(u0->b),
552 (u64)buffer_info->dma,
1a1c225b 553 next_desc);
c97ec42a 554
b669588a 555 if (netif_msg_pktdata(adapter) &&
1a1c225b 556 buffer_info->dma && buffer_info->page) {
44390ca6
AD
557 print_hex_dump(KERN_INFO, "",
558 DUMP_PREFIX_ADDRESS,
559 16, 1,
b669588a
ET
560 page_address(buffer_info->page) +
561 buffer_info->page_offset,
de78d1f9 562 IGB_RX_BUFSZ, true);
c97ec42a
TI
563 }
564 }
c97ec42a
TI
565 }
566 }
567
568exit:
569 return;
570}
571
441fc6fd
CW
572/* igb_get_i2c_data - Reads the I2C SDA data bit
573 * @hw: pointer to hardware structure
574 * @i2cctl: Current value of I2CCTL register
575 *
576 * Returns the I2C data bit value
577 */
578static int igb_get_i2c_data(void *data)
579{
580 struct igb_adapter *adapter = (struct igb_adapter *)data;
581 struct e1000_hw *hw = &adapter->hw;
582 s32 i2cctl = rd32(E1000_I2CPARAMS);
583
584 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585}
586
587/* igb_set_i2c_data - Sets the I2C data bit
588 * @data: pointer to hardware structure
589 * @state: I2C data value (0 or 1) to set
590 *
591 * Sets the I2C data bit
592 */
593static void igb_set_i2c_data(void *data, int state)
594{
595 struct igb_adapter *adapter = (struct igb_adapter *)data;
596 struct e1000_hw *hw = &adapter->hw;
597 s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599 if (state)
600 i2cctl |= E1000_I2C_DATA_OUT;
601 else
602 i2cctl &= ~E1000_I2C_DATA_OUT;
603
604 i2cctl &= ~E1000_I2C_DATA_OE_N;
605 i2cctl |= E1000_I2C_CLK_OE_N;
606 wr32(E1000_I2CPARAMS, i2cctl);
607 wrfl();
608
609}
610
611/* igb_set_i2c_clk - Sets the I2C SCL clock
612 * @data: pointer to hardware structure
613 * @state: state to set clock
614 *
615 * Sets the I2C clock line to state
616 */
617static void igb_set_i2c_clk(void *data, int state)
618{
619 struct igb_adapter *adapter = (struct igb_adapter *)data;
620 struct e1000_hw *hw = &adapter->hw;
621 s32 i2cctl = rd32(E1000_I2CPARAMS);
622
623 if (state) {
624 i2cctl |= E1000_I2C_CLK_OUT;
625 i2cctl &= ~E1000_I2C_CLK_OE_N;
626 } else {
627 i2cctl &= ~E1000_I2C_CLK_OUT;
628 i2cctl &= ~E1000_I2C_CLK_OE_N;
629 }
630 wr32(E1000_I2CPARAMS, i2cctl);
631 wrfl();
632}
633
634/* igb_get_i2c_clk - Gets the I2C SCL clock state
635 * @data: pointer to hardware structure
636 *
637 * Gets the I2C clock state
638 */
639static int igb_get_i2c_clk(void *data)
640{
641 struct igb_adapter *adapter = (struct igb_adapter *)data;
642 struct e1000_hw *hw = &adapter->hw;
643 s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646}
647
648static const struct i2c_algo_bit_data igb_i2c_algo = {
649 .setsda = igb_set_i2c_data,
650 .setscl = igb_set_i2c_clk,
651 .getsda = igb_get_i2c_data,
652 .getscl = igb_get_i2c_clk,
653 .udelay = 5,
654 .timeout = 20,
655};
656
9d5c8243 657/**
c041076a 658 * igb_get_hw_dev - return device
9d5c8243
AK
659 * used by hardware layer to print debugging information
660 **/
c041076a 661struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
662{
663 struct igb_adapter *adapter = hw->back;
c041076a 664 return adapter->netdev;
9d5c8243 665}
38c845c7 666
9d5c8243
AK
667/**
668 * igb_init_module - Driver Registration Routine
669 *
670 * igb_init_module is the first routine called when the driver is
671 * loaded. All it does is register with the PCI subsystem.
672 **/
673static int __init igb_init_module(void)
674{
675 int ret;
876d2d6f 676 pr_info("%s - version %s\n",
9d5c8243
AK
677 igb_driver_string, igb_driver_version);
678
876d2d6f 679 pr_info("%s\n", igb_copyright);
9d5c8243 680
421e02f0 681#ifdef CONFIG_IGB_DCA
fe4506b6
JC
682 dca_register_notify(&dca_notifier);
683#endif
bbd98fe4 684 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
685 return ret;
686}
687
688module_init(igb_init_module);
689
690/**
691 * igb_exit_module - Driver Exit Cleanup Routine
692 *
693 * igb_exit_module is called just before the driver is removed
694 * from memory.
695 **/
696static void __exit igb_exit_module(void)
697{
421e02f0 698#ifdef CONFIG_IGB_DCA
fe4506b6
JC
699 dca_unregister_notify(&dca_notifier);
700#endif
9d5c8243
AK
701 pci_unregister_driver(&igb_driver);
702}
703
704module_exit(igb_exit_module);
705
26bc19ec
AD
706#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707/**
708 * igb_cache_ring_register - Descriptor ring to register mapping
709 * @adapter: board private structure to initialize
710 *
711 * Once we know the feature-set enabled for the device, we'll cache
712 * the register offset the descriptor ring is assigned to.
713 **/
714static void igb_cache_ring_register(struct igb_adapter *adapter)
715{
ee1b9f06 716 int i = 0, j = 0;
047e0030 717 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
718
719 switch (adapter->hw.mac.type) {
720 case e1000_82576:
721 /* The queues are allocated for virtualization such that VF 0
722 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723 * In order to avoid collision we start at the first free queue
724 * and continue consuming queues in the same sequence
725 */
ee1b9f06 726 if (adapter->vfs_allocated_count) {
a99955fc 727 for (; i < adapter->rss_queues; i++)
3025a446
AD
728 adapter->rx_ring[i]->reg_idx = rbase_offset +
729 Q_IDX_82576(i);
ee1b9f06 730 }
26bc19ec 731 case e1000_82575:
55cac248 732 case e1000_82580:
d2ba2ed8 733 case e1000_i350:
f96a8a0b
CW
734 case e1000_i210:
735 case e1000_i211:
26bc19ec 736 default:
ee1b9f06 737 for (; i < adapter->num_rx_queues; i++)
3025a446 738 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 739 for (; j < adapter->num_tx_queues; j++)
3025a446 740 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
741 break;
742 }
743}
744
4be000c8
AD
745/**
746 * igb_write_ivar - configure ivar for given MSI-X vector
747 * @hw: pointer to the HW structure
748 * @msix_vector: vector number we are allocating to a given ring
749 * @index: row index of IVAR register to write within IVAR table
750 * @offset: column offset of in IVAR, should be multiple of 8
751 *
752 * This function is intended to handle the writing of the IVAR register
753 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
754 * each containing an cause allocation for an Rx and Tx ring, and a
755 * variable number of rows depending on the number of queues supported.
756 **/
757static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758 int index, int offset)
759{
760 u32 ivar = array_rd32(E1000_IVAR0, index);
761
762 /* clear any bits that are currently set */
763 ivar &= ~((u32)0xFF << offset);
764
765 /* write vector and valid bit */
766 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767
768 array_wr32(E1000_IVAR0, index, ivar);
769}
770
9d5c8243 771#define IGB_N0_QUEUE -1
047e0030 772static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 773{
047e0030 774 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 775 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
776 int rx_queue = IGB_N0_QUEUE;
777 int tx_queue = IGB_N0_QUEUE;
4be000c8 778 u32 msixbm = 0;
047e0030 779
0ba82994
AD
780 if (q_vector->rx.ring)
781 rx_queue = q_vector->rx.ring->reg_idx;
782 if (q_vector->tx.ring)
783 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
784
785 switch (hw->mac.type) {
786 case e1000_82575:
9d5c8243
AK
787 /* The 82575 assigns vectors using a bitmask, which matches the
788 bitmask for the EICR/EIMS/EIMC registers. To assign one
789 or more queues to a vector, we write the appropriate bits
790 into the MSIXBM register for that vector. */
047e0030 791 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 792 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 793 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 794 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
795 if (!adapter->msix_entries && msix_vector == 0)
796 msixbm |= E1000_EIMS_OTHER;
9d5c8243 797 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 798 q_vector->eims_value = msixbm;
2d064c06
AD
799 break;
800 case e1000_82576:
4be000c8
AD
801 /*
802 * 82576 uses a table that essentially consists of 2 columns
803 * with 8 rows. The ordering is column-major so we use the
804 * lower 3 bits as the row index, and the 4th bit as the
805 * column offset.
806 */
807 if (rx_queue > IGB_N0_QUEUE)
808 igb_write_ivar(hw, msix_vector,
809 rx_queue & 0x7,
810 (rx_queue & 0x8) << 1);
811 if (tx_queue > IGB_N0_QUEUE)
812 igb_write_ivar(hw, msix_vector,
813 tx_queue & 0x7,
814 ((tx_queue & 0x8) << 1) + 8);
047e0030 815 q_vector->eims_value = 1 << msix_vector;
2d064c06 816 break;
55cac248 817 case e1000_82580:
d2ba2ed8 818 case e1000_i350:
f96a8a0b
CW
819 case e1000_i210:
820 case e1000_i211:
4be000c8
AD
821 /*
822 * On 82580 and newer adapters the scheme is similar to 82576
823 * however instead of ordering column-major we have things
824 * ordered row-major. So we traverse the table by using
825 * bit 0 as the column offset, and the remaining bits as the
826 * row index.
827 */
828 if (rx_queue > IGB_N0_QUEUE)
829 igb_write_ivar(hw, msix_vector,
830 rx_queue >> 1,
831 (rx_queue & 0x1) << 4);
832 if (tx_queue > IGB_N0_QUEUE)
833 igb_write_ivar(hw, msix_vector,
834 tx_queue >> 1,
835 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
836 q_vector->eims_value = 1 << msix_vector;
837 break;
2d064c06
AD
838 default:
839 BUG();
840 break;
841 }
26b39276
AD
842
843 /* add q_vector eims value to global eims_enable_mask */
844 adapter->eims_enable_mask |= q_vector->eims_value;
845
846 /* configure q_vector to set itr on first interrupt */
847 q_vector->set_itr = 1;
9d5c8243
AK
848}
849
850/**
851 * igb_configure_msix - Configure MSI-X hardware
852 *
853 * igb_configure_msix sets up the hardware to properly
854 * generate MSI-X interrupts.
855 **/
856static void igb_configure_msix(struct igb_adapter *adapter)
857{
858 u32 tmp;
859 int i, vector = 0;
860 struct e1000_hw *hw = &adapter->hw;
861
862 adapter->eims_enable_mask = 0;
9d5c8243
AK
863
864 /* set vector for other causes, i.e. link changes */
2d064c06
AD
865 switch (hw->mac.type) {
866 case e1000_82575:
9d5c8243
AK
867 tmp = rd32(E1000_CTRL_EXT);
868 /* enable MSI-X PBA support*/
869 tmp |= E1000_CTRL_EXT_PBA_CLR;
870
871 /* Auto-Mask interrupts upon ICR read. */
872 tmp |= E1000_CTRL_EXT_EIAME;
873 tmp |= E1000_CTRL_EXT_IRCA;
874
875 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
876
877 /* enable msix_other interrupt */
878 array_wr32(E1000_MSIXBM(0), vector++,
879 E1000_EIMS_OTHER);
844290e5 880 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 881
2d064c06
AD
882 break;
883
884 case e1000_82576:
55cac248 885 case e1000_82580:
d2ba2ed8 886 case e1000_i350:
f96a8a0b
CW
887 case e1000_i210:
888 case e1000_i211:
047e0030
AD
889 /* Turn on MSI-X capability first, or our settings
890 * won't stick. And it will take days to debug. */
891 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892 E1000_GPIE_PBA | E1000_GPIE_EIAME |
893 E1000_GPIE_NSICR);
894
895 /* enable msix_other interrupt */
896 adapter->eims_other = 1 << vector;
2d064c06 897 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 898
047e0030 899 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
900 break;
901 default:
902 /* do nothing, since nothing else supports MSI-X */
903 break;
904 } /* switch (hw->mac.type) */
047e0030
AD
905
906 adapter->eims_enable_mask |= adapter->eims_other;
907
26b39276
AD
908 for (i = 0; i < adapter->num_q_vectors; i++)
909 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 910
9d5c8243
AK
911 wrfl();
912}
913
914/**
915 * igb_request_msix - Initialize MSI-X interrupts
916 *
917 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918 * kernel.
919 **/
920static int igb_request_msix(struct igb_adapter *adapter)
921{
922 struct net_device *netdev = adapter->netdev;
047e0030 923 struct e1000_hw *hw = &adapter->hw;
52285b76 924 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 925
047e0030 926 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 927 igb_msix_other, 0, netdev->name, adapter);
047e0030 928 if (err)
52285b76 929 goto err_out;
047e0030
AD
930
931 for (i = 0; i < adapter->num_q_vectors; i++) {
932 struct igb_q_vector *q_vector = adapter->q_vector[i];
933
52285b76
SA
934 vector++;
935
047e0030
AD
936 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937
0ba82994 938 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 939 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
940 q_vector->rx.ring->queue_index);
941 else if (q_vector->tx.ring)
047e0030 942 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
943 q_vector->tx.ring->queue_index);
944 else if (q_vector->rx.ring)
047e0030 945 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 946 q_vector->rx.ring->queue_index);
9d5c8243 947 else
047e0030
AD
948 sprintf(q_vector->name, "%s-unused", netdev->name);
949
9d5c8243 950 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 951 igb_msix_ring, 0, q_vector->name,
047e0030 952 q_vector);
9d5c8243 953 if (err)
52285b76 954 goto err_free;
9d5c8243
AK
955 }
956
9d5c8243
AK
957 igb_configure_msix(adapter);
958 return 0;
52285b76
SA
959
960err_free:
961 /* free already assigned IRQs */
962 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963
964 vector--;
965 for (i = 0; i < vector; i++) {
966 free_irq(adapter->msix_entries[free_vector++].vector,
967 adapter->q_vector[i]);
968 }
969err_out:
9d5c8243
AK
970 return err;
971}
972
973static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974{
975 if (adapter->msix_entries) {
976 pci_disable_msix(adapter->pdev);
977 kfree(adapter->msix_entries);
978 adapter->msix_entries = NULL;
047e0030 979 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 980 pci_disable_msi(adapter->pdev);
047e0030 981 }
9d5c8243
AK
982}
983
5536d210
AD
984/**
985 * igb_free_q_vector - Free memory allocated for specific interrupt vector
986 * @adapter: board private structure to initialize
987 * @v_idx: Index of vector to be freed
988 *
989 * This function frees the memory allocated to the q_vector. In addition if
990 * NAPI is enabled it will delete any references to the NAPI struct prior
991 * to freeing the q_vector.
992 **/
993static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994{
995 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996
997 if (q_vector->tx.ring)
998 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999
1000 if (q_vector->rx.ring)
1001 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002
1003 adapter->q_vector[v_idx] = NULL;
1004 netif_napi_del(&q_vector->napi);
1005
1006 /*
1007 * ixgbe_get_stats64() might access the rings on this vector,
1008 * we must wait a grace period before freeing it.
1009 */
1010 kfree_rcu(q_vector, rcu);
1011}
1012
047e0030
AD
1013/**
1014 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015 * @adapter: board private structure to initialize
1016 *
1017 * This function frees the memory allocated to the q_vectors. In addition if
1018 * NAPI is enabled it will delete any references to the NAPI struct prior
1019 * to freeing the q_vector.
1020 **/
1021static void igb_free_q_vectors(struct igb_adapter *adapter)
1022{
5536d210
AD
1023 int v_idx = adapter->num_q_vectors;
1024
1025 adapter->num_tx_queues = 0;
1026 adapter->num_rx_queues = 0;
047e0030 1027 adapter->num_q_vectors = 0;
5536d210
AD
1028
1029 while (v_idx--)
1030 igb_free_q_vector(adapter, v_idx);
047e0030
AD
1031}
1032
1033/**
1034 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035 *
1036 * This function resets the device so that it has 0 rx queues, tx queues, and
1037 * MSI-X interrupts allocated.
1038 */
1039static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040{
047e0030
AD
1041 igb_free_q_vectors(adapter);
1042 igb_reset_interrupt_capability(adapter);
1043}
9d5c8243
AK
1044
1045/**
1046 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047 *
1048 * Attempt to configure interrupts using the best available
1049 * capabilities of the hardware and kernel.
1050 **/
53c7d064 1051static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1052{
1053 int err;
1054 int numvecs, i;
1055
53c7d064
SA
1056 if (!msix)
1057 goto msi_only;
1058
83b7180d 1059 /* Number of supported queues. */
a99955fc 1060 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1061 if (adapter->vfs_allocated_count)
1062 adapter->num_tx_queues = 1;
1063 else
1064 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1065
047e0030
AD
1066 /* start with one vector for every rx queue */
1067 numvecs = adapter->num_rx_queues;
1068
3ad2f3fb 1069 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1070 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071 numvecs += adapter->num_tx_queues;
047e0030
AD
1072
1073 /* store the number of vectors reserved for queues */
1074 adapter->num_q_vectors = numvecs;
1075
1076 /* add 1 vector for link status interrupts */
1077 numvecs++;
9d5c8243
AK
1078 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079 GFP_KERNEL);
f96a8a0b 1080
9d5c8243
AK
1081 if (!adapter->msix_entries)
1082 goto msi_only;
1083
1084 for (i = 0; i < numvecs; i++)
1085 adapter->msix_entries[i].entry = i;
1086
1087 err = pci_enable_msix(adapter->pdev,
1088 adapter->msix_entries,
1089 numvecs);
1090 if (err == 0)
0c2cc02e 1091 return;
9d5c8243
AK
1092
1093 igb_reset_interrupt_capability(adapter);
1094
1095 /* If we can't do MSI-X, try MSI */
1096msi_only:
2a3abf6d
AD
1097#ifdef CONFIG_PCI_IOV
1098 /* disable SR-IOV for non MSI-X configurations */
1099 if (adapter->vf_data) {
1100 struct e1000_hw *hw = &adapter->hw;
1101 /* disable iov and allow time for transactions to clear */
1102 pci_disable_sriov(adapter->pdev);
1103 msleep(500);
1104
1105 kfree(adapter->vf_data);
1106 adapter->vf_data = NULL;
1107 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1108 wrfl();
2a3abf6d
AD
1109 msleep(100);
1110 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111 }
1112#endif
4fc82adf 1113 adapter->vfs_allocated_count = 0;
a99955fc 1114 adapter->rss_queues = 1;
4fc82adf 1115 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1116 adapter->num_rx_queues = 1;
661086df 1117 adapter->num_tx_queues = 1;
047e0030 1118 adapter->num_q_vectors = 1;
9d5c8243 1119 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1120 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1121}
1122
5536d210
AD
1123static void igb_add_ring(struct igb_ring *ring,
1124 struct igb_ring_container *head)
1125{
1126 head->ring = ring;
1127 head->count++;
1128}
1129
047e0030 1130/**
5536d210 1131 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
047e0030 1132 * @adapter: board private structure to initialize
5536d210
AD
1133 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134 * @v_idx: index of vector in adapter struct
1135 * @txr_count: total number of Tx rings to allocate
1136 * @txr_idx: index of first Tx ring to allocate
1137 * @rxr_count: total number of Rx rings to allocate
1138 * @rxr_idx: index of first Rx ring to allocate
047e0030 1139 *
5536d210 1140 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1141 **/
5536d210
AD
1142static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143 int v_count, int v_idx,
1144 int txr_count, int txr_idx,
1145 int rxr_count, int rxr_idx)
047e0030
AD
1146{
1147 struct igb_q_vector *q_vector;
5536d210
AD
1148 struct igb_ring *ring;
1149 int ring_count, size;
047e0030 1150
5536d210
AD
1151 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152 if (txr_count > 1 || rxr_count > 1)
1153 return -ENOMEM;
1154
1155 ring_count = txr_count + rxr_count;
1156 size = sizeof(struct igb_q_vector) +
1157 (sizeof(struct igb_ring) * ring_count);
1158
1159 /* allocate q_vector and rings */
1160 q_vector = kzalloc(size, GFP_KERNEL);
1161 if (!q_vector)
1162 return -ENOMEM;
1163
1164 /* initialize NAPI */
1165 netif_napi_add(adapter->netdev, &q_vector->napi,
1166 igb_poll, 64);
1167
1168 /* tie q_vector and adapter together */
1169 adapter->q_vector[v_idx] = q_vector;
1170 q_vector->adapter = adapter;
1171
1172 /* initialize work limits */
1173 q_vector->tx.work_limit = adapter->tx_work_limit;
1174
1175 /* initialize ITR configuration */
1176 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177 q_vector->itr_val = IGB_START_ITR;
1178
1179 /* initialize pointer to rings */
1180 ring = q_vector->ring;
1181
1182 if (txr_count) {
1183 /* assign generic ring traits */
1184 ring->dev = &adapter->pdev->dev;
1185 ring->netdev = adapter->netdev;
1186
1187 /* configure backlink on ring */
1188 ring->q_vector = q_vector;
1189
1190 /* update q_vector Tx values */
1191 igb_add_ring(ring, &q_vector->tx);
1192
1193 /* For 82575, context index must be unique per ring. */
1194 if (adapter->hw.mac.type == e1000_82575)
1195 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196
1197 /* apply Tx specific ring traits */
1198 ring->count = adapter->tx_ring_count;
1199 ring->queue_index = txr_idx;
1200
1201 /* assign ring to adapter */
1202 adapter->tx_ring[txr_idx] = ring;
1203
1204 /* push pointer to next ring */
1205 ring++;
047e0030 1206 }
81c2fc22 1207
5536d210
AD
1208 if (rxr_count) {
1209 /* assign generic ring traits */
1210 ring->dev = &adapter->pdev->dev;
1211 ring->netdev = adapter->netdev;
047e0030 1212
5536d210
AD
1213 /* configure backlink on ring */
1214 ring->q_vector = q_vector;
047e0030 1215
5536d210
AD
1216 /* update q_vector Rx values */
1217 igb_add_ring(ring, &q_vector->rx);
047e0030 1218
5536d210
AD
1219 /* set flag indicating ring supports SCTP checksum offload */
1220 if (adapter->hw.mac.type >= e1000_82576)
1221 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1222
5536d210
AD
1223 /*
1224 * On i350, i210, and i211, loopback VLAN packets
1225 * have the tag byte-swapped.
1226 * */
1227 if (adapter->hw.mac.type >= e1000_i350)
1228 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1229
5536d210
AD
1230 /* apply Rx specific ring traits */
1231 ring->count = adapter->rx_ring_count;
1232 ring->queue_index = rxr_idx;
1233
1234 /* assign ring to adapter */
1235 adapter->rx_ring[rxr_idx] = ring;
1236 }
1237
1238 return 0;
047e0030
AD
1239}
1240
5536d210 1241
047e0030 1242/**
5536d210
AD
1243 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244 * @adapter: board private structure to initialize
047e0030 1245 *
5536d210
AD
1246 * We allocate one q_vector per queue interrupt. If allocation fails we
1247 * return -ENOMEM.
047e0030 1248 **/
5536d210 1249static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1250{
5536d210
AD
1251 int q_vectors = adapter->num_q_vectors;
1252 int rxr_remaining = adapter->num_rx_queues;
1253 int txr_remaining = adapter->num_tx_queues;
1254 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255 int err;
047e0030 1256
5536d210
AD
1257 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258 for (; rxr_remaining; v_idx++) {
1259 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260 0, 0, 1, rxr_idx);
047e0030 1261
5536d210
AD
1262 if (err)
1263 goto err_out;
1264
1265 /* update counts and index */
1266 rxr_remaining--;
1267 rxr_idx++;
047e0030 1268 }
047e0030 1269 }
5536d210
AD
1270
1271 for (; v_idx < q_vectors; v_idx++) {
1272 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275 tqpv, txr_idx, rqpv, rxr_idx);
1276
1277 if (err)
1278 goto err_out;
1279
1280 /* update counts and index */
1281 rxr_remaining -= rqpv;
1282 txr_remaining -= tqpv;
1283 rxr_idx++;
1284 txr_idx++;
1285 }
1286
047e0030 1287 return 0;
5536d210
AD
1288
1289err_out:
1290 adapter->num_tx_queues = 0;
1291 adapter->num_rx_queues = 0;
1292 adapter->num_q_vectors = 0;
1293
1294 while (v_idx--)
1295 igb_free_q_vector(adapter, v_idx);
1296
1297 return -ENOMEM;
047e0030
AD
1298}
1299
1300/**
1301 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302 *
1303 * This function initializes the interrupts and allocates all of the queues.
1304 **/
53c7d064 1305static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1306{
1307 struct pci_dev *pdev = adapter->pdev;
1308 int err;
1309
53c7d064 1310 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1311
1312 err = igb_alloc_q_vectors(adapter);
1313 if (err) {
1314 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315 goto err_alloc_q_vectors;
1316 }
1317
5536d210 1318 igb_cache_ring_register(adapter);
047e0030
AD
1319
1320 return 0;
5536d210 1321
047e0030
AD
1322err_alloc_q_vectors:
1323 igb_reset_interrupt_capability(adapter);
1324 return err;
1325}
1326
9d5c8243
AK
1327/**
1328 * igb_request_irq - initialize interrupts
1329 *
1330 * Attempts to configure interrupts using the best available
1331 * capabilities of the hardware and kernel.
1332 **/
1333static int igb_request_irq(struct igb_adapter *adapter)
1334{
1335 struct net_device *netdev = adapter->netdev;
047e0030 1336 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1337 int err = 0;
1338
1339 if (adapter->msix_entries) {
1340 err = igb_request_msix(adapter);
844290e5 1341 if (!err)
9d5c8243 1342 goto request_done;
9d5c8243 1343 /* fall back to MSI */
5536d210
AD
1344 igb_free_all_tx_resources(adapter);
1345 igb_free_all_rx_resources(adapter);
53c7d064 1346
047e0030 1347 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1348 err = igb_init_interrupt_scheme(adapter, false);
1349 if (err)
047e0030 1350 goto request_done;
53c7d064 1351
047e0030
AD
1352 igb_setup_all_tx_resources(adapter);
1353 igb_setup_all_rx_resources(adapter);
53c7d064 1354 igb_configure(adapter);
9d5c8243 1355 }
844290e5 1356
c74d588e
AD
1357 igb_assign_vector(adapter->q_vector[0], 0);
1358
7dfc16fa 1359 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1360 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1361 netdev->name, adapter);
9d5c8243
AK
1362 if (!err)
1363 goto request_done;
047e0030 1364
9d5c8243
AK
1365 /* fall back to legacy interrupts */
1366 igb_reset_interrupt_capability(adapter);
7dfc16fa 1367 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1368 }
1369
c74d588e 1370 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1371 netdev->name, adapter);
9d5c8243 1372
6cb5e577 1373 if (err)
c74d588e 1374 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1375 err);
9d5c8243
AK
1376
1377request_done:
1378 return err;
1379}
1380
1381static void igb_free_irq(struct igb_adapter *adapter)
1382{
9d5c8243
AK
1383 if (adapter->msix_entries) {
1384 int vector = 0, i;
1385
047e0030 1386 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1387
0d1ae7f4 1388 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1389 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1390 adapter->q_vector[i]);
047e0030
AD
1391 } else {
1392 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1393 }
9d5c8243
AK
1394}
1395
1396/**
1397 * igb_irq_disable - Mask off interrupt generation on the NIC
1398 * @adapter: board private structure
1399 **/
1400static void igb_irq_disable(struct igb_adapter *adapter)
1401{
1402 struct e1000_hw *hw = &adapter->hw;
1403
25568a53
AD
1404 /*
1405 * we need to be careful when disabling interrupts. The VFs are also
1406 * mapped into these registers and so clearing the bits can cause
1407 * issues on the VF drivers so we only need to clear what we set
1408 */
9d5c8243 1409 if (adapter->msix_entries) {
2dfd1212
AD
1410 u32 regval = rd32(E1000_EIAM);
1411 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412 wr32(E1000_EIMC, adapter->eims_enable_mask);
1413 regval = rd32(E1000_EIAC);
1414 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1415 }
844290e5
PW
1416
1417 wr32(E1000_IAM, 0);
9d5c8243
AK
1418 wr32(E1000_IMC, ~0);
1419 wrfl();
81a61859
ET
1420 if (adapter->msix_entries) {
1421 int i;
1422 for (i = 0; i < adapter->num_q_vectors; i++)
1423 synchronize_irq(adapter->msix_entries[i].vector);
1424 } else {
1425 synchronize_irq(adapter->pdev->irq);
1426 }
9d5c8243
AK
1427}
1428
1429/**
1430 * igb_irq_enable - Enable default interrupt generation settings
1431 * @adapter: board private structure
1432 **/
1433static void igb_irq_enable(struct igb_adapter *adapter)
1434{
1435 struct e1000_hw *hw = &adapter->hw;
1436
1437 if (adapter->msix_entries) {
06218a8d 1438 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1439 u32 regval = rd32(E1000_EIAC);
1440 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441 regval = rd32(E1000_EIAM);
1442 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1443 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1444 if (adapter->vfs_allocated_count) {
4ae196df 1445 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1446 ims |= E1000_IMS_VMMB;
1447 }
1448 wr32(E1000_IMS, ims);
844290e5 1449 } else {
55cac248
AD
1450 wr32(E1000_IMS, IMS_ENABLE_MASK |
1451 E1000_IMS_DRSTA);
1452 wr32(E1000_IAM, IMS_ENABLE_MASK |
1453 E1000_IMS_DRSTA);
844290e5 1454 }
9d5c8243
AK
1455}
1456
1457static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458{
51466239 1459 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1460 u16 vid = adapter->hw.mng_cookie.vlan_id;
1461 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1462
1463 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464 /* add VID to filter table */
1465 igb_vfta_set(hw, vid, true);
1466 adapter->mng_vlan_id = vid;
1467 } else {
1468 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469 }
1470
1471 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472 (vid != old_vid) &&
b2cb09b1 1473 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1474 /* remove VID from filter table */
1475 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1476 }
1477}
1478
1479/**
1480 * igb_release_hw_control - release control of the h/w to f/w
1481 * @adapter: address of board private structure
1482 *
1483 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484 * For ASF and Pass Through versions of f/w this means that the
1485 * driver is no longer loaded.
1486 *
1487 **/
1488static void igb_release_hw_control(struct igb_adapter *adapter)
1489{
1490 struct e1000_hw *hw = &adapter->hw;
1491 u32 ctrl_ext;
1492
1493 /* Let firmware take over control of h/w */
1494 ctrl_ext = rd32(E1000_CTRL_EXT);
1495 wr32(E1000_CTRL_EXT,
1496 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497}
1498
9d5c8243
AK
1499/**
1500 * igb_get_hw_control - get control of the h/w from f/w
1501 * @adapter: address of board private structure
1502 *
1503 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504 * For ASF and Pass Through versions of f/w this means that
1505 * the driver is loaded.
1506 *
1507 **/
1508static void igb_get_hw_control(struct igb_adapter *adapter)
1509{
1510 struct e1000_hw *hw = &adapter->hw;
1511 u32 ctrl_ext;
1512
1513 /* Let firmware know the driver has taken over */
1514 ctrl_ext = rd32(E1000_CTRL_EXT);
1515 wr32(E1000_CTRL_EXT,
1516 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517}
1518
9d5c8243
AK
1519/**
1520 * igb_configure - configure the hardware for RX and TX
1521 * @adapter: private board structure
1522 **/
1523static void igb_configure(struct igb_adapter *adapter)
1524{
1525 struct net_device *netdev = adapter->netdev;
1526 int i;
1527
1528 igb_get_hw_control(adapter);
ff41f8dc 1529 igb_set_rx_mode(netdev);
9d5c8243
AK
1530
1531 igb_restore_vlan(adapter);
9d5c8243 1532
85b430b4 1533 igb_setup_tctl(adapter);
06cf2666 1534 igb_setup_mrqc(adapter);
9d5c8243 1535 igb_setup_rctl(adapter);
85b430b4
AD
1536
1537 igb_configure_tx(adapter);
9d5c8243 1538 igb_configure_rx(adapter);
662d7205
AD
1539
1540 igb_rx_fifo_flush_82575(&adapter->hw);
1541
c493ea45 1542 /* call igb_desc_unused which always leaves
9d5c8243
AK
1543 * at least 1 descriptor unused to make sure
1544 * next_to_use != next_to_clean */
1545 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1546 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1547 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1548 }
9d5c8243
AK
1549}
1550
88a268c1
NN
1551/**
1552 * igb_power_up_link - Power up the phy/serdes link
1553 * @adapter: address of board private structure
1554 **/
1555void igb_power_up_link(struct igb_adapter *adapter)
1556{
76886596
AA
1557 igb_reset_phy(&adapter->hw);
1558
88a268c1
NN
1559 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560 igb_power_up_phy_copper(&adapter->hw);
1561 else
1562 igb_power_up_serdes_link_82575(&adapter->hw);
1563}
1564
1565/**
1566 * igb_power_down_link - Power down the phy/serdes link
1567 * @adapter: address of board private structure
1568 */
1569static void igb_power_down_link(struct igb_adapter *adapter)
1570{
1571 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572 igb_power_down_phy_copper_82575(&adapter->hw);
1573 else
1574 igb_shutdown_serdes_link_82575(&adapter->hw);
1575}
9d5c8243
AK
1576
1577/**
1578 * igb_up - Open the interface and prepare it to handle traffic
1579 * @adapter: board private structure
1580 **/
9d5c8243
AK
1581int igb_up(struct igb_adapter *adapter)
1582{
1583 struct e1000_hw *hw = &adapter->hw;
1584 int i;
1585
1586 /* hardware has been reset, we need to reload some things */
1587 igb_configure(adapter);
1588
1589 clear_bit(__IGB_DOWN, &adapter->state);
1590
0d1ae7f4
AD
1591 for (i = 0; i < adapter->num_q_vectors; i++)
1592 napi_enable(&(adapter->q_vector[i]->napi));
1593
844290e5 1594 if (adapter->msix_entries)
9d5c8243 1595 igb_configure_msix(adapter);
feeb2721
AD
1596 else
1597 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1598
1599 /* Clear any pending interrupts. */
1600 rd32(E1000_ICR);
1601 igb_irq_enable(adapter);
1602
d4960307
AD
1603 /* notify VFs that reset has been completed */
1604 if (adapter->vfs_allocated_count) {
1605 u32 reg_data = rd32(E1000_CTRL_EXT);
1606 reg_data |= E1000_CTRL_EXT_PFRSTD;
1607 wr32(E1000_CTRL_EXT, reg_data);
1608 }
1609
4cb9be7a
JB
1610 netif_tx_start_all_queues(adapter->netdev);
1611
25568a53
AD
1612 /* start the watchdog. */
1613 hw->mac.get_link_status = 1;
1614 schedule_work(&adapter->watchdog_task);
1615
9d5c8243
AK
1616 return 0;
1617}
1618
1619void igb_down(struct igb_adapter *adapter)
1620{
9d5c8243 1621 struct net_device *netdev = adapter->netdev;
330a6d6a 1622 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1623 u32 tctl, rctl;
1624 int i;
1625
1626 /* signal that we're down so the interrupt handler does not
1627 * reschedule our watchdog timer */
1628 set_bit(__IGB_DOWN, &adapter->state);
1629
1630 /* disable receives in the hardware */
1631 rctl = rd32(E1000_RCTL);
1632 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633 /* flush and sleep below */
1634
fd2ea0a7 1635 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1636
1637 /* disable transmits in the hardware */
1638 tctl = rd32(E1000_TCTL);
1639 tctl &= ~E1000_TCTL_EN;
1640 wr32(E1000_TCTL, tctl);
1641 /* flush both disables and wait for them to finish */
1642 wrfl();
1643 msleep(10);
1644
0d1ae7f4
AD
1645 for (i = 0; i < adapter->num_q_vectors; i++)
1646 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1647
9d5c8243
AK
1648 igb_irq_disable(adapter);
1649
1650 del_timer_sync(&adapter->watchdog_timer);
1651 del_timer_sync(&adapter->phy_info_timer);
1652
9d5c8243 1653 netif_carrier_off(netdev);
04fe6358
AD
1654
1655 /* record the stats before reset*/
12dcd86b
ED
1656 spin_lock(&adapter->stats64_lock);
1657 igb_update_stats(adapter, &adapter->stats64);
1658 spin_unlock(&adapter->stats64_lock);
04fe6358 1659
9d5c8243
AK
1660 adapter->link_speed = 0;
1661 adapter->link_duplex = 0;
1662
3023682e
JK
1663 if (!pci_channel_offline(adapter->pdev))
1664 igb_reset(adapter);
9d5c8243
AK
1665 igb_clean_all_tx_rings(adapter);
1666 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1667#ifdef CONFIG_IGB_DCA
1668
1669 /* since we reset the hardware DCA settings were cleared */
1670 igb_setup_dca(adapter);
1671#endif
9d5c8243
AK
1672}
1673
1674void igb_reinit_locked(struct igb_adapter *adapter)
1675{
1676 WARN_ON(in_interrupt());
1677 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678 msleep(1);
1679 igb_down(adapter);
1680 igb_up(adapter);
1681 clear_bit(__IGB_RESETTING, &adapter->state);
1682}
1683
1684void igb_reset(struct igb_adapter *adapter)
1685{
090b1795 1686 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1687 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1688 struct e1000_mac_info *mac = &hw->mac;
1689 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1690 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1691
1692 /* Repartition Pba for greater than 9k mtu
1693 * To take effect CTRL.RST is required.
1694 */
fa4dfae0 1695 switch (mac->type) {
d2ba2ed8 1696 case e1000_i350:
55cac248
AD
1697 case e1000_82580:
1698 pba = rd32(E1000_RXPBS);
1699 pba = igb_rxpbs_adjust_82580(pba);
1700 break;
fa4dfae0 1701 case e1000_82576:
d249be54
AD
1702 pba = rd32(E1000_RXPBS);
1703 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1704 break;
1705 case e1000_82575:
f96a8a0b
CW
1706 case e1000_i210:
1707 case e1000_i211:
fa4dfae0
AD
1708 default:
1709 pba = E1000_PBA_34K;
1710 break;
2d064c06 1711 }
9d5c8243 1712
2d064c06
AD
1713 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714 (mac->type < e1000_82576)) {
9d5c8243
AK
1715 /* adjust PBA for jumbo frames */
1716 wr32(E1000_PBA, pba);
1717
1718 /* To maintain wire speed transmits, the Tx FIFO should be
1719 * large enough to accommodate two full transmit packets,
1720 * rounded up to the next 1KB and expressed in KB. Likewise,
1721 * the Rx FIFO should be large enough to accommodate at least
1722 * one full receive packet and is similarly rounded up and
1723 * expressed in KB. */
1724 pba = rd32(E1000_PBA);
1725 /* upper 16 bits has Tx packet buffer allocation size in KB */
1726 tx_space = pba >> 16;
1727 /* lower 16 bits has Rx packet buffer allocation size in KB */
1728 pba &= 0xffff;
1729 /* the tx fifo also stores 16 bytes of information about the tx
1730 * but don't include ethernet FCS because hardware appends it */
1731 min_tx_space = (adapter->max_frame_size +
85e8d004 1732 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1733 ETH_FCS_LEN) * 2;
1734 min_tx_space = ALIGN(min_tx_space, 1024);
1735 min_tx_space >>= 10;
1736 /* software strips receive CRC, so leave room for it */
1737 min_rx_space = adapter->max_frame_size;
1738 min_rx_space = ALIGN(min_rx_space, 1024);
1739 min_rx_space >>= 10;
1740
1741 /* If current Tx allocation is less than the min Tx FIFO size,
1742 * and the min Tx FIFO size is less than the current Rx FIFO
1743 * allocation, take space away from current Rx allocation */
1744 if (tx_space < min_tx_space &&
1745 ((min_tx_space - tx_space) < pba)) {
1746 pba = pba - (min_tx_space - tx_space);
1747
1748 /* if short on rx space, rx wins and must trump tx
1749 * adjustment */
1750 if (pba < min_rx_space)
1751 pba = min_rx_space;
1752 }
2d064c06 1753 wr32(E1000_PBA, pba);
9d5c8243 1754 }
9d5c8243
AK
1755
1756 /* flow control settings */
1757 /* The high water mark must be low enough to fit one full frame
1758 * (or the size used for early receive) above it in the Rx FIFO.
1759 * Set it to the lower of:
1760 * - 90% of the Rx FIFO size, or
1761 * - the full Rx FIFO size minus one full frame */
1762 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1763 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1764
d48507fe 1765 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1766 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1767 fc->pause_time = 0xFFFF;
1768 fc->send_xon = 1;
0cce119a 1769 fc->current_mode = fc->requested_mode;
9d5c8243 1770
4ae196df
AD
1771 /* disable receive for all VFs and wait one second */
1772 if (adapter->vfs_allocated_count) {
1773 int i;
1774 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1775 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1776
1777 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1778 igb_ping_all_vfs(adapter);
4ae196df
AD
1779
1780 /* disable transmits and receives */
1781 wr32(E1000_VFRE, 0);
1782 wr32(E1000_VFTE, 0);
1783 }
1784
9d5c8243 1785 /* Allow time for pending master requests to run */
330a6d6a 1786 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1787 wr32(E1000_WUC, 0);
1788
330a6d6a 1789 if (hw->mac.ops.init_hw(hw))
090b1795 1790 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1791
a27416bb
MV
1792 /*
1793 * Flow control settings reset on hardware reset, so guarantee flow
1794 * control is off when forcing speed.
1795 */
1796 if (!hw->mac.autoneg)
1797 igb_force_mac_fc(hw);
1798
b6e0c419 1799 igb_init_dmac(adapter, pba);
e428893b
CW
1800#ifdef CONFIG_IGB_HWMON
1801 /* Re-initialize the thermal sensor on i350 devices. */
1802 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804 /* If present, re-initialize the external thermal sensor
1805 * interface.
1806 */
1807 if (adapter->ets)
1808 mac->ops.init_thermal_sensor_thresh(hw);
1809 }
1810 }
1811#endif
88a268c1
NN
1812 if (!netif_running(adapter->netdev))
1813 igb_power_down_link(adapter);
1814
9d5c8243
AK
1815 igb_update_mng_vlan(adapter);
1816
1817 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819
1f6e8178
MV
1820 /* Re-enable PTP, where applicable. */
1821 igb_ptp_reset(adapter);
1f6e8178 1822
330a6d6a 1823 igb_get_phy_info(hw);
9d5c8243
AK
1824}
1825
c8f44aff
MM
1826static netdev_features_t igb_fix_features(struct net_device *netdev,
1827 netdev_features_t features)
b2cb09b1
JP
1828{
1829 /*
1830 * Since there is no support for separate rx/tx vlan accel
1831 * enable/disable make sure tx flag is always in same state as rx.
1832 */
1833 if (features & NETIF_F_HW_VLAN_RX)
1834 features |= NETIF_F_HW_VLAN_TX;
1835 else
1836 features &= ~NETIF_F_HW_VLAN_TX;
1837
1838 return features;
1839}
1840
c8f44aff
MM
1841static int igb_set_features(struct net_device *netdev,
1842 netdev_features_t features)
ac52caa3 1843{
c8f44aff 1844 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1845 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1846
b2cb09b1
JP
1847 if (changed & NETIF_F_HW_VLAN_RX)
1848 igb_vlan_mode(netdev, features);
1849
89eaefb6
BG
1850 if (!(changed & NETIF_F_RXALL))
1851 return 0;
1852
1853 netdev->features = features;
1854
1855 if (netif_running(netdev))
1856 igb_reinit_locked(adapter);
1857 else
1858 igb_reset(adapter);
1859
ac52caa3
MM
1860 return 0;
1861}
1862
2e5c6922 1863static const struct net_device_ops igb_netdev_ops = {
559e9c49 1864 .ndo_open = igb_open,
2e5c6922 1865 .ndo_stop = igb_close,
cd392f5c 1866 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1867 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1868 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1869 .ndo_set_mac_address = igb_set_mac,
1870 .ndo_change_mtu = igb_change_mtu,
1871 .ndo_do_ioctl = igb_ioctl,
1872 .ndo_tx_timeout = igb_tx_timeout,
1873 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1874 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1875 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1876 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1877 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1878 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1879 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1880#ifdef CONFIG_NET_POLL_CONTROLLER
1881 .ndo_poll_controller = igb_netpoll,
1882#endif
b2cb09b1
JP
1883 .ndo_fix_features = igb_fix_features,
1884 .ndo_set_features = igb_set_features,
2e5c6922
SH
1885};
1886
d67974f0
CW
1887/**
1888 * igb_set_fw_version - Configure version string for ethtool
1889 * @adapter: adapter struct
1890 *
1891 **/
1892void igb_set_fw_version(struct igb_adapter *adapter)
1893{
1894 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
1895 struct e1000_fw_version fw;
1896
1897 igb_get_fw_version(hw, &fw);
1898
1899 switch (hw->mac.type) {
1900 case e1000_i211:
d67974f0 1901 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
0b1a6f2e
CW
1902 "%2d.%2d-%d",
1903 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904 break;
1905
1906 default:
1907 /* if option is rom valid, display its version too */
1908 if (fw.or_valid) {
1909 snprintf(adapter->fw_version,
1910 sizeof(adapter->fw_version),
1911 "%d.%d, 0x%08x, %d.%d.%d",
1912 fw.eep_major, fw.eep_minor, fw.etrack_id,
1913 fw.or_major, fw.or_build, fw.or_patch);
1914 /* no option rom */
1915 } else {
1916 snprintf(adapter->fw_version,
1917 sizeof(adapter->fw_version),
1918 "%d.%d, 0x%08x",
1919 fw.eep_major, fw.eep_minor, fw.etrack_id);
1920 }
1921 break;
d67974f0 1922 }
d67974f0
CW
1923 return;
1924}
1925
441fc6fd
CW
1926/* igb_init_i2c - Init I2C interface
1927 * @adapter: pointer to adapter structure
1928 *
1929 */
1930static s32 igb_init_i2c(struct igb_adapter *adapter)
1931{
1932 s32 status = E1000_SUCCESS;
1933
1934 /* I2C interface supported on i350 devices */
1935 if (adapter->hw.mac.type != e1000_i350)
1936 return E1000_SUCCESS;
1937
1938 /* Initialize the i2c bus which is controlled by the registers.
1939 * This bus will use the i2c_algo_bit structue that implements
1940 * the protocol through toggling of the 4 bits in the register.
1941 */
1942 adapter->i2c_adap.owner = THIS_MODULE;
1943 adapter->i2c_algo = igb_i2c_algo;
1944 adapter->i2c_algo.data = adapter;
1945 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1946 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1947 strlcpy(adapter->i2c_adap.name, "igb BB",
1948 sizeof(adapter->i2c_adap.name));
1949 status = i2c_bit_add_bus(&adapter->i2c_adap);
1950 return status;
1951}
1952
9d5c8243
AK
1953/**
1954 * igb_probe - Device Initialization Routine
1955 * @pdev: PCI device information struct
1956 * @ent: entry in igb_pci_tbl
1957 *
1958 * Returns 0 on success, negative on failure
1959 *
1960 * igb_probe initializes an adapter identified by a pci_dev structure.
1961 * The OS initialization, configuring of the adapter private structure,
1962 * and a hardware reset occur.
1963 **/
1dd06ae8 1964static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
1965{
1966 struct net_device *netdev;
1967 struct igb_adapter *adapter;
1968 struct e1000_hw *hw;
4337e993 1969 u16 eeprom_data = 0;
9835fd73 1970 s32 ret_val;
4337e993 1971 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1972 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1973 unsigned long mmio_start, mmio_len;
2d6a5e95 1974 int err, pci_using_dac;
9835fd73 1975 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1976
bded64a7
AG
1977 /* Catch broken hardware that put the wrong VF device ID in
1978 * the PCIe SR-IOV capability.
1979 */
1980 if (pdev->is_virtfn) {
1981 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 1982 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
1983 return -EINVAL;
1984 }
1985
aed5dec3 1986 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1987 if (err)
1988 return err;
1989
1990 pci_using_dac = 0;
59d71989 1991 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1992 if (!err) {
59d71989 1993 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1994 if (!err)
1995 pci_using_dac = 1;
1996 } else {
59d71989 1997 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1998 if (err) {
59d71989 1999 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
2000 if (err) {
2001 dev_err(&pdev->dev, "No usable DMA "
2002 "configuration, aborting\n");
2003 goto err_dma;
2004 }
2005 }
2006 }
2007
aed5dec3
AD
2008 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2009 IORESOURCE_MEM),
2010 igb_driver_name);
9d5c8243
AK
2011 if (err)
2012 goto err_pci_reg;
2013
19d5afd4 2014 pci_enable_pcie_error_reporting(pdev);
40a914fa 2015
9d5c8243 2016 pci_set_master(pdev);
c682fc23 2017 pci_save_state(pdev);
9d5c8243
AK
2018
2019 err = -ENOMEM;
1bfaf07b 2020 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2021 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2022 if (!netdev)
2023 goto err_alloc_etherdev;
2024
2025 SET_NETDEV_DEV(netdev, &pdev->dev);
2026
2027 pci_set_drvdata(pdev, netdev);
2028 adapter = netdev_priv(netdev);
2029 adapter->netdev = netdev;
2030 adapter->pdev = pdev;
2031 hw = &adapter->hw;
2032 hw->back = adapter;
b3f4d599 2033 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243
AK
2034
2035 mmio_start = pci_resource_start(pdev, 0);
2036 mmio_len = pci_resource_len(pdev, 0);
2037
2038 err = -EIO;
28b0759c
AD
2039 hw->hw_addr = ioremap(mmio_start, mmio_len);
2040 if (!hw->hw_addr)
9d5c8243
AK
2041 goto err_ioremap;
2042
2e5c6922 2043 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2044 igb_set_ethtool_ops(netdev);
9d5c8243 2045 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2046
2047 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2048
2049 netdev->mem_start = mmio_start;
2050 netdev->mem_end = mmio_start + mmio_len;
2051
9d5c8243
AK
2052 /* PCI config space info */
2053 hw->vendor_id = pdev->vendor;
2054 hw->device_id = pdev->device;
2055 hw->revision_id = pdev->revision;
2056 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2057 hw->subsystem_device_id = pdev->subsystem_device;
2058
9d5c8243
AK
2059 /* Copy the default MAC, PHY and NVM function pointers */
2060 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2061 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2062 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2063 /* Initialize skew-specific constants */
2064 err = ei->get_invariants(hw);
2065 if (err)
450c87c8 2066 goto err_sw_init;
9d5c8243 2067
450c87c8 2068 /* setup the private structure */
9d5c8243
AK
2069 err = igb_sw_init(adapter);
2070 if (err)
2071 goto err_sw_init;
2072
2073 igb_get_bus_info_pcie(hw);
2074
2075 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2076
2077 /* Copper options */
2078 if (hw->phy.media_type == e1000_media_type_copper) {
2079 hw->phy.mdix = AUTO_ALL_MODES;
2080 hw->phy.disable_polarity_correction = false;
2081 hw->phy.ms_type = e1000_ms_hw_default;
2082 }
2083
2084 if (igb_check_reset_block(hw))
2085 dev_info(&pdev->dev,
2086 "PHY reset is blocked due to SOL/IDER session.\n");
2087
077887c3
AD
2088 /*
2089 * features is initialized to 0 in allocation, it might have bits
2090 * set by igb_sw_init so we should use an or instead of an
2091 * assignment.
2092 */
2093 netdev->features |= NETIF_F_SG |
2094 NETIF_F_IP_CSUM |
2095 NETIF_F_IPV6_CSUM |
2096 NETIF_F_TSO |
2097 NETIF_F_TSO6 |
2098 NETIF_F_RXHASH |
2099 NETIF_F_RXCSUM |
2100 NETIF_F_HW_VLAN_RX |
2101 NETIF_F_HW_VLAN_TX;
2102
2103 /* copy netdev features into list of user selectable features */
2104 netdev->hw_features |= netdev->features;
89eaefb6 2105 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2106
2107 /* set this bit last since it cannot be part of hw_features */
2108 netdev->features |= NETIF_F_HW_VLAN_FILTER;
2109
2110 netdev->vlan_features |= NETIF_F_TSO |
2111 NETIF_F_TSO6 |
2112 NETIF_F_IP_CSUM |
2113 NETIF_F_IPV6_CSUM |
2114 NETIF_F_SG;
48f29ffc 2115
6b8f0922
BG
2116 netdev->priv_flags |= IFF_SUPP_NOFCS;
2117
7b872a55 2118 if (pci_using_dac) {
9d5c8243 2119 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2120 netdev->vlan_features |= NETIF_F_HIGHDMA;
2121 }
9d5c8243 2122
ac52caa3
MM
2123 if (hw->mac.type >= e1000_82576) {
2124 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2125 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2126 }
b9473560 2127
01789349
JP
2128 netdev->priv_flags |= IFF_UNICAST_FLT;
2129
330a6d6a 2130 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2131
2132 /* before reading the NVM, reset the controller to put the device in a
2133 * known good starting state */
2134 hw->mac.ops.reset_hw(hw);
2135
f96a8a0b
CW
2136 /*
2137 * make sure the NVM is good , i211 parts have special NVM that
2138 * doesn't contain a checksum
2139 */
2140 if (hw->mac.type != e1000_i211) {
2141 if (hw->nvm.ops.validate(hw) < 0) {
2142 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2143 err = -EIO;
2144 goto err_eeprom;
2145 }
9d5c8243
AK
2146 }
2147
2148 /* copy the MAC address out of the NVM */
2149 if (hw->mac.ops.read_mac_addr(hw))
2150 dev_err(&pdev->dev, "NVM Read Error\n");
2151
2152 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2153
aaeb6cdf 2154 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2155 dev_err(&pdev->dev, "Invalid MAC Address\n");
2156 err = -EIO;
2157 goto err_eeprom;
2158 }
2159
d67974f0
CW
2160 /* get firmware version for ethtool -i */
2161 igb_set_fw_version(adapter);
2162
c061b18d 2163 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2164 (unsigned long) adapter);
c061b18d 2165 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2166 (unsigned long) adapter);
9d5c8243
AK
2167
2168 INIT_WORK(&adapter->reset_task, igb_reset_task);
2169 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2170
450c87c8 2171 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2172 adapter->fc_autoneg = true;
2173 hw->mac.autoneg = true;
2174 hw->phy.autoneg_advertised = 0x2f;
2175
0cce119a
AD
2176 hw->fc.requested_mode = e1000_fc_default;
2177 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2178
9d5c8243
AK
2179 igb_validate_mdi_setting(hw);
2180
63d4a8f9 2181 /* By default, support wake on port A */
a2cf8b6c 2182 if (hw->bus.func == 0)
63d4a8f9
MV
2183 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2184
2185 /* Check the NVM for wake support on non-port A ports */
2186 if (hw->mac.type >= e1000_82580)
55cac248
AD
2187 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2188 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2189 &eeprom_data);
a2cf8b6c
AD
2190 else if (hw->bus.func == 1)
2191 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2192
63d4a8f9
MV
2193 if (eeprom_data & IGB_EEPROM_APME)
2194 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2195
2196 /* now that we have the eeprom settings, apply the special cases where
2197 * the eeprom may be wrong or the board simply won't support wake on
2198 * lan on a particular port */
2199 switch (pdev->device) {
2200 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2201 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2202 break;
2203 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2204 case E1000_DEV_ID_82576_FIBER:
2205 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2206 /* Wake events only supported on port A for dual fiber
2207 * regardless of eeprom setting */
2208 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2209 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2210 break;
c8ea5ea9 2211 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2212 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2213 /* if quad port adapter, disable WoL on all but port A */
2214 if (global_quad_port_a != 0)
63d4a8f9 2215 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2216 else
2217 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2218 /* Reset for multiple quad port adapters */
2219 if (++global_quad_port_a == 4)
2220 global_quad_port_a = 0;
2221 break;
63d4a8f9
MV
2222 default:
2223 /* If the device can't wake, don't set software support */
2224 if (!device_can_wakeup(&adapter->pdev->dev))
2225 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2226 }
2227
2228 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2229 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2230 adapter->wol |= E1000_WUFC_MAG;
2231
2232 /* Some vendors want WoL disabled by default, but still supported */
2233 if ((hw->mac.type == e1000_i350) &&
2234 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2235 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2236 adapter->wol = 0;
2237 }
2238
2239 device_set_wakeup_enable(&adapter->pdev->dev,
2240 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2241
2242 /* reset the hardware with the new settings */
2243 igb_reset(adapter);
2244
441fc6fd
CW
2245 /* Init the I2C interface */
2246 err = igb_init_i2c(adapter);
2247 if (err) {
2248 dev_err(&pdev->dev, "failed to init i2c interface\n");
2249 goto err_eeprom;
2250 }
2251
9d5c8243
AK
2252 /* let the f/w know that the h/w is now under the control of the
2253 * driver. */
2254 igb_get_hw_control(adapter);
2255
9d5c8243
AK
2256 strcpy(netdev->name, "eth%d");
2257 err = register_netdev(netdev);
2258 if (err)
2259 goto err_register;
2260
b168dfc5
JB
2261 /* carrier off reporting is important to ethtool even BEFORE open */
2262 netif_carrier_off(netdev);
2263
421e02f0 2264#ifdef CONFIG_IGB_DCA
bbd98fe4 2265 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2266 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2267 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2268 igb_setup_dca(adapter);
2269 }
fe4506b6 2270
38c845c7 2271#endif
e428893b
CW
2272#ifdef CONFIG_IGB_HWMON
2273 /* Initialize the thermal sensor on i350 devices. */
2274 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2275 u16 ets_word;
3c89f6d0 2276
e428893b
CW
2277 /*
2278 * Read the NVM to determine if this i350 device supports an
2279 * external thermal sensor.
2280 */
2281 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2282 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2283 adapter->ets = true;
2284 else
2285 adapter->ets = false;
2286 if (igb_sysfs_init(adapter))
2287 dev_err(&pdev->dev,
2288 "failed to allocate sysfs resources\n");
2289 } else {
2290 adapter->ets = false;
2291 }
2292#endif
673b8b70 2293 /* do hw tstamp init after resetting */
7ebae817 2294 igb_ptp_init(adapter);
673b8b70 2295
9d5c8243
AK
2296 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2297 /* print bus type/speed/width info */
7c510e4b 2298 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2299 netdev->name,
559e9c49 2300 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2301 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2302 "unknown"),
59c3de89
AD
2303 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2304 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2305 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2306 "unknown"),
7c510e4b 2307 netdev->dev_addr);
9d5c8243 2308
9835fd73
CW
2309 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2310 if (ret_val)
2311 strcpy(part_str, "Unknown");
2312 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2313 dev_info(&pdev->dev,
2314 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2315 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2316 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2317 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2318 switch (hw->mac.type) {
2319 case e1000_i350:
f96a8a0b
CW
2320 case e1000_i210:
2321 case e1000_i211:
09b068d4
CW
2322 igb_set_eee_i350(hw);
2323 break;
2324 default:
2325 break;
2326 }
749ab2cd
YZ
2327
2328 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2329 return 0;
2330
2331err_register:
2332 igb_release_hw_control(adapter);
441fc6fd 2333 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2334err_eeprom:
2335 if (!igb_check_reset_block(hw))
f5f4cf08 2336 igb_reset_phy(hw);
9d5c8243
AK
2337
2338 if (hw->flash_address)
2339 iounmap(hw->flash_address);
9d5c8243 2340err_sw_init:
047e0030 2341 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2342 iounmap(hw->hw_addr);
2343err_ioremap:
2344 free_netdev(netdev);
2345err_alloc_etherdev:
559e9c49
AD
2346 pci_release_selected_regions(pdev,
2347 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2348err_pci_reg:
2349err_dma:
2350 pci_disable_device(pdev);
2351 return err;
2352}
2353
fa44f2f1
GR
2354#ifdef CONFIG_PCI_IOV
2355static int igb_disable_sriov(struct pci_dev *pdev)
2356{
2357 struct net_device *netdev = pci_get_drvdata(pdev);
2358 struct igb_adapter *adapter = netdev_priv(netdev);
2359 struct e1000_hw *hw = &adapter->hw;
2360
2361 /* reclaim resources allocated to VFs */
2362 if (adapter->vf_data) {
2363 /* disable iov and allow time for transactions to clear */
2364 if (igb_vfs_are_assigned(adapter)) {
2365 dev_warn(&pdev->dev,
2366 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2367 return -EPERM;
2368 } else {
2369 pci_disable_sriov(pdev);
2370 msleep(500);
2371 }
2372
2373 kfree(adapter->vf_data);
2374 adapter->vf_data = NULL;
2375 adapter->vfs_allocated_count = 0;
2376 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2377 wrfl();
2378 msleep(100);
2379 dev_info(&pdev->dev, "IOV Disabled\n");
2380
2381 /* Re-enable DMA Coalescing flag since IOV is turned off */
2382 adapter->flags |= IGB_FLAG_DMAC;
2383 }
2384
2385 return 0;
2386}
2387
2388static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2389{
2390 struct net_device *netdev = pci_get_drvdata(pdev);
2391 struct igb_adapter *adapter = netdev_priv(netdev);
2392 int old_vfs = pci_num_vf(pdev);
2393 int err = 0;
2394 int i;
2395
2396 if (!num_vfs)
2397 goto out;
2398 else if (old_vfs && old_vfs == num_vfs)
2399 goto out;
2400 else if (old_vfs && old_vfs != num_vfs)
2401 err = igb_disable_sriov(pdev);
2402
2403 if (err)
2404 goto out;
2405
2406 if (num_vfs > 7) {
2407 err = -EPERM;
2408 goto out;
2409 }
2410
2411 adapter->vfs_allocated_count = num_vfs;
2412
2413 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2414 sizeof(struct vf_data_storage), GFP_KERNEL);
2415
2416 /* if allocation failed then we do not support SR-IOV */
2417 if (!adapter->vf_data) {
2418 adapter->vfs_allocated_count = 0;
2419 dev_err(&pdev->dev,
2420 "Unable to allocate memory for VF Data Storage\n");
2421 err = -ENOMEM;
2422 goto out;
2423 }
2424
2425 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2426 if (err)
2427 goto err_out;
2428
2429 dev_info(&pdev->dev, "%d VFs allocated\n",
2430 adapter->vfs_allocated_count);
2431 for (i = 0; i < adapter->vfs_allocated_count; i++)
2432 igb_vf_configure(adapter, i);
2433
2434 /* DMA Coalescing is not supported in IOV mode. */
2435 adapter->flags &= ~IGB_FLAG_DMAC;
2436 goto out;
2437
2438err_out:
2439 kfree(adapter->vf_data);
2440 adapter->vf_data = NULL;
2441 adapter->vfs_allocated_count = 0;
2442out:
2443 return err;
2444}
2445
2446#endif
441fc6fd
CW
2447/*
2448 * igb_remove_i2c - Cleanup I2C interface
2449 * @adapter: pointer to adapter structure
2450 *
2451 */
2452static void igb_remove_i2c(struct igb_adapter *adapter)
2453{
2454
2455 /* free the adapter bus structure */
2456 i2c_del_adapter(&adapter->i2c_adap);
2457}
2458
9d5c8243
AK
2459/**
2460 * igb_remove - Device Removal Routine
2461 * @pdev: PCI device information struct
2462 *
2463 * igb_remove is called by the PCI subsystem to alert the driver
2464 * that it should release a PCI device. The could be caused by a
2465 * Hot-Plug event, or because the driver is going to be removed from
2466 * memory.
2467 **/
9f9a12f8 2468static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2469{
2470 struct net_device *netdev = pci_get_drvdata(pdev);
2471 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2472 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2473
749ab2cd 2474 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2475#ifdef CONFIG_IGB_HWMON
2476 igb_sysfs_exit(adapter);
2477#endif
441fc6fd 2478 igb_remove_i2c(adapter);
a79f4f88 2479 igb_ptp_stop(adapter);
760141a5
TH
2480 /*
2481 * The watchdog timer may be rescheduled, so explicitly
2482 * disable watchdog from being rescheduled.
2483 */
9d5c8243
AK
2484 set_bit(__IGB_DOWN, &adapter->state);
2485 del_timer_sync(&adapter->watchdog_timer);
2486 del_timer_sync(&adapter->phy_info_timer);
2487
760141a5
TH
2488 cancel_work_sync(&adapter->reset_task);
2489 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2490
421e02f0 2491#ifdef CONFIG_IGB_DCA
7dfc16fa 2492 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2493 dev_info(&pdev->dev, "DCA disabled\n");
2494 dca_remove_requester(&pdev->dev);
7dfc16fa 2495 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2496 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2497 }
2498#endif
2499
9d5c8243
AK
2500 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2501 * would have already happened in close and is redundant. */
2502 igb_release_hw_control(adapter);
2503
2504 unregister_netdev(netdev);
2505
047e0030 2506 igb_clear_interrupt_scheme(adapter);
9d5c8243 2507
37680117 2508#ifdef CONFIG_PCI_IOV
fa44f2f1 2509 igb_disable_sriov(pdev);
37680117 2510#endif
559e9c49 2511
28b0759c
AD
2512 iounmap(hw->hw_addr);
2513 if (hw->flash_address)
2514 iounmap(hw->flash_address);
559e9c49
AD
2515 pci_release_selected_regions(pdev,
2516 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2517
1128c756 2518 kfree(adapter->shadow_vfta);
9d5c8243
AK
2519 free_netdev(netdev);
2520
19d5afd4 2521 pci_disable_pcie_error_reporting(pdev);
40a914fa 2522
9d5c8243
AK
2523 pci_disable_device(pdev);
2524}
2525
a6b623e0
AD
2526/**
2527 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2528 * @adapter: board private structure to initialize
2529 *
2530 * This function initializes the vf specific data storage and then attempts to
2531 * allocate the VFs. The reason for ordering it this way is because it is much
2532 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2533 * the memory for the VFs.
2534 **/
9f9a12f8 2535static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2536{
2537#ifdef CONFIG_PCI_IOV
2538 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2539 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2540
f96a8a0b
CW
2541 /* Virtualization features not supported on i210 family. */
2542 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2543 return;
2544
fa44f2f1 2545 pci_sriov_set_totalvfs(pdev, 7);
d5e51a10 2546 igb_enable_sriov(pdev, max_vfs);
0224d663 2547
a6b623e0
AD
2548#endif /* CONFIG_PCI_IOV */
2549}
2550
fa44f2f1 2551static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2552{
2553 struct e1000_hw *hw = &adapter->hw;
374a542d 2554 u32 max_rss_queues;
9d5c8243 2555
374a542d 2556 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2557 switch (hw->mac.type) {
374a542d
MV
2558 case e1000_i211:
2559 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2560 break;
2561 case e1000_82575:
f96a8a0b 2562 case e1000_i210:
374a542d
MV
2563 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2564 break;
2565 case e1000_i350:
2566 /* I350 cannot do RSS and SR-IOV at the same time */
2567 if (!!adapter->vfs_allocated_count) {
2568 max_rss_queues = 1;
2569 break;
2570 }
2571 /* fall through */
2572 case e1000_82576:
2573 if (!!adapter->vfs_allocated_count) {
2574 max_rss_queues = 2;
2575 break;
2576 }
2577 /* fall through */
2578 case e1000_82580:
2579 default:
2580 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2581 break;
374a542d
MV
2582 }
2583
2584 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2585
2586 /* Determine if we need to pair queues. */
2587 switch (hw->mac.type) {
2588 case e1000_82575:
f96a8a0b 2589 case e1000_i211:
374a542d 2590 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2591 break;
374a542d
MV
2592 case e1000_82576:
2593 /*
2594 * If VFs are going to be allocated with RSS queues then we
2595 * should pair the queues in order to conserve interrupts due
2596 * to limited supply.
2597 */
2598 if ((adapter->rss_queues > 1) &&
2599 (adapter->vfs_allocated_count > 6))
2600 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2601 /* fall through */
2602 case e1000_82580:
2603 case e1000_i350:
2604 case e1000_i210:
f96a8a0b 2605 default:
374a542d
MV
2606 /*
2607 * If rss_queues > half of max_rss_queues, pair the queues in
2608 * order to conserve interrupts due to limited supply.
2609 */
2610 if (adapter->rss_queues > (max_rss_queues / 2))
2611 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2612 break;
2613 }
fa44f2f1
GR
2614}
2615
2616/**
2617 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2618 * @adapter: board private structure to initialize
2619 *
2620 * igb_sw_init initializes the Adapter private data structure.
2621 * Fields are initialized based on PCI device information and
2622 * OS network device settings (MTU size).
2623 **/
2624static int igb_sw_init(struct igb_adapter *adapter)
2625{
2626 struct e1000_hw *hw = &adapter->hw;
2627 struct net_device *netdev = adapter->netdev;
2628 struct pci_dev *pdev = adapter->pdev;
2629
2630 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2631
2632 /* set default ring sizes */
2633 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2634 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2635
2636 /* set default ITR values */
2637 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2638 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2639
2640 /* set default work limits */
2641 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2642
2643 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2644 VLAN_HLEN;
2645 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2646
2647 spin_lock_init(&adapter->stats64_lock);
2648#ifdef CONFIG_PCI_IOV
2649 switch (hw->mac.type) {
2650 case e1000_82576:
2651 case e1000_i350:
2652 if (max_vfs > 7) {
2653 dev_warn(&pdev->dev,
2654 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 2655 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
2656 } else
2657 adapter->vfs_allocated_count = max_vfs;
2658 if (adapter->vfs_allocated_count)
2659 dev_warn(&pdev->dev,
2660 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2661 break;
2662 default:
2663 break;
2664 }
2665#endif /* CONFIG_PCI_IOV */
2666
2667 igb_init_queue_configuration(adapter);
a99955fc 2668
1128c756 2669 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
2670 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2671 GFP_ATOMIC);
1128c756 2672
a6b623e0 2673 /* This call may decrease the number of queues */
53c7d064 2674 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2675 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2676 return -ENOMEM;
2677 }
2678
a6b623e0
AD
2679 igb_probe_vfs(adapter);
2680
9d5c8243
AK
2681 /* Explicitly disable IRQ since the NIC can be in any state. */
2682 igb_irq_disable(adapter);
2683
f96a8a0b 2684 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2685 adapter->flags &= ~IGB_FLAG_DMAC;
2686
9d5c8243
AK
2687 set_bit(__IGB_DOWN, &adapter->state);
2688 return 0;
2689}
2690
2691/**
2692 * igb_open - Called when a network interface is made active
2693 * @netdev: network interface device structure
2694 *
2695 * Returns 0 on success, negative value on failure
2696 *
2697 * The open entry point is called when a network interface is made
2698 * active by the system (IFF_UP). At this point all resources needed
2699 * for transmit and receive operations are allocated, the interrupt
2700 * handler is registered with the OS, the watchdog timer is started,
2701 * and the stack is notified that the interface is ready.
2702 **/
749ab2cd 2703static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2704{
2705 struct igb_adapter *adapter = netdev_priv(netdev);
2706 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2707 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2708 int err;
2709 int i;
2710
2711 /* disallow open during test */
749ab2cd
YZ
2712 if (test_bit(__IGB_TESTING, &adapter->state)) {
2713 WARN_ON(resuming);
9d5c8243 2714 return -EBUSY;
749ab2cd
YZ
2715 }
2716
2717 if (!resuming)
2718 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2719
b168dfc5
JB
2720 netif_carrier_off(netdev);
2721
9d5c8243
AK
2722 /* allocate transmit descriptors */
2723 err = igb_setup_all_tx_resources(adapter);
2724 if (err)
2725 goto err_setup_tx;
2726
2727 /* allocate receive descriptors */
2728 err = igb_setup_all_rx_resources(adapter);
2729 if (err)
2730 goto err_setup_rx;
2731
88a268c1 2732 igb_power_up_link(adapter);
9d5c8243 2733
9d5c8243
AK
2734 /* before we allocate an interrupt, we must be ready to handle it.
2735 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2736 * as soon as we call pci_request_irq, so we have to setup our
2737 * clean_rx handler before we do so. */
2738 igb_configure(adapter);
2739
2740 err = igb_request_irq(adapter);
2741 if (err)
2742 goto err_req_irq;
2743
0c2cc02e
AD
2744 /* Notify the stack of the actual queue counts. */
2745 err = netif_set_real_num_tx_queues(adapter->netdev,
2746 adapter->num_tx_queues);
2747 if (err)
2748 goto err_set_queues;
2749
2750 err = netif_set_real_num_rx_queues(adapter->netdev,
2751 adapter->num_rx_queues);
2752 if (err)
2753 goto err_set_queues;
2754
9d5c8243
AK
2755 /* From here on the code is the same as igb_up() */
2756 clear_bit(__IGB_DOWN, &adapter->state);
2757
0d1ae7f4
AD
2758 for (i = 0; i < adapter->num_q_vectors; i++)
2759 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2760
2761 /* Clear any pending interrupts. */
2762 rd32(E1000_ICR);
844290e5
PW
2763
2764 igb_irq_enable(adapter);
2765
d4960307
AD
2766 /* notify VFs that reset has been completed */
2767 if (adapter->vfs_allocated_count) {
2768 u32 reg_data = rd32(E1000_CTRL_EXT);
2769 reg_data |= E1000_CTRL_EXT_PFRSTD;
2770 wr32(E1000_CTRL_EXT, reg_data);
2771 }
2772
d55b53ff
JK
2773 netif_tx_start_all_queues(netdev);
2774
749ab2cd
YZ
2775 if (!resuming)
2776 pm_runtime_put(&pdev->dev);
2777
25568a53
AD
2778 /* start the watchdog. */
2779 hw->mac.get_link_status = 1;
2780 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2781
2782 return 0;
2783
0c2cc02e
AD
2784err_set_queues:
2785 igb_free_irq(adapter);
9d5c8243
AK
2786err_req_irq:
2787 igb_release_hw_control(adapter);
88a268c1 2788 igb_power_down_link(adapter);
9d5c8243
AK
2789 igb_free_all_rx_resources(adapter);
2790err_setup_rx:
2791 igb_free_all_tx_resources(adapter);
2792err_setup_tx:
2793 igb_reset(adapter);
749ab2cd
YZ
2794 if (!resuming)
2795 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2796
2797 return err;
2798}
2799
749ab2cd
YZ
2800static int igb_open(struct net_device *netdev)
2801{
2802 return __igb_open(netdev, false);
2803}
2804
9d5c8243
AK
2805/**
2806 * igb_close - Disables a network interface
2807 * @netdev: network interface device structure
2808 *
2809 * Returns 0, this is not allowed to fail
2810 *
2811 * The close entry point is called when an interface is de-activated
2812 * by the OS. The hardware is still under the driver's control, but
2813 * needs to be disabled. A global MAC reset is issued to stop the
2814 * hardware, and all transmit and receive resources are freed.
2815 **/
749ab2cd 2816static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2817{
2818 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2819 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2820
2821 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2822
749ab2cd
YZ
2823 if (!suspending)
2824 pm_runtime_get_sync(&pdev->dev);
2825
2826 igb_down(adapter);
9d5c8243
AK
2827 igb_free_irq(adapter);
2828
2829 igb_free_all_tx_resources(adapter);
2830 igb_free_all_rx_resources(adapter);
2831
749ab2cd
YZ
2832 if (!suspending)
2833 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2834 return 0;
2835}
2836
749ab2cd
YZ
2837static int igb_close(struct net_device *netdev)
2838{
2839 return __igb_close(netdev, false);
2840}
2841
9d5c8243
AK
2842/**
2843 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2844 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2845 *
2846 * Return 0 on success, negative on failure
2847 **/
80785298 2848int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2849{
59d71989 2850 struct device *dev = tx_ring->dev;
9d5c8243
AK
2851 int size;
2852
06034649 2853 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
2854
2855 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2856 if (!tx_ring->tx_buffer_info)
9d5c8243 2857 goto err;
9d5c8243
AK
2858
2859 /* round up to nearest 4K */
85e8d004 2860 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2861 tx_ring->size = ALIGN(tx_ring->size, 4096);
2862
5536d210
AD
2863 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2864 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
2865 if (!tx_ring->desc)
2866 goto err;
2867
9d5c8243
AK
2868 tx_ring->next_to_use = 0;
2869 tx_ring->next_to_clean = 0;
81c2fc22 2870
9d5c8243
AK
2871 return 0;
2872
2873err:
06034649 2874 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
2875 tx_ring->tx_buffer_info = NULL;
2876 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
2877 return -ENOMEM;
2878}
2879
2880/**
2881 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2882 * (Descriptors) for all queues
2883 * @adapter: board private structure
2884 *
2885 * Return 0 on success, negative on failure
2886 **/
2887static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2888{
439705e1 2889 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2890 int i, err = 0;
2891
2892 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2893 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2894 if (err) {
439705e1 2895 dev_err(&pdev->dev,
9d5c8243
AK
2896 "Allocation for Tx Queue %u failed\n", i);
2897 for (i--; i >= 0; i--)
3025a446 2898 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2899 break;
2900 }
2901 }
2902
2903 return err;
2904}
2905
2906/**
85b430b4
AD
2907 * igb_setup_tctl - configure the transmit control registers
2908 * @adapter: Board private structure
9d5c8243 2909 **/
d7ee5b3a 2910void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2911{
9d5c8243
AK
2912 struct e1000_hw *hw = &adapter->hw;
2913 u32 tctl;
9d5c8243 2914
85b430b4
AD
2915 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2916 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2917
2918 /* Program the Transmit Control Register */
9d5c8243
AK
2919 tctl = rd32(E1000_TCTL);
2920 tctl &= ~E1000_TCTL_CT;
2921 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2922 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2923
2924 igb_config_collision_dist(hw);
2925
9d5c8243
AK
2926 /* Enable transmits */
2927 tctl |= E1000_TCTL_EN;
2928
2929 wr32(E1000_TCTL, tctl);
2930}
2931
85b430b4
AD
2932/**
2933 * igb_configure_tx_ring - Configure transmit ring after Reset
2934 * @adapter: board private structure
2935 * @ring: tx ring to configure
2936 *
2937 * Configure a transmit ring after a reset.
2938 **/
d7ee5b3a
AD
2939void igb_configure_tx_ring(struct igb_adapter *adapter,
2940 struct igb_ring *ring)
85b430b4
AD
2941{
2942 struct e1000_hw *hw = &adapter->hw;
a74420e0 2943 u32 txdctl = 0;
85b430b4
AD
2944 u64 tdba = ring->dma;
2945 int reg_idx = ring->reg_idx;
2946
2947 /* disable the queue */
a74420e0 2948 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2949 wrfl();
2950 mdelay(10);
2951
2952 wr32(E1000_TDLEN(reg_idx),
2953 ring->count * sizeof(union e1000_adv_tx_desc));
2954 wr32(E1000_TDBAL(reg_idx),
2955 tdba & 0x00000000ffffffffULL);
2956 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2957
fce99e34 2958 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2959 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2960 writel(0, ring->tail);
85b430b4
AD
2961
2962 txdctl |= IGB_TX_PTHRESH;
2963 txdctl |= IGB_TX_HTHRESH << 8;
2964 txdctl |= IGB_TX_WTHRESH << 16;
2965
2966 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2967 wr32(E1000_TXDCTL(reg_idx), txdctl);
2968}
2969
2970/**
2971 * igb_configure_tx - Configure transmit Unit after Reset
2972 * @adapter: board private structure
2973 *
2974 * Configure the Tx unit of the MAC after a reset.
2975 **/
2976static void igb_configure_tx(struct igb_adapter *adapter)
2977{
2978 int i;
2979
2980 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2981 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2982}
2983
9d5c8243
AK
2984/**
2985 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2986 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2987 *
2988 * Returns 0 on success, negative on failure
2989 **/
80785298 2990int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2991{
59d71989 2992 struct device *dev = rx_ring->dev;
f33005a6 2993 int size;
9d5c8243 2994
06034649 2995 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
2996
2997 rx_ring->rx_buffer_info = vzalloc(size);
06034649 2998 if (!rx_ring->rx_buffer_info)
9d5c8243 2999 goto err;
9d5c8243 3000
9d5c8243 3001 /* Round up to nearest 4K */
f33005a6 3002 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3003 rx_ring->size = ALIGN(rx_ring->size, 4096);
3004
5536d210
AD
3005 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3006 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3007 if (!rx_ring->desc)
3008 goto err;
3009
cbc8e55f 3010 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3011 rx_ring->next_to_clean = 0;
3012 rx_ring->next_to_use = 0;
9d5c8243 3013
9d5c8243
AK
3014 return 0;
3015
3016err:
06034649
AD
3017 vfree(rx_ring->rx_buffer_info);
3018 rx_ring->rx_buffer_info = NULL;
f33005a6 3019 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3020 return -ENOMEM;
3021}
3022
3023/**
3024 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3025 * (Descriptors) for all queues
3026 * @adapter: board private structure
3027 *
3028 * Return 0 on success, negative on failure
3029 **/
3030static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3031{
439705e1 3032 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3033 int i, err = 0;
3034
3035 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3036 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3037 if (err) {
439705e1 3038 dev_err(&pdev->dev,
9d5c8243
AK
3039 "Allocation for Rx Queue %u failed\n", i);
3040 for (i--; i >= 0; i--)
3025a446 3041 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3042 break;
3043 }
3044 }
3045
3046 return err;
3047}
3048
06cf2666
AD
3049/**
3050 * igb_setup_mrqc - configure the multiple receive queue control registers
3051 * @adapter: Board private structure
3052 **/
3053static void igb_setup_mrqc(struct igb_adapter *adapter)
3054{
3055 struct e1000_hw *hw = &adapter->hw;
3056 u32 mrqc, rxcsum;
797fd4be 3057 u32 j, num_rx_queues, shift = 0;
a57fe23e
AD
3058 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3059 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3060 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3061 0xFA01ACBE };
06cf2666
AD
3062
3063 /* Fill out hash function seeds */
a57fe23e
AD
3064 for (j = 0; j < 10; j++)
3065 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 3066
a99955fc 3067 num_rx_queues = adapter->rss_queues;
06cf2666 3068
797fd4be
AD
3069 switch (hw->mac.type) {
3070 case e1000_82575:
3071 shift = 6;
3072 break;
3073 case e1000_82576:
3074 /* 82576 supports 2 RSS queues for SR-IOV */
3075 if (adapter->vfs_allocated_count) {
06cf2666
AD
3076 shift = 3;
3077 num_rx_queues = 2;
06cf2666 3078 }
797fd4be
AD
3079 break;
3080 default:
3081 break;
06cf2666
AD
3082 }
3083
797fd4be
AD
3084 /*
3085 * Populate the indirection table 4 entries at a time. To do this
3086 * we are generating the results for n and n+2 and then interleaving
3087 * those with the results with n+1 and n+3.
3088 */
3089 for (j = 0; j < 32; j++) {
3090 /* first pass generates n and n+2 */
3091 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3092 u32 reta = (base & 0x07800780) >> (7 - shift);
3093
3094 /* second pass generates n+1 and n+3 */
3095 base += 0x00010001 * num_rx_queues;
3096 reta |= (base & 0x07800780) << (1 + shift);
3097
3098 wr32(E1000_RETA(j), reta);
06cf2666
AD
3099 }
3100
3101 /*
3102 * Disable raw packet checksumming so that RSS hash is placed in
3103 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3104 * offloads as they are enabled by default
3105 */
3106 rxcsum = rd32(E1000_RXCSUM);
3107 rxcsum |= E1000_RXCSUM_PCSD;
3108
3109 if (adapter->hw.mac.type >= e1000_82576)
3110 /* Enable Receive Checksum Offload for SCTP */
3111 rxcsum |= E1000_RXCSUM_CRCOFL;
3112
3113 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3114 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3115
039454a8
AA
3116 /* Generate RSS hash based on packet types, TCP/UDP
3117 * port numbers and/or IPv4/v6 src and dst addresses
3118 */
f96a8a0b
CW
3119 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3120 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3121 E1000_MRQC_RSS_FIELD_IPV6 |
3122 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3123 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3124
039454a8
AA
3125 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3126 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3127 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3128 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3129
06cf2666
AD
3130 /* If VMDq is enabled then we set the appropriate mode for that, else
3131 * we default to RSS so that an RSS hash is calculated per packet even
3132 * if we are only using one queue */
3133 if (adapter->vfs_allocated_count) {
3134 if (hw->mac.type > e1000_82575) {
3135 /* Set the default pool for the PF's first queue */
3136 u32 vtctl = rd32(E1000_VT_CTL);
3137 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3138 E1000_VT_CTL_DISABLE_DEF_POOL);
3139 vtctl |= adapter->vfs_allocated_count <<
3140 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3141 wr32(E1000_VT_CTL, vtctl);
3142 }
a99955fc 3143 if (adapter->rss_queues > 1)
f96a8a0b 3144 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3145 else
f96a8a0b 3146 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3147 } else {
f96a8a0b
CW
3148 if (hw->mac.type != e1000_i211)
3149 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3150 }
3151 igb_vmm_control(adapter);
3152
06cf2666
AD
3153 wr32(E1000_MRQC, mrqc);
3154}
3155
9d5c8243
AK
3156/**
3157 * igb_setup_rctl - configure the receive control registers
3158 * @adapter: Board private structure
3159 **/
d7ee5b3a 3160void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3161{
3162 struct e1000_hw *hw = &adapter->hw;
3163 u32 rctl;
9d5c8243
AK
3164
3165 rctl = rd32(E1000_RCTL);
3166
3167 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3168 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3169
69d728ba 3170 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3171 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3172
87cb7e8c
AK
3173 /*
3174 * enable stripping of CRC. It's unlikely this will break BMC
3175 * redirection as it did with e1000. Newer features require
3176 * that the HW strips the CRC.
73cd78f1 3177 */
87cb7e8c 3178 rctl |= E1000_RCTL_SECRC;
9d5c8243 3179
559e9c49 3180 /* disable store bad packets and clear size bits. */
ec54d7d6 3181 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3182
6ec43fe6
AD
3183 /* enable LPE to prevent packets larger than max_frame_size */
3184 rctl |= E1000_RCTL_LPE;
9d5c8243 3185
952f72a8
AD
3186 /* disable queue 0 to prevent tail write w/o re-config */
3187 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3188
e1739522
AD
3189 /* Attention!!! For SR-IOV PF driver operations you must enable
3190 * queue drop for all VF and PF queues to prevent head of line blocking
3191 * if an un-trusted VF does not provide descriptors to hardware.
3192 */
3193 if (adapter->vfs_allocated_count) {
e1739522
AD
3194 /* set all queue drop enable bits */
3195 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3196 }
3197
89eaefb6
BG
3198 /* This is useful for sniffing bad packets. */
3199 if (adapter->netdev->features & NETIF_F_RXALL) {
3200 /* UPE and MPE will be handled by normal PROMISC logic
3201 * in e1000e_set_rx_mode */
3202 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3203 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3204 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3205
3206 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3207 E1000_RCTL_DPF | /* Allow filtered pause */
3208 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3209 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3210 * and that breaks VLANs.
3211 */
3212 }
3213
9d5c8243
AK
3214 wr32(E1000_RCTL, rctl);
3215}
3216
7d5753f0
AD
3217static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3218 int vfn)
3219{
3220 struct e1000_hw *hw = &adapter->hw;
3221 u32 vmolr;
3222
3223 /* if it isn't the PF check to see if VFs are enabled and
3224 * increase the size to support vlan tags */
3225 if (vfn < adapter->vfs_allocated_count &&
3226 adapter->vf_data[vfn].vlans_enabled)
3227 size += VLAN_TAG_SIZE;
3228
3229 vmolr = rd32(E1000_VMOLR(vfn));
3230 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3231 vmolr |= size | E1000_VMOLR_LPE;
3232 wr32(E1000_VMOLR(vfn), vmolr);
3233
3234 return 0;
3235}
3236
e1739522
AD
3237/**
3238 * igb_rlpml_set - set maximum receive packet size
3239 * @adapter: board private structure
3240 *
3241 * Configure maximum receivable packet size.
3242 **/
3243static void igb_rlpml_set(struct igb_adapter *adapter)
3244{
153285f9 3245 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3246 struct e1000_hw *hw = &adapter->hw;
3247 u16 pf_id = adapter->vfs_allocated_count;
3248
e1739522
AD
3249 if (pf_id) {
3250 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
3251 /*
3252 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3253 * to our max jumbo frame size, in case we need to enable
3254 * jumbo frames on one of the rings later.
3255 * This will not pass over-length frames into the default
3256 * queue because it's gated by the VMOLR.RLPML.
3257 */
7d5753f0 3258 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3259 }
3260
3261 wr32(E1000_RLPML, max_frame_size);
3262}
3263
8151d294
WM
3264static inline void igb_set_vmolr(struct igb_adapter *adapter,
3265 int vfn, bool aupe)
7d5753f0
AD
3266{
3267 struct e1000_hw *hw = &adapter->hw;
3268 u32 vmolr;
3269
3270 /*
3271 * This register exists only on 82576 and newer so if we are older then
3272 * we should exit and do nothing
3273 */
3274 if (hw->mac.type < e1000_82576)
3275 return;
3276
3277 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3278 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3279 if (aupe)
3280 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3281 else
3282 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3283
3284 /* clear all bits that might not be set */
3285 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3286
a99955fc 3287 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3288 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3289 /*
3290 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3291 * multicast packets
3292 */
3293 if (vfn <= adapter->vfs_allocated_count)
3294 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3295
3296 wr32(E1000_VMOLR(vfn), vmolr);
3297}
3298
85b430b4
AD
3299/**
3300 * igb_configure_rx_ring - Configure a receive ring after Reset
3301 * @adapter: board private structure
3302 * @ring: receive ring to be configured
3303 *
3304 * Configure the Rx unit of the MAC after a reset.
3305 **/
d7ee5b3a
AD
3306void igb_configure_rx_ring(struct igb_adapter *adapter,
3307 struct igb_ring *ring)
85b430b4
AD
3308{
3309 struct e1000_hw *hw = &adapter->hw;
3310 u64 rdba = ring->dma;
3311 int reg_idx = ring->reg_idx;
a74420e0 3312 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3313
3314 /* disable the queue */
a74420e0 3315 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3316
3317 /* Set DMA base address registers */
3318 wr32(E1000_RDBAL(reg_idx),
3319 rdba & 0x00000000ffffffffULL);
3320 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3321 wr32(E1000_RDLEN(reg_idx),
3322 ring->count * sizeof(union e1000_adv_rx_desc));
3323
3324 /* initialize head and tail */
fce99e34 3325 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3326 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3327 writel(0, ring->tail);
85b430b4 3328
952f72a8 3329 /* set descriptor configuration */
44390ca6 3330 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3331 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3332 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3333 if (hw->mac.type >= e1000_82580)
757b77e2 3334 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3335 /* Only set Drop Enable if we are supporting multiple queues */
3336 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3337 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3338
3339 wr32(E1000_SRRCTL(reg_idx), srrctl);
3340
7d5753f0 3341 /* set filtering for VMDQ pools */
8151d294 3342 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3343
85b430b4
AD
3344 rxdctl |= IGB_RX_PTHRESH;
3345 rxdctl |= IGB_RX_HTHRESH << 8;
3346 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3347
3348 /* enable receive descriptor fetching */
3349 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3350 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3351}
3352
74e238ea
AD
3353static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3354 struct igb_ring *rx_ring)
3355{
3356#define IGB_MAX_BUILD_SKB_SIZE \
3357 (SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
3358 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))
3359
3360 /* set build_skb flag */
3361 if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
3362 set_ring_build_skb_enabled(rx_ring);
3363 else
3364 clear_ring_build_skb_enabled(rx_ring);
3365}
3366
9d5c8243
AK
3367/**
3368 * igb_configure_rx - Configure receive Unit after Reset
3369 * @adapter: board private structure
3370 *
3371 * Configure the Rx unit of the MAC after a reset.
3372 **/
3373static void igb_configure_rx(struct igb_adapter *adapter)
3374{
9107584e 3375 int i;
9d5c8243 3376
68d480c4
AD
3377 /* set UTA to appropriate mode */
3378 igb_set_uta(adapter);
3379
26ad9178
AD
3380 /* set the correct pool for the PF default MAC address in entry 0 */
3381 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3382 adapter->vfs_allocated_count);
3383
06cf2666
AD
3384 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3385 * the Base and Length of the Rx Descriptor Ring */
74e238ea
AD
3386 for (i = 0; i < adapter->num_rx_queues; i++) {
3387 struct igb_ring *rx_ring = adapter->rx_ring[i];
3388 igb_set_rx_buffer_len(adapter, rx_ring);
3389 igb_configure_rx_ring(adapter, rx_ring);
3390 }
9d5c8243
AK
3391}
3392
3393/**
3394 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3395 * @tx_ring: Tx descriptor ring for a specific queue
3396 *
3397 * Free all transmit software resources
3398 **/
68fd9910 3399void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3400{
3b644cf6 3401 igb_clean_tx_ring(tx_ring);
9d5c8243 3402
06034649
AD
3403 vfree(tx_ring->tx_buffer_info);
3404 tx_ring->tx_buffer_info = NULL;
9d5c8243 3405
439705e1
AD
3406 /* if not set, then don't free */
3407 if (!tx_ring->desc)
3408 return;
3409
59d71989
AD
3410 dma_free_coherent(tx_ring->dev, tx_ring->size,
3411 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3412
3413 tx_ring->desc = NULL;
3414}
3415
3416/**
3417 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3418 * @adapter: board private structure
3419 *
3420 * Free all transmit software resources
3421 **/
3422static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3423{
3424 int i;
3425
3426 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3427 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3428}
3429
ebe42d16
AD
3430void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3431 struct igb_tx_buffer *tx_buffer)
3432{
3433 if (tx_buffer->skb) {
3434 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3435 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3436 dma_unmap_single(ring->dev,
c9f14bf3
AD
3437 dma_unmap_addr(tx_buffer, dma),
3438 dma_unmap_len(tx_buffer, len),
ebe42d16 3439 DMA_TO_DEVICE);
c9f14bf3 3440 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3441 dma_unmap_page(ring->dev,
c9f14bf3
AD
3442 dma_unmap_addr(tx_buffer, dma),
3443 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3444 DMA_TO_DEVICE);
3445 }
3446 tx_buffer->next_to_watch = NULL;
3447 tx_buffer->skb = NULL;
c9f14bf3 3448 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3449 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3450}
3451
3452/**
3453 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3454 * @tx_ring: ring to be cleaned
3455 **/
3b644cf6 3456static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3457{
06034649 3458 struct igb_tx_buffer *buffer_info;
9d5c8243 3459 unsigned long size;
6ad4edfc 3460 u16 i;
9d5c8243 3461
06034649 3462 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3463 return;
3464 /* Free all the Tx ring sk_buffs */
3465
3466 for (i = 0; i < tx_ring->count; i++) {
06034649 3467 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3468 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3469 }
3470
dad8a3b3
JF
3471 netdev_tx_reset_queue(txring_txq(tx_ring));
3472
06034649
AD
3473 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3474 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3475
3476 /* Zero out the descriptor ring */
9d5c8243
AK
3477 memset(tx_ring->desc, 0, tx_ring->size);
3478
3479 tx_ring->next_to_use = 0;
3480 tx_ring->next_to_clean = 0;
9d5c8243
AK
3481}
3482
3483/**
3484 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3485 * @adapter: board private structure
3486 **/
3487static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3488{
3489 int i;
3490
3491 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3492 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3493}
3494
3495/**
3496 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3497 * @rx_ring: ring to clean the resources from
3498 *
3499 * Free all receive software resources
3500 **/
68fd9910 3501void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3502{
3b644cf6 3503 igb_clean_rx_ring(rx_ring);
9d5c8243 3504
06034649
AD
3505 vfree(rx_ring->rx_buffer_info);
3506 rx_ring->rx_buffer_info = NULL;
9d5c8243 3507
439705e1
AD
3508 /* if not set, then don't free */
3509 if (!rx_ring->desc)
3510 return;
3511
59d71989
AD
3512 dma_free_coherent(rx_ring->dev, rx_ring->size,
3513 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3514
3515 rx_ring->desc = NULL;
3516}
3517
3518/**
3519 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3520 * @adapter: board private structure
3521 *
3522 * Free all receive software resources
3523 **/
3524static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3525{
3526 int i;
3527
3528 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3529 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3530}
3531
3532/**
3533 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3534 * @rx_ring: ring to free buffers from
3535 **/
3b644cf6 3536static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3537{
9d5c8243 3538 unsigned long size;
c023cd88 3539 u16 i;
9d5c8243 3540
1a1c225b
AD
3541 if (rx_ring->skb)
3542 dev_kfree_skb(rx_ring->skb);
3543 rx_ring->skb = NULL;
3544
06034649 3545 if (!rx_ring->rx_buffer_info)
9d5c8243 3546 return;
439705e1 3547
9d5c8243
AK
3548 /* Free all the Rx ring sk_buffs */
3549 for (i = 0; i < rx_ring->count; i++) {
06034649 3550 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3551
cbc8e55f
AD
3552 if (!buffer_info->page)
3553 continue;
3554
3555 dma_unmap_page(rx_ring->dev,
3556 buffer_info->dma,
3557 PAGE_SIZE,
3558 DMA_FROM_DEVICE);
3559 __free_page(buffer_info->page);
3560
1a1c225b 3561 buffer_info->page = NULL;
9d5c8243
AK
3562 }
3563
06034649
AD
3564 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3565 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3566
3567 /* Zero out the descriptor ring */
3568 memset(rx_ring->desc, 0, rx_ring->size);
3569
cbc8e55f 3570 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3571 rx_ring->next_to_clean = 0;
3572 rx_ring->next_to_use = 0;
9d5c8243
AK
3573}
3574
3575/**
3576 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3577 * @adapter: board private structure
3578 **/
3579static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3580{
3581 int i;
3582
3583 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3584 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3585}
3586
3587/**
3588 * igb_set_mac - Change the Ethernet Address of the NIC
3589 * @netdev: network interface device structure
3590 * @p: pointer to an address structure
3591 *
3592 * Returns 0 on success, negative on failure
3593 **/
3594static int igb_set_mac(struct net_device *netdev, void *p)
3595{
3596 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3597 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3598 struct sockaddr *addr = p;
3599
3600 if (!is_valid_ether_addr(addr->sa_data))
3601 return -EADDRNOTAVAIL;
3602
3603 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3604 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3605
26ad9178
AD
3606 /* set the correct pool for the new PF MAC address in entry 0 */
3607 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3608 adapter->vfs_allocated_count);
e1739522 3609
9d5c8243
AK
3610 return 0;
3611}
3612
3613/**
68d480c4 3614 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3615 * @netdev: network interface device structure
3616 *
68d480c4
AD
3617 * Writes multicast address list to the MTA hash table.
3618 * Returns: -ENOMEM on failure
3619 * 0 on no addresses written
3620 * X on writing X addresses to MTA
9d5c8243 3621 **/
68d480c4 3622static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3623{
3624 struct igb_adapter *adapter = netdev_priv(netdev);
3625 struct e1000_hw *hw = &adapter->hw;
22bedad3 3626 struct netdev_hw_addr *ha;
68d480c4 3627 u8 *mta_list;
9d5c8243
AK
3628 int i;
3629
4cd24eaf 3630 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3631 /* nothing to program, so clear mc list */
3632 igb_update_mc_addr_list(hw, NULL, 0);
3633 igb_restore_vf_multicasts(adapter);
3634 return 0;
3635 }
9d5c8243 3636
4cd24eaf 3637 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3638 if (!mta_list)
3639 return -ENOMEM;
ff41f8dc 3640
68d480c4 3641 /* The shared function expects a packed array of only addresses. */
48e2f183 3642 i = 0;
22bedad3
JP
3643 netdev_for_each_mc_addr(ha, netdev)
3644 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3645
68d480c4
AD
3646 igb_update_mc_addr_list(hw, mta_list, i);
3647 kfree(mta_list);
3648
4cd24eaf 3649 return netdev_mc_count(netdev);
68d480c4
AD
3650}
3651
3652/**
3653 * igb_write_uc_addr_list - write unicast addresses to RAR table
3654 * @netdev: network interface device structure
3655 *
3656 * Writes unicast address list to the RAR table.
3657 * Returns: -ENOMEM on failure/insufficient address space
3658 * 0 on no addresses written
3659 * X on writing X addresses to the RAR table
3660 **/
3661static int igb_write_uc_addr_list(struct net_device *netdev)
3662{
3663 struct igb_adapter *adapter = netdev_priv(netdev);
3664 struct e1000_hw *hw = &adapter->hw;
3665 unsigned int vfn = adapter->vfs_allocated_count;
3666 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3667 int count = 0;
3668
3669 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3670 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3671 return -ENOMEM;
9d5c8243 3672
32e7bfc4 3673 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3674 struct netdev_hw_addr *ha;
32e7bfc4
JP
3675
3676 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3677 if (!rar_entries)
3678 break;
26ad9178
AD
3679 igb_rar_set_qsel(adapter, ha->addr,
3680 rar_entries--,
68d480c4
AD
3681 vfn);
3682 count++;
ff41f8dc
AD
3683 }
3684 }
3685 /* write the addresses in reverse order to avoid write combining */
3686 for (; rar_entries > 0 ; rar_entries--) {
3687 wr32(E1000_RAH(rar_entries), 0);
3688 wr32(E1000_RAL(rar_entries), 0);
3689 }
3690 wrfl();
3691
68d480c4
AD
3692 return count;
3693}
3694
3695/**
3696 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3697 * @netdev: network interface device structure
3698 *
3699 * The set_rx_mode entry point is called whenever the unicast or multicast
3700 * address lists or the network interface flags are updated. This routine is
3701 * responsible for configuring the hardware for proper unicast, multicast,
3702 * promiscuous mode, and all-multi behavior.
3703 **/
3704static void igb_set_rx_mode(struct net_device *netdev)
3705{
3706 struct igb_adapter *adapter = netdev_priv(netdev);
3707 struct e1000_hw *hw = &adapter->hw;
3708 unsigned int vfn = adapter->vfs_allocated_count;
3709 u32 rctl, vmolr = 0;
3710 int count;
3711
3712 /* Check for Promiscuous and All Multicast modes */
3713 rctl = rd32(E1000_RCTL);
3714
3715 /* clear the effected bits */
3716 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3717
3718 if (netdev->flags & IFF_PROMISC) {
3719 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3720 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3721 } else {
3722 if (netdev->flags & IFF_ALLMULTI) {
3723 rctl |= E1000_RCTL_MPE;
3724 vmolr |= E1000_VMOLR_MPME;
3725 } else {
3726 /*
3727 * Write addresses to the MTA, if the attempt fails
25985edc 3728 * then we should just turn on promiscuous mode so
68d480c4
AD
3729 * that we can at least receive multicast traffic
3730 */
3731 count = igb_write_mc_addr_list(netdev);
3732 if (count < 0) {
3733 rctl |= E1000_RCTL_MPE;
3734 vmolr |= E1000_VMOLR_MPME;
3735 } else if (count) {
3736 vmolr |= E1000_VMOLR_ROMPE;
3737 }
3738 }
3739 /*
3740 * Write addresses to available RAR registers, if there is not
3741 * sufficient space to store all the addresses then enable
25985edc 3742 * unicast promiscuous mode
68d480c4
AD
3743 */
3744 count = igb_write_uc_addr_list(netdev);
3745 if (count < 0) {
3746 rctl |= E1000_RCTL_UPE;
3747 vmolr |= E1000_VMOLR_ROPE;
3748 }
3749 rctl |= E1000_RCTL_VFE;
28fc06f5 3750 }
68d480c4 3751 wr32(E1000_RCTL, rctl);
28fc06f5 3752
68d480c4
AD
3753 /*
3754 * In order to support SR-IOV and eventually VMDq it is necessary to set
3755 * the VMOLR to enable the appropriate modes. Without this workaround
3756 * we will have issues with VLAN tag stripping not being done for frames
3757 * that are only arriving because we are the default pool
3758 */
f96a8a0b 3759 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3760 return;
9d5c8243 3761
68d480c4
AD
3762 vmolr |= rd32(E1000_VMOLR(vfn)) &
3763 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3764 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3765 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3766}
3767
13800469
GR
3768static void igb_check_wvbr(struct igb_adapter *adapter)
3769{
3770 struct e1000_hw *hw = &adapter->hw;
3771 u32 wvbr = 0;
3772
3773 switch (hw->mac.type) {
3774 case e1000_82576:
3775 case e1000_i350:
3776 if (!(wvbr = rd32(E1000_WVBR)))
3777 return;
3778 break;
3779 default:
3780 break;
3781 }
3782
3783 adapter->wvbr |= wvbr;
3784}
3785
3786#define IGB_STAGGERED_QUEUE_OFFSET 8
3787
3788static void igb_spoof_check(struct igb_adapter *adapter)
3789{
3790 int j;
3791
3792 if (!adapter->wvbr)
3793 return;
3794
3795 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3796 if (adapter->wvbr & (1 << j) ||
3797 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3798 dev_warn(&adapter->pdev->dev,
3799 "Spoof event(s) detected on VF %d\n", j);
3800 adapter->wvbr &=
3801 ~((1 << j) |
3802 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3803 }
3804 }
3805}
3806
9d5c8243
AK
3807/* Need to wait a few seconds after link up to get diagnostic information from
3808 * the phy */
3809static void igb_update_phy_info(unsigned long data)
3810{
3811 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3812 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3813}
3814
4d6b725e
AD
3815/**
3816 * igb_has_link - check shared code for link and determine up/down
3817 * @adapter: pointer to driver private info
3818 **/
3145535a 3819bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3820{
3821 struct e1000_hw *hw = &adapter->hw;
3822 bool link_active = false;
3823 s32 ret_val = 0;
3824
3825 /* get_link_status is set on LSC (link status) interrupt or
3826 * rx sequence error interrupt. get_link_status will stay
3827 * false until the e1000_check_for_link establishes link
3828 * for copper adapters ONLY
3829 */
3830 switch (hw->phy.media_type) {
3831 case e1000_media_type_copper:
3832 if (hw->mac.get_link_status) {
3833 ret_val = hw->mac.ops.check_for_link(hw);
3834 link_active = !hw->mac.get_link_status;
3835 } else {
3836 link_active = true;
3837 }
3838 break;
4d6b725e
AD
3839 case e1000_media_type_internal_serdes:
3840 ret_val = hw->mac.ops.check_for_link(hw);
3841 link_active = hw->mac.serdes_has_link;
3842 break;
3843 default:
3844 case e1000_media_type_unknown:
3845 break;
3846 }
3847
3848 return link_active;
3849}
3850
563988dc
SA
3851static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3852{
3853 bool ret = false;
3854 u32 ctrl_ext, thstat;
3855
f96a8a0b 3856 /* check for thermal sensor event on i350 copper only */
563988dc
SA
3857 if (hw->mac.type == e1000_i350) {
3858 thstat = rd32(E1000_THSTAT);
3859 ctrl_ext = rd32(E1000_CTRL_EXT);
3860
3861 if ((hw->phy.media_type == e1000_media_type_copper) &&
3862 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3863 ret = !!(thstat & event);
3864 }
3865 }
3866
3867 return ret;
3868}
3869
9d5c8243
AK
3870/**
3871 * igb_watchdog - Timer Call-back
3872 * @data: pointer to adapter cast into an unsigned long
3873 **/
3874static void igb_watchdog(unsigned long data)
3875{
3876 struct igb_adapter *adapter = (struct igb_adapter *)data;
3877 /* Do the rest outside of interrupt context */
3878 schedule_work(&adapter->watchdog_task);
3879}
3880
3881static void igb_watchdog_task(struct work_struct *work)
3882{
3883 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3884 struct igb_adapter,
3885 watchdog_task);
9d5c8243 3886 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3887 struct net_device *netdev = adapter->netdev;
563988dc 3888 u32 link;
7a6ea550 3889 int i;
9d5c8243 3890
4d6b725e 3891 link = igb_has_link(adapter);
9d5c8243 3892 if (link) {
749ab2cd
YZ
3893 /* Cancel scheduled suspend requests. */
3894 pm_runtime_resume(netdev->dev.parent);
3895
9d5c8243
AK
3896 if (!netif_carrier_ok(netdev)) {
3897 u32 ctrl;
330a6d6a
AD
3898 hw->mac.ops.get_speed_and_duplex(hw,
3899 &adapter->link_speed,
3900 &adapter->link_duplex);
9d5c8243
AK
3901
3902 ctrl = rd32(E1000_CTRL);
527d47c1 3903 /* Links status message must follow this format */
876d2d6f
JK
3904 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3905 "Duplex, Flow Control: %s\n",
559e9c49
AD
3906 netdev->name,
3907 adapter->link_speed,
3908 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3909 "Full" : "Half",
3910 (ctrl & E1000_CTRL_TFCE) &&
3911 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3912 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3913 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3914
563988dc 3915 /* check for thermal sensor event */
876d2d6f
JK
3916 if (igb_thermal_sensor_event(hw,
3917 E1000_THSTAT_LINK_THROTTLE)) {
3918 netdev_info(netdev, "The network adapter link "
3919 "speed was downshifted because it "
3920 "overheated\n");
7ef5ed1c 3921 }
563988dc 3922
d07f3e37 3923 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3924 adapter->tx_timeout_factor = 1;
3925 switch (adapter->link_speed) {
3926 case SPEED_10:
9d5c8243
AK
3927 adapter->tx_timeout_factor = 14;
3928 break;
3929 case SPEED_100:
9d5c8243
AK
3930 /* maybe add some timeout factor ? */
3931 break;
3932 }
3933
3934 netif_carrier_on(netdev);
9d5c8243 3935
4ae196df 3936 igb_ping_all_vfs(adapter);
17dc566c 3937 igb_check_vf_rate_limit(adapter);
4ae196df 3938
4b1a9877 3939 /* link state has changed, schedule phy info update */
9d5c8243
AK
3940 if (!test_bit(__IGB_DOWN, &adapter->state))
3941 mod_timer(&adapter->phy_info_timer,
3942 round_jiffies(jiffies + 2 * HZ));
3943 }
3944 } else {
3945 if (netif_carrier_ok(netdev)) {
3946 adapter->link_speed = 0;
3947 adapter->link_duplex = 0;
563988dc
SA
3948
3949 /* check for thermal sensor event */
876d2d6f
JK
3950 if (igb_thermal_sensor_event(hw,
3951 E1000_THSTAT_PWR_DOWN)) {
3952 netdev_err(netdev, "The network adapter was "
3953 "stopped because it overheated\n");
7ef5ed1c 3954 }
563988dc 3955
527d47c1
AD
3956 /* Links status message must follow this format */
3957 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3958 netdev->name);
9d5c8243 3959 netif_carrier_off(netdev);
4b1a9877 3960
4ae196df
AD
3961 igb_ping_all_vfs(adapter);
3962
4b1a9877 3963 /* link state has changed, schedule phy info update */
9d5c8243
AK
3964 if (!test_bit(__IGB_DOWN, &adapter->state))
3965 mod_timer(&adapter->phy_info_timer,
3966 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3967
3968 pm_schedule_suspend(netdev->dev.parent,
3969 MSEC_PER_SEC * 5);
9d5c8243
AK
3970 }
3971 }
3972
12dcd86b
ED
3973 spin_lock(&adapter->stats64_lock);
3974 igb_update_stats(adapter, &adapter->stats64);
3975 spin_unlock(&adapter->stats64_lock);
9d5c8243 3976
dbabb065 3977 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3978 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3979 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3980 /* We've lost link, so the controller stops DMA,
3981 * but we've got queued Tx work that's never going
3982 * to get done, so reset controller to flush Tx.
3983 * (Do the reset outside of interrupt context). */
dbabb065
AD
3984 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3985 adapter->tx_timeout_count++;
3986 schedule_work(&adapter->reset_task);
3987 /* return immediately since reset is imminent */
3988 return;
3989 }
9d5c8243 3990 }
9d5c8243 3991
dbabb065 3992 /* Force detection of hung controller every watchdog period */
6d095fa8 3993 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 3994 }
f7ba205e 3995
9d5c8243 3996 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3997 if (adapter->msix_entries) {
047e0030 3998 u32 eics = 0;
0d1ae7f4
AD
3999 for (i = 0; i < adapter->num_q_vectors; i++)
4000 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4001 wr32(E1000_EICS, eics);
4002 } else {
4003 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4004 }
9d5c8243 4005
13800469 4006 igb_spoof_check(adapter);
fc580751 4007 igb_ptp_rx_hang(adapter);
13800469 4008
9d5c8243
AK
4009 /* Reset the timer */
4010 if (!test_bit(__IGB_DOWN, &adapter->state))
4011 mod_timer(&adapter->watchdog_timer,
4012 round_jiffies(jiffies + 2 * HZ));
4013}
4014
4015enum latency_range {
4016 lowest_latency = 0,
4017 low_latency = 1,
4018 bulk_latency = 2,
4019 latency_invalid = 255
4020};
4021
6eb5a7f1
AD
4022/**
4023 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4024 *
4025 * Stores a new ITR value based on strictly on packet size. This
4026 * algorithm is less sophisticated than that used in igb_update_itr,
4027 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 4028 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
4029 * were determined based on theoretical maximum wire speed and testing
4030 * data, in order to minimize response time while increasing bulk
4031 * throughput.
4032 * This functionality is controlled by the InterruptThrottleRate module
4033 * parameter (see igb_param.c)
4034 * NOTE: This function is called only when operating in a multiqueue
4035 * receive environment.
047e0030 4036 * @q_vector: pointer to q_vector
6eb5a7f1 4037 **/
047e0030 4038static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4039{
047e0030 4040 int new_val = q_vector->itr_val;
6eb5a7f1 4041 int avg_wire_size = 0;
047e0030 4042 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4043 unsigned int packets;
9d5c8243 4044
6eb5a7f1
AD
4045 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4046 * ints/sec - ITR timer value of 120 ticks.
4047 */
4048 if (adapter->link_speed != SPEED_1000) {
0ba82994 4049 new_val = IGB_4K_ITR;
6eb5a7f1 4050 goto set_itr_val;
9d5c8243 4051 }
047e0030 4052
0ba82994
AD
4053 packets = q_vector->rx.total_packets;
4054 if (packets)
4055 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4056
0ba82994
AD
4057 packets = q_vector->tx.total_packets;
4058 if (packets)
4059 avg_wire_size = max_t(u32, avg_wire_size,
4060 q_vector->tx.total_bytes / packets);
047e0030
AD
4061
4062 /* if avg_wire_size isn't set no work was done */
4063 if (!avg_wire_size)
4064 goto clear_counts;
9d5c8243 4065
6eb5a7f1
AD
4066 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4067 avg_wire_size += 24;
4068
4069 /* Don't starve jumbo frames */
4070 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4071
6eb5a7f1
AD
4072 /* Give a little boost to mid-size frames */
4073 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4074 new_val = avg_wire_size / 3;
4075 else
4076 new_val = avg_wire_size / 2;
9d5c8243 4077
0ba82994
AD
4078 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4079 if (new_val < IGB_20K_ITR &&
4080 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4081 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4082 new_val = IGB_20K_ITR;
abe1c363 4083
6eb5a7f1 4084set_itr_val:
047e0030
AD
4085 if (new_val != q_vector->itr_val) {
4086 q_vector->itr_val = new_val;
4087 q_vector->set_itr = 1;
9d5c8243 4088 }
6eb5a7f1 4089clear_counts:
0ba82994
AD
4090 q_vector->rx.total_bytes = 0;
4091 q_vector->rx.total_packets = 0;
4092 q_vector->tx.total_bytes = 0;
4093 q_vector->tx.total_packets = 0;
9d5c8243
AK
4094}
4095
4096/**
4097 * igb_update_itr - update the dynamic ITR value based on statistics
4098 * Stores a new ITR value based on packets and byte
4099 * counts during the last interrupt. The advantage of per interrupt
4100 * computation is faster updates and more accurate ITR for the current
4101 * traffic pattern. Constants in this function were computed
4102 * based on theoretical maximum wire speed and thresholds were set based
4103 * on testing data as well as attempting to minimize response time
4104 * while increasing bulk throughput.
4105 * this functionality is controlled by the InterruptThrottleRate module
4106 * parameter (see igb_param.c)
4107 * NOTE: These calculations are only valid when operating in a single-
4108 * queue environment.
0ba82994
AD
4109 * @q_vector: pointer to q_vector
4110 * @ring_container: ring info to update the itr for
9d5c8243 4111 **/
0ba82994
AD
4112static void igb_update_itr(struct igb_q_vector *q_vector,
4113 struct igb_ring_container *ring_container)
9d5c8243 4114{
0ba82994
AD
4115 unsigned int packets = ring_container->total_packets;
4116 unsigned int bytes = ring_container->total_bytes;
4117 u8 itrval = ring_container->itr;
9d5c8243 4118
0ba82994 4119 /* no packets, exit with status unchanged */
9d5c8243 4120 if (packets == 0)
0ba82994 4121 return;
9d5c8243 4122
0ba82994 4123 switch (itrval) {
9d5c8243
AK
4124 case lowest_latency:
4125 /* handle TSO and jumbo frames */
4126 if (bytes/packets > 8000)
0ba82994 4127 itrval = bulk_latency;
9d5c8243 4128 else if ((packets < 5) && (bytes > 512))
0ba82994 4129 itrval = low_latency;
9d5c8243
AK
4130 break;
4131 case low_latency: /* 50 usec aka 20000 ints/s */
4132 if (bytes > 10000) {
4133 /* this if handles the TSO accounting */
4134 if (bytes/packets > 8000) {
0ba82994 4135 itrval = bulk_latency;
9d5c8243 4136 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 4137 itrval = bulk_latency;
9d5c8243 4138 } else if ((packets > 35)) {
0ba82994 4139 itrval = lowest_latency;
9d5c8243
AK
4140 }
4141 } else if (bytes/packets > 2000) {
0ba82994 4142 itrval = bulk_latency;
9d5c8243 4143 } else if (packets <= 2 && bytes < 512) {
0ba82994 4144 itrval = lowest_latency;
9d5c8243
AK
4145 }
4146 break;
4147 case bulk_latency: /* 250 usec aka 4000 ints/s */
4148 if (bytes > 25000) {
4149 if (packets > 35)
0ba82994 4150 itrval = low_latency;
1e5c3d21 4151 } else if (bytes < 1500) {
0ba82994 4152 itrval = low_latency;
9d5c8243
AK
4153 }
4154 break;
4155 }
4156
0ba82994
AD
4157 /* clear work counters since we have the values we need */
4158 ring_container->total_bytes = 0;
4159 ring_container->total_packets = 0;
4160
4161 /* write updated itr to ring container */
4162 ring_container->itr = itrval;
9d5c8243
AK
4163}
4164
0ba82994 4165static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4166{
0ba82994 4167 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4168 u32 new_itr = q_vector->itr_val;
0ba82994 4169 u8 current_itr = 0;
9d5c8243
AK
4170
4171 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4172 if (adapter->link_speed != SPEED_1000) {
4173 current_itr = 0;
0ba82994 4174 new_itr = IGB_4K_ITR;
9d5c8243
AK
4175 goto set_itr_now;
4176 }
4177
0ba82994
AD
4178 igb_update_itr(q_vector, &q_vector->tx);
4179 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4180
0ba82994 4181 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4182
6eb5a7f1 4183 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4184 if (current_itr == lowest_latency &&
4185 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4186 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4187 current_itr = low_latency;
4188
9d5c8243
AK
4189 switch (current_itr) {
4190 /* counts and packets in update_itr are dependent on these numbers */
4191 case lowest_latency:
0ba82994 4192 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4193 break;
4194 case low_latency:
0ba82994 4195 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4196 break;
4197 case bulk_latency:
0ba82994 4198 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4199 break;
4200 default:
4201 break;
4202 }
4203
4204set_itr_now:
047e0030 4205 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4206 /* this attempts to bias the interrupt rate towards Bulk
4207 * by adding intermediate steps when interrupt rate is
4208 * increasing */
047e0030
AD
4209 new_itr = new_itr > q_vector->itr_val ?
4210 max((new_itr * q_vector->itr_val) /
4211 (new_itr + (q_vector->itr_val >> 2)),
0ba82994 4212 new_itr) :
9d5c8243
AK
4213 new_itr;
4214 /* Don't write the value here; it resets the adapter's
4215 * internal timer, and causes us to delay far longer than
4216 * we should between interrupts. Instead, we write the ITR
4217 * value at the beginning of the next interrupt so the timing
4218 * ends up being correct.
4219 */
047e0030
AD
4220 q_vector->itr_val = new_itr;
4221 q_vector->set_itr = 1;
9d5c8243 4222 }
9d5c8243
AK
4223}
4224
c50b52a0
SH
4225static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4226 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4227{
4228 struct e1000_adv_tx_context_desc *context_desc;
4229 u16 i = tx_ring->next_to_use;
4230
4231 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4232
4233 i++;
4234 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4235
4236 /* set bits to identify this as an advanced context descriptor */
4237 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4238
4239 /* For 82575, context index must be unique per ring. */
866cff06 4240 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4241 mss_l4len_idx |= tx_ring->reg_idx << 4;
4242
4243 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4244 context_desc->seqnum_seed = 0;
4245 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4246 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4247}
4248
7af40ad9
AD
4249static int igb_tso(struct igb_ring *tx_ring,
4250 struct igb_tx_buffer *first,
4251 u8 *hdr_len)
9d5c8243 4252{
7af40ad9 4253 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4254 u32 vlan_macip_lens, type_tucmd;
4255 u32 mss_l4len_idx, l4len;
4256
ed6aa105
AD
4257 if (skb->ip_summed != CHECKSUM_PARTIAL)
4258 return 0;
4259
7d13a7d0
AD
4260 if (!skb_is_gso(skb))
4261 return 0;
9d5c8243
AK
4262
4263 if (skb_header_cloned(skb)) {
7af40ad9 4264 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4265 if (err)
4266 return err;
4267 }
4268
7d13a7d0
AD
4269 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4270 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4271
7af40ad9 4272 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4273 struct iphdr *iph = ip_hdr(skb);
4274 iph->tot_len = 0;
4275 iph->check = 0;
4276 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4277 iph->daddr, 0,
4278 IPPROTO_TCP,
4279 0);
7d13a7d0 4280 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4281 first->tx_flags |= IGB_TX_FLAGS_TSO |
4282 IGB_TX_FLAGS_CSUM |
4283 IGB_TX_FLAGS_IPV4;
8e1e8a47 4284 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4285 ipv6_hdr(skb)->payload_len = 0;
4286 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4287 &ipv6_hdr(skb)->daddr,
4288 0, IPPROTO_TCP, 0);
7af40ad9
AD
4289 first->tx_flags |= IGB_TX_FLAGS_TSO |
4290 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4291 }
4292
7af40ad9 4293 /* compute header lengths */
7d13a7d0
AD
4294 l4len = tcp_hdrlen(skb);
4295 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4296
7af40ad9
AD
4297 /* update gso size and bytecount with header size */
4298 first->gso_segs = skb_shinfo(skb)->gso_segs;
4299 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4300
9d5c8243 4301 /* MSS L4LEN IDX */
7d13a7d0
AD
4302 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4303 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4304
7d13a7d0
AD
4305 /* VLAN MACLEN IPLEN */
4306 vlan_macip_lens = skb_network_header_len(skb);
4307 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4308 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4309
7d13a7d0 4310 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4311
7d13a7d0 4312 return 1;
9d5c8243
AK
4313}
4314
7af40ad9 4315static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4316{
7af40ad9 4317 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4318 u32 vlan_macip_lens = 0;
4319 u32 mss_l4len_idx = 0;
4320 u32 type_tucmd = 0;
9d5c8243 4321
7d13a7d0 4322 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4323 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4324 return;
7d13a7d0
AD
4325 } else {
4326 u8 l4_hdr = 0;
7af40ad9 4327 switch (first->protocol) {
7d13a7d0
AD
4328 case __constant_htons(ETH_P_IP):
4329 vlan_macip_lens |= skb_network_header_len(skb);
4330 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4331 l4_hdr = ip_hdr(skb)->protocol;
4332 break;
4333 case __constant_htons(ETH_P_IPV6):
4334 vlan_macip_lens |= skb_network_header_len(skb);
4335 l4_hdr = ipv6_hdr(skb)->nexthdr;
4336 break;
4337 default:
4338 if (unlikely(net_ratelimit())) {
4339 dev_warn(tx_ring->dev,
4340 "partial checksum but proto=%x!\n",
7af40ad9 4341 first->protocol);
fa4a7ef3 4342 }
7d13a7d0
AD
4343 break;
4344 }
fa4a7ef3 4345
7d13a7d0
AD
4346 switch (l4_hdr) {
4347 case IPPROTO_TCP:
4348 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4349 mss_l4len_idx = tcp_hdrlen(skb) <<
4350 E1000_ADVTXD_L4LEN_SHIFT;
4351 break;
4352 case IPPROTO_SCTP:
4353 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4354 mss_l4len_idx = sizeof(struct sctphdr) <<
4355 E1000_ADVTXD_L4LEN_SHIFT;
4356 break;
4357 case IPPROTO_UDP:
4358 mss_l4len_idx = sizeof(struct udphdr) <<
4359 E1000_ADVTXD_L4LEN_SHIFT;
4360 break;
4361 default:
4362 if (unlikely(net_ratelimit())) {
4363 dev_warn(tx_ring->dev,
4364 "partial checksum but l4 proto=%x!\n",
4365 l4_hdr);
44b0cda3 4366 }
7d13a7d0 4367 break;
9d5c8243 4368 }
7af40ad9
AD
4369
4370 /* update TX checksum flag */
4371 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4372 }
9d5c8243 4373
7d13a7d0 4374 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4375 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4376
7d13a7d0 4377 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4378}
4379
1d9daf45
AD
4380#define IGB_SET_FLAG(_input, _flag, _result) \
4381 ((_flag <= _result) ? \
4382 ((u32)(_input & _flag) * (_result / _flag)) : \
4383 ((u32)(_input & _flag) / (_flag / _result)))
4384
4385static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4386{
4387 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4388 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4389 E1000_ADVTXD_DCMD_DEXT |
4390 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4391
4392 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4393 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4394 (E1000_ADVTXD_DCMD_VLE));
4395
4396 /* set segmentation bits for TSO */
4397 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4398 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4399
4400 /* set timestamp bit if present */
1d9daf45
AD
4401 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4402 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4403
1d9daf45
AD
4404 /* insert frame checksum */
4405 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4406
4407 return cmd_type;
4408}
4409
7af40ad9
AD
4410static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4411 union e1000_adv_tx_desc *tx_desc,
4412 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4413{
4414 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4415
1d9daf45
AD
4416 /* 82575 requires a unique index per ring */
4417 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4418 olinfo_status |= tx_ring->reg_idx << 4;
4419
4420 /* insert L4 checksum */
1d9daf45
AD
4421 olinfo_status |= IGB_SET_FLAG(tx_flags,
4422 IGB_TX_FLAGS_CSUM,
4423 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4424
1d9daf45
AD
4425 /* insert IPv4 checksum */
4426 olinfo_status |= IGB_SET_FLAG(tx_flags,
4427 IGB_TX_FLAGS_IPV4,
4428 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4429
7af40ad9 4430 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4431}
4432
7af40ad9
AD
4433static void igb_tx_map(struct igb_ring *tx_ring,
4434 struct igb_tx_buffer *first,
ebe42d16 4435 const u8 hdr_len)
9d5c8243 4436{
7af40ad9 4437 struct sk_buff *skb = first->skb;
c9f14bf3 4438 struct igb_tx_buffer *tx_buffer;
ebe42d16 4439 union e1000_adv_tx_desc *tx_desc;
80d0759e 4440 struct skb_frag_struct *frag;
ebe42d16 4441 dma_addr_t dma;
80d0759e 4442 unsigned int data_len, size;
7af40ad9 4443 u32 tx_flags = first->tx_flags;
1d9daf45 4444 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4445 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4446
4447 tx_desc = IGB_TX_DESC(tx_ring, i);
4448
80d0759e
AD
4449 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4450
4451 size = skb_headlen(skb);
4452 data_len = skb->data_len;
ebe42d16
AD
4453
4454 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4455
80d0759e
AD
4456 tx_buffer = first;
4457
4458 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4459 if (dma_mapping_error(tx_ring->dev, dma))
4460 goto dma_error;
4461
4462 /* record length, and DMA address */
4463 dma_unmap_len_set(tx_buffer, len, size);
4464 dma_unmap_addr_set(tx_buffer, dma, dma);
4465
4466 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4467
ebe42d16
AD
4468 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4469 tx_desc->read.cmd_type_len =
1d9daf45 4470 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4471
4472 i++;
4473 tx_desc++;
4474 if (i == tx_ring->count) {
4475 tx_desc = IGB_TX_DESC(tx_ring, 0);
4476 i = 0;
4477 }
80d0759e 4478 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4479
4480 dma += IGB_MAX_DATA_PER_TXD;
4481 size -= IGB_MAX_DATA_PER_TXD;
4482
ebe42d16
AD
4483 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4484 }
4485
4486 if (likely(!data_len))
4487 break;
2bbfebe2 4488
1d9daf45 4489 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4490
65689fef 4491 i++;
ebe42d16
AD
4492 tx_desc++;
4493 if (i == tx_ring->count) {
4494 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4495 i = 0;
ebe42d16 4496 }
80d0759e 4497 tx_desc->read.olinfo_status = 0;
65689fef 4498
9e903e08 4499 size = skb_frag_size(frag);
ebe42d16
AD
4500 data_len -= size;
4501
4502 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4503 size, DMA_TO_DEVICE);
6366ad33 4504
c9f14bf3 4505 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4506 }
4507
ebe42d16 4508 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4509 cmd_type |= size | IGB_TXD_DCMD;
4510 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4511
80d0759e
AD
4512 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4513
8542db05
AD
4514 /* set the timestamp */
4515 first->time_stamp = jiffies;
4516
ebe42d16
AD
4517 /*
4518 * Force memory writes to complete before letting h/w know there
4519 * are new descriptors to fetch. (Only applicable for weak-ordered
4520 * memory model archs, such as IA-64).
4521 *
4522 * We also need this memory barrier to make certain all of the
4523 * status bits have been updated before next_to_watch is written.
4524 */
4525 wmb();
4526
8542db05 4527 /* set next_to_watch value indicating a packet is present */
ebe42d16 4528 first->next_to_watch = tx_desc;
9d5c8243 4529
ebe42d16
AD
4530 i++;
4531 if (i == tx_ring->count)
4532 i = 0;
6366ad33 4533
ebe42d16 4534 tx_ring->next_to_use = i;
6366ad33 4535
ebe42d16 4536 writel(i, tx_ring->tail);
6366ad33 4537
ebe42d16
AD
4538 /* we need this if more than one processor can write to our tail
4539 * at a time, it syncronizes IO on IA64/Altix systems */
4540 mmiowb();
4541
4542 return;
4543
4544dma_error:
4545 dev_err(tx_ring->dev, "TX DMA map failed\n");
4546
4547 /* clear dma mappings for failed tx_buffer_info map */
4548 for (;;) {
c9f14bf3
AD
4549 tx_buffer = &tx_ring->tx_buffer_info[i];
4550 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4551 if (tx_buffer == first)
ebe42d16 4552 break;
a77ff709
NN
4553 if (i == 0)
4554 i = tx_ring->count;
6366ad33 4555 i--;
6366ad33
AD
4556 }
4557
9d5c8243 4558 tx_ring->next_to_use = i;
9d5c8243
AK
4559}
4560
6ad4edfc 4561static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4562{
e694e964
AD
4563 struct net_device *netdev = tx_ring->netdev;
4564
661086df 4565 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4566
9d5c8243
AK
4567 /* Herbert's original patch had:
4568 * smp_mb__after_netif_stop_queue();
4569 * but since that doesn't exist yet, just open code it. */
4570 smp_mb();
4571
4572 /* We need to check again in a case another CPU has just
4573 * made room available. */
c493ea45 4574 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4575 return -EBUSY;
4576
4577 /* A reprieve! */
661086df 4578 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4579
4580 u64_stats_update_begin(&tx_ring->tx_syncp2);
4581 tx_ring->tx_stats.restart_queue2++;
4582 u64_stats_update_end(&tx_ring->tx_syncp2);
4583
9d5c8243
AK
4584 return 0;
4585}
4586
6ad4edfc 4587static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4588{
c493ea45 4589 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4590 return 0;
e694e964 4591 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4592}
4593
cd392f5c
AD
4594netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4595 struct igb_ring *tx_ring)
9d5c8243 4596{
1f6e8178 4597 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
8542db05 4598 struct igb_tx_buffer *first;
ebe42d16 4599 int tso;
91d4ee33 4600 u32 tx_flags = 0;
21ba6fe1 4601 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 4602 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4603 u8 hdr_len = 0;
9d5c8243 4604
21ba6fe1
AD
4605 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4606 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 4607 * + 2 desc gap to keep tail from touching head,
9d5c8243 4608 * + 1 desc for context descriptor,
21ba6fe1
AD
4609 * otherwise try next time
4610 */
4611 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4612 unsigned short f;
4613 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4614 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4615 } else {
4616 count += skb_shinfo(skb)->nr_frags;
4617 }
4618
4619 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 4620 /* this is a hard error */
9d5c8243
AK
4621 return NETDEV_TX_BUSY;
4622 }
33af6bcc 4623
7af40ad9
AD
4624 /* record the location of the first descriptor for this packet */
4625 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4626 first->skb = skb;
4627 first->bytecount = skb->len;
4628 first->gso_segs = 1;
4629
b66e2397
MV
4630 skb_tx_timestamp(skb);
4631
1f6e8178
MV
4632 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4633 !(adapter->ptp_tx_skb))) {
2244d07b 4634 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4635 tx_flags |= IGB_TX_FLAGS_TSTAMP;
1f6e8178
MV
4636
4637 adapter->ptp_tx_skb = skb_get(skb);
428f1f71 4638 adapter->ptp_tx_start = jiffies;
1f6e8178
MV
4639 if (adapter->hw.mac.type == e1000_82576)
4640 schedule_work(&adapter->ptp_tx_work);
33af6bcc 4641 }
9d5c8243 4642
eab6d18d 4643 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4644 tx_flags |= IGB_TX_FLAGS_VLAN;
4645 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4646 }
4647
7af40ad9
AD
4648 /* record initial flags and protocol */
4649 first->tx_flags = tx_flags;
4650 first->protocol = protocol;
cdfd01fc 4651
7af40ad9
AD
4652 tso = igb_tso(tx_ring, first, &hdr_len);
4653 if (tso < 0)
7d13a7d0 4654 goto out_drop;
7af40ad9
AD
4655 else if (!tso)
4656 igb_tx_csum(tx_ring, first);
9d5c8243 4657
7af40ad9 4658 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4659
4660 /* Make sure there is space in the ring for the next send. */
21ba6fe1 4661 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
85ad76b2 4662
9d5c8243 4663 return NETDEV_TX_OK;
7d13a7d0
AD
4664
4665out_drop:
7af40ad9
AD
4666 igb_unmap_and_free_tx_resource(tx_ring, first);
4667
7d13a7d0 4668 return NETDEV_TX_OK;
9d5c8243
AK
4669}
4670
1cc3bd87
AD
4671static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4672 struct sk_buff *skb)
4673{
4674 unsigned int r_idx = skb->queue_mapping;
4675
4676 if (r_idx >= adapter->num_tx_queues)
4677 r_idx = r_idx % adapter->num_tx_queues;
4678
4679 return adapter->tx_ring[r_idx];
4680}
4681
cd392f5c
AD
4682static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4683 struct net_device *netdev)
9d5c8243
AK
4684{
4685 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4686
4687 if (test_bit(__IGB_DOWN, &adapter->state)) {
4688 dev_kfree_skb_any(skb);
4689 return NETDEV_TX_OK;
4690 }
4691
4692 if (skb->len <= 0) {
4693 dev_kfree_skb_any(skb);
4694 return NETDEV_TX_OK;
4695 }
4696
1cc3bd87
AD
4697 /*
4698 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4699 * in order to meet this minimum size requirement.
4700 */
ea5ceeab
TD
4701 if (unlikely(skb->len < 17)) {
4702 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
4703 return NETDEV_TX_OK;
4704 skb->len = 17;
ea5ceeab 4705 skb_set_tail_pointer(skb, 17);
1cc3bd87 4706 }
9d5c8243 4707
1cc3bd87 4708 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4709}
4710
4711/**
4712 * igb_tx_timeout - Respond to a Tx Hang
4713 * @netdev: network interface device structure
4714 **/
4715static void igb_tx_timeout(struct net_device *netdev)
4716{
4717 struct igb_adapter *adapter = netdev_priv(netdev);
4718 struct e1000_hw *hw = &adapter->hw;
4719
4720 /* Do the reset outside of interrupt context */
4721 adapter->tx_timeout_count++;
f7ba205e 4722
06218a8d 4723 if (hw->mac.type >= e1000_82580)
55cac248
AD
4724 hw->dev_spec._82575.global_device_reset = true;
4725
9d5c8243 4726 schedule_work(&adapter->reset_task);
265de409
AD
4727 wr32(E1000_EICS,
4728 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4729}
4730
4731static void igb_reset_task(struct work_struct *work)
4732{
4733 struct igb_adapter *adapter;
4734 adapter = container_of(work, struct igb_adapter, reset_task);
4735
c97ec42a
TI
4736 igb_dump(adapter);
4737 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4738 igb_reinit_locked(adapter);
4739}
4740
4741/**
12dcd86b 4742 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4743 * @netdev: network interface device structure
12dcd86b 4744 * @stats: rtnl_link_stats64 pointer
9d5c8243 4745 *
9d5c8243 4746 **/
12dcd86b
ED
4747static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4748 struct rtnl_link_stats64 *stats)
9d5c8243 4749{
12dcd86b
ED
4750 struct igb_adapter *adapter = netdev_priv(netdev);
4751
4752 spin_lock(&adapter->stats64_lock);
4753 igb_update_stats(adapter, &adapter->stats64);
4754 memcpy(stats, &adapter->stats64, sizeof(*stats));
4755 spin_unlock(&adapter->stats64_lock);
4756
4757 return stats;
9d5c8243
AK
4758}
4759
4760/**
4761 * igb_change_mtu - Change the Maximum Transfer Unit
4762 * @netdev: network interface device structure
4763 * @new_mtu: new value for maximum frame size
4764 *
4765 * Returns 0 on success, negative on failure
4766 **/
4767static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4768{
4769 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4770 struct pci_dev *pdev = adapter->pdev;
153285f9 4771 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4772
c809d227 4773 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4774 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4775 return -EINVAL;
4776 }
4777
153285f9 4778#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4779 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4780 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4781 return -EINVAL;
4782 }
4783
4784 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4785 msleep(1);
73cd78f1 4786
9d5c8243
AK
4787 /* igb_down has a dependency on max_frame_size */
4788 adapter->max_frame_size = max_frame;
559e9c49 4789
4c844851
AD
4790 if (netif_running(netdev))
4791 igb_down(adapter);
9d5c8243 4792
090b1795 4793 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4794 netdev->mtu, new_mtu);
4795 netdev->mtu = new_mtu;
4796
4797 if (netif_running(netdev))
4798 igb_up(adapter);
4799 else
4800 igb_reset(adapter);
4801
4802 clear_bit(__IGB_RESETTING, &adapter->state);
4803
4804 return 0;
4805}
4806
4807/**
4808 * igb_update_stats - Update the board statistics counters
4809 * @adapter: board private structure
4810 **/
4811
12dcd86b
ED
4812void igb_update_stats(struct igb_adapter *adapter,
4813 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4814{
4815 struct e1000_hw *hw = &adapter->hw;
4816 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4817 u32 reg, mpc;
9d5c8243 4818 u16 phy_tmp;
3f9c0164
AD
4819 int i;
4820 u64 bytes, packets;
12dcd86b
ED
4821 unsigned int start;
4822 u64 _bytes, _packets;
9d5c8243
AK
4823
4824#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4825
4826 /*
4827 * Prevent stats update while adapter is being reset, or if the pci
4828 * connection is down.
4829 */
4830 if (adapter->link_speed == 0)
4831 return;
4832 if (pci_channel_offline(pdev))
4833 return;
4834
3f9c0164
AD
4835 bytes = 0;
4836 packets = 0;
4837 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 4838 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 4839 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4840
ae1c07a6
AD
4841 if (rqdpc) {
4842 ring->rx_stats.drops += rqdpc;
4843 net_stats->rx_fifo_errors += rqdpc;
4844 }
12dcd86b
ED
4845
4846 do {
4847 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4848 _bytes = ring->rx_stats.bytes;
4849 _packets = ring->rx_stats.packets;
4850 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4851 bytes += _bytes;
4852 packets += _packets;
3f9c0164
AD
4853 }
4854
128e45eb
AD
4855 net_stats->rx_bytes = bytes;
4856 net_stats->rx_packets = packets;
3f9c0164
AD
4857
4858 bytes = 0;
4859 packets = 0;
4860 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4861 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4862 do {
4863 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4864 _bytes = ring->tx_stats.bytes;
4865 _packets = ring->tx_stats.packets;
4866 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4867 bytes += _bytes;
4868 packets += _packets;
3f9c0164 4869 }
128e45eb
AD
4870 net_stats->tx_bytes = bytes;
4871 net_stats->tx_packets = packets;
3f9c0164
AD
4872
4873 /* read stats registers */
9d5c8243
AK
4874 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4875 adapter->stats.gprc += rd32(E1000_GPRC);
4876 adapter->stats.gorc += rd32(E1000_GORCL);
4877 rd32(E1000_GORCH); /* clear GORCL */
4878 adapter->stats.bprc += rd32(E1000_BPRC);
4879 adapter->stats.mprc += rd32(E1000_MPRC);
4880 adapter->stats.roc += rd32(E1000_ROC);
4881
4882 adapter->stats.prc64 += rd32(E1000_PRC64);
4883 adapter->stats.prc127 += rd32(E1000_PRC127);
4884 adapter->stats.prc255 += rd32(E1000_PRC255);
4885 adapter->stats.prc511 += rd32(E1000_PRC511);
4886 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4887 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4888 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4889 adapter->stats.sec += rd32(E1000_SEC);
4890
fa3d9a6d
MW
4891 mpc = rd32(E1000_MPC);
4892 adapter->stats.mpc += mpc;
4893 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4894 adapter->stats.scc += rd32(E1000_SCC);
4895 adapter->stats.ecol += rd32(E1000_ECOL);
4896 adapter->stats.mcc += rd32(E1000_MCC);
4897 adapter->stats.latecol += rd32(E1000_LATECOL);
4898 adapter->stats.dc += rd32(E1000_DC);
4899 adapter->stats.rlec += rd32(E1000_RLEC);
4900 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4901 adapter->stats.xontxc += rd32(E1000_XONTXC);
4902 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4903 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4904 adapter->stats.fcruc += rd32(E1000_FCRUC);
4905 adapter->stats.gptc += rd32(E1000_GPTC);
4906 adapter->stats.gotc += rd32(E1000_GOTCL);
4907 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4908 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4909 adapter->stats.ruc += rd32(E1000_RUC);
4910 adapter->stats.rfc += rd32(E1000_RFC);
4911 adapter->stats.rjc += rd32(E1000_RJC);
4912 adapter->stats.tor += rd32(E1000_TORH);
4913 adapter->stats.tot += rd32(E1000_TOTH);
4914 adapter->stats.tpr += rd32(E1000_TPR);
4915
4916 adapter->stats.ptc64 += rd32(E1000_PTC64);
4917 adapter->stats.ptc127 += rd32(E1000_PTC127);
4918 adapter->stats.ptc255 += rd32(E1000_PTC255);
4919 adapter->stats.ptc511 += rd32(E1000_PTC511);
4920 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4921 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4922
4923 adapter->stats.mptc += rd32(E1000_MPTC);
4924 adapter->stats.bptc += rd32(E1000_BPTC);
4925
2d0b0f69
NN
4926 adapter->stats.tpt += rd32(E1000_TPT);
4927 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4928
4929 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4930 /* read internal phy specific stats */
4931 reg = rd32(E1000_CTRL_EXT);
4932 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4933 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
4934
4935 /* this stat has invalid values on i210/i211 */
4936 if ((hw->mac.type != e1000_i210) &&
4937 (hw->mac.type != e1000_i211))
4938 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
4939 }
4940
9d5c8243
AK
4941 adapter->stats.tsctc += rd32(E1000_TSCTC);
4942 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4943
4944 adapter->stats.iac += rd32(E1000_IAC);
4945 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4946 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4947 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4948 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4949 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4950 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4951 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4952 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4953
4954 /* Fill out the OS statistics structure */
128e45eb
AD
4955 net_stats->multicast = adapter->stats.mprc;
4956 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4957
4958 /* Rx Errors */
4959
4960 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4961 * our own version based on RUC and ROC */
128e45eb 4962 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4963 adapter->stats.crcerrs + adapter->stats.algnerrc +
4964 adapter->stats.ruc + adapter->stats.roc +
4965 adapter->stats.cexterr;
128e45eb
AD
4966 net_stats->rx_length_errors = adapter->stats.ruc +
4967 adapter->stats.roc;
4968 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4969 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4970 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4971
4972 /* Tx Errors */
128e45eb
AD
4973 net_stats->tx_errors = adapter->stats.ecol +
4974 adapter->stats.latecol;
4975 net_stats->tx_aborted_errors = adapter->stats.ecol;
4976 net_stats->tx_window_errors = adapter->stats.latecol;
4977 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4978
4979 /* Tx Dropped needs to be maintained elsewhere */
4980
4981 /* Phy Stats */
4982 if (hw->phy.media_type == e1000_media_type_copper) {
4983 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4984 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4985 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4986 adapter->phy_stats.idle_errors += phy_tmp;
4987 }
4988 }
4989
4990 /* Management Stats */
4991 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4992 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4993 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4994
4995 /* OS2BMC Stats */
4996 reg = rd32(E1000_MANC);
4997 if (reg & E1000_MANC_EN_BMC2OS) {
4998 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4999 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5000 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5001 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5002 }
9d5c8243
AK
5003}
5004
9d5c8243
AK
5005static irqreturn_t igb_msix_other(int irq, void *data)
5006{
047e0030 5007 struct igb_adapter *adapter = data;
9d5c8243 5008 struct e1000_hw *hw = &adapter->hw;
844290e5 5009 u32 icr = rd32(E1000_ICR);
844290e5 5010 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5011
7f081d40
AD
5012 if (icr & E1000_ICR_DRSTA)
5013 schedule_work(&adapter->reset_task);
5014
047e0030 5015 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5016 /* HW is reporting DMA is out of sync */
5017 adapter->stats.doosync++;
13800469
GR
5018 /* The DMA Out of Sync is also indication of a spoof event
5019 * in IOV mode. Check the Wrong VM Behavior register to
5020 * see if it is really a spoof event. */
5021 igb_check_wvbr(adapter);
dda0e083 5022 }
eebbbdba 5023
4ae196df
AD
5024 /* Check for a mailbox event */
5025 if (icr & E1000_ICR_VMMB)
5026 igb_msg_task(adapter);
5027
5028 if (icr & E1000_ICR_LSC) {
5029 hw->mac.get_link_status = 1;
5030 /* guard against interrupt when we're going down */
5031 if (!test_bit(__IGB_DOWN, &adapter->state))
5032 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5033 }
5034
1f6e8178
MV
5035 if (icr & E1000_ICR_TS) {
5036 u32 tsicr = rd32(E1000_TSICR);
5037
5038 if (tsicr & E1000_TSICR_TXTS) {
5039 /* acknowledge the interrupt */
5040 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5041 /* retrieve hardware timestamp */
5042 schedule_work(&adapter->ptp_tx_work);
5043 }
5044 }
1f6e8178 5045
844290e5 5046 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5047
5048 return IRQ_HANDLED;
5049}
5050
047e0030 5051static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5052{
26b39276 5053 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5054 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5055
047e0030
AD
5056 if (!q_vector->set_itr)
5057 return;
73cd78f1 5058
047e0030
AD
5059 if (!itr_val)
5060 itr_val = 0x4;
661086df 5061
26b39276
AD
5062 if (adapter->hw.mac.type == e1000_82575)
5063 itr_val |= itr_val << 16;
661086df 5064 else
0ba82994 5065 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5066
047e0030
AD
5067 writel(itr_val, q_vector->itr_register);
5068 q_vector->set_itr = 0;
6eb5a7f1
AD
5069}
5070
047e0030 5071static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5072{
047e0030 5073 struct igb_q_vector *q_vector = data;
9d5c8243 5074
047e0030
AD
5075 /* Write the ITR value calculated from the previous interrupt. */
5076 igb_write_itr(q_vector);
9d5c8243 5077
047e0030 5078 napi_schedule(&q_vector->napi);
844290e5 5079
047e0030 5080 return IRQ_HANDLED;
fe4506b6
JC
5081}
5082
421e02f0 5083#ifdef CONFIG_IGB_DCA
6a05004a
AD
5084static void igb_update_tx_dca(struct igb_adapter *adapter,
5085 struct igb_ring *tx_ring,
5086 int cpu)
5087{
5088 struct e1000_hw *hw = &adapter->hw;
5089 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5090
5091 if (hw->mac.type != e1000_82575)
5092 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5093
5094 /*
5095 * We can enable relaxed ordering for reads, but not writes when
5096 * DCA is enabled. This is due to a known issue in some chipsets
5097 * which will cause the DCA tag to be cleared.
5098 */
5099 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5100 E1000_DCA_TXCTRL_DATA_RRO_EN |
5101 E1000_DCA_TXCTRL_DESC_DCA_EN;
5102
5103 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5104}
5105
5106static void igb_update_rx_dca(struct igb_adapter *adapter,
5107 struct igb_ring *rx_ring,
5108 int cpu)
5109{
5110 struct e1000_hw *hw = &adapter->hw;
5111 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5112
5113 if (hw->mac.type != e1000_82575)
5114 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5115
5116 /*
5117 * We can enable relaxed ordering for reads, but not writes when
5118 * DCA is enabled. This is due to a known issue in some chipsets
5119 * which will cause the DCA tag to be cleared.
5120 */
5121 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5122 E1000_DCA_RXCTRL_DESC_DCA_EN;
5123
5124 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5125}
5126
047e0030 5127static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5128{
047e0030 5129 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5130 int cpu = get_cpu();
fe4506b6 5131
047e0030
AD
5132 if (q_vector->cpu == cpu)
5133 goto out_no_update;
5134
6a05004a
AD
5135 if (q_vector->tx.ring)
5136 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5137
5138 if (q_vector->rx.ring)
5139 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5140
047e0030
AD
5141 q_vector->cpu = cpu;
5142out_no_update:
fe4506b6
JC
5143 put_cpu();
5144}
5145
5146static void igb_setup_dca(struct igb_adapter *adapter)
5147{
7e0e99ef 5148 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5149 int i;
5150
7dfc16fa 5151 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5152 return;
5153
7e0e99ef
AD
5154 /* Always use CB2 mode, difference is masked in the CB driver. */
5155 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5156
047e0030 5157 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5158 adapter->q_vector[i]->cpu = -1;
5159 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5160 }
5161}
5162
5163static int __igb_notify_dca(struct device *dev, void *data)
5164{
5165 struct net_device *netdev = dev_get_drvdata(dev);
5166 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5167 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5168 struct e1000_hw *hw = &adapter->hw;
5169 unsigned long event = *(unsigned long *)data;
5170
5171 switch (event) {
5172 case DCA_PROVIDER_ADD:
5173 /* if already enabled, don't do it again */
7dfc16fa 5174 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5175 break;
fe4506b6 5176 if (dca_add_requester(dev) == 0) {
bbd98fe4 5177 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5178 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5179 igb_setup_dca(adapter);
5180 break;
5181 }
5182 /* Fall Through since DCA is disabled. */
5183 case DCA_PROVIDER_REMOVE:
7dfc16fa 5184 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5185 /* without this a class_device is left
047e0030 5186 * hanging around in the sysfs model */
fe4506b6 5187 dca_remove_requester(dev);
090b1795 5188 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5189 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5190 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5191 }
5192 break;
5193 }
bbd98fe4 5194
fe4506b6 5195 return 0;
9d5c8243
AK
5196}
5197
fe4506b6
JC
5198static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5199 void *p)
5200{
5201 int ret_val;
5202
5203 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5204 __igb_notify_dca);
5205
5206 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5207}
421e02f0 5208#endif /* CONFIG_IGB_DCA */
9d5c8243 5209
0224d663
GR
5210#ifdef CONFIG_PCI_IOV
5211static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5212{
5213 unsigned char mac_addr[ETH_ALEN];
0224d663 5214
5ac6f91d 5215 eth_zero_addr(mac_addr);
0224d663
GR
5216 igb_set_vf_mac(adapter, vf, mac_addr);
5217
f557147c 5218 return 0;
0224d663
GR
5219}
5220
f557147c 5221static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
0224d663 5222{
0224d663 5223 struct pci_dev *pdev = adapter->pdev;
f557147c
SA
5224 struct pci_dev *vfdev;
5225 int dev_id;
0224d663
GR
5226
5227 switch (adapter->hw.mac.type) {
5228 case e1000_82576:
f557147c 5229 dev_id = IGB_82576_VF_DEV_ID;
0224d663
GR
5230 break;
5231 case e1000_i350:
f557147c 5232 dev_id = IGB_I350_VF_DEV_ID;
0224d663
GR
5233 break;
5234 default:
f557147c 5235 return false;
0224d663
GR
5236 }
5237
f557147c
SA
5238 /* loop through all the VFs to see if we own any that are assigned */
5239 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5240 while (vfdev) {
5241 /* if we don't own it we don't care */
5242 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5243 /* if it is assigned we cannot release it */
5244 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
0224d663
GR
5245 return true;
5246 }
f557147c
SA
5247
5248 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
0224d663 5249 }
f557147c 5250
0224d663
GR
5251 return false;
5252}
5253
5254#endif
4ae196df
AD
5255static void igb_ping_all_vfs(struct igb_adapter *adapter)
5256{
5257 struct e1000_hw *hw = &adapter->hw;
5258 u32 ping;
5259 int i;
5260
5261 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5262 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5263 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5264 ping |= E1000_VT_MSGTYPE_CTS;
5265 igb_write_mbx(hw, &ping, 1, i);
5266 }
5267}
5268
7d5753f0
AD
5269static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5270{
5271 struct e1000_hw *hw = &adapter->hw;
5272 u32 vmolr = rd32(E1000_VMOLR(vf));
5273 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5274
d85b9004 5275 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
5276 IGB_VF_FLAG_MULTI_PROMISC);
5277 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5278
5279 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5280 vmolr |= E1000_VMOLR_MPME;
d85b9004 5281 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5282 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5283 } else {
5284 /*
5285 * if we have hashes and we are clearing a multicast promisc
5286 * flag we need to write the hashes to the MTA as this step
5287 * was previously skipped
5288 */
5289 if (vf_data->num_vf_mc_hashes > 30) {
5290 vmolr |= E1000_VMOLR_MPME;
5291 } else if (vf_data->num_vf_mc_hashes) {
5292 int j;
5293 vmolr |= E1000_VMOLR_ROMPE;
5294 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5295 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5296 }
5297 }
5298
5299 wr32(E1000_VMOLR(vf), vmolr);
5300
5301 /* there are flags left unprocessed, likely not supported */
5302 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5303 return -EINVAL;
5304
5305 return 0;
5306
5307}
5308
4ae196df
AD
5309static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5310 u32 *msgbuf, u32 vf)
5311{
5312 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5313 u16 *hash_list = (u16 *)&msgbuf[1];
5314 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315 int i;
5316
7d5753f0 5317 /* salt away the number of multicast addresses assigned
4ae196df
AD
5318 * to this VF for later use to restore when the PF multi cast
5319 * list changes
5320 */
5321 vf_data->num_vf_mc_hashes = n;
5322
7d5753f0
AD
5323 /* only up to 30 hash values supported */
5324 if (n > 30)
5325 n = 30;
5326
5327 /* store the hashes for later use */
4ae196df 5328 for (i = 0; i < n; i++)
a419aef8 5329 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5330
5331 /* Flush and reset the mta with the new values */
ff41f8dc 5332 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5333
5334 return 0;
5335}
5336
5337static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5338{
5339 struct e1000_hw *hw = &adapter->hw;
5340 struct vf_data_storage *vf_data;
5341 int i, j;
5342
5343 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5344 u32 vmolr = rd32(E1000_VMOLR(i));
5345 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5346
4ae196df 5347 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5348
5349 if ((vf_data->num_vf_mc_hashes > 30) ||
5350 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5351 vmolr |= E1000_VMOLR_MPME;
5352 } else if (vf_data->num_vf_mc_hashes) {
5353 vmolr |= E1000_VMOLR_ROMPE;
5354 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5355 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5356 }
5357 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5358 }
5359}
5360
5361static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5362{
5363 struct e1000_hw *hw = &adapter->hw;
5364 u32 pool_mask, reg, vid;
5365 int i;
5366
5367 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5368
5369 /* Find the vlan filter for this id */
5370 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5371 reg = rd32(E1000_VLVF(i));
5372
5373 /* remove the vf from the pool */
5374 reg &= ~pool_mask;
5375
5376 /* if pool is empty then remove entry from vfta */
5377 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5378 (reg & E1000_VLVF_VLANID_ENABLE)) {
5379 reg = 0;
5380 vid = reg & E1000_VLVF_VLANID_MASK;
5381 igb_vfta_set(hw, vid, false);
5382 }
5383
5384 wr32(E1000_VLVF(i), reg);
5385 }
ae641bdc
AD
5386
5387 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5388}
5389
5390static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5391{
5392 struct e1000_hw *hw = &adapter->hw;
5393 u32 reg, i;
5394
51466239
AD
5395 /* The vlvf table only exists on 82576 hardware and newer */
5396 if (hw->mac.type < e1000_82576)
5397 return -1;
5398
5399 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5400 if (!adapter->vfs_allocated_count)
5401 return -1;
5402
5403 /* Find the vlan filter for this id */
5404 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5405 reg = rd32(E1000_VLVF(i));
5406 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5407 vid == (reg & E1000_VLVF_VLANID_MASK))
5408 break;
5409 }
5410
5411 if (add) {
5412 if (i == E1000_VLVF_ARRAY_SIZE) {
5413 /* Did not find a matching VLAN ID entry that was
5414 * enabled. Search for a free filter entry, i.e.
5415 * one without the enable bit set
5416 */
5417 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5418 reg = rd32(E1000_VLVF(i));
5419 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5420 break;
5421 }
5422 }
5423 if (i < E1000_VLVF_ARRAY_SIZE) {
5424 /* Found an enabled/available entry */
5425 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5426
5427 /* if !enabled we need to set this up in vfta */
5428 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5429 /* add VID to filter table */
5430 igb_vfta_set(hw, vid, true);
4ae196df
AD
5431 reg |= E1000_VLVF_VLANID_ENABLE;
5432 }
cad6d05f
AD
5433 reg &= ~E1000_VLVF_VLANID_MASK;
5434 reg |= vid;
4ae196df 5435 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5436
5437 /* do not modify RLPML for PF devices */
5438 if (vf >= adapter->vfs_allocated_count)
5439 return 0;
5440
5441 if (!adapter->vf_data[vf].vlans_enabled) {
5442 u32 size;
5443 reg = rd32(E1000_VMOLR(vf));
5444 size = reg & E1000_VMOLR_RLPML_MASK;
5445 size += 4;
5446 reg &= ~E1000_VMOLR_RLPML_MASK;
5447 reg |= size;
5448 wr32(E1000_VMOLR(vf), reg);
5449 }
ae641bdc 5450
51466239 5451 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5452 }
5453 } else {
5454 if (i < E1000_VLVF_ARRAY_SIZE) {
5455 /* remove vf from the pool */
5456 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5457 /* if pool is empty then remove entry from vfta */
5458 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5459 reg = 0;
5460 igb_vfta_set(hw, vid, false);
5461 }
5462 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5463
5464 /* do not modify RLPML for PF devices */
5465 if (vf >= adapter->vfs_allocated_count)
5466 return 0;
5467
5468 adapter->vf_data[vf].vlans_enabled--;
5469 if (!adapter->vf_data[vf].vlans_enabled) {
5470 u32 size;
5471 reg = rd32(E1000_VMOLR(vf));
5472 size = reg & E1000_VMOLR_RLPML_MASK;
5473 size -= 4;
5474 reg &= ~E1000_VMOLR_RLPML_MASK;
5475 reg |= size;
5476 wr32(E1000_VMOLR(vf), reg);
5477 }
4ae196df
AD
5478 }
5479 }
8151d294
WM
5480 return 0;
5481}
5482
5483static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5484{
5485 struct e1000_hw *hw = &adapter->hw;
5486
5487 if (vid)
5488 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5489 else
5490 wr32(E1000_VMVIR(vf), 0);
5491}
5492
5493static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5494 int vf, u16 vlan, u8 qos)
5495{
5496 int err = 0;
5497 struct igb_adapter *adapter = netdev_priv(netdev);
5498
5499 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5500 return -EINVAL;
5501 if (vlan || qos) {
5502 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5503 if (err)
5504 goto out;
5505 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5506 igb_set_vmolr(adapter, vf, !vlan);
5507 adapter->vf_data[vf].pf_vlan = vlan;
5508 adapter->vf_data[vf].pf_qos = qos;
5509 dev_info(&adapter->pdev->dev,
5510 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5511 if (test_bit(__IGB_DOWN, &adapter->state)) {
5512 dev_warn(&adapter->pdev->dev,
5513 "The VF VLAN has been set,"
5514 " but the PF device is not up.\n");
5515 dev_warn(&adapter->pdev->dev,
5516 "Bring the PF device up before"
5517 " attempting to use the VF device.\n");
5518 }
5519 } else {
5520 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5521 false, vf);
5522 igb_set_vmvir(adapter, vlan, vf);
5523 igb_set_vmolr(adapter, vf, true);
5524 adapter->vf_data[vf].pf_vlan = 0;
5525 adapter->vf_data[vf].pf_qos = 0;
5526 }
5527out:
5528 return err;
4ae196df
AD
5529}
5530
5531static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5532{
5533 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5534 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5535
5536 return igb_vlvf_set(adapter, vid, add, vf);
5537}
5538
f2ca0dbe 5539static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5540{
8fa7e0f7
GR
5541 /* clear flags - except flag that indicates PF has set the MAC */
5542 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5543 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5544
5545 /* reset offloads to defaults */
8151d294 5546 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5547
5548 /* reset vlans for device */
5549 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5550 if (adapter->vf_data[vf].pf_vlan)
5551 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5552 adapter->vf_data[vf].pf_vlan,
5553 adapter->vf_data[vf].pf_qos);
5554 else
5555 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5556
5557 /* reset multicast table array for vf */
5558 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5559
5560 /* Flush and reset the mta with the new values */
ff41f8dc 5561 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5562}
5563
f2ca0dbe
AD
5564static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5565{
5566 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5567
5ac6f91d 5568 /* clear mac address as we were hotplug removed/added */
8151d294 5569 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 5570 eth_zero_addr(vf_mac);
f2ca0dbe
AD
5571
5572 /* process remaining reset events */
5573 igb_vf_reset(adapter, vf);
5574}
5575
5576static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5577{
5578 struct e1000_hw *hw = &adapter->hw;
5579 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5580 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5581 u32 reg, msgbuf[3];
5582 u8 *addr = (u8 *)(&msgbuf[1]);
5583
5584 /* process all the same items cleared in a function level reset */
f2ca0dbe 5585 igb_vf_reset(adapter, vf);
4ae196df
AD
5586
5587 /* set vf mac address */
26ad9178 5588 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5589
5590 /* enable transmit and receive for vf */
5591 reg = rd32(E1000_VFTE);
5592 wr32(E1000_VFTE, reg | (1 << vf));
5593 reg = rd32(E1000_VFRE);
5594 wr32(E1000_VFRE, reg | (1 << vf));
5595
8fa7e0f7 5596 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5597
5598 /* reply to reset with ack and vf mac address */
5599 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5600 memcpy(addr, vf_mac, 6);
5601 igb_write_mbx(hw, msgbuf, 3, vf);
5602}
5603
5604static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5605{
de42edde
GR
5606 /*
5607 * The VF MAC Address is stored in a packed array of bytes
5608 * starting at the second 32 bit word of the msg array
5609 */
f2ca0dbe
AD
5610 unsigned char *addr = (char *)&msg[1];
5611 int err = -1;
4ae196df 5612
f2ca0dbe
AD
5613 if (is_valid_ether_addr(addr))
5614 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5615
f2ca0dbe 5616 return err;
4ae196df
AD
5617}
5618
5619static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5620{
5621 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5622 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5623 u32 msg = E1000_VT_MSGTYPE_NACK;
5624
5625 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5626 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5627 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5628 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5629 vf_data->last_nack = jiffies;
4ae196df
AD
5630 }
5631}
5632
f2ca0dbe 5633static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5634{
f2ca0dbe
AD
5635 struct pci_dev *pdev = adapter->pdev;
5636 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5637 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5638 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5639 s32 retval;
5640
f2ca0dbe 5641 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5642
fef45f4c
AD
5643 if (retval) {
5644 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5645 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5646 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5647 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5648 return;
5649 goto out;
5650 }
4ae196df
AD
5651
5652 /* this is a message we already processed, do nothing */
5653 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5654 return;
4ae196df
AD
5655
5656 /*
5657 * until the vf completes a reset it should not be
5658 * allowed to start any configuration.
5659 */
5660
5661 if (msgbuf[0] == E1000_VF_RESET) {
5662 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5663 return;
4ae196df
AD
5664 }
5665
f2ca0dbe 5666 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5667 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5668 return;
5669 retval = -1;
5670 goto out;
4ae196df
AD
5671 }
5672
5673 switch ((msgbuf[0] & 0xFFFF)) {
5674 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5675 retval = -EINVAL;
5676 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5677 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5678 else
5679 dev_warn(&pdev->dev,
5680 "VF %d attempted to override administratively "
5681 "set MAC address\nReload the VF driver to "
5682 "resume operations\n", vf);
4ae196df 5683 break;
7d5753f0
AD
5684 case E1000_VF_SET_PROMISC:
5685 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5686 break;
4ae196df
AD
5687 case E1000_VF_SET_MULTICAST:
5688 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5689 break;
5690 case E1000_VF_SET_LPE:
5691 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5692 break;
5693 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5694 retval = -1;
5695 if (vf_data->pf_vlan)
5696 dev_warn(&pdev->dev,
5697 "VF %d attempted to override administratively "
5698 "set VLAN tag\nReload the VF driver to "
5699 "resume operations\n", vf);
8151d294
WM
5700 else
5701 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5702 break;
5703 default:
090b1795 5704 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5705 retval = -1;
5706 break;
5707 }
5708
fef45f4c
AD
5709 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5710out:
4ae196df
AD
5711 /* notify the VF of the results of what it sent us */
5712 if (retval)
5713 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5714 else
5715 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5716
4ae196df 5717 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5718}
4ae196df 5719
f2ca0dbe
AD
5720static void igb_msg_task(struct igb_adapter *adapter)
5721{
5722 struct e1000_hw *hw = &adapter->hw;
5723 u32 vf;
5724
5725 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5726 /* process any reset requests */
5727 if (!igb_check_for_rst(hw, vf))
5728 igb_vf_reset_event(adapter, vf);
5729
5730 /* process any messages pending */
5731 if (!igb_check_for_msg(hw, vf))
5732 igb_rcv_msg_from_vf(adapter, vf);
5733
5734 /* process any acks */
5735 if (!igb_check_for_ack(hw, vf))
5736 igb_rcv_ack_from_vf(adapter, vf);
5737 }
4ae196df
AD
5738}
5739
68d480c4
AD
5740/**
5741 * igb_set_uta - Set unicast filter table address
5742 * @adapter: board private structure
5743 *
5744 * The unicast table address is a register array of 32-bit registers.
5745 * The table is meant to be used in a way similar to how the MTA is used
5746 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5747 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5748 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5749 **/
5750static void igb_set_uta(struct igb_adapter *adapter)
5751{
5752 struct e1000_hw *hw = &adapter->hw;
5753 int i;
5754
5755 /* The UTA table only exists on 82576 hardware and newer */
5756 if (hw->mac.type < e1000_82576)
5757 return;
5758
5759 /* we only need to do this if VMDq is enabled */
5760 if (!adapter->vfs_allocated_count)
5761 return;
5762
5763 for (i = 0; i < hw->mac.uta_reg_count; i++)
5764 array_wr32(E1000_UTA, i, ~0);
5765}
5766
9d5c8243
AK
5767/**
5768 * igb_intr_msi - Interrupt Handler
5769 * @irq: interrupt number
5770 * @data: pointer to a network interface device structure
5771 **/
5772static irqreturn_t igb_intr_msi(int irq, void *data)
5773{
047e0030
AD
5774 struct igb_adapter *adapter = data;
5775 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5776 struct e1000_hw *hw = &adapter->hw;
5777 /* read ICR disables interrupts using IAM */
5778 u32 icr = rd32(E1000_ICR);
5779
047e0030 5780 igb_write_itr(q_vector);
9d5c8243 5781
7f081d40
AD
5782 if (icr & E1000_ICR_DRSTA)
5783 schedule_work(&adapter->reset_task);
5784
047e0030 5785 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5786 /* HW is reporting DMA is out of sync */
5787 adapter->stats.doosync++;
5788 }
5789
9d5c8243
AK
5790 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5791 hw->mac.get_link_status = 1;
5792 if (!test_bit(__IGB_DOWN, &adapter->state))
5793 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5794 }
5795
1f6e8178
MV
5796 if (icr & E1000_ICR_TS) {
5797 u32 tsicr = rd32(E1000_TSICR);
5798
5799 if (tsicr & E1000_TSICR_TXTS) {
5800 /* acknowledge the interrupt */
5801 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5802 /* retrieve hardware timestamp */
5803 schedule_work(&adapter->ptp_tx_work);
5804 }
5805 }
1f6e8178 5806
047e0030 5807 napi_schedule(&q_vector->napi);
9d5c8243
AK
5808
5809 return IRQ_HANDLED;
5810}
5811
5812/**
4a3c6433 5813 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5814 * @irq: interrupt number
5815 * @data: pointer to a network interface device structure
5816 **/
5817static irqreturn_t igb_intr(int irq, void *data)
5818{
047e0030
AD
5819 struct igb_adapter *adapter = data;
5820 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5821 struct e1000_hw *hw = &adapter->hw;
5822 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5823 * need for the IMC write */
5824 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5825
5826 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5827 * not set, then the adapter didn't send an interrupt */
5828 if (!(icr & E1000_ICR_INT_ASSERTED))
5829 return IRQ_NONE;
5830
0ba82994
AD
5831 igb_write_itr(q_vector);
5832
7f081d40
AD
5833 if (icr & E1000_ICR_DRSTA)
5834 schedule_work(&adapter->reset_task);
5835
047e0030 5836 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5837 /* HW is reporting DMA is out of sync */
5838 adapter->stats.doosync++;
5839 }
5840
9d5c8243
AK
5841 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5842 hw->mac.get_link_status = 1;
5843 /* guard against interrupt when we're going down */
5844 if (!test_bit(__IGB_DOWN, &adapter->state))
5845 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5846 }
5847
1f6e8178
MV
5848 if (icr & E1000_ICR_TS) {
5849 u32 tsicr = rd32(E1000_TSICR);
5850
5851 if (tsicr & E1000_TSICR_TXTS) {
5852 /* acknowledge the interrupt */
5853 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5854 /* retrieve hardware timestamp */
5855 schedule_work(&adapter->ptp_tx_work);
5856 }
5857 }
1f6e8178 5858
047e0030 5859 napi_schedule(&q_vector->napi);
9d5c8243
AK
5860
5861 return IRQ_HANDLED;
5862}
5863
c50b52a0 5864static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5865{
047e0030 5866 struct igb_adapter *adapter = q_vector->adapter;
46544258 5867 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5868
0ba82994
AD
5869 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5870 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5871 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5872 igb_set_itr(q_vector);
46544258 5873 else
047e0030 5874 igb_update_ring_itr(q_vector);
9d5c8243
AK
5875 }
5876
46544258
AD
5877 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5878 if (adapter->msix_entries)
047e0030 5879 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5880 else
5881 igb_irq_enable(adapter);
5882 }
9d5c8243
AK
5883}
5884
46544258
AD
5885/**
5886 * igb_poll - NAPI Rx polling callback
5887 * @napi: napi polling structure
5888 * @budget: count of how many packets we should handle
5889 **/
5890static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5891{
047e0030
AD
5892 struct igb_q_vector *q_vector = container_of(napi,
5893 struct igb_q_vector,
5894 napi);
16eb8815 5895 bool clean_complete = true;
9d5c8243 5896
421e02f0 5897#ifdef CONFIG_IGB_DCA
047e0030
AD
5898 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5899 igb_update_dca(q_vector);
fe4506b6 5900#endif
0ba82994 5901 if (q_vector->tx.ring)
13fde97a 5902 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5903
0ba82994 5904 if (q_vector->rx.ring)
cd392f5c 5905 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5906
16eb8815
AD
5907 /* If all work not completed, return budget and keep polling */
5908 if (!clean_complete)
5909 return budget;
46544258 5910
9d5c8243 5911 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5912 napi_complete(napi);
5913 igb_ring_irq_enable(q_vector);
9d5c8243 5914
16eb8815 5915 return 0;
9d5c8243 5916}
6d8126f9 5917
9d5c8243
AK
5918/**
5919 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5920 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 5921 *
9d5c8243
AK
5922 * returns true if ring is completely cleaned
5923 **/
047e0030 5924static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5925{
047e0030 5926 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5927 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5928 struct igb_tx_buffer *tx_buffer;
f4128785 5929 union e1000_adv_tx_desc *tx_desc;
9d5c8243 5930 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5931 unsigned int budget = q_vector->tx.work_limit;
8542db05 5932 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5933
13fde97a
AD
5934 if (test_bit(__IGB_DOWN, &adapter->state))
5935 return true;
0e014cb1 5936
06034649 5937 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5938 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5939 i -= tx_ring->count;
9d5c8243 5940
f4128785
AD
5941 do {
5942 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
5943
5944 /* if next_to_watch is not set then there is no work pending */
5945 if (!eop_desc)
5946 break;
13fde97a 5947
f4128785 5948 /* prevent any other reads prior to eop_desc */
70d289bc 5949 read_barrier_depends();
f4128785 5950
13fde97a
AD
5951 /* if DD is not set pending work has not been completed */
5952 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5953 break;
5954
8542db05
AD
5955 /* clear next_to_watch to prevent false hangs */
5956 tx_buffer->next_to_watch = NULL;
9d5c8243 5957
ebe42d16
AD
5958 /* update the statistics for this packet */
5959 total_bytes += tx_buffer->bytecount;
5960 total_packets += tx_buffer->gso_segs;
13fde97a 5961
ebe42d16
AD
5962 /* free the skb */
5963 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 5964
ebe42d16
AD
5965 /* unmap skb header data */
5966 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
5967 dma_unmap_addr(tx_buffer, dma),
5968 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
5969 DMA_TO_DEVICE);
5970
c9f14bf3
AD
5971 /* clear tx_buffer data */
5972 tx_buffer->skb = NULL;
5973 dma_unmap_len_set(tx_buffer, len, 0);
5974
ebe42d16
AD
5975 /* clear last DMA location and unmap remaining buffers */
5976 while (tx_desc != eop_desc) {
13fde97a
AD
5977 tx_buffer++;
5978 tx_desc++;
9d5c8243 5979 i++;
8542db05
AD
5980 if (unlikely(!i)) {
5981 i -= tx_ring->count;
06034649 5982 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5983 tx_desc = IGB_TX_DESC(tx_ring, 0);
5984 }
ebe42d16
AD
5985
5986 /* unmap any remaining paged data */
c9f14bf3 5987 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 5988 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
5989 dma_unmap_addr(tx_buffer, dma),
5990 dma_unmap_len(tx_buffer, len),
ebe42d16 5991 DMA_TO_DEVICE);
c9f14bf3 5992 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
5993 }
5994 }
5995
ebe42d16
AD
5996 /* move us one more past the eop_desc for start of next pkt */
5997 tx_buffer++;
5998 tx_desc++;
5999 i++;
6000 if (unlikely(!i)) {
6001 i -= tx_ring->count;
6002 tx_buffer = tx_ring->tx_buffer_info;
6003 tx_desc = IGB_TX_DESC(tx_ring, 0);
6004 }
f4128785
AD
6005
6006 /* issue prefetch for next Tx descriptor */
6007 prefetch(tx_desc);
6008
6009 /* update budget accounting */
6010 budget--;
6011 } while (likely(budget));
0e014cb1 6012
bdbc0631
ED
6013 netdev_tx_completed_queue(txring_txq(tx_ring),
6014 total_packets, total_bytes);
8542db05 6015 i += tx_ring->count;
9d5c8243 6016 tx_ring->next_to_clean = i;
13fde97a
AD
6017 u64_stats_update_begin(&tx_ring->tx_syncp);
6018 tx_ring->tx_stats.bytes += total_bytes;
6019 tx_ring->tx_stats.packets += total_packets;
6020 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6021 q_vector->tx.total_bytes += total_bytes;
6022 q_vector->tx.total_packets += total_packets;
9d5c8243 6023
6d095fa8 6024 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6025 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6026
9d5c8243
AK
6027 /* Detect a transmit hang in hardware, this serializes the
6028 * check with the clearing of time_stamp and movement of i */
6d095fa8 6029 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6030 if (tx_buffer->next_to_watch &&
8542db05 6031 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6032 (adapter->tx_timeout_factor * HZ)) &&
6033 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6034
9d5c8243 6035 /* detected Tx unit hang */
59d71989 6036 dev_err(tx_ring->dev,
9d5c8243 6037 "Detected Tx Unit Hang\n"
2d064c06 6038 " Tx Queue <%d>\n"
9d5c8243
AK
6039 " TDH <%x>\n"
6040 " TDT <%x>\n"
6041 " next_to_use <%x>\n"
6042 " next_to_clean <%x>\n"
9d5c8243
AK
6043 "buffer_info[next_to_clean]\n"
6044 " time_stamp <%lx>\n"
8542db05 6045 " next_to_watch <%p>\n"
9d5c8243
AK
6046 " jiffies <%lx>\n"
6047 " desc.status <%x>\n",
2d064c06 6048 tx_ring->queue_index,
238ac817 6049 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6050 readl(tx_ring->tail),
9d5c8243
AK
6051 tx_ring->next_to_use,
6052 tx_ring->next_to_clean,
8542db05 6053 tx_buffer->time_stamp,
f4128785 6054 tx_buffer->next_to_watch,
9d5c8243 6055 jiffies,
f4128785 6056 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6057 netif_stop_subqueue(tx_ring->netdev,
6058 tx_ring->queue_index);
6059
6060 /* we are about to reset, no point in enabling stuff */
6061 return true;
9d5c8243
AK
6062 }
6063 }
13fde97a 6064
21ba6fe1 6065#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a
AD
6066 if (unlikely(total_packets &&
6067 netif_carrier_ok(tx_ring->netdev) &&
21ba6fe1 6068 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6069 /* Make sure that anybody stopping the queue after this
6070 * sees the new next_to_clean.
6071 */
6072 smp_mb();
6073 if (__netif_subqueue_stopped(tx_ring->netdev,
6074 tx_ring->queue_index) &&
6075 !(test_bit(__IGB_DOWN, &adapter->state))) {
6076 netif_wake_subqueue(tx_ring->netdev,
6077 tx_ring->queue_index);
6078
6079 u64_stats_update_begin(&tx_ring->tx_syncp);
6080 tx_ring->tx_stats.restart_queue++;
6081 u64_stats_update_end(&tx_ring->tx_syncp);
6082 }
6083 }
6084
6085 return !!budget;
9d5c8243
AK
6086}
6087
cbc8e55f
AD
6088/**
6089 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6090 * @rx_ring: rx descriptor ring to store buffers on
6091 * @old_buff: donor buffer to have page reused
6092 *
6093 * Synchronizes page for reuse by the adapter
6094 **/
6095static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6096 struct igb_rx_buffer *old_buff)
6097{
6098 struct igb_rx_buffer *new_buff;
6099 u16 nta = rx_ring->next_to_alloc;
6100
6101 new_buff = &rx_ring->rx_buffer_info[nta];
6102
6103 /* update, and store next to alloc */
6104 nta++;
6105 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6106
6107 /* transfer page from old buffer to new buffer */
6108 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6109
6110 /* sync the buffer for use by the device */
6111 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6112 old_buff->page_offset,
de78d1f9 6113 IGB_RX_BUFSZ,
cbc8e55f
AD
6114 DMA_FROM_DEVICE);
6115}
6116
74e238ea
AD
6117static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6118 struct page *page,
6119 unsigned int truesize)
6120{
6121 /* avoid re-using remote pages */
6122 if (unlikely(page_to_nid(page) != numa_node_id()))
6123 return false;
6124
6125#if (PAGE_SIZE < 8192)
6126 /* if we are only owner of page we can reuse it */
6127 if (unlikely(page_count(page) != 1))
6128 return false;
6129
6130 /* flip page offset to other buffer */
6131 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6132
6133 /* since we are the only owner of the page and we need to
6134 * increment it, just set the value to 2 in order to avoid
6135 * an unnecessary locked operation
6136 */
6137 atomic_set(&page->_count, 2);
6138#else
6139 /* move offset up to the next cache line */
6140 rx_buffer->page_offset += truesize;
6141
6142 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6143 return false;
6144
6145 /* bump ref count on page before it is given to the stack */
6146 get_page(page);
6147#endif
6148
6149 return true;
6150}
6151
cbc8e55f
AD
6152/**
6153 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6154 * @rx_ring: rx descriptor ring to transact packets on
6155 * @rx_buffer: buffer containing page to add
6156 * @rx_desc: descriptor containing length of buffer written by hardware
6157 * @skb: sk_buff to place the data into
6158 *
6159 * This function will add the data contained in rx_buffer->page to the skb.
6160 * This is done either through a direct copy if the data in the buffer is
6161 * less than the skb header size, otherwise it will just attach the page as
6162 * a frag to the skb.
6163 *
6164 * The function will then update the page offset if necessary and return
6165 * true if the buffer can be reused by the adapter.
6166 **/
6167static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6168 struct igb_rx_buffer *rx_buffer,
6169 union e1000_adv_rx_desc *rx_desc,
6170 struct sk_buff *skb)
6171{
6172 struct page *page = rx_buffer->page;
6173 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6174#if (PAGE_SIZE < 8192)
6175 unsigned int truesize = IGB_RX_BUFSZ;
6176#else
6177 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6178#endif
cbc8e55f
AD
6179
6180 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6181 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6182
cbc8e55f
AD
6183 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6184 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6185 va += IGB_TS_HDR_LEN;
6186 size -= IGB_TS_HDR_LEN;
6187 }
6188
cbc8e55f
AD
6189 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6190
6191 /* we can reuse buffer as-is, just make sure it is local */
6192 if (likely(page_to_nid(page) == numa_node_id()))
6193 return true;
6194
6195 /* this page cannot be reused so discard it */
6196 put_page(page);
6197 return false;
6198 }
6199
6200 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
74e238ea 6201 rx_buffer->page_offset, size, truesize);
cbc8e55f 6202
74e238ea
AD
6203 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6204}
cbc8e55f 6205
74e238ea
AD
6206static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
6207 union e1000_adv_rx_desc *rx_desc)
6208{
6209 struct igb_rx_buffer *rx_buffer;
6210 struct sk_buff *skb;
6211 struct page *page;
6212 void *page_addr;
6213 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
de78d1f9 6214#if (PAGE_SIZE < 8192)
74e238ea
AD
6215 unsigned int truesize = IGB_RX_BUFSZ;
6216#else
6217 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
6218 SKB_DATA_ALIGN(NET_SKB_PAD +
6219 NET_IP_ALIGN +
6220 size);
6221#endif
cbc8e55f 6222
74e238ea
AD
6223 /* If we spanned a buffer we have a huge mess so test for it */
6224 BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
cbc8e55f 6225
74e238ea
AD
6226 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6227 page = rx_buffer->page;
6228 prefetchw(page);
de78d1f9 6229
74e238ea
AD
6230 page_addr = page_address(page) + rx_buffer->page_offset;
6231
6232 /* prefetch first cache line of first page */
6233 prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
6234#if L1_CACHE_BYTES < 128
6235 prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
de78d1f9 6236#endif
cbc8e55f 6237
74e238ea
AD
6238 /* build an skb to around the page buffer */
6239 skb = build_skb(page_addr, truesize);
6240 if (unlikely(!skb)) {
6241 rx_ring->rx_stats.alloc_failed++;
6242 return NULL;
6243 }
6244
6245 /* we are reusing so sync this buffer for CPU use */
6246 dma_sync_single_range_for_cpu(rx_ring->dev,
6247 rx_buffer->dma,
6248 rx_buffer->page_offset,
6249 IGB_RX_BUFSZ,
6250 DMA_FROM_DEVICE);
6251
6252 /* update pointers within the skb to store the data */
6253 skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
6254 __skb_put(skb, size);
6255
6256 /* pull timestamp out of packet data */
6257 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6258 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
6259 __skb_pull(skb, IGB_TS_HDR_LEN);
6260 }
6261
6262 if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
6263 /* hand second half of page back to the ring */
6264 igb_reuse_rx_page(rx_ring, rx_buffer);
6265 } else {
6266 /* we are not reusing the buffer so unmap it */
6267 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6268 PAGE_SIZE, DMA_FROM_DEVICE);
6269 }
6270
6271 /* clear contents of buffer_info */
6272 rx_buffer->dma = 0;
6273 rx_buffer->page = NULL;
6274
6275 return skb;
cbc8e55f
AD
6276}
6277
2e334eee
AD
6278static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6279 union e1000_adv_rx_desc *rx_desc,
6280 struct sk_buff *skb)
6281{
6282 struct igb_rx_buffer *rx_buffer;
6283 struct page *page;
6284
6285 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6286
2e334eee
AD
6287 page = rx_buffer->page;
6288 prefetchw(page);
6289
6290 if (likely(!skb)) {
6291 void *page_addr = page_address(page) +
6292 rx_buffer->page_offset;
6293
6294 /* prefetch first cache line of first page */
6295 prefetch(page_addr);
6296#if L1_CACHE_BYTES < 128
6297 prefetch(page_addr + L1_CACHE_BYTES);
6298#endif
6299
6300 /* allocate a skb to store the frags */
6301 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6302 IGB_RX_HDR_LEN);
6303 if (unlikely(!skb)) {
6304 rx_ring->rx_stats.alloc_failed++;
6305 return NULL;
6306 }
6307
6308 /*
6309 * we will be copying header into skb->data in
6310 * pskb_may_pull so it is in our interest to prefetch
6311 * it now to avoid a possible cache miss
6312 */
6313 prefetchw(skb->data);
6314 }
6315
6316 /* we are reusing so sync this buffer for CPU use */
6317 dma_sync_single_range_for_cpu(rx_ring->dev,
6318 rx_buffer->dma,
6319 rx_buffer->page_offset,
de78d1f9 6320 IGB_RX_BUFSZ,
2e334eee
AD
6321 DMA_FROM_DEVICE);
6322
6323 /* pull page into skb */
6324 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6325 /* hand second half of page back to the ring */
6326 igb_reuse_rx_page(rx_ring, rx_buffer);
6327 } else {
6328 /* we are not reusing the buffer so unmap it */
6329 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6330 PAGE_SIZE, DMA_FROM_DEVICE);
6331 }
6332
6333 /* clear contents of rx_buffer */
6334 rx_buffer->page = NULL;
6335
6336 return skb;
6337}
6338
cd392f5c 6339static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6340 union e1000_adv_rx_desc *rx_desc,
6341 struct sk_buff *skb)
9d5c8243 6342{
bc8acf2c 6343 skb_checksum_none_assert(skb);
9d5c8243 6344
294e7d78 6345 /* Ignore Checksum bit is set */
3ceb90fd 6346 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6347 return;
6348
6349 /* Rx checksum disabled via ethtool */
6350 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6351 return;
85ad76b2 6352
9d5c8243 6353 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6354 if (igb_test_staterr(rx_desc,
6355 E1000_RXDEXT_STATERR_TCPE |
6356 E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
6357 /*
6358 * work around errata with sctp packets where the TCPE aka
6359 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6360 * packets, (aka let the stack check the crc32c)
6361 */
866cff06
AD
6362 if (!((skb->len == 60) &&
6363 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6364 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6365 ring->rx_stats.csum_err++;
12dcd86b
ED
6366 u64_stats_update_end(&ring->rx_syncp);
6367 }
9d5c8243 6368 /* let the stack verify checksum errors */
9d5c8243
AK
6369 return;
6370 }
6371 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6372 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6373 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6374 skb->ip_summed = CHECKSUM_UNNECESSARY;
6375
3ceb90fd
AD
6376 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6377 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6378}
6379
077887c3
AD
6380static inline void igb_rx_hash(struct igb_ring *ring,
6381 union e1000_adv_rx_desc *rx_desc,
6382 struct sk_buff *skb)
6383{
6384 if (ring->netdev->features & NETIF_F_RXHASH)
6385 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6386}
6387
2e334eee
AD
6388/**
6389 * igb_is_non_eop - process handling of non-EOP buffers
6390 * @rx_ring: Rx ring being processed
6391 * @rx_desc: Rx descriptor for current buffer
6392 * @skb: current socket buffer containing buffer in progress
6393 *
6394 * This function updates next to clean. If the buffer is an EOP buffer
6395 * this function exits returning false, otherwise it will place the
6396 * sk_buff in the next buffer to be chained and return true indicating
6397 * that this is in fact a non-EOP buffer.
6398 **/
6399static bool igb_is_non_eop(struct igb_ring *rx_ring,
6400 union e1000_adv_rx_desc *rx_desc)
6401{
6402 u32 ntc = rx_ring->next_to_clean + 1;
6403
6404 /* fetch, update, and store next to clean */
6405 ntc = (ntc < rx_ring->count) ? ntc : 0;
6406 rx_ring->next_to_clean = ntc;
6407
6408 prefetch(IGB_RX_DESC(rx_ring, ntc));
6409
6410 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6411 return false;
6412
6413 return true;
6414}
6415
1a1c225b
AD
6416/**
6417 * igb_get_headlen - determine size of header for LRO/GRO
6418 * @data: pointer to the start of the headers
6419 * @max_len: total length of section to find headers in
6420 *
6421 * This function is meant to determine the length of headers that will
6422 * be recognized by hardware for LRO, and GRO offloads. The main
6423 * motivation of doing this is to only perform one pull for IPv4 TCP
6424 * packets so that we can do basic things like calculating the gso_size
6425 * based on the average data per packet.
6426 **/
6427static unsigned int igb_get_headlen(unsigned char *data,
6428 unsigned int max_len)
6429{
6430 union {
6431 unsigned char *network;
6432 /* l2 headers */
6433 struct ethhdr *eth;
6434 struct vlan_hdr *vlan;
6435 /* l3 headers */
6436 struct iphdr *ipv4;
6437 struct ipv6hdr *ipv6;
6438 } hdr;
6439 __be16 protocol;
6440 u8 nexthdr = 0; /* default to not TCP */
6441 u8 hlen;
6442
6443 /* this should never happen, but better safe than sorry */
6444 if (max_len < ETH_HLEN)
6445 return max_len;
6446
6447 /* initialize network frame pointer */
6448 hdr.network = data;
6449
6450 /* set first protocol and move network header forward */
6451 protocol = hdr.eth->h_proto;
6452 hdr.network += ETH_HLEN;
6453
6454 /* handle any vlan tag if present */
6455 if (protocol == __constant_htons(ETH_P_8021Q)) {
6456 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6457 return max_len;
6458
6459 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6460 hdr.network += VLAN_HLEN;
6461 }
6462
6463 /* handle L3 protocols */
6464 if (protocol == __constant_htons(ETH_P_IP)) {
6465 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6466 return max_len;
6467
6468 /* access ihl as a u8 to avoid unaligned access on ia64 */
6469 hlen = (hdr.network[0] & 0x0F) << 2;
6470
6471 /* verify hlen meets minimum size requirements */
6472 if (hlen < sizeof(struct iphdr))
6473 return hdr.network - data;
6474
f2fb4ab2
AD
6475 /* record next protocol if header is present */
6476 if (!hdr.ipv4->frag_off)
6477 nexthdr = hdr.ipv4->protocol;
1a1c225b
AD
6478 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6479 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6480 return max_len;
6481
6482 /* record next protocol */
6483 nexthdr = hdr.ipv6->nexthdr;
f2fb4ab2 6484 hlen = sizeof(struct ipv6hdr);
1a1c225b
AD
6485 } else {
6486 return hdr.network - data;
6487 }
6488
f2fb4ab2
AD
6489 /* relocate pointer to start of L4 header */
6490 hdr.network += hlen;
6491
1a1c225b
AD
6492 /* finally sort out TCP */
6493 if (nexthdr == IPPROTO_TCP) {
6494 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6495 return max_len;
6496
6497 /* access doff as a u8 to avoid unaligned access on ia64 */
6498 hlen = (hdr.network[12] & 0xF0) >> 2;
6499
6500 /* verify hlen meets minimum size requirements */
6501 if (hlen < sizeof(struct tcphdr))
6502 return hdr.network - data;
6503
6504 hdr.network += hlen;
6505 } else if (nexthdr == IPPROTO_UDP) {
6506 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6507 return max_len;
6508
6509 hdr.network += sizeof(struct udphdr);
6510 }
6511
6512 /*
6513 * If everything has gone correctly hdr.network should be the
6514 * data section of the packet and will be the end of the header.
6515 * If not then it probably represents the end of the last recognized
6516 * header.
6517 */
6518 if ((hdr.network - data) < max_len)
6519 return hdr.network - data;
6520 else
6521 return max_len;
6522}
6523
6524/**
6525 * igb_pull_tail - igb specific version of skb_pull_tail
6526 * @rx_ring: rx descriptor ring packet is being transacted on
cbc8e55f 6527 * @rx_desc: pointer to the EOP Rx descriptor
1a1c225b
AD
6528 * @skb: pointer to current skb being adjusted
6529 *
6530 * This function is an igb specific version of __pskb_pull_tail. The
6531 * main difference between this version and the original function is that
6532 * this function can make several assumptions about the state of things
6533 * that allow for significant optimizations versus the standard function.
6534 * As a result we can do things like drop a frag and maintain an accurate
6535 * truesize for the skb.
6536 */
6537static void igb_pull_tail(struct igb_ring *rx_ring,
6538 union e1000_adv_rx_desc *rx_desc,
6539 struct sk_buff *skb)
2d94d8ab 6540{
1a1c225b
AD
6541 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6542 unsigned char *va;
6543 unsigned int pull_len;
6544
6545 /*
6546 * it is valid to use page_address instead of kmap since we are
6547 * working with pages allocated out of the lomem pool per
6548 * alloc_page(GFP_ATOMIC)
2d94d8ab 6549 */
1a1c225b
AD
6550 va = skb_frag_address(frag);
6551
1a1c225b
AD
6552 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6553 /* retrieve timestamp from buffer */
6554 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6555
6556 /* update pointers to remove timestamp header */
6557 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6558 frag->page_offset += IGB_TS_HDR_LEN;
6559 skb->data_len -= IGB_TS_HDR_LEN;
6560 skb->len -= IGB_TS_HDR_LEN;
6561
6562 /* move va to start of packet data */
6563 va += IGB_TS_HDR_LEN;
6564 }
6565
1a1c225b
AD
6566 /*
6567 * we need the header to contain the greater of either ETH_HLEN or
6568 * 60 bytes if the skb->len is less than 60 for skb_pad.
6569 */
6570 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6571
6572 /* align pull length to size of long to optimize memcpy performance */
6573 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6574
6575 /* update all of the pointers */
6576 skb_frag_size_sub(frag, pull_len);
6577 frag->page_offset += pull_len;
6578 skb->data_len -= pull_len;
6579 skb->tail += pull_len;
6580}
6581
6582/**
6583 * igb_cleanup_headers - Correct corrupted or empty headers
6584 * @rx_ring: rx descriptor ring packet is being transacted on
6585 * @rx_desc: pointer to the EOP Rx descriptor
6586 * @skb: pointer to current skb being fixed
6587 *
6588 * Address the case where we are pulling data in on pages only
6589 * and as such no data is present in the skb header.
6590 *
6591 * In addition if skb is not at least 60 bytes we need to pad it so that
6592 * it is large enough to qualify as a valid Ethernet frame.
6593 *
6594 * Returns true if an error was encountered and skb was freed.
6595 **/
6596static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6597 union e1000_adv_rx_desc *rx_desc,
6598 struct sk_buff *skb)
6599{
6600
6601 if (unlikely((igb_test_staterr(rx_desc,
6602 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6603 struct net_device *netdev = rx_ring->netdev;
6604 if (!(netdev->features & NETIF_F_RXALL)) {
6605 dev_kfree_skb_any(skb);
6606 return true;
6607 }
6608 }
6609
6610 /* place header in linear portion of buffer */
6611 if (skb_is_nonlinear(skb))
6612 igb_pull_tail(rx_ring, rx_desc, skb);
6613
6614 /* if skb_pad returns an error the skb was freed */
6615 if (unlikely(skb->len < 60)) {
6616 int pad_len = 60 - skb->len;
6617
6618 if (skb_pad(skb, pad_len))
6619 return true;
6620 __skb_put(skb, pad_len);
6621 }
6622
6623 return false;
2d94d8ab
AD
6624}
6625
db2ee5bd
AD
6626/**
6627 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6628 * @rx_ring: rx descriptor ring packet is being transacted on
6629 * @rx_desc: pointer to the EOP Rx descriptor
6630 * @skb: pointer to current skb being populated
6631 *
6632 * This function checks the ring, descriptor, and packet information in
6633 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6634 * other fields within the skb.
6635 **/
6636static void igb_process_skb_fields(struct igb_ring *rx_ring,
6637 union e1000_adv_rx_desc *rx_desc,
6638 struct sk_buff *skb)
6639{
6640 struct net_device *dev = rx_ring->netdev;
6641
6642 igb_rx_hash(rx_ring, rx_desc, skb);
6643
6644 igb_rx_checksum(rx_ring, rx_desc, skb);
6645
db2ee5bd 6646 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
db2ee5bd
AD
6647
6648 if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6649 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6650 u16 vid;
6651 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6652 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6653 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6654 else
6655 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6656
6657 __vlan_hwaccel_put_tag(skb, vid);
6658 }
6659
6660 skb_record_rx_queue(skb, rx_ring->queue_index);
6661
6662 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6663}
6664
2e334eee 6665static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6666{
0ba82994 6667 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6668 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6669 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6670 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6671
2e334eee
AD
6672 do {
6673 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6674
2e334eee
AD
6675 /* return some buffers to hardware, one at a time is too slow */
6676 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6677 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6678 cleaned_count = 0;
6679 }
bf36c1a0 6680
2e334eee 6681 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6682
2e334eee
AD
6683 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6684 break;
9d5c8243 6685
74e238ea
AD
6686 /* This memory barrier is needed to keep us from reading
6687 * any other fields out of the rx_desc until we know the
6688 * RXD_STAT_DD bit is set
6689 */
6690 rmb();
6691
2e334eee 6692 /* retrieve a buffer from the ring */
74e238ea
AD
6693 if (ring_uses_build_skb(rx_ring))
6694 skb = igb_build_rx_buffer(rx_ring, rx_desc);
6695 else
6696 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 6697
2e334eee
AD
6698 /* exit if we failed to retrieve a buffer */
6699 if (!skb)
6700 break;
1a1c225b 6701
2e334eee 6702 cleaned_count++;
1a1c225b 6703
2e334eee
AD
6704 /* fetch next buffer in frame if non-eop */
6705 if (igb_is_non_eop(rx_ring, rx_desc))
6706 continue;
1a1c225b
AD
6707
6708 /* verify the packet layout is correct */
6709 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6710 skb = NULL;
6711 continue;
9d5c8243 6712 }
9d5c8243 6713
db2ee5bd 6714 /* probably a little skewed due to removing CRC */
3ceb90fd 6715 total_bytes += skb->len;
3ceb90fd 6716
db2ee5bd
AD
6717 /* populate checksum, timestamp, VLAN, and protocol */
6718 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 6719
b2cb09b1 6720 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6721
1a1c225b
AD
6722 /* reset skb pointer */
6723 skb = NULL;
6724
2e334eee
AD
6725 /* update budget accounting */
6726 total_packets++;
6727 } while (likely(total_packets < budget));
bf36c1a0 6728
1a1c225b
AD
6729 /* place incomplete frames back on ring for completion */
6730 rx_ring->skb = skb;
6731
12dcd86b 6732 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6733 rx_ring->rx_stats.packets += total_packets;
6734 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6735 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6736 q_vector->rx.total_packets += total_packets;
6737 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6738
6739 if (cleaned_count)
cd392f5c 6740 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6741
2e334eee 6742 return (total_packets < budget);
9d5c8243
AK
6743}
6744
c023cd88 6745static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6746 struct igb_rx_buffer *bi)
c023cd88
AD
6747{
6748 struct page *page = bi->page;
cbc8e55f 6749 dma_addr_t dma;
c023cd88 6750
cbc8e55f
AD
6751 /* since we are recycling buffers we should seldom need to alloc */
6752 if (likely(page))
c023cd88
AD
6753 return true;
6754
cbc8e55f
AD
6755 /* alloc new page for storage */
6756 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6757 if (unlikely(!page)) {
6758 rx_ring->rx_stats.alloc_failed++;
6759 return false;
c023cd88
AD
6760 }
6761
cbc8e55f
AD
6762 /* map page for use */
6763 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 6764
cbc8e55f
AD
6765 /*
6766 * if mapping failed free memory back to system since
6767 * there isn't much point in holding memory we can't use
6768 */
1a1c225b 6769 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
6770 __free_page(page);
6771
c023cd88
AD
6772 rx_ring->rx_stats.alloc_failed++;
6773 return false;
6774 }
6775
1a1c225b 6776 bi->dma = dma;
cbc8e55f
AD
6777 bi->page = page;
6778 bi->page_offset = 0;
1a1c225b 6779
c023cd88
AD
6780 return true;
6781}
6782
74e238ea
AD
6783static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
6784{
6785 if (ring_uses_build_skb(rx_ring))
6786 return NET_SKB_PAD + NET_IP_ALIGN;
6787 else
6788 return 0;
6789}
6790
9d5c8243 6791/**
cd392f5c 6792 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6793 * @adapter: address of board private structure
6794 **/
cd392f5c 6795void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6796{
9d5c8243 6797 union e1000_adv_rx_desc *rx_desc;
06034649 6798 struct igb_rx_buffer *bi;
c023cd88 6799 u16 i = rx_ring->next_to_use;
9d5c8243 6800
cbc8e55f
AD
6801 /* nothing to do */
6802 if (!cleaned_count)
6803 return;
6804
60136906 6805 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6806 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6807 i -= rx_ring->count;
9d5c8243 6808
cbc8e55f 6809 do {
1a1c225b 6810 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 6811 break;
9d5c8243 6812
cbc8e55f
AD
6813 /*
6814 * Refresh the desc even if buffer_addrs didn't change
6815 * because each write-back erases this info.
6816 */
74e238ea
AD
6817 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
6818 bi->page_offset +
6819 igb_rx_offset(rx_ring));
9d5c8243 6820
c023cd88
AD
6821 rx_desc++;
6822 bi++;
9d5c8243 6823 i++;
c023cd88 6824 if (unlikely(!i)) {
60136906 6825 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6826 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6827 i -= rx_ring->count;
6828 }
6829
6830 /* clear the hdr_addr for the next_to_use descriptor */
6831 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
6832
6833 cleaned_count--;
6834 } while (cleaned_count);
9d5c8243 6835
c023cd88
AD
6836 i += rx_ring->count;
6837
9d5c8243 6838 if (rx_ring->next_to_use != i) {
cbc8e55f 6839 /* record the next descriptor to use */
9d5c8243 6840 rx_ring->next_to_use = i;
9d5c8243 6841
cbc8e55f
AD
6842 /* update next to alloc since we have filled the ring */
6843 rx_ring->next_to_alloc = i;
6844
6845 /*
6846 * Force memory writes to complete before letting h/w
9d5c8243
AK
6847 * know there are new descriptors to fetch. (Only
6848 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
6849 * such as IA-64).
6850 */
9d5c8243 6851 wmb();
fce99e34 6852 writel(i, rx_ring->tail);
9d5c8243
AK
6853 }
6854}
6855
6856/**
6857 * igb_mii_ioctl -
6858 * @netdev:
6859 * @ifreq:
6860 * @cmd:
6861 **/
6862static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6863{
6864 struct igb_adapter *adapter = netdev_priv(netdev);
6865 struct mii_ioctl_data *data = if_mii(ifr);
6866
6867 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6868 return -EOPNOTSUPP;
6869
6870 switch (cmd) {
6871 case SIOCGMIIPHY:
6872 data->phy_id = adapter->hw.phy.addr;
6873 break;
6874 case SIOCGMIIREG:
f5f4cf08
AD
6875 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6876 &data->val_out))
9d5c8243
AK
6877 return -EIO;
6878 break;
6879 case SIOCSMIIREG:
6880 default:
6881 return -EOPNOTSUPP;
6882 }
6883 return 0;
6884}
6885
6886/**
6887 * igb_ioctl -
6888 * @netdev:
6889 * @ifreq:
6890 * @cmd:
6891 **/
6892static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6893{
6894 switch (cmd) {
6895 case SIOCGMIIPHY:
6896 case SIOCGMIIREG:
6897 case SIOCSMIIREG:
6898 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b 6899 case SIOCSHWTSTAMP:
a79f4f88 6900 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6901 default:
6902 return -EOPNOTSUPP;
6903 }
6904}
6905
009bc06e
AD
6906s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6907{
6908 struct igb_adapter *adapter = hw->back;
009bc06e 6909
23d028cc 6910 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
6911 return -E1000_ERR_CONFIG;
6912
009bc06e
AD
6913 return 0;
6914}
6915
6916s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6917{
6918 struct igb_adapter *adapter = hw->back;
009bc06e 6919
23d028cc 6920 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
6921 return -E1000_ERR_CONFIG;
6922
009bc06e
AD
6923 return 0;
6924}
6925
c8f44aff 6926static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6927{
6928 struct igb_adapter *adapter = netdev_priv(netdev);
6929 struct e1000_hw *hw = &adapter->hw;
6930 u32 ctrl, rctl;
5faf030c 6931 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
9d5c8243 6932
5faf030c 6933 if (enable) {
9d5c8243
AK
6934 /* enable VLAN tag insert/strip */
6935 ctrl = rd32(E1000_CTRL);
6936 ctrl |= E1000_CTRL_VME;
6937 wr32(E1000_CTRL, ctrl);
6938
51466239 6939 /* Disable CFI check */
9d5c8243 6940 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6941 rctl &= ~E1000_RCTL_CFIEN;
6942 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6943 } else {
6944 /* disable VLAN tag insert/strip */
6945 ctrl = rd32(E1000_CTRL);
6946 ctrl &= ~E1000_CTRL_VME;
6947 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6948 }
6949
e1739522 6950 igb_rlpml_set(adapter);
9d5c8243
AK
6951}
6952
8e586137 6953static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6954{
6955 struct igb_adapter *adapter = netdev_priv(netdev);
6956 struct e1000_hw *hw = &adapter->hw;
4ae196df 6957 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6958
51466239
AD
6959 /* attempt to add filter to vlvf array */
6960 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6961
51466239
AD
6962 /* add the filter since PF can receive vlans w/o entry in vlvf */
6963 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6964
6965 set_bit(vid, adapter->active_vlans);
8e586137
JP
6966
6967 return 0;
9d5c8243
AK
6968}
6969
8e586137 6970static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
9d5c8243
AK
6971{
6972 struct igb_adapter *adapter = netdev_priv(netdev);
6973 struct e1000_hw *hw = &adapter->hw;
4ae196df 6974 int pf_id = adapter->vfs_allocated_count;
51466239 6975 s32 err;
9d5c8243 6976
51466239
AD
6977 /* remove vlan from VLVF table array */
6978 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6979
51466239
AD
6980 /* if vid was not present in VLVF just remove it from table */
6981 if (err)
4ae196df 6982 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6983
6984 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6985
6986 return 0;
9d5c8243
AK
6987}
6988
6989static void igb_restore_vlan(struct igb_adapter *adapter)
6990{
b2cb09b1 6991 u16 vid;
9d5c8243 6992
5faf030c
AD
6993 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6994
b2cb09b1
JP
6995 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6996 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6997}
6998
14ad2513 6999int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 7000{
090b1795 7001 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
7002 struct e1000_mac_info *mac = &adapter->hw.mac;
7003
7004 mac->autoneg = 0;
7005
14ad2513
DD
7006 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7007 * for the switch() below to work */
7008 if ((spd & 1) || (dplx & ~1))
7009 goto err_inval;
7010
f502ef7d
AA
7011 /* Fiber NIC's only allow 1000 gbps Full duplex
7012 * and 100Mbps Full duplex for 100baseFx sfp
7013 */
7014 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7015 switch (spd + dplx) {
7016 case SPEED_10 + DUPLEX_HALF:
7017 case SPEED_10 + DUPLEX_FULL:
7018 case SPEED_100 + DUPLEX_HALF:
7019 goto err_inval;
7020 default:
7021 break;
7022 }
7023 }
cd2638a8 7024
14ad2513 7025 switch (spd + dplx) {
9d5c8243
AK
7026 case SPEED_10 + DUPLEX_HALF:
7027 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7028 break;
7029 case SPEED_10 + DUPLEX_FULL:
7030 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7031 break;
7032 case SPEED_100 + DUPLEX_HALF:
7033 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7034 break;
7035 case SPEED_100 + DUPLEX_FULL:
7036 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7037 break;
7038 case SPEED_1000 + DUPLEX_FULL:
7039 mac->autoneg = 1;
7040 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7041 break;
7042 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7043 default:
14ad2513 7044 goto err_inval;
9d5c8243 7045 }
8376dad0
JB
7046
7047 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7048 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7049
9d5c8243 7050 return 0;
14ad2513
DD
7051
7052err_inval:
7053 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7054 return -EINVAL;
9d5c8243
AK
7055}
7056
749ab2cd
YZ
7057static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7058 bool runtime)
9d5c8243
AK
7059{
7060 struct net_device *netdev = pci_get_drvdata(pdev);
7061 struct igb_adapter *adapter = netdev_priv(netdev);
7062 struct e1000_hw *hw = &adapter->hw;
2d064c06 7063 u32 ctrl, rctl, status;
749ab2cd 7064 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7065#ifdef CONFIG_PM
7066 int retval = 0;
7067#endif
7068
7069 netif_device_detach(netdev);
7070
a88f10ec 7071 if (netif_running(netdev))
749ab2cd 7072 __igb_close(netdev, true);
a88f10ec 7073
047e0030 7074 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7075
7076#ifdef CONFIG_PM
7077 retval = pci_save_state(pdev);
7078 if (retval)
7079 return retval;
7080#endif
7081
7082 status = rd32(E1000_STATUS);
7083 if (status & E1000_STATUS_LU)
7084 wufc &= ~E1000_WUFC_LNKC;
7085
7086 if (wufc) {
7087 igb_setup_rctl(adapter);
ff41f8dc 7088 igb_set_rx_mode(netdev);
9d5c8243
AK
7089
7090 /* turn on all-multi mode if wake on multicast is enabled */
7091 if (wufc & E1000_WUFC_MC) {
7092 rctl = rd32(E1000_RCTL);
7093 rctl |= E1000_RCTL_MPE;
7094 wr32(E1000_RCTL, rctl);
7095 }
7096
7097 ctrl = rd32(E1000_CTRL);
7098 /* advertise wake from D3Cold */
7099 #define E1000_CTRL_ADVD3WUC 0x00100000
7100 /* phy power management enable */
7101 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7102 ctrl |= E1000_CTRL_ADVD3WUC;
7103 wr32(E1000_CTRL, ctrl);
7104
9d5c8243 7105 /* Allow time for pending master requests to run */
330a6d6a 7106 igb_disable_pcie_master(hw);
9d5c8243
AK
7107
7108 wr32(E1000_WUC, E1000_WUC_PME_EN);
7109 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7110 } else {
7111 wr32(E1000_WUC, 0);
7112 wr32(E1000_WUFC, 0);
9d5c8243
AK
7113 }
7114
3fe7c4c9
RW
7115 *enable_wake = wufc || adapter->en_mng_pt;
7116 if (!*enable_wake)
88a268c1
NN
7117 igb_power_down_link(adapter);
7118 else
7119 igb_power_up_link(adapter);
9d5c8243
AK
7120
7121 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7122 * would have already happened in close and is redundant. */
7123 igb_release_hw_control(adapter);
7124
7125 pci_disable_device(pdev);
7126
9d5c8243
AK
7127 return 0;
7128}
7129
7130#ifdef CONFIG_PM
d9dd966d 7131#ifdef CONFIG_PM_SLEEP
749ab2cd 7132static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7133{
7134 int retval;
7135 bool wake;
749ab2cd 7136 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7137
749ab2cd 7138 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7139 if (retval)
7140 return retval;
7141
7142 if (wake) {
7143 pci_prepare_to_sleep(pdev);
7144 } else {
7145 pci_wake_from_d3(pdev, false);
7146 pci_set_power_state(pdev, PCI_D3hot);
7147 }
7148
7149 return 0;
7150}
d9dd966d 7151#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7152
749ab2cd 7153static int igb_resume(struct device *dev)
9d5c8243 7154{
749ab2cd 7155 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7156 struct net_device *netdev = pci_get_drvdata(pdev);
7157 struct igb_adapter *adapter = netdev_priv(netdev);
7158 struct e1000_hw *hw = &adapter->hw;
7159 u32 err;
7160
7161 pci_set_power_state(pdev, PCI_D0);
7162 pci_restore_state(pdev);
b94f2d77 7163 pci_save_state(pdev);
42bfd33a 7164
aed5dec3 7165 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7166 if (err) {
7167 dev_err(&pdev->dev,
7168 "igb: Cannot enable PCI device from suspend\n");
7169 return err;
7170 }
7171 pci_set_master(pdev);
7172
7173 pci_enable_wake(pdev, PCI_D3hot, 0);
7174 pci_enable_wake(pdev, PCI_D3cold, 0);
7175
53c7d064 7176 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7177 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7178 return -ENOMEM;
9d5c8243
AK
7179 }
7180
9d5c8243 7181 igb_reset(adapter);
a8564f03
AD
7182
7183 /* let the f/w know that the h/w is now under the control of the
7184 * driver. */
7185 igb_get_hw_control(adapter);
7186
9d5c8243
AK
7187 wr32(E1000_WUS, ~0);
7188
749ab2cd 7189 if (netdev->flags & IFF_UP) {
0c2cc02e 7190 rtnl_lock();
749ab2cd 7191 err = __igb_open(netdev, true);
0c2cc02e 7192 rtnl_unlock();
a88f10ec
AD
7193 if (err)
7194 return err;
7195 }
9d5c8243
AK
7196
7197 netif_device_attach(netdev);
749ab2cd
YZ
7198 return 0;
7199}
7200
7201#ifdef CONFIG_PM_RUNTIME
7202static int igb_runtime_idle(struct device *dev)
7203{
7204 struct pci_dev *pdev = to_pci_dev(dev);
7205 struct net_device *netdev = pci_get_drvdata(pdev);
7206 struct igb_adapter *adapter = netdev_priv(netdev);
7207
7208 if (!igb_has_link(adapter))
7209 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7210
7211 return -EBUSY;
7212}
7213
7214static int igb_runtime_suspend(struct device *dev)
7215{
7216 struct pci_dev *pdev = to_pci_dev(dev);
7217 int retval;
7218 bool wake;
7219
7220 retval = __igb_shutdown(pdev, &wake, 1);
7221 if (retval)
7222 return retval;
7223
7224 if (wake) {
7225 pci_prepare_to_sleep(pdev);
7226 } else {
7227 pci_wake_from_d3(pdev, false);
7228 pci_set_power_state(pdev, PCI_D3hot);
7229 }
9d5c8243 7230
9d5c8243
AK
7231 return 0;
7232}
749ab2cd
YZ
7233
7234static int igb_runtime_resume(struct device *dev)
7235{
7236 return igb_resume(dev);
7237}
7238#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
7239#endif
7240
7241static void igb_shutdown(struct pci_dev *pdev)
7242{
3fe7c4c9
RW
7243 bool wake;
7244
749ab2cd 7245 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7246
7247 if (system_state == SYSTEM_POWER_OFF) {
7248 pci_wake_from_d3(pdev, wake);
7249 pci_set_power_state(pdev, PCI_D3hot);
7250 }
9d5c8243
AK
7251}
7252
fa44f2f1
GR
7253#ifdef CONFIG_PCI_IOV
7254static int igb_sriov_reinit(struct pci_dev *dev)
7255{
7256 struct net_device *netdev = pci_get_drvdata(dev);
7257 struct igb_adapter *adapter = netdev_priv(netdev);
7258 struct pci_dev *pdev = adapter->pdev;
7259
7260 rtnl_lock();
7261
7262 if (netif_running(netdev))
7263 igb_close(netdev);
7264
7265 igb_clear_interrupt_scheme(adapter);
7266
7267 igb_init_queue_configuration(adapter);
7268
7269 if (igb_init_interrupt_scheme(adapter, true)) {
7270 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7271 return -ENOMEM;
7272 }
7273
7274 if (netif_running(netdev))
7275 igb_open(netdev);
7276
7277 rtnl_unlock();
7278
7279 return 0;
7280}
7281
7282static int igb_pci_disable_sriov(struct pci_dev *dev)
7283{
7284 int err = igb_disable_sriov(dev);
7285
7286 if (!err)
7287 err = igb_sriov_reinit(dev);
7288
7289 return err;
7290}
7291
7292static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7293{
7294 int err = igb_enable_sriov(dev, num_vfs);
7295
7296 if (err)
7297 goto out;
7298
7299 err = igb_sriov_reinit(dev);
7300 if (!err)
7301 return num_vfs;
7302
7303out:
7304 return err;
7305}
7306
7307#endif
7308static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7309{
7310#ifdef CONFIG_PCI_IOV
7311 if (num_vfs == 0)
7312 return igb_pci_disable_sriov(dev);
7313 else
7314 return igb_pci_enable_sriov(dev, num_vfs);
7315#endif
7316 return 0;
7317}
7318
9d5c8243
AK
7319#ifdef CONFIG_NET_POLL_CONTROLLER
7320/*
7321 * Polling 'interrupt' - used by things like netconsole to send skbs
7322 * without having to re-enable interrupts. It's not called while
7323 * the interrupt routine is executing.
7324 */
7325static void igb_netpoll(struct net_device *netdev)
7326{
7327 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7328 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7329 struct igb_q_vector *q_vector;
9d5c8243 7330 int i;
9d5c8243 7331
047e0030 7332 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
7333 q_vector = adapter->q_vector[i];
7334 if (adapter->msix_entries)
7335 wr32(E1000_EIMC, q_vector->eims_value);
7336 else
7337 igb_irq_disable(adapter);
047e0030 7338 napi_schedule(&q_vector->napi);
eebbbdba 7339 }
9d5c8243
AK
7340}
7341#endif /* CONFIG_NET_POLL_CONTROLLER */
7342
7343/**
7344 * igb_io_error_detected - called when PCI error is detected
7345 * @pdev: Pointer to PCI device
7346 * @state: The current pci connection state
7347 *
7348 * This function is called after a PCI bus error affecting
7349 * this device has been detected.
7350 */
7351static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7352 pci_channel_state_t state)
7353{
7354 struct net_device *netdev = pci_get_drvdata(pdev);
7355 struct igb_adapter *adapter = netdev_priv(netdev);
7356
7357 netif_device_detach(netdev);
7358
59ed6eec
AD
7359 if (state == pci_channel_io_perm_failure)
7360 return PCI_ERS_RESULT_DISCONNECT;
7361
9d5c8243
AK
7362 if (netif_running(netdev))
7363 igb_down(adapter);
7364 pci_disable_device(pdev);
7365
7366 /* Request a slot slot reset. */
7367 return PCI_ERS_RESULT_NEED_RESET;
7368}
7369
7370/**
7371 * igb_io_slot_reset - called after the pci bus has been reset.
7372 * @pdev: Pointer to PCI device
7373 *
7374 * Restart the card from scratch, as if from a cold-boot. Implementation
7375 * resembles the first-half of the igb_resume routine.
7376 */
7377static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7378{
7379 struct net_device *netdev = pci_get_drvdata(pdev);
7380 struct igb_adapter *adapter = netdev_priv(netdev);
7381 struct e1000_hw *hw = &adapter->hw;
40a914fa 7382 pci_ers_result_t result;
42bfd33a 7383 int err;
9d5c8243 7384
aed5dec3 7385 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7386 dev_err(&pdev->dev,
7387 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7388 result = PCI_ERS_RESULT_DISCONNECT;
7389 } else {
7390 pci_set_master(pdev);
7391 pci_restore_state(pdev);
b94f2d77 7392 pci_save_state(pdev);
9d5c8243 7393
40a914fa
AD
7394 pci_enable_wake(pdev, PCI_D3hot, 0);
7395 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7396
40a914fa
AD
7397 igb_reset(adapter);
7398 wr32(E1000_WUS, ~0);
7399 result = PCI_ERS_RESULT_RECOVERED;
7400 }
9d5c8243 7401
ea943d41
JK
7402 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7403 if (err) {
7404 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7405 "failed 0x%0x\n", err);
7406 /* non-fatal, continue */
7407 }
40a914fa
AD
7408
7409 return result;
9d5c8243
AK
7410}
7411
7412/**
7413 * igb_io_resume - called when traffic can start flowing again.
7414 * @pdev: Pointer to PCI device
7415 *
7416 * This callback is called when the error recovery driver tells us that
7417 * its OK to resume normal operation. Implementation resembles the
7418 * second-half of the igb_resume routine.
7419 */
7420static void igb_io_resume(struct pci_dev *pdev)
7421{
7422 struct net_device *netdev = pci_get_drvdata(pdev);
7423 struct igb_adapter *adapter = netdev_priv(netdev);
7424
9d5c8243
AK
7425 if (netif_running(netdev)) {
7426 if (igb_up(adapter)) {
7427 dev_err(&pdev->dev, "igb_up failed after reset\n");
7428 return;
7429 }
7430 }
7431
7432 netif_device_attach(netdev);
7433
7434 /* let the f/w know that the h/w is now under the control of the
7435 * driver. */
7436 igb_get_hw_control(adapter);
9d5c8243
AK
7437}
7438
26ad9178
AD
7439static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7440 u8 qsel)
7441{
7442 u32 rar_low, rar_high;
7443 struct e1000_hw *hw = &adapter->hw;
7444
7445 /* HW expects these in little endian so we reverse the byte order
7446 * from network order (big endian) to little endian
7447 */
7448 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7449 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7450 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7451
7452 /* Indicate to hardware the Address is Valid. */
7453 rar_high |= E1000_RAH_AV;
7454
7455 if (hw->mac.type == e1000_82575)
7456 rar_high |= E1000_RAH_POOL_1 * qsel;
7457 else
7458 rar_high |= E1000_RAH_POOL_1 << qsel;
7459
7460 wr32(E1000_RAL(index), rar_low);
7461 wrfl();
7462 wr32(E1000_RAH(index), rar_high);
7463 wrfl();
7464}
7465
4ae196df
AD
7466static int igb_set_vf_mac(struct igb_adapter *adapter,
7467 int vf, unsigned char *mac_addr)
7468{
7469 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
7470 /* VF MAC addresses start at end of receive addresses and moves
7471 * torwards the first, as a result a collision should not be possible */
7472 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7473
37680117 7474 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7475
26ad9178 7476 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7477
7478 return 0;
7479}
7480
8151d294
WM
7481static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7482{
7483 struct igb_adapter *adapter = netdev_priv(netdev);
7484 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7485 return -EINVAL;
7486 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7487 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7488 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7489 " change effective.");
7490 if (test_bit(__IGB_DOWN, &adapter->state)) {
7491 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7492 " but the PF device is not up.\n");
7493 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7494 " attempting to use the VF device.\n");
7495 }
7496 return igb_set_vf_mac(adapter, vf, mac);
7497}
7498
17dc566c
LL
7499static int igb_link_mbps(int internal_link_speed)
7500{
7501 switch (internal_link_speed) {
7502 case SPEED_100:
7503 return 100;
7504 case SPEED_1000:
7505 return 1000;
7506 default:
7507 return 0;
7508 }
7509}
7510
7511static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7512 int link_speed)
7513{
7514 int rf_dec, rf_int;
7515 u32 bcnrc_val;
7516
7517 if (tx_rate != 0) {
7518 /* Calculate the rate factor values to set */
7519 rf_int = link_speed / tx_rate;
7520 rf_dec = (link_speed - (rf_int * tx_rate));
7521 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7522
7523 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7524 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7525 E1000_RTTBCNRC_RF_INT_MASK);
7526 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7527 } else {
7528 bcnrc_val = 0;
7529 }
7530
7531 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
f00b0da7
LL
7532 /*
7533 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7534 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7535 */
7536 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7537 wr32(E1000_RTTBCNRC, bcnrc_val);
7538}
7539
7540static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7541{
7542 int actual_link_speed, i;
7543 bool reset_rate = false;
7544
7545 /* VF TX rate limit was not set or not supported */
7546 if ((adapter->vf_rate_link_speed == 0) ||
7547 (adapter->hw.mac.type != e1000_82576))
7548 return;
7549
7550 actual_link_speed = igb_link_mbps(adapter->link_speed);
7551 if (actual_link_speed != adapter->vf_rate_link_speed) {
7552 reset_rate = true;
7553 adapter->vf_rate_link_speed = 0;
7554 dev_info(&adapter->pdev->dev,
7555 "Link speed has been changed. VF Transmit "
7556 "rate is disabled\n");
7557 }
7558
7559 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7560 if (reset_rate)
7561 adapter->vf_data[i].tx_rate = 0;
7562
7563 igb_set_vf_rate_limit(&adapter->hw, i,
7564 adapter->vf_data[i].tx_rate,
7565 actual_link_speed);
7566 }
7567}
7568
8151d294
WM
7569static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7570{
17dc566c
LL
7571 struct igb_adapter *adapter = netdev_priv(netdev);
7572 struct e1000_hw *hw = &adapter->hw;
7573 int actual_link_speed;
7574
7575 if (hw->mac.type != e1000_82576)
7576 return -EOPNOTSUPP;
7577
7578 actual_link_speed = igb_link_mbps(adapter->link_speed);
7579 if ((vf >= adapter->vfs_allocated_count) ||
7580 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7581 (tx_rate < 0) || (tx_rate > actual_link_speed))
7582 return -EINVAL;
7583
7584 adapter->vf_rate_link_speed = actual_link_speed;
7585 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7586 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7587
7588 return 0;
8151d294
WM
7589}
7590
7591static int igb_ndo_get_vf_config(struct net_device *netdev,
7592 int vf, struct ifla_vf_info *ivi)
7593{
7594 struct igb_adapter *adapter = netdev_priv(netdev);
7595 if (vf >= adapter->vfs_allocated_count)
7596 return -EINVAL;
7597 ivi->vf = vf;
7598 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7599 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7600 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7601 ivi->qos = adapter->vf_data[vf].pf_qos;
7602 return 0;
7603}
7604
4ae196df
AD
7605static void igb_vmm_control(struct igb_adapter *adapter)
7606{
7607 struct e1000_hw *hw = &adapter->hw;
10d8e907 7608 u32 reg;
4ae196df 7609
52a1dd4d
AD
7610 switch (hw->mac.type) {
7611 case e1000_82575:
f96a8a0b
CW
7612 case e1000_i210:
7613 case e1000_i211:
52a1dd4d
AD
7614 default:
7615 /* replication is not supported for 82575 */
4ae196df 7616 return;
52a1dd4d
AD
7617 case e1000_82576:
7618 /* notify HW that the MAC is adding vlan tags */
7619 reg = rd32(E1000_DTXCTL);
7620 reg |= E1000_DTXCTL_VLAN_ADDED;
7621 wr32(E1000_DTXCTL, reg);
7622 case e1000_82580:
7623 /* enable replication vlan tag stripping */
7624 reg = rd32(E1000_RPLOLR);
7625 reg |= E1000_RPLOLR_STRVLAN;
7626 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7627 case e1000_i350:
7628 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7629 break;
7630 }
10d8e907 7631
d4960307
AD
7632 if (adapter->vfs_allocated_count) {
7633 igb_vmdq_set_loopback_pf(hw, true);
7634 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
7635 igb_vmdq_set_anti_spoofing_pf(hw, true,
7636 adapter->vfs_allocated_count);
d4960307
AD
7637 } else {
7638 igb_vmdq_set_loopback_pf(hw, false);
7639 igb_vmdq_set_replication_pf(hw, false);
7640 }
4ae196df
AD
7641}
7642
b6e0c419
CW
7643static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7644{
7645 struct e1000_hw *hw = &adapter->hw;
7646 u32 dmac_thr;
7647 u16 hwm;
7648
7649 if (hw->mac.type > e1000_82580) {
7650 if (adapter->flags & IGB_FLAG_DMAC) {
7651 u32 reg;
7652
7653 /* force threshold to 0. */
7654 wr32(E1000_DMCTXTH, 0);
7655
7656 /*
e8c626e9
MV
7657 * DMA Coalescing high water mark needs to be greater
7658 * than the Rx threshold. Set hwm to PBA - max frame
7659 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7660 */
e8c626e9
MV
7661 hwm = 64 * pba - adapter->max_frame_size / 16;
7662 if (hwm < 64 * (pba - 6))
7663 hwm = 64 * (pba - 6);
7664 reg = rd32(E1000_FCRTC);
7665 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7666 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7667 & E1000_FCRTC_RTH_COAL_MASK);
7668 wr32(E1000_FCRTC, reg);
7669
7670 /*
7671 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7672 * frame size, capping it at PBA - 10KB.
7673 */
7674 dmac_thr = pba - adapter->max_frame_size / 512;
7675 if (dmac_thr < pba - 10)
7676 dmac_thr = pba - 10;
b6e0c419
CW
7677 reg = rd32(E1000_DMACR);
7678 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7679 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7680 & E1000_DMACR_DMACTHR_MASK);
7681
7682 /* transition to L0x or L1 if available..*/
7683 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7684
7685 /* watchdog timer= +-1000 usec in 32usec intervals */
7686 reg |= (1000 >> 5);
0c02dd98
MV
7687
7688 /* Disable BMC-to-OS Watchdog Enable */
7689 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
b6e0c419
CW
7690 wr32(E1000_DMACR, reg);
7691
7692 /*
7693 * no lower threshold to disable
7694 * coalescing(smart fifb)-UTRESH=0
7695 */
7696 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7697
7698 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7699
7700 wr32(E1000_DMCTLX, reg);
7701
7702 /*
7703 * free space in tx packet buffer to wake from
7704 * DMA coal
7705 */
7706 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7707 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7708
7709 /*
7710 * make low power state decision controlled
7711 * by DMA coal
7712 */
7713 reg = rd32(E1000_PCIEMISC);
7714 reg &= ~E1000_PCIEMISC_LX_DECISION;
7715 wr32(E1000_PCIEMISC, reg);
7716 } /* endif adapter->dmac is not disabled */
7717 } else if (hw->mac.type == e1000_82580) {
7718 u32 reg = rd32(E1000_PCIEMISC);
7719 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7720 wr32(E1000_DMACR, 0);
7721 }
7722}
7723
441fc6fd
CW
7724/* igb_read_i2c_byte - Reads 8 bit word over I2C
7725 * @hw: pointer to hardware structure
7726 * @byte_offset: byte offset to read
7727 * @dev_addr: device address
7728 * @data: value read
7729 *
7730 * Performs byte read operation over I2C interface at
7731 * a specified device address.
7732 */
7733s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7734 u8 dev_addr, u8 *data)
7735{
7736 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7737 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7738 s32 status;
7739 u16 swfw_mask = 0;
7740
7741 if (!this_client)
7742 return E1000_ERR_I2C;
7743
7744 swfw_mask = E1000_SWFW_PHY0_SM;
7745
7746 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7747 != E1000_SUCCESS)
7748 return E1000_ERR_SWFW_SYNC;
7749
7750 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7751 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7752
7753 if (status < 0)
7754 return E1000_ERR_I2C;
7755 else {
7756 *data = status;
7757 return E1000_SUCCESS;
7758 }
7759}
7760
7761/* igb_write_i2c_byte - Writes 8 bit word over I2C
7762 * @hw: pointer to hardware structure
7763 * @byte_offset: byte offset to write
7764 * @dev_addr: device address
7765 * @data: value to write
7766 *
7767 * Performs byte write operation over I2C interface at
7768 * a specified device address.
7769 */
7770s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7771 u8 dev_addr, u8 data)
7772{
7773 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7774 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7775 s32 status;
7776 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7777
7778 if (!this_client)
7779 return E1000_ERR_I2C;
7780
7781 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7782 return E1000_ERR_SWFW_SYNC;
7783 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7784 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7785
7786 if (status)
7787 return E1000_ERR_I2C;
7788 else
7789 return E1000_SUCCESS;
7790
7791}
9d5c8243 7792/* igb_main.c */